cmd: remove locator
[unleashed.git] / kernel / zmod / crc32.c
blobe887a5336c69314e9a62b10801050d2bd46cb6e5
1 /*
2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
6 /* crc32.c -- compute the CRC-32 of a data stream
7 * Copyright (C) 1995-2005 Mark Adler
8 * For conditions of distribution and use, see copyright notice in zlib.h
10 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
11 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
12 * tables for updating the shift register in one step with three exclusive-ors
13 * instead of four steps with four exclusive-ors. This results in about a
14 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
18 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
19 protection on the static variables used to control the first-use generation
20 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
21 first call get_crc_table() to initialize the tables before allowing more than
22 one thread to use crc32().
25 #ifdef MAKECRCH
26 # include <stdio.h>
27 # ifndef DYNAMIC_CRC_TABLE
28 # define DYNAMIC_CRC_TABLE
29 # endif /* !DYNAMIC_CRC_TABLE */
30 #endif /* MAKECRCH */
32 #include "zutil.h" /* for STDC and FAR definitions */
34 #define local static
36 /* Find a four-byte integer type for crc32_little() and crc32_big(). */
37 #ifndef NOBYFOUR
38 # ifdef STDC /* need ANSI C limits.h to determine sizes */
39 # include <limits.h>
40 # define BYFOUR
41 # if (UINT_MAX == 0xffffffffUL)
42 typedef unsigned int u4;
43 # else
44 # if (ULONG_MAX == 0xffffffffUL)
45 typedef unsigned long u4;
46 # else
47 # if (USHRT_MAX == 0xffffffffUL)
48 typedef unsigned short u4;
49 # else
50 # undef BYFOUR /* can't find a four-byte integer type! */
51 # endif
52 # endif
53 # endif
54 # endif /* STDC */
55 #endif /* !NOBYFOUR */
57 /* Definitions for doing the crc four data bytes at a time. */
58 #ifdef BYFOUR
59 # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
60 (((w)&0xff00)<<8)+(((w)&0xff)<<24))
61 local unsigned long crc32_little OF((unsigned long,
62 const unsigned char FAR *, unsigned));
63 local unsigned long crc32_big OF((unsigned long,
64 const unsigned char FAR *, unsigned));
65 # define TBLS 8
66 #else
67 # define TBLS 1
68 #endif /* BYFOUR */
70 /* Local functions for crc concatenation */
71 local unsigned long gf2_matrix_times OF((unsigned long *mat,
72 unsigned long vec));
73 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
75 #ifdef DYNAMIC_CRC_TABLE
77 local volatile int crc_table_empty = 1;
78 local unsigned long FAR crc_table[TBLS][256];
79 local void make_crc_table OF((void));
80 #ifdef MAKECRCH
81 local void write_table OF((FILE *, const unsigned long FAR *));
82 #endif /* MAKECRCH */
84 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
85 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
87 Polynomials over GF(2) are represented in binary, one bit per coefficient,
88 with the lowest powers in the most significant bit. Then adding polynomials
89 is just exclusive-or, and multiplying a polynomial by x is a right shift by
90 one. If we call the above polynomial p, and represent a byte as the
91 polynomial q, also with the lowest power in the most significant bit (so the
92 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
93 where a mod b means the remainder after dividing a by b.
95 This calculation is done using the shift-register method of multiplying and
96 taking the remainder. The register is initialized to zero, and for each
97 incoming bit, x^32 is added mod p to the register if the bit is a one (where
98 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
99 x (which is shifting right by one and adding x^32 mod p if the bit shifted
100 out is a one). We start with the highest power (least significant bit) of
101 q and repeat for all eight bits of q.
103 The first table is simply the CRC of all possible eight bit values. This is
104 all the information needed to generate CRCs on data a byte at a time for all
105 combinations of CRC register values and incoming bytes. The remaining tables
106 allow for word-at-a-time CRC calculation for both big-endian and little-
107 endian machines, where a word is four bytes.
109 local void make_crc_table()
111 unsigned long c;
112 int n, k;
113 unsigned long poly; /* polynomial exclusive-or pattern */
114 /* terms of polynomial defining this crc (except x^32): */
115 static volatile int first = 1; /* flag to limit concurrent making */
116 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
118 /* See if another task is already doing this (not thread-safe, but better
119 than nothing -- significantly reduces duration of vulnerability in
120 case the advice about DYNAMIC_CRC_TABLE is ignored) */
121 if (first) {
122 first = 0;
124 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
125 poly = 0UL;
126 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
127 poly |= 1UL << (31 - p[n]);
129 /* generate a crc for every 8-bit value */
130 for (n = 0; n < 256; n++) {
131 c = (unsigned long)n;
132 for (k = 0; k < 8; k++)
133 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
134 crc_table[0][n] = c;
137 #ifdef BYFOUR
138 /* generate crc for each value followed by one, two, and three zeros,
139 and then the byte reversal of those as well as the first table */
140 for (n = 0; n < 256; n++) {
141 c = crc_table[0][n];
142 crc_table[4][n] = REV(c);
143 for (k = 1; k < 4; k++) {
144 c = crc_table[0][c & 0xff] ^ (c >> 8);
145 crc_table[k][n] = c;
146 crc_table[k + 4][n] = REV(c);
149 #endif /* BYFOUR */
151 crc_table_empty = 0;
153 else { /* not first */
154 /* wait for the other guy to finish (not efficient, but rare) */
155 while (crc_table_empty)
159 #ifdef MAKECRCH
160 /* write out CRC tables to crc32.h */
162 FILE *out;
164 out = fopen("crc32.h", "w");
165 if (out == NULL) return;
166 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
167 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
168 fprintf(out, "local const unsigned long FAR ");
169 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
170 write_table(out, crc_table[0]);
171 # ifdef BYFOUR
172 fprintf(out, "#ifdef BYFOUR\n");
173 for (k = 1; k < 8; k++) {
174 fprintf(out, " },\n {\n");
175 write_table(out, crc_table[k]);
177 fprintf(out, "#endif\n");
178 # endif /* BYFOUR */
179 fprintf(out, " }\n};\n");
180 fclose(out);
182 #endif /* MAKECRCH */
185 #ifdef MAKECRCH
186 local void write_table(out, table)
187 FILE *out;
188 const unsigned long FAR *table;
190 int n;
192 for (n = 0; n < 256; n++)
193 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
194 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
196 #endif /* MAKECRCH */
198 #else /* !DYNAMIC_CRC_TABLE */
199 /* ========================================================================
200 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
202 #include "crc32.h"
203 #endif /* DYNAMIC_CRC_TABLE */
205 /* =========================================================================
206 * This function can be used by asm versions of crc32()
208 const unsigned long FAR * ZEXPORT get_crc_table()
210 #ifdef DYNAMIC_CRC_TABLE
211 if (crc_table_empty)
212 make_crc_table();
213 #endif /* DYNAMIC_CRC_TABLE */
214 return (const unsigned long FAR *)crc_table;
217 /* ========================================================================= */
218 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
219 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
221 /* ========================================================================= */
222 unsigned long ZEXPORT crc32(crc, buf, len)
223 unsigned long crc;
224 const unsigned char FAR *buf;
225 unsigned len;
227 if (buf == Z_NULL) return 0UL;
229 #ifdef DYNAMIC_CRC_TABLE
230 if (crc_table_empty)
231 make_crc_table();
232 #endif /* DYNAMIC_CRC_TABLE */
234 #ifdef BYFOUR
235 if (sizeof(void *) == sizeof(ptrdiff_t)) {
236 u4 endian;
238 endian = 1;
239 if (*((unsigned char *)(&endian)))
240 return crc32_little(crc, buf, len);
241 else
242 return crc32_big(crc, buf, len);
244 #endif /* BYFOUR */
245 crc = crc ^ 0xffffffffUL;
246 while (len >= 8) {
247 DO8;
248 len -= 8;
250 if (len) do {
251 DO1;
252 } while (--len);
253 return crc ^ 0xffffffffUL;
256 #ifdef BYFOUR
258 /* ========================================================================= */
259 #define DOLIT4 c ^= *buf4++; \
260 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
261 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
262 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
264 /* ========================================================================= */
265 local unsigned long crc32_little(crc, buf, len)
266 unsigned long crc;
267 const unsigned char FAR *buf;
268 unsigned len;
270 u4 c;
271 const u4 FAR *buf4;
273 c = (u4)crc;
274 c = ~c;
275 while (len && ((ptrdiff_t)buf & 3)) {
276 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
277 len--;
280 buf4 = (const u4 FAR *)(const void FAR *)buf;
281 while (len >= 32) {
282 DOLIT32;
283 len -= 32;
285 while (len >= 4) {
286 DOLIT4;
287 len -= 4;
289 buf = (const unsigned char FAR *)buf4;
291 if (len) do {
292 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
293 } while (--len);
294 c = ~c;
295 return (unsigned long)c;
298 /* ========================================================================= */
299 #define DOBIG4 c ^= *++buf4; \
300 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
301 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
302 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
304 /* ========================================================================= */
305 local unsigned long crc32_big(crc, buf, len)
306 unsigned long crc;
307 const unsigned char FAR *buf;
308 unsigned len;
310 u4 c;
311 const u4 FAR *buf4;
313 c = REV((u4)crc);
314 c = ~c;
315 while (len && ((ptrdiff_t)buf & 3)) {
316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
317 len--;
320 buf4 = (const u4 FAR *)(const void FAR *)buf;
321 buf4--;
322 while (len >= 32) {
323 DOBIG32;
324 len -= 32;
326 while (len >= 4) {
327 DOBIG4;
328 len -= 4;
330 buf4++;
331 buf = (const unsigned char FAR *)buf4;
333 if (len) do {
334 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
335 } while (--len);
336 c = ~c;
337 return (unsigned long)(REV(c));
340 #endif /* BYFOUR */
342 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
344 /* ========================================================================= */
345 local unsigned long gf2_matrix_times(mat, vec)
346 unsigned long *mat;
347 unsigned long vec;
349 unsigned long sum;
351 sum = 0;
352 while (vec) {
353 if (vec & 1)
354 sum ^= *mat;
355 vec >>= 1;
356 mat++;
358 return sum;
361 /* ========================================================================= */
362 local void gf2_matrix_square(square, mat)
363 unsigned long *square;
364 unsigned long *mat;
366 int n;
368 for (n = 0; n < GF2_DIM; n++)
369 square[n] = gf2_matrix_times(mat, mat[n]);
372 /* ========================================================================= */
373 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
374 uLong crc1;
375 uLong crc2;
376 z_off_t len2;
378 int n;
379 unsigned long row;
380 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
381 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
383 /* degenerate case */
384 if (len2 == 0)
385 return crc1;
387 /* put operator for one zero bit in odd */
388 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
389 row = 1;
390 for (n = 1; n < GF2_DIM; n++) {
391 odd[n] = row;
392 row <<= 1;
395 /* put operator for two zero bits in even */
396 gf2_matrix_square(even, odd);
398 /* put operator for four zero bits in odd */
399 gf2_matrix_square(odd, even);
401 /* apply len2 zeros to crc1 (first square will put the operator for one
402 zero byte, eight zero bits, in even) */
403 do {
404 /* apply zeros operator for this bit of len2 */
405 gf2_matrix_square(even, odd);
406 if (len2 & 1)
407 crc1 = gf2_matrix_times(even, crc1);
408 len2 >>= 1;
410 /* if no more bits set, then done */
411 if (len2 == 0)
412 break;
414 /* another iteration of the loop with odd and even swapped */
415 gf2_matrix_square(odd, even);
416 if (len2 & 1)
417 crc1 = gf2_matrix_times(odd, crc1);
418 len2 >>= 1;
420 /* if no more bits set, then done */
421 } while (len2 != 0);
423 /* return combined crc */
424 crc1 ^= crc2;
425 return crc1;