Merge commit '0b905b49d460a57773d88d714cd880ffe0182b7c'
[unleashed.git] / kernel / os / contract.c
blob909a6c286078fd2815b0191fe29bb9c3d0f8e219
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright (c) 2017 by Delphix. All rights reserved.
30 * Contracts
31 * ---------
33 * Contracts are a primitive which enrich the relationships between
34 * processes and system resources. The primary purpose of contracts is
35 * to provide a means for the system to negotiate the departure from a
36 * binding relationship (e.g. pages locked in memory or a thread bound
37 * to processor), but they can also be used as a purely asynchronous
38 * error reporting mechanism as they are with process contracts.
40 * More information on how one interfaces with contracts and what
41 * contracts can do for you can be found in:
42 * PSARC 2003/193 Solaris Contracts
43 * PSARC 2004/460 Contracts addendum
45 * This file contains the core contracts framework. By itself it is
46 * useless: it depends the contracts filesystem (ctfs) to provide an
47 * interface to user processes and individual contract types to
48 * implement the process/resource relationships.
50 * Data structure overview
51 * -----------------------
53 * A contract is represented by a contract_t, which itself points to an
54 * encapsulating contract-type specific contract object. A contract_t
55 * contains the contract's static identity (including its terms), its
56 * linkage to various bookkeeping structures, the contract-specific
57 * event queue, and a reference count.
59 * A contract template is represented by a ct_template_t, which, like a
60 * contract, points to an encapsulating contract-type specific template
61 * object. A ct_template_t contains the template's terms.
63 * An event queue is represented by a ct_equeue_t, and consists of a
64 * list of events, a list of listeners, and a list of listeners who are
65 * waiting for new events (affectionately referred to as "tail
66 * listeners"). There are three queue types, defined by ct_listnum_t
67 * (an enum). An event may be on one of each type of queue
68 * simultaneously; the list linkage used by a queue is determined by
69 * its type.
71 * An event is represented by a ct_kevent_t, which contains mostly
72 * static event data (e.g. id, payload). It also has an array of
73 * ct_member_t structures, each of which contains a list_node_t and
74 * represent the event's linkage in a specific event queue.
76 * Each open of an event endpoint results in the creation of a new
77 * listener, represented by a ct_listener_t. In addition to linkage
78 * into the aforementioned lists in the event_queue, a ct_listener_t
79 * contains a pointer to the ct_kevent_t it is currently positioned at
80 * as well as a set of status flags and other administrative data.
82 * Each process has a list of contracts it owns, p_ct_held; a pointer
83 * to the process contract it is a member of, p_ct_process; the linkage
84 * for that membership, p_ct_member; and an array of event queue
85 * structures representing the process bundle queues.
87 * Each LWP has an array of its active templates, lwp_ct_active; and
88 * the most recently created contracts, lwp_ct_latest.
90 * A process contract has a list of member processes and a list of
91 * inherited contracts.
93 * There is a system-wide list of all contracts, as well as per-type
94 * lists of contracts.
96 * Lock ordering overview
97 * ----------------------
99 * Locks at the top are taken first:
101 * ct_evtlock
102 * regent ct_lock
103 * member ct_lock
104 * pidlock
105 * p_lock
106 * contract ctq_lock contract_lock
107 * pbundle ctq_lock
108 * cte_lock
109 * ct_reflock
111 * contract_lock and ctq_lock/cte_lock are not currently taken at the
112 * same time.
114 * Reference counting and locking
115 * ------------------------------
117 * A contract has a reference count, protected by ct_reflock.
118 * (ct_reflock is also used in a couple other places where atomic
119 * access to a variable is needed in an innermost context). A process
120 * maintains a hold on each contract it owns. A process contract has a
121 * hold on each contract is has inherited. Each event has a hold on
122 * the contract which generated it. Process contract templates have
123 * holds on the contracts referred to by their transfer terms. CTFS
124 * contract directory nodes have holds on contracts. Lastly, various
125 * code paths may temporarily take holds on contracts to prevent them
126 * from disappearing while other processing is going on. It is
127 * important to note that the global contract lists do not hold
128 * references on contracts; a contract is removed from these structures
129 * atomically with the release of its last reference.
131 * At a given point in time, a contract can either be owned by a
132 * process, inherited by a regent process contract, or orphaned. A
133 * contract_t's owner and regent pointers, ct_owner and ct_regent, are
134 * protected by its ct_lock. The linkage in the holder's (holder =
135 * owner or regent) list of contracts, ct_ctlist, is protected by
136 * whatever lock protects the holder's data structure. In order for
137 * these two directions to remain consistent, changing the holder of a
138 * contract requires that both locks be held.
140 * Events also have reference counts. There is one hold on an event
141 * per queue it is present on, in addition to those needed for the
142 * usual sundry reasons. Individual listeners are associated with
143 * specific queues, and increase a queue-specific reference count
144 * stored in the ct_member_t structure.
146 * The dynamic contents of an event (reference count and flags) are
147 * protected by its cte_lock, while the contents of the embedded
148 * ct_member_t structures are protected by the locks of the queues they
149 * are linked into. A ct_listener_t's contents are also protected by
150 * its event queue's ctq_lock.
152 * Resource controls
153 * -----------------
155 * Control: project.max-contracts (rc_project_contract)
156 * Description: Maximum number of contracts allowed a project.
158 * When a contract is created, the project's allocation is tested and
159 * (assuming success) increased. When the last reference to a
160 * contract is released, the creating project's allocation is
161 * decreased.
164 #include <sys/mutex.h>
165 #include <sys/debug.h>
166 #include <sys/types.h>
167 #include <sys/param.h>
168 #include <sys/kmem.h>
169 #include <sys/thread.h>
170 #include <sys/id_space.h>
171 #include <sys/avl.h>
172 #include <sys/list.h>
173 #include <sys/sysmacros.h>
174 #include <sys/proc.h>
175 #include <sys/ctfs.h>
176 #include <sys/contract_impl.h>
177 #include <sys/contract/process_impl.h>
178 #include <sys/dditypes.h>
179 #include <sys/contract/device_impl.h>
180 #include <sys/systm.h>
181 #include <sys/atomic.h>
182 #include <sys/cmn_err.h>
183 #include <sys/model.h>
184 #include <sys/policy.h>
185 #include <sys/zone.h>
186 #include <sys/task.h>
187 #include <sys/ddi.h>
188 #include <sys/sunddi.h>
190 extern rctl_hndl_t rc_project_contract;
192 static id_space_t *contract_ids;
193 static avl_tree_t contract_avl;
194 static kmutex_t contract_lock;
196 int ct_ntypes = CTT_MAXTYPE;
197 static ct_type_t *ct_types_static[CTT_MAXTYPE];
198 ct_type_t **ct_types = ct_types_static;
199 int ct_debug;
201 static void cte_queue_create(ct_equeue_t *, ct_listnum_t, int, int);
202 static void cte_queue_destroy(ct_equeue_t *);
203 static void cte_queue_drain(ct_equeue_t *, int);
204 static void cte_trim(ct_equeue_t *, contract_t *);
205 static void cte_copy(ct_equeue_t *, ct_equeue_t *);
208 * contract_compar
210 * A contract comparator which sorts on contract ID.
213 contract_compar(const void *x, const void *y)
215 const contract_t *ct1 = x;
216 const contract_t *ct2 = y;
218 if (ct1->ct_id < ct2->ct_id)
219 return (-1);
220 if (ct1->ct_id > ct2->ct_id)
221 return (1);
222 return (0);
226 * contract_init
228 * Initializes the contract subsystem, the specific contract types, and
229 * process 0.
231 void
232 contract_init(void)
235 * Initialize contract subsystem.
237 contract_ids = id_space_create("contracts", 1, INT_MAX);
238 avl_create(&contract_avl, contract_compar, sizeof (contract_t),
239 offsetof(contract_t, ct_ctavl));
240 mutex_init(&contract_lock, NULL, MUTEX_DEFAULT, NULL);
243 * Initialize contract types.
245 contract_process_init();
246 contract_device_init();
249 * Initialize p0/lwp0 contract state.
251 avl_create(&p0.p_ct_held, contract_compar, sizeof (contract_t),
252 offsetof(contract_t, ct_ctlist));
256 * contract_dtor
258 * Performs basic destruction of the common portions of a contract.
259 * Called from the failure path of contract_ctor and from
260 * contract_rele.
262 static void
263 contract_dtor(contract_t *ct)
265 cte_queue_destroy(&ct->ct_events);
266 list_destroy(&ct->ct_vnodes);
267 mutex_destroy(&ct->ct_reflock);
268 mutex_destroy(&ct->ct_lock);
269 mutex_destroy(&ct->ct_evtlock);
273 * contract_ctor
275 * Called by a contract type to initialize a contract. Fails if the
276 * max-contract resource control would have been exceeded. After a
277 * successful call to contract_ctor, the contract is unlocked and
278 * visible in all namespaces; any type-specific initialization should
279 * be completed before calling contract_ctor. Returns 0 on success.
281 * Because not all callers can tolerate failure, a 0 value for canfail
282 * instructs contract_ctor to ignore the project.max-contracts resource
283 * control. Obviously, this "out" should only be employed by callers
284 * who are sufficiently constrained in other ways (e.g. newproc).
287 contract_ctor(contract_t *ct, ct_type_t *type, ct_template_t *tmpl, void *data,
288 ctflags_t flags, proc_t *author, int canfail)
290 avl_index_t where;
291 klwp_t *curlwp = ttolwp(curthread);
293 ASSERT(author == curproc);
295 mutex_init(&ct->ct_lock, NULL, MUTEX_DEFAULT, NULL);
296 mutex_init(&ct->ct_reflock, NULL, MUTEX_DEFAULT, NULL);
297 mutex_init(&ct->ct_evtlock, NULL, MUTEX_DEFAULT, NULL);
298 ct->ct_id = id_alloc(contract_ids);
300 cte_queue_create(&ct->ct_events, CTEL_CONTRACT, 20, 0);
301 list_create(&ct->ct_vnodes, sizeof (contract_vnode_t),
302 offsetof(contract_vnode_t, ctv_node));
305 * Instance data
307 ct->ct_ref = 2; /* one for the holder, one for "latest" */
308 ct->ct_cuid = crgetuid(CRED());
309 ct->ct_type = type;
310 ct->ct_data = data;
311 gethrestime(&ct->ct_ctime);
312 ct->ct_state = CTS_OWNED;
313 ct->ct_flags = flags;
314 ct->ct_regent = author->p_ct_process ?
315 &author->p_ct_process->conp_contract : NULL;
316 ct->ct_ev_info = tmpl->ctmpl_ev_info;
317 ct->ct_ev_crit = tmpl->ctmpl_ev_crit;
318 ct->ct_cookie = tmpl->ctmpl_cookie;
319 ct->ct_owner = author;
320 ct->ct_ntime.ctm_total = -1;
321 ct->ct_qtime.ctm_total = -1;
322 ct->ct_nevent = NULL;
325 * Test project.max-contracts.
327 mutex_enter(&author->p_lock);
328 mutex_enter(&contract_lock);
329 if (canfail && rctl_test(rc_project_contract,
330 author->p_task->tk_proj->kpj_rctls, author, 1,
331 RCA_SAFE) & RCT_DENY) {
332 id_free(contract_ids, ct->ct_id);
333 mutex_exit(&contract_lock);
334 mutex_exit(&author->p_lock);
335 ct->ct_events.ctq_flags |= CTQ_DEAD;
336 contract_dtor(ct);
337 return (1);
339 ct->ct_proj = author->p_task->tk_proj;
340 ct->ct_proj->kpj_data.kpd_contract++;
341 (void) project_hold(ct->ct_proj);
342 mutex_exit(&contract_lock);
345 * Insert into holder's avl of contracts.
346 * We use an avl not because order is important, but because
347 * readdir of /proc/contracts requires we be able to use a
348 * scalar as an index into the process's list of contracts
350 ct->ct_zoneid = author->p_zone->zone_id;
351 ct->ct_czuniqid = ct->ct_mzuniqid = author->p_zone->zone_uniqid;
352 VERIFY(avl_find(&author->p_ct_held, ct, &where) == NULL);
353 avl_insert(&author->p_ct_held, ct, where);
354 mutex_exit(&author->p_lock);
357 * Insert into global contract AVL
359 mutex_enter(&contract_lock);
360 VERIFY(avl_find(&contract_avl, ct, &where) == NULL);
361 avl_insert(&contract_avl, ct, where);
362 mutex_exit(&contract_lock);
365 * Insert into type AVL
367 mutex_enter(&type->ct_type_lock);
368 VERIFY(avl_find(&type->ct_type_avl, ct, &where) == NULL);
369 avl_insert(&type->ct_type_avl, ct, where);
370 type->ct_type_timestruc = ct->ct_ctime;
371 mutex_exit(&type->ct_type_lock);
373 if (curlwp->lwp_ct_latest[type->ct_type_index])
374 contract_rele(curlwp->lwp_ct_latest[type->ct_type_index]);
375 curlwp->lwp_ct_latest[type->ct_type_index] = ct;
377 return (0);
381 * contract_rele
383 * Releases a reference to a contract. If the caller had the last
384 * reference, the contract is removed from all namespaces, its
385 * allocation against the max-contracts resource control is released,
386 * and the contract type's free entry point is invoked for any
387 * type-specific deconstruction and to (presumably) free the object.
389 void
390 contract_rele(contract_t *ct)
392 uint64_t nref;
394 mutex_enter(&ct->ct_reflock);
395 ASSERT(ct->ct_ref > 0);
396 nref = --ct->ct_ref;
397 mutex_exit(&ct->ct_reflock);
398 if (nref == 0) {
400 * ct_owner is cleared when it drops its reference.
402 ASSERT(ct->ct_owner == NULL);
403 ASSERT(ct->ct_evcnt == 0);
406 * Remove from global contract AVL
408 mutex_enter(&contract_lock);
409 avl_remove(&contract_avl, ct);
410 mutex_exit(&contract_lock);
413 * Remove from type AVL
415 mutex_enter(&ct->ct_type->ct_type_lock);
416 avl_remove(&ct->ct_type->ct_type_avl, ct);
417 mutex_exit(&ct->ct_type->ct_type_lock);
420 * Release the contract's ID
422 id_free(contract_ids, ct->ct_id);
425 * Release project hold
427 mutex_enter(&contract_lock);
428 ct->ct_proj->kpj_data.kpd_contract--;
429 project_rele(ct->ct_proj);
430 mutex_exit(&contract_lock);
433 * Free the contract
435 contract_dtor(ct);
436 ct->ct_type->ct_type_ops->contop_free(ct);
441 * contract_hold
443 * Adds a reference to a contract
445 void
446 contract_hold(contract_t *ct)
448 mutex_enter(&ct->ct_reflock);
449 ASSERT(ct->ct_ref < UINT64_MAX);
450 ct->ct_ref++;
451 mutex_exit(&ct->ct_reflock);
455 * contract_getzuniqid
457 * Get a contract's zone unique ID. Needed because 64-bit reads and
458 * writes aren't atomic on x86. Since there are contexts where we are
459 * unable to take ct_lock, we instead use ct_reflock; in actuality any
460 * lock would do.
462 uint64_t
463 contract_getzuniqid(contract_t *ct)
465 uint64_t zuniqid;
467 mutex_enter(&ct->ct_reflock);
468 zuniqid = ct->ct_mzuniqid;
469 mutex_exit(&ct->ct_reflock);
471 return (zuniqid);
475 * contract_setzuniqid
477 * Sets a contract's zone unique ID. See contract_getzuniqid.
479 void
480 contract_setzuniqid(contract_t *ct, uint64_t zuniqid)
482 mutex_enter(&ct->ct_reflock);
483 ct->ct_mzuniqid = zuniqid;
484 mutex_exit(&ct->ct_reflock);
488 * contract_abandon
490 * Abandons the specified contract. If "explicit" is clear, the
491 * contract was implicitly abandoned (by process exit) and should be
492 * inherited if its terms allow it and its owner was a member of a
493 * regent contract. Otherwise, the contract type's abandon entry point
494 * is invoked to either destroy or orphan the contract.
497 contract_abandon(contract_t *ct, proc_t *p, int explicit)
499 ct_equeue_t *q = NULL;
500 contract_t *parent = &p->p_ct_process->conp_contract;
501 int inherit = 0;
503 VERIFY(p == curproc);
505 mutex_enter(&ct->ct_lock);
508 * Multiple contract locks are taken contract -> subcontract.
509 * Check if the contract will be inherited so we can acquire
510 * all the necessary locks before making sensitive changes.
512 if (!explicit && (ct->ct_flags & CTF_INHERIT) &&
513 contract_process_accept(parent)) {
514 mutex_exit(&ct->ct_lock);
515 mutex_enter(&parent->ct_lock);
516 mutex_enter(&ct->ct_lock);
517 inherit = 1;
520 if (ct->ct_owner != p) {
521 mutex_exit(&ct->ct_lock);
522 if (inherit)
523 mutex_exit(&parent->ct_lock);
524 return (EINVAL);
527 mutex_enter(&p->p_lock);
528 if (explicit)
529 avl_remove(&p->p_ct_held, ct);
530 ct->ct_owner = NULL;
531 mutex_exit(&p->p_lock);
534 * Since we can't call cte_trim with the contract lock held,
535 * we grab the queue pointer here.
537 if (p->p_ct_equeue)
538 q = p->p_ct_equeue[ct->ct_type->ct_type_index];
541 * contop_abandon may destroy the contract so we rely on it to
542 * drop ct_lock. We retain a reference on the contract so that
543 * the cte_trim which follows functions properly. Even though
544 * cte_trim doesn't dereference the contract pointer, it is
545 * still necessary to retain a reference to the contract so
546 * that we don't trim events which are sent by a subsequently
547 * allocated contract infortuitously located at the same address.
549 contract_hold(ct);
551 if (inherit) {
552 ct->ct_state = CTS_INHERITED;
553 VERIFY(ct->ct_regent == parent);
554 contract_process_take(parent, ct);
557 * We are handing off the process's reference to the
558 * parent contract. For this reason, the order in
559 * which we drop the contract locks is also important.
561 mutex_exit(&ct->ct_lock);
562 mutex_exit(&parent->ct_lock);
563 } else {
564 ct->ct_regent = NULL;
565 ct->ct_type->ct_type_ops->contop_abandon(ct);
569 * ct_lock has been dropped; we can safely trim the event
570 * queue now.
572 if (q) {
573 mutex_enter(&q->ctq_lock);
574 cte_trim(q, ct);
575 mutex_exit(&q->ctq_lock);
578 contract_rele(ct);
580 return (0);
584 contract_newct(contract_t *ct)
586 return (ct->ct_type->ct_type_ops->contop_newct(ct));
590 * contract_adopt
592 * Adopts a contract. After a successful call to this routine, the
593 * previously inherited contract will belong to the calling process,
594 * and its events will have been appended to its new owner's process
595 * bundle queue.
598 contract_adopt(contract_t *ct, proc_t *p)
600 avl_index_t where;
601 ct_equeue_t *q;
602 contract_t *parent;
604 ASSERT(p == curproc);
607 * Ensure the process has an event queue. Checked by ASSERTs
608 * below.
610 (void) contract_type_pbundle(ct->ct_type, p);
612 mutex_enter(&ct->ct_lock);
613 parent = ct->ct_regent;
614 if (ct->ct_state != CTS_INHERITED ||
615 &p->p_ct_process->conp_contract != parent ||
616 p->p_zone->zone_uniqid != ct->ct_czuniqid) {
617 mutex_exit(&ct->ct_lock);
618 return (EINVAL);
622 * Multiple contract locks are taken contract -> subcontract.
624 mutex_exit(&ct->ct_lock);
625 mutex_enter(&parent->ct_lock);
626 mutex_enter(&ct->ct_lock);
629 * It is possible that the contract was adopted by someone else
630 * while its lock was dropped. It isn't possible for the
631 * contract to have been inherited by a different regent
632 * contract.
634 if (ct->ct_state != CTS_INHERITED) {
635 mutex_exit(&parent->ct_lock);
636 mutex_exit(&ct->ct_lock);
637 return (EBUSY);
639 ASSERT(ct->ct_regent == parent);
641 ct->ct_state = CTS_OWNED;
643 contract_process_adopt(ct, p);
645 mutex_enter(&p->p_lock);
646 ct->ct_owner = p;
647 VERIFY(avl_find(&p->p_ct_held, ct, &where) == NULL);
648 avl_insert(&p->p_ct_held, ct, where);
649 mutex_exit(&p->p_lock);
651 ASSERT(ct->ct_owner->p_ct_equeue);
652 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
653 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
654 cte_copy(&ct->ct_events, q);
655 mutex_exit(&ct->ct_lock);
657 return (0);
661 * contract_ack
663 * Acknowledges receipt of a critical event.
666 contract_ack(contract_t *ct, uint64_t evid, int ack)
668 ct_kevent_t *ev;
669 list_t *queue = &ct->ct_events.ctq_events;
670 int error = ESRCH;
671 int nego = 0;
672 uint_t evtype;
674 ASSERT(ack == CT_ACK || ack == CT_NACK);
676 mutex_enter(&ct->ct_lock);
677 mutex_enter(&ct->ct_events.ctq_lock);
679 * We are probably ACKing something near the head of the queue.
681 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
682 if (ev->cte_id == evid) {
683 if (ev->cte_flags & CTE_NEG)
684 nego = 1;
685 else if (ack == CT_NACK)
686 break;
687 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
688 ev->cte_flags |= CTE_ACK;
689 ct->ct_evcnt--;
690 evtype = ev->cte_type;
691 error = 0;
693 break;
696 mutex_exit(&ct->ct_events.ctq_lock);
697 mutex_exit(&ct->ct_lock);
700 * Not all critical events are negotiation events, however
701 * every negotiation event is a critical event. NEGEND events
702 * are critical events but are not negotiation events
704 if (error || !nego)
705 return (error);
707 if (ack == CT_ACK)
708 error = ct->ct_type->ct_type_ops->contop_ack(ct, evtype, evid);
709 else
710 error = ct->ct_type->ct_type_ops->contop_nack(ct, evtype, evid);
712 return (error);
715 /*ARGSUSED*/
717 contract_ack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
719 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
720 ct->ct_id);
721 return (ENOSYS);
724 /*ARGSUSED*/
726 contract_qack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
728 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
729 ct->ct_id);
730 return (ENOSYS);
733 /*ARGSUSED*/
735 contract_qack_notsup(contract_t *ct, uint_t evtype, uint64_t evid)
737 return (ERANGE);
741 * contract_qack
743 * Asks that negotiations be extended by another time quantum
746 contract_qack(contract_t *ct, uint64_t evid)
748 ct_kevent_t *ev;
749 list_t *queue = &ct->ct_events.ctq_events;
750 int nego = 0;
751 uint_t evtype;
753 mutex_enter(&ct->ct_lock);
754 mutex_enter(&ct->ct_events.ctq_lock);
756 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
757 if (ev->cte_id == evid) {
758 if ((ev->cte_flags & (CTE_NEG | CTE_ACK)) == CTE_NEG) {
759 evtype = ev->cte_type;
760 nego = 1;
762 break;
765 mutex_exit(&ct->ct_events.ctq_lock);
766 mutex_exit(&ct->ct_lock);
769 * Only a negotiated event (which is by definition also a critical
770 * event) which has not yet been acknowledged can provide
771 * time quanta to a negotiating owner process.
773 if (!nego)
774 return (ESRCH);
776 return (ct->ct_type->ct_type_ops->contop_qack(ct, evtype, evid));
780 * contract_orphan
782 * Icky-poo. This is a process-contract special, used to ACK all
783 * critical messages when a contract is orphaned.
785 void
786 contract_orphan(contract_t *ct)
788 ct_kevent_t *ev;
789 list_t *queue = &ct->ct_events.ctq_events;
791 ASSERT(MUTEX_HELD(&ct->ct_lock));
792 ASSERT(ct->ct_state != CTS_ORPHAN);
794 mutex_enter(&ct->ct_events.ctq_lock);
795 ct->ct_state = CTS_ORPHAN;
796 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
797 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
798 ev->cte_flags |= CTE_ACK;
799 ct->ct_evcnt--;
802 mutex_exit(&ct->ct_events.ctq_lock);
804 ASSERT(ct->ct_evcnt == 0);
808 * contract_destroy
810 * Explicit contract destruction. Called when contract is empty.
811 * The contract will actually stick around until all of its events are
812 * removed from the bundle and and process bundle queues, and all fds
813 * which refer to it are closed. See contract_dtor if you are looking
814 * for what destroys the contract structure.
816 void
817 contract_destroy(contract_t *ct)
819 ASSERT(MUTEX_HELD(&ct->ct_lock));
820 ASSERT(ct->ct_state != CTS_DEAD);
821 ASSERT(ct->ct_owner == NULL);
823 ct->ct_state = CTS_DEAD;
824 cte_queue_drain(&ct->ct_events, 1);
825 mutex_exit(&ct->ct_lock);
826 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
827 cte_trim(&ct->ct_type->ct_type_events, ct);
828 mutex_exit(&ct->ct_type->ct_type_events.ctq_lock);
829 mutex_enter(&ct->ct_lock);
830 ct->ct_type->ct_type_ops->contop_destroy(ct);
831 mutex_exit(&ct->ct_lock);
832 contract_rele(ct);
836 * contract_vnode_get
838 * Obtains the contract directory vnode for this contract, if there is
839 * one. The caller must VN_RELE the vnode when they are through using
840 * it.
842 vnode_t *
843 contract_vnode_get(contract_t *ct, vfs_t *vfsp)
845 contract_vnode_t *ctv;
846 vnode_t *vp = NULL;
848 mutex_enter(&ct->ct_lock);
849 for (ctv = list_head(&ct->ct_vnodes); ctv != NULL;
850 ctv = list_next(&ct->ct_vnodes, ctv))
851 if (ctv->ctv_vnode->v_vfsp == vfsp) {
852 vp = ctv->ctv_vnode;
853 VN_HOLD(vp);
854 break;
856 mutex_exit(&ct->ct_lock);
857 return (vp);
861 * contract_vnode_set
863 * Sets the contract directory vnode for this contract. We don't hold
864 * a reference on the vnode because we don't want to prevent it from
865 * being freed. The vnode's inactive entry point will take care of
866 * notifying us when it should be removed.
868 void
869 contract_vnode_set(contract_t *ct, contract_vnode_t *ctv, vnode_t *vnode)
871 mutex_enter(&ct->ct_lock);
872 ctv->ctv_vnode = vnode;
873 list_insert_head(&ct->ct_vnodes, ctv);
874 mutex_exit(&ct->ct_lock);
878 * contract_vnode_clear
880 * Removes this vnode as the contract directory vnode for this
881 * contract. Called from a contract directory's inactive entry point,
882 * this may return 0 indicating that the vnode gained another reference
883 * because of a simultaneous call to contract_vnode_get.
886 contract_vnode_clear(contract_t *ct, contract_vnode_t *ctv)
888 vnode_t *vp = ctv->ctv_vnode;
889 int result;
891 mutex_enter(&ct->ct_lock);
892 mutex_enter(&vp->v_lock);
893 if (vp->v_count == 1) {
894 list_remove(&ct->ct_vnodes, ctv);
895 result = 1;
896 } else {
897 VN_RELE_LOCKED(vp);
898 result = 0;
900 mutex_exit(&vp->v_lock);
901 mutex_exit(&ct->ct_lock);
903 return (result);
907 * contract_exit
909 * Abandons all contracts held by process p, and drains process p's
910 * bundle queues. Called on process exit.
912 void
913 contract_exit(proc_t *p)
915 contract_t *ct;
916 void *cookie = NULL;
917 int i;
919 ASSERT(p == curproc);
922 * Abandon held contracts. contract_abandon knows enough not
923 * to remove the contract from the list a second time. We are
924 * exiting, so no locks are needed here. But because
925 * contract_abandon will take p_lock, we need to make sure we
926 * aren't holding it.
928 ASSERT(MUTEX_NOT_HELD(&p->p_lock));
929 while ((ct = avl_destroy_nodes(&p->p_ct_held, &cookie)) != NULL)
930 VERIFY(contract_abandon(ct, p, 0) == 0);
933 * Drain pbundles. Because a process bundle queue could have
934 * been passed to another process, they may not be freed right
935 * away.
937 if (p->p_ct_equeue) {
938 for (i = 0; i < CTT_MAXTYPE; i++)
939 if (p->p_ct_equeue[i])
940 cte_queue_drain(p->p_ct_equeue[i], 0);
941 kmem_free(p->p_ct_equeue, CTT_MAXTYPE * sizeof (ct_equeue_t *));
945 static int
946 get_time_left(struct ct_time *t)
948 clock_t ticks_elapsed;
949 int secs_elapsed;
951 if (t->ctm_total == -1)
952 return (-1);
954 ticks_elapsed = ddi_get_lbolt() - t->ctm_start;
955 secs_elapsed = t->ctm_total - (drv_hztousec(ticks_elapsed)/MICROSEC);
956 return (secs_elapsed > 0 ? secs_elapsed : 0);
960 * contract_status_common
962 * Populates a ct_status structure. Used by contract types in their
963 * status entry points and ctfs when only common information is
964 * requested.
966 void
967 contract_status_common(contract_t *ct, zone_t *zone, void *status,
968 model_t model)
970 STRUCT_HANDLE(ct_status, lstatus);
972 STRUCT_SET_HANDLE(lstatus, model, status);
973 ASSERT(MUTEX_HELD(&ct->ct_lock));
974 if (zone->zone_uniqid == GLOBAL_ZONEUNIQID ||
975 zone->zone_uniqid == ct->ct_czuniqid) {
976 zone_t *czone;
977 zoneid_t zoneid = -1;
980 * Contracts don't have holds on the zones they were
981 * created by. If the contract's zone no longer
982 * exists, we say its zoneid is -1.
984 if (zone->zone_uniqid == ct->ct_czuniqid ||
985 ct->ct_czuniqid == GLOBAL_ZONEUNIQID) {
986 zoneid = ct->ct_zoneid;
987 } else if ((czone = zone_find_by_id(ct->ct_zoneid)) != NULL) {
988 if (czone->zone_uniqid == ct->ct_mzuniqid)
989 zoneid = ct->ct_zoneid;
990 zone_rele(czone);
993 STRUCT_FSET(lstatus, ctst_zoneid, zoneid);
994 STRUCT_FSET(lstatus, ctst_holder,
995 (ct->ct_state == CTS_OWNED) ? ct->ct_owner->p_pid :
996 (ct->ct_state == CTS_INHERITED) ? ct->ct_regent->ct_id : 0);
997 STRUCT_FSET(lstatus, ctst_state, ct->ct_state);
998 } else {
1000 * We are looking at a contract which was created by a
1001 * process outside of our zone. We provide fake zone,
1002 * holder, and state information.
1005 STRUCT_FSET(lstatus, ctst_zoneid, zone->zone_id);
1007 * Since "zone" can't disappear until the calling ctfs
1008 * is unmounted, zone_zsched must be valid.
1010 STRUCT_FSET(lstatus, ctst_holder, (ct->ct_state < CTS_ORPHAN) ?
1011 zone->zone_zsched->p_pid : 0);
1012 STRUCT_FSET(lstatus, ctst_state, (ct->ct_state < CTS_ORPHAN) ?
1013 CTS_OWNED : ct->ct_state);
1015 STRUCT_FSET(lstatus, ctst_nevents, ct->ct_evcnt);
1016 STRUCT_FSET(lstatus, ctst_ntime, get_time_left(&ct->ct_ntime));
1017 STRUCT_FSET(lstatus, ctst_qtime, get_time_left(&ct->ct_qtime));
1018 STRUCT_FSET(lstatus, ctst_nevid,
1019 ct->ct_nevent ? ct->ct_nevent->cte_id : 0);
1020 STRUCT_FSET(lstatus, ctst_critical, ct->ct_ev_crit);
1021 STRUCT_FSET(lstatus, ctst_informative, ct->ct_ev_info);
1022 STRUCT_FSET(lstatus, ctst_cookie, ct->ct_cookie);
1023 STRUCT_FSET(lstatus, ctst_type, ct->ct_type->ct_type_index);
1024 STRUCT_FSET(lstatus, ctst_id, ct->ct_id);
1028 * contract_checkcred
1030 * Determines if the specified contract is owned by a process with the
1031 * same effective uid as the specified credential. The caller must
1032 * ensure that the uid spaces are the same. Returns 1 on success.
1034 static int
1035 contract_checkcred(contract_t *ct, const cred_t *cr)
1037 proc_t *p;
1038 int fail = 1;
1040 mutex_enter(&ct->ct_lock);
1041 if ((p = ct->ct_owner) != NULL) {
1042 mutex_enter(&p->p_crlock);
1043 fail = crgetuid(cr) != crgetuid(p->p_cred);
1044 mutex_exit(&p->p_crlock);
1046 mutex_exit(&ct->ct_lock);
1048 return (!fail);
1052 * contract_owned
1054 * Determines if the specified credential can view an event generated
1055 * by the specified contract. If locked is set, the contract's ct_lock
1056 * is held and the caller will need to do additional work to determine
1057 * if they truly can see the event. Returns 1 on success.
1060 contract_owned(contract_t *ct, const cred_t *cr, int locked)
1062 int owner, cmatch, zmatch;
1063 uint64_t zuniqid, mzuniqid;
1064 uid_t euid;
1066 ASSERT(locked || MUTEX_NOT_HELD(&ct->ct_lock));
1068 zuniqid = curproc->p_zone->zone_uniqid;
1069 mzuniqid = contract_getzuniqid(ct);
1070 euid = crgetuid(cr);
1073 * owner: we own the contract
1074 * cmatch: we are in the creator's (and holder's) zone and our
1075 * uid matches the creator's or holder's
1076 * zmatch: we are in the effective zone of a contract created
1077 * in the global zone, and our uid matches that of the
1078 * virtualized holder's (zsched/kcred)
1080 owner = (ct->ct_owner == curproc);
1081 cmatch = (zuniqid == ct->ct_czuniqid) &&
1082 ((ct->ct_cuid == euid) || (!locked && contract_checkcred(ct, cr)));
1083 zmatch = (ct->ct_czuniqid != mzuniqid) && (zuniqid == mzuniqid) &&
1084 (crgetuid(kcred) == euid);
1086 return (owner || cmatch || zmatch);
1091 * contract_type_init
1093 * Called by contract types to register themselves with the contracts
1094 * framework.
1096 ct_type_t *
1097 contract_type_init(ct_typeid_t type, const char *name, contops_t *ops,
1098 ct_f_default_t *dfault)
1100 ct_type_t *result;
1102 ASSERT(type < CTT_MAXTYPE);
1104 result = kmem_alloc(sizeof (ct_type_t), KM_SLEEP);
1106 mutex_init(&result->ct_type_lock, NULL, MUTEX_DEFAULT, NULL);
1107 avl_create(&result->ct_type_avl, contract_compar, sizeof (contract_t),
1108 offsetof(contract_t, ct_cttavl));
1109 cte_queue_create(&result->ct_type_events, CTEL_BUNDLE, 20, 0);
1110 result->ct_type_name = name;
1111 result->ct_type_ops = ops;
1112 result->ct_type_default = dfault;
1113 result->ct_type_evid = 0;
1114 gethrestime(&result->ct_type_timestruc);
1115 result->ct_type_index = type;
1117 ct_types[type] = result;
1119 return (result);
1123 * contract_type_count
1125 * Obtains the number of contracts of a particular type.
1128 contract_type_count(ct_type_t *type)
1130 ulong_t count;
1132 mutex_enter(&type->ct_type_lock);
1133 count = avl_numnodes(&type->ct_type_avl);
1134 mutex_exit(&type->ct_type_lock);
1136 return (count);
1140 * contract_type_max
1142 * Obtains the maximum contract id of of a particular type.
1144 ctid_t
1145 contract_type_max(ct_type_t *type)
1147 contract_t *ct;
1148 ctid_t res;
1150 mutex_enter(&type->ct_type_lock);
1151 ct = avl_last(&type->ct_type_avl);
1152 res = ct ? ct->ct_id : -1;
1153 mutex_exit(&type->ct_type_lock);
1155 return (res);
1159 * contract_max
1161 * Obtains the maximum contract id.
1163 ctid_t
1164 contract_max(void)
1166 contract_t *ct;
1167 ctid_t res;
1169 mutex_enter(&contract_lock);
1170 ct = avl_last(&contract_avl);
1171 res = ct ? ct->ct_id : -1;
1172 mutex_exit(&contract_lock);
1174 return (res);
1178 * contract_lookup_common
1180 * Common code for contract_lookup and contract_type_lookup. Takes a
1181 * pointer to an AVL tree to search in. Should be called with the
1182 * appropriate tree-protecting lock held (unfortunately unassertable).
1184 static ctid_t
1185 contract_lookup_common(avl_tree_t *tree, uint64_t zuniqid, ctid_t current)
1187 contract_t template, *ct;
1188 avl_index_t where;
1189 ctid_t res;
1191 template.ct_id = current;
1192 ct = avl_find(tree, &template, &where);
1193 if (ct == NULL)
1194 ct = avl_nearest(tree, where, AVL_AFTER);
1195 if (zuniqid != GLOBAL_ZONEUNIQID)
1196 while (ct && (contract_getzuniqid(ct) != zuniqid))
1197 ct = AVL_NEXT(tree, ct);
1198 res = ct ? ct->ct_id : -1;
1200 return (res);
1204 * contract_type_lookup
1206 * Returns the next type contract after the specified id, visible from
1207 * the specified zone.
1209 ctid_t
1210 contract_type_lookup(ct_type_t *type, uint64_t zuniqid, ctid_t current)
1212 ctid_t res;
1214 mutex_enter(&type->ct_type_lock);
1215 res = contract_lookup_common(&type->ct_type_avl, zuniqid, current);
1216 mutex_exit(&type->ct_type_lock);
1218 return (res);
1222 * contract_lookup
1224 * Returns the next contract after the specified id, visible from the
1225 * specified zone.
1227 ctid_t
1228 contract_lookup(uint64_t zuniqid, ctid_t current)
1230 ctid_t res;
1232 mutex_enter(&contract_lock);
1233 res = contract_lookup_common(&contract_avl, zuniqid, current);
1234 mutex_exit(&contract_lock);
1236 return (res);
1240 * contract_plookup
1242 * Returns the next contract held by process p after the specified id,
1243 * visible from the specified zone. Made complicated by the fact that
1244 * contracts visible in a zone but held by processes outside of the
1245 * zone need to appear as being held by zsched to zone members.
1247 ctid_t
1248 contract_plookup(proc_t *p, ctid_t current, uint64_t zuniqid)
1250 contract_t template, *ct;
1251 avl_index_t where;
1252 ctid_t res;
1254 template.ct_id = current;
1255 if (zuniqid != GLOBAL_ZONEUNIQID &&
1256 (p->p_flag & (SSYS|SZONETOP)) == (SSYS|SZONETOP)) {
1257 /* This is inelegant. */
1258 mutex_enter(&contract_lock);
1259 ct = avl_find(&contract_avl, &template, &where);
1260 if (ct == NULL)
1261 ct = avl_nearest(&contract_avl, where, AVL_AFTER);
1262 while (ct && !(ct->ct_state < CTS_ORPHAN &&
1263 contract_getzuniqid(ct) == zuniqid &&
1264 ct->ct_czuniqid == GLOBAL_ZONEUNIQID))
1265 ct = AVL_NEXT(&contract_avl, ct);
1266 res = ct ? ct->ct_id : -1;
1267 mutex_exit(&contract_lock);
1268 } else {
1269 mutex_enter(&p->p_lock);
1270 ct = avl_find(&p->p_ct_held, &template, &where);
1271 if (ct == NULL)
1272 ct = avl_nearest(&p->p_ct_held, where, AVL_AFTER);
1273 res = ct ? ct->ct_id : -1;
1274 mutex_exit(&p->p_lock);
1277 return (res);
1281 * contract_ptr_common
1283 * Common code for contract_ptr and contract_type_ptr. Takes a pointer
1284 * to an AVL tree to search in. Should be called with the appropriate
1285 * tree-protecting lock held (unfortunately unassertable).
1287 static contract_t *
1288 contract_ptr_common(avl_tree_t *tree, ctid_t id, uint64_t zuniqid)
1290 contract_t template, *ct;
1292 template.ct_id = id;
1293 ct = avl_find(tree, &template, NULL);
1294 if (ct == NULL || (zuniqid != GLOBAL_ZONEUNIQID &&
1295 contract_getzuniqid(ct) != zuniqid)) {
1296 return (NULL);
1300 * Check to see if a thread is in the window in contract_rele
1301 * between dropping the reference count and removing the
1302 * contract from the type AVL.
1304 mutex_enter(&ct->ct_reflock);
1305 if (ct->ct_ref) {
1306 ct->ct_ref++;
1307 mutex_exit(&ct->ct_reflock);
1308 } else {
1309 mutex_exit(&ct->ct_reflock);
1310 ct = NULL;
1313 return (ct);
1317 * contract_type_ptr
1319 * Returns a pointer to the contract with the specified id. The
1320 * contract is held, so the caller needs to release the reference when
1321 * it is through with the contract.
1323 contract_t *
1324 contract_type_ptr(ct_type_t *type, ctid_t id, uint64_t zuniqid)
1326 contract_t *ct;
1328 mutex_enter(&type->ct_type_lock);
1329 ct = contract_ptr_common(&type->ct_type_avl, id, zuniqid);
1330 mutex_exit(&type->ct_type_lock);
1332 return (ct);
1336 * contract_ptr
1338 * Returns a pointer to the contract with the specified id. The
1339 * contract is held, so the caller needs to release the reference when
1340 * it is through with the contract.
1342 contract_t *
1343 contract_ptr(ctid_t id, uint64_t zuniqid)
1345 contract_t *ct;
1347 mutex_enter(&contract_lock);
1348 ct = contract_ptr_common(&contract_avl, id, zuniqid);
1349 mutex_exit(&contract_lock);
1351 return (ct);
1355 * contract_type_time
1357 * Obtains the last time a contract of a particular type was created.
1359 void
1360 contract_type_time(ct_type_t *type, timestruc_t *time)
1362 mutex_enter(&type->ct_type_lock);
1363 *time = type->ct_type_timestruc;
1364 mutex_exit(&type->ct_type_lock);
1368 * contract_type_bundle
1370 * Obtains a type's bundle queue.
1372 ct_equeue_t *
1373 contract_type_bundle(ct_type_t *type)
1375 return (&type->ct_type_events);
1379 * contract_type_pbundle
1381 * Obtain's a process's bundle queue. If one doesn't exist, one is
1382 * created. Often used simply to ensure that a bundle queue is
1383 * allocated.
1385 ct_equeue_t *
1386 contract_type_pbundle(ct_type_t *type, proc_t *pp)
1389 * If there isn't an array of bundle queues, allocate one.
1391 if (pp->p_ct_equeue == NULL) {
1392 size_t size = CTT_MAXTYPE * sizeof (ct_equeue_t *);
1393 ct_equeue_t **qa = kmem_zalloc(size, KM_SLEEP);
1395 mutex_enter(&pp->p_lock);
1396 if (pp->p_ct_equeue)
1397 kmem_free(qa, size);
1398 else
1399 pp->p_ct_equeue = qa;
1400 mutex_exit(&pp->p_lock);
1404 * If there isn't a bundle queue of the required type, allocate
1405 * one.
1407 if (pp->p_ct_equeue[type->ct_type_index] == NULL) {
1408 ct_equeue_t *q = kmem_zalloc(sizeof (ct_equeue_t), KM_SLEEP);
1409 cte_queue_create(q, CTEL_PBUNDLE, 20, 1);
1411 mutex_enter(&pp->p_lock);
1412 if (pp->p_ct_equeue[type->ct_type_index])
1413 cte_queue_drain(q, 0);
1414 else
1415 pp->p_ct_equeue[type->ct_type_index] = q;
1416 mutex_exit(&pp->p_lock);
1419 return (pp->p_ct_equeue[type->ct_type_index]);
1423 * ctparam_copyin
1425 * copyin a ct_param_t for CT_TSET or CT_TGET commands.
1426 * If ctparam_copyout() is not called after ctparam_copyin(), then
1427 * the caller must kmem_free() the buffer pointed by kparam->ctpm_kbuf.
1429 * The copyin/out of ct_param_t is not done in ctmpl_set() and ctmpl_get()
1430 * because prctioctl() calls ctmpl_set() and ctmpl_get() while holding a
1431 * process lock.
1434 ctparam_copyin(const void *uaddr, ct_kparam_t *kparam, int flag, int cmd)
1436 uint32_t size;
1437 void *ubuf;
1438 ct_param_t *param = &kparam->param;
1439 STRUCT_DECL(ct_param, uarg);
1441 STRUCT_INIT(uarg, flag);
1442 if (copyin(uaddr, STRUCT_BUF(uarg), STRUCT_SIZE(uarg)))
1443 return (EFAULT);
1444 size = STRUCT_FGET(uarg, ctpm_size);
1445 ubuf = STRUCT_FGETP(uarg, ctpm_value);
1447 if (size > CT_PARAM_MAX_SIZE || size == 0)
1448 return (EINVAL);
1450 kparam->ctpm_kbuf = kmem_alloc(size, KM_SLEEP);
1451 if (cmd == CT_TSET) {
1452 if (copyin(ubuf, kparam->ctpm_kbuf, size)) {
1453 kmem_free(kparam->ctpm_kbuf, size);
1454 return (EFAULT);
1457 param->ctpm_id = STRUCT_FGET(uarg, ctpm_id);
1458 param->ctpm_size = size;
1459 param->ctpm_value = ubuf;
1460 kparam->ret_size = 0;
1462 return (0);
1466 * ctparam_copyout
1468 * copyout a ct_kparam_t and frees the buffer pointed by the member
1469 * ctpm_kbuf of ct_kparam_t
1472 ctparam_copyout(ct_kparam_t *kparam, void *uaddr, int flag)
1474 int r = 0;
1475 ct_param_t *param = &kparam->param;
1476 STRUCT_DECL(ct_param, uarg);
1478 STRUCT_INIT(uarg, flag);
1480 STRUCT_FSET(uarg, ctpm_id, param->ctpm_id);
1481 STRUCT_FSET(uarg, ctpm_size, kparam->ret_size);
1482 STRUCT_FSETP(uarg, ctpm_value, param->ctpm_value);
1483 if (copyout(STRUCT_BUF(uarg), uaddr, STRUCT_SIZE(uarg))) {
1484 r = EFAULT;
1485 goto error;
1487 if (copyout(kparam->ctpm_kbuf, param->ctpm_value,
1488 MIN(kparam->ret_size, param->ctpm_size))) {
1489 r = EFAULT;
1492 error:
1493 kmem_free(kparam->ctpm_kbuf, param->ctpm_size);
1495 return (r);
1499 * ctmpl_free
1501 * Frees a template.
1503 void
1504 ctmpl_free(ct_template_t *template)
1506 mutex_destroy(&template->ctmpl_lock);
1507 template->ctmpl_ops->ctop_free(template);
1511 * ctmpl_dup
1513 * Creates a copy of a template.
1515 ct_template_t *
1516 ctmpl_dup(ct_template_t *template)
1518 ct_template_t *new;
1520 if (template == NULL)
1521 return (NULL);
1523 new = template->ctmpl_ops->ctop_dup(template);
1525 * ctmpl_lock was taken by ctop_dup's call to ctmpl_copy and
1526 * should have remain held until now.
1528 mutex_exit(&template->ctmpl_lock);
1530 return (new);
1534 * ctmpl_set
1536 * Sets the requested terms of a template.
1539 ctmpl_set(ct_template_t *template, ct_kparam_t *kparam, const cred_t *cr)
1541 int result = 0;
1542 ct_param_t *param = &kparam->param;
1543 uint64_t param_value;
1545 if (param->ctpm_id == CTP_COOKIE ||
1546 param->ctpm_id == CTP_EV_INFO ||
1547 param->ctpm_id == CTP_EV_CRITICAL) {
1548 if (param->ctpm_size < sizeof (uint64_t)) {
1549 return (EINVAL);
1550 } else {
1551 param_value = *(uint64_t *)kparam->ctpm_kbuf;
1555 mutex_enter(&template->ctmpl_lock);
1556 switch (param->ctpm_id) {
1557 case CTP_COOKIE:
1558 template->ctmpl_cookie = param_value;
1559 break;
1560 case CTP_EV_INFO:
1561 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents)
1562 result = EINVAL;
1563 else
1564 template->ctmpl_ev_info = param_value;
1565 break;
1566 case CTP_EV_CRITICAL:
1567 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents) {
1568 result = EINVAL;
1569 break;
1570 } else if ((~template->ctmpl_ev_crit & param_value) == 0) {
1572 * Assume that a pure reduction of the critical
1573 * set is allowed by the contract type.
1575 template->ctmpl_ev_crit = param_value;
1576 break;
1579 * There may be restrictions on what we can make
1580 * critical, so we defer to the judgement of the
1581 * contract type.
1583 /* FALLTHROUGH */
1584 default:
1585 result = template->ctmpl_ops->ctop_set(template, kparam, cr);
1587 mutex_exit(&template->ctmpl_lock);
1589 return (result);
1593 * ctmpl_get
1595 * Obtains the requested terms from a template.
1597 * If the term requested is a variable-sized term and the buffer
1598 * provided is too small for the data, we truncate the data and return
1599 * the buffer size necessary to fit the term in kparam->ret_size. If the
1600 * term requested is fix-sized (uint64_t) and the buffer provided is too
1601 * small, we return EINVAL. This should never happen if you're using
1602 * libcontract(3LIB), only if you call ioctl with a hand constructed
1603 * ct_param_t argument.
1605 * Currently, only contract specific parameters have variable-sized
1606 * parameters.
1609 ctmpl_get(ct_template_t *template, ct_kparam_t *kparam)
1611 int result = 0;
1612 ct_param_t *param = &kparam->param;
1613 uint64_t *param_value;
1615 if (param->ctpm_id == CTP_COOKIE ||
1616 param->ctpm_id == CTP_EV_INFO ||
1617 param->ctpm_id == CTP_EV_CRITICAL) {
1618 if (param->ctpm_size < sizeof (uint64_t)) {
1619 return (EINVAL);
1620 } else {
1621 param_value = kparam->ctpm_kbuf;
1622 kparam->ret_size = sizeof (uint64_t);
1626 mutex_enter(&template->ctmpl_lock);
1627 switch (param->ctpm_id) {
1628 case CTP_COOKIE:
1629 *param_value = template->ctmpl_cookie;
1630 break;
1631 case CTP_EV_INFO:
1632 *param_value = template->ctmpl_ev_info;
1633 break;
1634 case CTP_EV_CRITICAL:
1635 *param_value = template->ctmpl_ev_crit;
1636 break;
1637 default:
1638 result = template->ctmpl_ops->ctop_get(template, kparam);
1640 mutex_exit(&template->ctmpl_lock);
1642 return (result);
1646 * ctmpl_makecurrent
1648 * Used by ctmpl_activate and ctmpl_clear to set the current thread's
1649 * active template. Frees the old active template, if there was one.
1651 static void
1652 ctmpl_makecurrent(ct_template_t *template, ct_template_t *new)
1654 klwp_t *curlwp = ttolwp(curthread);
1655 proc_t *p = curproc;
1656 ct_template_t *old;
1658 mutex_enter(&p->p_lock);
1659 old = curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index];
1660 curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index] = new;
1661 mutex_exit(&p->p_lock);
1663 if (old)
1664 ctmpl_free(old);
1668 * ctmpl_activate
1670 * Copy the specified template as the current thread's activate
1671 * template of that type.
1673 void
1674 ctmpl_activate(ct_template_t *template)
1676 ctmpl_makecurrent(template, ctmpl_dup(template));
1680 * ctmpl_clear
1682 * Clears the current thread's activate template of the same type as
1683 * the specified template.
1685 void
1686 ctmpl_clear(ct_template_t *template)
1688 ctmpl_makecurrent(template, NULL);
1692 * ctmpl_create
1694 * Creates a new contract using the specified template.
1697 ctmpl_create(ct_template_t *template, ctid_t *ctidp)
1699 return (template->ctmpl_ops->ctop_create(template, ctidp));
1703 * ctmpl_init
1705 * Initializes the common portion of a new contract template.
1707 void
1708 ctmpl_init(ct_template_t *new, ctmplops_t *ops, ct_type_t *type, void *data)
1710 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1711 new->ctmpl_ops = ops;
1712 new->ctmpl_type = type;
1713 new->ctmpl_data = data;
1714 new->ctmpl_ev_info = new->ctmpl_ev_crit = 0;
1715 new->ctmpl_cookie = 0;
1719 * ctmpl_copy
1721 * Copies the common portions of a contract template. Intended for use
1722 * by a contract type's ctop_dup template op. Returns with the old
1723 * template's lock held, which will should remain held until the
1724 * template op returns (it is dropped by ctmpl_dup).
1726 void
1727 ctmpl_copy(ct_template_t *new, ct_template_t *old)
1729 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1730 mutex_enter(&old->ctmpl_lock);
1731 new->ctmpl_ops = old->ctmpl_ops;
1732 new->ctmpl_type = old->ctmpl_type;
1733 new->ctmpl_ev_crit = old->ctmpl_ev_crit;
1734 new->ctmpl_ev_info = old->ctmpl_ev_info;
1735 new->ctmpl_cookie = old->ctmpl_cookie;
1739 * ctmpl_create_inval
1741 * Returns EINVAL. Provided for the convenience of those contract
1742 * types which don't support ct_tmpl_create(3contract) and would
1743 * otherwise need to create their own stub for the ctop_create template
1744 * op.
1746 /*ARGSUSED*/
1748 ctmpl_create_inval(ct_template_t *template, ctid_t *ctidp)
1750 return (EINVAL);
1755 * cte_queue_create
1757 * Initializes a queue of a particular type. If dynamic is set, the
1758 * queue is to be freed when its last listener is removed after being
1759 * drained.
1761 static void
1762 cte_queue_create(ct_equeue_t *q, ct_listnum_t list, int maxinf, int dynamic)
1764 mutex_init(&q->ctq_lock, NULL, MUTEX_DEFAULT, NULL);
1765 q->ctq_listno = list;
1766 list_create(&q->ctq_events, sizeof (ct_kevent_t),
1767 offsetof(ct_kevent_t, cte_nodes[list].ctm_node));
1768 list_create(&q->ctq_listeners, sizeof (ct_listener_t),
1769 offsetof(ct_listener_t, ctl_allnode));
1770 list_create(&q->ctq_tail, sizeof (ct_listener_t),
1771 offsetof(ct_listener_t, ctl_tailnode));
1772 gethrestime(&q->ctq_atime);
1773 q->ctq_nlisteners = 0;
1774 q->ctq_nreliable = 0;
1775 q->ctq_ninf = 0;
1776 q->ctq_max = maxinf;
1779 * Bundle queues and contract queues are embedded in other
1780 * structures and are implicitly referenced counted by virtue
1781 * of their vnodes' indirect hold on their contracts. Process
1782 * bundle queues are dynamically allocated and may persist
1783 * after the death of the process, so they must be explicitly
1784 * reference counted.
1786 q->ctq_flags = dynamic ? CTQ_REFFED : 0;
1790 * cte_queue_destroy
1792 * Destroys the specified queue. The queue is freed if referenced
1793 * counted.
1795 static void
1796 cte_queue_destroy(ct_equeue_t *q)
1798 ASSERT(q->ctq_flags & CTQ_DEAD);
1799 ASSERT(q->ctq_nlisteners == 0);
1800 ASSERT(q->ctq_nreliable == 0);
1801 list_destroy(&q->ctq_events);
1802 list_destroy(&q->ctq_listeners);
1803 list_destroy(&q->ctq_tail);
1804 mutex_destroy(&q->ctq_lock);
1805 if (q->ctq_flags & CTQ_REFFED)
1806 kmem_free(q, sizeof (ct_equeue_t));
1810 * cte_hold
1812 * Takes a hold on the specified event.
1814 static void
1815 cte_hold(ct_kevent_t *e)
1817 mutex_enter(&e->cte_lock);
1818 ASSERT(e->cte_refs > 0);
1819 e->cte_refs++;
1820 mutex_exit(&e->cte_lock);
1824 * cte_rele
1826 * Releases a hold on the specified event. If the caller had the last
1827 * reference, frees the event and releases its hold on the contract
1828 * that generated it.
1830 static void
1831 cte_rele(ct_kevent_t *e)
1833 mutex_enter(&e->cte_lock);
1834 ASSERT(e->cte_refs > 0);
1835 if (--e->cte_refs) {
1836 mutex_exit(&e->cte_lock);
1837 return;
1840 contract_rele(e->cte_contract);
1842 mutex_destroy(&e->cte_lock);
1843 nvlist_free(e->cte_data);
1844 nvlist_free(e->cte_gdata);
1845 kmem_free(e, sizeof (ct_kevent_t));
1849 * cte_qrele
1851 * Remove this listener's hold on the specified event, removing and
1852 * releasing the queue's hold on the event if appropriate.
1854 static void
1855 cte_qrele(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1857 ct_member_t *member = &e->cte_nodes[q->ctq_listno];
1859 ASSERT(MUTEX_HELD(&q->ctq_lock));
1861 if (l->ctl_flags & CTLF_RELIABLE)
1862 member->ctm_nreliable--;
1863 if ((--member->ctm_refs == 0) && member->ctm_trimmed) {
1864 member->ctm_trimmed = 0;
1865 list_remove(&q->ctq_events, e);
1866 cte_rele(e);
1871 * cte_qmove
1873 * Move this listener to the specified event in the queue.
1875 static ct_kevent_t *
1876 cte_qmove(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1878 ct_kevent_t *olde;
1880 ASSERT(MUTEX_HELD(&q->ctq_lock));
1881 ASSERT(l->ctl_equeue == q);
1883 if ((olde = l->ctl_position) == NULL)
1884 list_remove(&q->ctq_tail, l);
1886 while (e != NULL && e->cte_nodes[q->ctq_listno].ctm_trimmed)
1887 e = list_next(&q->ctq_events, e);
1889 if (e != NULL) {
1890 e->cte_nodes[q->ctq_listno].ctm_refs++;
1891 if (l->ctl_flags & CTLF_RELIABLE)
1892 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
1893 } else {
1894 list_insert_tail(&q->ctq_tail, l);
1897 l->ctl_position = e;
1898 if (olde)
1899 cte_qrele(q, l, olde);
1901 return (e);
1905 * cte_checkcred
1907 * Determines if the specified event's contract is owned by a process
1908 * with the same effective uid as the specified credential. Called
1909 * after a failed call to contract_owned with locked set. Because it
1910 * drops the queue lock, its caller (cte_qreadable) needs to make sure
1911 * we're still in the same place after we return. Returns 1 on
1912 * success.
1914 static int
1915 cte_checkcred(ct_equeue_t *q, ct_kevent_t *e, const cred_t *cr)
1917 int result;
1918 contract_t *ct = e->cte_contract;
1920 cte_hold(e);
1921 mutex_exit(&q->ctq_lock);
1922 result = curproc->p_zone->zone_uniqid == ct->ct_czuniqid &&
1923 contract_checkcred(ct, cr);
1924 mutex_enter(&q->ctq_lock);
1925 cte_rele(e);
1927 return (result);
1931 * cte_qreadable
1933 * Ensures that the listener is pointing to a valid event that the
1934 * caller has the credentials to read. Returns 0 if we can read the
1935 * event we're pointing to.
1937 static int
1938 cte_qreadable(ct_equeue_t *q, ct_listener_t *l, const cred_t *cr,
1939 uint64_t zuniqid, int crit)
1941 ct_kevent_t *e, *next;
1942 contract_t *ct;
1944 ASSERT(MUTEX_HELD(&q->ctq_lock));
1945 ASSERT(l->ctl_equeue == q);
1947 if (l->ctl_flags & CTLF_COPYOUT)
1948 return (1);
1950 next = l->ctl_position;
1951 while (e = cte_qmove(q, l, next)) {
1952 ct = e->cte_contract;
1954 * Check obvious things first. If we are looking for a
1955 * critical message, is this one? If we aren't in the
1956 * global zone, is this message meant for us?
1958 if ((crit && (e->cte_flags & (CTE_INFO | CTE_ACK))) ||
1959 (cr != NULL && zuniqid != GLOBAL_ZONEUNIQID &&
1960 zuniqid != contract_getzuniqid(ct))) {
1962 next = list_next(&q->ctq_events, e);
1965 * Next, see if our effective uid equals that of owner
1966 * or author of the contract. Since we are holding the
1967 * queue lock, contract_owned can't always check if we
1968 * have the same effective uid as the contract's
1969 * owner. If it comes to that, it fails and we take
1970 * the slow(er) path.
1972 } else if (cr != NULL && !contract_owned(ct, cr, B_TRUE)) {
1975 * At this point we either don't have any claim
1976 * to this contract or we match the effective
1977 * uid of the owner but couldn't tell. We
1978 * first test for a NULL holder so that events
1979 * from orphans and inherited contracts avoid
1980 * the penalty phase.
1982 if (e->cte_contract->ct_owner == NULL &&
1983 !secpolicy_contract_observer_choice(cr))
1984 next = list_next(&q->ctq_events, e);
1987 * cte_checkcred will juggle locks to see if we
1988 * have the same uid as the event's contract's
1989 * current owner. If it succeeds, we have to
1990 * make sure we are in the same point in the
1991 * queue.
1993 else if (cte_checkcred(q, e, cr) &&
1994 l->ctl_position == e)
1995 break;
1998 * cte_checkcred failed; see if we're in the
1999 * same place.
2001 else if (l->ctl_position == e)
2002 if (secpolicy_contract_observer_choice(cr))
2003 break;
2004 else
2005 next = list_next(&q->ctq_events, e);
2008 * cte_checkcred failed, and our position was
2009 * changed. Start from there.
2011 else
2012 next = l->ctl_position;
2013 } else {
2014 break;
2019 * We check for CTLF_COPYOUT again in case we dropped the queue
2020 * lock in cte_checkcred.
2022 return ((l->ctl_flags & CTLF_COPYOUT) || (l->ctl_position == NULL));
2026 * cte_qwakeup
2028 * Wakes up any waiting listeners and points them at the specified event.
2030 static void
2031 cte_qwakeup(ct_equeue_t *q, ct_kevent_t *e)
2033 ct_listener_t *l;
2035 ASSERT(MUTEX_HELD(&q->ctq_lock));
2037 while (l = list_head(&q->ctq_tail)) {
2038 list_remove(&q->ctq_tail, l);
2039 e->cte_nodes[q->ctq_listno].ctm_refs++;
2040 if (l->ctl_flags & CTLF_RELIABLE)
2041 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
2042 l->ctl_position = e;
2043 cv_signal(&l->ctl_cv);
2044 pollwakeup(&l->ctl_pollhead, POLLIN);
2049 * cte_copy
2051 * Copies events from the specified contract event queue to the
2052 * end of the specified process bundle queue. Only called from
2053 * contract_adopt.
2055 * We copy to the end of the target queue instead of mixing the events
2056 * in their proper order because otherwise the act of adopting a
2057 * contract would require a process to reset all process bundle
2058 * listeners it needed to see the new events. This would, in turn,
2059 * require the process to keep track of which preexisting events had
2060 * already been processed.
2062 static void
2063 cte_copy(ct_equeue_t *q, ct_equeue_t *newq)
2065 ct_kevent_t *e, *first = NULL;
2067 VERIFY(q->ctq_listno == CTEL_CONTRACT);
2068 VERIFY(newq->ctq_listno == CTEL_PBUNDLE);
2070 mutex_enter(&q->ctq_lock);
2071 mutex_enter(&newq->ctq_lock);
2074 * For now, only copy critical events.
2076 for (e = list_head(&q->ctq_events); e != NULL;
2077 e = list_next(&q->ctq_events, e)) {
2078 if ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
2079 if (first == NULL)
2080 first = e;
2082 * It is possible for adoption to race with an owner's
2083 * cte_publish_all(); we must only enqueue events that
2084 * have not already been enqueued.
2086 if (!list_link_active((list_node_t *)
2087 ((uintptr_t)e + newq->ctq_events.list_offset))) {
2088 list_insert_tail(&newq->ctq_events, e);
2089 cte_hold(e);
2094 mutex_exit(&q->ctq_lock);
2096 if (first)
2097 cte_qwakeup(newq, first);
2099 mutex_exit(&newq->ctq_lock);
2103 * cte_trim
2105 * Trims unneeded events from an event queue. Algorithm works as
2106 * follows:
2108 * Removes all informative and acknowledged critical events until the
2109 * first referenced event is found.
2111 * If a contract is specified, removes all events (regardless of
2112 * acknowledgement) generated by that contract until the first event
2113 * referenced by a reliable listener is found. Reference events are
2114 * removed by marking them "trimmed". Such events will be removed
2115 * when the last reference is dropped and will be skipped by future
2116 * listeners.
2118 * This is pretty basic. Ideally this should remove from the middle of
2119 * the list (i.e. beyond the first referenced event), and even
2120 * referenced events.
2122 static void
2123 cte_trim(ct_equeue_t *q, contract_t *ct)
2125 ct_kevent_t *e, *next;
2126 int flags, stopper;
2127 int start = 1;
2129 VERIFY(MUTEX_HELD(&q->ctq_lock));
2131 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2132 next = list_next(&q->ctq_events, e);
2133 flags = e->cte_flags;
2134 stopper = (q->ctq_listno != CTEL_PBUNDLE) &&
2135 (e->cte_nodes[q->ctq_listno].ctm_nreliable > 0);
2136 if (e->cte_nodes[q->ctq_listno].ctm_refs == 0) {
2137 if ((start && (flags & (CTE_INFO | CTE_ACK))) ||
2138 (e->cte_contract == ct)) {
2140 * Toss informative and ACKed critical messages.
2142 list_remove(&q->ctq_events, e);
2143 cte_rele(e);
2145 } else if ((e->cte_contract == ct) && !stopper) {
2146 ASSERT(q->ctq_nlisteners != 0);
2147 e->cte_nodes[q->ctq_listno].ctm_trimmed = 1;
2148 } else if (ct && !stopper) {
2149 start = 0;
2150 } else {
2152 * Don't free messages past the first reader.
2154 break;
2160 * cte_queue_drain
2162 * Drain all events from the specified queue, and mark it dead. If
2163 * "ack" is set, acknowledge any critical events we find along the
2164 * way.
2166 static void
2167 cte_queue_drain(ct_equeue_t *q, int ack)
2169 ct_kevent_t *e, *next;
2170 ct_listener_t *l;
2172 mutex_enter(&q->ctq_lock);
2174 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2175 next = list_next(&q->ctq_events, e);
2176 if (ack && ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0)) {
2178 * Make sure critical messages are eventually
2179 * removed from the bundle queues.
2181 mutex_enter(&e->cte_lock);
2182 e->cte_flags |= CTE_ACK;
2183 mutex_exit(&e->cte_lock);
2184 ASSERT(MUTEX_HELD(&e->cte_contract->ct_lock));
2185 e->cte_contract->ct_evcnt--;
2187 list_remove(&q->ctq_events, e);
2188 e->cte_nodes[q->ctq_listno].ctm_refs = 0;
2189 e->cte_nodes[q->ctq_listno].ctm_nreliable = 0;
2190 e->cte_nodes[q->ctq_listno].ctm_trimmed = 0;
2191 cte_rele(e);
2195 * This is necessary only because of CTEL_PBUNDLE listeners;
2196 * the events they point to can move from one pbundle to
2197 * another. Fortunately, this only happens if the contract is
2198 * inherited, which (in turn) only happens if the process
2199 * exits, which means it's an all-or-nothing deal. If this
2200 * wasn't the case, we would instead need to keep track of
2201 * listeners on a per-event basis, not just a per-queue basis.
2202 * This would have the side benefit of letting us clean up
2203 * trimmed events sooner (i.e. immediately), but would
2204 * unfortunately make events even bigger than they already
2205 * are.
2207 for (l = list_head(&q->ctq_listeners); l;
2208 l = list_next(&q->ctq_listeners, l)) {
2209 l->ctl_flags |= CTLF_DEAD;
2210 if (l->ctl_position) {
2211 l->ctl_position = NULL;
2212 list_insert_tail(&q->ctq_tail, l);
2214 cv_broadcast(&l->ctl_cv);
2218 * Disallow events.
2220 q->ctq_flags |= CTQ_DEAD;
2223 * If we represent the last reference to a reference counted
2224 * process bundle queue, free it.
2226 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_nlisteners == 0))
2227 cte_queue_destroy(q);
2228 else
2229 mutex_exit(&q->ctq_lock);
2233 * cte_publish
2235 * Publishes an event to a specific queue. Only called by
2236 * cte_publish_all.
2238 static void
2239 cte_publish(ct_equeue_t *q, ct_kevent_t *e, timespec_t *tsp, boolean_t mayexist)
2241 ASSERT(MUTEX_HELD(&q->ctq_lock));
2243 q->ctq_atime = *tsp;
2246 * If this event may already exist on this queue, check to see if it
2247 * is already there and return if so.
2249 if (mayexist && list_link_active((list_node_t *)((uintptr_t)e +
2250 q->ctq_events.list_offset))) {
2251 mutex_exit(&q->ctq_lock);
2252 cte_rele(e);
2253 return;
2257 * Don't publish if the event is informative and there aren't
2258 * any listeners, or if the queue has been shut down.
2260 if (((q->ctq_nlisteners == 0) && (e->cte_flags & (CTE_INFO|CTE_ACK))) ||
2261 (q->ctq_flags & CTQ_DEAD)) {
2262 mutex_exit(&q->ctq_lock);
2263 cte_rele(e);
2264 return;
2268 * Enqueue event
2270 VERIFY(!list_link_active((list_node_t *)
2271 ((uintptr_t)e + q->ctq_events.list_offset)));
2272 list_insert_tail(&q->ctq_events, e);
2275 * Check for waiting listeners
2277 cte_qwakeup(q, e);
2280 * Trim unnecessary events from the queue.
2282 cte_trim(q, NULL);
2283 mutex_exit(&q->ctq_lock);
2287 * cte_publish_all
2289 * Publish an event to all necessary event queues. The event, e, must
2290 * be zallocated by the caller, and the event's flags and type must be
2291 * set. The rest of the event's fields are initialized here.
2293 uint64_t
2294 cte_publish_all(contract_t *ct, ct_kevent_t *e, nvlist_t *data, nvlist_t *gdata)
2296 ct_equeue_t *q;
2297 timespec_t ts;
2298 uint64_t evid;
2299 ct_kevent_t *negev;
2300 int negend;
2302 e->cte_contract = ct;
2303 e->cte_data = data;
2304 e->cte_gdata = gdata;
2305 e->cte_refs = 3;
2306 evid = e->cte_id = atomic_inc_64_nv(&ct->ct_type->ct_type_evid);
2307 contract_hold(ct);
2310 * For a negotiation event we set the ct->ct_nevent field of the
2311 * contract for the duration of the negotiation
2313 negend = 0;
2314 if (e->cte_flags & CTE_NEG) {
2315 cte_hold(e);
2316 ct->ct_nevent = e;
2317 } else if (e->cte_type == CT_EV_NEGEND) {
2318 negend = 1;
2321 gethrestime(&ts);
2324 * ct_evtlock simply (and only) ensures that two events sent
2325 * from the same contract are delivered to all queues in the
2326 * same order.
2328 mutex_enter(&ct->ct_evtlock);
2331 * CTEL_CONTRACT - First deliver to the contract queue, acking
2332 * the event if the contract has been orphaned.
2334 mutex_enter(&ct->ct_lock);
2335 mutex_enter(&ct->ct_events.ctq_lock);
2336 if ((e->cte_flags & CTE_INFO) == 0) {
2337 if (ct->ct_state >= CTS_ORPHAN)
2338 e->cte_flags |= CTE_ACK;
2339 else
2340 ct->ct_evcnt++;
2342 mutex_exit(&ct->ct_lock);
2343 cte_publish(&ct->ct_events, e, &ts, B_FALSE);
2346 * CTEL_BUNDLE - Next deliver to the contract type's bundle
2347 * queue.
2349 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
2350 cte_publish(&ct->ct_type->ct_type_events, e, &ts, B_FALSE);
2353 * CTEL_PBUNDLE - Finally, if the contract has an owner,
2354 * deliver to the owner's process bundle queue.
2356 mutex_enter(&ct->ct_lock);
2357 if (ct->ct_owner) {
2359 * proc_exit doesn't free event queues until it has
2360 * abandoned all contracts.
2362 ASSERT(ct->ct_owner->p_ct_equeue);
2363 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
2364 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
2365 mutex_enter(&q->ctq_lock);
2366 mutex_exit(&ct->ct_lock);
2369 * It is possible for this code to race with adoption; we
2370 * publish the event indicating that the event may already
2371 * be enqueued because adoption beat us to it (in which case
2372 * cte_pubish() does nothing).
2374 cte_publish(q, e, &ts, B_TRUE);
2375 } else {
2376 mutex_exit(&ct->ct_lock);
2377 cte_rele(e);
2380 if (negend) {
2381 mutex_enter(&ct->ct_lock);
2382 negev = ct->ct_nevent;
2383 ct->ct_nevent = NULL;
2384 cte_rele(negev);
2385 mutex_exit(&ct->ct_lock);
2388 mutex_exit(&ct->ct_evtlock);
2390 return (evid);
2394 * cte_add_listener
2396 * Add a new listener to an event queue.
2398 void
2399 cte_add_listener(ct_equeue_t *q, ct_listener_t *l)
2401 cv_init(&l->ctl_cv, NULL, CV_DEFAULT, NULL);
2402 l->ctl_equeue = q;
2403 l->ctl_position = NULL;
2404 l->ctl_flags = 0;
2406 mutex_enter(&q->ctq_lock);
2407 list_insert_head(&q->ctq_tail, l);
2408 list_insert_head(&q->ctq_listeners, l);
2409 q->ctq_nlisteners++;
2410 mutex_exit(&q->ctq_lock);
2414 * cte_remove_listener
2416 * Remove a listener from an event queue. No other queue activities
2417 * (e.g. cte_get event) may be in progress at this endpoint when this
2418 * is called.
2420 void
2421 cte_remove_listener(ct_listener_t *l)
2423 ct_equeue_t *q = l->ctl_equeue;
2424 ct_kevent_t *e;
2426 mutex_enter(&q->ctq_lock);
2428 ASSERT((l->ctl_flags & (CTLF_COPYOUT|CTLF_RESET)) == 0);
2430 if ((e = l->ctl_position) != NULL)
2431 cte_qrele(q, l, e);
2432 else
2433 list_remove(&q->ctq_tail, l);
2434 l->ctl_position = NULL;
2436 q->ctq_nlisteners--;
2437 list_remove(&q->ctq_listeners, l);
2439 if (l->ctl_flags & CTLF_RELIABLE)
2440 q->ctq_nreliable--;
2443 * If we are a the last listener of a dead reference counted
2444 * queue (i.e. a process bundle) we free it. Otherwise we just
2445 * trim any events which may have been kept around for our
2446 * benefit.
2448 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_flags & CTQ_DEAD) &&
2449 (q->ctq_nlisteners == 0)) {
2450 cte_queue_destroy(q);
2451 } else {
2452 cte_trim(q, NULL);
2453 mutex_exit(&q->ctq_lock);
2458 * cte_reset_listener
2460 * Moves a listener's queue pointer to the beginning of the queue.
2462 void
2463 cte_reset_listener(ct_listener_t *l)
2465 ct_equeue_t *q = l->ctl_equeue;
2467 mutex_enter(&q->ctq_lock);
2470 * We allow an asynchronous reset because it doesn't make a
2471 * whole lot of sense to make reset block or fail. We already
2472 * have most of the mechanism needed thanks to queue trimming,
2473 * so implementing it isn't a big deal.
2475 if (l->ctl_flags & CTLF_COPYOUT)
2476 l->ctl_flags |= CTLF_RESET;
2478 (void) cte_qmove(q, l, list_head(&q->ctq_events));
2481 * Inform blocked readers.
2483 cv_broadcast(&l->ctl_cv);
2484 pollwakeup(&l->ctl_pollhead, POLLIN);
2485 mutex_exit(&q->ctq_lock);
2489 * cte_next_event
2491 * Moves the event pointer for the specified listener to the next event
2492 * on the queue. To avoid races, this movement only occurs if the
2493 * specified event id matches that of the current event. This is used
2494 * primarily to skip events that have been read but whose extended data
2495 * haven't been copied out.
2498 cte_next_event(ct_listener_t *l, uint64_t id)
2500 ct_equeue_t *q = l->ctl_equeue;
2501 ct_kevent_t *old;
2503 mutex_enter(&q->ctq_lock);
2505 if (l->ctl_flags & CTLF_COPYOUT)
2506 l->ctl_flags |= CTLF_RESET;
2508 if (((old = l->ctl_position) != NULL) && (old->cte_id == id))
2509 (void) cte_qmove(q, l, list_next(&q->ctq_events, old));
2511 mutex_exit(&q->ctq_lock);
2513 return (0);
2517 * cte_get_event
2519 * Reads an event from an event endpoint. If "nonblock" is clear, we
2520 * block until a suitable event is ready. If "crit" is set, we only
2521 * read critical events. Note that while "cr" is the caller's cred,
2522 * "zuniqid" is the unique id of the zone the calling contract
2523 * filesystem was mounted in.
2526 cte_get_event(ct_listener_t *l, int nonblock, void *uaddr, const cred_t *cr,
2527 uint64_t zuniqid, int crit)
2529 ct_equeue_t *q = l->ctl_equeue;
2530 ct_kevent_t *temp;
2531 int result = 0;
2532 int partial = 0;
2533 size_t size, gsize, len;
2534 model_t mdl = get_udatamodel();
2535 STRUCT_DECL(ct_event, ev);
2536 STRUCT_INIT(ev, mdl);
2539 * cte_qreadable checks for CTLF_COPYOUT as well as ensures
2540 * that there exists, and we are pointing to, an appropriate
2541 * event. It may temporarily drop ctq_lock, but that doesn't
2542 * really matter to us.
2544 mutex_enter(&q->ctq_lock);
2545 while (cte_qreadable(q, l, cr, zuniqid, crit)) {
2546 if (nonblock) {
2547 result = EAGAIN;
2548 goto error;
2550 if (q->ctq_flags & CTQ_DEAD) {
2551 result = EIDRM;
2552 goto error;
2554 result = cv_wait_sig(&l->ctl_cv, &q->ctq_lock);
2555 if (result == 0) {
2556 result = EINTR;
2557 goto error;
2560 temp = l->ctl_position;
2561 cte_hold(temp);
2562 l->ctl_flags |= CTLF_COPYOUT;
2563 mutex_exit(&q->ctq_lock);
2566 * We now have an event. Copy in the user event structure to
2567 * see how much space we have to work with.
2569 result = copyin(uaddr, STRUCT_BUF(ev), STRUCT_SIZE(ev));
2570 if (result)
2571 goto copyerr;
2574 * Determine what data we have and what the user should be
2575 * allowed to see.
2577 size = gsize = 0;
2578 if (temp->cte_data) {
2579 VERIFY(nvlist_size(temp->cte_data, &size,
2580 NV_ENCODE_NATIVE) == 0);
2581 ASSERT(size != 0);
2583 if (zuniqid == GLOBAL_ZONEUNIQID && temp->cte_gdata) {
2584 VERIFY(nvlist_size(temp->cte_gdata, &gsize,
2585 NV_ENCODE_NATIVE) == 0);
2586 ASSERT(gsize != 0);
2590 * If we have enough space, copy out the extended event data.
2592 len = size + gsize;
2593 if (len) {
2594 if (STRUCT_FGET(ev, ctev_nbytes) >= len) {
2595 char *buf = kmem_alloc(len, KM_SLEEP);
2597 if (size)
2598 VERIFY(nvlist_pack(temp->cte_data, &buf, &size,
2599 NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2600 if (gsize) {
2601 char *tmp = buf + size;
2603 VERIFY(nvlist_pack(temp->cte_gdata, &tmp,
2604 &gsize, NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2607 /* This shouldn't have changed */
2608 ASSERT(size + gsize == len);
2609 result = copyout(buf, STRUCT_FGETP(ev, ctev_buffer),
2610 len);
2611 kmem_free(buf, len);
2612 if (result)
2613 goto copyerr;
2614 } else {
2615 partial = 1;
2620 * Copy out the common event data.
2622 STRUCT_FSET(ev, ctev_id, temp->cte_contract->ct_id);
2623 STRUCT_FSET(ev, ctev_evid, temp->cte_id);
2624 STRUCT_FSET(ev, ctev_cttype,
2625 temp->cte_contract->ct_type->ct_type_index);
2626 STRUCT_FSET(ev, ctev_flags, temp->cte_flags &
2627 (CTE_ACK|CTE_INFO|CTE_NEG));
2628 STRUCT_FSET(ev, ctev_type, temp->cte_type);
2629 STRUCT_FSET(ev, ctev_nbytes, len);
2630 STRUCT_FSET(ev, ctev_goffset, size);
2631 result = copyout(STRUCT_BUF(ev), uaddr, STRUCT_SIZE(ev));
2633 copyerr:
2635 * Only move our location in the queue if all copyouts were
2636 * successful, the caller provided enough space for the entire
2637 * event, and our endpoint wasn't reset or otherwise moved by
2638 * another thread.
2640 mutex_enter(&q->ctq_lock);
2641 if (result)
2642 result = EFAULT;
2643 else if (!partial && ((l->ctl_flags & CTLF_RESET) == 0) &&
2644 (l->ctl_position == temp))
2645 (void) cte_qmove(q, l, list_next(&q->ctq_events, temp));
2646 l->ctl_flags &= ~(CTLF_COPYOUT|CTLF_RESET);
2648 * Signal any readers blocked on our CTLF_COPYOUT.
2650 cv_signal(&l->ctl_cv);
2651 cte_rele(temp);
2653 error:
2654 mutex_exit(&q->ctq_lock);
2655 return (result);
2659 * cte_set_reliable
2661 * Requests that events be reliably delivered to an event endpoint.
2662 * Unread informative and acknowledged critical events will not be
2663 * removed from the queue until this listener reads or skips them.
2664 * Because a listener could maliciously request reliable delivery and
2665 * then do nothing, this requires that PRIV_CONTRACT_EVENT be in the
2666 * caller's effective set.
2669 cte_set_reliable(ct_listener_t *l, const cred_t *cr)
2671 ct_equeue_t *q = l->ctl_equeue;
2672 int error;
2674 if ((error = secpolicy_contract_event(cr)) != 0)
2675 return (error);
2677 mutex_enter(&q->ctq_lock);
2678 if ((l->ctl_flags & CTLF_RELIABLE) == 0) {
2679 l->ctl_flags |= CTLF_RELIABLE;
2680 q->ctq_nreliable++;
2681 if (l->ctl_position != NULL)
2682 l->ctl_position->cte_nodes[q->ctq_listno].
2683 ctm_nreliable++;
2685 mutex_exit(&q->ctq_lock);
2687 return (0);