stop shipping useless ksh93 builtins into /usr/bin
[unleashed.git] / kernel / fs / vfs.c
blob9ae4f5bf1c0523f83e9880f8c793d4792151ed75
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2016 Joyent, Inc.
25 * Copyright 2016 Toomas Soome <tsoome@me.com>
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2016 by Delphix. All rights reserved.
28 * Copyright 2016 Nexenta Systems, Inc.
29 * Copyright 2017 RackTop Systems.
32 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
33 /* All Rights Reserved */
36 * University Copyright- Copyright (c) 1982, 1986, 1988
37 * The Regents of the University of California
38 * All Rights Reserved
40 * University Acknowledgment- Portions of this document are derived from
41 * software developed by the University of California, Berkeley, and its
42 * contributors.
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/errno.h>
49 #include <sys/user.h>
50 #include <sys/fstyp.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/vfs.h>
56 #include <sys/vfs_dispatch.h>
57 #include <sys/fem.h>
58 #include <sys/mntent.h>
59 #include <sys/stat.h>
60 #include <sys/statvfs.h>
61 #include <sys/statfs.h>
62 #include <sys/cred.h>
63 #include <sys/vnode.h>
64 #include <sys/rwstlock.h>
65 #include <sys/dnlc.h>
66 #include <sys/file.h>
67 #include <sys/time.h>
68 #include <sys/atomic.h>
69 #include <sys/cmn_err.h>
70 #include <sys/buf.h>
71 #include <sys/swap.h>
72 #include <sys/debug.h>
73 #include <sys/vnode.h>
74 #include <sys/modctl.h>
75 #include <sys/ddi.h>
76 #include <sys/pathname.h>
77 #include <sys/bootconf.h>
78 #include <sys/dumphdr.h>
79 #include <sys/poll.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysmacros.h>
82 #include <sys/zone.h>
83 #include <sys/policy.h>
84 #include <sys/ctfs.h>
85 #include <sys/objfs.h>
86 #include <sys/console.h>
87 #include <sys/reboot.h>
88 #include <sys/attr.h>
89 #include <sys/zio.h>
90 #include <sys/spa.h>
91 #include <sys/lofi.h>
92 #include <sys/bootprops.h>
94 #include <vm/page.h>
96 #include <sys/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void initialize_vopstats(vopstats_t *);
99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104 const char *, int, int);
105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112 const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
119 struct ipmnt {
120 struct ipmnt *mip_next;
121 dev_t mip_dev;
122 struct vfs *mip_vfsp;
125 static kmutex_t vfs_miplist_mutex;
126 static struct ipmnt *vfs_miplist = NULL;
127 static struct ipmnt *vfs_miplist_end = NULL;
129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
132 * VFS global data.
134 vnode_t *rootdir; /* pointer to root inode vnode. */
135 vnode_t *devicesdir; /* pointer to inode of devices root */
136 vnode_t *devdir; /* pointer to inode of dev root */
138 char *server_rootpath; /* root path for diskless clients */
139 char *server_hostname; /* hostname of diskless server */
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
145 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
146 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
147 /* must be power of 2! */
148 timespec_t vfs_mnttab_ctime; /* mnttab created time */
149 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
150 char *vfs_dummyfstype = "\0";
151 struct pollhead vfs_pollhd; /* for mnttab pollers */
152 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
153 int mntfstype; /* will be set once mnt fs is mounted */
156 * Table for generic options recognized in the VFS layer and acted
157 * on at this level before parsing file system specific options.
158 * The nosuid option is stronger than any of the devices and setuid
159 * options, so those are canceled when nosuid is seen.
161 * All options which are added here need to be added to the
162 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
165 * VFS Mount options table
167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
171 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
181 static const mntopt_t mntopts[] = {
183 * option name cancel options default arg flags
185 { MNTOPT_REMOUNT, NULL, NULL,
186 MO_NODISPLAY, NULL },
187 { MNTOPT_RO, ro_cancel, NULL, 0,
188 NULL },
189 { MNTOPT_RW, rw_cancel, NULL, 0,
190 NULL },
191 { MNTOPT_SUID, suid_cancel, NULL, 0,
192 NULL },
193 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
194 NULL },
195 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
196 NULL },
197 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
198 NULL },
199 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
200 NULL },
201 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
202 NULL },
203 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
204 NULL },
205 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
206 NULL },
207 { MNTOPT_EXEC, exec_cancel, NULL, 0,
208 NULL },
209 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
210 NULL },
213 const mntopts_t vfs_mntopts = {
214 sizeof (mntopts) / sizeof (mntopt_t),
215 (mntopt_t *)&mntopts[0]
219 * File system operation dispatch functions.
223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
225 return fsop_mount_dispatch(vfsp, mvp, uap, cr, true);
229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
231 return fsop_unmount_dispatch(vfsp, flag, cr, true);
235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
237 refstr_t *mntpt;
238 int ret;
240 ret = fsop_root_dispatch(vfsp, vpp, true);
243 * Make sure this root has a path. With lofs, it is possible to have
244 * a NULL mountpoint.
246 if (ret == 0 && vfsp->vfs_mntpt != NULL &&
247 (*vpp)->v_path == vn_vpath_empty) {
248 const char *path;
250 mntpt = vfs_getmntpoint(vfsp);
251 path = refstr_value(mntpt);
252 vn_setpath_str(*vpp, path, strlen(path));
253 refstr_rele(mntpt);
256 return (ret);
260 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
262 return fsop_statfs_dispatch(vfsp, sp, true);
266 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
268 return fsop_sync_dispatch(vfsp, flag, cr, true);
272 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
275 * In order to handle system attribute fids in a manner
276 * transparent to the underlying fs, we embed the fid for
277 * the sysattr parent object in the sysattr fid and tack on
278 * some extra bytes that only the sysattr layer knows about.
280 * This guarantees that sysattr fids are larger than other fids
281 * for this vfs. If the vfs supports the sysattr view interface
282 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
283 * collision with XATTR_FIDSZ.
285 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
286 fidp->fid_len == XATTR_FIDSZ)
287 return (xattr_dir_vget(vfsp, vpp, fidp));
289 return fsop_vget_dispatch(vfsp, vpp, fidp, true);
293 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
295 return fsop_mountroot_dispatch(vfsp, reason, true);
298 void
299 fsop_freefs(vfs_t *vfsp)
301 fsop_freefs_dispatch(vfsp, true);
305 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
307 return fsop_vnstate_dispatch(vfsp, vp, nstate, true);
311 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
313 ASSERT((fstype >= 0) && (fstype < nfstype));
315 if (!ALLOCATED_VFSSW(&vfssw[fstype]) || !VFS_INSTALLED(&vfssw[fstype]))
316 return ENOTSUP;
318 if (vfssw[fstype].vsw_vfsops.vfs_sync == NULL)
319 return ENOSYS;
321 return vfssw[fstype].vsw_vfsops.vfs_sync(NULL, flag, cr);
325 * File system initialization. vfs_setfsops() must be called from a file
326 * system's init routine.
329 void
330 zfs_boot_init(void)
332 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
333 spa_boot_init();
337 vfs_setfsops(int fstype, const struct vfsops *ops)
340 * Verify that fstype refers to a valid fs. Note that
341 * 0 is valid since it's used to set "stray" ops.
343 if ((fstype < 0) || (fstype >= nfstype))
344 return (EINVAL);
346 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
347 return (EINVAL);
349 vfssw[fstype].vsw_vfsops = *ops;
350 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
352 return (0);
356 * Since the vfsops structure is part of the vfssw table and wasn't
357 * really allocated, we're not really freeing anything. However, we need to
358 * take care of a little bookkeeping.
361 vfs_freevfsops_by_type(int fstype)
364 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
365 if ((fstype <= 0) || (fstype >= nfstype))
366 return (EINVAL);
368 WLOCK_VFSSW();
369 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
370 WUNLOCK_VFSSW();
371 return (EINVAL);
374 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
375 WUNLOCK_VFSSW();
377 return (0);
380 /* Support routines used to reference vfs_op */
382 /* Set the operations vector for a vfs */
383 void
384 vfs_setops(struct vfs *vfs, const struct vfsops *ops)
386 vfs->vfs_op = ops;
389 /* Retrieve the operations vector for a vfs */
390 const struct vfsops *
391 vfs_getops(struct vfs *vfs)
393 return vfs->vfs_op;
397 * Returns non-zero (1) if the vfsops matches that of the vfs.
398 * Returns zero (0) if not.
401 vfs_matchops(struct vfs *vfs, const struct vfsops *ops)
403 return (vfs_getops(vfs) == ops);
407 * Returns non-zero (1) if the file system has installed a non-default,
408 * non-error vfs_sync routine. Returns zero (0) otherwise.
411 vfs_can_sync(vfs_t *vfsp)
413 /* vfs_sync() routine is not the default */
414 return vfs_getops(vfsp)->vfs_sync != NULL;
418 * Initialize a vfs structure.
420 void
421 vfs_init(struct vfs *vfs, const struct vfsops *ops, void *data)
423 /* Other initialization has been moved to vfs_alloc() */
424 vfs->vfs_count = 0;
425 vfs->vfs_next = vfs;
426 vfs->vfs_prev = vfs;
427 vfs->vfs_zone_next = vfs;
428 vfs->vfs_zone_prev = vfs;
429 vfs->vfs_lofi_id = 0;
430 sema_init(&vfs->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
431 vfsimpl_setup(vfs);
432 vfs->vfs_data = data;
433 vfs_setops(vfs, ops);
437 * Allocate and initialize the vfs implementation private data
438 * structure, vfs_impl_t.
440 void
441 vfsimpl_setup(vfs_t *vfsp)
443 int i;
445 if (vfsp->vfs_implp != NULL) {
446 return;
449 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
450 /* Note that these are #define'd in vfs.h */
451 vfsp->vfs_vskap = NULL;
452 vfsp->vfs_fstypevsp = NULL;
454 /* Set size of counted array, then zero the array */
455 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
456 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
457 vfsp->vfs_featureset[i] = 0;
462 * Release the vfs_impl_t structure, if it exists. Some unbundled
463 * filesystems may not use the newer version of vfs and thus
464 * would not contain this implementation private data structure.
466 void
467 vfsimpl_teardown(vfs_t *vfsp)
469 vfs_impl_t *vip = vfsp->vfs_implp;
471 if (vip == NULL)
472 return;
474 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
475 vfsp->vfs_implp = NULL;
479 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
480 * fstatvfs, and sysfs are in kernel/syscall.
484 * Update every mounted file system. We call the vfs_sync operation of
485 * each file system type, passing it a NULL vfsp to indicate that all
486 * mounted file systems of that type should be updated.
488 void
489 vfs_sync(int flag)
491 struct vfssw *vswp;
492 RLOCK_VFSSW();
493 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
494 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
495 vfs_refvfssw(vswp);
496 RUNLOCK_VFSSW();
497 if (vswp->vsw_vfsops.vfs_sync != NULL)
498 vswp->vsw_vfsops.vfs_sync(NULL, flag, CRED());
499 vfs_unrefvfssw(vswp);
500 RLOCK_VFSSW();
503 RUNLOCK_VFSSW();
506 void
507 sync(void)
509 vfs_sync(0);
513 * External routines.
516 krwlock_t vfssw_lock; /* lock accesses to vfssw */
519 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
520 * but otherwise should be accessed only via vfs_list_lock() and
521 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
523 static krwlock_t vfslist;
526 * Mount devfs on /devices. This is done right after root is mounted
527 * to provide device access support for the system
529 static void
530 vfs_mountdevices(void)
532 struct vfssw *vsw;
533 struct vnode *mvp;
534 struct mounta mounta = { /* fake mounta for devfs_mount() */
535 NULL,
536 NULL,
537 MS_SYSSPACE,
538 NULL,
539 NULL,
541 NULL,
546 * _init devfs module to fill in the vfssw
548 if (modload("fs", "devfs") == -1)
549 panic("Cannot _init devfs module");
552 * Hold vfs
554 RLOCK_VFSSW();
555 vsw = vfs_getvfsswbyname("devfs");
556 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
557 VFS_HOLD(&devices);
560 * Locate mount point
562 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
563 panic("Cannot find /devices");
566 * Perform the mount of /devices
568 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
569 panic("Cannot mount /devices");
571 RUNLOCK_VFSSW();
574 * Set appropriate members and add to vfs list for mnttab display
576 vfs_setresource(&devices, "/devices", 0);
577 vfs_setmntpoint(&devices, "/devices", 0);
580 * Hold the root of /devices so it won't go away
582 if (VFS_ROOT(&devices, &devicesdir))
583 panic("vfs_mountdevices: not devices root");
585 if (vfs_lock(&devices) != 0) {
586 VN_RELE(devicesdir);
587 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
588 return;
591 if (vn_vfswlock(mvp) != 0) {
592 vfs_unlock(&devices);
593 VN_RELE(devicesdir);
594 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
595 return;
598 vfs_add(mvp, &devices, 0);
599 vn_vfsunlock(mvp);
600 vfs_unlock(&devices);
601 VN_RELE(devicesdir);
605 * mount the first instance of /dev to root and remain mounted
607 static void
608 vfs_mountdev1(void)
610 struct vfssw *vsw;
611 struct vnode *mvp;
612 struct mounta mounta = { /* fake mounta for sdev_mount() */
613 NULL,
614 NULL,
615 MS_SYSSPACE | MS_OVERLAY,
616 NULL,
617 NULL,
619 NULL,
624 * _init dev module to fill in the vfssw
626 if (modload("fs", "dev") == -1)
627 cmn_err(CE_PANIC, "Cannot _init dev module\n");
630 * Hold vfs
632 RLOCK_VFSSW();
633 vsw = vfs_getvfsswbyname("dev");
634 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
635 VFS_HOLD(&dev);
638 * Locate mount point
640 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
641 cmn_err(CE_PANIC, "Cannot find /dev\n");
644 * Perform the mount of /dev
646 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
647 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
649 RUNLOCK_VFSSW();
652 * Set appropriate members and add to vfs list for mnttab display
654 vfs_setresource(&dev, "/dev", 0);
655 vfs_setmntpoint(&dev, "/dev", 0);
658 * Hold the root of /dev so it won't go away
660 if (VFS_ROOT(&dev, &devdir))
661 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
663 if (vfs_lock(&dev) != 0) {
664 VN_RELE(devdir);
665 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
666 return;
669 if (vn_vfswlock(mvp) != 0) {
670 vfs_unlock(&dev);
671 VN_RELE(devdir);
672 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
673 return;
676 vfs_add(mvp, &dev, 0);
677 vn_vfsunlock(mvp);
678 vfs_unlock(&dev);
679 VN_RELE(devdir);
683 * Mount required filesystem. This is done right after root is mounted.
685 static void
686 vfs_mountfs(char *module, char *spec, char *path)
688 struct vnode *mvp;
689 struct mounta mounta;
690 vfs_t *vfsp;
692 bzero(&mounta, sizeof (mounta));
693 mounta.flags = MS_SYSSPACE | MS_DATA;
694 mounta.fstype = module;
695 mounta.spec = spec;
696 mounta.dir = path;
697 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
698 cmn_err(CE_WARN, "Cannot find %s", path);
699 return;
701 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
702 cmn_err(CE_WARN, "Cannot mount %s", path);
703 else
704 VFS_RELE(vfsp);
705 VN_RELE(mvp);
709 * vfs_mountroot is called by main() to mount the root filesystem.
711 void
712 vfs_mountroot(void)
714 struct vnode *rvp = NULL;
715 char *path;
716 size_t plen;
717 struct vfssw *vswp;
718 proc_t *p;
720 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
721 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
724 * Alloc the vfs hash bucket array and locks
726 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
729 * Call machine-dependent routine "rootconf" to choose a root
730 * file system type.
732 if (rootconf())
733 panic("vfs_mountroot: cannot mount root");
735 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
736 * to point to it. These are used by lookuppn() so that it
737 * knows where to start from ('/' or '.').
739 vfs_setmntpoint(rootvfs, "/", 0);
740 if (VFS_ROOT(rootvfs, &rootdir))
741 panic("vfs_mountroot: no root vnode");
744 * At this point, the process tree consists of p0 and possibly some
745 * direct children of p0. (i.e. there are no grandchildren)
747 * Walk through them all, setting their current directory.
749 mutex_enter(&pidlock);
750 for (p = practive; p != NULL; p = p->p_next) {
751 ASSERT(p == &p0 || p->p_parent == &p0);
753 PTOU(p)->u_cdir = rootdir;
754 VN_HOLD(PTOU(p)->u_cdir);
755 PTOU(p)->u_rdir = NULL;
757 mutex_exit(&pidlock);
760 * Setup the global zone's rootvp, now that it exists.
762 global_zone->zone_rootvp = rootdir;
763 VN_HOLD(global_zone->zone_rootvp);
766 * Notify the module code that it can begin using the
767 * root filesystem instead of the boot program's services.
769 modrootloaded = 1;
772 * Special handling for a ZFS root file system.
774 zfs_boot_init();
777 * Set up mnttab information for root
779 vfs_setresource(rootvfs, rootfs.bo_name, 0);
781 /* Now that we're all done with the root FS, set up its vopstats */
782 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
783 /* Set flag for statistics collection */
784 if (vswp->vsw_flag & VSW_STATS) {
785 initialize_vopstats(&rootvfs->vfs_vopstats);
786 rootvfs->vfs_flag |= VFS_STATS;
787 rootvfs->vfs_fstypevsp =
788 get_fstype_vopstats(rootvfs, vswp);
789 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
791 vfs_unrefvfssw(vswp);
795 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
796 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
798 vfs_mountdevices();
799 vfs_mountdev1();
801 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
802 vfs_mountfs("proc", "/proc", "/proc");
803 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
804 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
805 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
806 vfs_mountfs("bootfs", "bootfs", "/system/boot");
808 if (getzoneid() == GLOBAL_ZONEID) {
809 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
812 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
814 * Look up the root device via devfs so that a dv_node is
815 * created for it. The vnode is never VN_RELE()ed.
816 * We allocate more than MAXPATHLEN so that the
817 * buffer passed to i_ddi_prompath_to_devfspath() is
818 * exactly MAXPATHLEN (the function expects a buffer
819 * of that length).
821 plen = strlen("/devices");
822 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
823 (void) strcpy(path, "/devices");
825 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
826 != DDI_SUCCESS ||
827 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
829 /* NUL terminate in case "path" has garbage */
830 path[plen + MAXPATHLEN - 1] = '\0';
831 #ifdef DEBUG
832 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
833 path);
834 #endif
836 kmem_free(path, plen + MAXPATHLEN);
839 vfs_mnttabvp_setup();
843 * Check to see if our "block device" is actually a file. If so,
844 * automatically add a lofi device, and keep track of this fact.
846 static int
847 lofi_add(const char *fsname, struct vfs *vfsp,
848 mntopts_t *mntopts, struct mounta *uap)
850 int fromspace = (uap->flags & MS_SYSSPACE) ?
851 UIO_SYSSPACE : UIO_USERSPACE;
852 struct lofi_ioctl *li = NULL;
853 struct vnode *vp = NULL;
854 struct pathname pn = { NULL };
855 ldi_ident_t ldi_id;
856 ldi_handle_t ldi_hdl;
857 vfssw_t *vfssw;
858 int id;
859 int err = 0;
861 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
862 return (0);
864 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
865 vfs_unrefvfssw(vfssw);
866 return (0);
869 vfs_unrefvfssw(vfssw);
870 vfssw = NULL;
872 if (pn_get(uap->spec, fromspace, &pn) != 0)
873 return (0);
875 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
876 goto out;
878 if (vp->v_type != VREG)
879 goto out;
881 /* OK, this is a lofi mount. */
883 if ((uap->flags & MS_REMOUNT) ||
884 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
885 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
886 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
887 err = EINVAL;
888 goto out;
891 ldi_id = ldi_ident_from_anon();
892 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
893 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
895 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
896 &ldi_hdl, ldi_id);
898 if (err)
899 goto out2;
901 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
902 FREAD | FWRITE | FKIOCTL, kcred, &id);
904 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
906 if (!err)
907 vfsp->vfs_lofi_id = id;
909 out2:
910 ldi_ident_release(ldi_id);
911 out:
912 if (li != NULL)
913 kmem_free(li, sizeof (*li));
914 if (vp != NULL)
915 VN_RELE(vp);
916 pn_free(&pn);
917 return (err);
920 static void
921 lofi_remove(struct vfs *vfsp)
923 struct lofi_ioctl *li = NULL;
924 ldi_ident_t ldi_id;
925 ldi_handle_t ldi_hdl;
926 int err;
928 if (vfsp->vfs_lofi_id == 0)
929 return;
931 ldi_id = ldi_ident_from_anon();
933 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
934 li->li_id = vfsp->vfs_lofi_id;
935 li->li_cleanup = B_TRUE;
937 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
938 &ldi_hdl, ldi_id);
940 if (err)
941 goto out;
943 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
944 FREAD | FWRITE | FKIOCTL, kcred, NULL);
946 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
948 if (!err)
949 vfsp->vfs_lofi_id = 0;
951 out:
952 ldi_ident_release(ldi_id);
953 if (li != NULL)
954 kmem_free(li, sizeof (*li));
958 * Common mount code. Called from the system call entry point, from autofs,
959 * nfsv4 trigger mounts, and from pxfs.
961 * Takes the effective file system type, mount arguments, the mount point
962 * vnode, flags specifying whether the mount is a remount and whether it
963 * should be entered into the vfs list, and credentials. Fills in its vfspp
964 * parameter with the mounted file system instance's vfs.
966 * Note that the effective file system type is specified as a string. It may
967 * be null, in which case it's determined from the mount arguments, and may
968 * differ from the type specified in the mount arguments; this is a hook to
969 * allow interposition when instantiating file system instances.
971 * The caller is responsible for releasing its own hold on the mount point
972 * vp (this routine does its own hold when necessary).
973 * Also note that for remounts, the mount point vp should be the vnode for
974 * the root of the file system rather than the vnode that the file system
975 * is mounted on top of.
978 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
979 struct vfs **vfspp)
981 struct vfssw *vswp;
982 vfsops_t *vfsops;
983 struct vfs *vfsp;
984 struct vnode *bvp;
985 dev_t bdev = 0;
986 mntopts_t mnt_mntopts;
987 int error = 0;
988 int copyout_error = 0;
989 int ovflags;
990 char *opts = uap->optptr;
991 char *inargs = opts;
992 int optlen = uap->optlen;
993 int remount;
994 int rdonly;
995 int nbmand = 0;
996 int delmip = 0;
997 int addmip = 0;
998 int splice = ((uap->flags & MS_NOSPLICE) == 0);
999 int fromspace = (uap->flags & MS_SYSSPACE) ?
1000 UIO_SYSSPACE : UIO_USERSPACE;
1001 char *resource = NULL, *mountpt = NULL;
1002 refstr_t *oldresource, *oldmntpt;
1003 struct pathname pn, rpn;
1004 vsk_anchor_t *vskap;
1005 char fstname[FSTYPSZ];
1006 zone_t *zone;
1009 * The v_flag value for the mount point vp is permanently set
1010 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1011 * for mount point locking.
1013 mutex_enter(&vp->v_lock);
1014 vp->v_flag |= VVFSLOCK;
1015 mutex_exit(&vp->v_lock);
1017 mnt_mntopts.mo_count = 0;
1019 * Find the ops vector to use to invoke the file system-specific mount
1020 * method. If the fsname argument is non-NULL, use it directly.
1021 * Otherwise, dig the file system type information out of the mount
1022 * arguments.
1024 * A side effect is to hold the vfssw entry.
1026 * Mount arguments can be specified in several ways, which are
1027 * distinguished by flag bit settings. The preferred way is to set
1028 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1029 * type supplied as a character string and the last two arguments
1030 * being a pointer to a character buffer and the size of the buffer.
1031 * On entry, the buffer holds a null terminated list of options; on
1032 * return, the string is the list of options the file system
1033 * recognized. If MS_DATA is set arguments five and six point to a
1034 * block of binary data which the file system interprets.
1035 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1036 * consistently with these conventions. To handle them, we check to
1037 * see whether the pointer to the file system name has a numeric value
1038 * less than 256. If so, we treat it as an index.
1040 if (fsname != NULL) {
1041 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1042 return (EINVAL);
1044 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1045 size_t n;
1046 uint_t fstype;
1048 fsname = fstname;
1050 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1051 RLOCK_VFSSW();
1052 if (fstype == 0 || fstype >= nfstype ||
1053 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1054 RUNLOCK_VFSSW();
1055 return (EINVAL);
1057 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1058 RUNLOCK_VFSSW();
1059 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1060 return (EINVAL);
1061 } else {
1063 * Handle either kernel or user address space.
1065 if (uap->flags & MS_SYSSPACE) {
1066 error = copystr(uap->fstype, fsname,
1067 FSTYPSZ, &n);
1068 } else {
1069 error = copyinstr(uap->fstype, fsname,
1070 FSTYPSZ, &n);
1072 if (error) {
1073 if (error == ENAMETOOLONG)
1074 return (EINVAL);
1075 return (error);
1077 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1078 return (EINVAL);
1080 } else {
1081 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1082 return (EINVAL);
1083 fsname = vswp->vsw_name;
1085 if (!VFS_INSTALLED(vswp))
1086 return (EINVAL);
1088 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1089 vfs_unrefvfssw(vswp);
1090 return (error);
1093 vfsops = &vswp->vsw_vfsops;
1095 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1097 * Fetch mount options and parse them for generic vfs options
1099 if (uap->flags & MS_OPTIONSTR) {
1101 * Limit the buffer size
1103 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1104 error = EINVAL;
1105 goto errout;
1107 if ((uap->flags & MS_SYSSPACE) == 0) {
1108 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1109 inargs[0] = '\0';
1110 if (optlen) {
1111 error = copyinstr(opts, inargs, (size_t)optlen,
1112 NULL);
1113 if (error) {
1114 goto errout;
1118 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1121 * Flag bits override the options string.
1123 if (uap->flags & MS_REMOUNT)
1124 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1125 if (uap->flags & MS_RDONLY)
1126 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1127 if (uap->flags & MS_NOSUID)
1128 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1131 * Check if this is a remount; must be set in the option string and
1132 * the file system must support a remount option.
1134 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1135 MNTOPT_REMOUNT, NULL)) {
1136 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1137 error = ENOTSUP;
1138 goto errout;
1140 uap->flags |= MS_REMOUNT;
1144 * uap->flags and vfs_optionisset() should agree.
1146 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1147 uap->flags |= MS_RDONLY;
1149 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1150 uap->flags |= MS_NOSUID;
1152 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1153 ASSERT(splice || !remount);
1155 * If we are splicing the fs into the namespace,
1156 * perform mount point checks.
1158 * We want to resolve the path for the mount point to eliminate
1159 * '.' and ".." and symlinks in mount points; we can't do the
1160 * same for the resource string, since it would turn
1161 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1162 * this before grabbing vn_vfswlock(), because otherwise we
1163 * would deadlock with lookuppn().
1165 if (splice) {
1166 ASSERT(vp->v_count > 0);
1169 * Pick up mount point and device from appropriate space.
1171 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1172 resource = kmem_alloc(pn.pn_pathlen + 1,
1173 KM_SLEEP);
1174 (void) strcpy(resource, pn.pn_path);
1175 pn_free(&pn);
1178 * Do a lookupname prior to taking the
1179 * writelock. Mark this as completed if
1180 * successful for later cleanup and addition to
1181 * the mount in progress table.
1183 if (lookupname(uap->spec, fromspace,
1184 FOLLOW, NULL, &bvp) == 0) {
1185 addmip = 1;
1188 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1189 pathname_t *pnp;
1191 if (*pn.pn_path != '/') {
1192 error = EINVAL;
1193 pn_free(&pn);
1194 goto errout;
1196 pn_alloc(&rpn);
1198 * Kludge to prevent autofs from deadlocking with
1199 * itself when it calls domount().
1201 * If autofs is calling, it is because it is doing
1202 * (autofs) mounts in the process of an NFS mount. A
1203 * lookuppn() here would cause us to block waiting for
1204 * said NFS mount to complete, which can't since this
1205 * is the thread that was supposed to doing it.
1207 if (fromspace == UIO_USERSPACE) {
1208 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1209 NULL)) == 0) {
1210 pnp = &rpn;
1211 } else {
1213 * The file disappeared or otherwise
1214 * became inaccessible since we opened
1215 * it; might as well fail the mount
1216 * since the mount point is no longer
1217 * accessible.
1219 pn_free(&rpn);
1220 pn_free(&pn);
1221 goto errout;
1223 } else {
1224 pnp = &pn;
1226 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1227 (void) strcpy(mountpt, pnp->pn_path);
1230 * If the addition of the zone's rootpath
1231 * would push us over a total path length
1232 * of MAXPATHLEN, we fail the mount with
1233 * ENAMETOOLONG, which is what we would have
1234 * gotten if we were trying to perform the same
1235 * mount in the global zone.
1237 * strlen() doesn't count the trailing
1238 * '\0', but zone_rootpathlen counts both a
1239 * trailing '/' and the terminating '\0'.
1241 if ((curproc->p_zone->zone_rootpathlen - 1 +
1242 strlen(mountpt)) > MAXPATHLEN ||
1243 (resource != NULL &&
1244 (curproc->p_zone->zone_rootpathlen - 1 +
1245 strlen(resource)) > MAXPATHLEN)) {
1246 error = ENAMETOOLONG;
1249 pn_free(&rpn);
1250 pn_free(&pn);
1253 if (error)
1254 goto errout;
1257 * Prevent path name resolution from proceeding past
1258 * the mount point.
1260 if (vn_vfswlock(vp) != 0) {
1261 error = EBUSY;
1262 goto errout;
1266 * Verify that it's legitimate to establish a mount on
1267 * the prospective mount point.
1269 if (vn_mountedvfs(vp) != NULL) {
1271 * The mount point lock was obtained after some
1272 * other thread raced through and established a mount.
1274 vn_vfsunlock(vp);
1275 error = EBUSY;
1276 goto errout;
1278 if (vp->v_flag & VNOMOUNT) {
1279 vn_vfsunlock(vp);
1280 error = EINVAL;
1281 goto errout;
1284 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1285 uap->dataptr = NULL;
1286 uap->datalen = 0;
1290 * If this is a remount, we don't want to create a new VFS.
1291 * Instead, we pass the existing one with a remount flag.
1293 if (remount) {
1295 * Confirm that the mount point is the root vnode of the
1296 * file system that is being remounted.
1297 * This can happen if the user specifies a different
1298 * mount point directory pathname in the (re)mount command.
1300 * Code below can only be reached if splice is true, so it's
1301 * safe to do vn_vfsunlock() here.
1303 if ((vp->v_flag & VROOT) == 0) {
1304 vn_vfsunlock(vp);
1305 error = ENOENT;
1306 goto errout;
1309 * Disallow making file systems read-only unless file system
1310 * explicitly allows it in its vfssw. Ignore other flags.
1312 if (rdonly && vn_is_readonly(vp) == 0 &&
1313 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1314 vn_vfsunlock(vp);
1315 error = EINVAL;
1316 goto errout;
1319 * Disallow changing the NBMAND disposition of the file
1320 * system on remounts.
1322 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1323 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1324 vn_vfsunlock(vp);
1325 error = EINVAL;
1326 goto errout;
1328 vfsp = vp->v_vfsp;
1329 ovflags = vfsp->vfs_flag;
1330 vfsp->vfs_flag |= VFS_REMOUNT;
1331 vfsp->vfs_flag &= ~VFS_RDONLY;
1332 } else {
1333 vfsp = vfs_alloc(KM_SLEEP);
1334 VFS_INIT(vfsp, vfsops, NULL);
1337 VFS_HOLD(vfsp);
1339 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1340 if (!remount) {
1341 if (splice)
1342 vn_vfsunlock(vp);
1343 vfs_free(vfsp);
1344 } else {
1345 vn_vfsunlock(vp);
1346 VFS_RELE(vfsp);
1348 goto errout;
1352 * PRIV_SYS_MOUNT doesn't mean you can become root.
1354 if (vfsp->vfs_lofi_id != 0) {
1355 uap->flags |= MS_NOSUID;
1356 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1360 * The vfs_reflock is not used anymore the code below explicitly
1361 * holds it preventing others accesing it directly.
1363 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1364 !(vfsp->vfs_flag & VFS_REMOUNT))
1365 cmn_err(CE_WARN,
1366 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1369 * Lock the vfs. If this is a remount we want to avoid spurious umount
1370 * failures that happen as a side-effect of fsflush() and other mount
1371 * and unmount operations that might be going on simultaneously and
1372 * may have locked the vfs currently. To not return EBUSY immediately
1373 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1375 if (!remount) {
1376 if (error = vfs_lock(vfsp)) {
1377 vfsp->vfs_flag = ovflags;
1379 lofi_remove(vfsp);
1381 if (splice)
1382 vn_vfsunlock(vp);
1383 vfs_free(vfsp);
1384 goto errout;
1386 } else {
1387 vfs_lock_wait(vfsp);
1391 * Add device to mount in progress table, global mounts require special
1392 * handling. It is possible that we have already done the lookupname
1393 * on a spliced, non-global fs. If so, we don't want to do it again
1394 * since we cannot do a lookupname after taking the
1395 * wlock above. This case is for a non-spliced, non-global filesystem.
1397 if (!addmip) {
1398 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1399 addmip = 1;
1403 if (addmip) {
1404 vnode_t *lvp = NULL;
1406 error = vfs_get_lofi(vfsp, &lvp);
1407 if (error > 0) {
1408 lofi_remove(vfsp);
1410 if (splice)
1411 vn_vfsunlock(vp);
1412 vfs_unlock(vfsp);
1414 if (remount) {
1415 VFS_RELE(vfsp);
1416 } else {
1417 vfs_free(vfsp);
1420 goto errout;
1421 } else if (error == -1) {
1422 bdev = bvp->v_rdev;
1423 VN_RELE(bvp);
1424 } else {
1425 bdev = lvp->v_rdev;
1426 VN_RELE(lvp);
1427 VN_RELE(bvp);
1430 vfs_addmip(bdev, vfsp);
1431 addmip = 0;
1432 delmip = 1;
1435 * Invalidate cached entry for the mount point.
1437 if (splice)
1438 dnlc_purge_vp(vp);
1441 * If have an option string but the filesystem doesn't supply a
1442 * prototype options table, create a table with the global
1443 * options and sufficient room to accept all the options in the
1444 * string. Then parse the passed in option string
1445 * accepting all the options in the string. This gives us an
1446 * option table with all the proper cancel properties for the
1447 * global options.
1449 * Filesystems that supply a prototype options table are handled
1450 * earlier in this function.
1452 if (uap->flags & MS_OPTIONSTR) {
1453 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1454 mntopts_t tmp_mntopts;
1456 tmp_mntopts.mo_count = 0;
1457 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1458 &mnt_mntopts);
1459 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1460 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1461 vfs_freeopttbl(&tmp_mntopts);
1466 * Serialize with zone state transitions.
1467 * See vfs_list_add; zone mounted into is:
1468 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1469 * not the zone doing the mount (curproc->p_zone), but if we're already
1470 * inside a NGZ, then we know what zone we are.
1472 if (INGLOBALZONE(curproc)) {
1473 zone = zone_find_by_path(mountpt);
1474 ASSERT(zone != NULL);
1475 } else {
1476 zone = curproc->p_zone;
1478 * zone_find_by_path does a hold, so do one here too so that
1479 * we can do a zone_rele after mount_completed.
1481 zone_hold(zone);
1483 mount_in_progress(zone);
1485 * Instantiate (or reinstantiate) the file system. If appropriate,
1486 * splice it into the file system name space.
1488 * We want VFS_MOUNT() to be able to override the vfs_resource
1489 * string if necessary (ie, mntfs), and also for a remount to
1490 * change the same (necessary when remounting '/' during boot).
1491 * So we set up vfs_mntpt and vfs_resource to what we think they
1492 * should be, then hand off control to VFS_MOUNT() which can
1493 * override this.
1495 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1496 * a vfs which is on the vfs list (i.e. during a remount), we must
1497 * never set those fields to NULL. Several bits of code make
1498 * assumptions that the fields are always valid.
1500 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1501 if (remount) {
1502 if ((oldresource = vfsp->vfs_resource) != NULL)
1503 refstr_hold(oldresource);
1504 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1505 refstr_hold(oldmntpt);
1507 vfs_setresource(vfsp, resource, 0);
1508 vfs_setmntpoint(vfsp, mountpt, 0);
1511 * going to mount on this vnode, so notify.
1513 vnevent_mountedover(vp, NULL);
1514 error = VFS_MOUNT(vfsp, vp, uap, credp);
1516 if (uap->flags & MS_RDONLY)
1517 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1518 if (uap->flags & MS_NOSUID)
1519 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1521 if (error) {
1522 lofi_remove(vfsp);
1524 if (remount) {
1525 /* put back pre-remount options */
1526 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1527 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1528 VFSSP_VERBATIM);
1529 if (oldmntpt)
1530 refstr_rele(oldmntpt);
1531 vfs_setresource(vfsp, refstr_value(oldresource),
1532 VFSSP_VERBATIM);
1533 if (oldresource)
1534 refstr_rele(oldresource);
1535 vfsp->vfs_flag = ovflags;
1536 vfs_unlock(vfsp);
1537 VFS_RELE(vfsp);
1538 } else {
1539 vfs_unlock(vfsp);
1540 vfs_freemnttab(vfsp);
1541 vfs_free(vfsp);
1543 } else {
1545 * Set the mount time to now
1547 vfsp->vfs_mtime = ddi_get_time();
1548 if (remount) {
1549 vfsp->vfs_flag &= ~VFS_REMOUNT;
1550 if (oldresource)
1551 refstr_rele(oldresource);
1552 if (oldmntpt)
1553 refstr_rele(oldmntpt);
1554 } else if (splice) {
1556 * Link vfsp into the name space at the mount
1557 * point. Vfs_add() is responsible for
1558 * holding the mount point which will be
1559 * released when vfs_remove() is called.
1561 vfs_add(vp, vfsp, uap->flags);
1562 } else {
1564 * Hold the reference to file system which is
1565 * not linked into the name space.
1567 vfsp->vfs_zone = NULL;
1568 VFS_HOLD(vfsp);
1569 vfsp->vfs_vnodecovered = NULL;
1572 * Set flags for global options encountered
1574 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1575 vfsp->vfs_flag |= VFS_RDONLY;
1576 else
1577 vfsp->vfs_flag &= ~VFS_RDONLY;
1578 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1579 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1580 } else {
1581 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1582 vfsp->vfs_flag |= VFS_NODEVICES;
1583 else
1584 vfsp->vfs_flag &= ~VFS_NODEVICES;
1585 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1586 vfsp->vfs_flag |= VFS_NOSETUID;
1587 else
1588 vfsp->vfs_flag &= ~VFS_NOSETUID;
1590 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1591 vfsp->vfs_flag |= VFS_NBMAND;
1592 else
1593 vfsp->vfs_flag &= ~VFS_NBMAND;
1595 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1596 vfsp->vfs_flag |= VFS_XATTR;
1597 else
1598 vfsp->vfs_flag &= ~VFS_XATTR;
1600 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1601 vfsp->vfs_flag |= VFS_NOEXEC;
1602 else
1603 vfsp->vfs_flag &= ~VFS_NOEXEC;
1606 * Now construct the output option string of options
1607 * we recognized.
1609 if (uap->flags & MS_OPTIONSTR) {
1610 vfs_list_read_lock();
1611 copyout_error = vfs_buildoptionstr(
1612 &vfsp->vfs_mntopts, inargs, optlen);
1613 vfs_list_unlock();
1614 if (copyout_error == 0 &&
1615 (uap->flags & MS_SYSSPACE) == 0) {
1616 copyout_error = copyoutstr(inargs, opts,
1617 optlen, NULL);
1622 * If this isn't a remount, set up the vopstats before
1623 * anyone can touch this. We only allow spliced file
1624 * systems (file systems which are in the namespace) to
1625 * have the VFS_STATS flag set.
1626 * NOTE: PxFS mounts the underlying file system with
1627 * MS_NOSPLICE set and copies those vfs_flags to its private
1628 * vfs structure. As a result, PxFS should never have
1629 * the VFS_STATS flag or else we might access the vfs
1630 * statistics-related fields prior to them being
1631 * properly initialized.
1633 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1634 initialize_vopstats(&vfsp->vfs_vopstats);
1636 * We need to set vfs_vskap to NULL because there's
1637 * a chance it won't be set below. This is checked
1638 * in teardown_vopstats() so we can't have garbage.
1640 vfsp->vfs_vskap = NULL;
1641 vfsp->vfs_flag |= VFS_STATS;
1642 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1645 if (vswp->vsw_flag & VSW_XID)
1646 vfsp->vfs_flag |= VFS_XID;
1648 vfs_unlock(vfsp);
1650 mount_completed(zone);
1651 zone_rele(zone);
1652 if (splice)
1653 vn_vfsunlock(vp);
1655 if ((error == 0) && (copyout_error == 0)) {
1656 if (!remount) {
1658 * Don't call get_vskstat_anchor() while holding
1659 * locks since it allocates memory and calls
1660 * VFS_STATVFS(). For NFS, the latter can generate
1661 * an over-the-wire call.
1663 vskap = get_vskstat_anchor(vfsp);
1664 /* Only take the lock if we have something to do */
1665 if (vskap != NULL) {
1666 vfs_lock_wait(vfsp);
1667 if (vfsp->vfs_flag & VFS_STATS) {
1668 vfsp->vfs_vskap = vskap;
1670 vfs_unlock(vfsp);
1673 /* Return vfsp to caller. */
1674 *vfspp = vfsp;
1676 errout:
1677 vfs_freeopttbl(&mnt_mntopts);
1678 if (resource != NULL)
1679 kmem_free(resource, strlen(resource) + 1);
1680 if (mountpt != NULL)
1681 kmem_free(mountpt, strlen(mountpt) + 1);
1683 * It is possible we errored prior to adding to mount in progress
1684 * table. Must free vnode we acquired with successful lookupname.
1686 if (addmip)
1687 VN_RELE(bvp);
1688 if (delmip)
1689 vfs_delmip(vfsp);
1690 ASSERT(vswp != NULL);
1691 vfs_unrefvfssw(vswp);
1692 if (inargs != opts)
1693 kmem_free(inargs, MAX_MNTOPT_STR);
1694 if (copyout_error) {
1695 lofi_remove(vfsp);
1696 VFS_RELE(vfsp);
1697 error = copyout_error;
1699 return (error);
1702 static void
1703 vfs_setpath(
1704 struct vfs *vfsp, /* vfs being updated */
1705 refstr_t **refp, /* Ref-count string to contain the new path */
1706 const char *newpath, /* Path to add to refp (above) */
1707 uint32_t flag) /* flag */
1709 size_t len;
1710 refstr_t *ref;
1711 zone_t *zone = curproc->p_zone;
1712 char *sp;
1713 int have_list_lock = 0;
1715 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1718 * New path must be less than MAXPATHLEN because mntfs
1719 * will only display up to MAXPATHLEN bytes. This is currently
1720 * safe, because domount() uses pn_get(), and other callers
1721 * similarly cap the size to fewer than MAXPATHLEN bytes.
1724 ASSERT(strlen(newpath) < MAXPATHLEN);
1726 /* mntfs requires consistency while vfs list lock is held */
1728 if (VFS_ON_LIST(vfsp)) {
1729 have_list_lock = 1;
1730 vfs_list_lock();
1733 if (*refp != NULL)
1734 refstr_rele(*refp);
1737 * If we are in a non-global zone then we prefix the supplied path,
1738 * newpath, with the zone's root path, with two exceptions. The first
1739 * is where we have been explicitly directed to avoid doing so; this
1740 * will be the case following a failed remount, where the path supplied
1741 * will be a saved version which must now be restored. The second
1742 * exception is where newpath is not a pathname but a descriptive name,
1743 * e.g. "procfs".
1745 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1746 ref = refstr_alloc(newpath);
1747 goto out;
1751 * Truncate the trailing '/' in the zoneroot, and merge
1752 * in the zone's rootpath with the "newpath" (resource
1753 * or mountpoint) passed in.
1755 * The size of the required buffer is thus the size of
1756 * the buffer required for the passed-in newpath
1757 * (strlen(newpath) + 1), plus the size of the buffer
1758 * required to hold zone_rootpath (zone_rootpathlen)
1759 * minus one for one of the now-superfluous NUL
1760 * terminations, minus one for the trailing '/'.
1762 * That gives us:
1764 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1766 * Which is what we have below.
1769 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1770 sp = kmem_alloc(len, KM_SLEEP);
1773 * Copy everything including the trailing slash, which
1774 * we then overwrite with the NUL character.
1777 (void) strcpy(sp, zone->zone_rootpath);
1778 sp[zone->zone_rootpathlen - 2] = '\0';
1779 (void) strcat(sp, newpath);
1781 ref = refstr_alloc(sp);
1782 kmem_free(sp, len);
1783 out:
1784 *refp = ref;
1786 if (have_list_lock) {
1787 vfs_mnttab_modtimeupd();
1788 vfs_list_unlock();
1793 * Record a mounted resource name in a vfs structure.
1794 * If vfsp is already mounted, caller must hold the vfs lock.
1796 void
1797 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1799 if (resource == NULL || resource[0] == '\0')
1800 resource = VFS_NORESOURCE;
1801 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1805 * Record a mount point name in a vfs structure.
1806 * If vfsp is already mounted, caller must hold the vfs lock.
1808 void
1809 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1811 if (mntpt == NULL || mntpt[0] == '\0')
1812 mntpt = VFS_NOMNTPT;
1813 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1816 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1818 refstr_t *
1819 vfs_getresource(const struct vfs *vfsp)
1821 refstr_t *resource;
1823 vfs_list_read_lock();
1824 resource = vfsp->vfs_resource;
1825 refstr_hold(resource);
1826 vfs_list_unlock();
1828 return (resource);
1831 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1833 refstr_t *
1834 vfs_getmntpoint(const struct vfs *vfsp)
1836 refstr_t *mntpt;
1838 vfs_list_read_lock();
1839 mntpt = vfsp->vfs_mntpt;
1840 refstr_hold(mntpt);
1841 vfs_list_unlock();
1843 return (mntpt);
1847 * Create an empty options table with enough empty slots to hold all
1848 * The options in the options string passed as an argument.
1849 * Potentially prepend another options table.
1851 * Note: caller is responsible for locking the vfs list, if needed,
1852 * to protect mops.
1854 static void
1855 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1856 const mntopts_t *mtmpl)
1858 const char *s = opts;
1859 uint_t count;
1861 if (opts == NULL || *opts == '\0') {
1862 count = 0;
1863 } else {
1864 count = 1;
1867 * Count number of options in the string
1869 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1870 count++;
1871 s++;
1874 vfs_copyopttbl_extend(mtmpl, mops, count);
1878 * Create an empty options table with enough empty slots to hold all
1879 * The options in the options string passed as an argument.
1881 * This function is *not* for general use by filesystems.
1883 * Note: caller is responsible for locking the vfs list, if needed,
1884 * to protect mops.
1886 void
1887 vfs_createopttbl(mntopts_t *mops, const char *opts)
1889 vfs_createopttbl_extend(mops, opts, NULL);
1894 * Swap two mount options tables
1896 static void
1897 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
1899 uint_t tmpcnt;
1900 mntopt_t *tmplist;
1902 tmpcnt = optbl2->mo_count;
1903 tmplist = optbl2->mo_list;
1904 optbl2->mo_count = optbl1->mo_count;
1905 optbl2->mo_list = optbl1->mo_list;
1906 optbl1->mo_count = tmpcnt;
1907 optbl1->mo_list = tmplist;
1910 static void
1911 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
1913 vfs_list_lock();
1914 vfs_swapopttbl_nolock(optbl1, optbl2);
1915 vfs_mnttab_modtimeupd();
1916 vfs_list_unlock();
1919 static char **
1920 vfs_copycancelopt_extend(char **const moc, int extend)
1922 int i = 0;
1923 int j;
1924 char **result;
1926 if (moc != NULL) {
1927 for (; moc[i] != NULL; i++)
1928 /* count number of options to cancel */;
1931 if (i + extend == 0)
1932 return (NULL);
1934 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
1936 for (j = 0; j < i; j++) {
1937 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
1938 (void) strcpy(result[j], moc[j]);
1940 for (; j <= i + extend; j++)
1941 result[j] = NULL;
1943 return (result);
1946 static void
1947 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
1949 char *sp, *dp;
1951 d->mo_flags = s->mo_flags;
1952 d->mo_data = s->mo_data;
1953 sp = s->mo_name;
1954 if (sp != NULL) {
1955 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1956 (void) strcpy(dp, sp);
1957 d->mo_name = dp;
1958 } else {
1959 d->mo_name = NULL; /* should never happen */
1962 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
1964 sp = s->mo_arg;
1965 if (sp != NULL) {
1966 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1967 (void) strcpy(dp, sp);
1968 d->mo_arg = dp;
1969 } else {
1970 d->mo_arg = NULL;
1975 * Copy a mount options table, possibly allocating some spare
1976 * slots at the end. It is permissible to copy_extend the NULL table.
1978 static void
1979 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
1981 uint_t i, count;
1982 mntopt_t *motbl;
1985 * Clear out any existing stuff in the options table being initialized
1987 vfs_freeopttbl(dmo);
1988 count = (smo == NULL) ? 0 : smo->mo_count;
1989 if ((count + extra) == 0) /* nothing to do */
1990 return;
1991 dmo->mo_count = count + extra;
1992 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
1993 dmo->mo_list = motbl;
1994 for (i = 0; i < count; i++) {
1995 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
1997 for (i = count; i < count + extra; i++) {
1998 motbl[i].mo_flags = MO_EMPTY;
2003 * Copy a mount options table.
2005 * This function is *not* for general use by filesystems.
2007 * Note: caller is responsible for locking the vfs list, if needed,
2008 * to protect smo and dmo.
2010 void
2011 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2013 vfs_copyopttbl_extend(smo, dmo, 0);
2016 static char **
2017 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2019 int c1 = 0;
2020 int c2 = 0;
2021 char **result;
2022 char **sp1, **sp2, **dp;
2025 * First we count both lists of cancel options.
2026 * If either is NULL or has no elements, we return a copy of
2027 * the other.
2029 if (mop1->mo_cancel != NULL) {
2030 for (; mop1->mo_cancel[c1] != NULL; c1++)
2031 /* count cancel options in mop1 */;
2034 if (c1 == 0)
2035 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2037 if (mop2->mo_cancel != NULL) {
2038 for (; mop2->mo_cancel[c2] != NULL; c2++)
2039 /* count cancel options in mop2 */;
2042 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2044 if (c2 == 0)
2045 return (result);
2048 * When we get here, we've got two sets of cancel options;
2049 * we need to merge the two sets. We know that the result
2050 * array has "c1+c2+1" entries and in the end we might shrink
2051 * it.
2052 * Result now has a copy of the c1 entries from mop1; we'll
2053 * now lookup all the entries of mop2 in mop1 and copy it if
2054 * it is unique.
2055 * This operation is O(n^2) but it's only called once per
2056 * filesystem per duplicate option. This is a situation
2057 * which doesn't arise with the filesystems in ON and
2058 * n is generally 1.
2061 dp = &result[c1];
2062 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2063 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2064 if (strcmp(*sp1, *sp2) == 0)
2065 break;
2067 if (*sp1 == NULL) {
2069 * Option *sp2 not found in mop1, so copy it.
2070 * The calls to vfs_copycancelopt_extend()
2071 * guarantee that there's enough room.
2073 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2074 (void) strcpy(*dp++, *sp2);
2077 if (dp != &result[c1+c2]) {
2078 size_t bytes = (dp - result + 1) * sizeof (char *);
2079 char **nres = kmem_alloc(bytes, KM_SLEEP);
2081 bcopy(result, nres, bytes);
2082 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2083 result = nres;
2085 return (result);
2089 * Merge two mount option tables (outer and inner) into one. This is very
2090 * similar to "merging" global variables and automatic variables in C.
2092 * This isn't (and doesn't have to be) fast.
2094 * This function is *not* for general use by filesystems.
2096 * Note: caller is responsible for locking the vfs list, if needed,
2097 * to protect omo, imo & dmo.
2099 void
2100 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2102 uint_t i, count;
2103 mntopt_t *mop, *motbl;
2104 uint_t freeidx;
2107 * First determine how much space we need to allocate.
2109 count = omo->mo_count;
2110 for (i = 0; i < imo->mo_count; i++) {
2111 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2112 continue;
2113 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2114 count++;
2116 ASSERT(count >= omo->mo_count &&
2117 count <= omo->mo_count + imo->mo_count);
2118 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2119 for (i = 0; i < omo->mo_count; i++)
2120 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2121 freeidx = omo->mo_count;
2122 for (i = 0; i < imo->mo_count; i++) {
2123 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2124 continue;
2125 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2126 char **newcanp;
2127 uint_t index = mop - omo->mo_list;
2129 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2131 vfs_freeopt(&motbl[index]);
2132 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2134 vfs_freecancelopt(motbl[index].mo_cancel);
2135 motbl[index].mo_cancel = newcanp;
2136 } else {
2138 * If it's a new option, just copy it over to the first
2139 * free location.
2141 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2144 dmo->mo_count = count;
2145 dmo->mo_list = motbl;
2149 * Functions to set and clear mount options in a mount options table.
2153 * Clear a mount option, if it exists.
2155 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2156 * the vfs list.
2158 static void
2159 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2161 struct mntopt *mop;
2162 uint_t i, count;
2164 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2166 count = mops->mo_count;
2167 for (i = 0; i < count; i++) {
2168 mop = &mops->mo_list[i];
2170 if (mop->mo_flags & MO_EMPTY)
2171 continue;
2172 if (strcmp(opt, mop->mo_name))
2173 continue;
2174 mop->mo_flags &= ~MO_SET;
2175 if (mop->mo_arg != NULL) {
2176 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2178 mop->mo_arg = NULL;
2179 if (update_mnttab)
2180 vfs_mnttab_modtimeupd();
2181 break;
2185 void
2186 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2188 int gotlock = 0;
2190 if (VFS_ON_LIST(vfsp)) {
2191 gotlock = 1;
2192 vfs_list_lock();
2194 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2195 if (gotlock)
2196 vfs_list_unlock();
2201 * Set a mount option on. If it's not found in the table, it's silently
2202 * ignored. If the option has MO_IGNORE set, it is still set unless the
2203 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2204 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2205 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2206 * MO_EMPTY set is created as the option passed in.
2208 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2209 * the vfs list.
2211 static void
2212 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2213 const char *arg, int flags, int update_mnttab)
2215 mntopt_t *mop;
2216 uint_t i, count;
2217 char *sp;
2219 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2221 if (flags & VFS_CREATEOPT) {
2222 if (vfs_hasopt(mops, opt) != NULL) {
2223 flags &= ~VFS_CREATEOPT;
2226 count = mops->mo_count;
2227 for (i = 0; i < count; i++) {
2228 mop = &mops->mo_list[i];
2230 if (mop->mo_flags & MO_EMPTY) {
2231 if ((flags & VFS_CREATEOPT) == 0)
2232 continue;
2233 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2234 (void) strcpy(sp, opt);
2235 mop->mo_name = sp;
2236 if (arg != NULL)
2237 mop->mo_flags = MO_HASVALUE;
2238 else
2239 mop->mo_flags = 0;
2240 } else if (strcmp(opt, mop->mo_name)) {
2241 continue;
2243 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2244 break;
2245 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2246 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2247 (void) strcpy(sp, arg);
2248 } else {
2249 sp = NULL;
2251 if (mop->mo_arg != NULL)
2252 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2253 mop->mo_arg = sp;
2254 if (flags & VFS_DISPLAY)
2255 mop->mo_flags &= ~MO_NODISPLAY;
2256 if (flags & VFS_NODISPLAY)
2257 mop->mo_flags |= MO_NODISPLAY;
2258 mop->mo_flags |= MO_SET;
2259 if (mop->mo_cancel != NULL) {
2260 char **cp;
2262 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2263 vfs_clearmntopt_nolock(mops, *cp, 0);
2265 if (update_mnttab)
2266 vfs_mnttab_modtimeupd();
2267 break;
2271 void
2272 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2274 int gotlock = 0;
2276 if (VFS_ON_LIST(vfsp)) {
2277 gotlock = 1;
2278 vfs_list_lock();
2280 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2281 if (gotlock)
2282 vfs_list_unlock();
2287 * Add a "tag" option to a mounted file system's options list.
2289 * Note: caller is responsible for locking the vfs list, if needed,
2290 * to protect mops.
2292 static mntopt_t *
2293 vfs_addtag(mntopts_t *mops, const char *tag)
2295 uint_t count;
2296 mntopt_t *mop, *motbl;
2298 count = mops->mo_count + 1;
2299 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2300 if (mops->mo_count) {
2301 size_t len = (count - 1) * sizeof (mntopt_t);
2303 bcopy(mops->mo_list, motbl, len);
2304 kmem_free(mops->mo_list, len);
2306 mops->mo_count = count;
2307 mops->mo_list = motbl;
2308 mop = &motbl[count - 1];
2309 mop->mo_flags = MO_TAG;
2310 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2311 (void) strcpy(mop->mo_name, tag);
2312 return (mop);
2316 * Allow users to set arbitrary "tags" in a vfs's mount options.
2317 * Broader use within the kernel is discouraged.
2320 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2321 cred_t *cr)
2323 vfs_t *vfsp;
2324 mntopts_t *mops;
2325 mntopt_t *mop;
2326 int found = 0;
2327 dev_t dev = makedevice(major, minor);
2328 int err = 0;
2329 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2332 * Find the desired mounted file system
2334 vfs_list_lock();
2335 vfsp = rootvfs;
2336 do {
2337 if (vfsp->vfs_dev == dev &&
2338 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2339 found = 1;
2340 break;
2342 vfsp = vfsp->vfs_next;
2343 } while (vfsp != rootvfs);
2345 if (!found) {
2346 err = EINVAL;
2347 goto out;
2349 err = secpolicy_fs_config(cr, vfsp);
2350 if (err != 0)
2351 goto out;
2353 mops = &vfsp->vfs_mntopts;
2355 * Add tag if it doesn't already exist
2357 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2358 int len;
2360 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2361 len = strlen(buf);
2362 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2363 err = ENAMETOOLONG;
2364 goto out;
2366 mop = vfs_addtag(mops, tag);
2368 if ((mop->mo_flags & MO_TAG) == 0) {
2369 err = EINVAL;
2370 goto out;
2372 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2373 out:
2374 vfs_list_unlock();
2375 kmem_free(buf, MAX_MNTOPT_STR);
2376 return (err);
2380 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2381 * Broader use within the kernel is discouraged.
2384 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2385 cred_t *cr)
2387 vfs_t *vfsp;
2388 mntopt_t *mop;
2389 int found = 0;
2390 dev_t dev = makedevice(major, minor);
2391 int err = 0;
2394 * Find the desired mounted file system
2396 vfs_list_lock();
2397 vfsp = rootvfs;
2398 do {
2399 if (vfsp->vfs_dev == dev &&
2400 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2401 found = 1;
2402 break;
2404 vfsp = vfsp->vfs_next;
2405 } while (vfsp != rootvfs);
2407 if (!found) {
2408 err = EINVAL;
2409 goto out;
2411 err = secpolicy_fs_config(cr, vfsp);
2412 if (err != 0)
2413 goto out;
2415 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2416 err = EINVAL;
2417 goto out;
2419 if ((mop->mo_flags & MO_TAG) == 0) {
2420 err = EINVAL;
2421 goto out;
2423 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2424 out:
2425 vfs_list_unlock();
2426 return (err);
2430 * Function to parse an option string and fill in a mount options table.
2431 * Unknown options are silently ignored. The input option string is modified
2432 * by replacing separators with nulls. If the create flag is set, options
2433 * not found in the table are just added on the fly. The table must have
2434 * an option slot marked MO_EMPTY to add an option on the fly.
2436 * This function is *not* for general use by filesystems.
2438 * Note: caller is responsible for locking the vfs list, if needed,
2439 * to protect mops..
2441 void
2442 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2444 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2445 int setflg = VFS_NOFORCEOPT;
2447 if (osp == NULL)
2448 return;
2449 while (*s != '\0') {
2450 p = strchr(s, ','); /* find next option */
2451 if (p == NULL) {
2452 cp = NULL;
2453 p = s + strlen(s);
2454 } else {
2455 cp = p; /* save location of comma */
2456 *p++ = '\0'; /* mark end and point to next option */
2458 nextop = p;
2459 p = strchr(s, '='); /* look for value */
2460 if (p == NULL) {
2461 valp = NULL; /* no value supplied */
2462 } else {
2463 ep = p; /* save location of equals */
2464 *p++ = '\0'; /* end option and point to value */
2465 valp = p;
2468 * set option into options table
2470 if (create)
2471 setflg |= VFS_CREATEOPT;
2472 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2473 if (cp != NULL)
2474 *cp = ','; /* restore the comma */
2475 if (valp != NULL)
2476 *ep = '='; /* restore the equals */
2477 s = nextop;
2482 * Function to inquire if an option exists in a mount options table.
2483 * Returns a pointer to the option if it exists, else NULL.
2485 * This function is *not* for general use by filesystems.
2487 * Note: caller is responsible for locking the vfs list, if needed,
2488 * to protect mops.
2490 struct mntopt *
2491 vfs_hasopt(const mntopts_t *mops, const char *opt)
2493 struct mntopt *mop;
2494 uint_t i, count;
2496 count = mops->mo_count;
2497 for (i = 0; i < count; i++) {
2498 mop = &mops->mo_list[i];
2500 if (mop->mo_flags & MO_EMPTY)
2501 continue;
2502 if (strcmp(opt, mop->mo_name) == 0)
2503 return (mop);
2505 return (NULL);
2509 * Function to inquire if an option is set in a mount options table.
2510 * Returns non-zero if set and fills in the arg pointer with a pointer to
2511 * the argument string or NULL if there is no argument string.
2513 static int
2514 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2516 struct mntopt *mop;
2517 uint_t i, count;
2519 count = mops->mo_count;
2520 for (i = 0; i < count; i++) {
2521 mop = &mops->mo_list[i];
2523 if (mop->mo_flags & MO_EMPTY)
2524 continue;
2525 if (strcmp(opt, mop->mo_name))
2526 continue;
2527 if ((mop->mo_flags & MO_SET) == 0)
2528 return (0);
2529 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2530 *argp = mop->mo_arg;
2531 return (1);
2533 return (0);
2538 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2540 int ret;
2542 vfs_list_read_lock();
2543 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2544 vfs_list_unlock();
2545 return (ret);
2550 * Construct a comma separated string of the options set in the given
2551 * mount table, return the string in the given buffer. Return non-zero if
2552 * the buffer would overflow.
2554 * This function is *not* for general use by filesystems.
2556 * Note: caller is responsible for locking the vfs list, if needed,
2557 * to protect mp.
2560 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2562 char *cp;
2563 uint_t i;
2565 buf[0] = '\0';
2566 cp = buf;
2567 for (i = 0; i < mp->mo_count; i++) {
2568 struct mntopt *mop;
2570 mop = &mp->mo_list[i];
2571 if (mop->mo_flags & MO_SET) {
2572 int optlen, comma = 0;
2574 if (buf[0] != '\0')
2575 comma = 1;
2576 optlen = strlen(mop->mo_name);
2577 if (strlen(buf) + comma + optlen + 1 > len)
2578 goto err;
2579 if (comma)
2580 *cp++ = ',';
2581 (void) strcpy(cp, mop->mo_name);
2582 cp += optlen;
2584 * Append option value if there is one
2586 if (mop->mo_arg != NULL) {
2587 int arglen;
2589 arglen = strlen(mop->mo_arg);
2590 if (strlen(buf) + arglen + 2 > len)
2591 goto err;
2592 *cp++ = '=';
2593 (void) strcpy(cp, mop->mo_arg);
2594 cp += arglen;
2598 return (0);
2599 err:
2600 return (EOVERFLOW);
2603 static void
2604 vfs_freecancelopt(char **moc)
2606 if (moc != NULL) {
2607 int ccnt = 0;
2608 char **cp;
2610 for (cp = moc; *cp != NULL; cp++) {
2611 kmem_free(*cp, strlen(*cp) + 1);
2612 ccnt++;
2614 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2618 static void
2619 vfs_freeopt(mntopt_t *mop)
2621 if (mop->mo_name != NULL)
2622 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2624 vfs_freecancelopt(mop->mo_cancel);
2626 if (mop->mo_arg != NULL)
2627 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2631 * Free a mount options table
2633 * This function is *not* for general use by filesystems.
2635 * Note: caller is responsible for locking the vfs list, if needed,
2636 * to protect mp.
2638 void
2639 vfs_freeopttbl(mntopts_t *mp)
2641 uint_t i, count;
2643 count = mp->mo_count;
2644 for (i = 0; i < count; i++) {
2645 vfs_freeopt(&mp->mo_list[i]);
2647 if (count) {
2648 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2649 mp->mo_count = 0;
2650 mp->mo_list = NULL;
2655 /* ARGSUSED */
2656 static int
2657 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2658 caller_context_t *ct)
2660 return (0);
2663 /* ARGSUSED */
2664 static int
2665 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2666 caller_context_t *ct)
2668 return (0);
2672 * The dummy vnode is currently used only by file events notification
2673 * module which is just interested in the timestamps.
2675 /* ARGSUSED */
2676 static int
2677 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2678 caller_context_t *ct)
2680 bzero(vap, sizeof (vattr_t));
2681 vap->va_type = VREG;
2682 vap->va_nlink = 1;
2683 vap->va_ctime = vfs_mnttab_ctime;
2685 * it is ok to just copy mtime as the time will be monotonically
2686 * increasing.
2688 vap->va_mtime = vfs_mnttab_mtime;
2689 vap->va_atime = vap->va_mtime;
2690 return (0);
2693 static void
2694 vfs_mnttabvp_setup(void)
2696 static const struct vnodeops dummyops = {
2697 .vnop_name = "mnttab",
2698 .vop_read = vfs_mntdummyread,
2699 .vop_write = vfs_mntdummywrite,
2700 .vop_getattr = vfs_mntdummygetattr,
2701 .vop_vnevent = fs_vnevent_support,
2703 vnode_t *tvp;
2706 * A global dummy vnode is allocated to represent mntfs files.
2707 * The mntfs file (/etc/mnttab) can be monitored for file events
2708 * and receive an event when mnttab changes. Dummy VOP calls
2709 * will be made on this vnode. The file events notification module
2710 * intercepts this vnode and delivers relevant events.
2712 tvp = vn_alloc(KM_SLEEP);
2713 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2714 vn_setops(tvp, &dummyops);
2715 tvp->v_type = VREG;
2717 * The mnt dummy ops do not reference v_data.
2718 * No other module intercepting this vnode should either.
2719 * Just set it to point to itself.
2721 tvp->v_data = (caddr_t)tvp;
2722 tvp->v_vfsp = rootvfs;
2723 vfs_mntdummyvp = tvp;
2727 * performs fake read/write ops
2729 static void
2730 vfs_mnttab_rwop(int rw)
2732 struct uio uio;
2733 struct iovec iov;
2734 char buf[1];
2736 if (vfs_mntdummyvp == NULL)
2737 return;
2739 bzero(&uio, sizeof (uio));
2740 bzero(&iov, sizeof (iov));
2741 iov.iov_base = buf;
2742 iov.iov_len = 0;
2743 uio.uio_iov = &iov;
2744 uio.uio_iovcnt = 1;
2745 uio.uio_loffset = 0;
2746 uio.uio_segflg = UIO_SYSSPACE;
2747 uio.uio_resid = 0;
2748 if (rw) {
2749 (void) fop_write(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2750 } else {
2751 (void) fop_read(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2756 * Generate a write operation.
2758 void
2759 vfs_mnttab_writeop(void)
2761 vfs_mnttab_rwop(1);
2765 * Generate a read operation.
2767 void
2768 vfs_mnttab_readop(void)
2770 vfs_mnttab_rwop(0);
2774 * Free any mnttab information recorded in the vfs struct.
2775 * The vfs must not be on the vfs list.
2777 static void
2778 vfs_freemnttab(struct vfs *vfsp)
2780 ASSERT(!VFS_ON_LIST(vfsp));
2783 * Free device and mount point information
2785 if (vfsp->vfs_mntpt != NULL) {
2786 refstr_rele(vfsp->vfs_mntpt);
2787 vfsp->vfs_mntpt = NULL;
2789 if (vfsp->vfs_resource != NULL) {
2790 refstr_rele(vfsp->vfs_resource);
2791 vfsp->vfs_resource = NULL;
2794 * Now free mount options information
2796 vfs_freeopttbl(&vfsp->vfs_mntopts);
2800 * Return the last mnttab modification time
2802 void
2803 vfs_mnttab_modtime(timespec_t *ts)
2805 ASSERT(RW_LOCK_HELD(&vfslist));
2806 *ts = vfs_mnttab_mtime;
2810 * See if mnttab is changed
2812 void
2813 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2815 int changed;
2817 *phpp = NULL;
2820 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2821 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2822 * to not grab the vfs list lock because tv_sec is monotonically
2823 * increasing.
2826 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2827 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2828 if (!changed) {
2829 *phpp = &vfs_pollhd;
2833 /* Provide a unique and monotonically-increasing timestamp. */
2834 void
2835 vfs_mono_time(timespec_t *ts)
2837 static volatile hrtime_t hrt; /* The saved time. */
2838 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
2839 timespec_t newts;
2842 * Try gethrestime() first, but be prepared to fabricate a sensible
2843 * answer at the first sign of any trouble.
2845 gethrestime(&newts);
2846 newhrt = ts2hrt(&newts);
2847 for (;;) {
2848 oldhrt = hrt;
2849 if (newhrt <= hrt)
2850 newhrt = hrt + 1;
2851 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2852 break;
2854 hrt2ts(newhrt, ts);
2858 * Update the mnttab modification time and wake up any waiters for
2859 * mnttab changes
2861 void
2862 vfs_mnttab_modtimeupd()
2864 hrtime_t oldhrt, newhrt;
2866 ASSERT(RW_WRITE_HELD(&vfslist));
2867 oldhrt = ts2hrt(&vfs_mnttab_mtime);
2868 gethrestime(&vfs_mnttab_mtime);
2869 newhrt = ts2hrt(&vfs_mnttab_mtime);
2870 if (oldhrt == (hrtime_t)0)
2871 vfs_mnttab_ctime = vfs_mnttab_mtime;
2873 * Attempt to provide unique mtime (like uniqtime but not).
2875 if (newhrt == oldhrt) {
2876 newhrt++;
2877 hrt2ts(newhrt, &vfs_mnttab_mtime);
2879 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2880 vfs_mnttab_writeop();
2884 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
2886 vnode_t *coveredvp;
2887 int error;
2888 extern void teardown_vopstats(vfs_t *);
2891 * Get covered vnode. This will be NULL if the vfs is not linked
2892 * into the file system name space (i.e., domount() with MNT_NOSPICE).
2894 coveredvp = vfsp->vfs_vnodecovered;
2895 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
2898 * Purge all dnlc entries for this vfs.
2900 (void) dnlc_purge_vfsp(vfsp, 0);
2902 /* For forcible umount, skip VFS_SYNC() since it may hang */
2903 if ((flag & MS_FORCE) == 0)
2904 (void) VFS_SYNC(vfsp, 0, cr);
2907 * Lock the vfs to maintain fs status quo during unmount. This
2908 * has to be done after the sync because ufs_update tries to acquire
2909 * the vfs_reflock.
2911 vfs_lock_wait(vfsp);
2913 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
2914 vfs_unlock(vfsp);
2915 if (coveredvp != NULL)
2916 vn_vfsunlock(coveredvp);
2917 } else if (coveredvp != NULL) {
2918 teardown_vopstats(vfsp);
2920 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
2921 * when it frees vfsp so we do a VN_HOLD() so we can
2922 * continue to use coveredvp afterwards.
2924 VN_HOLD(coveredvp);
2925 vfs_remove(vfsp);
2926 vn_vfsunlock(coveredvp);
2927 VN_RELE(coveredvp);
2928 } else {
2929 teardown_vopstats(vfsp);
2931 * Release the reference to vfs that is not linked
2932 * into the name space.
2934 vfs_unlock(vfsp);
2935 VFS_RELE(vfsp);
2937 return (error);
2942 * Vfs_unmountall() is called by uadmin() to unmount all
2943 * mounted file systems (except the root file system) during shutdown.
2944 * It follows the existing locking protocol when traversing the vfs list
2945 * to sync and unmount vfses. Even though there should be no
2946 * other thread running while the system is shutting down, it is prudent
2947 * to still follow the locking protocol.
2949 void
2950 vfs_unmountall(void)
2952 struct vfs *vfsp;
2953 struct vfs *prev_vfsp = NULL;
2954 int error;
2957 * Toss all dnlc entries now so that the per-vfs sync
2958 * and unmount operations don't have to slog through
2959 * a bunch of uninteresting vnodes over and over again.
2961 dnlc_purge();
2963 vfs_list_lock();
2964 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
2965 prev_vfsp = vfsp->vfs_prev;
2967 if (vfs_lock(vfsp) != 0)
2968 continue;
2969 error = vn_vfswlock(vfsp->vfs_vnodecovered);
2970 vfs_unlock(vfsp);
2971 if (error)
2972 continue;
2974 vfs_list_unlock();
2976 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
2977 (void) dounmount(vfsp, 0, CRED());
2980 * Since we dropped the vfslist lock above we must
2981 * verify that next_vfsp still exists, else start over.
2983 vfs_list_lock();
2984 for (vfsp = rootvfs->vfs_prev;
2985 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
2986 if (vfsp == prev_vfsp)
2987 break;
2988 if (vfsp == rootvfs && prev_vfsp != rootvfs)
2989 prev_vfsp = rootvfs->vfs_prev;
2991 vfs_list_unlock();
2995 * Called to add an entry to the end of the vfs mount in progress list
2997 void
2998 vfs_addmip(dev_t dev, struct vfs *vfsp)
3000 struct ipmnt *mipp;
3002 mipp = kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3003 mipp->mip_next = NULL;
3004 mipp->mip_dev = dev;
3005 mipp->mip_vfsp = vfsp;
3006 mutex_enter(&vfs_miplist_mutex);
3007 if (vfs_miplist_end != NULL)
3008 vfs_miplist_end->mip_next = mipp;
3009 else
3010 vfs_miplist = mipp;
3011 vfs_miplist_end = mipp;
3012 mutex_exit(&vfs_miplist_mutex);
3016 * Called to remove an entry from the mount in progress list
3017 * Either because the mount completed or it failed.
3019 void
3020 vfs_delmip(struct vfs *vfsp)
3022 struct ipmnt *mipp, *mipprev;
3024 mutex_enter(&vfs_miplist_mutex);
3025 mipprev = NULL;
3026 for (mipp = vfs_miplist;
3027 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3028 mipprev = mipp;
3030 if (mipp == NULL)
3031 return; /* shouldn't happen */
3032 if (mipp == vfs_miplist_end)
3033 vfs_miplist_end = mipprev;
3034 if (mipprev == NULL)
3035 vfs_miplist = mipp->mip_next;
3036 else
3037 mipprev->mip_next = mipp->mip_next;
3038 mutex_exit(&vfs_miplist_mutex);
3039 kmem_free(mipp, sizeof (struct ipmnt));
3043 * vfs_add is called by a specific filesystem's mount routine to add
3044 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3045 * The vfs should already have been locked by the caller.
3047 * coveredvp is NULL if this is the root.
3049 void
3050 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3052 int newflag;
3054 ASSERT(vfs_lock_held(vfsp));
3055 VFS_HOLD(vfsp);
3056 newflag = vfsp->vfs_flag;
3057 if (mflag & MS_RDONLY)
3058 newflag |= VFS_RDONLY;
3059 else
3060 newflag &= ~VFS_RDONLY;
3061 if (mflag & MS_NOSUID)
3062 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3063 else
3064 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3065 if (mflag & MS_NOMNTTAB)
3066 newflag |= VFS_NOMNTTAB;
3067 else
3068 newflag &= ~VFS_NOMNTTAB;
3070 if (coveredvp != NULL) {
3071 ASSERT(vn_vfswlock_held(coveredvp));
3072 coveredvp->v_vfsmountedhere = vfsp;
3073 VN_HOLD(coveredvp);
3075 vfsp->vfs_vnodecovered = coveredvp;
3076 vfsp->vfs_flag = newflag;
3078 vfs_list_add(vfsp);
3082 * Remove a vfs from the vfs list, null out the pointer from the
3083 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3084 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3085 * reference to the vfs and to the covered vnode.
3087 * Called from dounmount after it's confirmed with the file system
3088 * that the unmount is legal.
3090 void
3091 vfs_remove(struct vfs *vfsp)
3093 vnode_t *vp;
3095 ASSERT(vfs_lock_held(vfsp));
3098 * Can't unmount root. Should never happen because fs will
3099 * be busy.
3101 if (vfsp == rootvfs)
3102 panic("vfs_remove: unmounting root");
3104 vfs_list_remove(vfsp);
3107 * Unhook from the file system name space.
3109 vp = vfsp->vfs_vnodecovered;
3110 ASSERT(vn_vfswlock_held(vp));
3111 vp->v_vfsmountedhere = NULL;
3112 vfsp->vfs_vnodecovered = NULL;
3113 VN_RELE(vp);
3116 * Release lock and wakeup anybody waiting.
3118 vfs_unlock(vfsp);
3119 VFS_RELE(vfsp);
3123 * Lock a filesystem to prevent access to it while mounting,
3124 * unmounting and syncing. Return EBUSY immediately if lock
3125 * can't be acquired.
3128 vfs_lock(vfs_t *vfsp)
3130 vn_vfslocks_entry_t *vpvfsentry;
3132 vpvfsentry = vn_vfslocks_getlock(vfsp);
3133 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3134 return (0);
3136 vn_vfslocks_rele(vpvfsentry);
3137 return (EBUSY);
3141 vfs_rlock(vfs_t *vfsp)
3143 vn_vfslocks_entry_t *vpvfsentry;
3145 vpvfsentry = vn_vfslocks_getlock(vfsp);
3147 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3148 return (0);
3150 vn_vfslocks_rele(vpvfsentry);
3151 return (EBUSY);
3154 void
3155 vfs_lock_wait(vfs_t *vfsp)
3157 vn_vfslocks_entry_t *vpvfsentry;
3159 vpvfsentry = vn_vfslocks_getlock(vfsp);
3160 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3163 void
3164 vfs_rlock_wait(vfs_t *vfsp)
3166 vn_vfslocks_entry_t *vpvfsentry;
3168 vpvfsentry = vn_vfslocks_getlock(vfsp);
3169 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3173 * Unlock a locked filesystem.
3175 void
3176 vfs_unlock(vfs_t *vfsp)
3178 vn_vfslocks_entry_t *vpvfsentry;
3181 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3182 * And these changes should remain for the patch changes as it is.
3184 if (panicstr)
3185 return;
3188 * ve_refcount needs to be dropped twice here.
3189 * 1. To release refernce after a call to vfs_locks_getlock()
3190 * 2. To release the reference from the locking routines like
3191 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3194 vpvfsentry = vn_vfslocks_getlock(vfsp);
3195 vn_vfslocks_rele(vpvfsentry);
3197 rwst_exit(&vpvfsentry->ve_lock);
3198 vn_vfslocks_rele(vpvfsentry);
3202 * Utility routine that allows a filesystem to construct its
3203 * fsid in "the usual way" - by munging some underlying dev_t and
3204 * the filesystem type number into the 64-bit fsid. Note that
3205 * this implicitly relies on dev_t persistence to make filesystem
3206 * id's persistent.
3208 * There's nothing to prevent an individual fs from constructing its
3209 * fsid in a different way, and indeed they should.
3211 * Since we want fsids to be 32-bit quantities (so that they can be
3212 * exported identically by either 32-bit or 64-bit APIs, as well as
3213 * the fact that fsid's are "known" to NFS), we compress the device
3214 * number given down to 32-bits, and panic if that isn't possible.
3216 void
3217 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3219 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3220 panic("device number too big for fsid!");
3221 fsi->val[1] = val;
3225 vfs_lock_held(vfs_t *vfsp)
3227 int held;
3228 vn_vfslocks_entry_t *vpvfsentry;
3231 * vfs_lock_held will mimic sema_held behaviour
3232 * if panicstr is set. And these changes should remain
3233 * for the patch changes as it is.
3235 if (panicstr)
3236 return (1);
3238 vpvfsentry = vn_vfslocks_getlock(vfsp);
3239 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3241 vn_vfslocks_rele(vpvfsentry);
3242 return (held);
3245 struct _kthread *
3246 vfs_lock_owner(vfs_t *vfsp)
3248 struct _kthread *owner;
3249 vn_vfslocks_entry_t *vpvfsentry;
3252 * vfs_wlock_held will mimic sema_held behaviour
3253 * if panicstr is set. And these changes should remain
3254 * for the patch changes as it is.
3256 if (panicstr)
3257 return (NULL);
3259 vpvfsentry = vn_vfslocks_getlock(vfsp);
3260 owner = rwst_owner(&vpvfsentry->ve_lock);
3262 vn_vfslocks_rele(vpvfsentry);
3263 return (owner);
3267 * vfs list locking.
3269 * Rather than manipulate the vfslist lock directly, we abstract into lock
3270 * and unlock routines to allow the locking implementation to be changed for
3271 * clustering.
3273 * Whenever the vfs list is modified through its hash links, the overall list
3274 * lock must be obtained before locking the relevant hash bucket. But to see
3275 * whether a given vfs is on the list, it suffices to obtain the lock for the
3276 * hash bucket without getting the overall list lock. (See getvfs() below.)
3279 void
3280 vfs_list_lock()
3282 rw_enter(&vfslist, RW_WRITER);
3285 void
3286 vfs_list_read_lock()
3288 rw_enter(&vfslist, RW_READER);
3291 void
3292 vfs_list_unlock()
3294 rw_exit(&vfslist);
3298 * Low level worker routines for adding entries to and removing entries from
3299 * the vfs list.
3302 static void
3303 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3305 int vhno;
3306 struct vfs **hp;
3307 dev_t dev;
3309 ASSERT(RW_WRITE_HELD(&vfslist));
3311 dev = expldev(vfsp->vfs_fsid.val[0]);
3312 vhno = VFSHASH(getmajor(dev), getminor(dev));
3314 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3317 * Link into the hash table, inserting it at the end, so that LOFS
3318 * with the same fsid as UFS (or other) file systems will not hide the
3319 * UFS.
3321 if (insert_at_head) {
3322 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3323 rvfs_list[vhno].rvfs_head = vfsp;
3324 } else {
3325 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3326 hp = &(*hp)->vfs_hash)
3327 continue;
3329 * hp now contains the address of the pointer to update
3330 * to effect the insertion.
3332 vfsp->vfs_hash = NULL;
3333 *hp = vfsp;
3336 rvfs_list[vhno].rvfs_len++;
3337 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3341 static void
3342 vfs_hash_remove(struct vfs *vfsp)
3344 int vhno;
3345 struct vfs *tvfsp;
3346 dev_t dev;
3348 ASSERT(RW_WRITE_HELD(&vfslist));
3350 dev = expldev(vfsp->vfs_fsid.val[0]);
3351 vhno = VFSHASH(getmajor(dev), getminor(dev));
3353 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3356 * Remove from hash.
3358 if (rvfs_list[vhno].rvfs_head == vfsp) {
3359 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3360 rvfs_list[vhno].rvfs_len--;
3361 goto foundit;
3363 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3364 tvfsp = tvfsp->vfs_hash) {
3365 if (tvfsp->vfs_hash == vfsp) {
3366 tvfsp->vfs_hash = vfsp->vfs_hash;
3367 rvfs_list[vhno].rvfs_len--;
3368 goto foundit;
3371 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3373 foundit:
3375 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3379 void
3380 vfs_list_add(struct vfs *vfsp)
3382 zone_t *zone;
3385 * Typically, the vfs_t will have been created on behalf of the file
3386 * system in vfs_init, where it will have been provided with a
3387 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3388 * by an unbundled file system. We therefore check for such an example
3389 * before stamping the vfs_t with its creation time for the benefit of
3390 * mntfs.
3392 if (vfsp->vfs_implp == NULL)
3393 vfsimpl_setup(vfsp);
3394 vfs_mono_time(&vfsp->vfs_hrctime);
3397 * The zone that owns the mount is the one that performed the mount.
3398 * Note that this isn't necessarily the same as the zone mounted into.
3399 * The corresponding zone_rele_ref() will be done when the vfs_t
3400 * is being free'd.
3402 vfsp->vfs_zone = curproc->p_zone;
3403 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3404 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3405 ZONE_REF_VFS);
3408 * Find the zone mounted into, and put this mount on its vfs list.
3410 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3411 ASSERT(zone != NULL);
3413 * Special casing for the root vfs. This structure is allocated
3414 * statically and hooked onto rootvfs at link time. During the
3415 * vfs_mountroot call at system startup time, the root file system's
3416 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3417 * as argument. The code below must detect and handle this special
3418 * case. The only apparent justification for this special casing is
3419 * to ensure that the root file system appears at the head of the
3420 * list.
3422 * XXX: I'm assuming that it's ok to do normal list locking when
3423 * adding the entry for the root file system (this used to be
3424 * done with no locks held).
3426 vfs_list_lock();
3428 * Link into the vfs list proper.
3430 if (vfsp == &root) {
3432 * Assert: This vfs is already on the list as its first entry.
3433 * Thus, there's nothing to do.
3435 ASSERT(rootvfs == vfsp);
3437 * Add it to the head of the global zone's vfslist.
3439 ASSERT(zone == global_zone);
3440 ASSERT(zone->zone_vfslist == NULL);
3441 zone->zone_vfslist = vfsp;
3442 } else {
3444 * Link to end of list using vfs_prev (as rootvfs is now a
3445 * doubly linked circular list) so list is in mount order for
3446 * mnttab use.
3448 rootvfs->vfs_prev->vfs_next = vfsp;
3449 vfsp->vfs_prev = rootvfs->vfs_prev;
3450 rootvfs->vfs_prev = vfsp;
3451 vfsp->vfs_next = rootvfs;
3454 * Do it again for the zone-private list (which may be NULL).
3456 if (zone->zone_vfslist == NULL) {
3457 ASSERT(zone != global_zone);
3458 zone->zone_vfslist = vfsp;
3459 } else {
3460 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3461 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3462 zone->zone_vfslist->vfs_zone_prev = vfsp;
3463 vfsp->vfs_zone_next = zone->zone_vfslist;
3468 * Link into the hash table, inserting it at the end, so that LOFS
3469 * with the same fsid as UFS (or other) file systems will not hide
3470 * the UFS.
3472 vfs_hash_add(vfsp, 0);
3475 * update the mnttab modification time
3477 vfs_mnttab_modtimeupd();
3478 vfs_list_unlock();
3479 zone_rele(zone);
3482 void
3483 vfs_list_remove(struct vfs *vfsp)
3485 zone_t *zone;
3487 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3488 ASSERT(zone != NULL);
3490 * Callers are responsible for preventing attempts to unmount the
3491 * root.
3493 ASSERT(vfsp != rootvfs);
3495 vfs_list_lock();
3498 * Remove from hash.
3500 vfs_hash_remove(vfsp);
3503 * Remove from vfs list.
3505 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3506 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3507 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3510 * Remove from zone-specific vfs list.
3512 if (zone->zone_vfslist == vfsp)
3513 zone->zone_vfslist = vfsp->vfs_zone_next;
3515 if (vfsp->vfs_zone_next == vfsp) {
3516 ASSERT(vfsp->vfs_zone_prev == vfsp);
3517 ASSERT(zone->zone_vfslist == vfsp);
3518 zone->zone_vfslist = NULL;
3521 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3522 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3523 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3526 * update the mnttab modification time
3528 vfs_mnttab_modtimeupd();
3529 vfs_list_unlock();
3530 zone_rele(zone);
3533 struct vfs *
3534 getvfs(fsid_t *fsid)
3536 struct vfs *vfsp;
3537 int val0 = fsid->val[0];
3538 int val1 = fsid->val[1];
3539 dev_t dev = expldev(val0);
3540 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3541 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3543 mutex_enter(hmp);
3544 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3545 if (vfsp->vfs_fsid.val[0] == val0 &&
3546 vfsp->vfs_fsid.val[1] == val1) {
3547 VFS_HOLD(vfsp);
3548 mutex_exit(hmp);
3549 return (vfsp);
3552 mutex_exit(hmp);
3553 return (NULL);
3557 * Search the vfs mount in progress list for a specified device/vfs entry.
3558 * Returns 0 if the first entry in the list that the device matches has the
3559 * given vfs pointer as well. If the device matches but a different vfs
3560 * pointer is encountered in the list before the given vfs pointer then
3561 * a 1 is returned.
3565 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3567 int retval = 0;
3568 struct ipmnt *mipp;
3570 mutex_enter(&vfs_miplist_mutex);
3571 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3572 if (mipp->mip_dev == dev) {
3573 if (mipp->mip_vfsp != vfsp)
3574 retval = 1;
3575 break;
3578 mutex_exit(&vfs_miplist_mutex);
3579 return (retval);
3583 * Search the vfs list for a specified device. Returns 1, if entry is found
3584 * or 0 if no suitable entry is found.
3588 vfs_devismounted(dev_t dev)
3590 struct vfs *vfsp;
3591 int found;
3593 vfs_list_read_lock();
3594 vfsp = rootvfs;
3595 found = 0;
3596 do {
3597 if (vfsp->vfs_dev == dev) {
3598 found = 1;
3599 break;
3601 vfsp = vfsp->vfs_next;
3602 } while (vfsp != rootvfs);
3604 vfs_list_unlock();
3605 return (found);
3609 * Search the vfs list for a specified device. Returns a pointer to it
3610 * or NULL if no suitable entry is found. The caller of this routine
3611 * is responsible for releasing the returned vfs pointer.
3613 struct vfs *
3614 vfs_dev2vfsp(dev_t dev)
3616 struct vfs *vfsp;
3617 int found;
3619 vfs_list_read_lock();
3620 vfsp = rootvfs;
3621 found = 0;
3622 do {
3624 * The following could be made more efficient by making
3625 * the entire loop use vfs_zone_next if the call is from
3626 * a zone. The only callers, however, ustat(2) and
3627 * umount2(2), don't seem to justify the added
3628 * complexity at present.
3630 if (vfsp->vfs_dev == dev &&
3631 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3632 curproc->p_zone)) {
3633 VFS_HOLD(vfsp);
3634 found = 1;
3635 break;
3637 vfsp = vfsp->vfs_next;
3638 } while (vfsp != rootvfs);
3639 vfs_list_unlock();
3640 return (found ? vfsp: NULL);
3644 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3645 * or NULL if no suitable entry is found. The caller of this routine
3646 * is responsible for releasing the returned vfs pointer.
3648 * Note that if multiple mntpoints match, the last one matching is
3649 * returned in an attempt to return the "top" mount when overlay
3650 * mounts are covering the same mount point. This is accomplished by starting
3651 * at the end of the list and working our way backwards, stopping at the first
3652 * matching mount.
3654 struct vfs *
3655 vfs_mntpoint2vfsp(const char *mp)
3657 struct vfs *vfsp;
3658 struct vfs *retvfsp = NULL;
3659 zone_t *zone = curproc->p_zone;
3660 struct vfs *list;
3662 vfs_list_read_lock();
3663 if (getzoneid() == GLOBAL_ZONEID) {
3665 * The global zone may see filesystems in any zone.
3667 vfsp = rootvfs->vfs_prev;
3668 do {
3669 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3670 retvfsp = vfsp;
3671 break;
3673 vfsp = vfsp->vfs_prev;
3674 } while (vfsp != rootvfs->vfs_prev);
3675 } else if ((list = zone->zone_vfslist) != NULL) {
3676 const char *mntpt;
3678 vfsp = list->vfs_zone_prev;
3679 do {
3680 mntpt = refstr_value(vfsp->vfs_mntpt);
3681 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3682 if (strcmp(mntpt, mp) == 0) {
3683 retvfsp = vfsp;
3684 break;
3686 vfsp = vfsp->vfs_zone_prev;
3687 } while (vfsp != list->vfs_zone_prev);
3689 if (retvfsp)
3690 VFS_HOLD(retvfsp);
3691 vfs_list_unlock();
3692 return (retvfsp);
3696 * Search the vfs list for a specified vfsops.
3697 * if vfs entry is found then return 1, else 0.
3700 vfs_opsinuse(const struct vfsops *ops)
3702 struct vfs *vfsp;
3703 int found;
3705 vfs_list_read_lock();
3706 vfsp = rootvfs;
3707 found = 0;
3708 do {
3709 if (vfs_getops(vfsp) == ops) {
3710 found = 1;
3711 break;
3713 vfsp = vfsp->vfs_next;
3714 } while (vfsp != rootvfs);
3715 vfs_list_unlock();
3716 return (found);
3720 * Allocate an entry in vfssw for a file system type
3722 struct vfssw *
3723 allocate_vfssw(const char *type)
3725 struct vfssw *vswp;
3727 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3729 * The vfssw table uses the empty string to identify an
3730 * available entry; we cannot add any type which has
3731 * a leading NUL. The string length is limited to
3732 * the size of the st_fstype array in struct stat.
3734 return (NULL);
3737 ASSERT(VFSSW_WRITE_LOCKED());
3738 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3739 if (!ALLOCATED_VFSSW(vswp)) {
3740 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3741 (void) strcpy(vswp->vsw_name, type);
3742 ASSERT(vswp->vsw_count == 0);
3743 vswp->vsw_count = 1;
3744 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3745 return (vswp);
3747 return (NULL);
3751 * Impose additional layer of translation between vfstype names
3752 * and module names in the filesystem.
3754 static const char *
3755 vfs_to_modname(const char *vfstype)
3757 if (strcmp(vfstype, "proc") == 0) {
3758 vfstype = "procfs";
3759 } else if (strcmp(vfstype, "fd") == 0) {
3760 vfstype = "fdfs";
3761 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3762 vfstype = "nfs";
3765 return (vfstype);
3769 * Find a vfssw entry given a file system type name.
3770 * Try to autoload the filesystem if it's not found.
3771 * If it's installed, return the vfssw locked to prevent unloading.
3773 struct vfssw *
3774 vfs_getvfssw(const char *type)
3776 struct vfssw *vswp;
3777 const char *modname;
3779 RLOCK_VFSSW();
3780 vswp = vfs_getvfsswbyname(type);
3781 modname = vfs_to_modname(type);
3783 if (rootdir == NULL) {
3785 * If we haven't yet loaded the root file system, then our
3786 * _init won't be called until later. Allocate vfssw entry,
3787 * because mod_installfs won't be called.
3789 if (vswp == NULL) {
3790 RUNLOCK_VFSSW();
3791 WLOCK_VFSSW();
3792 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3793 if ((vswp = allocate_vfssw(type)) == NULL) {
3794 WUNLOCK_VFSSW();
3795 return (NULL);
3798 WUNLOCK_VFSSW();
3799 RLOCK_VFSSW();
3801 if (!VFS_INSTALLED(vswp)) {
3802 RUNLOCK_VFSSW();
3803 (void) modloadonly("fs", modname);
3804 } else
3805 RUNLOCK_VFSSW();
3806 return (vswp);
3810 * Try to load the filesystem. Before calling modload(), we drop
3811 * our lock on the VFS switch table, and pick it up after the
3812 * module is loaded. However, there is a potential race: the
3813 * module could be unloaded after the call to modload() completes
3814 * but before we pick up the lock and drive on. Therefore,
3815 * we keep reloading the module until we've loaded the module
3816 * _and_ we have the lock on the VFS switch table.
3818 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3819 RUNLOCK_VFSSW();
3820 if (modload("fs", modname) == -1)
3821 return (NULL);
3822 RLOCK_VFSSW();
3823 if (vswp == NULL)
3824 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3825 break;
3827 RUNLOCK_VFSSW();
3829 return (vswp);
3833 * Find a vfssw entry given a file system type name.
3835 struct vfssw *
3836 vfs_getvfsswbyname(const char *type)
3838 struct vfssw *vswp;
3840 ASSERT(VFSSW_LOCKED());
3841 if (type == NULL || *type == '\0')
3842 return (NULL);
3844 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3845 if (strcmp(type, vswp->vsw_name) == 0) {
3846 vfs_refvfssw(vswp);
3847 return (vswp);
3851 return (NULL);
3855 * Find a vfssw entry given a set of vfsops.
3857 struct vfssw *
3858 vfs_getvfsswbyvfsops(const struct vfsops *ops)
3860 struct vfssw *vswp;
3862 RLOCK_VFSSW();
3863 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3864 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == ops) {
3865 vfs_refvfssw(vswp);
3866 RUNLOCK_VFSSW();
3867 return (vswp);
3870 RUNLOCK_VFSSW();
3872 return (NULL);
3876 * Reference a vfssw entry.
3878 void
3879 vfs_refvfssw(struct vfssw *vswp)
3882 mutex_enter(&vswp->vsw_lock);
3883 vswp->vsw_count++;
3884 mutex_exit(&vswp->vsw_lock);
3888 * Unreference a vfssw entry.
3890 void
3891 vfs_unrefvfssw(struct vfssw *vswp)
3894 mutex_enter(&vswp->vsw_lock);
3895 vswp->vsw_count--;
3896 mutex_exit(&vswp->vsw_lock);
3899 static int sync_retries = 20; /* number of retries when not making progress */
3900 static int sync_triesleft; /* portion of sync_retries remaining */
3902 static pgcnt_t old_pgcnt, new_pgcnt;
3903 static int new_bufcnt, old_bufcnt;
3906 * Sync all of the mounted filesystems, and then wait for the actual i/o to
3907 * complete. We wait by counting the number of dirty pages and buffers,
3908 * pushing them out using bio_busy() and page_busy(), and then counting again.
3909 * This routine is used during the uadmin A_SHUTDOWN code. It should only
3910 * be used after some higher-level mechanism has quiesced the system so that
3911 * new writes are not being initiated while we are waiting for completion.
3913 * To ensure finite running time, our algorithm uses sync_triesleft (a progress
3914 * counter used by the vfs_syncall() loop below). It is declared above so
3915 * it can be found easily in the debugger.
3917 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
3918 * sync_retries consecutive calls to bio_busy() and page_busy() without
3919 * decreasing either the number of dirty buffers or dirty pages below the
3920 * lowest count we have seen so far, we give up and return from vfs_syncall().
3922 * Each loop iteration ends with a call to delay() one second to allow time for
3923 * i/o completion and to permit the user time to read our progress messages.
3925 void
3926 vfs_syncall(void)
3928 if (rootdir == NULL && !modrootloaded)
3929 return; /* no filesystems have been loaded yet */
3931 printf("syncing file systems...");
3932 sync();
3934 sync_triesleft = sync_retries;
3936 old_bufcnt = new_bufcnt = INT_MAX;
3937 old_pgcnt = new_pgcnt = ULONG_MAX;
3939 while (sync_triesleft > 0) {
3940 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
3941 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
3943 new_bufcnt = bio_busy(B_TRUE);
3944 new_pgcnt = page_busy(B_TRUE);
3946 if (new_bufcnt == 0 && new_pgcnt == 0)
3947 break;
3949 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
3950 sync_triesleft = sync_retries;
3951 else
3952 sync_triesleft--;
3954 if (new_bufcnt)
3955 printf(" [%d]", new_bufcnt);
3956 if (new_pgcnt)
3957 printf(" %lu", new_pgcnt);
3959 ddi_sleep(1);
3962 if (new_bufcnt != 0 || new_pgcnt != 0)
3963 printf(" done (not all i/o completed)\n");
3964 else
3965 printf(" done\n");
3967 ddi_sleep(1);
3971 * Map VFS flags to statvfs flags. These shouldn't really be separate
3972 * flags at all.
3974 uint_t
3975 vf_to_stf(uint_t vf)
3977 uint_t stf = 0;
3979 if (vf & VFS_RDONLY)
3980 stf |= ST_RDONLY;
3981 if (vf & VFS_NOSETUID)
3982 stf |= ST_NOSUID;
3983 if (vf & VFS_NOTRUNC)
3984 stf |= ST_NOTRUNC;
3986 return (stf);
3990 * Entries for (illegal) fstype 0.
3992 /* ARGSUSED */
3994 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
3996 cmn_err(CE_PANIC, "stray vfs operation");
3997 return (0);
4001 * Entries for (illegal) fstype 0.
4004 vfsstray(void)
4006 cmn_err(CE_PANIC, "stray vfs operation");
4007 return (0);
4011 * Support for dealing with forced UFS unmount and its interaction with
4012 * LOFS. Could be used by any filesystem.
4013 * See bug 1203132.
4016 vfs_EIO(void)
4018 return (EIO);
4022 * We've gotta define the op for sync separately, since the compiler gets
4023 * confused if we mix and match ANSI and normal style prototypes when
4024 * a "short" argument is present and spits out a warning.
4026 /*ARGSUSED*/
4028 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4030 return (EIO);
4033 vfs_t EIO_vfs;
4035 const struct vfsops EIO_vfsops = {
4036 .vfs_mount = (void *) vfs_EIO,
4037 .vfs_unmount = (void *) vfs_EIO,
4038 .vfs_root = (void *) vfs_EIO,
4039 .vfs_statvfs = (void *) vfs_EIO,
4040 .vfs_sync = (void *) vfs_EIO_sync,
4041 .vfs_vget = (void *) vfs_EIO,
4042 .vfs_mountroot = (void *) vfs_EIO,
4043 .vfs_freevfs = (void *) vfs_EIO,
4044 .vfs_vnstate = (void *) vfs_EIO,
4047 static const struct vfsops stray_vfsops = {
4048 .vfs_mount = (void *) vfsstray,
4049 .vfs_unmount = (void *) vfsstray,
4050 .vfs_root = (void *) vfsstray,
4051 .vfs_statvfs = (void *) vfsstray,
4052 .vfs_sync = (void *) vfsstray_sync,
4053 .vfs_vget = (void *) vfsstray,
4054 .vfs_mountroot = (void *) vfsstray,
4055 .vfs_freevfs = (void *) vfsstray,
4056 .vfs_vnstate = (void *) vfsstray,
4060 * Called from startup() to initialize all loaded vfs's
4062 void
4063 vfsinit(void)
4065 struct vfssw *vswp;
4066 int error;
4067 extern int vopstats_enabled;
4068 extern void vopstats_startup();
4070 /* Create vfs cache */
4071 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4072 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4074 /* Initialize the vnode cache (file systems may use it during init). */
4075 vn_create_cache();
4077 /* Setup event monitor framework */
4078 fem_init();
4080 /* Initialize the dummy stray file system type. */
4081 error = vfs_setfsops(0, &stray_vfsops);
4083 VFS_INIT(&EIO_vfs, &EIO_vfsops, NULL);
4086 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4087 * on this vfs can immediately notice it's invalid.
4089 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4092 * Call the init routines of non-loadable filesystems only.
4093 * Filesystems which are loaded as separate modules will be
4094 * initialized by the module loading code instead.
4097 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4098 RLOCK_VFSSW();
4099 if (vswp->vsw_init != NULL)
4100 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4101 RUNLOCK_VFSSW();
4104 vopstats_startup();
4106 if (vopstats_enabled) {
4107 /* EIO_vfs can collect stats, but we don't retrieve them */
4108 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4109 EIO_vfs.vfs_fstypevsp = NULL;
4110 EIO_vfs.vfs_vskap = NULL;
4111 EIO_vfs.vfs_flag |= VFS_STATS;
4114 xattr_init();
4116 reparse_point_init();
4119 vfs_t *
4120 vfs_alloc(int kmflag)
4122 vfs_t *vfsp;
4124 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4127 * Do the simplest initialization here.
4128 * Everything else gets done in vfs_init()
4130 bzero(vfsp, sizeof (vfs_t));
4131 return (vfsp);
4134 void
4135 vfs_free(vfs_t *vfsp)
4138 * One would be tempted to assert that "vfsp->vfs_count == 0".
4139 * The problem is that this gets called out of domount() with
4140 * a partially initialized vfs and a vfs_count of 1. This is
4141 * also called from vfs_rele() with a vfs_count of 0. We can't
4142 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4143 * returned. This is because VFS_MOUNT() fully initializes the
4144 * vfs structure and its associated data. VFS_RELE() will call
4145 * VFS_FREEVFS() which may panic the system if the data structures
4146 * aren't fully initialized from a successful VFS_MOUNT()).
4149 /* If FEM was in use, make sure everything gets cleaned up */
4150 if (vfsp->vfs_femhead) {
4151 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4152 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4153 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4154 vfsp->vfs_femhead = NULL;
4157 if (vfsp->vfs_implp)
4158 vfsimpl_teardown(vfsp);
4159 sema_destroy(&vfsp->vfs_reflock);
4160 kmem_cache_free(vfs_cache, vfsp);
4164 * Increments the vfs reference count by one atomically.
4166 void
4167 vfs_hold(vfs_t *vfsp)
4169 atomic_inc_32(&vfsp->vfs_count);
4170 ASSERT(vfsp->vfs_count != 0);
4174 * Decrements the vfs reference count by one atomically. When
4175 * vfs reference count becomes zero, it calls the file system
4176 * specific vfs_freevfs() to free up the resources.
4178 void
4179 vfs_rele(vfs_t *vfsp)
4181 ASSERT(vfsp->vfs_count != 0);
4182 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4183 VFS_FREEVFS(vfsp);
4184 lofi_remove(vfsp);
4185 if (vfsp->vfs_zone)
4186 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4187 ZONE_REF_VFS);
4188 vfs_freemnttab(vfsp);
4189 vfs_free(vfsp);
4194 #if defined(__x86)
4195 extern int hvmboot_rootconf();
4196 #endif /* __x86 */
4198 extern ib_boot_prop_t *iscsiboot_prop;
4201 rootconf()
4203 int error;
4204 struct vfssw *vsw;
4205 extern void pm_init();
4206 char *fstyp, *fsmod;
4207 int ret = -1;
4209 getrootfs(&fstyp, &fsmod);
4211 #if defined(__x86)
4213 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4214 * which lives in /platform/i86hvm, and hence is only available when
4215 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4216 * is not available then the modstub for this function will return 0.
4217 * If the hvm_bootstrap misc module is available it will be loaded
4218 * and hvmboot_rootconf() will be invoked.
4220 if (error = hvmboot_rootconf())
4221 return (error);
4222 #endif /* __x86 */
4224 if (modload("fs", fsmod) == -1)
4225 panic("Cannot _init %s module", fsmod);
4227 RLOCK_VFSSW();
4228 vsw = vfs_getvfsswbyname(fstyp);
4229 RUNLOCK_VFSSW();
4230 if (vsw == NULL) {
4231 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4232 return (ENXIO);
4234 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4235 VFS_HOLD(rootvfs);
4237 /* always mount readonly first */
4238 rootvfs->vfs_flag |= VFS_RDONLY;
4240 pm_init();
4242 if (netboot && iscsiboot_prop) {
4243 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4244 " shouldn't happen in the same time");
4245 return (EINVAL);
4248 if (netboot || iscsiboot_prop) {
4249 ret = strplumb();
4250 if (ret != 0) {
4251 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4252 return (EFAULT);
4256 if ((ret == 0) && iscsiboot_prop) {
4257 ret = modload("drv", "iscsi");
4258 /* -1 indicates fail */
4259 if (ret == -1) {
4260 cmn_err(CE_WARN, "Failed to load iscsi module");
4261 iscsi_boot_prop_free();
4262 return (EINVAL);
4263 } else {
4264 if (!i_ddi_attach_pseudo_node("iscsi")) {
4265 cmn_err(CE_WARN,
4266 "Failed to attach iscsi driver");
4267 iscsi_boot_prop_free();
4268 return (ENODEV);
4273 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4274 vfs_unrefvfssw(vsw);
4275 rootdev = rootvfs->vfs_dev;
4277 if (error)
4278 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4279 rootfs.bo_name, fstyp);
4280 else
4281 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4282 rootfs.bo_name, fstyp);
4283 return (error);
4287 * XXX this is called by nfs only and should probably be removed
4288 * If booted with ASKNAME, prompt on the console for a filesystem
4289 * name and return it.
4291 void
4292 getfsname(char *askfor, char *name, size_t namelen)
4294 if (boothowto & RB_ASKNAME) {
4295 printf("%s name: ", askfor);
4296 console_gets(name, namelen);
4301 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4302 * property.
4304 * Filesystem types starting with the prefix "nfs" are diskless clients;
4305 * init the root filename name (rootfs.bo_name), too.
4307 * If we are booting via NFS we currently have these options:
4308 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4309 * nfs2 - force NFS V2
4310 * nfs3 - force NFS V3
4311 * nfs4 - force NFS V4
4312 * Because we need to maintain backward compatibility with the naming
4313 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4314 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4315 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4316 * This is only for root filesystems, all other uses will expect
4317 * that "nfs" == NFS V2.
4319 static void
4320 getrootfs(char **fstypp, char **fsmodp)
4322 char *propstr = NULL;
4325 * Check fstype property; for diskless it should be one of "nfs",
4326 * "nfs2", "nfs3" or "nfs4".
4328 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4329 DDI_PROP_DONTPASS, "fstype", &propstr)
4330 == DDI_SUCCESS) {
4331 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4332 ddi_prop_free(propstr);
4335 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4336 * assume the type of this root filesystem is 'zfs'.
4338 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4339 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4340 == DDI_SUCCESS) {
4341 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4342 ddi_prop_free(propstr);
4345 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4346 *fstypp = *fsmodp = rootfs.bo_fstype;
4347 return;
4350 ++netboot;
4352 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4353 (void) strcpy(rootfs.bo_fstype, "nfs");
4354 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4355 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4358 * check if path to network interface is specified in bootpath
4359 * or by a hypervisor domain configuration file.
4360 * XXPV - enable strlumb_get_netdev_path()
4362 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4363 "xpv-nfsroot")) {
4364 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4365 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4366 DDI_PROP_DONTPASS, "bootpath", &propstr)
4367 == DDI_SUCCESS) {
4368 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4369 ddi_prop_free(propstr);
4370 } else {
4371 rootfs.bo_name[0] = '\0';
4373 *fstypp = rootfs.bo_fstype;
4374 *fsmodp = "nfs";
4378 * VFS feature routines
4381 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4382 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4384 /* Register a feature in the vfs */
4385 void
4386 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4388 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4389 if (vfsp->vfs_implp == NULL)
4390 return;
4392 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4395 void
4396 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4398 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4399 if (vfsp->vfs_implp == NULL)
4400 return;
4401 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4405 * Query a vfs for a feature.
4406 * Returns 1 if feature is present, 0 if not
4409 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4411 int ret = 0;
4413 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4414 if (vfsp->vfs_implp == NULL)
4415 return (ret);
4417 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4418 ret = 1;
4420 return (ret);
4424 * Propagate feature set from one vfs to another
4426 void
4427 vfs_propagate_features(vfs_t *from, vfs_t *to)
4429 int i;
4431 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4432 return;
4434 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4435 to->vfs_featureset[i] = from->vfs_featureset[i];
4439 #define LOFINODE_PATH "/dev/lofi/%d"
4442 * Return the vnode for the lofi node if there's a lofi mount in place.
4443 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4444 * failure.
4447 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4449 char *path = NULL;
4450 int strsize;
4451 int err;
4453 if (vfsp->vfs_lofi_id == 0) {
4454 *vpp = NULL;
4455 return (-1);
4458 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4459 path = kmem_alloc(strsize + 1, KM_SLEEP);
4460 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4463 * We may be inside a zone, so we need to use the /dev path, but
4464 * it's created asynchronously, so we wait here.
4466 for (;;) {
4467 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4469 if (err != ENOENT)
4470 break;
4472 if ((err = delay_sig(hz / 8)) == EINTR)
4473 break;
4476 if (err)
4477 *vpp = NULL;
4479 kmem_free(path, strsize + 1);
4480 return (err);