stop shipping useless ksh93 builtins into /usr/bin
[unleashed.git] / kernel / fs / nfs / nfs_server.c
blob7ec8bea1cc56aad8d3d91e169cae5df87450a9ad
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017 Joyent Inc
30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All rights reserved.
32 * Use is subject to license terms.
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/pathname.h>
45 #include <sys/uio.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/errno.h>
49 #include <sys/socket.h>
50 #include <sys/sysmacros.h>
51 #include <sys/siginfo.h>
52 #include <sys/tiuser.h>
53 #include <sys/statvfs.h>
54 #include <sys/stream.h>
55 #include <sys/strsun.h>
56 #include <sys/strsubr.h>
57 #include <sys/stropts.h>
58 #include <sys/timod.h>
59 #include <sys/t_kuser.h>
60 #include <sys/kmem.h>
61 #include <sys/kstat.h>
62 #include <sys/dirent.h>
63 #include <sys/cmn_err.h>
64 #include <sys/debug.h>
65 #include <sys/unistd.h>
66 #include <sys/vtrace.h>
67 #include <sys/mode.h>
68 #include <sys/acl.h>
69 #include <sys/sdt.h>
70 #include <sys/debug.h>
72 #include <rpc/types.h>
73 #include <rpc/auth.h>
74 #include <rpc/auth_unix.h>
75 #include <rpc/auth_des.h>
76 #include <rpc/svc.h>
77 #include <rpc/xdr.h>
78 #include <rpc/rpc_rdma.h>
80 #include <nfs/nfs.h>
81 #include <nfs/export.h>
82 #include <nfs/nfssys.h>
83 #include <nfs/nfs_clnt.h>
84 #include <nfs/nfs_acl.h>
85 #include <nfs/nfs_log.h>
86 #include <nfs/nfs_cmd.h>
87 #include <nfs/lm.h>
88 #include <nfs/nfs_dispatch.h>
89 #include <nfs/nfs4_drc.h>
91 #include <sys/modctl.h>
93 #define MAXHOST 32
94 const char *kinet_ntop6(uchar_t *, char *, size_t);
97 * Module linkage information.
100 static struct modlmisc modlmisc = {
101 &mod_miscops, "NFS server module"
104 static struct modlinkage modlinkage = {
105 MODREV_1, (void *)&modlmisc, NULL
108 kmem_cache_t *nfs_xuio_cache;
109 int nfs_loaned_buffers = 0;
112 _init(void)
114 int status;
116 if ((status = nfs_srvinit()) != 0) {
117 cmn_err(CE_WARN, "_init: nfs_srvinit failed");
118 return (status);
121 status = mod_install((struct modlinkage *)&modlinkage);
122 if (status != 0) {
124 * Could not load module, cleanup previous
125 * initialization work.
127 nfs_srvfini();
129 return (status);
133 * Initialise some placeholders for nfssys() calls. These have
134 * to be declared by the nfs module, since that handles nfssys()
135 * calls - also used by NFS clients - but are provided by this
136 * nfssrv module. These also then serve as confirmation to the
137 * relevant code in nfs that nfssrv has been loaded, as they're
138 * initially NULL.
140 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
141 nfs_srv_dss_func = rfs4_dss_setpaths;
143 /* setup DSS paths here; must be done before initial server startup */
144 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
146 /* initialize the copy reduction caches */
148 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
149 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 return (status);
155 _fini()
157 return (EBUSY);
161 _info(struct modinfo *modinfop)
163 return (mod_info(&modlinkage, modinfop));
167 * PUBLICFH_CHECK() checks if the dispatch routine supports
168 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
169 * incoming request is using the public filehandle. The check duplicates
170 * the exportmatch() call done in checkexport(), and we should consider
171 * modifying those routines to avoid the duplication. For now, we optimize
172 * by calling exportmatch() only after checking that the dispatch routine
173 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
174 * public (i.e., not the placeholder).
176 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \
177 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
178 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
179 (exi == exi_public && exportmatch(exi_root, \
180 fsid, xfid))))
182 static void nfs_srv_shutdown_all(int);
183 static void rfs4_server_start(int);
184 static void nullfree(void);
185 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
186 static void acl_dispatch(struct svc_req *, SVCXPRT *);
187 static void common_dispatch(struct svc_req *, SVCXPRT *,
188 rpcvers_t, rpcvers_t, char *,
189 struct rpc_disptable *);
190 static void hanfsv4_failover(void);
191 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
192 bool_t, bool_t *);
193 static char *client_name(struct svc_req *req);
194 static char *client_addr(struct svc_req *req, char *buf);
195 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
196 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
198 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
199 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
200 (nb)->len = (xprt)->xp_rtaddr.len; \
201 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
202 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
206 * Public Filehandle common nfs routines
208 static int MCLpath(char **);
209 static void URLparse(char *);
212 * NFS callout table.
213 * This table is used by svc_getreq() to dispatch a request with
214 * a given prog/vers pair to an appropriate service provider
215 * dispatch routine.
217 * NOTE: ordering is relied upon below when resetting the version min/max
218 * for NFS_PROGRAM. Careful, if this is ever changed.
220 static SVC_CALLOUT __nfs_sc_clts[] = {
221 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
222 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
225 static SVC_CALLOUT_TABLE nfs_sct_clts = {
226 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
227 __nfs_sc_clts
230 static SVC_CALLOUT __nfs_sc_cots[] = {
231 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
232 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
235 static SVC_CALLOUT_TABLE nfs_sct_cots = {
236 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
239 static SVC_CALLOUT __nfs_sc_rdma[] = {
240 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
241 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
244 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
245 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
247 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
248 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
251 * Used to track the state of the server so that initialization
252 * can be done properly.
254 typedef enum {
255 NFS_SERVER_STOPPED, /* server state destroyed */
256 NFS_SERVER_STOPPING, /* server state being destroyed */
257 NFS_SERVER_RUNNING,
258 NFS_SERVER_QUIESCED, /* server state preserved */
259 NFS_SERVER_OFFLINE /* server pool offline */
260 } nfs_server_running_t;
262 static nfs_server_running_t nfs_server_upordown;
263 static kmutex_t nfs_server_upordown_lock;
264 static kcondvar_t nfs_server_upordown_cv;
267 * DSS: distributed stable storage
268 * lists of all DSS paths: current, and before last warmstart
270 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
272 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
273 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
276 * RDMA wait variables.
278 static kcondvar_t rdma_wait_cv;
279 static kmutex_t rdma_wait_mutex;
282 * Will be called at the point the server pool is being unregistered
283 * from the pool list. From that point onwards, the pool is waiting
284 * to be drained and as such the server state is stale and pertains
285 * to the old instantiation of the NFS server pool.
287 void
288 nfs_srv_offline(void)
290 mutex_enter(&nfs_server_upordown_lock);
291 if (nfs_server_upordown == NFS_SERVER_RUNNING) {
292 nfs_server_upordown = NFS_SERVER_OFFLINE;
294 mutex_exit(&nfs_server_upordown_lock);
298 * Will be called at the point the server pool is being destroyed so
299 * all transports have been closed and no service threads are in
300 * existence.
302 * If we quiesce the server, we're shutting it down without destroying the
303 * server state. This allows it to warm start subsequently.
305 void
306 nfs_srv_stop_all(void)
308 int quiesce = 0;
309 nfs_srv_shutdown_all(quiesce);
313 * This alternative shutdown routine can be requested via nfssys()
315 void
316 nfs_srv_quiesce_all(void)
318 int quiesce = 1;
319 nfs_srv_shutdown_all(quiesce);
322 static void
323 nfs_srv_shutdown_all(int quiesce) {
324 mutex_enter(&nfs_server_upordown_lock);
325 if (quiesce) {
326 if (nfs_server_upordown == NFS_SERVER_RUNNING ||
327 nfs_server_upordown == NFS_SERVER_OFFLINE) {
328 nfs_server_upordown = NFS_SERVER_QUIESCED;
329 cv_signal(&nfs_server_upordown_cv);
331 /* reset DSS state, for subsequent warm restart */
332 rfs4_dss_numnewpaths = 0;
333 rfs4_dss_newpaths = NULL;
335 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
336 "NFSv4 state has been preserved");
338 } else {
339 if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
340 nfs_server_upordown = NFS_SERVER_STOPPING;
341 mutex_exit(&nfs_server_upordown_lock);
342 rfs4_state_fini();
343 rfs4_fini_drc(nfs4_drc);
344 mutex_enter(&nfs_server_upordown_lock);
345 nfs_server_upordown = NFS_SERVER_STOPPED;
346 cv_signal(&nfs_server_upordown_cv);
349 mutex_exit(&nfs_server_upordown_lock);
352 static int
353 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
354 rpcvers_t versmin, rpcvers_t versmax)
356 struct strioctl strioc;
357 struct T_info_ack tinfo;
358 int error, retval;
361 * Find out what type of transport this is.
363 strioc.ic_cmd = TI_GETINFO;
364 strioc.ic_timout = -1;
365 strioc.ic_len = sizeof (tinfo);
366 strioc.ic_dp = (char *)&tinfo;
367 tinfo.PRIM_type = T_INFO_REQ;
369 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
370 CRED(), &retval);
371 if (error || retval)
372 return (error);
375 * Based on our query of the transport type...
377 * Reset the min/max versions based on the caller's request
378 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
379 * And the second entry is the NFS_ACL_PROGRAM.
381 switch (tinfo.SERV_type) {
382 case T_CLTS:
383 if (versmax == NFS_V4)
384 return (EINVAL);
385 __nfs_sc_clts[0].sc_versmin = versmin;
386 __nfs_sc_clts[0].sc_versmax = versmax;
387 __nfs_sc_clts[1].sc_versmin = versmin;
388 __nfs_sc_clts[1].sc_versmax = versmax;
389 *sctpp = &nfs_sct_clts;
390 break;
391 case T_COTS:
392 case T_COTS_ORD:
393 __nfs_sc_cots[0].sc_versmin = versmin;
394 __nfs_sc_cots[0].sc_versmax = versmax;
395 /* For the NFS_ACL program, check the max version */
396 if (versmax > NFS_ACL_VERSMAX)
397 versmax = NFS_ACL_VERSMAX;
398 __nfs_sc_cots[1].sc_versmin = versmin;
399 __nfs_sc_cots[1].sc_versmax = versmax;
400 *sctpp = &nfs_sct_cots;
401 break;
402 default:
403 error = EINVAL;
406 return (error);
410 * NFS Server system call.
411 * Does all of the work of running a NFS server.
412 * uap->fd is the fd of an open transport provider
415 nfs_svc(struct nfs_svc_args *arg, model_t model)
417 file_t *fp;
418 SVCMASTERXPRT *xprt;
419 int error;
420 int readsize;
421 char buf[KNC_STRSIZE];
422 size_t len;
423 STRUCT_HANDLE(nfs_svc_args, uap);
424 struct netbuf addrmask;
425 SVC_CALLOUT_TABLE *sctp = NULL;
428 STRUCT_SET_HANDLE(uap, model, arg);
430 /* Check privileges in nfssys() */
432 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
433 return (EBADF);
436 * Set read buffer size to rsize
437 * and add room for RPC headers.
439 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
440 if (readsize < RPC_MAXDATASIZE)
441 readsize = RPC_MAXDATASIZE;
443 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
444 KNC_STRSIZE, &len);
445 if (error) {
446 releasef(STRUCT_FGET(uap, fd));
447 return (error);
450 addrmask.len = STRUCT_FGET(uap, addrmask.len);
451 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
452 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
453 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
454 addrmask.len);
455 if (error) {
456 releasef(STRUCT_FGET(uap, fd));
457 kmem_free(addrmask.buf, addrmask.maxlen);
458 return (error);
461 nfs_versmin = STRUCT_FGET(uap, versmin);
462 nfs_versmax = STRUCT_FGET(uap, versmax);
464 /* Double check the vers min/max ranges */
465 if ((nfs_versmin > nfs_versmax) ||
466 (nfs_versmin < NFS_VERSMIN) ||
467 (nfs_versmax > NFS_VERSMAX)) {
468 nfs_versmin = NFS_VERSMIN_DEFAULT;
469 nfs_versmax = NFS_VERSMAX_DEFAULT;
472 if (error =
473 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
474 releasef(STRUCT_FGET(uap, fd));
475 kmem_free(addrmask.buf, addrmask.maxlen);
476 return (error);
479 /* Initialize nfsv4 server */
480 if (nfs_versmax == (rpcvers_t)NFS_V4)
481 rfs4_server_start(STRUCT_FGET(uap, delegation));
483 /* Create a transport handle. */
484 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
485 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
487 if (error)
488 kmem_free(addrmask.buf, addrmask.maxlen);
490 releasef(STRUCT_FGET(uap, fd));
492 return (error);
495 static void
496 rfs4_server_start(int nfs4_srv_delegation)
499 * Determine if the server has previously been "started" and
500 * if not, do the per instance initialization
502 mutex_enter(&nfs_server_upordown_lock);
504 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
505 /* Do we need to stop and wait on the previous server? */
506 while (nfs_server_upordown == NFS_SERVER_STOPPING ||
507 nfs_server_upordown == NFS_SERVER_OFFLINE)
508 cv_wait(&nfs_server_upordown_cv,
509 &nfs_server_upordown_lock);
511 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
512 (void) svc_pool_control(NFS_SVCPOOL_ID,
513 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
514 (void) svc_pool_control(NFS_SVCPOOL_ID,
515 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
517 /* is this an nfsd warm start? */
518 if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
519 cmn_err(CE_NOTE, "nfs_server: "
520 "server was previously quiesced; "
521 "existing NFSv4 state will be re-used");
522 } else {
523 /* cold start */
524 rfs4_state_init();
525 nfs4_drc = rfs4_init_drc(nfs4_drc_max,
526 nfs4_drc_hash);
530 * Check to see if delegation is to be
531 * enabled at the server
533 if (nfs4_srv_delegation != FALSE)
534 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
536 nfs_server_upordown = NFS_SERVER_RUNNING;
538 cv_signal(&nfs_server_upordown_cv);
540 mutex_exit(&nfs_server_upordown_lock);
544 * If RDMA device available,
545 * start RDMA listener.
548 rdma_start(struct rdma_svc_args *rsa)
550 int error;
551 rdma_xprt_group_t started_rdma_xprts;
552 rdma_stat stat;
553 int svc_state = 0;
555 /* Double check the vers min/max ranges */
556 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
557 (rsa->nfs_versmin < NFS_VERSMIN) ||
558 (rsa->nfs_versmax > NFS_VERSMAX)) {
559 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
560 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
562 nfs_versmin = rsa->nfs_versmin;
563 nfs_versmax = rsa->nfs_versmax;
565 /* Set the versions in the callout table */
566 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
567 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
568 /* For the NFS_ACL program, check the max version */
569 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
570 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
571 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
572 else
573 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
575 /* Initialize nfsv4 server */
576 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
577 rfs4_server_start(rsa->delegation);
579 started_rdma_xprts.rtg_count = 0;
580 started_rdma_xprts.rtg_listhead = NULL;
581 started_rdma_xprts.rtg_poolid = rsa->poolid;
583 restart:
584 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
585 &started_rdma_xprts);
587 svc_state = !error;
589 while (!error) {
592 * wait till either interrupted by a signal on
593 * nfs service stop/restart or signalled by a
594 * rdma plugin attach/detatch.
597 stat = rdma_kwait();
600 * stop services if running -- either on a HCA detach event
601 * or if the nfs service is stopped/restarted.
604 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
605 svc_state) {
606 rdma_stop(&started_rdma_xprts);
607 svc_state = 0;
611 * nfs service stop/restart, break out of the
612 * wait loop and return;
614 if (stat == RDMA_INTR)
615 return (0);
618 * restart stopped services on a HCA attach event
619 * (if not already running)
622 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
623 goto restart;
626 * loop until a nfs service stop/restart
630 return (error);
633 /* ARGSUSED */
634 void
635 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
636 struct svc_req *req, cred_t *cr, bool_t ro)
640 /* ARGSUSED */
641 void
642 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
643 struct svc_req *req, cred_t *cr, bool_t ro)
645 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
646 cred_t *, cr, vnode_t *, NULL);
647 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
648 cred_t *, cr, vnode_t *, NULL);
651 /* ARGSUSED */
652 static void
653 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
654 struct svc_req *req, cred_t *cr, bool_t ro)
656 /* return (EOPNOTSUPP); */
659 static void
660 nullfree(void)
664 static char *rfscallnames_v2[] = {
665 "RFS2_NULL",
666 "RFS2_GETATTR",
667 "RFS2_SETATTR",
668 "RFS2_ROOT",
669 "RFS2_LOOKUP",
670 "RFS2_READLINK",
671 "RFS2_READ",
672 "RFS2_WRITECACHE",
673 "RFS2_WRITE",
674 "RFS2_CREATE",
675 "RFS2_REMOVE",
676 "RFS2_RENAME",
677 "RFS2_LINK",
678 "RFS2_SYMLINK",
679 "RFS2_MKDIR",
680 "RFS2_RMDIR",
681 "RFS2_READDIR",
682 "RFS2_STATFS"
685 static struct rpcdisp rfsdisptab_v2[] = {
687 * NFS VERSION 2
690 /* RFS_NULL = 0 */
691 {rpc_null,
692 xdr_void, NULL_xdrproc_t, 0,
693 xdr_void, NULL_xdrproc_t, 0,
694 nullfree, RPC_IDEMPOTENT,
697 /* RFS_GETATTR = 1 */
698 {rfs_getattr,
699 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
700 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
701 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
702 rfs_getattr_getfh},
704 /* RFS_SETATTR = 2 */
705 {rfs_setattr,
706 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
707 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
708 nullfree, RPC_MAPRESP,
709 rfs_setattr_getfh},
711 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
712 {rfs_error,
713 xdr_void, NULL_xdrproc_t, 0,
714 xdr_void, NULL_xdrproc_t, 0,
715 nullfree, RPC_IDEMPOTENT,
718 /* RFS_LOOKUP = 4 */
719 {rfs_lookup,
720 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
721 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
722 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
723 rfs_lookup_getfh},
725 /* RFS_READLINK = 5 */
726 {rfs_readlink,
727 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
728 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
729 rfs_rlfree, RPC_IDEMPOTENT,
730 rfs_readlink_getfh},
732 /* RFS_READ = 6 */
733 {rfs_read,
734 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
735 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
736 rfs_rdfree, RPC_IDEMPOTENT,
737 rfs_read_getfh},
739 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
740 {rfs_error,
741 xdr_void, NULL_xdrproc_t, 0,
742 xdr_void, NULL_xdrproc_t, 0,
743 nullfree, RPC_IDEMPOTENT,
746 /* RFS_WRITE = 8 */
747 {rfs_write,
748 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
749 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
750 nullfree, RPC_MAPRESP,
751 rfs_write_getfh},
753 /* RFS_CREATE = 9 */
754 {rfs_create,
755 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
756 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
757 nullfree, RPC_MAPRESP,
758 rfs_create_getfh},
760 /* RFS_REMOVE = 10 */
761 {rfs_remove,
762 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
763 #ifdef _LITTLE_ENDIAN
764 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
765 #else
766 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
767 #endif
768 nullfree, RPC_MAPRESP,
769 rfs_remove_getfh},
771 /* RFS_RENAME = 11 */
772 {rfs_rename,
773 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
774 #ifdef _LITTLE_ENDIAN
775 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
776 #else
777 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
778 #endif
779 nullfree, RPC_MAPRESP,
780 rfs_rename_getfh},
782 /* RFS_LINK = 12 */
783 {rfs_link,
784 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
785 #ifdef _LITTLE_ENDIAN
786 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
787 #else
788 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
789 #endif
790 nullfree, RPC_MAPRESP,
791 rfs_link_getfh},
793 /* RFS_SYMLINK = 13 */
794 {rfs_symlink,
795 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
796 #ifdef _LITTLE_ENDIAN
797 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
798 #else
799 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
800 #endif
801 nullfree, RPC_MAPRESP,
802 rfs_symlink_getfh},
804 /* RFS_MKDIR = 14 */
805 {rfs_mkdir,
806 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
807 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
808 nullfree, RPC_MAPRESP,
809 rfs_mkdir_getfh},
811 /* RFS_RMDIR = 15 */
812 {rfs_rmdir,
813 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
814 #ifdef _LITTLE_ENDIAN
815 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
816 #else
817 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
818 #endif
819 nullfree, RPC_MAPRESP,
820 rfs_rmdir_getfh},
822 /* RFS_READDIR = 16 */
823 {rfs_readdir,
824 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
825 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
826 rfs_rddirfree, RPC_IDEMPOTENT,
827 rfs_readdir_getfh},
829 /* RFS_STATFS = 17 */
830 {rfs_statfs,
831 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
832 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
833 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
834 rfs_statfs_getfh},
837 static char *rfscallnames_v3[] = {
838 "RFS3_NULL",
839 "RFS3_GETATTR",
840 "RFS3_SETATTR",
841 "RFS3_LOOKUP",
842 "RFS3_ACCESS",
843 "RFS3_READLINK",
844 "RFS3_READ",
845 "RFS3_WRITE",
846 "RFS3_CREATE",
847 "RFS3_MKDIR",
848 "RFS3_SYMLINK",
849 "RFS3_MKNOD",
850 "RFS3_REMOVE",
851 "RFS3_RMDIR",
852 "RFS3_RENAME",
853 "RFS3_LINK",
854 "RFS3_READDIR",
855 "RFS3_READDIRPLUS",
856 "RFS3_FSSTAT",
857 "RFS3_FSINFO",
858 "RFS3_PATHCONF",
859 "RFS3_COMMIT"
862 static struct rpcdisp rfsdisptab_v3[] = {
864 * NFS VERSION 3
867 /* RFS_NULL = 0 */
868 {rpc_null_v3,
869 xdr_void, NULL_xdrproc_t, 0,
870 xdr_void, NULL_xdrproc_t, 0,
871 nullfree, RPC_IDEMPOTENT,
874 /* RFS3_GETATTR = 1 */
875 {rfs3_getattr,
876 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
877 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
878 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
879 rfs3_getattr_getfh},
881 /* RFS3_SETATTR = 2 */
882 {rfs3_setattr,
883 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
884 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
885 nullfree, 0,
886 rfs3_setattr_getfh},
888 /* RFS3_LOOKUP = 3 */
889 {rfs3_lookup,
890 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
891 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
892 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
893 rfs3_lookup_getfh},
895 /* RFS3_ACCESS = 4 */
896 {rfs3_access,
897 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
898 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
899 nullfree, RPC_IDEMPOTENT,
900 rfs3_access_getfh},
902 /* RFS3_READLINK = 5 */
903 {rfs3_readlink,
904 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
905 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
906 rfs3_readlink_free, RPC_IDEMPOTENT,
907 rfs3_readlink_getfh},
909 /* RFS3_READ = 6 */
910 {rfs3_read,
911 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
912 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
913 rfs3_read_free, RPC_IDEMPOTENT,
914 rfs3_read_getfh},
916 /* RFS3_WRITE = 7 */
917 {rfs3_write,
918 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
919 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
920 nullfree, 0,
921 rfs3_write_getfh},
923 /* RFS3_CREATE = 8 */
924 {rfs3_create,
925 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
926 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
927 nullfree, 0,
928 rfs3_create_getfh},
930 /* RFS3_MKDIR = 9 */
931 {rfs3_mkdir,
932 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
933 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
934 nullfree, 0,
935 rfs3_mkdir_getfh},
937 /* RFS3_SYMLINK = 10 */
938 {rfs3_symlink,
939 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
940 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
941 nullfree, 0,
942 rfs3_symlink_getfh},
944 /* RFS3_MKNOD = 11 */
945 {rfs3_mknod,
946 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
947 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
948 nullfree, 0,
949 rfs3_mknod_getfh},
951 /* RFS3_REMOVE = 12 */
952 {rfs3_remove,
953 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
954 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
955 nullfree, 0,
956 rfs3_remove_getfh},
958 /* RFS3_RMDIR = 13 */
959 {rfs3_rmdir,
960 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
961 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
962 nullfree, 0,
963 rfs3_rmdir_getfh},
965 /* RFS3_RENAME = 14 */
966 {rfs3_rename,
967 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
968 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
969 nullfree, 0,
970 rfs3_rename_getfh},
972 /* RFS3_LINK = 15 */
973 {rfs3_link,
974 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
975 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
976 nullfree, 0,
977 rfs3_link_getfh},
979 /* RFS3_READDIR = 16 */
980 {rfs3_readdir,
981 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
982 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
983 rfs3_readdir_free, RPC_IDEMPOTENT,
984 rfs3_readdir_getfh},
986 /* RFS3_READDIRPLUS = 17 */
987 {rfs3_readdirplus,
988 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
989 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
990 rfs3_readdirplus_free, RPC_AVOIDWORK,
991 rfs3_readdirplus_getfh},
993 /* RFS3_FSSTAT = 18 */
994 {rfs3_fsstat,
995 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
996 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
997 nullfree, RPC_IDEMPOTENT,
998 rfs3_fsstat_getfh},
1000 /* RFS3_FSINFO = 19 */
1001 {rfs3_fsinfo,
1002 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1003 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1004 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1005 rfs3_fsinfo_getfh},
1007 /* RFS3_PATHCONF = 20 */
1008 {rfs3_pathconf,
1009 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1010 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1011 nullfree, RPC_IDEMPOTENT,
1012 rfs3_pathconf_getfh},
1014 /* RFS3_COMMIT = 21 */
1015 {rfs3_commit,
1016 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1017 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1018 nullfree, RPC_IDEMPOTENT,
1019 rfs3_commit_getfh},
1022 static char *rfscallnames_v4[] = {
1023 "RFS4_NULL",
1024 "RFS4_COMPOUND",
1025 "RFS4_NULL",
1026 "RFS4_NULL",
1027 "RFS4_NULL",
1028 "RFS4_NULL",
1029 "RFS4_NULL",
1030 "RFS4_NULL",
1031 "RFS4_CREATE"
1034 static struct rpcdisp rfsdisptab_v4[] = {
1036 * NFS VERSION 4
1039 /* RFS_NULL = 0 */
1040 {rpc_null,
1041 xdr_void, NULL_xdrproc_t, 0,
1042 xdr_void, NULL_xdrproc_t, 0,
1043 nullfree, RPC_IDEMPOTENT, 0},
1045 /* RFS4_compound = 1 */
1046 {rfs4_compound,
1047 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1048 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1049 rfs4_compound_free, 0, 0},
1052 union rfs_args {
1054 * NFS VERSION 2
1057 /* RFS_NULL = 0 */
1059 /* RFS_GETATTR = 1 */
1060 fhandle_t nfs2_getattr_args;
1062 /* RFS_SETATTR = 2 */
1063 struct nfssaargs nfs2_setattr_args;
1065 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1067 /* RFS_LOOKUP = 4 */
1068 struct nfsdiropargs nfs2_lookup_args;
1070 /* RFS_READLINK = 5 */
1071 fhandle_t nfs2_readlink_args;
1073 /* RFS_READ = 6 */
1074 struct nfsreadargs nfs2_read_args;
1076 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1078 /* RFS_WRITE = 8 */
1079 struct nfswriteargs nfs2_write_args;
1081 /* RFS_CREATE = 9 */
1082 struct nfscreatargs nfs2_create_args;
1084 /* RFS_REMOVE = 10 */
1085 struct nfsdiropargs nfs2_remove_args;
1087 /* RFS_RENAME = 11 */
1088 struct nfsrnmargs nfs2_rename_args;
1090 /* RFS_LINK = 12 */
1091 struct nfslinkargs nfs2_link_args;
1093 /* RFS_SYMLINK = 13 */
1094 struct nfsslargs nfs2_symlink_args;
1096 /* RFS_MKDIR = 14 */
1097 struct nfscreatargs nfs2_mkdir_args;
1099 /* RFS_RMDIR = 15 */
1100 struct nfsdiropargs nfs2_rmdir_args;
1102 /* RFS_READDIR = 16 */
1103 struct nfsrddirargs nfs2_readdir_args;
1105 /* RFS_STATFS = 17 */
1106 fhandle_t nfs2_statfs_args;
1109 * NFS VERSION 3
1112 /* RFS_NULL = 0 */
1114 /* RFS3_GETATTR = 1 */
1115 GETATTR3args nfs3_getattr_args;
1117 /* RFS3_SETATTR = 2 */
1118 SETATTR3args nfs3_setattr_args;
1120 /* RFS3_LOOKUP = 3 */
1121 LOOKUP3args nfs3_lookup_args;
1123 /* RFS3_ACCESS = 4 */
1124 ACCESS3args nfs3_access_args;
1126 /* RFS3_READLINK = 5 */
1127 READLINK3args nfs3_readlink_args;
1129 /* RFS3_READ = 6 */
1130 READ3args nfs3_read_args;
1132 /* RFS3_WRITE = 7 */
1133 WRITE3args nfs3_write_args;
1135 /* RFS3_CREATE = 8 */
1136 CREATE3args nfs3_create_args;
1138 /* RFS3_MKDIR = 9 */
1139 MKDIR3args nfs3_mkdir_args;
1141 /* RFS3_SYMLINK = 10 */
1142 SYMLINK3args nfs3_symlink_args;
1144 /* RFS3_MKNOD = 11 */
1145 MKNOD3args nfs3_mknod_args;
1147 /* RFS3_REMOVE = 12 */
1148 REMOVE3args nfs3_remove_args;
1150 /* RFS3_RMDIR = 13 */
1151 RMDIR3args nfs3_rmdir_args;
1153 /* RFS3_RENAME = 14 */
1154 RENAME3args nfs3_rename_args;
1156 /* RFS3_LINK = 15 */
1157 LINK3args nfs3_link_args;
1159 /* RFS3_READDIR = 16 */
1160 READDIR3args nfs3_readdir_args;
1162 /* RFS3_READDIRPLUS = 17 */
1163 READDIRPLUS3args nfs3_readdirplus_args;
1165 /* RFS3_FSSTAT = 18 */
1166 FSSTAT3args nfs3_fsstat_args;
1168 /* RFS3_FSINFO = 19 */
1169 FSINFO3args nfs3_fsinfo_args;
1171 /* RFS3_PATHCONF = 20 */
1172 PATHCONF3args nfs3_pathconf_args;
1174 /* RFS3_COMMIT = 21 */
1175 COMMIT3args nfs3_commit_args;
1178 * NFS VERSION 4
1181 /* RFS_NULL = 0 */
1183 /* COMPUND = 1 */
1184 COMPOUND4args nfs4_compound_args;
1187 union rfs_res {
1189 * NFS VERSION 2
1192 /* RFS_NULL = 0 */
1194 /* RFS_GETATTR = 1 */
1195 struct nfsattrstat nfs2_getattr_res;
1197 /* RFS_SETATTR = 2 */
1198 struct nfsattrstat nfs2_setattr_res;
1200 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1202 /* RFS_LOOKUP = 4 */
1203 struct nfsdiropres nfs2_lookup_res;
1205 /* RFS_READLINK = 5 */
1206 struct nfsrdlnres nfs2_readlink_res;
1208 /* RFS_READ = 6 */
1209 struct nfsrdresult nfs2_read_res;
1211 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1213 /* RFS_WRITE = 8 */
1214 struct nfsattrstat nfs2_write_res;
1216 /* RFS_CREATE = 9 */
1217 struct nfsdiropres nfs2_create_res;
1219 /* RFS_REMOVE = 10 */
1220 enum nfsstat nfs2_remove_res;
1222 /* RFS_RENAME = 11 */
1223 enum nfsstat nfs2_rename_res;
1225 /* RFS_LINK = 12 */
1226 enum nfsstat nfs2_link_res;
1228 /* RFS_SYMLINK = 13 */
1229 enum nfsstat nfs2_symlink_res;
1231 /* RFS_MKDIR = 14 */
1232 struct nfsdiropres nfs2_mkdir_res;
1234 /* RFS_RMDIR = 15 */
1235 enum nfsstat nfs2_rmdir_res;
1237 /* RFS_READDIR = 16 */
1238 struct nfsrddirres nfs2_readdir_res;
1240 /* RFS_STATFS = 17 */
1241 struct nfsstatfs nfs2_statfs_res;
1244 * NFS VERSION 3
1247 /* RFS_NULL = 0 */
1249 /* RFS3_GETATTR = 1 */
1250 GETATTR3res nfs3_getattr_res;
1252 /* RFS3_SETATTR = 2 */
1253 SETATTR3res nfs3_setattr_res;
1255 /* RFS3_LOOKUP = 3 */
1256 LOOKUP3res nfs3_lookup_res;
1258 /* RFS3_ACCESS = 4 */
1259 ACCESS3res nfs3_access_res;
1261 /* RFS3_READLINK = 5 */
1262 READLINK3res nfs3_readlink_res;
1264 /* RFS3_READ = 6 */
1265 READ3res nfs3_read_res;
1267 /* RFS3_WRITE = 7 */
1268 WRITE3res nfs3_write_res;
1270 /* RFS3_CREATE = 8 */
1271 CREATE3res nfs3_create_res;
1273 /* RFS3_MKDIR = 9 */
1274 MKDIR3res nfs3_mkdir_res;
1276 /* RFS3_SYMLINK = 10 */
1277 SYMLINK3res nfs3_symlink_res;
1279 /* RFS3_MKNOD = 11 */
1280 MKNOD3res nfs3_mknod_res;
1282 /* RFS3_REMOVE = 12 */
1283 REMOVE3res nfs3_remove_res;
1285 /* RFS3_RMDIR = 13 */
1286 RMDIR3res nfs3_rmdir_res;
1288 /* RFS3_RENAME = 14 */
1289 RENAME3res nfs3_rename_res;
1291 /* RFS3_LINK = 15 */
1292 LINK3res nfs3_link_res;
1294 /* RFS3_READDIR = 16 */
1295 READDIR3res nfs3_readdir_res;
1297 /* RFS3_READDIRPLUS = 17 */
1298 READDIRPLUS3res nfs3_readdirplus_res;
1300 /* RFS3_FSSTAT = 18 */
1301 FSSTAT3res nfs3_fsstat_res;
1303 /* RFS3_FSINFO = 19 */
1304 FSINFO3res nfs3_fsinfo_res;
1306 /* RFS3_PATHCONF = 20 */
1307 PATHCONF3res nfs3_pathconf_res;
1309 /* RFS3_COMMIT = 21 */
1310 COMMIT3res nfs3_commit_res;
1313 * NFS VERSION 4
1316 /* RFS_NULL = 0 */
1318 /* RFS4_COMPOUND = 1 */
1319 COMPOUND4res nfs4_compound_res;
1323 static struct rpc_disptable rfs_disptable[] = {
1324 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1325 rfscallnames_v2,
1326 &rfsproccnt_v2_ptr, rfsdisptab_v2},
1327 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1328 rfscallnames_v3,
1329 &rfsproccnt_v3_ptr, rfsdisptab_v3},
1330 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1331 rfscallnames_v4,
1332 &rfsproccnt_v4_ptr, rfsdisptab_v4},
1336 * If nfs_portmon is set, then clients are required to use privileged
1337 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1339 * N.B.: this attempt to carry forward the already ill-conceived notion
1340 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1341 * is it transport-dependent, it's laughably easy to spoof. If you're
1342 * really interested in security, you must start with secure RPC instead.
1344 static int nfs_portmon = 0;
1346 #ifdef DEBUG
1347 static int cred_hits = 0;
1348 static int cred_misses = 0;
1349 #endif
1352 #ifdef DEBUG
1354 * Debug code to allow disabling of rfs_dispatch() use of
1355 * fastxdrargs() and fastxdrres() calls for testing purposes.
1357 static int rfs_no_fast_xdrargs = 0;
1358 static int rfs_no_fast_xdrres = 0;
1359 #endif
1361 union acl_args {
1363 * ACL VERSION 2
1366 /* ACL2_NULL = 0 */
1368 /* ACL2_GETACL = 1 */
1369 GETACL2args acl2_getacl_args;
1371 /* ACL2_SETACL = 2 */
1372 SETACL2args acl2_setacl_args;
1374 /* ACL2_GETATTR = 3 */
1375 GETATTR2args acl2_getattr_args;
1377 /* ACL2_ACCESS = 4 */
1378 ACCESS2args acl2_access_args;
1380 /* ACL2_GETXATTRDIR = 5 */
1381 GETXATTRDIR2args acl2_getxattrdir_args;
1384 * ACL VERSION 3
1387 /* ACL3_NULL = 0 */
1389 /* ACL3_GETACL = 1 */
1390 GETACL3args acl3_getacl_args;
1392 /* ACL3_SETACL = 2 */
1393 SETACL3args acl3_setacl;
1395 /* ACL3_GETXATTRDIR = 3 */
1396 GETXATTRDIR3args acl3_getxattrdir_args;
1400 union acl_res {
1402 * ACL VERSION 2
1405 /* ACL2_NULL = 0 */
1407 /* ACL2_GETACL = 1 */
1408 GETACL2res acl2_getacl_res;
1410 /* ACL2_SETACL = 2 */
1411 SETACL2res acl2_setacl_res;
1413 /* ACL2_GETATTR = 3 */
1414 GETATTR2res acl2_getattr_res;
1416 /* ACL2_ACCESS = 4 */
1417 ACCESS2res acl2_access_res;
1419 /* ACL2_GETXATTRDIR = 5 */
1420 GETXATTRDIR2args acl2_getxattrdir_res;
1423 * ACL VERSION 3
1426 /* ACL3_NULL = 0 */
1428 /* ACL3_GETACL = 1 */
1429 GETACL3res acl3_getacl_res;
1431 /* ACL3_SETACL = 2 */
1432 SETACL3res acl3_setacl_res;
1434 /* ACL3_GETXATTRDIR = 3 */
1435 GETXATTRDIR3res acl3_getxattrdir_res;
1439 static bool_t
1440 auth_tooweak(struct svc_req *req, char *res)
1443 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1444 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1445 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR)
1446 return (TRUE);
1447 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1448 LOOKUP3res *resp = (LOOKUP3res *)res;
1449 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR)
1450 return (TRUE);
1452 return (FALSE);
1456 static void
1457 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1458 rpcvers_t max_vers, char *pgmname,
1459 struct rpc_disptable *disptable)
1461 int which;
1462 rpcvers_t vers;
1463 char *args;
1464 union {
1465 union rfs_args ra;
1466 union acl_args aa;
1467 } args_buf;
1468 char *res;
1469 union {
1470 union rfs_res rr;
1471 union acl_res ar;
1472 } res_buf;
1473 struct rpcdisp *disp = NULL;
1474 int dis_flags = 0;
1475 cred_t *cr;
1476 int error = 0;
1477 int anon_ok;
1478 struct exportinfo *exi = NULL;
1479 unsigned int nfslog_rec_id;
1480 int dupstat;
1481 struct dupreq *dr;
1482 int authres;
1483 bool_t publicfh_ok = FALSE;
1484 enum_t auth_flavor;
1485 bool_t dupcached = FALSE;
1486 struct netbuf nb;
1487 bool_t logging_enabled = FALSE;
1488 struct exportinfo *nfslog_exi = NULL;
1489 char **procnames;
1490 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1491 bool_t ro = FALSE;
1493 vers = req->rq_vers;
1495 if (vers < min_vers || vers > max_vers) {
1496 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1497 error++;
1498 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1499 goto done;
1501 vers -= min_vers;
1503 which = req->rq_proc;
1504 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1505 svcerr_noproc(req->rq_xprt);
1506 error++;
1507 goto done;
1510 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1512 disp = &disptable[(int)vers].dis_table[which];
1513 procnames = disptable[(int)vers].dis_procnames;
1515 auth_flavor = req->rq_cred.oa_flavor;
1518 * Deserialize into the args struct.
1520 args = (char *)&args_buf;
1522 #ifdef DEBUG
1523 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1524 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1525 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1526 #else
1527 if ((auth_flavor == RPCSEC_GSS) ||
1528 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1529 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1530 #endif
1532 bzero(args, disp->dis_argsz);
1533 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1534 error++;
1536 * Check if we are outside our capabilities.
1538 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1539 goto done;
1541 svcerr_decode(xprt);
1542 cmn_err(CE_NOTE,
1543 "Failed to decode arguments for %s version %u "
1544 "procedure %s client %s%s",
1545 pgmname, vers + min_vers, procnames[which],
1546 client_name(req), client_addr(req, cbuf));
1547 goto done;
1552 * If Version 4 use that specific dispatch function.
1554 if (req->rq_vers == 4) {
1555 error += rfs4_dispatch(disp, req, xprt, args);
1556 goto done;
1559 dis_flags = disp->dis_flags;
1562 * Find export information and check authentication,
1563 * setting the credential if everything is ok.
1565 if (disp->dis_getfh != NULL) {
1566 void *fh;
1567 fsid_t *fsid;
1568 fid_t *fid, *xfid;
1569 fhandle_t *fh2;
1570 nfs_fh3 *fh3;
1572 fh = (*disp->dis_getfh)(args);
1573 switch (req->rq_vers) {
1574 case NFS_VERSION:
1575 fh2 = (fhandle_t *)fh;
1576 fsid = &fh2->fh_fsid;
1577 fid = (fid_t *)&fh2->fh_len;
1578 xfid = (fid_t *)&fh2->fh_xlen;
1579 break;
1580 case NFS_V3:
1581 fh3 = (nfs_fh3 *)fh;
1582 fsid = &fh3->fh3_fsid;
1583 fid = FH3TOFIDP(fh3);
1584 xfid = FH3TOXFIDP(fh3);
1585 break;
1589 * Fix for bug 1038302 - corbin
1590 * There is a problem here if anonymous access is
1591 * disallowed. If the current request is part of the
1592 * client's mount process for the requested filesystem,
1593 * then it will carry root (uid 0) credentials on it, and
1594 * will be denied by checkauth if that client does not
1595 * have explicit root=0 permission. This will cause the
1596 * client's mount operation to fail. As a work-around,
1597 * we check here to see if the request is a getattr or
1598 * statfs operation on the exported vnode itself, and
1599 * pass a flag to checkauth with the result of this test.
1601 * The filehandle refers to the mountpoint itself if
1602 * the fh_data and fh_xdata portions of the filehandle
1603 * are equal.
1605 * Added anon_ok argument to checkauth().
1608 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1609 anon_ok = 1;
1610 else
1611 anon_ok = 0;
1613 cr = xprt->xp_cred;
1614 ASSERT(cr != NULL);
1615 #ifdef DEBUG
1616 if (crgetref(cr) != 1) {
1617 crfree(cr);
1618 cr = crget();
1619 xprt->xp_cred = cr;
1620 cred_misses++;
1621 } else
1622 cred_hits++;
1623 #else
1624 if (crgetref(cr) != 1) {
1625 crfree(cr);
1626 cr = crget();
1627 xprt->xp_cred = cr;
1629 #endif
1631 exi = checkexport(fsid, xfid);
1633 if (exi != NULL) {
1634 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1637 * Don't allow non-V4 clients access
1638 * to pseudo exports
1640 if (PSEUDO(exi)) {
1641 svcerr_weakauth(xprt);
1642 error++;
1643 goto done;
1646 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok,
1647 &ro);
1649 * authres > 0: authentication OK - proceed
1650 * authres == 0: authentication weak - return error
1651 * authres < 0: authentication timeout - drop
1653 if (authres <= 0) {
1654 if (authres == 0) {
1655 svcerr_weakauth(xprt);
1656 error++;
1658 goto done;
1661 } else
1662 cr = NULL;
1664 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1665 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1666 if (res == NULL)
1667 res = (char *)&res_buf;
1668 } else
1669 res = (char *)&res_buf;
1671 if (!(dis_flags & RPC_IDEMPOTENT)) {
1672 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1673 &dupcached);
1675 switch (dupstat) {
1676 case DUP_ERROR:
1677 svcerr_systemerr(xprt);
1678 error++;
1679 goto done;
1680 /* NOTREACHED */
1681 case DUP_INPROGRESS:
1682 if (res != (char *)&res_buf)
1683 SVC_FREERES(xprt);
1684 error++;
1685 goto done;
1686 /* NOTREACHED */
1687 case DUP_NEW:
1688 case DUP_DROP:
1689 curthread->t_flag |= T_DONTPEND;
1691 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1693 curthread->t_flag &= ~T_DONTPEND;
1694 if (curthread->t_flag & T_WOULDBLOCK) {
1695 curthread->t_flag &= ~T_WOULDBLOCK;
1696 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1697 disp->dis_ressz, DUP_DROP);
1698 if (res != (char *)&res_buf)
1699 SVC_FREERES(xprt);
1700 error++;
1701 goto done;
1703 if (dis_flags & RPC_AVOIDWORK) {
1704 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1705 disp->dis_ressz, DUP_DROP);
1706 } else {
1707 SVC_DUPDONE_EXT(xprt, dr, res,
1708 disp->dis_resfree == nullfree ? NULL :
1709 disp->dis_resfree,
1710 disp->dis_ressz, DUP_DONE);
1711 dupcached = TRUE;
1713 break;
1714 case DUP_DONE:
1715 break;
1718 } else {
1719 curthread->t_flag |= T_DONTPEND;
1721 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1723 curthread->t_flag &= ~T_DONTPEND;
1724 if (curthread->t_flag & T_WOULDBLOCK) {
1725 curthread->t_flag &= ~T_WOULDBLOCK;
1726 if (res != (char *)&res_buf)
1727 SVC_FREERES(xprt);
1728 error++;
1729 goto done;
1733 if (auth_tooweak(req, res)) {
1734 svcerr_weakauth(xprt);
1735 error++;
1736 goto done;
1740 * Check to see if logging has been enabled on the server.
1741 * If so, then obtain the export info struct to be used for
1742 * the later writing of the log record. This is done for
1743 * the case that a lookup is done across a non-logged public
1744 * file system.
1746 if (nfslog_buffer_list != NULL) {
1747 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1749 * Is logging enabled?
1751 logging_enabled = (nfslog_exi != NULL);
1754 * Copy the netbuf for logging purposes, before it is
1755 * freed by svc_sendreply().
1757 if (logging_enabled) {
1758 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1760 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1761 * res gets copied directly into the mbuf and
1762 * may be freed soon after the sendreply. So we
1763 * must copy it here to a safe place...
1765 if (res != (char *)&res_buf) {
1766 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1772 * Serialize and send results struct
1774 #ifdef DEBUG
1775 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1776 #else
1777 if (res != (char *)&res_buf)
1778 #endif
1780 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1781 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1782 svcerr_systemerr(xprt);
1783 error++;
1785 } else {
1786 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1787 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1788 svcerr_systemerr(xprt);
1789 error++;
1794 * Log if needed
1796 if (logging_enabled) {
1797 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1798 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1799 exi_rele(nfslog_exi);
1800 kmem_free((&nb)->buf, (&nb)->len);
1804 * Free results struct. With the addition of NFS V4 we can
1805 * have non-idempotent procedures with functions.
1807 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1808 (*disp->dis_resfree)(res);
1811 done:
1813 * Free arguments struct
1815 if (disp) {
1816 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1817 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1818 error++;
1820 } else {
1821 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1822 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1823 error++;
1827 if (exi != NULL)
1828 exi_rele(exi);
1830 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1832 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1835 static void
1836 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1838 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1839 "NFS", rfs_disptable);
1842 static char *aclcallnames_v2[] = {
1843 "ACL2_NULL",
1844 "ACL2_GETACL",
1845 "ACL2_SETACL",
1846 "ACL2_GETATTR",
1847 "ACL2_ACCESS",
1848 "ACL2_GETXATTRDIR"
1851 static struct rpcdisp acldisptab_v2[] = {
1853 * ACL VERSION 2
1856 /* ACL2_NULL = 0 */
1857 {rpc_null,
1858 xdr_void, NULL_xdrproc_t, 0,
1859 xdr_void, NULL_xdrproc_t, 0,
1860 nullfree, RPC_IDEMPOTENT,
1863 /* ACL2_GETACL = 1 */
1864 {acl2_getacl,
1865 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1866 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1867 acl2_getacl_free, RPC_IDEMPOTENT,
1868 acl2_getacl_getfh},
1870 /* ACL2_SETACL = 2 */
1871 {acl2_setacl,
1872 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1873 #ifdef _LITTLE_ENDIAN
1874 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1875 #else
1876 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1877 #endif
1878 nullfree, RPC_MAPRESP,
1879 acl2_setacl_getfh},
1881 /* ACL2_GETATTR = 3 */
1882 {acl2_getattr,
1883 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1884 #ifdef _LITTLE_ENDIAN
1885 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1886 #else
1887 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1888 #endif
1889 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1890 acl2_getattr_getfh},
1892 /* ACL2_ACCESS = 4 */
1893 {acl2_access,
1894 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1895 #ifdef _LITTLE_ENDIAN
1896 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1897 #else
1898 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1899 #endif
1900 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1901 acl2_access_getfh},
1903 /* ACL2_GETXATTRDIR = 5 */
1904 {acl2_getxattrdir,
1905 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1906 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1907 nullfree, RPC_IDEMPOTENT,
1908 acl2_getxattrdir_getfh},
1911 static char *aclcallnames_v3[] = {
1912 "ACL3_NULL",
1913 "ACL3_GETACL",
1914 "ACL3_SETACL",
1915 "ACL3_GETXATTRDIR"
1918 static struct rpcdisp acldisptab_v3[] = {
1920 * ACL VERSION 3
1923 /* ACL3_NULL = 0 */
1924 {rpc_null,
1925 xdr_void, NULL_xdrproc_t, 0,
1926 xdr_void, NULL_xdrproc_t, 0,
1927 nullfree, RPC_IDEMPOTENT,
1930 /* ACL3_GETACL = 1 */
1931 {acl3_getacl,
1932 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1933 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1934 acl3_getacl_free, RPC_IDEMPOTENT,
1935 acl3_getacl_getfh},
1937 /* ACL3_SETACL = 2 */
1938 {acl3_setacl,
1939 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1940 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1941 nullfree, 0,
1942 acl3_setacl_getfh},
1944 /* ACL3_GETXATTRDIR = 3 */
1945 {acl3_getxattrdir,
1946 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1947 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1948 nullfree, RPC_IDEMPOTENT,
1949 acl3_getxattrdir_getfh},
1952 static struct rpc_disptable acl_disptable[] = {
1953 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1954 aclcallnames_v2,
1955 &aclproccnt_v2_ptr, acldisptab_v2},
1956 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1957 aclcallnames_v3,
1958 &aclproccnt_v3_ptr, acldisptab_v3},
1961 static void
1962 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1964 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1965 "ACL", acl_disptable);
1969 checkwin(int flavor, int window, struct svc_req *req)
1971 struct authdes_cred *adc;
1973 switch (flavor) {
1974 case AUTH_DES:
1975 adc = (struct authdes_cred *)req->rq_clntcred;
1976 CTASSERT(sizeof (struct authdes_cred) <= RQCRED_SIZE);
1977 if (adc->adc_fullname.window > window)
1978 return (0);
1979 break;
1981 default:
1982 break;
1984 return (1);
1989 * checkauth() will check the access permission against the export
1990 * information. Then map root uid/gid to appropriate uid/gid.
1992 * This routine is used by NFS V3 and V2 code.
1994 static int
1995 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
1996 bool_t publicfh_ok, bool_t *ro)
1998 int i, nfsflavor, rpcflavor, stat, access;
1999 struct secinfo *secp;
2000 caddr_t principal;
2001 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2002 int anon_res = 0;
2004 uid_t uid;
2005 gid_t gid;
2006 uint_t ngids;
2007 gid_t *gids;
2010 * Check for privileged port number
2011 * N.B.: this assumes that we know the format of a netbuf.
2013 if (nfs_portmon) {
2014 struct sockaddr *ca;
2015 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2017 if (ca == NULL)
2018 return (0);
2020 if ((ca->sa_family == AF_INET &&
2021 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2022 IPPORT_RESERVED) ||
2023 (ca->sa_family == AF_INET6 &&
2024 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2025 IPPORT_RESERVED)) {
2026 cmn_err(CE_NOTE,
2027 "nfs_server: client %s%ssent NFS request from "
2028 "unprivileged port",
2029 client_name(req), client_addr(req, buf));
2030 return (0);
2035 * return 1 on success or 0 on failure
2037 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2040 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set
2041 * the credentials; below we map that to anonymous.
2043 if (!stat && nfsflavor != AUTH_UNIX) {
2044 cmn_err(CE_NOTE,
2045 "nfs_server: couldn't get unix cred for %s",
2046 client_name(req));
2047 return (0);
2051 * Short circuit checkauth() on operations that support the
2052 * public filehandle, and if the request for that operation
2053 * is using the public filehandle. Note that we must call
2054 * sec_svc_getcred() first so that xp_cookie is set to the
2055 * right value. Normally xp_cookie is just the RPC flavor
2056 * of the the request, but in the case of RPCSEC_GSS it
2057 * could be a pseudo flavor.
2059 if (publicfh_ok)
2060 return (1);
2062 rpcflavor = req->rq_cred.oa_flavor;
2064 * Check if the auth flavor is valid for this export
2066 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids);
2067 if (access & NFSAUTH_DROP)
2068 return (-1); /* drop the request */
2070 if (access & NFSAUTH_RO)
2071 *ro = TRUE;
2073 if (access & NFSAUTH_DENIED) {
2075 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2076 * probably due to the flavor not matching during
2077 * the mount attempt. So map the flavor to AUTH_NONE
2078 * so that the credentials get mapped to the anonymous
2079 * user.
2081 if (anon_ok == 1)
2082 rpcflavor = AUTH_NONE;
2083 else
2084 return (0); /* deny access */
2086 } else if (access & NFSAUTH_MAPNONE) {
2088 * Access was granted even though the flavor mismatched
2089 * because AUTH_NONE was one of the exported flavors.
2091 rpcflavor = AUTH_NONE;
2093 } else if (access & NFSAUTH_WRONGSEC) {
2095 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2096 * it means a client ignored the list of allowed flavors
2097 * returned via the MOUNT protocol. So we just disallow it!
2099 return (0);
2102 if (rpcflavor != AUTH_SYS)
2103 kmem_free(gids, ngids * sizeof (gid_t));
2105 switch (rpcflavor) {
2106 case AUTH_NONE:
2107 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2108 exi->exi_export.ex_anon);
2109 (void) crsetgroups(cr, 0, NULL);
2110 break;
2112 case AUTH_UNIX:
2113 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2114 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2115 exi->exi_export.ex_anon);
2116 (void) crsetgroups(cr, 0, NULL);
2117 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2119 * It is root, so apply rootid to get real UID
2120 * Find the secinfo structure. We should be able
2121 * to find it by the time we reach here.
2122 * nfsauth_access() has done the checking.
2124 secp = NULL;
2125 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2126 struct secinfo *sptr;
2127 sptr = &exi->exi_export.ex_secinfo[i];
2128 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2129 secp = sptr;
2130 break;
2133 if (secp != NULL) {
2134 (void) crsetugid(cr, secp->s_rootid,
2135 secp->s_rootid);
2136 (void) crsetgroups(cr, 0, NULL);
2138 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2139 if (crsetugid(cr, uid, gid) != 0)
2140 anon_res = crsetugid(cr,
2141 exi->exi_export.ex_anon,
2142 exi->exi_export.ex_anon);
2143 (void) crsetgroups(cr, 0, NULL);
2144 } else if (access & NFSAUTH_GROUPS) {
2145 (void) crsetgroups(cr, ngids, gids);
2148 kmem_free(gids, ngids * sizeof (gid_t));
2150 break;
2152 case AUTH_DES:
2153 case RPCSEC_GSS:
2155 * Find the secinfo structure. We should be able
2156 * to find it by the time we reach here.
2157 * nfsauth_access() has done the checking.
2159 secp = NULL;
2160 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2161 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2162 nfsflavor) {
2163 secp = &exi->exi_export.ex_secinfo[i];
2164 break;
2168 if (!secp) {
2169 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2170 "no secinfo data for flavor %d",
2171 client_name(req), client_addr(req, buf),
2172 nfsflavor);
2173 return (0);
2176 if (!checkwin(rpcflavor, secp->s_window, req)) {
2177 cmn_err(CE_NOTE,
2178 "nfs_server: client %s%sused invalid "
2179 "auth window value",
2180 client_name(req), client_addr(req, buf));
2181 return (0);
2185 * Map root principals listed in the share's root= list to root,
2186 * and map any others principals that were mapped to root by RPC
2187 * to anon.
2189 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2190 secp->s_rootcnt, secp->s_rootnames)) {
2191 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2192 return (1);
2195 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2198 * NOTE: If and when kernel-land privilege tracing is
2199 * added this may have to be replaced with code that
2200 * retrieves root's supplementary groups (e.g., using
2201 * kgss_get_group_info(). In the meantime principals
2202 * mapped to uid 0 get all privileges, so setting cr's
2203 * supplementary groups for them does nothing.
2205 (void) crsetgroups(cr, 0, NULL);
2207 return (1);
2211 * Not a root princ, or not in root list, map UID 0/nobody to
2212 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2213 * UID_NOBODY and GID_NOBODY, respectively.)
2215 if (crgetuid(cr) != 0 &&
2216 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2217 return (1);
2219 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2220 exi->exi_export.ex_anon);
2221 (void) crsetgroups(cr, 0, NULL);
2222 break;
2223 default:
2224 return (0);
2225 } /* switch on rpcflavor */
2228 * Even if anon access is disallowed via ex_anon == -1, we allow
2229 * this access if anon_ok is set. So set creds to the default
2230 * "nobody" id.
2232 if (anon_res != 0) {
2233 if (anon_ok == 0) {
2234 cmn_err(CE_NOTE,
2235 "nfs_server: client %s%ssent wrong "
2236 "authentication for %s",
2237 client_name(req), client_addr(req, buf),
2238 exi->exi_export.ex_path ?
2239 exi->exi_export.ex_path : "?");
2240 return (0);
2243 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2244 return (0);
2247 return (1);
2251 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2252 * and 1 on success
2255 checkauth4(struct compound_state *cs, struct svc_req *req)
2257 int i, rpcflavor, access;
2258 struct secinfo *secp;
2259 char buf[MAXHOST + 1];
2260 int anon_res = 0, nfsflavor;
2261 struct exportinfo *exi;
2262 cred_t *cr;
2263 caddr_t principal;
2265 uid_t uid;
2266 gid_t gid;
2267 uint_t ngids;
2268 gid_t *gids;
2270 exi = cs->exi;
2271 cr = cs->cr;
2272 principal = cs->principal;
2273 nfsflavor = cs->nfsflavor;
2275 ASSERT(cr != NULL);
2277 rpcflavor = req->rq_cred.oa_flavor;
2278 cs->access &= ~CS_ACCESS_LIMITED;
2281 * Check for privileged port number
2282 * N.B.: this assumes that we know the format of a netbuf.
2284 if (nfs_portmon) {
2285 struct sockaddr *ca;
2286 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2288 if (ca == NULL)
2289 return (0);
2291 if ((ca->sa_family == AF_INET &&
2292 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2293 IPPORT_RESERVED) ||
2294 (ca->sa_family == AF_INET6 &&
2295 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2296 IPPORT_RESERVED)) {
2297 cmn_err(CE_NOTE,
2298 "nfs_server: client %s%ssent NFSv4 request from "
2299 "unprivileged port",
2300 client_name(req), client_addr(req, buf));
2301 return (0);
2306 * Check the access right per auth flavor on the vnode of
2307 * this export for the given request.
2309 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids,
2310 &gids);
2312 if (access & NFSAUTH_WRONGSEC)
2313 return (-2); /* no access for this security flavor */
2315 if (access & NFSAUTH_DROP)
2316 return (-1); /* drop the request */
2318 if (access & NFSAUTH_DENIED) {
2320 if (exi->exi_export.ex_seccnt > 0)
2321 return (0); /* deny access */
2323 } else if (access & NFSAUTH_LIMITED) {
2325 cs->access |= CS_ACCESS_LIMITED;
2327 } else if (access & NFSAUTH_MAPNONE) {
2329 * Access was granted even though the flavor mismatched
2330 * because AUTH_NONE was one of the exported flavors.
2332 rpcflavor = AUTH_NONE;
2336 * XXX probably need to redo some of it for nfsv4?
2337 * return 1 on success or 0 on failure
2340 if (rpcflavor != AUTH_SYS)
2341 kmem_free(gids, ngids * sizeof (gid_t));
2343 switch (rpcflavor) {
2344 case AUTH_NONE:
2345 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2346 exi->exi_export.ex_anon);
2347 (void) crsetgroups(cr, 0, NULL);
2348 break;
2350 case AUTH_UNIX:
2351 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2352 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2353 exi->exi_export.ex_anon);
2354 (void) crsetgroups(cr, 0, NULL);
2355 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2357 * It is root, so apply rootid to get real UID
2358 * Find the secinfo structure. We should be able
2359 * to find it by the time we reach here.
2360 * nfsauth_access() has done the checking.
2362 secp = NULL;
2363 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2364 struct secinfo *sptr;
2365 sptr = &exi->exi_export.ex_secinfo[i];
2366 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2367 secp = &exi->exi_export.ex_secinfo[i];
2368 break;
2371 if (secp != NULL) {
2372 (void) crsetugid(cr, secp->s_rootid,
2373 secp->s_rootid);
2374 (void) crsetgroups(cr, 0, NULL);
2376 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2377 if (crsetugid(cr, uid, gid) != 0)
2378 anon_res = crsetugid(cr,
2379 exi->exi_export.ex_anon,
2380 exi->exi_export.ex_anon);
2381 (void) crsetgroups(cr, 0, NULL);
2382 } if (access & NFSAUTH_GROUPS) {
2383 (void) crsetgroups(cr, ngids, gids);
2386 kmem_free(gids, ngids * sizeof (gid_t));
2388 break;
2390 default:
2392 * Find the secinfo structure. We should be able
2393 * to find it by the time we reach here.
2394 * nfsauth_access() has done the checking.
2396 secp = NULL;
2397 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2398 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2399 nfsflavor) {
2400 secp = &exi->exi_export.ex_secinfo[i];
2401 break;
2405 if (!secp) {
2406 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2407 "no secinfo data for flavor %d",
2408 client_name(req), client_addr(req, buf),
2409 nfsflavor);
2410 return (0);
2413 if (!checkwin(rpcflavor, secp->s_window, req)) {
2414 cmn_err(CE_NOTE,
2415 "nfs_server: client %s%sused invalid "
2416 "auth window value",
2417 client_name(req), client_addr(req, buf));
2418 return (0);
2422 * Map root principals listed in the share's root= list to root,
2423 * and map any others principals that were mapped to root by RPC
2424 * to anon. If not going to anon, set to rootid (root_mapping).
2426 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2427 secp->s_rootcnt, secp->s_rootnames)) {
2428 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2429 return (1);
2431 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2434 * NOTE: If and when kernel-land privilege tracing is
2435 * added this may have to be replaced with code that
2436 * retrieves root's supplementary groups (e.g., using
2437 * kgss_get_group_info(). In the meantime principals
2438 * mapped to uid 0 get all privileges, so setting cr's
2439 * supplementary groups for them does nothing.
2441 (void) crsetgroups(cr, 0, NULL);
2443 return (1);
2447 * Not a root princ, or not in root list, map UID 0/nobody to
2448 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2449 * UID_NOBODY and GID_NOBODY, respectively.)
2451 if (crgetuid(cr) != 0 &&
2452 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2453 return (1);
2455 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2456 exi->exi_export.ex_anon);
2457 (void) crsetgroups(cr, 0, NULL);
2458 break;
2459 } /* switch on rpcflavor */
2462 * Even if anon access is disallowed via ex_anon == -1, we allow
2463 * this access if anon_ok is set. So set creds to the default
2464 * "nobody" id.
2467 if (anon_res != 0) {
2468 cmn_err(CE_NOTE,
2469 "nfs_server: client %s%ssent wrong "
2470 "authentication for %s",
2471 client_name(req), client_addr(req, buf),
2472 exi->exi_export.ex_path ?
2473 exi->exi_export.ex_path : "?");
2474 return (0);
2477 return (1);
2481 static char *
2482 client_name(struct svc_req *req)
2484 char *hostname = NULL;
2487 * If it's a Unix cred then use the
2488 * hostname from the credential.
2490 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2491 hostname = ((struct authunix_parms *)
2492 req->rq_clntcred)->aup_machname;
2494 if (hostname == NULL)
2495 hostname = "";
2497 return (hostname);
2500 static char *
2501 client_addr(struct svc_req *req, char *buf)
2503 struct sockaddr *ca;
2504 uchar_t *b;
2505 char *frontspace = "";
2508 * We assume we are called in tandem with client_name and the
2509 * format string looks like "...client %s%sblah blah..."
2511 * If it's a Unix cred then client_name returned
2512 * a host name, so we need insert a space between host name
2513 * and IP address.
2515 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2516 frontspace = " ";
2519 * Convert the caller's IP address to a dotted string
2521 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2523 if (ca->sa_family == AF_INET) {
2524 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2525 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2526 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2527 } else if (ca->sa_family == AF_INET6) {
2528 struct sockaddr_in6 *sin6;
2529 sin6 = (struct sockaddr_in6 *)ca;
2530 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2531 buf, INET6_ADDRSTRLEN);
2533 } else {
2536 * No IP address to print. If there was a host name
2537 * printed, then we print a space.
2539 (void) sprintf(buf, frontspace);
2542 return (buf);
2546 * NFS Server initialization routine. This routine should only be called
2547 * once. It performs the following tasks:
2548 * - Call sub-initialization routines (localize access to variables)
2549 * - Initialize all locks
2550 * - initialize the version 3 write verifier
2553 nfs_srvinit(void)
2555 int error;
2557 error = nfs_exportinit();
2558 if (error != 0)
2559 return (error);
2560 error = rfs4_srvrinit();
2561 if (error != 0) {
2562 nfs_exportfini();
2563 return (error);
2565 rfs_srvrinit();
2566 rfs3_srvrinit();
2567 nfsauth_init();
2569 /* Init the stuff to control start/stop */
2570 nfs_server_upordown = NFS_SERVER_STOPPED;
2571 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2572 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2573 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2574 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2576 return (0);
2580 * NFS Server finalization routine. This routine is called to cleanup the
2581 * initialization work previously performed if the NFS server module could
2582 * not be loaded correctly.
2584 void
2585 nfs_srvfini(void)
2587 nfsauth_fini();
2588 rfs3_srvrfini();
2589 rfs_srvrfini();
2590 nfs_exportfini();
2592 mutex_destroy(&nfs_server_upordown_lock);
2593 cv_destroy(&nfs_server_upordown_cv);
2594 mutex_destroy(&rdma_wait_mutex);
2595 cv_destroy(&rdma_wait_cv);
2599 * Set up an iovec array of up to cnt pointers.
2602 void
2603 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2605 while (m != NULL && cnt-- > 0) {
2606 iovp->iov_base = (caddr_t)m->b_rptr;
2607 iovp->iov_len = (m->b_wptr - m->b_rptr);
2608 iovp++;
2609 m = m->b_cont;
2614 * Common code between NFS Version 2 and NFS Version 3 for the public
2615 * filehandle multicomponent lookups.
2619 * Public filehandle evaluation of a multi-component lookup, following
2620 * symbolic links, if necessary. This may result in a vnode in another
2621 * filesystem, which is OK as long as the other filesystem is exported.
2623 * Note that the exi will be set either to NULL or a new reference to the
2624 * exportinfo struct that corresponds to the vnode of the multi-component path.
2625 * It is the callers responsibility to release this reference.
2628 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2629 struct exportinfo **exi, struct sec_ol *sec)
2631 int pathflag;
2632 vnode_t *mc_dvp = NULL;
2633 vnode_t *realvp;
2634 int error;
2636 *exi = NULL;
2639 * check if the given path is a url or native path. Since p is
2640 * modified by MCLpath(), it may be empty after returning from
2641 * there, and should be checked.
2643 if ((pathflag = MCLpath(&p)) == -1)
2644 return (EIO);
2647 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2648 * on in sec->sec_flags. This bit will later serve as an
2649 * indication in makefh_ol() or makefh3_ol() to overload the
2650 * filehandle to contain the sec modes used by the server for
2651 * the path.
2653 if (pathflag == SECURITY_QUERY) {
2654 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2655 sec->sec_flags |= SEC_QUERY;
2656 p++;
2657 if ((pathflag = MCLpath(&p)) == -1)
2658 return (EIO);
2659 } else {
2660 cmn_err(CE_NOTE,
2661 "nfs_server: invalid security index %d, "
2662 "violating WebNFS SNEGO protocol.", sec->sec_index);
2663 return (EIO);
2667 if (p[0] == '\0') {
2668 error = ENOENT;
2669 goto publicfh_done;
2672 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2675 * If name resolves to "/" we get EINVAL since we asked for
2676 * the vnode of the directory that the file is in. Try again
2677 * with NULL directory vnode.
2679 if (error == EINVAL) {
2680 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2681 if (!error) {
2682 ASSERT(*vpp != NULL);
2683 if ((*vpp)->v_type == VDIR) {
2684 VN_HOLD(*vpp);
2685 mc_dvp = *vpp;
2686 } else {
2688 * This should not happen, the filesystem is
2689 * in an inconsistent state. Fail the lookup
2690 * at this point.
2692 VN_RELE(*vpp);
2693 error = EINVAL;
2698 if (error)
2699 goto publicfh_done;
2701 if (*vpp == NULL) {
2702 error = ENOENT;
2703 goto publicfh_done;
2706 ASSERT(mc_dvp != NULL);
2707 ASSERT(*vpp != NULL);
2709 if ((*vpp)->v_type == VDIR) {
2710 do {
2712 * *vpp may be an AutoFS node, so we perform
2713 * a fop_access() to trigger the mount of the intended
2714 * filesystem, so we can perform the lookup in the
2715 * intended filesystem.
2717 (void) fop_access(*vpp, 0, 0, cr, NULL);
2720 * If vnode is covered, get the
2721 * the topmost vnode.
2723 if (vn_mountedvfs(*vpp) != NULL) {
2724 error = traverse(vpp);
2725 if (error) {
2726 VN_RELE(*vpp);
2727 goto publicfh_done;
2731 if (fop_realvp(*vpp, &realvp, NULL) == 0 &&
2732 realvp != *vpp) {
2734 * If realvp is different from *vpp
2735 * then release our reference on *vpp, so that
2736 * the export access check be performed on the
2737 * real filesystem instead.
2739 VN_HOLD(realvp);
2740 VN_RELE(*vpp);
2741 *vpp = realvp;
2742 } else {
2743 break;
2745 /* LINTED */
2746 } while (TRUE);
2749 * Let nfs_vptexi() figure what the real parent is.
2751 VN_RELE(mc_dvp);
2752 mc_dvp = NULL;
2754 } else {
2756 * If vnode is covered, get the
2757 * the topmost vnode.
2759 if (vn_mountedvfs(mc_dvp) != NULL) {
2760 error = traverse(&mc_dvp);
2761 if (error) {
2762 VN_RELE(*vpp);
2763 goto publicfh_done;
2767 if (fop_realvp(mc_dvp, &realvp, NULL) == 0 &&
2768 realvp != mc_dvp) {
2770 * *vpp is a file, obtain realvp of the parent
2771 * directory vnode.
2773 VN_HOLD(realvp);
2774 VN_RELE(mc_dvp);
2775 mc_dvp = realvp;
2780 * The pathname may take us from the public filesystem to another.
2781 * If that's the case then just set the exportinfo to the new export
2782 * and build filehandle for it. Thanks to per-access checking there's
2783 * no security issues with doing this. If the client is not allowed
2784 * access to this new export then it will get an access error when it
2785 * tries to use the filehandle
2787 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2788 VN_RELE(*vpp);
2789 goto publicfh_done;
2793 * Not allowed access to pseudo exports.
2795 if (PSEUDO(*exi)) {
2796 error = ENOENT;
2797 VN_RELE(*vpp);
2798 goto publicfh_done;
2802 * Do a lookup for the index file. We know the index option doesn't
2803 * allow paths through handling in the share command, so mc_dvp will
2804 * be the parent for the index file vnode, if its present. Use
2805 * temporary pointers to preserve and reuse the vnode pointers of the
2806 * original directory in case there's no index file. Note that the
2807 * index file is a native path, and should not be interpreted by
2808 * the URL parser in rfs_pathname()
2810 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2811 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2812 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2814 tmc_dvp = mc_dvp;
2815 mc_dvp = tvp = *vpp;
2817 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2818 mc_dvp, cr, NATIVEPATH);
2820 if (error == ENOENT) {
2821 *vpp = tvp;
2822 mc_dvp = tmc_dvp;
2823 error = 0;
2824 } else { /* ok or error other than ENOENT */
2825 if (tmc_dvp)
2826 VN_RELE(tmc_dvp);
2827 if (error)
2828 goto publicfh_done;
2831 * Found a valid vp for index "filename". Sanity check
2832 * for odd case where a directory is provided as index
2833 * option argument and leads us to another filesystem
2836 /* Release the reference on the old exi value */
2837 ASSERT(*exi != NULL);
2838 exi_rele(*exi);
2840 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2841 VN_RELE(*vpp);
2842 goto publicfh_done;
2847 publicfh_done:
2848 if (mc_dvp)
2849 VN_RELE(mc_dvp);
2851 return (error);
2855 * Evaluate a multi-component path
2858 rfs_pathname(
2859 char *path, /* pathname to evaluate */
2860 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2861 vnode_t **compvpp, /* ret for ptr to component vnode */
2862 vnode_t *startdvp, /* starting vnode */
2863 cred_t *cr, /* user's credential */
2864 int pathflag) /* flag to identify path, e.g. URL */
2866 char namebuf[TYPICALMAXPATHLEN];
2867 struct pathname pn;
2868 int error;
2871 * If pathname starts with '/', then set startdvp to root.
2873 if (*path == '/') {
2874 while (*path == '/')
2875 path++;
2877 startdvp = rootdir;
2880 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2881 if (error == 0) {
2883 * Call the URL parser for URL paths to modify the original
2884 * string to handle any '%' encoded characters that exist.
2885 * Done here to avoid an extra bcopy in the lookup.
2886 * We need to be careful about pathlen's. We know that
2887 * rfs_pathname() is called with a non-empty path. However,
2888 * it could be emptied due to the path simply being all /'s,
2889 * which is valid to proceed with the lookup, or due to the
2890 * URL parser finding an encoded null character at the
2891 * beginning of path which should not proceed with the lookup.
2893 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2894 URLparse(pn.pn_path);
2895 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2896 return (ENOENT);
2898 VN_HOLD(startdvp);
2899 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2900 rootdir, startdvp, cr);
2902 if (error == ENAMETOOLONG) {
2904 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
2906 if (error = pn_get(path, UIO_SYSSPACE, &pn))
2907 return (error);
2908 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2909 URLparse(pn.pn_path);
2910 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
2911 pn_free(&pn);
2912 return (ENOENT);
2915 VN_HOLD(startdvp);
2916 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2917 rootdir, startdvp, cr);
2918 pn_free(&pn);
2921 return (error);
2925 * Adapt the multicomponent lookup path depending on the pathtype
2927 static int
2928 MCLpath(char **path)
2930 unsigned char c = (unsigned char)**path;
2933 * If the MCL path is between 0x20 and 0x7E (graphic printable
2934 * character of the US-ASCII coded character set), its a URL path,
2935 * per RFC 1738.
2937 if (c >= 0x20 && c <= 0x7E)
2938 return (URLPATH);
2941 * If the first octet of the MCL path is not an ASCII character
2942 * then it must be interpreted as a tag value that describes the
2943 * format of the remaining octets of the MCL path.
2945 * If the first octet of the MCL path is 0x81 it is a query
2946 * for the security info.
2948 switch (c) {
2949 case 0x80: /* native path, i.e. MCL via mount protocol */
2950 (*path)++;
2951 return (NATIVEPATH);
2952 case 0x81: /* security query */
2953 (*path)++;
2954 return (SECURITY_QUERY);
2955 default:
2956 return (-1);
2960 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
2961 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
2962 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
2965 * The implementation of URLparse guarantees that the final string will
2966 * fit in the original one. Replaces '%' occurrences followed by 2 characters
2967 * with its corresponding hexadecimal character.
2969 static void
2970 URLparse(char *str)
2972 char *p, *q;
2974 p = q = str;
2975 while (*p) {
2976 *q = *p;
2977 if (*p++ == '%') {
2978 if (*p) {
2979 *q = fromhex(*p) * 16;
2980 p++;
2981 if (*p) {
2982 *q += fromhex(*p);
2983 p++;
2987 q++;
2989 *q = '\0';
2994 * Get the export information for the lookup vnode, and verify its
2995 * useable.
2998 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
2999 struct exportinfo **exi)
3001 int walk;
3002 int error = 0;
3004 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
3005 if (*exi == NULL)
3006 error = EACCES;
3007 else {
3009 * If nosub is set for this export then
3010 * a lookup relative to the public fh
3011 * must not terminate below the
3012 * exported directory.
3014 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
3015 error = EACCES;
3018 return (error);
3022 * Do the main work of handling HA-NFSv4 Resource Group failover on
3023 * Sun Cluster.
3024 * We need to detect whether any RG admin paths have been added or removed,
3025 * and adjust resources accordingly.
3026 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
3027 * order to scale, the list and array of paths need to be held in more
3028 * suitable data structures.
3030 static void
3031 hanfsv4_failover(void)
3033 int i, start_grace, numadded_paths = 0;
3034 char **added_paths = NULL;
3035 rfs4_dss_path_t *dss_path;
3038 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3039 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3040 * make the latter dynamically specified too, the following will
3041 * need to be adjusted.
3045 * First, look for removed paths: RGs that have been failed-over
3046 * away from this node.
3047 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3048 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3049 * from nfsd. If not, that RG path has been removed.
3051 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3052 * any duplicates.
3054 dss_path = rfs4_dss_pathlist;
3055 do {
3056 int found = 0;
3057 char *path = dss_path->path;
3059 /* used only for non-HA so may not be removed */
3060 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3061 dss_path = dss_path->next;
3062 continue;
3065 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3066 int cmpret;
3067 char *newpath = rfs4_dss_newpaths[i];
3070 * Since nfsd has sorted rfs4_dss_newpaths for us,
3071 * once the return from strcmp is negative we know
3072 * we've passed the point where "path" should be,
3073 * and can stop searching: "path" has been removed.
3075 cmpret = strcmp(path, newpath);
3076 if (cmpret < 0)
3077 break;
3078 if (cmpret == 0) {
3079 found = 1;
3080 break;
3084 if (found == 0) {
3085 unsigned index = dss_path->index;
3086 rfs4_servinst_t *sip = dss_path->sip;
3087 rfs4_dss_path_t *path_next = dss_path->next;
3090 * This path has been removed.
3091 * We must clear out the servinst reference to
3092 * it, since it's now owned by another
3093 * node: we should not attempt to touch it.
3095 ASSERT(dss_path == sip->dss_paths[index]);
3096 sip->dss_paths[index] = NULL;
3098 /* remove from "currently-serving" list, and destroy */
3099 remque(dss_path);
3100 /* allow for NUL */
3101 kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3102 kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3104 dss_path = path_next;
3105 } else {
3106 /* path was found; not removed */
3107 dss_path = dss_path->next;
3109 } while (dss_path != rfs4_dss_pathlist);
3112 * Now, look for added paths: RGs that have been failed-over
3113 * to this node.
3114 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3115 * for each path, check if it is on the "currently-serving"
3116 * rfs4_dss_pathlist. If not, that RG path has been added.
3118 * Note: we don't do duplicate detection here; nfsd does that for us.
3120 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3121 * an upper bound for the size needed for added_paths[numadded_paths].
3124 /* probably more space than we need, but guaranteed to be enough */
3125 if (rfs4_dss_numnewpaths > 0) {
3126 size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3127 added_paths = kmem_zalloc(sz, KM_SLEEP);
3130 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3131 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3132 int found = 0;
3133 char *newpath = rfs4_dss_newpaths[i];
3135 dss_path = rfs4_dss_pathlist;
3136 do {
3137 char *path = dss_path->path;
3139 /* used only for non-HA */
3140 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3141 dss_path = dss_path->next;
3142 continue;
3145 if (strncmp(path, newpath, strlen(path)) == 0) {
3146 found = 1;
3147 break;
3150 dss_path = dss_path->next;
3151 } while (dss_path != rfs4_dss_pathlist);
3153 if (found == 0) {
3154 added_paths[numadded_paths] = newpath;
3155 numadded_paths++;
3159 /* did we find any added paths? */
3160 if (numadded_paths > 0) {
3161 /* create a new server instance, and start its grace period */
3162 start_grace = 1;
3163 rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3165 /* read in the stable storage state from these paths */
3166 rfs4_dss_readstate(numadded_paths, added_paths);
3169 * Multiple failovers during a grace period will cause
3170 * clients of the same resource group to be partitioned
3171 * into different server instances, with different
3172 * grace periods. Since clients of the same resource
3173 * group must be subject to the same grace period,
3174 * we need to reset all currently active grace periods.
3176 rfs4_grace_reset_all();
3179 if (rfs4_dss_numnewpaths > 0)
3180 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3184 * Callback function to return the loaned buffers.
3185 * Calls fop_retzcbuf() only after all uio_iov[]
3186 * buffers are returned. nu_ref maintains the count.
3188 void
3189 rfs_free_xuio(void *free_arg)
3191 uint_t ref;
3192 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3194 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3197 * Call fop_retzcbuf() only when all the iov buffers
3198 * are sent OTW.
3200 if (ref != 0)
3201 return;
3203 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3204 (void) fop_retzcbuf(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3205 NULL);
3206 VN_RELE(nfsuiop->nu_vp);
3209 kmem_cache_free(nfs_xuio_cache, free_arg);
3212 xuio_t *
3213 rfs_setup_xuio(vnode_t *vp)
3215 nfs_xuio_t *nfsuiop;
3217 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3219 bzero(nfsuiop, sizeof (nfs_xuio_t));
3220 nfsuiop->nu_vp = vp;
3223 * ref count set to 1. more may be added
3224 * if multiple mblks refer to multiple iov's.
3225 * This is done in uio_to_mblk().
3228 nfsuiop->nu_ref = 1;
3230 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3231 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3233 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3235 return (&nfsuiop->nu_uio);
3238 mblk_t *
3239 uio_to_mblk(uio_t *uiop)
3241 struct iovec *iovp;
3242 int i;
3243 mblk_t *mp, *mp1;
3244 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3246 if (uiop->uio_iovcnt == 0)
3247 return (NULL);
3249 iovp = uiop->uio_iov;
3250 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3251 BPRI_MED, &nfsuiop->nu_frtn);
3252 ASSERT(mp != NULL);
3254 mp->b_wptr += iovp->iov_len;
3255 mp->b_datap->db_type = M_DATA;
3257 for (i = 1; i < uiop->uio_iovcnt; i++) {
3258 iovp = (uiop->uio_iov + i);
3260 mp1->b_cont = esballoca(
3261 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3262 &nfsuiop->nu_frtn);
3264 mp1 = mp1->b_cont;
3265 ASSERT(mp1 != NULL);
3266 mp1->b_wptr += iovp->iov_len;
3267 mp1->b_datap->db_type = M_DATA;
3270 nfsuiop->nu_ref = uiop->uio_iovcnt;
3272 return (mp);
3276 * Allocate memory to hold data for a read request of len bytes.
3278 * We don't allocate buffers greater than kmem_max_cached in size to avoid
3279 * allocating memory from the kmem_oversized arena. If we allocate oversized
3280 * buffers, we incur heavy cross-call activity when freeing these large buffers
3281 * in the TCP receive path. Note that we can't set b_wptr here since the
3282 * length of the data returned may differ from the length requested when
3283 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the
3284 * length of the read is known.
3286 mblk_t *
3287 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt)
3289 struct iovec *iovarr;
3290 mblk_t *mp, **mpp = &mp;
3291 size_t mpsize;
3292 uint_t remain = len;
3293 int i, err = 0;
3295 *iovcnt = howmany(len, kmem_max_cached);
3297 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP);
3298 *iov = iovarr;
3300 for (i = 0; i < *iovcnt; remain -= mpsize, i++) {
3301 ASSERT(remain <= len);
3303 * We roundup the size we allocate to a multiple of
3304 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to
3305 * xdrmblk_putmblk() never fails.
3307 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0);
3308 mpsize = MIN(kmem_max_cached, remain);
3309 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err);
3310 ASSERT(*mpp != NULL);
3311 ASSERT(err == 0);
3313 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr;
3314 iovarr[i].iov_len = mpsize;
3315 mpp = &(*mpp)->b_cont;
3317 return (mp);
3320 void
3321 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3323 int i;
3324 int alloc_err = 0;
3325 mblk_t *rmp;
3326 uint_t mpsize, remainder;
3328 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT);
3331 * Non copy-reduction case. This function assumes that blocks were
3332 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this
3333 * padding safe without bounds checking.
3335 if (!buf_loaned) {
3337 * Set the size of each mblk in the chain until we've consumed
3338 * the specified length for all but the last one.
3340 while ((mpsize = MBLKSIZE(mp)) < len) {
3341 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0);
3342 mp->b_wptr += mpsize;
3343 len -= mpsize;
3344 mp = mp->b_cont;
3345 ASSERT(mp != NULL);
3348 ASSERT(len + remainder <= mpsize);
3349 mp->b_wptr += len;
3350 for (i = 0; i < remainder; i++)
3351 *mp->b_wptr++ = '\0';
3352 return;
3356 * No remainder mblk required.
3358 if (remainder == 0)
3359 return;
3362 * Get to the last mblk in the chain.
3364 while (mp->b_cont != NULL)
3365 mp = mp->b_cont;
3368 * In case of copy-reduction mblks, the size of the mblks are fixed
3369 * and are of the size of the loaned buffers. Allocate a remainder
3370 * mblk and chain it to the data buffers. This is sub-optimal, but not
3371 * expected to happen commonly.
3373 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err);
3374 ASSERT(rmp != NULL);
3375 ASSERT(alloc_err == 0);
3377 for (i = 0; i < remainder; i++)
3378 *rmp->b_wptr++ = '\0';
3380 rmp->b_datap->db_type = M_DATA;
3381 mp->b_cont = rmp;