8155 simplify dmu_write_policy handling of pre-compressed buffers
[unleashed.git] / usr / src / uts / common / fs / zfs / dbuf.c
blob23d4d3b0bfdeb5443c4adeb32a61c8c4062cd67d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
51 uint_t zfs_dbuf_evict_key;
53 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
54 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 #ifndef __lint
57 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
58 dmu_buf_evict_func_t *evict_func_sync,
59 dmu_buf_evict_func_t *evict_func_async,
60 dmu_buf_t **clear_on_evict_dbufp);
61 #endif /* ! __lint */
64 * Global data structures and functions for the dbuf cache.
66 static kmem_cache_t *dbuf_kmem_cache;
67 static taskq_t *dbu_evict_taskq;
69 static kthread_t *dbuf_cache_evict_thread;
70 static kmutex_t dbuf_evict_lock;
71 static kcondvar_t dbuf_evict_cv;
72 static boolean_t dbuf_evict_thread_exit;
75 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
76 * are not currently held but have been recently released. These dbufs
77 * are not eligible for arc eviction until they are aged out of the cache.
78 * Dbufs are added to the dbuf cache once the last hold is released. If a
79 * dbuf is later accessed and still exists in the dbuf cache, then it will
80 * be removed from the cache and later re-added to the head of the cache.
81 * Dbufs that are aged out of the cache will be immediately destroyed and
82 * become eligible for arc eviction.
84 static multilist_t *dbuf_cache;
85 static refcount_t dbuf_cache_size;
86 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
88 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
89 int dbuf_cache_max_shift = 5;
92 * The dbuf cache uses a three-stage eviction policy:
93 * - A low water marker designates when the dbuf eviction thread
94 * should stop evicting from the dbuf cache.
95 * - When we reach the maximum size (aka mid water mark), we
96 * signal the eviction thread to run.
97 * - The high water mark indicates when the eviction thread
98 * is unable to keep up with the incoming load and eviction must
99 * happen in the context of the calling thread.
101 * The dbuf cache:
102 * (max size)
103 * low water mid water hi water
104 * +----------------------------------------+----------+----------+
105 * | | | |
106 * | | | |
107 * | | | |
108 * | | | |
109 * +----------------------------------------+----------+----------+
110 * stop signal evict
111 * evicting eviction directly
112 * thread
114 * The high and low water marks indicate the operating range for the eviction
115 * thread. The low water mark is, by default, 90% of the total size of the
116 * cache and the high water mark is at 110% (both of these percentages can be
117 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
118 * respectively). The eviction thread will try to ensure that the cache remains
119 * within this range by waking up every second and checking if the cache is
120 * above the low water mark. The thread can also be woken up by callers adding
121 * elements into the cache if the cache is larger than the mid water (i.e max
122 * cache size). Once the eviction thread is woken up and eviction is required,
123 * it will continue evicting buffers until it's able to reduce the cache size
124 * to the low water mark. If the cache size continues to grow and hits the high
125 * water mark, then callers adding elments to the cache will begin to evict
126 * directly from the cache until the cache is no longer above the high water
127 * mark.
131 * The percentage above and below the maximum cache size.
133 uint_t dbuf_cache_hiwater_pct = 10;
134 uint_t dbuf_cache_lowater_pct = 10;
136 /* ARGSUSED */
137 static int
138 dbuf_cons(void *vdb, void *unused, int kmflag)
140 dmu_buf_impl_t *db = vdb;
141 bzero(db, sizeof (dmu_buf_impl_t));
143 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
144 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
145 multilist_link_init(&db->db_cache_link);
146 refcount_create(&db->db_holds);
148 return (0);
151 /* ARGSUSED */
152 static void
153 dbuf_dest(void *vdb, void *unused)
155 dmu_buf_impl_t *db = vdb;
156 mutex_destroy(&db->db_mtx);
157 cv_destroy(&db->db_changed);
158 ASSERT(!multilist_link_active(&db->db_cache_link));
159 refcount_destroy(&db->db_holds);
163 * dbuf hash table routines
165 static dbuf_hash_table_t dbuf_hash_table;
167 static uint64_t dbuf_hash_count;
169 static uint64_t
170 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
172 uintptr_t osv = (uintptr_t)os;
173 uint64_t crc = -1ULL;
175 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
181 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
183 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
185 return (crc);
188 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
189 ((dbuf)->db.db_object == (obj) && \
190 (dbuf)->db_objset == (os) && \
191 (dbuf)->db_level == (level) && \
192 (dbuf)->db_blkid == (blkid))
194 dmu_buf_impl_t *
195 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
197 dbuf_hash_table_t *h = &dbuf_hash_table;
198 uint64_t hv = dbuf_hash(os, obj, level, blkid);
199 uint64_t idx = hv & h->hash_table_mask;
200 dmu_buf_impl_t *db;
202 mutex_enter(DBUF_HASH_MUTEX(h, idx));
203 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
204 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
205 mutex_enter(&db->db_mtx);
206 if (db->db_state != DB_EVICTING) {
207 mutex_exit(DBUF_HASH_MUTEX(h, idx));
208 return (db);
210 mutex_exit(&db->db_mtx);
213 mutex_exit(DBUF_HASH_MUTEX(h, idx));
214 return (NULL);
217 static dmu_buf_impl_t *
218 dbuf_find_bonus(objset_t *os, uint64_t object)
220 dnode_t *dn;
221 dmu_buf_impl_t *db = NULL;
223 if (dnode_hold(os, object, FTAG, &dn) == 0) {
224 rw_enter(&dn->dn_struct_rwlock, RW_READER);
225 if (dn->dn_bonus != NULL) {
226 db = dn->dn_bonus;
227 mutex_enter(&db->db_mtx);
229 rw_exit(&dn->dn_struct_rwlock);
230 dnode_rele(dn, FTAG);
232 return (db);
236 * Insert an entry into the hash table. If there is already an element
237 * equal to elem in the hash table, then the already existing element
238 * will be returned and the new element will not be inserted.
239 * Otherwise returns NULL.
241 static dmu_buf_impl_t *
242 dbuf_hash_insert(dmu_buf_impl_t *db)
244 dbuf_hash_table_t *h = &dbuf_hash_table;
245 objset_t *os = db->db_objset;
246 uint64_t obj = db->db.db_object;
247 int level = db->db_level;
248 uint64_t blkid = db->db_blkid;
249 uint64_t hv = dbuf_hash(os, obj, level, blkid);
250 uint64_t idx = hv & h->hash_table_mask;
251 dmu_buf_impl_t *dbf;
253 mutex_enter(DBUF_HASH_MUTEX(h, idx));
254 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
255 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
256 mutex_enter(&dbf->db_mtx);
257 if (dbf->db_state != DB_EVICTING) {
258 mutex_exit(DBUF_HASH_MUTEX(h, idx));
259 return (dbf);
261 mutex_exit(&dbf->db_mtx);
265 mutex_enter(&db->db_mtx);
266 db->db_hash_next = h->hash_table[idx];
267 h->hash_table[idx] = db;
268 mutex_exit(DBUF_HASH_MUTEX(h, idx));
269 atomic_inc_64(&dbuf_hash_count);
271 return (NULL);
275 * Remove an entry from the hash table. It must be in the EVICTING state.
277 static void
278 dbuf_hash_remove(dmu_buf_impl_t *db)
280 dbuf_hash_table_t *h = &dbuf_hash_table;
281 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
282 db->db_level, db->db_blkid);
283 uint64_t idx = hv & h->hash_table_mask;
284 dmu_buf_impl_t *dbf, **dbp;
287 * We musn't hold db_mtx to maintain lock ordering:
288 * DBUF_HASH_MUTEX > db_mtx.
290 ASSERT(refcount_is_zero(&db->db_holds));
291 ASSERT(db->db_state == DB_EVICTING);
292 ASSERT(!MUTEX_HELD(&db->db_mtx));
294 mutex_enter(DBUF_HASH_MUTEX(h, idx));
295 dbp = &h->hash_table[idx];
296 while ((dbf = *dbp) != db) {
297 dbp = &dbf->db_hash_next;
298 ASSERT(dbf != NULL);
300 *dbp = db->db_hash_next;
301 db->db_hash_next = NULL;
302 mutex_exit(DBUF_HASH_MUTEX(h, idx));
303 atomic_dec_64(&dbuf_hash_count);
306 typedef enum {
307 DBVU_EVICTING,
308 DBVU_NOT_EVICTING
309 } dbvu_verify_type_t;
311 static void
312 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
314 #ifdef ZFS_DEBUG
315 int64_t holds;
317 if (db->db_user == NULL)
318 return;
320 /* Only data blocks support the attachment of user data. */
321 ASSERT(db->db_level == 0);
323 /* Clients must resolve a dbuf before attaching user data. */
324 ASSERT(db->db.db_data != NULL);
325 ASSERT3U(db->db_state, ==, DB_CACHED);
327 holds = refcount_count(&db->db_holds);
328 if (verify_type == DBVU_EVICTING) {
330 * Immediate eviction occurs when holds == dirtycnt.
331 * For normal eviction buffers, holds is zero on
332 * eviction, except when dbuf_fix_old_data() calls
333 * dbuf_clear_data(). However, the hold count can grow
334 * during eviction even though db_mtx is held (see
335 * dmu_bonus_hold() for an example), so we can only
336 * test the generic invariant that holds >= dirtycnt.
338 ASSERT3U(holds, >=, db->db_dirtycnt);
339 } else {
340 if (db->db_user_immediate_evict == TRUE)
341 ASSERT3U(holds, >=, db->db_dirtycnt);
342 else
343 ASSERT3U(holds, >, 0);
345 #endif
348 static void
349 dbuf_evict_user(dmu_buf_impl_t *db)
351 dmu_buf_user_t *dbu = db->db_user;
353 ASSERT(MUTEX_HELD(&db->db_mtx));
355 if (dbu == NULL)
356 return;
358 dbuf_verify_user(db, DBVU_EVICTING);
359 db->db_user = NULL;
361 #ifdef ZFS_DEBUG
362 if (dbu->dbu_clear_on_evict_dbufp != NULL)
363 *dbu->dbu_clear_on_evict_dbufp = NULL;
364 #endif
367 * There are two eviction callbacks - one that we call synchronously
368 * and one that we invoke via a taskq. The async one is useful for
369 * avoiding lock order reversals and limiting stack depth.
371 * Note that if we have a sync callback but no async callback,
372 * it's likely that the sync callback will free the structure
373 * containing the dbu. In that case we need to take care to not
374 * dereference dbu after calling the sync evict func.
376 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
378 if (dbu->dbu_evict_func_sync != NULL)
379 dbu->dbu_evict_func_sync(dbu);
381 if (has_async) {
382 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
383 dbu, 0, &dbu->dbu_tqent);
387 boolean_t
388 dbuf_is_metadata(dmu_buf_impl_t *db)
390 if (db->db_level > 0) {
391 return (B_TRUE);
392 } else {
393 boolean_t is_metadata;
395 DB_DNODE_ENTER(db);
396 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
397 DB_DNODE_EXIT(db);
399 return (is_metadata);
404 * This function *must* return indices evenly distributed between all
405 * sublists of the multilist. This is needed due to how the dbuf eviction
406 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
407 * distributed between all sublists and uses this assumption when
408 * deciding which sublist to evict from and how much to evict from it.
410 unsigned int
411 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
413 dmu_buf_impl_t *db = obj;
416 * The assumption here, is the hash value for a given
417 * dmu_buf_impl_t will remain constant throughout it's lifetime
418 * (i.e. it's objset, object, level and blkid fields don't change).
419 * Thus, we don't need to store the dbuf's sublist index
420 * on insertion, as this index can be recalculated on removal.
422 * Also, the low order bits of the hash value are thought to be
423 * distributed evenly. Otherwise, in the case that the multilist
424 * has a power of two number of sublists, each sublists' usage
425 * would not be evenly distributed.
427 return (dbuf_hash(db->db_objset, db->db.db_object,
428 db->db_level, db->db_blkid) %
429 multilist_get_num_sublists(ml));
432 static inline boolean_t
433 dbuf_cache_above_hiwater(void)
435 uint64_t dbuf_cache_hiwater_bytes =
436 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
438 return (refcount_count(&dbuf_cache_size) >
439 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
442 static inline boolean_t
443 dbuf_cache_above_lowater(void)
445 uint64_t dbuf_cache_lowater_bytes =
446 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
448 return (refcount_count(&dbuf_cache_size) >
449 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
453 * Evict the oldest eligible dbuf from the dbuf cache.
455 static void
456 dbuf_evict_one(void)
458 int idx = multilist_get_random_index(dbuf_cache);
459 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
461 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
464 * Set the thread's tsd to indicate that it's processing evictions.
465 * Once a thread stops evicting from the dbuf cache it will
466 * reset its tsd to NULL.
468 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
469 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
471 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
472 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
473 db = multilist_sublist_prev(mls, db);
476 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
477 multilist_sublist_t *, mls);
479 if (db != NULL) {
480 multilist_sublist_remove(mls, db);
481 multilist_sublist_unlock(mls);
482 (void) refcount_remove_many(&dbuf_cache_size,
483 db->db.db_size, db);
484 dbuf_destroy(db);
485 } else {
486 multilist_sublist_unlock(mls);
488 (void) tsd_set(zfs_dbuf_evict_key, NULL);
492 * The dbuf evict thread is responsible for aging out dbufs from the
493 * cache. Once the cache has reached it's maximum size, dbufs are removed
494 * and destroyed. The eviction thread will continue running until the size
495 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
496 * out of the cache it is destroyed and becomes eligible for arc eviction.
498 static void
499 dbuf_evict_thread(void)
501 callb_cpr_t cpr;
503 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
505 mutex_enter(&dbuf_evict_lock);
506 while (!dbuf_evict_thread_exit) {
507 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
508 CALLB_CPR_SAFE_BEGIN(&cpr);
509 (void) cv_timedwait_hires(&dbuf_evict_cv,
510 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
511 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
513 mutex_exit(&dbuf_evict_lock);
516 * Keep evicting as long as we're above the low water mark
517 * for the cache. We do this without holding the locks to
518 * minimize lock contention.
520 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
521 dbuf_evict_one();
524 mutex_enter(&dbuf_evict_lock);
527 dbuf_evict_thread_exit = B_FALSE;
528 cv_broadcast(&dbuf_evict_cv);
529 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
530 thread_exit();
534 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
535 * If the dbuf cache is at its high water mark, then evict a dbuf from the
536 * dbuf cache using the callers context.
538 static void
539 dbuf_evict_notify(void)
543 * We use thread specific data to track when a thread has
544 * started processing evictions. This allows us to avoid deeply
545 * nested stacks that would have a call flow similar to this:
547 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
548 * ^ |
549 * | |
550 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
552 * The dbuf_eviction_thread will always have its tsd set until
553 * that thread exits. All other threads will only set their tsd
554 * if they are participating in the eviction process. This only
555 * happens if the eviction thread is unable to process evictions
556 * fast enough. To keep the dbuf cache size in check, other threads
557 * can evict from the dbuf cache directly. Those threads will set
558 * their tsd values so that we ensure that they only evict one dbuf
559 * from the dbuf cache.
561 if (tsd_get(zfs_dbuf_evict_key) != NULL)
562 return;
564 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
565 boolean_t evict_now = B_FALSE;
567 mutex_enter(&dbuf_evict_lock);
568 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
569 evict_now = dbuf_cache_above_hiwater();
570 cv_signal(&dbuf_evict_cv);
572 mutex_exit(&dbuf_evict_lock);
574 if (evict_now) {
575 dbuf_evict_one();
580 void
581 dbuf_init(void)
583 uint64_t hsize = 1ULL << 16;
584 dbuf_hash_table_t *h = &dbuf_hash_table;
585 int i;
588 * The hash table is big enough to fill all of physical memory
589 * with an average 4K block size. The table will take up
590 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
592 while (hsize * 4096 < physmem * PAGESIZE)
593 hsize <<= 1;
595 retry:
596 h->hash_table_mask = hsize - 1;
597 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
598 if (h->hash_table == NULL) {
599 /* XXX - we should really return an error instead of assert */
600 ASSERT(hsize > (1ULL << 10));
601 hsize >>= 1;
602 goto retry;
605 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
606 sizeof (dmu_buf_impl_t),
607 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
609 for (i = 0; i < DBUF_MUTEXES; i++)
610 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
613 * Setup the parameters for the dbuf cache. We cap the size of the
614 * dbuf cache to 1/32nd (default) of the size of the ARC.
616 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
617 arc_max_bytes() >> dbuf_cache_max_shift);
620 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
621 * configuration is not required.
623 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
625 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
626 offsetof(dmu_buf_impl_t, db_cache_link),
627 dbuf_cache_multilist_index_func);
628 refcount_create(&dbuf_cache_size);
630 tsd_create(&zfs_dbuf_evict_key, NULL);
631 dbuf_evict_thread_exit = B_FALSE;
632 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
633 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
634 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
635 NULL, 0, &p0, TS_RUN, minclsyspri);
638 void
639 dbuf_fini(void)
641 dbuf_hash_table_t *h = &dbuf_hash_table;
642 int i;
644 for (i = 0; i < DBUF_MUTEXES; i++)
645 mutex_destroy(&h->hash_mutexes[i]);
646 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
647 kmem_cache_destroy(dbuf_kmem_cache);
648 taskq_destroy(dbu_evict_taskq);
650 mutex_enter(&dbuf_evict_lock);
651 dbuf_evict_thread_exit = B_TRUE;
652 while (dbuf_evict_thread_exit) {
653 cv_signal(&dbuf_evict_cv);
654 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
656 mutex_exit(&dbuf_evict_lock);
657 tsd_destroy(&zfs_dbuf_evict_key);
659 mutex_destroy(&dbuf_evict_lock);
660 cv_destroy(&dbuf_evict_cv);
662 refcount_destroy(&dbuf_cache_size);
663 multilist_destroy(dbuf_cache);
667 * Other stuff.
670 #ifdef ZFS_DEBUG
671 static void
672 dbuf_verify(dmu_buf_impl_t *db)
674 dnode_t *dn;
675 dbuf_dirty_record_t *dr;
677 ASSERT(MUTEX_HELD(&db->db_mtx));
679 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
680 return;
682 ASSERT(db->db_objset != NULL);
683 DB_DNODE_ENTER(db);
684 dn = DB_DNODE(db);
685 if (dn == NULL) {
686 ASSERT(db->db_parent == NULL);
687 ASSERT(db->db_blkptr == NULL);
688 } else {
689 ASSERT3U(db->db.db_object, ==, dn->dn_object);
690 ASSERT3P(db->db_objset, ==, dn->dn_objset);
691 ASSERT3U(db->db_level, <, dn->dn_nlevels);
692 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
693 db->db_blkid == DMU_SPILL_BLKID ||
694 !avl_is_empty(&dn->dn_dbufs));
696 if (db->db_blkid == DMU_BONUS_BLKID) {
697 ASSERT(dn != NULL);
698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
699 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
700 } else if (db->db_blkid == DMU_SPILL_BLKID) {
701 ASSERT(dn != NULL);
702 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
703 ASSERT0(db->db.db_offset);
704 } else {
705 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
708 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
709 ASSERT(dr->dr_dbuf == db);
711 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
712 ASSERT(dr->dr_dbuf == db);
715 * We can't assert that db_size matches dn_datablksz because it
716 * can be momentarily different when another thread is doing
717 * dnode_set_blksz().
719 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
720 dr = db->db_data_pending;
722 * It should only be modified in syncing context, so
723 * make sure we only have one copy of the data.
725 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
728 /* verify db->db_blkptr */
729 if (db->db_blkptr) {
730 if (db->db_parent == dn->dn_dbuf) {
731 /* db is pointed to by the dnode */
732 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
733 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
734 ASSERT(db->db_parent == NULL);
735 else
736 ASSERT(db->db_parent != NULL);
737 if (db->db_blkid != DMU_SPILL_BLKID)
738 ASSERT3P(db->db_blkptr, ==,
739 &dn->dn_phys->dn_blkptr[db->db_blkid]);
740 } else {
741 /* db is pointed to by an indirect block */
742 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
743 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
744 ASSERT3U(db->db_parent->db.db_object, ==,
745 db->db.db_object);
747 * dnode_grow_indblksz() can make this fail if we don't
748 * have the struct_rwlock. XXX indblksz no longer
749 * grows. safe to do this now?
751 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
752 ASSERT3P(db->db_blkptr, ==,
753 ((blkptr_t *)db->db_parent->db.db_data +
754 db->db_blkid % epb));
758 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
759 (db->db_buf == NULL || db->db_buf->b_data) &&
760 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
761 db->db_state != DB_FILL && !dn->dn_free_txg) {
763 * If the blkptr isn't set but they have nonzero data,
764 * it had better be dirty, otherwise we'll lose that
765 * data when we evict this buffer.
767 * There is an exception to this rule for indirect blocks; in
768 * this case, if the indirect block is a hole, we fill in a few
769 * fields on each of the child blocks (importantly, birth time)
770 * to prevent hole birth times from being lost when you
771 * partially fill in a hole.
773 if (db->db_dirtycnt == 0) {
774 if (db->db_level == 0) {
775 uint64_t *buf = db->db.db_data;
776 int i;
778 for (i = 0; i < db->db.db_size >> 3; i++) {
779 ASSERT(buf[i] == 0);
781 } else {
782 blkptr_t *bps = db->db.db_data;
783 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
784 db->db.db_size);
786 * We want to verify that all the blkptrs in the
787 * indirect block are holes, but we may have
788 * automatically set up a few fields for them.
789 * We iterate through each blkptr and verify
790 * they only have those fields set.
792 for (int i = 0;
793 i < db->db.db_size / sizeof (blkptr_t);
794 i++) {
795 blkptr_t *bp = &bps[i];
796 ASSERT(ZIO_CHECKSUM_IS_ZERO(
797 &bp->blk_cksum));
798 ASSERT(
799 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
800 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
801 DVA_IS_EMPTY(&bp->blk_dva[2]));
802 ASSERT0(bp->blk_fill);
803 ASSERT0(bp->blk_pad[0]);
804 ASSERT0(bp->blk_pad[1]);
805 ASSERT(!BP_IS_EMBEDDED(bp));
806 ASSERT(BP_IS_HOLE(bp));
807 ASSERT0(bp->blk_phys_birth);
812 DB_DNODE_EXIT(db);
814 #endif
816 static void
817 dbuf_clear_data(dmu_buf_impl_t *db)
819 ASSERT(MUTEX_HELD(&db->db_mtx));
820 dbuf_evict_user(db);
821 ASSERT3P(db->db_buf, ==, NULL);
822 db->db.db_data = NULL;
823 if (db->db_state != DB_NOFILL)
824 db->db_state = DB_UNCACHED;
827 static void
828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
830 ASSERT(MUTEX_HELD(&db->db_mtx));
831 ASSERT(buf != NULL);
833 db->db_buf = buf;
834 ASSERT(buf->b_data != NULL);
835 db->db.db_data = buf->b_data;
839 * Loan out an arc_buf for read. Return the loaned arc_buf.
841 arc_buf_t *
842 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
844 arc_buf_t *abuf;
846 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
847 mutex_enter(&db->db_mtx);
848 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
849 int blksz = db->db.db_size;
850 spa_t *spa = db->db_objset->os_spa;
852 mutex_exit(&db->db_mtx);
853 abuf = arc_loan_buf(spa, B_FALSE, blksz);
854 bcopy(db->db.db_data, abuf->b_data, blksz);
855 } else {
856 abuf = db->db_buf;
857 arc_loan_inuse_buf(abuf, db);
858 db->db_buf = NULL;
859 dbuf_clear_data(db);
860 mutex_exit(&db->db_mtx);
862 return (abuf);
866 * Calculate which level n block references the data at the level 0 offset
867 * provided.
869 uint64_t
870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
872 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
874 * The level n blkid is equal to the level 0 blkid divided by
875 * the number of level 0s in a level n block.
877 * The level 0 blkid is offset >> datablkshift =
878 * offset / 2^datablkshift.
880 * The number of level 0s in a level n is the number of block
881 * pointers in an indirect block, raised to the power of level.
882 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
883 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
885 * Thus, the level n blkid is: offset /
886 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
887 * = offset / 2^(datablkshift + level *
888 * (indblkshift - SPA_BLKPTRSHIFT))
889 * = offset >> (datablkshift + level *
890 * (indblkshift - SPA_BLKPTRSHIFT))
892 return (offset >> (dn->dn_datablkshift + level *
893 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
894 } else {
895 ASSERT3U(offset, <, dn->dn_datablksz);
896 return (0);
900 static void
901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
903 dmu_buf_impl_t *db = vdb;
905 mutex_enter(&db->db_mtx);
906 ASSERT3U(db->db_state, ==, DB_READ);
908 * All reads are synchronous, so we must have a hold on the dbuf
910 ASSERT(refcount_count(&db->db_holds) > 0);
911 ASSERT(db->db_buf == NULL);
912 ASSERT(db->db.db_data == NULL);
913 if (db->db_level == 0 && db->db_freed_in_flight) {
914 /* we were freed in flight; disregard any error */
915 arc_release(buf, db);
916 bzero(buf->b_data, db->db.db_size);
917 arc_buf_freeze(buf);
918 db->db_freed_in_flight = FALSE;
919 dbuf_set_data(db, buf);
920 db->db_state = DB_CACHED;
921 } else if (zio == NULL || zio->io_error == 0) {
922 dbuf_set_data(db, buf);
923 db->db_state = DB_CACHED;
924 } else {
925 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926 ASSERT3P(db->db_buf, ==, NULL);
927 arc_buf_destroy(buf, db);
928 db->db_state = DB_UNCACHED;
930 cv_broadcast(&db->db_changed);
931 dbuf_rele_and_unlock(db, NULL);
934 static void
935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
937 dnode_t *dn;
938 zbookmark_phys_t zb;
939 arc_flags_t aflags = ARC_FLAG_NOWAIT;
941 DB_DNODE_ENTER(db);
942 dn = DB_DNODE(db);
943 ASSERT(!refcount_is_zero(&db->db_holds));
944 /* We need the struct_rwlock to prevent db_blkptr from changing. */
945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947 ASSERT(db->db_state == DB_UNCACHED);
948 ASSERT(db->db_buf == NULL);
950 if (db->db_blkid == DMU_BONUS_BLKID) {
951 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
953 ASSERT3U(bonuslen, <=, db->db.db_size);
954 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
955 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
956 if (bonuslen < DN_MAX_BONUSLEN)
957 bzero(db->db.db_data, DN_MAX_BONUSLEN);
958 if (bonuslen)
959 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
960 DB_DNODE_EXIT(db);
961 db->db_state = DB_CACHED;
962 mutex_exit(&db->db_mtx);
963 return;
967 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
968 * processes the delete record and clears the bp while we are waiting
969 * for the dn_mtx (resulting in a "no" from block_freed).
971 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
972 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
973 BP_IS_HOLE(db->db_blkptr)))) {
974 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
976 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
977 db->db.db_size));
978 bzero(db->db.db_data, db->db.db_size);
980 if (db->db_blkptr != NULL && db->db_level > 0 &&
981 BP_IS_HOLE(db->db_blkptr) &&
982 db->db_blkptr->blk_birth != 0) {
983 blkptr_t *bps = db->db.db_data;
984 for (int i = 0; i < ((1 <<
985 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
986 i++) {
987 blkptr_t *bp = &bps[i];
988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
989 1 << dn->dn_indblkshift);
990 BP_SET_LSIZE(bp,
991 BP_GET_LEVEL(db->db_blkptr) == 1 ?
992 dn->dn_datablksz :
993 BP_GET_LSIZE(db->db_blkptr));
994 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
995 BP_SET_LEVEL(bp,
996 BP_GET_LEVEL(db->db_blkptr) - 1);
997 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1000 DB_DNODE_EXIT(db);
1001 db->db_state = DB_CACHED;
1002 mutex_exit(&db->db_mtx);
1003 return;
1006 DB_DNODE_EXIT(db);
1008 db->db_state = DB_READ;
1009 mutex_exit(&db->db_mtx);
1011 if (DBUF_IS_L2CACHEABLE(db))
1012 aflags |= ARC_FLAG_L2CACHE;
1014 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1015 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1016 db->db.db_object, db->db_level, db->db_blkid);
1018 dbuf_add_ref(db, NULL);
1020 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1021 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1022 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1023 &aflags, &zb);
1027 * This is our just-in-time copy function. It makes a copy of buffers that
1028 * have been modified in a previous transaction group before we access them in
1029 * the current active group.
1031 * This function is used in three places: when we are dirtying a buffer for the
1032 * first time in a txg, when we are freeing a range in a dnode that includes
1033 * this buffer, and when we are accessing a buffer which was received compressed
1034 * and later referenced in a WRITE_BYREF record.
1036 * Note that when we are called from dbuf_free_range() we do not put a hold on
1037 * the buffer, we just traverse the active dbuf list for the dnode.
1039 static void
1040 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1042 dbuf_dirty_record_t *dr = db->db_last_dirty;
1044 ASSERT(MUTEX_HELD(&db->db_mtx));
1045 ASSERT(db->db.db_data != NULL);
1046 ASSERT(db->db_level == 0);
1047 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1049 if (dr == NULL ||
1050 (dr->dt.dl.dr_data !=
1051 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1052 return;
1055 * If the last dirty record for this dbuf has not yet synced
1056 * and its referencing the dbuf data, either:
1057 * reset the reference to point to a new copy,
1058 * or (if there a no active holders)
1059 * just null out the current db_data pointer.
1061 ASSERT(dr->dr_txg >= txg - 2);
1062 if (db->db_blkid == DMU_BONUS_BLKID) {
1063 /* Note that the data bufs here are zio_bufs */
1064 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1065 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1066 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1067 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1068 int size = arc_buf_size(db->db_buf);
1069 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1070 spa_t *spa = db->db_objset->os_spa;
1071 enum zio_compress compress_type =
1072 arc_get_compression(db->db_buf);
1074 if (compress_type == ZIO_COMPRESS_OFF) {
1075 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1076 } else {
1077 ASSERT3U(type, ==, ARC_BUFC_DATA);
1078 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1079 size, arc_buf_lsize(db->db_buf), compress_type);
1081 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1082 } else {
1083 db->db_buf = NULL;
1084 dbuf_clear_data(db);
1089 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1091 int err = 0;
1092 boolean_t prefetch;
1093 dnode_t *dn;
1096 * We don't have to hold the mutex to check db_state because it
1097 * can't be freed while we have a hold on the buffer.
1099 ASSERT(!refcount_is_zero(&db->db_holds));
1101 if (db->db_state == DB_NOFILL)
1102 return (SET_ERROR(EIO));
1104 DB_DNODE_ENTER(db);
1105 dn = DB_DNODE(db);
1106 if ((flags & DB_RF_HAVESTRUCT) == 0)
1107 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1109 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1110 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1111 DBUF_IS_CACHEABLE(db);
1113 mutex_enter(&db->db_mtx);
1114 if (db->db_state == DB_CACHED) {
1116 * If the arc buf is compressed, we need to decompress it to
1117 * read the data. This could happen during the "zfs receive" of
1118 * a stream which is compressed and deduplicated.
1120 if (db->db_buf != NULL &&
1121 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1122 dbuf_fix_old_data(db,
1123 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1124 err = arc_decompress(db->db_buf);
1125 dbuf_set_data(db, db->db_buf);
1127 mutex_exit(&db->db_mtx);
1128 if (prefetch)
1129 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1130 if ((flags & DB_RF_HAVESTRUCT) == 0)
1131 rw_exit(&dn->dn_struct_rwlock);
1132 DB_DNODE_EXIT(db);
1133 } else if (db->db_state == DB_UNCACHED) {
1134 spa_t *spa = dn->dn_objset->os_spa;
1135 boolean_t need_wait = B_FALSE;
1137 if (zio == NULL &&
1138 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1139 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1140 need_wait = B_TRUE;
1142 dbuf_read_impl(db, zio, flags);
1144 /* dbuf_read_impl has dropped db_mtx for us */
1146 if (prefetch)
1147 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1149 if ((flags & DB_RF_HAVESTRUCT) == 0)
1150 rw_exit(&dn->dn_struct_rwlock);
1151 DB_DNODE_EXIT(db);
1153 if (need_wait)
1154 err = zio_wait(zio);
1155 } else {
1157 * Another reader came in while the dbuf was in flight
1158 * between UNCACHED and CACHED. Either a writer will finish
1159 * writing the buffer (sending the dbuf to CACHED) or the
1160 * first reader's request will reach the read_done callback
1161 * and send the dbuf to CACHED. Otherwise, a failure
1162 * occurred and the dbuf went to UNCACHED.
1164 mutex_exit(&db->db_mtx);
1165 if (prefetch)
1166 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1167 if ((flags & DB_RF_HAVESTRUCT) == 0)
1168 rw_exit(&dn->dn_struct_rwlock);
1169 DB_DNODE_EXIT(db);
1171 /* Skip the wait per the caller's request. */
1172 mutex_enter(&db->db_mtx);
1173 if ((flags & DB_RF_NEVERWAIT) == 0) {
1174 while (db->db_state == DB_READ ||
1175 db->db_state == DB_FILL) {
1176 ASSERT(db->db_state == DB_READ ||
1177 (flags & DB_RF_HAVESTRUCT) == 0);
1178 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1179 db, zio_t *, zio);
1180 cv_wait(&db->db_changed, &db->db_mtx);
1182 if (db->db_state == DB_UNCACHED)
1183 err = SET_ERROR(EIO);
1185 mutex_exit(&db->db_mtx);
1188 return (err);
1191 static void
1192 dbuf_noread(dmu_buf_impl_t *db)
1194 ASSERT(!refcount_is_zero(&db->db_holds));
1195 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1196 mutex_enter(&db->db_mtx);
1197 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1198 cv_wait(&db->db_changed, &db->db_mtx);
1199 if (db->db_state == DB_UNCACHED) {
1200 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1201 spa_t *spa = db->db_objset->os_spa;
1203 ASSERT(db->db_buf == NULL);
1204 ASSERT(db->db.db_data == NULL);
1205 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1206 db->db_state = DB_FILL;
1207 } else if (db->db_state == DB_NOFILL) {
1208 dbuf_clear_data(db);
1209 } else {
1210 ASSERT3U(db->db_state, ==, DB_CACHED);
1212 mutex_exit(&db->db_mtx);
1215 void
1216 dbuf_unoverride(dbuf_dirty_record_t *dr)
1218 dmu_buf_impl_t *db = dr->dr_dbuf;
1219 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1220 uint64_t txg = dr->dr_txg;
1222 ASSERT(MUTEX_HELD(&db->db_mtx));
1224 * This assert is valid because dmu_sync() expects to be called by
1225 * a zilog's get_data while holding a range lock. This call only
1226 * comes from dbuf_dirty() callers who must also hold a range lock.
1228 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1229 ASSERT(db->db_level == 0);
1231 if (db->db_blkid == DMU_BONUS_BLKID ||
1232 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1233 return;
1235 ASSERT(db->db_data_pending != dr);
1237 /* free this block */
1238 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1239 zio_free(db->db_objset->os_spa, txg, bp);
1241 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1242 dr->dt.dl.dr_nopwrite = B_FALSE;
1245 * Release the already-written buffer, so we leave it in
1246 * a consistent dirty state. Note that all callers are
1247 * modifying the buffer, so they will immediately do
1248 * another (redundant) arc_release(). Therefore, leave
1249 * the buf thawed to save the effort of freezing &
1250 * immediately re-thawing it.
1252 arc_release(dr->dt.dl.dr_data, db);
1256 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1257 * data blocks in the free range, so that any future readers will find
1258 * empty blocks.
1260 void
1261 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1262 dmu_tx_t *tx)
1264 dmu_buf_impl_t db_search;
1265 dmu_buf_impl_t *db, *db_next;
1266 uint64_t txg = tx->tx_txg;
1267 avl_index_t where;
1269 if (end_blkid > dn->dn_maxblkid &&
1270 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1271 end_blkid = dn->dn_maxblkid;
1272 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1274 db_search.db_level = 0;
1275 db_search.db_blkid = start_blkid;
1276 db_search.db_state = DB_SEARCH;
1278 mutex_enter(&dn->dn_dbufs_mtx);
1279 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1280 ASSERT3P(db, ==, NULL);
1282 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1284 for (; db != NULL; db = db_next) {
1285 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1286 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1288 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1289 break;
1291 ASSERT3U(db->db_blkid, >=, start_blkid);
1293 /* found a level 0 buffer in the range */
1294 mutex_enter(&db->db_mtx);
1295 if (dbuf_undirty(db, tx)) {
1296 /* mutex has been dropped and dbuf destroyed */
1297 continue;
1300 if (db->db_state == DB_UNCACHED ||
1301 db->db_state == DB_NOFILL ||
1302 db->db_state == DB_EVICTING) {
1303 ASSERT(db->db.db_data == NULL);
1304 mutex_exit(&db->db_mtx);
1305 continue;
1307 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1308 /* will be handled in dbuf_read_done or dbuf_rele */
1309 db->db_freed_in_flight = TRUE;
1310 mutex_exit(&db->db_mtx);
1311 continue;
1313 if (refcount_count(&db->db_holds) == 0) {
1314 ASSERT(db->db_buf);
1315 dbuf_destroy(db);
1316 continue;
1318 /* The dbuf is referenced */
1320 if (db->db_last_dirty != NULL) {
1321 dbuf_dirty_record_t *dr = db->db_last_dirty;
1323 if (dr->dr_txg == txg) {
1325 * This buffer is "in-use", re-adjust the file
1326 * size to reflect that this buffer may
1327 * contain new data when we sync.
1329 if (db->db_blkid != DMU_SPILL_BLKID &&
1330 db->db_blkid > dn->dn_maxblkid)
1331 dn->dn_maxblkid = db->db_blkid;
1332 dbuf_unoverride(dr);
1333 } else {
1335 * This dbuf is not dirty in the open context.
1336 * Either uncache it (if its not referenced in
1337 * the open context) or reset its contents to
1338 * empty.
1340 dbuf_fix_old_data(db, txg);
1343 /* clear the contents if its cached */
1344 if (db->db_state == DB_CACHED) {
1345 ASSERT(db->db.db_data != NULL);
1346 arc_release(db->db_buf, db);
1347 bzero(db->db.db_data, db->db.db_size);
1348 arc_buf_freeze(db->db_buf);
1351 mutex_exit(&db->db_mtx);
1353 mutex_exit(&dn->dn_dbufs_mtx);
1356 void
1357 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1359 arc_buf_t *buf, *obuf;
1360 int osize = db->db.db_size;
1361 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1362 dnode_t *dn;
1364 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1366 DB_DNODE_ENTER(db);
1367 dn = DB_DNODE(db);
1369 /* XXX does *this* func really need the lock? */
1370 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1373 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1374 * is OK, because there can be no other references to the db
1375 * when we are changing its size, so no concurrent DB_FILL can
1376 * be happening.
1379 * XXX we should be doing a dbuf_read, checking the return
1380 * value and returning that up to our callers
1382 dmu_buf_will_dirty(&db->db, tx);
1384 /* create the data buffer for the new block */
1385 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1387 /* copy old block data to the new block */
1388 obuf = db->db_buf;
1389 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1390 /* zero the remainder */
1391 if (size > osize)
1392 bzero((uint8_t *)buf->b_data + osize, size - osize);
1394 mutex_enter(&db->db_mtx);
1395 dbuf_set_data(db, buf);
1396 arc_buf_destroy(obuf, db);
1397 db->db.db_size = size;
1399 if (db->db_level == 0) {
1400 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1401 db->db_last_dirty->dt.dl.dr_data = buf;
1403 mutex_exit(&db->db_mtx);
1405 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1406 DB_DNODE_EXIT(db);
1409 void
1410 dbuf_release_bp(dmu_buf_impl_t *db)
1412 objset_t *os = db->db_objset;
1414 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1415 ASSERT(arc_released(os->os_phys_buf) ||
1416 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1417 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1419 (void) arc_release(db->db_buf, db);
1423 * We already have a dirty record for this TXG, and we are being
1424 * dirtied again.
1426 static void
1427 dbuf_redirty(dbuf_dirty_record_t *dr)
1429 dmu_buf_impl_t *db = dr->dr_dbuf;
1431 ASSERT(MUTEX_HELD(&db->db_mtx));
1433 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1435 * If this buffer has already been written out,
1436 * we now need to reset its state.
1438 dbuf_unoverride(dr);
1439 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1440 db->db_state != DB_NOFILL) {
1441 /* Already released on initial dirty, so just thaw. */
1442 ASSERT(arc_released(db->db_buf));
1443 arc_buf_thaw(db->db_buf);
1448 dbuf_dirty_record_t *
1449 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1451 dnode_t *dn;
1452 objset_t *os;
1453 dbuf_dirty_record_t **drp, *dr;
1454 int drop_struct_lock = FALSE;
1455 int txgoff = tx->tx_txg & TXG_MASK;
1457 ASSERT(tx->tx_txg != 0);
1458 ASSERT(!refcount_is_zero(&db->db_holds));
1459 DMU_TX_DIRTY_BUF(tx, db);
1461 DB_DNODE_ENTER(db);
1462 dn = DB_DNODE(db);
1464 * Shouldn't dirty a regular buffer in syncing context. Private
1465 * objects may be dirtied in syncing context, but only if they
1466 * were already pre-dirtied in open context.
1468 #ifdef DEBUG
1469 if (dn->dn_objset->os_dsl_dataset != NULL) {
1470 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1471 RW_READER, FTAG);
1473 ASSERT(!dmu_tx_is_syncing(tx) ||
1474 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1475 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1476 dn->dn_objset->os_dsl_dataset == NULL);
1477 if (dn->dn_objset->os_dsl_dataset != NULL)
1478 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1479 #endif
1481 * We make this assert for private objects as well, but after we
1482 * check if we're already dirty. They are allowed to re-dirty
1483 * in syncing context.
1485 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1486 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1487 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1489 mutex_enter(&db->db_mtx);
1491 * XXX make this true for indirects too? The problem is that
1492 * transactions created with dmu_tx_create_assigned() from
1493 * syncing context don't bother holding ahead.
1495 ASSERT(db->db_level != 0 ||
1496 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1497 db->db_state == DB_NOFILL);
1499 mutex_enter(&dn->dn_mtx);
1501 * Don't set dirtyctx to SYNC if we're just modifying this as we
1502 * initialize the objset.
1504 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1505 if (dn->dn_objset->os_dsl_dataset != NULL) {
1506 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1507 RW_READER, FTAG);
1509 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1510 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1511 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1512 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1513 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1515 if (dn->dn_objset->os_dsl_dataset != NULL) {
1516 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1517 FTAG);
1520 mutex_exit(&dn->dn_mtx);
1522 if (db->db_blkid == DMU_SPILL_BLKID)
1523 dn->dn_have_spill = B_TRUE;
1526 * If this buffer is already dirty, we're done.
1528 drp = &db->db_last_dirty;
1529 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1530 db->db.db_object == DMU_META_DNODE_OBJECT);
1531 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1532 drp = &dr->dr_next;
1533 if (dr && dr->dr_txg == tx->tx_txg) {
1534 DB_DNODE_EXIT(db);
1536 dbuf_redirty(dr);
1537 mutex_exit(&db->db_mtx);
1538 return (dr);
1542 * Only valid if not already dirty.
1544 ASSERT(dn->dn_object == 0 ||
1545 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1546 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1548 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1549 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1550 dn->dn_phys->dn_nlevels > db->db_level ||
1551 dn->dn_next_nlevels[txgoff] > db->db_level ||
1552 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1553 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1556 * We should only be dirtying in syncing context if it's the
1557 * mos or we're initializing the os or it's a special object.
1558 * However, we are allowed to dirty in syncing context provided
1559 * we already dirtied it in open context. Hence we must make
1560 * this assertion only if we're not already dirty.
1562 os = dn->dn_objset;
1563 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1564 #ifdef DEBUG
1565 if (dn->dn_objset->os_dsl_dataset != NULL)
1566 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1567 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1568 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1569 if (dn->dn_objset->os_dsl_dataset != NULL)
1570 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1571 #endif
1572 ASSERT(db->db.db_size != 0);
1574 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1576 if (db->db_blkid != DMU_BONUS_BLKID) {
1577 dmu_objset_willuse_space(os, db->db.db_size, tx);
1581 * If this buffer is dirty in an old transaction group we need
1582 * to make a copy of it so that the changes we make in this
1583 * transaction group won't leak out when we sync the older txg.
1585 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1586 if (db->db_level == 0) {
1587 void *data_old = db->db_buf;
1589 if (db->db_state != DB_NOFILL) {
1590 if (db->db_blkid == DMU_BONUS_BLKID) {
1591 dbuf_fix_old_data(db, tx->tx_txg);
1592 data_old = db->db.db_data;
1593 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1595 * Release the data buffer from the cache so
1596 * that we can modify it without impacting
1597 * possible other users of this cached data
1598 * block. Note that indirect blocks and
1599 * private objects are not released until the
1600 * syncing state (since they are only modified
1601 * then).
1603 arc_release(db->db_buf, db);
1604 dbuf_fix_old_data(db, tx->tx_txg);
1605 data_old = db->db_buf;
1607 ASSERT(data_old != NULL);
1609 dr->dt.dl.dr_data = data_old;
1610 } else {
1611 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1612 list_create(&dr->dt.di.dr_children,
1613 sizeof (dbuf_dirty_record_t),
1614 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1616 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1617 dr->dr_accounted = db->db.db_size;
1618 dr->dr_dbuf = db;
1619 dr->dr_txg = tx->tx_txg;
1620 dr->dr_next = *drp;
1621 *drp = dr;
1624 * We could have been freed_in_flight between the dbuf_noread
1625 * and dbuf_dirty. We win, as though the dbuf_noread() had
1626 * happened after the free.
1628 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1629 db->db_blkid != DMU_SPILL_BLKID) {
1630 mutex_enter(&dn->dn_mtx);
1631 if (dn->dn_free_ranges[txgoff] != NULL) {
1632 range_tree_clear(dn->dn_free_ranges[txgoff],
1633 db->db_blkid, 1);
1635 mutex_exit(&dn->dn_mtx);
1636 db->db_freed_in_flight = FALSE;
1640 * This buffer is now part of this txg
1642 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1643 db->db_dirtycnt += 1;
1644 ASSERT3U(db->db_dirtycnt, <=, 3);
1646 mutex_exit(&db->db_mtx);
1648 if (db->db_blkid == DMU_BONUS_BLKID ||
1649 db->db_blkid == DMU_SPILL_BLKID) {
1650 mutex_enter(&dn->dn_mtx);
1651 ASSERT(!list_link_active(&dr->dr_dirty_node));
1652 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1653 mutex_exit(&dn->dn_mtx);
1654 dnode_setdirty(dn, tx);
1655 DB_DNODE_EXIT(db);
1656 return (dr);
1660 * The dn_struct_rwlock prevents db_blkptr from changing
1661 * due to a write from syncing context completing
1662 * while we are running, so we want to acquire it before
1663 * looking at db_blkptr.
1665 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1666 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1667 drop_struct_lock = TRUE;
1671 * If we are overwriting a dedup BP, then unless it is snapshotted,
1672 * when we get to syncing context we will need to decrement its
1673 * refcount in the DDT. Prefetch the relevant DDT block so that
1674 * syncing context won't have to wait for the i/o.
1676 ddt_prefetch(os->os_spa, db->db_blkptr);
1678 if (db->db_level == 0) {
1679 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1680 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1683 if (db->db_level+1 < dn->dn_nlevels) {
1684 dmu_buf_impl_t *parent = db->db_parent;
1685 dbuf_dirty_record_t *di;
1686 int parent_held = FALSE;
1688 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1689 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1691 parent = dbuf_hold_level(dn, db->db_level+1,
1692 db->db_blkid >> epbs, FTAG);
1693 ASSERT(parent != NULL);
1694 parent_held = TRUE;
1696 if (drop_struct_lock)
1697 rw_exit(&dn->dn_struct_rwlock);
1698 ASSERT3U(db->db_level+1, ==, parent->db_level);
1699 di = dbuf_dirty(parent, tx);
1700 if (parent_held)
1701 dbuf_rele(parent, FTAG);
1703 mutex_enter(&db->db_mtx);
1705 * Since we've dropped the mutex, it's possible that
1706 * dbuf_undirty() might have changed this out from under us.
1708 if (db->db_last_dirty == dr ||
1709 dn->dn_object == DMU_META_DNODE_OBJECT) {
1710 mutex_enter(&di->dt.di.dr_mtx);
1711 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1712 ASSERT(!list_link_active(&dr->dr_dirty_node));
1713 list_insert_tail(&di->dt.di.dr_children, dr);
1714 mutex_exit(&di->dt.di.dr_mtx);
1715 dr->dr_parent = di;
1717 mutex_exit(&db->db_mtx);
1718 } else {
1719 ASSERT(db->db_level+1 == dn->dn_nlevels);
1720 ASSERT(db->db_blkid < dn->dn_nblkptr);
1721 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1722 mutex_enter(&dn->dn_mtx);
1723 ASSERT(!list_link_active(&dr->dr_dirty_node));
1724 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1725 mutex_exit(&dn->dn_mtx);
1726 if (drop_struct_lock)
1727 rw_exit(&dn->dn_struct_rwlock);
1730 dnode_setdirty(dn, tx);
1731 DB_DNODE_EXIT(db);
1732 return (dr);
1736 * Undirty a buffer in the transaction group referenced by the given
1737 * transaction. Return whether this evicted the dbuf.
1739 static boolean_t
1740 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1742 dnode_t *dn;
1743 uint64_t txg = tx->tx_txg;
1744 dbuf_dirty_record_t *dr, **drp;
1746 ASSERT(txg != 0);
1749 * Due to our use of dn_nlevels below, this can only be called
1750 * in open context, unless we are operating on the MOS.
1751 * From syncing context, dn_nlevels may be different from the
1752 * dn_nlevels used when dbuf was dirtied.
1754 ASSERT(db->db_objset ==
1755 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1756 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1757 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1758 ASSERT0(db->db_level);
1759 ASSERT(MUTEX_HELD(&db->db_mtx));
1762 * If this buffer is not dirty, we're done.
1764 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1765 if (dr->dr_txg <= txg)
1766 break;
1767 if (dr == NULL || dr->dr_txg < txg)
1768 return (B_FALSE);
1769 ASSERT(dr->dr_txg == txg);
1770 ASSERT(dr->dr_dbuf == db);
1772 DB_DNODE_ENTER(db);
1773 dn = DB_DNODE(db);
1775 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1777 ASSERT(db->db.db_size != 0);
1779 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1780 dr->dr_accounted, txg);
1782 *drp = dr->dr_next;
1785 * Note that there are three places in dbuf_dirty()
1786 * where this dirty record may be put on a list.
1787 * Make sure to do a list_remove corresponding to
1788 * every one of those list_insert calls.
1790 if (dr->dr_parent) {
1791 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1792 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1793 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1794 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1795 db->db_level + 1 == dn->dn_nlevels) {
1796 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1797 mutex_enter(&dn->dn_mtx);
1798 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1799 mutex_exit(&dn->dn_mtx);
1801 DB_DNODE_EXIT(db);
1803 if (db->db_state != DB_NOFILL) {
1804 dbuf_unoverride(dr);
1806 ASSERT(db->db_buf != NULL);
1807 ASSERT(dr->dt.dl.dr_data != NULL);
1808 if (dr->dt.dl.dr_data != db->db_buf)
1809 arc_buf_destroy(dr->dt.dl.dr_data, db);
1812 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1814 ASSERT(db->db_dirtycnt > 0);
1815 db->db_dirtycnt -= 1;
1817 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1818 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1819 dbuf_destroy(db);
1820 return (B_TRUE);
1823 return (B_FALSE);
1826 void
1827 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1829 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1830 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1832 ASSERT(tx->tx_txg != 0);
1833 ASSERT(!refcount_is_zero(&db->db_holds));
1836 * Quick check for dirtyness. For already dirty blocks, this
1837 * reduces runtime of this function by >90%, and overall performance
1838 * by 50% for some workloads (e.g. file deletion with indirect blocks
1839 * cached).
1841 mutex_enter(&db->db_mtx);
1842 dbuf_dirty_record_t *dr;
1843 for (dr = db->db_last_dirty;
1844 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1846 * It's possible that it is already dirty but not cached,
1847 * because there are some calls to dbuf_dirty() that don't
1848 * go through dmu_buf_will_dirty().
1850 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1851 /* This dbuf is already dirty and cached. */
1852 dbuf_redirty(dr);
1853 mutex_exit(&db->db_mtx);
1854 return;
1857 mutex_exit(&db->db_mtx);
1859 DB_DNODE_ENTER(db);
1860 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1861 rf |= DB_RF_HAVESTRUCT;
1862 DB_DNODE_EXIT(db);
1863 (void) dbuf_read(db, NULL, rf);
1864 (void) dbuf_dirty(db, tx);
1867 void
1868 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1870 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1872 db->db_state = DB_NOFILL;
1874 dmu_buf_will_fill(db_fake, tx);
1877 void
1878 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1880 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1882 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1883 ASSERT(tx->tx_txg != 0);
1884 ASSERT(db->db_level == 0);
1885 ASSERT(!refcount_is_zero(&db->db_holds));
1887 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1888 dmu_tx_private_ok(tx));
1890 dbuf_noread(db);
1891 (void) dbuf_dirty(db, tx);
1894 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1895 /* ARGSUSED */
1896 void
1897 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1899 mutex_enter(&db->db_mtx);
1900 DBUF_VERIFY(db);
1902 if (db->db_state == DB_FILL) {
1903 if (db->db_level == 0 && db->db_freed_in_flight) {
1904 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1905 /* we were freed while filling */
1906 /* XXX dbuf_undirty? */
1907 bzero(db->db.db_data, db->db.db_size);
1908 db->db_freed_in_flight = FALSE;
1910 db->db_state = DB_CACHED;
1911 cv_broadcast(&db->db_changed);
1913 mutex_exit(&db->db_mtx);
1916 void
1917 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1918 bp_embedded_type_t etype, enum zio_compress comp,
1919 int uncompressed_size, int compressed_size, int byteorder,
1920 dmu_tx_t *tx)
1922 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1923 struct dirty_leaf *dl;
1924 dmu_object_type_t type;
1926 if (etype == BP_EMBEDDED_TYPE_DATA) {
1927 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1928 SPA_FEATURE_EMBEDDED_DATA));
1931 DB_DNODE_ENTER(db);
1932 type = DB_DNODE(db)->dn_type;
1933 DB_DNODE_EXIT(db);
1935 ASSERT0(db->db_level);
1936 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1938 dmu_buf_will_not_fill(dbuf, tx);
1940 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1941 dl = &db->db_last_dirty->dt.dl;
1942 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1943 data, comp, uncompressed_size, compressed_size);
1944 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1945 BP_SET_TYPE(&dl->dr_overridden_by, type);
1946 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1947 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1949 dl->dr_override_state = DR_OVERRIDDEN;
1950 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1954 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1955 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1957 void
1958 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1960 ASSERT(!refcount_is_zero(&db->db_holds));
1961 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1962 ASSERT(db->db_level == 0);
1963 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1964 ASSERT(buf != NULL);
1965 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1966 ASSERT(tx->tx_txg != 0);
1968 arc_return_buf(buf, db);
1969 ASSERT(arc_released(buf));
1971 mutex_enter(&db->db_mtx);
1973 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1974 cv_wait(&db->db_changed, &db->db_mtx);
1976 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1978 if (db->db_state == DB_CACHED &&
1979 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1980 mutex_exit(&db->db_mtx);
1981 (void) dbuf_dirty(db, tx);
1982 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1983 arc_buf_destroy(buf, db);
1984 xuio_stat_wbuf_copied();
1985 return;
1988 xuio_stat_wbuf_nocopy();
1989 if (db->db_state == DB_CACHED) {
1990 dbuf_dirty_record_t *dr = db->db_last_dirty;
1992 ASSERT(db->db_buf != NULL);
1993 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1994 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1995 if (!arc_released(db->db_buf)) {
1996 ASSERT(dr->dt.dl.dr_override_state ==
1997 DR_OVERRIDDEN);
1998 arc_release(db->db_buf, db);
2000 dr->dt.dl.dr_data = buf;
2001 arc_buf_destroy(db->db_buf, db);
2002 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2003 arc_release(db->db_buf, db);
2004 arc_buf_destroy(db->db_buf, db);
2006 db->db_buf = NULL;
2008 ASSERT(db->db_buf == NULL);
2009 dbuf_set_data(db, buf);
2010 db->db_state = DB_FILL;
2011 mutex_exit(&db->db_mtx);
2012 (void) dbuf_dirty(db, tx);
2013 dmu_buf_fill_done(&db->db, tx);
2016 void
2017 dbuf_destroy(dmu_buf_impl_t *db)
2019 dnode_t *dn;
2020 dmu_buf_impl_t *parent = db->db_parent;
2021 dmu_buf_impl_t *dndb;
2023 ASSERT(MUTEX_HELD(&db->db_mtx));
2024 ASSERT(refcount_is_zero(&db->db_holds));
2026 if (db->db_buf != NULL) {
2027 arc_buf_destroy(db->db_buf, db);
2028 db->db_buf = NULL;
2031 if (db->db_blkid == DMU_BONUS_BLKID) {
2032 ASSERT(db->db.db_data != NULL);
2033 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2034 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2035 db->db_state = DB_UNCACHED;
2038 dbuf_clear_data(db);
2040 if (multilist_link_active(&db->db_cache_link)) {
2041 multilist_remove(dbuf_cache, db);
2042 (void) refcount_remove_many(&dbuf_cache_size,
2043 db->db.db_size, db);
2046 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2047 ASSERT(db->db_data_pending == NULL);
2049 db->db_state = DB_EVICTING;
2050 db->db_blkptr = NULL;
2053 * Now that db_state is DB_EVICTING, nobody else can find this via
2054 * the hash table. We can now drop db_mtx, which allows us to
2055 * acquire the dn_dbufs_mtx.
2057 mutex_exit(&db->db_mtx);
2059 DB_DNODE_ENTER(db);
2060 dn = DB_DNODE(db);
2061 dndb = dn->dn_dbuf;
2062 if (db->db_blkid != DMU_BONUS_BLKID) {
2063 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2064 if (needlock)
2065 mutex_enter(&dn->dn_dbufs_mtx);
2066 avl_remove(&dn->dn_dbufs, db);
2067 atomic_dec_32(&dn->dn_dbufs_count);
2068 membar_producer();
2069 DB_DNODE_EXIT(db);
2070 if (needlock)
2071 mutex_exit(&dn->dn_dbufs_mtx);
2073 * Decrementing the dbuf count means that the hold corresponding
2074 * to the removed dbuf is no longer discounted in dnode_move(),
2075 * so the dnode cannot be moved until after we release the hold.
2076 * The membar_producer() ensures visibility of the decremented
2077 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2078 * release any lock.
2080 dnode_rele(dn, db);
2081 db->db_dnode_handle = NULL;
2083 dbuf_hash_remove(db);
2084 } else {
2085 DB_DNODE_EXIT(db);
2088 ASSERT(refcount_is_zero(&db->db_holds));
2090 db->db_parent = NULL;
2092 ASSERT(db->db_buf == NULL);
2093 ASSERT(db->db.db_data == NULL);
2094 ASSERT(db->db_hash_next == NULL);
2095 ASSERT(db->db_blkptr == NULL);
2096 ASSERT(db->db_data_pending == NULL);
2097 ASSERT(!multilist_link_active(&db->db_cache_link));
2099 kmem_cache_free(dbuf_kmem_cache, db);
2100 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2103 * If this dbuf is referenced from an indirect dbuf,
2104 * decrement the ref count on the indirect dbuf.
2106 if (parent && parent != dndb)
2107 dbuf_rele(parent, db);
2111 * Note: While bpp will always be updated if the function returns success,
2112 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2113 * this happens when the dnode is the meta-dnode, or a userused or groupused
2114 * object.
2116 static int
2117 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2118 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2120 *parentp = NULL;
2121 *bpp = NULL;
2123 ASSERT(blkid != DMU_BONUS_BLKID);
2125 if (blkid == DMU_SPILL_BLKID) {
2126 mutex_enter(&dn->dn_mtx);
2127 if (dn->dn_have_spill &&
2128 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2129 *bpp = &dn->dn_phys->dn_spill;
2130 else
2131 *bpp = NULL;
2132 dbuf_add_ref(dn->dn_dbuf, NULL);
2133 *parentp = dn->dn_dbuf;
2134 mutex_exit(&dn->dn_mtx);
2135 return (0);
2138 int nlevels =
2139 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2140 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2142 ASSERT3U(level * epbs, <, 64);
2143 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2145 * This assertion shouldn't trip as long as the max indirect block size
2146 * is less than 1M. The reason for this is that up to that point,
2147 * the number of levels required to address an entire object with blocks
2148 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2149 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2150 * (i.e. we can address the entire object), objects will all use at most
2151 * N-1 levels and the assertion won't overflow. However, once epbs is
2152 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2153 * enough to address an entire object, so objects will have 5 levels,
2154 * but then this assertion will overflow.
2156 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2157 * need to redo this logic to handle overflows.
2159 ASSERT(level >= nlevels ||
2160 ((nlevels - level - 1) * epbs) +
2161 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2162 if (level >= nlevels ||
2163 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2164 ((nlevels - level - 1) * epbs)) ||
2165 (fail_sparse &&
2166 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2167 /* the buffer has no parent yet */
2168 return (SET_ERROR(ENOENT));
2169 } else if (level < nlevels-1) {
2170 /* this block is referenced from an indirect block */
2171 int err = dbuf_hold_impl(dn, level+1,
2172 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2173 if (err)
2174 return (err);
2175 err = dbuf_read(*parentp, NULL,
2176 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2177 if (err) {
2178 dbuf_rele(*parentp, NULL);
2179 *parentp = NULL;
2180 return (err);
2182 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2183 (blkid & ((1ULL << epbs) - 1));
2184 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2185 ASSERT(BP_IS_HOLE(*bpp));
2186 return (0);
2187 } else {
2188 /* the block is referenced from the dnode */
2189 ASSERT3U(level, ==, nlevels-1);
2190 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2191 blkid < dn->dn_phys->dn_nblkptr);
2192 if (dn->dn_dbuf) {
2193 dbuf_add_ref(dn->dn_dbuf, NULL);
2194 *parentp = dn->dn_dbuf;
2196 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2197 return (0);
2201 static dmu_buf_impl_t *
2202 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2203 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2205 objset_t *os = dn->dn_objset;
2206 dmu_buf_impl_t *db, *odb;
2208 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2209 ASSERT(dn->dn_type != DMU_OT_NONE);
2211 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2213 db->db_objset = os;
2214 db->db.db_object = dn->dn_object;
2215 db->db_level = level;
2216 db->db_blkid = blkid;
2217 db->db_last_dirty = NULL;
2218 db->db_dirtycnt = 0;
2219 db->db_dnode_handle = dn->dn_handle;
2220 db->db_parent = parent;
2221 db->db_blkptr = blkptr;
2223 db->db_user = NULL;
2224 db->db_user_immediate_evict = FALSE;
2225 db->db_freed_in_flight = FALSE;
2226 db->db_pending_evict = FALSE;
2228 if (blkid == DMU_BONUS_BLKID) {
2229 ASSERT3P(parent, ==, dn->dn_dbuf);
2230 db->db.db_size = DN_MAX_BONUSLEN -
2231 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2232 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2233 db->db.db_offset = DMU_BONUS_BLKID;
2234 db->db_state = DB_UNCACHED;
2235 /* the bonus dbuf is not placed in the hash table */
2236 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2237 return (db);
2238 } else if (blkid == DMU_SPILL_BLKID) {
2239 db->db.db_size = (blkptr != NULL) ?
2240 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2241 db->db.db_offset = 0;
2242 } else {
2243 int blocksize =
2244 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2245 db->db.db_size = blocksize;
2246 db->db.db_offset = db->db_blkid * blocksize;
2250 * Hold the dn_dbufs_mtx while we get the new dbuf
2251 * in the hash table *and* added to the dbufs list.
2252 * This prevents a possible deadlock with someone
2253 * trying to look up this dbuf before its added to the
2254 * dn_dbufs list.
2256 mutex_enter(&dn->dn_dbufs_mtx);
2257 db->db_state = DB_EVICTING;
2258 if ((odb = dbuf_hash_insert(db)) != NULL) {
2259 /* someone else inserted it first */
2260 kmem_cache_free(dbuf_kmem_cache, db);
2261 mutex_exit(&dn->dn_dbufs_mtx);
2262 return (odb);
2264 avl_add(&dn->dn_dbufs, db);
2266 db->db_state = DB_UNCACHED;
2267 mutex_exit(&dn->dn_dbufs_mtx);
2268 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2270 if (parent && parent != dn->dn_dbuf)
2271 dbuf_add_ref(parent, db);
2273 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2274 refcount_count(&dn->dn_holds) > 0);
2275 (void) refcount_add(&dn->dn_holds, db);
2276 atomic_inc_32(&dn->dn_dbufs_count);
2278 dprintf_dbuf(db, "db=%p\n", db);
2280 return (db);
2283 typedef struct dbuf_prefetch_arg {
2284 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2285 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2286 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2287 int dpa_curlevel; /* The current level that we're reading */
2288 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2289 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2290 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2291 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2292 } dbuf_prefetch_arg_t;
2295 * Actually issue the prefetch read for the block given.
2297 static void
2298 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2300 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2301 return;
2303 arc_flags_t aflags =
2304 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2306 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2307 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2308 ASSERT(dpa->dpa_zio != NULL);
2309 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2310 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2311 &aflags, &dpa->dpa_zb);
2315 * Called when an indirect block above our prefetch target is read in. This
2316 * will either read in the next indirect block down the tree or issue the actual
2317 * prefetch if the next block down is our target.
2319 static void
2320 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2322 dbuf_prefetch_arg_t *dpa = private;
2324 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2325 ASSERT3S(dpa->dpa_curlevel, >, 0);
2328 * The dpa_dnode is only valid if we are called with a NULL
2329 * zio. This indicates that the arc_read() returned without
2330 * first calling zio_read() to issue a physical read. Once
2331 * a physical read is made the dpa_dnode must be invalidated
2332 * as the locks guarding it may have been dropped. If the
2333 * dpa_dnode is still valid, then we want to add it to the dbuf
2334 * cache. To do so, we must hold the dbuf associated with the block
2335 * we just prefetched, read its contents so that we associate it
2336 * with an arc_buf_t, and then release it.
2338 if (zio != NULL) {
2339 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2340 if (zio->io_flags & ZIO_FLAG_RAW) {
2341 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2342 } else {
2343 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2345 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2347 dpa->dpa_dnode = NULL;
2348 } else if (dpa->dpa_dnode != NULL) {
2349 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2350 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2351 dpa->dpa_zb.zb_level));
2352 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2353 dpa->dpa_curlevel, curblkid, FTAG);
2354 (void) dbuf_read(db, NULL,
2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2356 dbuf_rele(db, FTAG);
2359 dpa->dpa_curlevel--;
2361 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2362 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2363 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2364 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2365 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2366 kmem_free(dpa, sizeof (*dpa));
2367 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2368 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2369 dbuf_issue_final_prefetch(dpa, bp);
2370 kmem_free(dpa, sizeof (*dpa));
2371 } else {
2372 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2373 zbookmark_phys_t zb;
2375 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2377 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2378 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2380 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2381 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2382 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2383 &iter_aflags, &zb);
2386 arc_buf_destroy(abuf, private);
2390 * Issue prefetch reads for the given block on the given level. If the indirect
2391 * blocks above that block are not in memory, we will read them in
2392 * asynchronously. As a result, this call never blocks waiting for a read to
2393 * complete.
2395 void
2396 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2397 arc_flags_t aflags)
2399 blkptr_t bp;
2400 int epbs, nlevels, curlevel;
2401 uint64_t curblkid;
2403 ASSERT(blkid != DMU_BONUS_BLKID);
2404 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2406 if (blkid > dn->dn_maxblkid)
2407 return;
2409 if (dnode_block_freed(dn, blkid))
2410 return;
2413 * This dnode hasn't been written to disk yet, so there's nothing to
2414 * prefetch.
2416 nlevels = dn->dn_phys->dn_nlevels;
2417 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2418 return;
2420 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2421 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2422 return;
2424 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2425 level, blkid);
2426 if (db != NULL) {
2427 mutex_exit(&db->db_mtx);
2429 * This dbuf already exists. It is either CACHED, or
2430 * (we assume) about to be read or filled.
2432 return;
2436 * Find the closest ancestor (indirect block) of the target block
2437 * that is present in the cache. In this indirect block, we will
2438 * find the bp that is at curlevel, curblkid.
2440 curlevel = level;
2441 curblkid = blkid;
2442 while (curlevel < nlevels - 1) {
2443 int parent_level = curlevel + 1;
2444 uint64_t parent_blkid = curblkid >> epbs;
2445 dmu_buf_impl_t *db;
2447 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2448 FALSE, TRUE, FTAG, &db) == 0) {
2449 blkptr_t *bpp = db->db_buf->b_data;
2450 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2451 dbuf_rele(db, FTAG);
2452 break;
2455 curlevel = parent_level;
2456 curblkid = parent_blkid;
2459 if (curlevel == nlevels - 1) {
2460 /* No cached indirect blocks found. */
2461 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2462 bp = dn->dn_phys->dn_blkptr[curblkid];
2464 if (BP_IS_HOLE(&bp))
2465 return;
2467 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2469 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2470 ZIO_FLAG_CANFAIL);
2472 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2473 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2474 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2475 dn->dn_object, level, blkid);
2476 dpa->dpa_curlevel = curlevel;
2477 dpa->dpa_prio = prio;
2478 dpa->dpa_aflags = aflags;
2479 dpa->dpa_spa = dn->dn_objset->os_spa;
2480 dpa->dpa_dnode = dn;
2481 dpa->dpa_epbs = epbs;
2482 dpa->dpa_zio = pio;
2485 * If we have the indirect just above us, no need to do the asynchronous
2486 * prefetch chain; we'll just run the last step ourselves. If we're at
2487 * a higher level, though, we want to issue the prefetches for all the
2488 * indirect blocks asynchronously, so we can go on with whatever we were
2489 * doing.
2491 if (curlevel == level) {
2492 ASSERT3U(curblkid, ==, blkid);
2493 dbuf_issue_final_prefetch(dpa, &bp);
2494 kmem_free(dpa, sizeof (*dpa));
2495 } else {
2496 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2497 zbookmark_phys_t zb;
2499 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2500 dn->dn_object, curlevel, curblkid);
2501 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2502 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2503 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2504 &iter_aflags, &zb);
2507 * We use pio here instead of dpa_zio since it's possible that
2508 * dpa may have already been freed.
2510 zio_nowait(pio);
2514 * Returns with db_holds incremented, and db_mtx not held.
2515 * Note: dn_struct_rwlock must be held.
2518 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2519 boolean_t fail_sparse, boolean_t fail_uncached,
2520 void *tag, dmu_buf_impl_t **dbp)
2522 dmu_buf_impl_t *db, *parent = NULL;
2524 ASSERT(blkid != DMU_BONUS_BLKID);
2525 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2526 ASSERT3U(dn->dn_nlevels, >, level);
2528 *dbp = NULL;
2529 top:
2530 /* dbuf_find() returns with db_mtx held */
2531 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2533 if (db == NULL) {
2534 blkptr_t *bp = NULL;
2535 int err;
2537 if (fail_uncached)
2538 return (SET_ERROR(ENOENT));
2540 ASSERT3P(parent, ==, NULL);
2541 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2542 if (fail_sparse) {
2543 if (err == 0 && bp && BP_IS_HOLE(bp))
2544 err = SET_ERROR(ENOENT);
2545 if (err) {
2546 if (parent)
2547 dbuf_rele(parent, NULL);
2548 return (err);
2551 if (err && err != ENOENT)
2552 return (err);
2553 db = dbuf_create(dn, level, blkid, parent, bp);
2556 if (fail_uncached && db->db_state != DB_CACHED) {
2557 mutex_exit(&db->db_mtx);
2558 return (SET_ERROR(ENOENT));
2561 if (db->db_buf != NULL)
2562 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2564 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2567 * If this buffer is currently syncing out, and we are are
2568 * still referencing it from db_data, we need to make a copy
2569 * of it in case we decide we want to dirty it again in this txg.
2571 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2572 dn->dn_object != DMU_META_DNODE_OBJECT &&
2573 db->db_state == DB_CACHED && db->db_data_pending) {
2574 dbuf_dirty_record_t *dr = db->db_data_pending;
2576 if (dr->dt.dl.dr_data == db->db_buf) {
2577 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2579 dbuf_set_data(db,
2580 arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2581 db->db.db_size));
2582 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2583 db->db.db_size);
2587 if (multilist_link_active(&db->db_cache_link)) {
2588 ASSERT(refcount_is_zero(&db->db_holds));
2589 multilist_remove(dbuf_cache, db);
2590 (void) refcount_remove_many(&dbuf_cache_size,
2591 db->db.db_size, db);
2593 (void) refcount_add(&db->db_holds, tag);
2594 DBUF_VERIFY(db);
2595 mutex_exit(&db->db_mtx);
2597 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2598 if (parent)
2599 dbuf_rele(parent, NULL);
2601 ASSERT3P(DB_DNODE(db), ==, dn);
2602 ASSERT3U(db->db_blkid, ==, blkid);
2603 ASSERT3U(db->db_level, ==, level);
2604 *dbp = db;
2606 return (0);
2609 dmu_buf_impl_t *
2610 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2612 return (dbuf_hold_level(dn, 0, blkid, tag));
2615 dmu_buf_impl_t *
2616 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2618 dmu_buf_impl_t *db;
2619 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2620 return (err ? NULL : db);
2623 void
2624 dbuf_create_bonus(dnode_t *dn)
2626 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2628 ASSERT(dn->dn_bonus == NULL);
2629 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2633 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2635 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2636 dnode_t *dn;
2638 if (db->db_blkid != DMU_SPILL_BLKID)
2639 return (SET_ERROR(ENOTSUP));
2640 if (blksz == 0)
2641 blksz = SPA_MINBLOCKSIZE;
2642 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2643 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2645 DB_DNODE_ENTER(db);
2646 dn = DB_DNODE(db);
2647 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2648 dbuf_new_size(db, blksz, tx);
2649 rw_exit(&dn->dn_struct_rwlock);
2650 DB_DNODE_EXIT(db);
2652 return (0);
2655 void
2656 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2658 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2661 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2662 void
2663 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2665 int64_t holds = refcount_add(&db->db_holds, tag);
2666 ASSERT3S(holds, >, 1);
2669 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2670 boolean_t
2671 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2672 void *tag)
2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2675 dmu_buf_impl_t *found_db;
2676 boolean_t result = B_FALSE;
2678 if (db->db_blkid == DMU_BONUS_BLKID)
2679 found_db = dbuf_find_bonus(os, obj);
2680 else
2681 found_db = dbuf_find(os, obj, 0, blkid);
2683 if (found_db != NULL) {
2684 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2685 (void) refcount_add(&db->db_holds, tag);
2686 result = B_TRUE;
2688 mutex_exit(&db->db_mtx);
2690 return (result);
2694 * If you call dbuf_rele() you had better not be referencing the dnode handle
2695 * unless you have some other direct or indirect hold on the dnode. (An indirect
2696 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2697 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2698 * dnode's parent dbuf evicting its dnode handles.
2700 void
2701 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2703 mutex_enter(&db->db_mtx);
2704 dbuf_rele_and_unlock(db, tag);
2707 void
2708 dmu_buf_rele(dmu_buf_t *db, void *tag)
2710 dbuf_rele((dmu_buf_impl_t *)db, tag);
2714 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2715 * db_dirtycnt and db_holds to be updated atomically.
2717 void
2718 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2720 int64_t holds;
2722 ASSERT(MUTEX_HELD(&db->db_mtx));
2723 DBUF_VERIFY(db);
2726 * Remove the reference to the dbuf before removing its hold on the
2727 * dnode so we can guarantee in dnode_move() that a referenced bonus
2728 * buffer has a corresponding dnode hold.
2730 holds = refcount_remove(&db->db_holds, tag);
2731 ASSERT(holds >= 0);
2734 * We can't freeze indirects if there is a possibility that they
2735 * may be modified in the current syncing context.
2737 if (db->db_buf != NULL &&
2738 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2739 arc_buf_freeze(db->db_buf);
2742 if (holds == db->db_dirtycnt &&
2743 db->db_level == 0 && db->db_user_immediate_evict)
2744 dbuf_evict_user(db);
2746 if (holds == 0) {
2747 if (db->db_blkid == DMU_BONUS_BLKID) {
2748 dnode_t *dn;
2749 boolean_t evict_dbuf = db->db_pending_evict;
2752 * If the dnode moves here, we cannot cross this
2753 * barrier until the move completes.
2755 DB_DNODE_ENTER(db);
2757 dn = DB_DNODE(db);
2758 atomic_dec_32(&dn->dn_dbufs_count);
2761 * Decrementing the dbuf count means that the bonus
2762 * buffer's dnode hold is no longer discounted in
2763 * dnode_move(). The dnode cannot move until after
2764 * the dnode_rele() below.
2766 DB_DNODE_EXIT(db);
2769 * Do not reference db after its lock is dropped.
2770 * Another thread may evict it.
2772 mutex_exit(&db->db_mtx);
2774 if (evict_dbuf)
2775 dnode_evict_bonus(dn);
2777 dnode_rele(dn, db);
2778 } else if (db->db_buf == NULL) {
2780 * This is a special case: we never associated this
2781 * dbuf with any data allocated from the ARC.
2783 ASSERT(db->db_state == DB_UNCACHED ||
2784 db->db_state == DB_NOFILL);
2785 dbuf_destroy(db);
2786 } else if (arc_released(db->db_buf)) {
2788 * This dbuf has anonymous data associated with it.
2790 dbuf_destroy(db);
2791 } else {
2792 boolean_t do_arc_evict = B_FALSE;
2793 blkptr_t bp;
2794 spa_t *spa = dmu_objset_spa(db->db_objset);
2796 if (!DBUF_IS_CACHEABLE(db) &&
2797 db->db_blkptr != NULL &&
2798 !BP_IS_HOLE(db->db_blkptr) &&
2799 !BP_IS_EMBEDDED(db->db_blkptr)) {
2800 do_arc_evict = B_TRUE;
2801 bp = *db->db_blkptr;
2804 if (!DBUF_IS_CACHEABLE(db) ||
2805 db->db_pending_evict) {
2806 dbuf_destroy(db);
2807 } else if (!multilist_link_active(&db->db_cache_link)) {
2808 multilist_insert(dbuf_cache, db);
2809 (void) refcount_add_many(&dbuf_cache_size,
2810 db->db.db_size, db);
2811 mutex_exit(&db->db_mtx);
2813 dbuf_evict_notify();
2816 if (do_arc_evict)
2817 arc_freed(spa, &bp);
2819 } else {
2820 mutex_exit(&db->db_mtx);
2825 #pragma weak dmu_buf_refcount = dbuf_refcount
2826 uint64_t
2827 dbuf_refcount(dmu_buf_impl_t *db)
2829 return (refcount_count(&db->db_holds));
2832 void *
2833 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2834 dmu_buf_user_t *new_user)
2836 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2838 mutex_enter(&db->db_mtx);
2839 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2840 if (db->db_user == old_user)
2841 db->db_user = new_user;
2842 else
2843 old_user = db->db_user;
2844 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2845 mutex_exit(&db->db_mtx);
2847 return (old_user);
2850 void *
2851 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2853 return (dmu_buf_replace_user(db_fake, NULL, user));
2856 void *
2857 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2859 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2861 db->db_user_immediate_evict = TRUE;
2862 return (dmu_buf_set_user(db_fake, user));
2865 void *
2866 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2868 return (dmu_buf_replace_user(db_fake, user, NULL));
2871 void *
2872 dmu_buf_get_user(dmu_buf_t *db_fake)
2874 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2876 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2877 return (db->db_user);
2880 void
2881 dmu_buf_user_evict_wait()
2883 taskq_wait(dbu_evict_taskq);
2886 blkptr_t *
2887 dmu_buf_get_blkptr(dmu_buf_t *db)
2889 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2890 return (dbi->db_blkptr);
2893 objset_t *
2894 dmu_buf_get_objset(dmu_buf_t *db)
2896 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2897 return (dbi->db_objset);
2900 dnode_t *
2901 dmu_buf_dnode_enter(dmu_buf_t *db)
2903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2904 DB_DNODE_ENTER(dbi);
2905 return (DB_DNODE(dbi));
2908 void
2909 dmu_buf_dnode_exit(dmu_buf_t *db)
2911 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2912 DB_DNODE_EXIT(dbi);
2915 static void
2916 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2918 /* ASSERT(dmu_tx_is_syncing(tx) */
2919 ASSERT(MUTEX_HELD(&db->db_mtx));
2921 if (db->db_blkptr != NULL)
2922 return;
2924 if (db->db_blkid == DMU_SPILL_BLKID) {
2925 db->db_blkptr = &dn->dn_phys->dn_spill;
2926 BP_ZERO(db->db_blkptr);
2927 return;
2929 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2931 * This buffer was allocated at a time when there was
2932 * no available blkptrs from the dnode, or it was
2933 * inappropriate to hook it in (i.e., nlevels mis-match).
2935 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2936 ASSERT(db->db_parent == NULL);
2937 db->db_parent = dn->dn_dbuf;
2938 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2939 DBUF_VERIFY(db);
2940 } else {
2941 dmu_buf_impl_t *parent = db->db_parent;
2942 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2944 ASSERT(dn->dn_phys->dn_nlevels > 1);
2945 if (parent == NULL) {
2946 mutex_exit(&db->db_mtx);
2947 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2948 parent = dbuf_hold_level(dn, db->db_level + 1,
2949 db->db_blkid >> epbs, db);
2950 rw_exit(&dn->dn_struct_rwlock);
2951 mutex_enter(&db->db_mtx);
2952 db->db_parent = parent;
2954 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2955 (db->db_blkid & ((1ULL << epbs) - 1));
2956 DBUF_VERIFY(db);
2960 static void
2961 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2963 dmu_buf_impl_t *db = dr->dr_dbuf;
2964 dnode_t *dn;
2965 zio_t *zio;
2967 ASSERT(dmu_tx_is_syncing(tx));
2969 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2971 mutex_enter(&db->db_mtx);
2973 ASSERT(db->db_level > 0);
2974 DBUF_VERIFY(db);
2976 /* Read the block if it hasn't been read yet. */
2977 if (db->db_buf == NULL) {
2978 mutex_exit(&db->db_mtx);
2979 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2980 mutex_enter(&db->db_mtx);
2982 ASSERT3U(db->db_state, ==, DB_CACHED);
2983 ASSERT(db->db_buf != NULL);
2985 DB_DNODE_ENTER(db);
2986 dn = DB_DNODE(db);
2987 /* Indirect block size must match what the dnode thinks it is. */
2988 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2989 dbuf_check_blkptr(dn, db);
2990 DB_DNODE_EXIT(db);
2992 /* Provide the pending dirty record to child dbufs */
2993 db->db_data_pending = dr;
2995 mutex_exit(&db->db_mtx);
2996 dbuf_write(dr, db->db_buf, tx);
2998 zio = dr->dr_zio;
2999 mutex_enter(&dr->dt.di.dr_mtx);
3000 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3001 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3002 mutex_exit(&dr->dt.di.dr_mtx);
3003 zio_nowait(zio);
3006 static void
3007 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3009 arc_buf_t **datap = &dr->dt.dl.dr_data;
3010 dmu_buf_impl_t *db = dr->dr_dbuf;
3011 dnode_t *dn;
3012 objset_t *os;
3013 uint64_t txg = tx->tx_txg;
3015 ASSERT(dmu_tx_is_syncing(tx));
3017 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3019 mutex_enter(&db->db_mtx);
3021 * To be synced, we must be dirtied. But we
3022 * might have been freed after the dirty.
3024 if (db->db_state == DB_UNCACHED) {
3025 /* This buffer has been freed since it was dirtied */
3026 ASSERT(db->db.db_data == NULL);
3027 } else if (db->db_state == DB_FILL) {
3028 /* This buffer was freed and is now being re-filled */
3029 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3030 } else {
3031 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3033 DBUF_VERIFY(db);
3035 DB_DNODE_ENTER(db);
3036 dn = DB_DNODE(db);
3038 if (db->db_blkid == DMU_SPILL_BLKID) {
3039 mutex_enter(&dn->dn_mtx);
3040 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3041 mutex_exit(&dn->dn_mtx);
3045 * If this is a bonus buffer, simply copy the bonus data into the
3046 * dnode. It will be written out when the dnode is synced (and it
3047 * will be synced, since it must have been dirty for dbuf_sync to
3048 * be called).
3050 if (db->db_blkid == DMU_BONUS_BLKID) {
3051 dbuf_dirty_record_t **drp;
3053 ASSERT(*datap != NULL);
3054 ASSERT0(db->db_level);
3055 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3056 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3057 DB_DNODE_EXIT(db);
3059 if (*datap != db->db.db_data) {
3060 zio_buf_free(*datap, DN_MAX_BONUSLEN);
3061 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3063 db->db_data_pending = NULL;
3064 drp = &db->db_last_dirty;
3065 while (*drp != dr)
3066 drp = &(*drp)->dr_next;
3067 ASSERT(dr->dr_next == NULL);
3068 ASSERT(dr->dr_dbuf == db);
3069 *drp = dr->dr_next;
3070 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3071 ASSERT(db->db_dirtycnt > 0);
3072 db->db_dirtycnt -= 1;
3073 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3074 return;
3077 os = dn->dn_objset;
3080 * This function may have dropped the db_mtx lock allowing a dmu_sync
3081 * operation to sneak in. As a result, we need to ensure that we
3082 * don't check the dr_override_state until we have returned from
3083 * dbuf_check_blkptr.
3085 dbuf_check_blkptr(dn, db);
3088 * If this buffer is in the middle of an immediate write,
3089 * wait for the synchronous IO to complete.
3091 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3092 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3093 cv_wait(&db->db_changed, &db->db_mtx);
3094 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3097 if (db->db_state != DB_NOFILL &&
3098 dn->dn_object != DMU_META_DNODE_OBJECT &&
3099 refcount_count(&db->db_holds) > 1 &&
3100 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3101 *datap == db->db_buf) {
3103 * If this buffer is currently "in use" (i.e., there
3104 * are active holds and db_data still references it),
3105 * then make a copy before we start the write so that
3106 * any modifications from the open txg will not leak
3107 * into this write.
3109 * NOTE: this copy does not need to be made for
3110 * objects only modified in the syncing context (e.g.
3111 * DNONE_DNODE blocks).
3113 int psize = arc_buf_size(*datap);
3114 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3115 enum zio_compress compress_type = arc_get_compression(*datap);
3117 if (compress_type == ZIO_COMPRESS_OFF) {
3118 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3119 } else {
3120 ASSERT3U(type, ==, ARC_BUFC_DATA);
3121 int lsize = arc_buf_lsize(*datap);
3122 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3123 psize, lsize, compress_type);
3125 bcopy(db->db.db_data, (*datap)->b_data, psize);
3127 db->db_data_pending = dr;
3129 mutex_exit(&db->db_mtx);
3131 dbuf_write(dr, *datap, tx);
3133 ASSERT(!list_link_active(&dr->dr_dirty_node));
3134 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3135 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3136 DB_DNODE_EXIT(db);
3137 } else {
3139 * Although zio_nowait() does not "wait for an IO", it does
3140 * initiate the IO. If this is an empty write it seems plausible
3141 * that the IO could actually be completed before the nowait
3142 * returns. We need to DB_DNODE_EXIT() first in case
3143 * zio_nowait() invalidates the dbuf.
3145 DB_DNODE_EXIT(db);
3146 zio_nowait(dr->dr_zio);
3150 void
3151 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3153 dbuf_dirty_record_t *dr;
3155 while (dr = list_head(list)) {
3156 if (dr->dr_zio != NULL) {
3158 * If we find an already initialized zio then we
3159 * are processing the meta-dnode, and we have finished.
3160 * The dbufs for all dnodes are put back on the list
3161 * during processing, so that we can zio_wait()
3162 * these IOs after initiating all child IOs.
3164 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3165 DMU_META_DNODE_OBJECT);
3166 break;
3168 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3169 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3170 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3172 list_remove(list, dr);
3173 if (dr->dr_dbuf->db_level > 0)
3174 dbuf_sync_indirect(dr, tx);
3175 else
3176 dbuf_sync_leaf(dr, tx);
3180 /* ARGSUSED */
3181 static void
3182 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3184 dmu_buf_impl_t *db = vdb;
3185 dnode_t *dn;
3186 blkptr_t *bp = zio->io_bp;
3187 blkptr_t *bp_orig = &zio->io_bp_orig;
3188 spa_t *spa = zio->io_spa;
3189 int64_t delta;
3190 uint64_t fill = 0;
3191 int i;
3193 ASSERT3P(db->db_blkptr, !=, NULL);
3194 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3196 DB_DNODE_ENTER(db);
3197 dn = DB_DNODE(db);
3198 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3199 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3200 zio->io_prev_space_delta = delta;
3202 if (bp->blk_birth != 0) {
3203 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3204 BP_GET_TYPE(bp) == dn->dn_type) ||
3205 (db->db_blkid == DMU_SPILL_BLKID &&
3206 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3207 BP_IS_EMBEDDED(bp));
3208 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3211 mutex_enter(&db->db_mtx);
3213 #ifdef ZFS_DEBUG
3214 if (db->db_blkid == DMU_SPILL_BLKID) {
3215 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3216 ASSERT(!(BP_IS_HOLE(bp)) &&
3217 db->db_blkptr == &dn->dn_phys->dn_spill);
3219 #endif
3221 if (db->db_level == 0) {
3222 mutex_enter(&dn->dn_mtx);
3223 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3224 db->db_blkid != DMU_SPILL_BLKID)
3225 dn->dn_phys->dn_maxblkid = db->db_blkid;
3226 mutex_exit(&dn->dn_mtx);
3228 if (dn->dn_type == DMU_OT_DNODE) {
3229 dnode_phys_t *dnp = db->db.db_data;
3230 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3231 i--, dnp++) {
3232 if (dnp->dn_type != DMU_OT_NONE)
3233 fill++;
3235 } else {
3236 if (BP_IS_HOLE(bp)) {
3237 fill = 0;
3238 } else {
3239 fill = 1;
3242 } else {
3243 blkptr_t *ibp = db->db.db_data;
3244 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3245 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3246 if (BP_IS_HOLE(ibp))
3247 continue;
3248 fill += BP_GET_FILL(ibp);
3251 DB_DNODE_EXIT(db);
3253 if (!BP_IS_EMBEDDED(bp))
3254 bp->blk_fill = fill;
3256 mutex_exit(&db->db_mtx);
3258 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3259 *db->db_blkptr = *bp;
3260 rw_exit(&dn->dn_struct_rwlock);
3263 /* ARGSUSED */
3265 * This function gets called just prior to running through the compression
3266 * stage of the zio pipeline. If we're an indirect block comprised of only
3267 * holes, then we want this indirect to be compressed away to a hole. In
3268 * order to do that we must zero out any information about the holes that
3269 * this indirect points to prior to before we try to compress it.
3271 static void
3272 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3274 dmu_buf_impl_t *db = vdb;
3275 dnode_t *dn;
3276 blkptr_t *bp;
3277 unsigned int epbs, i;
3279 ASSERT3U(db->db_level, >, 0);
3280 DB_DNODE_ENTER(db);
3281 dn = DB_DNODE(db);
3282 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3283 ASSERT3U(epbs, <, 31);
3285 /* Determine if all our children are holes */
3286 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3287 if (!BP_IS_HOLE(bp))
3288 break;
3292 * If all the children are holes, then zero them all out so that
3293 * we may get compressed away.
3295 if (i == 1 << epbs) {
3297 * We only found holes. Grab the rwlock to prevent
3298 * anybody from reading the blocks we're about to
3299 * zero out.
3301 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3302 bzero(db->db.db_data, db->db.db_size);
3303 rw_exit(&dn->dn_struct_rwlock);
3305 DB_DNODE_EXIT(db);
3309 * The SPA will call this callback several times for each zio - once
3310 * for every physical child i/o (zio->io_phys_children times). This
3311 * allows the DMU to monitor the progress of each logical i/o. For example,
3312 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3313 * block. There may be a long delay before all copies/fragments are completed,
3314 * so this callback allows us to retire dirty space gradually, as the physical
3315 * i/os complete.
3317 /* ARGSUSED */
3318 static void
3319 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3321 dmu_buf_impl_t *db = arg;
3322 objset_t *os = db->db_objset;
3323 dsl_pool_t *dp = dmu_objset_pool(os);
3324 dbuf_dirty_record_t *dr;
3325 int delta = 0;
3327 dr = db->db_data_pending;
3328 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3331 * The callback will be called io_phys_children times. Retire one
3332 * portion of our dirty space each time we are called. Any rounding
3333 * error will be cleaned up by dsl_pool_sync()'s call to
3334 * dsl_pool_undirty_space().
3336 delta = dr->dr_accounted / zio->io_phys_children;
3337 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3340 /* ARGSUSED */
3341 static void
3342 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3344 dmu_buf_impl_t *db = vdb;
3345 blkptr_t *bp_orig = &zio->io_bp_orig;
3346 blkptr_t *bp = db->db_blkptr;
3347 objset_t *os = db->db_objset;
3348 dmu_tx_t *tx = os->os_synctx;
3349 dbuf_dirty_record_t **drp, *dr;
3351 ASSERT0(zio->io_error);
3352 ASSERT(db->db_blkptr == bp);
3355 * For nopwrites and rewrites we ensure that the bp matches our
3356 * original and bypass all the accounting.
3358 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3359 ASSERT(BP_EQUAL(bp, bp_orig));
3360 } else {
3361 dsl_dataset_t *ds = os->os_dsl_dataset;
3362 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3363 dsl_dataset_block_born(ds, bp, tx);
3366 mutex_enter(&db->db_mtx);
3368 DBUF_VERIFY(db);
3370 drp = &db->db_last_dirty;
3371 while ((dr = *drp) != db->db_data_pending)
3372 drp = &dr->dr_next;
3373 ASSERT(!list_link_active(&dr->dr_dirty_node));
3374 ASSERT(dr->dr_dbuf == db);
3375 ASSERT(dr->dr_next == NULL);
3376 *drp = dr->dr_next;
3378 #ifdef ZFS_DEBUG
3379 if (db->db_blkid == DMU_SPILL_BLKID) {
3380 dnode_t *dn;
3382 DB_DNODE_ENTER(db);
3383 dn = DB_DNODE(db);
3384 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3385 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3386 db->db_blkptr == &dn->dn_phys->dn_spill);
3387 DB_DNODE_EXIT(db);
3389 #endif
3391 if (db->db_level == 0) {
3392 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3393 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3394 if (db->db_state != DB_NOFILL) {
3395 if (dr->dt.dl.dr_data != db->db_buf)
3396 arc_buf_destroy(dr->dt.dl.dr_data, db);
3398 } else {
3399 dnode_t *dn;
3401 DB_DNODE_ENTER(db);
3402 dn = DB_DNODE(db);
3403 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3404 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3405 if (!BP_IS_HOLE(db->db_blkptr)) {
3406 int epbs =
3407 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3408 ASSERT3U(db->db_blkid, <=,
3409 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3410 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3411 db->db.db_size);
3413 DB_DNODE_EXIT(db);
3414 mutex_destroy(&dr->dt.di.dr_mtx);
3415 list_destroy(&dr->dt.di.dr_children);
3417 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3419 cv_broadcast(&db->db_changed);
3420 ASSERT(db->db_dirtycnt > 0);
3421 db->db_dirtycnt -= 1;
3422 db->db_data_pending = NULL;
3423 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3426 static void
3427 dbuf_write_nofill_ready(zio_t *zio)
3429 dbuf_write_ready(zio, NULL, zio->io_private);
3432 static void
3433 dbuf_write_nofill_done(zio_t *zio)
3435 dbuf_write_done(zio, NULL, zio->io_private);
3438 static void
3439 dbuf_write_override_ready(zio_t *zio)
3441 dbuf_dirty_record_t *dr = zio->io_private;
3442 dmu_buf_impl_t *db = dr->dr_dbuf;
3444 dbuf_write_ready(zio, NULL, db);
3447 static void
3448 dbuf_write_override_done(zio_t *zio)
3450 dbuf_dirty_record_t *dr = zio->io_private;
3451 dmu_buf_impl_t *db = dr->dr_dbuf;
3452 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3454 mutex_enter(&db->db_mtx);
3455 if (!BP_EQUAL(zio->io_bp, obp)) {
3456 if (!BP_IS_HOLE(obp))
3457 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3458 arc_release(dr->dt.dl.dr_data, db);
3460 mutex_exit(&db->db_mtx);
3461 dbuf_write_done(zio, NULL, db);
3463 if (zio->io_abd != NULL)
3464 abd_put(zio->io_abd);
3467 /* Issue I/O to commit a dirty buffer to disk. */
3468 static void
3469 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3471 dmu_buf_impl_t *db = dr->dr_dbuf;
3472 dnode_t *dn;
3473 objset_t *os;
3474 dmu_buf_impl_t *parent = db->db_parent;
3475 uint64_t txg = tx->tx_txg;
3476 zbookmark_phys_t zb;
3477 zio_prop_t zp;
3478 zio_t *zio;
3479 int wp_flag = 0;
3481 ASSERT(dmu_tx_is_syncing(tx));
3483 DB_DNODE_ENTER(db);
3484 dn = DB_DNODE(db);
3485 os = dn->dn_objset;
3487 if (db->db_state != DB_NOFILL) {
3488 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3490 * Private object buffers are released here rather
3491 * than in dbuf_dirty() since they are only modified
3492 * in the syncing context and we don't want the
3493 * overhead of making multiple copies of the data.
3495 if (BP_IS_HOLE(db->db_blkptr)) {
3496 arc_buf_thaw(data);
3497 } else {
3498 dbuf_release_bp(db);
3503 if (parent != dn->dn_dbuf) {
3504 /* Our parent is an indirect block. */
3505 /* We have a dirty parent that has been scheduled for write. */
3506 ASSERT(parent && parent->db_data_pending);
3507 /* Our parent's buffer is one level closer to the dnode. */
3508 ASSERT(db->db_level == parent->db_level-1);
3510 * We're about to modify our parent's db_data by modifying
3511 * our block pointer, so the parent must be released.
3513 ASSERT(arc_released(parent->db_buf));
3514 zio = parent->db_data_pending->dr_zio;
3515 } else {
3516 /* Our parent is the dnode itself. */
3517 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3518 db->db_blkid != DMU_SPILL_BLKID) ||
3519 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3520 if (db->db_blkid != DMU_SPILL_BLKID)
3521 ASSERT3P(db->db_blkptr, ==,
3522 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3523 zio = dn->dn_zio;
3526 ASSERT(db->db_level == 0 || data == db->db_buf);
3527 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3528 ASSERT(zio);
3530 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3531 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3532 db->db.db_object, db->db_level, db->db_blkid);
3534 if (db->db_blkid == DMU_SPILL_BLKID)
3535 wp_flag = WP_SPILL;
3536 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3538 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3539 DB_DNODE_EXIT(db);
3542 * We copy the blkptr now (rather than when we instantiate the dirty
3543 * record), because its value can change between open context and
3544 * syncing context. We do not need to hold dn_struct_rwlock to read
3545 * db_blkptr because we are in syncing context.
3547 dr->dr_bp_copy = *db->db_blkptr;
3549 if (db->db_level == 0 &&
3550 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3552 * The BP for this block has been provided by open context
3553 * (by dmu_sync() or dmu_buf_write_embedded()).
3555 abd_t *contents = (data != NULL) ?
3556 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3558 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3559 contents, db->db.db_size, db->db.db_size, &zp,
3560 dbuf_write_override_ready, NULL, NULL,
3561 dbuf_write_override_done,
3562 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3563 mutex_enter(&db->db_mtx);
3564 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3565 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3566 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3567 mutex_exit(&db->db_mtx);
3568 } else if (db->db_state == DB_NOFILL) {
3569 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3570 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3571 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3572 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3573 dbuf_write_nofill_ready, NULL, NULL,
3574 dbuf_write_nofill_done, db,
3575 ZIO_PRIORITY_ASYNC_WRITE,
3576 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3577 } else {
3578 ASSERT(arc_released(data));
3581 * For indirect blocks, we want to setup the children
3582 * ready callback so that we can properly handle an indirect
3583 * block that only contains holes.
3585 arc_done_func_t *children_ready_cb = NULL;
3586 if (db->db_level != 0)
3587 children_ready_cb = dbuf_write_children_ready;
3589 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3590 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3591 &zp, dbuf_write_ready, children_ready_cb,
3592 dbuf_write_physdone, dbuf_write_done, db,
3593 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);