8158 Want named threads API
[unleashed.git] / usr / src / uts / common / sys / dtrace.h
blobab6d4c44459fb519f2a0efd9d7f0d8d54ed53bee
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright 2018 Joyent, Inc.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
32 #ifndef _SYS_DTRACE_H
33 #define _SYS_DTRACE_H
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50 #ifndef _ASM
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>
61 * DTrace Universal Constants and Typedefs
63 #define DTRACE_CPUALL -1 /* all CPUs */
64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 #define DTRACE_ARGNONE -1 /* invalid argument index */
73 #define DTRACE_PROVNAMELEN 64
74 #define DTRACE_MODNAMELEN 64
75 #define DTRACE_FUNCNAMELEN 128
76 #define DTRACE_NAMELEN 64
77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define DTRACE_ARGTYPELEN 128
81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 typedef int64_t dtrace_optval_t; /* option value */
87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
89 typedef enum dtrace_probespec {
90 DTRACE_PROBESPEC_NONE = -1,
91 DTRACE_PROBESPEC_PROVIDER = 0,
92 DTRACE_PROBESPEC_MOD,
93 DTRACE_PROBESPEC_FUNC,
94 DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;
98 * DTrace Intermediate Format (DIF)
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes. The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 #define DIF_OP_NOT 13 /* not r1, rd */
126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 #define DIF_OP_TST 16 /* tst r1 */
129 #define DIF_OP_BA 17 /* ba label */
130 #define DIF_OP_BE 18 /* be label */
131 #define DIF_OP_BNE 19 /* bne label */
132 #define DIF_OP_BG 20 /* bg label */
133 #define DIF_OP_BGU 21 /* bgu label */
134 #define DIF_OP_BGE 22 /* bge label */
135 #define DIF_OP_BGEU 23 /* bgeu label */
136 #define DIF_OP_BL 24 /* bl label */
137 #define DIF_OP_BLU 25 /* blu label */
138 #define DIF_OP_BLE 26 /* ble label */
139 #define DIF_OP_BLEU 27 /* bleu label */
140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 #define DIF_OP_RET 35 /* ret rd */
148 #define DIF_OP_NOP 36 /* nop */
149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 #define DIF_OP_STTS 45 /* stts var, rs */
158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 #define DIF_OP_CALL 47 /* call subr, rd */
160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DIF_OP_POPTS 50 /* popts */
163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 #define DIF_OP_STLS 57 /* stls var, rs */
170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192 #define DIF_OP_STGA 80 /* stga var, ri, rd */
194 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
195 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
196 #define DIF_REGISTER_MAX 0xff /* highest register number */
197 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
198 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
200 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
201 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
202 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
204 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
205 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
206 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
208 #define DIF_VAR_ARGS 0x0000 /* arguments array */
209 #define DIF_VAR_REGS 0x0001 /* registers array */
210 #define DIF_VAR_UREGS 0x0002 /* user registers array */
211 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
212 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
213 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
214 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
215 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
216 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
217 #define DIF_VAR_ID 0x0105 /* probe ID */
218 #define DIF_VAR_ARG0 0x0106 /* first argument */
219 #define DIF_VAR_ARG1 0x0107 /* second argument */
220 #define DIF_VAR_ARG2 0x0108 /* third argument */
221 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
222 #define DIF_VAR_ARG4 0x010a /* fifth argument */
223 #define DIF_VAR_ARG5 0x010b /* sixth argument */
224 #define DIF_VAR_ARG6 0x010c /* seventh argument */
225 #define DIF_VAR_ARG7 0x010d /* eighth argument */
226 #define DIF_VAR_ARG8 0x010e /* ninth argument */
227 #define DIF_VAR_ARG9 0x010f /* tenth argument */
228 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
229 #define DIF_VAR_CALLER 0x0111 /* caller */
230 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
231 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
232 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
233 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
234 #define DIF_VAR_PID 0x0116 /* process ID */
235 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
236 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
237 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
238 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
239 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
240 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
241 #define DIF_VAR_PPID 0x011d /* parent process ID */
242 #define DIF_VAR_UID 0x011e /* process user ID */
243 #define DIF_VAR_GID 0x011f /* process group ID */
244 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
245 #define DIF_VAR_THREADNAME 0x0121 /* thread name */
247 #define DIF_SUBR_RAND 0
248 #define DIF_SUBR_MUTEX_OWNED 1
249 #define DIF_SUBR_MUTEX_OWNER 2
250 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
251 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
252 #define DIF_SUBR_RW_READ_HELD 5
253 #define DIF_SUBR_RW_WRITE_HELD 6
254 #define DIF_SUBR_RW_ISWRITER 7
255 #define DIF_SUBR_COPYIN 8
256 #define DIF_SUBR_COPYINSTR 9
257 #define DIF_SUBR_SPECULATION 10
258 #define DIF_SUBR_PROGENYOF 11
259 #define DIF_SUBR_STRLEN 12
260 #define DIF_SUBR_COPYOUT 13
261 #define DIF_SUBR_COPYOUTSTR 14
262 #define DIF_SUBR_ALLOCA 15
263 #define DIF_SUBR_BCOPY 16
264 #define DIF_SUBR_COPYINTO 17
265 #define DIF_SUBR_MSGDSIZE 18
266 #define DIF_SUBR_MSGSIZE 19
267 #define DIF_SUBR_GETMAJOR 20
268 #define DIF_SUBR_GETMINOR 21
269 #define DIF_SUBR_DDI_PATHNAME 22
270 #define DIF_SUBR_STRJOIN 23
271 #define DIF_SUBR_LLTOSTR 24
272 #define DIF_SUBR_BASENAME 25
273 #define DIF_SUBR_DIRNAME 26
274 #define DIF_SUBR_CLEANPATH 27
275 #define DIF_SUBR_STRCHR 28
276 #define DIF_SUBR_STRRCHR 29
277 #define DIF_SUBR_STRSTR 30
278 #define DIF_SUBR_STRTOK 31
279 #define DIF_SUBR_SUBSTR 32
280 #define DIF_SUBR_INDEX 33
281 #define DIF_SUBR_RINDEX 34
282 #define DIF_SUBR_HTONS 35
283 #define DIF_SUBR_HTONL 36
284 #define DIF_SUBR_HTONLL 37
285 #define DIF_SUBR_NTOHS 38
286 #define DIF_SUBR_NTOHL 39
287 #define DIF_SUBR_NTOHLL 40
288 #define DIF_SUBR_INET_NTOP 41
289 #define DIF_SUBR_INET_NTOA 42
290 #define DIF_SUBR_INET_NTOA6 43
291 #define DIF_SUBR_TOUPPER 44
292 #define DIF_SUBR_TOLOWER 45
293 #define DIF_SUBR_GETF 46
294 #define DIF_SUBR_JSON 47
295 #define DIF_SUBR_STRTOLL 48
297 #define DIF_SUBR_MAX 48 /* max subroutine value */
299 typedef uint32_t dif_instr_t;
301 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
302 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
303 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
304 #define DIF_INSTR_RD(i) ((i) & 0xff)
305 #define DIF_INSTR_RS(i) ((i) & 0xff)
306 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
307 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
308 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
309 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
310 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
311 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
312 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
314 #define DIF_INSTR_FMT(op, r1, r2, d) \
315 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
317 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
318 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
319 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
320 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
321 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
322 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
323 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
324 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
325 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
326 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
327 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
328 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
329 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
330 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
331 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
332 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
333 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
334 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
335 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
336 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
337 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
339 #define DIF_REG_R0 0 /* %r0 is always set to zero */
342 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
343 * of variables, function and associative array arguments, and the return type
344 * for each DIF object (shown below). It contains a description of the type,
345 * its size in bytes, and a module identifier.
347 typedef struct dtrace_diftype {
348 uint8_t dtdt_kind; /* type kind (see below) */
349 uint8_t dtdt_ckind; /* type kind in CTF */
350 uint8_t dtdt_flags; /* type flags (see below) */
351 uint8_t dtdt_pad; /* reserved for future use */
352 uint32_t dtdt_size; /* type size in bytes (unless string) */
353 } dtrace_diftype_t;
355 #define DIF_TYPE_CTF 0 /* type is a CTF type */
356 #define DIF_TYPE_STRING 1 /* type is a D string */
358 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
359 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
362 * A DTrace Intermediate Format variable record is used to describe each of the
363 * variables referenced by a given DIF object. It contains an integer variable
364 * identifier along with variable scope and properties, as shown below. The
365 * size of this structure must be sizeof (int) aligned.
367 typedef struct dtrace_difv {
368 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
369 uint32_t dtdv_id; /* variable reference identifier */
370 uint8_t dtdv_kind; /* variable kind (see below) */
371 uint8_t dtdv_scope; /* variable scope (see below) */
372 uint16_t dtdv_flags; /* variable flags (see below) */
373 dtrace_diftype_t dtdv_type; /* variable type (see above) */
374 } dtrace_difv_t;
376 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
377 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
379 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
380 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
381 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
383 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
384 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
387 * DTrace Actions
389 * The upper byte determines the class of the action; the low bytes determines
390 * the specific action within that class. The classes of actions are as
391 * follows:
393 * [ no class ] <= May record process- or kernel-related data
394 * DTRACEACT_PROC <= Only records process-related data
395 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
396 * DTRACEACT_KERNEL <= Only records kernel-related data
397 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
398 * DTRACEACT_SPECULATIVE <= Speculation-related action
399 * DTRACEACT_AGGREGATION <= Aggregating action
401 #define DTRACEACT_NONE 0 /* no action */
402 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
403 #define DTRACEACT_EXIT 2 /* exit() action */
404 #define DTRACEACT_PRINTF 3 /* printf() action */
405 #define DTRACEACT_PRINTA 4 /* printa() action */
406 #define DTRACEACT_LIBACT 5 /* library-controlled action */
407 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
408 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
410 #define DTRACEACT_PROC 0x0100
411 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
412 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
413 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
414 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
415 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
417 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
418 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
419 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
420 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
421 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
423 #define DTRACEACT_PROC_CONTROL 0x0300
425 #define DTRACEACT_KERNEL 0x0400
426 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
427 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
428 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
430 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
431 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
432 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
433 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
435 #define DTRACEACT_SPECULATIVE 0x0600
436 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
437 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
438 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
440 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
442 #define DTRACEACT_ISDESTRUCTIVE(x) \
443 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
444 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
446 #define DTRACEACT_ISSPECULATIVE(x) \
447 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
449 #define DTRACEACT_ISPRINTFLIKE(x) \
450 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
451 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
454 * DTrace Aggregating Actions
456 * These are functions f(x) for which the following is true:
458 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
460 * where x_n is a set of arbitrary data. Aggregating actions are in their own
461 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
462 * for easier processing of the aggregation argument and data payload for a few
463 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
465 #define DTRACEACT_AGGREGATION 0x0700
466 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
467 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
468 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
469 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
470 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
471 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
472 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
473 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
474 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
476 #define DTRACEACT_ISAGG(x) \
477 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
479 #define DTRACE_QUANTIZE_NBUCKETS \
480 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
482 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
484 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
485 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
486 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
487 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
488 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
490 #define DTRACE_LQUANTIZE_STEPSHIFT 48
491 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
492 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
493 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
494 #define DTRACE_LQUANTIZE_BASESHIFT 0
495 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
497 #define DTRACE_LQUANTIZE_STEP(x) \
498 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
499 DTRACE_LQUANTIZE_STEPSHIFT)
501 #define DTRACE_LQUANTIZE_LEVELS(x) \
502 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
503 DTRACE_LQUANTIZE_LEVELSHIFT)
505 #define DTRACE_LQUANTIZE_BASE(x) \
506 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
507 DTRACE_LQUANTIZE_BASESHIFT)
509 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
510 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
511 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
512 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
513 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
514 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
515 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
516 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
518 #define DTRACE_LLQUANTIZE_FACTOR(x) \
519 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
520 DTRACE_LLQUANTIZE_FACTORSHIFT)
522 #define DTRACE_LLQUANTIZE_LOW(x) \
523 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
524 DTRACE_LLQUANTIZE_LOWSHIFT)
526 #define DTRACE_LLQUANTIZE_HIGH(x) \
527 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
528 DTRACE_LLQUANTIZE_HIGHSHIFT)
530 #define DTRACE_LLQUANTIZE_NSTEP(x) \
531 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
532 DTRACE_LLQUANTIZE_NSTEPSHIFT)
534 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
535 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
536 #define DTRACE_USTACK_ARG(x, y) \
537 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
539 #ifndef _LP64
540 #ifndef _LITTLE_ENDIAN
541 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
542 #else
543 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
544 #endif
545 #else
546 #define DTRACE_PTR(type, name) type *name
547 #endif
550 * DTrace Object Format (DOF)
552 * DTrace programs can be persistently encoded in the DOF format so that they
553 * may be embedded in other programs (for example, in an ELF file) or in the
554 * dtrace driver configuration file for use in anonymous tracing. The DOF
555 * format is versioned and extensible so that it can be revised and so that
556 * internal data structures can be modified or extended compatibly. All DOF
557 * structures use fixed-size types, so the 32-bit and 64-bit representations
558 * are identical and consumers can use either data model transparently.
560 * The file layout is structured as follows:
562 * +---------------+-------------------+----- ... ----+---- ... ------+
563 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
564 * | (file header) | (section headers) | section data | section data |
565 * +---------------+-------------------+----- ... ----+---- ... ------+
566 * |<------------ dof_hdr.dofh_loadsz --------------->| |
567 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
569 * The file header stores meta-data including a magic number, data model for
570 * the instrumentation, data encoding, and properties of the DIF code within.
571 * The header describes its own size and the size of the section headers. By
572 * convention, an array of section headers follows the file header, and then
573 * the data for all loadable sections and unloadable sections. This permits
574 * consumer code to easily download the headers and all loadable data into the
575 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
577 * The section headers describe the size, offset, alignment, and section type
578 * for each section. Sections are described using a set of #defines that tell
579 * the consumer what kind of data is expected. Sections can contain links to
580 * other sections by storing a dof_secidx_t, an index into the section header
581 * array, inside of the section data structures. The section header includes
582 * an entry size so that sections with data arrays can grow their structures.
584 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
585 * are represented themselves as a collection of related DOF sections. This
586 * permits us to change the set of sections associated with a DIFO over time,
587 * and also permits us to encode DIFOs that contain different sets of sections.
588 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
589 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
590 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
592 * This loose coupling of the file structure (header and sections) to the
593 * structure of the DTrace program itself (ECB descriptions, action
594 * descriptions, and DIFOs) permits activities such as relocation processing
595 * to occur in a single pass without having to understand D program structure.
597 * Finally, strings are always stored in ELF-style string tables along with a
598 * string table section index and string table offset. Therefore strings in
599 * DOF are always arbitrary-length and not bound to the current implementation.
602 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
604 typedef struct dof_hdr {
605 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
606 uint32_t dofh_flags; /* file attribute flags (if any) */
607 uint32_t dofh_hdrsize; /* size of file header in bytes */
608 uint32_t dofh_secsize; /* size of section header in bytes */
609 uint32_t dofh_secnum; /* number of section headers */
610 uint64_t dofh_secoff; /* file offset of section headers */
611 uint64_t dofh_loadsz; /* file size of loadable portion */
612 uint64_t dofh_filesz; /* file size of entire DOF file */
613 uint64_t dofh_pad; /* reserved for future use */
614 } dof_hdr_t;
616 #define DOF_ID_MAG0 0 /* first byte of magic number */
617 #define DOF_ID_MAG1 1 /* second byte of magic number */
618 #define DOF_ID_MAG2 2 /* third byte of magic number */
619 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
620 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
621 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
622 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
623 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
624 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
625 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
626 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
628 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
629 #define DOF_MAG_MAG1 'D'
630 #define DOF_MAG_MAG2 'O'
631 #define DOF_MAG_MAG3 'F'
633 #define DOF_MAG_STRING "\177DOF"
634 #define DOF_MAG_STRLEN 4
636 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
637 #define DOF_MODEL_ILP32 1
638 #define DOF_MODEL_LP64 2
640 #ifdef _LP64
641 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
642 #else
643 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
644 #endif
646 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
647 #define DOF_ENCODE_LSB 1
648 #define DOF_ENCODE_MSB 2
650 #ifdef _BIG_ENDIAN
651 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
652 #else
653 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
654 #endif
656 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
657 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
658 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
660 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
662 typedef uint32_t dof_secidx_t; /* section header table index type */
663 typedef uint32_t dof_stridx_t; /* string table index type */
665 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
666 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
668 typedef struct dof_sec {
669 uint32_t dofs_type; /* section type (see below) */
670 uint32_t dofs_align; /* section data memory alignment */
671 uint32_t dofs_flags; /* section flags (if any) */
672 uint32_t dofs_entsize; /* size of section entry (if table) */
673 uint64_t dofs_offset; /* offset of section data within file */
674 uint64_t dofs_size; /* size of section data in bytes */
675 } dof_sec_t;
677 #define DOF_SECT_NONE 0 /* null section */
678 #define DOF_SECT_COMMENTS 1 /* compiler comments */
679 #define DOF_SECT_SOURCE 2 /* D program source code */
680 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
681 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
682 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
683 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
684 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
685 #define DOF_SECT_STRTAB 8 /* string table */
686 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
687 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
688 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
689 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
690 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
691 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
692 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
693 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
694 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
695 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
696 #define DOF_SECT_INTTAB 19 /* uint64_t array */
697 #define DOF_SECT_UTSNAME 20 /* struct utsname */
698 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
699 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
700 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
701 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
702 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
703 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
705 #define DOF_SECF_LOAD 1 /* section should be loaded */
707 #define DOF_SEC_ISLOADABLE(x) \
708 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
709 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
710 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
711 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
712 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
713 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
714 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
715 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
716 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
717 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
718 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
719 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
721 typedef struct dof_ecbdesc {
722 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
723 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
724 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
725 uint32_t dofe_pad; /* reserved for future use */
726 uint64_t dofe_uarg; /* user-supplied library argument */
727 } dof_ecbdesc_t;
729 typedef struct dof_probedesc {
730 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
731 dof_stridx_t dofp_provider; /* provider string */
732 dof_stridx_t dofp_mod; /* module string */
733 dof_stridx_t dofp_func; /* function string */
734 dof_stridx_t dofp_name; /* name string */
735 uint32_t dofp_id; /* probe identifier (or zero) */
736 } dof_probedesc_t;
738 typedef struct dof_actdesc {
739 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
740 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
741 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
742 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
743 uint64_t dofa_arg; /* kind-specific argument */
744 uint64_t dofa_uarg; /* user-supplied argument */
745 } dof_actdesc_t;
747 typedef struct dof_difohdr {
748 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
749 dof_secidx_t dofd_links[1]; /* variable length array of indices */
750 } dof_difohdr_t;
752 typedef struct dof_relohdr {
753 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
754 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
755 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
756 } dof_relohdr_t;
758 typedef struct dof_relodesc {
759 dof_stridx_t dofr_name; /* string name of relocation symbol */
760 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
761 uint64_t dofr_offset; /* byte offset for relocation */
762 uint64_t dofr_data; /* additional type-specific data */
763 } dof_relodesc_t;
765 #define DOF_RELO_NONE 0 /* empty relocation entry */
766 #define DOF_RELO_SETX 1 /* relocate setx value */
768 typedef struct dof_optdesc {
769 uint32_t dofo_option; /* option identifier */
770 dof_secidx_t dofo_strtab; /* string table, if string option */
771 uint64_t dofo_value; /* option value or string index */
772 } dof_optdesc_t;
774 typedef uint32_t dof_attr_t; /* encoded stability attributes */
776 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
777 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
778 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
779 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
781 typedef struct dof_provider {
782 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
783 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
784 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
785 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
786 dof_stridx_t dofpv_name; /* provider name string */
787 dof_attr_t dofpv_provattr; /* provider attributes */
788 dof_attr_t dofpv_modattr; /* module attributes */
789 dof_attr_t dofpv_funcattr; /* function attributes */
790 dof_attr_t dofpv_nameattr; /* name attributes */
791 dof_attr_t dofpv_argsattr; /* args attributes */
792 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
793 } dof_provider_t;
795 typedef struct dof_probe {
796 uint64_t dofpr_addr; /* probe base address or offset */
797 dof_stridx_t dofpr_func; /* probe function string */
798 dof_stridx_t dofpr_name; /* probe name string */
799 dof_stridx_t dofpr_nargv; /* native argument type strings */
800 dof_stridx_t dofpr_xargv; /* translated argument type strings */
801 uint32_t dofpr_argidx; /* index of first argument mapping */
802 uint32_t dofpr_offidx; /* index of first offset entry */
803 uint8_t dofpr_nargc; /* native argument count */
804 uint8_t dofpr_xargc; /* translated argument count */
805 uint16_t dofpr_noffs; /* number of offset entries for probe */
806 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
807 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
808 uint16_t dofpr_pad1; /* reserved for future use */
809 uint32_t dofpr_pad2; /* reserved for future use */
810 } dof_probe_t;
812 typedef struct dof_xlator {
813 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
814 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
815 dof_stridx_t dofxl_argv; /* input parameter type strings */
816 uint32_t dofxl_argc; /* input parameter list length */
817 dof_stridx_t dofxl_type; /* output type string name */
818 dof_attr_t dofxl_attr; /* output stability attributes */
819 } dof_xlator_t;
821 typedef struct dof_xlmember {
822 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
823 dof_stridx_t dofxm_name; /* member name */
824 dtrace_diftype_t dofxm_type; /* member type */
825 } dof_xlmember_t;
827 typedef struct dof_xlref {
828 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
829 uint32_t dofxr_member; /* index of referenced dof_xlmember */
830 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
831 } dof_xlref_t;
834 * DTrace Intermediate Format Object (DIFO)
836 * A DIFO is used to store the compiled DIF for a D expression, its return
837 * type, and its string and variable tables. The string table is a single
838 * buffer of character data into which sets instructions and variable
839 * references can reference strings using a byte offset. The variable table
840 * is an array of dtrace_difv_t structures that describe the name and type of
841 * each variable and the id used in the DIF code. This structure is described
842 * above in the DIF section of this header file. The DIFO is used at both
843 * user-level (in the library) and in the kernel, but the structure is never
844 * passed between the two: the DOF structures form the only interface. As a
845 * result, the definition can change depending on the presence of _KERNEL.
847 typedef struct dtrace_difo {
848 dif_instr_t *dtdo_buf; /* instruction buffer */
849 uint64_t *dtdo_inttab; /* integer table (optional) */
850 char *dtdo_strtab; /* string table (optional) */
851 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
852 uint_t dtdo_len; /* length of instruction buffer */
853 uint_t dtdo_intlen; /* length of integer table */
854 uint_t dtdo_strlen; /* length of string table */
855 uint_t dtdo_varlen; /* length of variable table */
856 dtrace_diftype_t dtdo_rtype; /* return type */
857 uint_t dtdo_refcnt; /* owner reference count */
858 uint_t dtdo_destructive; /* invokes destructive subroutines */
859 #ifndef _KERNEL
860 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
861 dof_relodesc_t *dtdo_ureltab; /* user relocations */
862 struct dt_node **dtdo_xlmtab; /* translator references */
863 uint_t dtdo_krelen; /* length of krelo table */
864 uint_t dtdo_urelen; /* length of urelo table */
865 uint_t dtdo_xlmlen; /* length of translator table */
866 #endif
867 } dtrace_difo_t;
870 * DTrace Enabling Description Structures
872 * When DTrace is tracking the description of a DTrace enabling entity (probe,
873 * predicate, action, ECB, record, etc.), it does so in a description
874 * structure. These structures all end in "desc", and are used at both
875 * user-level and in the kernel -- but (with the exception of
876 * dtrace_probedesc_t) they are never passed between them. Typically,
877 * user-level will use the description structures when assembling an enabling.
878 * It will then distill those description structures into a DOF object (see
879 * above), and send it into the kernel. The kernel will again use the
880 * description structures to create a description of the enabling as it reads
881 * the DOF. When the description is complete, the enabling will be actually
882 * created -- turning it into the structures that represent the enabling
883 * instead of merely describing it. Not surprisingly, the description
884 * structures bear a strong resemblance to the DOF structures that act as their
885 * conduit.
887 struct dtrace_predicate;
889 typedef struct dtrace_probedesc {
890 dtrace_id_t dtpd_id; /* probe identifier */
891 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
892 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
893 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
894 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
895 } dtrace_probedesc_t;
897 typedef struct dtrace_repldesc {
898 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
899 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
900 } dtrace_repldesc_t;
902 typedef struct dtrace_preddesc {
903 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
904 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
905 } dtrace_preddesc_t;
907 typedef struct dtrace_actdesc {
908 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
909 struct dtrace_actdesc *dtad_next; /* next action */
910 dtrace_actkind_t dtad_kind; /* kind of action */
911 uint32_t dtad_ntuple; /* number in tuple */
912 uint64_t dtad_arg; /* action argument */
913 uint64_t dtad_uarg; /* user argument */
914 int dtad_refcnt; /* reference count */
915 } dtrace_actdesc_t;
917 typedef struct dtrace_ecbdesc {
918 dtrace_actdesc_t *dted_action; /* action description(s) */
919 dtrace_preddesc_t dted_pred; /* predicate description */
920 dtrace_probedesc_t dted_probe; /* probe description */
921 uint64_t dted_uarg; /* library argument */
922 int dted_refcnt; /* reference count */
923 } dtrace_ecbdesc_t;
926 * DTrace Metadata Description Structures
928 * DTrace separates the trace data stream from the metadata stream. The only
929 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
930 * timestamp) or (in the case of aggregations) aggregation identifiers. To
931 * determine the structure of the data, DTrace consumers pass the token to the
932 * kernel, and receive in return a corresponding description of the enabled
933 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
934 * dtrace_aggdesc structure). Both of these structures are expressed in terms
935 * of record descriptions (via the dtrace_recdesc structure) that describe the
936 * exact structure of the data. Some record descriptions may also contain a
937 * format identifier; this additional bit of metadata can be retrieved from the
938 * kernel, for which a format description is returned via the dtrace_fmtdesc
939 * structure. Note that all four of these structures must be bitness-neutral
940 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
942 typedef struct dtrace_recdesc {
943 dtrace_actkind_t dtrd_action; /* kind of action */
944 uint32_t dtrd_size; /* size of record */
945 uint32_t dtrd_offset; /* offset in ECB's data */
946 uint16_t dtrd_alignment; /* required alignment */
947 uint16_t dtrd_format; /* format, if any */
948 uint64_t dtrd_arg; /* action argument */
949 uint64_t dtrd_uarg; /* user argument */
950 } dtrace_recdesc_t;
952 typedef struct dtrace_eprobedesc {
953 dtrace_epid_t dtepd_epid; /* enabled probe ID */
954 dtrace_id_t dtepd_probeid; /* probe ID */
955 uint64_t dtepd_uarg; /* library argument */
956 uint32_t dtepd_size; /* total size */
957 int dtepd_nrecs; /* number of records */
958 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
959 } dtrace_eprobedesc_t;
961 typedef struct dtrace_aggdesc {
962 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
963 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
964 int dtagd_flags; /* not filled in by kernel */
965 dtrace_aggid_t dtagd_id; /* aggregation ID */
966 dtrace_epid_t dtagd_epid; /* enabled probe ID */
967 uint32_t dtagd_size; /* size in bytes */
968 int dtagd_nrecs; /* number of records */
969 uint32_t dtagd_pad; /* explicit padding */
970 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
971 } dtrace_aggdesc_t;
973 typedef struct dtrace_fmtdesc {
974 DTRACE_PTR(char, dtfd_string); /* format string */
975 int dtfd_length; /* length of format string */
976 uint16_t dtfd_format; /* format identifier */
977 } dtrace_fmtdesc_t;
979 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
980 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
981 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
983 #define DTRACE_SIZEOF_AGGDESC(desc) \
984 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
985 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
988 * DTrace Option Interface
990 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
991 * in a DOF image. The dof_optdesc structure contains an option identifier and
992 * an option value. The valid option identifiers are found below; the mapping
993 * between option identifiers and option identifying strings is maintained at
994 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
995 * following are potentially valid option values: all positive integers, zero
996 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
997 * predefined tokens as their values; these are defined with
998 * DTRACEOPT_{option}_{token}.
1000 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1001 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1002 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1003 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1004 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1005 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1006 #define DTRACEOPT_STRSIZE 6 /* string size */
1007 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1008 #define DTRACEOPT_CPU 8 /* CPU to trace */
1009 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1010 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1011 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1012 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1013 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1014 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1015 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1016 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1017 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1018 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1019 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1020 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1021 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1022 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1023 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1024 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1025 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1026 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1027 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1028 #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */
1029 #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */
1030 #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */
1031 #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */
1032 #define DTRACEOPT_MAX 32 /* number of options */
1034 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1036 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1037 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1038 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1040 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1041 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1044 * DTrace Buffer Interface
1046 * In order to get a snapshot of the principal or aggregation buffer,
1047 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1048 * structure. This describes which CPU user-level is interested in, and
1049 * where user-level wishes the kernel to snapshot the buffer to (the
1050 * dtbd_data field). The kernel uses the same structure to pass back some
1051 * information regarding the buffer: the size of data actually copied out, the
1052 * number of drops, the number of errors, the offset of the oldest record,
1053 * and the time of the snapshot.
1055 * If the buffer policy is a "switch" policy, taking a snapshot of the
1056 * principal buffer has the additional effect of switching the active and
1057 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1058 * the additional effect of switching the active and inactive buffers.
1060 typedef struct dtrace_bufdesc {
1061 uint64_t dtbd_size; /* size of buffer */
1062 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1063 uint32_t dtbd_errors; /* number of errors */
1064 uint64_t dtbd_drops; /* number of drops */
1065 DTRACE_PTR(char, dtbd_data); /* data */
1066 uint64_t dtbd_oldest; /* offset of oldest record */
1067 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1068 } dtrace_bufdesc_t;
1071 * Each record in the buffer (dtbd_data) begins with a header that includes
1072 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1073 * so that we do not require 8-byte alignment.
1075 typedef struct dtrace_rechdr {
1076 dtrace_epid_t dtrh_epid; /* enabled probe id */
1077 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1078 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1079 } dtrace_rechdr_t;
1081 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1082 ((dtrh)->dtrh_timestamp_lo + \
1083 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1085 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1086 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1087 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1091 * DTrace Status
1093 * The status of DTrace is relayed via the dtrace_status structure. This
1094 * structure contains members to count drops other than the capacity drops
1095 * available via the buffer interface (see above). This consists of dynamic
1096 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1097 * speculative drops (including capacity speculative drops, drops due to busy
1098 * speculative buffers and drops due to unavailable speculative buffers).
1099 * Additionally, the status structure contains a field to indicate the number
1100 * of "fill"-policy buffers have been filled and a boolean field to indicate
1101 * that exit() has been called. If the dtst_exiting field is non-zero, no
1102 * further data will be generated until tracing is stopped (at which time any
1103 * enablings of the END action will be processed); if user-level sees that
1104 * this field is non-zero, tracing should be stopped as soon as possible.
1106 typedef struct dtrace_status {
1107 uint64_t dtst_dyndrops; /* dynamic drops */
1108 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1109 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1110 uint64_t dtst_specdrops; /* speculative drops */
1111 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1112 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1113 uint64_t dtst_errors; /* total errors */
1114 uint64_t dtst_filled; /* number of filled bufs */
1115 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1116 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1117 char dtst_killed; /* non-zero if killed */
1118 char dtst_exiting; /* non-zero if exit() called */
1119 char dtst_pad[6]; /* pad out to 64-bit align */
1120 } dtrace_status_t;
1123 * DTrace Configuration
1125 * User-level may need to understand some elements of the kernel DTrace
1126 * configuration in order to generate correct DIF. This information is
1127 * conveyed via the dtrace_conf structure.
1129 typedef struct dtrace_conf {
1130 uint_t dtc_difversion; /* supported DIF version */
1131 uint_t dtc_difintregs; /* # of DIF integer registers */
1132 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1133 uint_t dtc_ctfmodel; /* CTF data model */
1134 uint_t dtc_pad[8]; /* reserved for future use */
1135 } dtrace_conf_t;
1138 * DTrace Faults
1140 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1141 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1142 * postprocessing at user-level. Probe processing faults induce an ERROR
1143 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1144 * the error condition using thse symbolic labels.
1146 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1147 #define DTRACEFLT_BADADDR 1 /* Bad address */
1148 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1149 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1150 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1151 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1152 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1153 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1154 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1155 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1157 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1160 * DTrace Argument Types
1162 * Because it would waste both space and time, argument types do not reside
1163 * with the probe. In order to determine argument types for args[X]
1164 * variables, the D compiler queries for argument types on a probe-by-probe
1165 * basis. (This optimizes for the common case that arguments are either not
1166 * used or used in an untyped fashion.) Typed arguments are specified with a
1167 * string of the type name in the dtragd_native member of the argument
1168 * description structure. Typed arguments may be further translated to types
1169 * of greater stability; the provider indicates such a translated argument by
1170 * filling in the dtargd_xlate member with the string of the translated type.
1171 * Finally, the provider may indicate which argument value a given argument
1172 * maps to by setting the dtargd_mapping member -- allowing a single argument
1173 * to map to multiple args[X] variables.
1175 typedef struct dtrace_argdesc {
1176 dtrace_id_t dtargd_id; /* probe identifier */
1177 int dtargd_ndx; /* arg number (-1 iff none) */
1178 int dtargd_mapping; /* value mapping */
1179 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1180 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1181 } dtrace_argdesc_t;
1184 * DTrace Stability Attributes
1186 * Each DTrace provider advertises the name and data stability of each of its
1187 * probe description components, as well as its architectural dependencies.
1188 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1189 * order to compute the properties of an input program and report them.
1191 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1192 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1194 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1195 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1196 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1197 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1198 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1199 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1200 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1201 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1202 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1204 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1205 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1206 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1207 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1208 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1209 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1210 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1212 #define DTRACE_PRIV_NONE 0x0000
1213 #define DTRACE_PRIV_KERNEL 0x0001
1214 #define DTRACE_PRIV_USER 0x0002
1215 #define DTRACE_PRIV_PROC 0x0004
1216 #define DTRACE_PRIV_OWNER 0x0008
1217 #define DTRACE_PRIV_ZONEOWNER 0x0010
1219 #define DTRACE_PRIV_ALL \
1220 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1221 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1223 typedef struct dtrace_ppriv {
1224 uint32_t dtpp_flags; /* privilege flags */
1225 uid_t dtpp_uid; /* user ID */
1226 zoneid_t dtpp_zoneid; /* zone ID */
1227 } dtrace_ppriv_t;
1229 typedef struct dtrace_attribute {
1230 dtrace_stability_t dtat_name; /* entity name stability */
1231 dtrace_stability_t dtat_data; /* entity data stability */
1232 dtrace_class_t dtat_class; /* entity data dependency */
1233 } dtrace_attribute_t;
1235 typedef struct dtrace_pattr {
1236 dtrace_attribute_t dtpa_provider; /* provider attributes */
1237 dtrace_attribute_t dtpa_mod; /* module attributes */
1238 dtrace_attribute_t dtpa_func; /* function attributes */
1239 dtrace_attribute_t dtpa_name; /* name attributes */
1240 dtrace_attribute_t dtpa_args; /* args[] attributes */
1241 } dtrace_pattr_t;
1243 typedef struct dtrace_providerdesc {
1244 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1245 dtrace_pattr_t dtvd_attr; /* stability attributes */
1246 dtrace_ppriv_t dtvd_priv; /* privileges required */
1247 } dtrace_providerdesc_t;
1250 * DTrace Pseudodevice Interface
1252 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1253 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1254 * DTrace.
1256 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1257 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1258 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1259 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1260 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1261 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1262 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1263 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1264 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1265 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1266 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1267 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1268 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1269 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1270 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1271 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1272 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1275 * DTrace Helpers
1277 * In general, DTrace establishes probes in processes and takes actions on
1278 * processes without knowing their specific user-level structures. Instead of
1279 * existing in the framework, process-specific knowledge is contained by the
1280 * enabling D program -- which can apply process-specific knowledge by making
1281 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1282 * operate on user-level data. However, there may exist some specific probes
1283 * of particular semantic relevance that the application developer may wish to
1284 * explicitly export. For example, an application may wish to export a probe
1285 * at the point that it begins and ends certain well-defined transactions. In
1286 * addition to providing probes, programs may wish to offer assistance for
1287 * certain actions. For example, in highly dynamic environments (e.g., Java),
1288 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1289 * names (the translation from instruction addresses to corresponding symbol
1290 * names may only be possible in situ); these environments may wish to define
1291 * a series of actions to be applied in situ to obtain a meaningful stack
1292 * trace.
1294 * These two mechanisms -- user-level statically defined tracing and assisting
1295 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1296 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1297 * providers, probes and their arguments. If a helper wishes to provide
1298 * action assistance, probe descriptions and corresponding DIF actions may be
1299 * specified in the helper DOF. For such helper actions, however, the probe
1300 * description describes the specific helper: all DTrace helpers have the
1301 * provider name "dtrace" and the module name "helper", and the name of the
1302 * helper is contained in the function name (for example, the ustack() helper
1303 * is named "ustack"). Any helper-specific name may be contained in the name
1304 * (for example, if a helper were to have a constructor, it might be named
1305 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1306 * action that they are helping is taken. Helper actions may only return DIF
1307 * expressions, and may only call the following subroutines:
1309 * alloca() <= Allocates memory out of the consumer's scratch space
1310 * bcopy() <= Copies memory to scratch space
1311 * copyin() <= Copies memory from user-level into consumer's scratch
1312 * copyinto() <= Copies memory into a specific location in scratch
1313 * copyinstr() <= Copies a string into a specific location in scratch
1315 * Helper actions may only access the following built-in variables:
1317 * curthread <= Current kthread_t pointer
1318 * tid <= Current thread identifier
1319 * pid <= Current process identifier
1320 * ppid <= Parent process identifier
1321 * uid <= Current user ID
1322 * gid <= Current group ID
1323 * execname <= Current executable name
1324 * zonename <= Current zone name
1326 * Helper actions may not manipulate or allocate dynamic variables, but they
1327 * may have clause-local and statically-allocated global variables. The
1328 * helper action variable state is specific to the helper action -- variables
1329 * used by the helper action may not be accessed outside of the helper
1330 * action, and the helper action may not access variables that like outside
1331 * of it. Helper actions may not load from kernel memory at-large; they are
1332 * restricting to loading current user state (via copyin() and variants) and
1333 * scratch space. As with probe enablings, helper actions are executed in
1334 * program order. The result of the helper action is the result of the last
1335 * executing helper expression.
1337 * Helpers -- composed of either providers/probes or probes/actions (or both)
1338 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1339 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1340 * encapsulates the name and base address of the user-level library or
1341 * executable publishing the helpers and probes as well as the DOF that
1342 * contains the definitions of those helpers and probes.
1344 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1345 * helpers and should no longer be used. No other ioctls are valid on the
1346 * helper minor node.
1348 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1349 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1350 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1351 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1353 typedef struct dof_helper {
1354 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1355 uint64_t dofhp_addr; /* base address of object */
1356 uint64_t dofhp_dof; /* address of helper DOF */
1357 } dof_helper_t;
1359 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1360 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1361 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1362 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1363 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1365 #ifdef _KERNEL
1368 * DTrace Provider API
1370 * The following functions are implemented by the DTrace framework and are
1371 * used to implement separate in-kernel DTrace providers. Common functions
1372 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1373 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1375 * The provider API has two halves: the API that the providers consume from
1376 * DTrace, and the API that providers make available to DTrace.
1378 * 1 Framework-to-Provider API
1380 * 1.1 Overview
1382 * The Framework-to-Provider API is represented by the dtrace_pops structure
1383 * that the provider passes to the framework when registering itself. This
1384 * structure consists of the following members:
1386 * dtps_provide() <-- Provide all probes, all modules
1387 * dtps_provide_module() <-- Provide all probes in specified module
1388 * dtps_enable() <-- Enable specified probe
1389 * dtps_disable() <-- Disable specified probe
1390 * dtps_suspend() <-- Suspend specified probe
1391 * dtps_resume() <-- Resume specified probe
1392 * dtps_getargdesc() <-- Get the argument description for args[X]
1393 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1394 * dtps_mode() <-- Return the mode of the fired probe
1395 * dtps_destroy() <-- Destroy all state associated with this probe
1397 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1399 * 1.2.1 Overview
1401 * Called to indicate that the provider should provide all probes. If the
1402 * specified description is non-NULL, dtps_provide() is being called because
1403 * no probe matched a specified probe -- if the provider has the ability to
1404 * create custom probes, it may wish to create a probe that matches the
1405 * specified description.
1407 * 1.2.2 Arguments and notes
1409 * The first argument is the cookie as passed to dtrace_register(). The
1410 * second argument is a pointer to a probe description that the provider may
1411 * wish to consider when creating custom probes. The provider is expected to
1412 * call back into the DTrace framework via dtrace_probe_create() to create
1413 * any necessary probes. dtps_provide() may be called even if the provider
1414 * has made available all probes; the provider should check the return value
1415 * of dtrace_probe_create() to handle this case. Note that the provider need
1416 * not implement both dtps_provide() and dtps_provide_module(); see
1417 * "Arguments and Notes" for dtrace_register(), below.
1419 * 1.2.3 Return value
1421 * None.
1423 * 1.2.4 Caller's context
1425 * dtps_provide() is typically called from open() or ioctl() context, but may
1426 * be called from other contexts as well. The DTrace framework is locked in
1427 * such a way that providers may not register or unregister. This means that
1428 * the provider may not call any DTrace API that affects its registration with
1429 * the framework, including dtrace_register(), dtrace_unregister(),
1430 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1431 * that the provider may (and indeed, is expected to) call probe-related
1432 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1433 * and dtrace_probe_arg().
1435 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1437 * 1.3.1 Overview
1439 * Called to indicate that the provider should provide all probes in the
1440 * specified module.
1442 * 1.3.2 Arguments and notes
1444 * The first argument is the cookie as passed to dtrace_register(). The
1445 * second argument is a pointer to a modctl structure that indicates the
1446 * module for which probes should be created.
1448 * 1.3.3 Return value
1450 * None.
1452 * 1.3.4 Caller's context
1454 * dtps_provide_module() may be called from open() or ioctl() context, but
1455 * may also be called from a module loading context. mod_lock is held, and
1456 * the DTrace framework is locked in such a way that providers may not
1457 * register or unregister. This means that the provider may not call any
1458 * DTrace API that affects its registration with the framework, including
1459 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1460 * dtrace_condense(). However, the context is such that the provider may (and
1461 * indeed, is expected to) call probe-related DTrace routines, including
1462 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1463 * that the provider need not implement both dtps_provide() and
1464 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1465 * below.
1467 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1469 * 1.4.1 Overview
1471 * Called to enable the specified probe.
1473 * 1.4.2 Arguments and notes
1475 * The first argument is the cookie as passed to dtrace_register(). The
1476 * second argument is the identifier of the probe to be enabled. The third
1477 * argument is the probe argument as passed to dtrace_probe_create().
1478 * dtps_enable() will be called when a probe transitions from not being
1479 * enabled at all to having one or more ECB. The number of ECBs associated
1480 * with the probe may change without subsequent calls into the provider.
1481 * When the number of ECBs drops to zero, the provider will be explicitly
1482 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1483 * be called for a probe identifier that hasn't been explicitly enabled via
1484 * dtps_enable().
1486 * 1.4.3 Return value
1488 * On success, dtps_enable() should return 0. On failure, -1 should be
1489 * returned.
1491 * 1.4.4 Caller's context
1493 * The DTrace framework is locked in such a way that it may not be called
1494 * back into at all. cpu_lock is held. mod_lock is not held and may not
1495 * be acquired.
1497 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1499 * 1.5.1 Overview
1501 * Called to disable the specified probe.
1503 * 1.5.2 Arguments and notes
1505 * The first argument is the cookie as passed to dtrace_register(). The
1506 * second argument is the identifier of the probe to be disabled. The third
1507 * argument is the probe argument as passed to dtrace_probe_create().
1508 * dtps_disable() will be called when a probe transitions from being enabled
1509 * to having zero ECBs. dtrace_probe() should never be called for a probe
1510 * identifier that has been explicitly enabled via dtps_disable().
1512 * 1.5.3 Return value
1514 * None.
1516 * 1.5.4 Caller's context
1518 * The DTrace framework is locked in such a way that it may not be called
1519 * back into at all. cpu_lock is held. mod_lock is not held and may not
1520 * be acquired.
1522 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1524 * 1.6.1 Overview
1526 * Called to suspend the specified enabled probe. This entry point is for
1527 * providers that may need to suspend some or all of their probes when CPUs
1528 * are being powered on or when the boot monitor is being entered for a
1529 * prolonged period of time.
1531 * 1.6.2 Arguments and notes
1533 * The first argument is the cookie as passed to dtrace_register(). The
1534 * second argument is the identifier of the probe to be suspended. The
1535 * third argument is the probe argument as passed to dtrace_probe_create().
1536 * dtps_suspend will only be called on an enabled probe. Providers that
1537 * provide a dtps_suspend entry point will want to take roughly the action
1538 * that it takes for dtps_disable.
1540 * 1.6.3 Return value
1542 * None.
1544 * 1.6.4 Caller's context
1546 * Interrupts are disabled. The DTrace framework is in a state such that the
1547 * specified probe cannot be disabled or destroyed for the duration of
1548 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1549 * little latitude; the provider is expected to do no more than a store to
1550 * memory.
1552 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1554 * 1.7.1 Overview
1556 * Called to resume the specified enabled probe. This entry point is for
1557 * providers that may need to resume some or all of their probes after the
1558 * completion of an event that induced a call to dtps_suspend().
1560 * 1.7.2 Arguments and notes
1562 * The first argument is the cookie as passed to dtrace_register(). The
1563 * second argument is the identifier of the probe to be resumed. The
1564 * third argument is the probe argument as passed to dtrace_probe_create().
1565 * dtps_resume will only be called on an enabled probe. Providers that
1566 * provide a dtps_resume entry point will want to take roughly the action
1567 * that it takes for dtps_enable.
1569 * 1.7.3 Return value
1571 * None.
1573 * 1.7.4 Caller's context
1575 * Interrupts are disabled. The DTrace framework is in a state such that the
1576 * specified probe cannot be disabled or destroyed for the duration of
1577 * dtps_resume(). As interrupts are disabled, the provider is afforded
1578 * little latitude; the provider is expected to do no more than a store to
1579 * memory.
1581 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1582 * dtrace_argdesc_t *desc)
1584 * 1.8.1 Overview
1586 * Called to retrieve the argument description for an args[X] variable.
1588 * 1.8.2 Arguments and notes
1590 * The first argument is the cookie as passed to dtrace_register(). The
1591 * second argument is the identifier of the current probe. The third
1592 * argument is the probe argument as passed to dtrace_probe_create(). The
1593 * fourth argument is a pointer to the argument description. This
1594 * description is both an input and output parameter: it contains the
1595 * index of the desired argument in the dtargd_ndx field, and expects
1596 * the other fields to be filled in upon return. If there is no argument
1597 * corresponding to the specified index, the dtargd_ndx field should be set
1598 * to DTRACE_ARGNONE.
1600 * 1.8.3 Return value
1602 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1603 * members of the dtrace_argdesc_t structure are all output values.
1605 * 1.8.4 Caller's context
1607 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1608 * the DTrace framework is locked in such a way that providers may not
1609 * register or unregister. This means that the provider may not call any
1610 * DTrace API that affects its registration with the framework, including
1611 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1612 * dtrace_condense().
1614 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1615 * int argno, int aframes)
1617 * 1.9.1 Overview
1619 * Called to retrieve a value for an argX or args[X] variable.
1621 * 1.9.2 Arguments and notes
1623 * The first argument is the cookie as passed to dtrace_register(). The
1624 * second argument is the identifier of the current probe. The third
1625 * argument is the probe argument as passed to dtrace_probe_create(). The
1626 * fourth argument is the number of the argument (the X in the example in
1627 * 1.9.1). The fifth argument is the number of stack frames that were used
1628 * to get from the actual place in the code that fired the probe to
1629 * dtrace_probe() itself, the so-called artificial frames. This argument may
1630 * be used to descend an appropriate number of frames to find the correct
1631 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1632 * function is used.
1634 * 1.9.3 Return value
1636 * The value of the argument.
1638 * 1.9.4 Caller's context
1640 * This is called from within dtrace_probe() meaning that interrupts
1641 * are disabled. No locks should be taken within this entry point.
1643 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1645 * 1.10.1 Overview
1647 * Called to determine the mode of a fired probe.
1649 * 1.10.2 Arguments and notes
1651 * The first argument is the cookie as passed to dtrace_register(). The
1652 * second argument is the identifier of the current probe. The third
1653 * argument is the probe argument as passed to dtrace_probe_create(). This
1654 * entry point must not be left NULL for providers whose probes allow for
1655 * mixed mode tracing, that is to say those unanchored probes that can fire
1656 * during kernel- or user-mode execution.
1658 * 1.10.3 Return value
1660 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1661 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1662 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1663 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1664 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1665 * in the probe firing being silently ignored for the enabling; if the
1666 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1667 * prevent probe processing for the enabling, but restrictions will be in
1668 * place that induce a UPRIV fault upon attempt to examine probe arguments
1669 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1670 * is set, similar restrictions will be placed upon operation if the
1671 * privilege is sufficient to process the enabling, but does not otherwise
1672 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1673 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1674 * two policies must be specified), but either may be combined (or not)
1675 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1677 * 1.10.4 Caller's context
1679 * This is called from within dtrace_probe() meaning that interrupts
1680 * are disabled. No locks should be taken within this entry point.
1682 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1684 * 1.11.1 Overview
1686 * Called to destroy the specified probe.
1688 * 1.11.2 Arguments and notes
1690 * The first argument is the cookie as passed to dtrace_register(). The
1691 * second argument is the identifier of the probe to be destroyed. The third
1692 * argument is the probe argument as passed to dtrace_probe_create(). The
1693 * provider should free all state associated with the probe. The framework
1694 * guarantees that dtps_destroy() is only called for probes that have either
1695 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1696 * Once dtps_disable() has been called for a probe, no further call will be
1697 * made specifying the probe.
1699 * 1.11.3 Return value
1701 * None.
1703 * 1.11.4 Caller's context
1705 * The DTrace framework is locked in such a way that it may not be called
1706 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1707 * acquired.
1710 * 2 Provider-to-Framework API
1712 * 2.1 Overview
1714 * The Provider-to-Framework API provides the mechanism for the provider to
1715 * register itself with the DTrace framework, to create probes, to lookup
1716 * probes and (most importantly) to fire probes. The Provider-to-Framework
1717 * consists of:
1719 * dtrace_register() <-- Register a provider with the DTrace framework
1720 * dtrace_unregister() <-- Remove a provider's DTrace registration
1721 * dtrace_invalidate() <-- Invalidate the specified provider
1722 * dtrace_condense() <-- Remove a provider's unenabled probes
1723 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1724 * dtrace_probe_create() <-- Create a DTrace probe
1725 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1726 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1727 * dtrace_probe() <-- Fire the specified probe
1729 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1730 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1731 * dtrace_provider_id_t *idp)
1733 * 2.2.1 Overview
1735 * dtrace_register() registers the calling provider with the DTrace
1736 * framework. It should generally be called by DTrace providers in their
1737 * attach(9E) entry point.
1739 * 2.2.2 Arguments and Notes
1741 * The first argument is the name of the provider. The second argument is a
1742 * pointer to the stability attributes for the provider. The third argument
1743 * is the privilege flags for the provider, and must be some combination of:
1745 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1747 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1748 * enable probes from this provider
1750 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1751 * enable probes from this provider
1753 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1754 * may enable probes from this provider
1756 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1757 * the privilege requirements above. These probes
1758 * require either (a) a user ID matching the user
1759 * ID of the cred passed in the fourth argument
1760 * or (b) the PRIV_PROC_OWNER privilege.
1762 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1763 * the privilege requirements above. These probes
1764 * require either (a) a zone ID matching the zone
1765 * ID of the cred passed in the fourth argument
1766 * or (b) the PRIV_PROC_ZONE privilege.
1768 * Note that these flags designate the _visibility_ of the probes, not
1769 * the conditions under which they may or may not fire.
1771 * The fourth argument is the credential that is associated with the
1772 * provider. This argument should be NULL if the privilege flags don't
1773 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1774 * framework stashes the uid and zoneid represented by this credential
1775 * for use at probe-time, in implicit predicates. These limit visibility
1776 * of the probes to users and/or zones which have sufficient privilege to
1777 * access them.
1779 * The fifth argument is a DTrace provider operations vector, which provides
1780 * the implementation for the Framework-to-Provider API. (See Section 1,
1781 * above.) This must be non-NULL, and each member must be non-NULL. The
1782 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1783 * members (if the provider so desires, _one_ of these members may be left
1784 * NULL -- denoting that the provider only implements the other) and (2)
1785 * the dtps_suspend() and dtps_resume() members, which must either both be
1786 * NULL or both be non-NULL.
1788 * The sixth argument is a cookie to be specified as the first argument for
1789 * each function in the Framework-to-Provider API. This argument may have
1790 * any value.
1792 * The final argument is a pointer to dtrace_provider_id_t. If
1793 * dtrace_register() successfully completes, the provider identifier will be
1794 * stored in the memory pointed to be this argument. This argument must be
1795 * non-NULL.
1797 * 2.2.3 Return value
1799 * On success, dtrace_register() returns 0 and stores the new provider's
1800 * identifier into the memory pointed to by the idp argument. On failure,
1801 * dtrace_register() returns an errno:
1803 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1804 * This may because a parameter that must be non-NULL was NULL,
1805 * because the name was invalid (either empty or an illegal
1806 * provider name) or because the attributes were invalid.
1808 * No other failure code is returned.
1810 * 2.2.4 Caller's context
1812 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1813 * hold no locks across dtrace_register() that may also be acquired by
1814 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1816 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1818 * 2.3.1 Overview
1820 * Unregisters the specified provider from the DTrace framework. It should
1821 * generally be called by DTrace providers in their detach(9E) entry point.
1823 * 2.3.2 Arguments and Notes
1825 * The only argument is the provider identifier, as returned from a
1826 * successful call to dtrace_register(). As a result of calling
1827 * dtrace_unregister(), the DTrace framework will call back into the provider
1828 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1829 * completes, however, the DTrace framework will no longer make calls through
1830 * the Framework-to-Provider API.
1832 * 2.3.3 Return value
1834 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1835 * returns an errno:
1837 * EBUSY There are currently processes that have the DTrace pseudodevice
1838 * open, or there exists an anonymous enabling that hasn't yet
1839 * been claimed.
1841 * No other failure code is returned.
1843 * 2.3.4 Caller's context
1845 * Because a call to dtrace_unregister() may induce calls through the
1846 * Framework-to-Provider API, the caller may not hold any lock across
1847 * dtrace_register() that is also acquired in any of the Framework-to-
1848 * Provider API functions. Additionally, mod_lock may not be held.
1850 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1852 * 2.4.1 Overview
1854 * Invalidates the specified provider. All subsequent probe lookups for the
1855 * specified provider will fail, but its probes will not be removed.
1857 * 2.4.2 Arguments and note
1859 * The only argument is the provider identifier, as returned from a
1860 * successful call to dtrace_register(). In general, a provider's probes
1861 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1862 * an entire provider, regardless of whether or not probes are enabled or
1863 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1864 * probes from firing -- it will merely prevent any new enablings of the
1865 * provider's probes.
1867 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1869 * 2.5.1 Overview
1871 * Removes all the unenabled probes for the given provider. This function is
1872 * not unlike dtrace_unregister(), except that it doesn't remove the
1873 * provider just as many of its associated probes as it can.
1875 * 2.5.2 Arguments and Notes
1877 * As with dtrace_unregister(), the sole argument is the provider identifier
1878 * as returned from a successful call to dtrace_register(). As a result of
1879 * calling dtrace_condense(), the DTrace framework will call back into the
1880 * given provider's dtps_destroy() entry point for each of the provider's
1881 * unenabled probes.
1883 * 2.5.3 Return value
1885 * Currently, dtrace_condense() always returns 0. However, consumers of this
1886 * function should check the return value as appropriate; its behavior may
1887 * change in the future.
1889 * 2.5.4 Caller's context
1891 * As with dtrace_unregister(), the caller may not hold any lock across
1892 * dtrace_condense() that is also acquired in the provider's entry points.
1893 * Also, mod_lock may not be held.
1895 * 2.6 int dtrace_attached()
1897 * 2.6.1 Overview
1899 * Indicates whether or not DTrace has attached.
1901 * 2.6.2 Arguments and Notes
1903 * For most providers, DTrace makes initial contact beyond registration.
1904 * That is, once a provider has registered with DTrace, it waits to hear
1905 * from DTrace to create probes. However, some providers may wish to
1906 * proactively create probes without first being told by DTrace to do so.
1907 * If providers wish to do this, they must first call dtrace_attached() to
1908 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1909 * the provider must not make any other Provider-to-Framework API call.
1911 * 2.6.3 Return value
1913 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1915 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1916 * const char *func, const char *name, int aframes, void *arg)
1918 * 2.7.1 Overview
1920 * Creates a probe with specified module name, function name, and name.
1922 * 2.7.2 Arguments and Notes
1924 * The first argument is the provider identifier, as returned from a
1925 * successful call to dtrace_register(). The second, third, and fourth
1926 * arguments are the module name, function name, and probe name,
1927 * respectively. Of these, module name and function name may both be NULL
1928 * (in which case the probe is considered to be unanchored), or they may both
1929 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1930 * string.
1932 * The fifth argument is the number of artificial stack frames that will be
1933 * found on the stack when dtrace_probe() is called for the new probe. These
1934 * artificial frames will be automatically be pruned should the stack() or
1935 * stackdepth() functions be called as part of one of the probe's ECBs. If
1936 * the parameter doesn't add an artificial frame, this parameter should be
1937 * zero.
1939 * The final argument is a probe argument that will be passed back to the
1940 * provider when a probe-specific operation is called. (e.g., via
1941 * dtps_enable(), dtps_disable(), etc.)
1943 * Note that it is up to the provider to be sure that the probe that it
1944 * creates does not already exist -- if the provider is unsure of the probe's
1945 * existence, it should assure its absence with dtrace_probe_lookup() before
1946 * calling dtrace_probe_create().
1948 * 2.7.3 Return value
1950 * dtrace_probe_create() always succeeds, and always returns the identifier
1951 * of the newly-created probe.
1953 * 2.7.4 Caller's context
1955 * While dtrace_probe_create() is generally expected to be called from
1956 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1957 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1959 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1960 * const char *func, const char *name)
1962 * 2.8.1 Overview
1964 * Looks up a probe based on provdider and one or more of module name,
1965 * function name and probe name.
1967 * 2.8.2 Arguments and Notes
1969 * The first argument is the provider identifier, as returned from a
1970 * successful call to dtrace_register(). The second, third, and fourth
1971 * arguments are the module name, function name, and probe name,
1972 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1973 * the identifier of the first probe that is provided by the specified
1974 * provider and matches all of the non-NULL matching criteria.
1975 * dtrace_probe_lookup() is generally used by a provider to be check the
1976 * existence of a probe before creating it with dtrace_probe_create().
1978 * 2.8.3 Return value
1980 * If the probe exists, returns its identifier. If the probe does not exist,
1981 * return DTRACE_IDNONE.
1983 * 2.8.4 Caller's context
1985 * While dtrace_probe_lookup() is generally expected to be called from
1986 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1987 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1989 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1991 * 2.9.1 Overview
1993 * Returns the probe argument associated with the specified probe.
1995 * 2.9.2 Arguments and Notes
1997 * The first argument is the provider identifier, as returned from a
1998 * successful call to dtrace_register(). The second argument is a probe
1999 * identifier, as returned from dtrace_probe_lookup() or
2000 * dtrace_probe_create(). This is useful if a probe has multiple
2001 * provider-specific components to it: the provider can create the probe
2002 * once with provider-specific state, and then add to the state by looking
2003 * up the probe based on probe identifier.
2005 * 2.9.3 Return value
2007 * Returns the argument associated with the specified probe. If the
2008 * specified probe does not exist, or if the specified probe is not provided
2009 * by the specified provider, NULL is returned.
2011 * 2.9.4 Caller's context
2013 * While dtrace_probe_arg() is generally expected to be called from
2014 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2015 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2017 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2018 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2020 * 2.10.1 Overview
2022 * The epicenter of DTrace: fires the specified probes with the specified
2023 * arguments.
2025 * 2.10.2 Arguments and Notes
2027 * The first argument is a probe identifier as returned by
2028 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2029 * arguments are the values to which the D variables "arg0" through "arg4"
2030 * will be mapped.
2032 * dtrace_probe() should be called whenever the specified probe has fired --
2033 * however the provider defines it.
2035 * 2.10.3 Return value
2037 * None.
2039 * 2.10.4 Caller's context
2041 * dtrace_probe() may be called in virtually any context: kernel, user,
2042 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2043 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2044 * that must be afforded to DTrace is the ability to make calls within
2045 * itself (and to its in-kernel subroutines) and the ability to access
2046 * arbitrary (but mapped) memory. On some platforms, this constrains
2047 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2048 * from any context in which TL is greater than zero. dtrace_probe() may
2049 * also not be called from any routine which may be called by dtrace_probe()
2050 * -- which includes functions in the DTrace framework and some in-kernel
2051 * DTrace subroutines. All such functions "dtrace_"; providers that
2052 * instrument the kernel arbitrarily should be sure to not instrument these
2053 * routines.
2055 typedef struct dtrace_pops {
2056 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2057 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2058 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2059 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2060 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2061 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2062 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2063 dtrace_argdesc_t *desc);
2064 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2065 int argno, int aframes);
2066 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2067 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2068 } dtrace_pops_t;
2070 #define DTRACE_MODE_KERNEL 0x01
2071 #define DTRACE_MODE_USER 0x02
2072 #define DTRACE_MODE_NOPRIV_DROP 0x10
2073 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2074 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2076 typedef uintptr_t dtrace_provider_id_t;
2078 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2079 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2080 extern int dtrace_unregister(dtrace_provider_id_t);
2081 extern int dtrace_condense(dtrace_provider_id_t);
2082 extern void dtrace_invalidate(dtrace_provider_id_t);
2083 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2084 const char *, const char *);
2085 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2086 const char *, const char *, int, void *);
2087 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2088 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2089 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2092 * DTrace Meta Provider API
2094 * The following functions are implemented by the DTrace framework and are
2095 * used to implement meta providers. Meta providers plug into the DTrace
2096 * framework and are used to instantiate new providers on the fly. At
2097 * present, there is only one type of meta provider and only one meta
2098 * provider may be registered with the DTrace framework at a time. The
2099 * sole meta provider type provides user-land static tracing facilities
2100 * by taking meta probe descriptions and adding a corresponding provider
2101 * into the DTrace framework.
2103 * 1 Framework-to-Provider
2105 * 1.1 Overview
2107 * The Framework-to-Provider API is represented by the dtrace_mops structure
2108 * that the meta provider passes to the framework when registering itself as
2109 * a meta provider. This structure consists of the following members:
2111 * dtms_create_probe() <-- Add a new probe to a created provider
2112 * dtms_provide_pid() <-- Create a new provider for a given process
2113 * dtms_remove_pid() <-- Remove a previously created provider
2115 * 1.2 void dtms_create_probe(void *arg, void *parg,
2116 * dtrace_helper_probedesc_t *probedesc);
2118 * 1.2.1 Overview
2120 * Called by the DTrace framework to create a new probe in a provider
2121 * created by this meta provider.
2123 * 1.2.2 Arguments and notes
2125 * The first argument is the cookie as passed to dtrace_meta_register().
2126 * The second argument is the provider cookie for the associated provider;
2127 * this is obtained from the return value of dtms_provide_pid(). The third
2128 * argument is the helper probe description.
2130 * 1.2.3 Return value
2132 * None
2134 * 1.2.4 Caller's context
2136 * dtms_create_probe() is called from either ioctl() or module load context
2137 * in the context of a newly-created provider (that is, a provider that
2138 * is a result of a call to dtms_provide_pid()). The DTrace framework is
2139 * locked in such a way that meta providers may not register or unregister,
2140 * such that no other thread can call into a meta provider operation and that
2141 * atomicity is assured with respect to meta provider operations across
2142 * dtms_provide_pid() and subsequent calls to dtms_create_probe().
2143 * The context is thus effectively single-threaded with respect to the meta
2144 * provider, and that the meta provider cannot call dtrace_meta_register()
2145 * or dtrace_meta_unregister(). However, the context is such that the
2146 * provider may (and is expected to) call provider-related DTrace provider
2147 * APIs including dtrace_probe_create().
2149 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2150 * pid_t pid)
2152 * 1.3.1 Overview
2154 * Called by the DTrace framework to instantiate a new provider given the
2155 * description of the provider and probes in the mprov argument. The
2156 * meta provider should call dtrace_register() to insert the new provider
2157 * into the DTrace framework.
2159 * 1.3.2 Arguments and notes
2161 * The first argument is the cookie as passed to dtrace_meta_register().
2162 * The second argument is a pointer to a structure describing the new
2163 * helper provider. The third argument is the process identifier for
2164 * process associated with this new provider. Note that the name of the
2165 * provider as passed to dtrace_register() should be the contatenation of
2166 * the dtmpb_provname member of the mprov argument and the processs
2167 * identifier as a string.
2169 * 1.3.3 Return value
2171 * The cookie for the provider that the meta provider creates. This is
2172 * the same value that it passed to dtrace_register().
2174 * 1.3.4 Caller's context
2176 * dtms_provide_pid() is called from either ioctl() or module load context.
2177 * The DTrace framework is locked in such a way that meta providers may not
2178 * register or unregister. This means that the meta provider cannot call
2179 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2180 * is such that the provider may -- and is expected to -- call
2181 * provider-related DTrace provider APIs including dtrace_register().
2183 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2184 * pid_t pid)
2186 * 1.4.1 Overview
2188 * Called by the DTrace framework to remove a provider that had previously
2189 * been instantiated via the dtms_provide_pid() entry point. The meta
2190 * provider need not remove the provider immediately, but this entry
2191 * point indicates that the provider should be removed as soon as possible
2192 * using the dtrace_unregister() API.
2194 * 1.4.2 Arguments and notes
2196 * The first argument is the cookie as passed to dtrace_meta_register().
2197 * The second argument is a pointer to a structure describing the helper
2198 * provider. The third argument is the process identifier for process
2199 * associated with this new provider.
2201 * 1.4.3 Return value
2203 * None
2205 * 1.4.4 Caller's context
2207 * dtms_remove_pid() is called from either ioctl() or exit() context.
2208 * The DTrace framework is locked in such a way that meta providers may not
2209 * register or unregister. This means that the meta provider cannot call
2210 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2211 * is such that the provider may -- and is expected to -- call
2212 * provider-related DTrace provider APIs including dtrace_unregister().
2214 typedef struct dtrace_helper_probedesc {
2215 char *dthpb_mod; /* probe module */
2216 char *dthpb_func; /* probe function */
2217 char *dthpb_name; /* probe name */
2218 uint64_t dthpb_base; /* base address */
2219 uint32_t *dthpb_offs; /* offsets array */
2220 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2221 uint32_t dthpb_noffs; /* offsets count */
2222 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2223 uint8_t *dthpb_args; /* argument mapping array */
2224 uint8_t dthpb_xargc; /* translated argument count */
2225 uint8_t dthpb_nargc; /* native argument count */
2226 char *dthpb_xtypes; /* translated types strings */
2227 char *dthpb_ntypes; /* native types strings */
2228 } dtrace_helper_probedesc_t;
2230 typedef struct dtrace_helper_provdesc {
2231 char *dthpv_provname; /* provider name */
2232 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2233 } dtrace_helper_provdesc_t;
2235 typedef struct dtrace_mops {
2236 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2237 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2238 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2239 } dtrace_mops_t;
2241 typedef uintptr_t dtrace_meta_provider_id_t;
2243 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2244 dtrace_meta_provider_id_t *);
2245 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2248 * DTrace Kernel Hooks
2250 * The following functions are implemented by the base kernel and form a set of
2251 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2252 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2253 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2256 typedef enum dtrace_vtime_state {
2257 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2258 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2259 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2260 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2261 } dtrace_vtime_state_t;
2263 extern dtrace_vtime_state_t dtrace_vtime_active;
2264 extern void dtrace_vtime_switch(kthread_t *next);
2265 extern void dtrace_vtime_enable_tnf(void);
2266 extern void dtrace_vtime_disable_tnf(void);
2267 extern void dtrace_vtime_enable(void);
2268 extern void dtrace_vtime_disable(void);
2270 struct regs;
2272 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2273 extern int (*dtrace_return_probe_ptr)(struct regs *);
2274 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2275 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2276 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2277 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2279 typedef uintptr_t dtrace_icookie_t;
2280 typedef void (*dtrace_xcall_t)(void *);
2282 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2283 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2285 extern void dtrace_membar_producer(void);
2286 extern void dtrace_membar_consumer(void);
2288 extern void (*dtrace_cpu_init)(processorid_t);
2289 extern void (*dtrace_modload)(struct modctl *);
2290 extern void (*dtrace_modunload)(struct modctl *);
2291 extern void (*dtrace_helpers_cleanup)(proc_t *);
2292 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2293 extern void (*dtrace_cpustart_init)();
2294 extern void (*dtrace_cpustart_fini)();
2295 extern void (*dtrace_closef)();
2297 extern void (*dtrace_debugger_init)();
2298 extern void (*dtrace_debugger_fini)();
2299 extern dtrace_cacheid_t dtrace_predcache_id;
2301 extern hrtime_t dtrace_gethrtime(void);
2302 extern void dtrace_sync(void);
2303 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2304 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2305 extern void dtrace_vpanic(const char *, __va_list);
2306 extern void dtrace_panic(const char *, ...);
2308 extern int dtrace_safe_defer_signal(void);
2309 extern void dtrace_safe_synchronous_signal(void);
2311 extern int dtrace_mach_aframes(void);
2313 #if defined(__i386) || defined(__amd64)
2314 extern int dtrace_instr_size(uchar_t *instr);
2315 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2316 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2317 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2318 extern void dtrace_invop_callsite(void);
2319 #endif
2321 #ifdef __sparc
2322 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2323 extern void dtrace_getfsr(uint64_t *);
2324 #endif
2326 #define DTRACE_CPUFLAG_ISSET(flag) \
2327 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2329 #define DTRACE_CPUFLAG_SET(flag) \
2330 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2332 #define DTRACE_CPUFLAG_CLEAR(flag) \
2333 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2335 #endif /* _KERNEL */
2337 #endif /* _ASM */
2339 #if defined(__i386) || defined(__amd64)
2341 #define DTRACE_INVOP_PUSHL_EBP 1
2342 #define DTRACE_INVOP_POPL_EBP 2
2343 #define DTRACE_INVOP_LEAVE 3
2344 #define DTRACE_INVOP_NOP 4
2345 #define DTRACE_INVOP_RET 5
2347 #endif
2349 #ifdef __cplusplus
2351 #endif
2353 #endif /* _SYS_DTRACE_H */