8158 Want named threads API
[unleashed.git] / usr / src / lib / libproc / common / Pcore.c
blob37728190e35ca127a6bf1a43f4ad6a44d9d15ce0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
32 #include <sys/types.h>
33 #include <sys/utsname.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
37 #include <alloca.h>
38 #include <rtld_db.h>
39 #include <libgen.h>
40 #include <limits.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <gelf.h>
46 #include <stddef.h>
47 #include <signal.h>
49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "P32ton.h"
52 #include "Putil.h"
53 #ifdef __x86
54 #include "Pcore_linux.h"
55 #endif
58 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
59 * allocate an additional structure to hold information from the core
60 * file, and attach this to the standard ps_prochandle in place of the
61 * ability to examine /proc/<pid>/ files.
65 * Basic i/o function for reading and writing from the process address space
66 * stored in the core file and associated shared libraries. We compute the
67 * appropriate fd and offsets, and let the provided prw function do the rest.
69 static ssize_t
70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
71 ssize_t (*prw)(int, void *, size_t, off64_t))
73 ssize_t resid = n;
75 while (resid != 0) {
76 map_info_t *mp = Paddr2mptr(P, addr);
78 uintptr_t mapoff;
79 ssize_t len;
80 off64_t off;
81 int fd;
83 if (mp == NULL)
84 break; /* No mapping for this address */
86 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
87 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
88 break; /* No file or file not open */
90 fd = mp->map_file->file_fd;
91 } else
92 fd = P->asfd;
94 mapoff = addr - mp->map_pmap.pr_vaddr;
95 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
96 off = mp->map_offset + mapoff;
98 if ((len = prw(fd, buf, len, off)) <= 0)
99 break;
101 resid -= len;
102 addr += len;
103 buf = (char *)buf + len;
107 * Important: Be consistent with the behavior of i/o on the as file:
108 * writing to an invalid address yields EIO; reading from an invalid
109 * address falls through to returning success and zero bytes.
111 if (resid == n && n != 0 && prw != pread64) {
112 errno = EIO;
113 return (-1);
116 return (n - resid);
119 /*ARGSUSED*/
120 static ssize_t
121 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
122 void *data)
124 return (core_rw(P, buf, n, addr, pread64));
127 /*ARGSUSED*/
128 static ssize_t
129 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
130 void *data)
132 return (core_rw(P, (void *)buf, n, addr,
133 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
136 /*ARGSUSED*/
137 static int
138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
140 core_info_t *core = data;
142 if (core->core_cred != NULL) {
144 * Avoid returning more supplementary group data than the
145 * caller has allocated in their buffer. We expect them to
146 * check pr_ngroups afterward and potentially call us again.
148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
150 (void) memcpy(pcrp, core->core_cred,
151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
153 return (0);
156 errno = ENODATA;
157 return (-1);
160 /*ARGSUSED*/
161 static int
162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
164 core_info_t *core = data;
166 if (core->core_secflags == NULL) {
167 errno = ENODATA;
168 return (-1);
171 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
172 return (-1);
174 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
176 return (0);
179 /*ARGSUSED*/
180 static int
181 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
183 core_info_t *core = data;
185 if (core->core_priv == NULL) {
186 errno = ENODATA;
187 return (-1);
190 *pprv = malloc(core->core_priv_size);
191 if (*pprv == NULL) {
192 return (-1);
195 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
196 return (0);
199 /*ARGSUSED*/
200 static const psinfo_t *
201 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
203 return (&P->psinfo);
206 /*ARGSUSED*/
207 static void
208 Pfini_core(struct ps_prochandle *P, void *data)
210 core_info_t *core = data;
212 if (core != NULL) {
213 extern void __priv_free_info(void *);
214 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
215 int i;
217 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
218 nlwp = list_next(lwp);
219 #ifdef __sparc
220 if (lwp->lwp_gwins != NULL)
221 free(lwp->lwp_gwins);
222 if (lwp->lwp_xregs != NULL)
223 free(lwp->lwp_xregs);
224 if (lwp->lwp_asrs != NULL)
225 free(lwp->lwp_asrs);
226 #endif
227 free(lwp);
230 if (core->core_platform != NULL)
231 free(core->core_platform);
232 if (core->core_uts != NULL)
233 free(core->core_uts);
234 if (core->core_cred != NULL)
235 free(core->core_cred);
236 if (core->core_priv != NULL)
237 free(core->core_priv);
238 if (core->core_privinfo != NULL)
239 __priv_free_info(core->core_privinfo);
240 if (core->core_ppii != NULL)
241 free(core->core_ppii);
242 if (core->core_zonename != NULL)
243 free(core->core_zonename);
244 if (core->core_secflags != NULL)
245 free(core->core_secflags);
246 #ifdef __x86
247 if (core->core_ldt != NULL)
248 free(core->core_ldt);
249 #endif
251 free(core);
255 /*ARGSUSED*/
256 static char *
257 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
259 core_info_t *core = data;
261 if (core->core_platform == NULL) {
262 errno = ENODATA;
263 return (NULL);
265 (void) strncpy(s, core->core_platform, n - 1);
266 s[n - 1] = '\0';
267 return (s);
270 /*ARGSUSED*/
271 static int
272 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
274 core_info_t *core = data;
276 if (core->core_uts == NULL) {
277 errno = ENODATA;
278 return (-1);
280 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
281 return (0);
284 /*ARGSUSED*/
285 static char *
286 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
288 core_info_t *core = data;
290 if (core->core_zonename == NULL) {
291 errno = ENODATA;
292 return (NULL);
294 (void) strlcpy(s, core->core_zonename, n);
295 return (s);
298 #ifdef __x86
299 /*ARGSUSED*/
300 static int
301 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
303 core_info_t *core = data;
305 if (pldt == NULL || nldt == 0)
306 return (core->core_nldt);
308 if (core->core_ldt != NULL) {
309 nldt = MIN(nldt, core->core_nldt);
311 (void) memcpy(pldt, core->core_ldt,
312 nldt * sizeof (struct ssd));
314 return (nldt);
317 errno = ENODATA;
318 return (-1);
320 #endif
322 static const ps_ops_t P_core_ops = {
323 .pop_pread = Pread_core,
324 .pop_pwrite = Pwrite_core,
325 .pop_cred = Pcred_core,
326 .pop_priv = Ppriv_core,
327 .pop_psinfo = Ppsinfo_core,
328 .pop_fini = Pfini_core,
329 .pop_platform = Pplatform_core,
330 .pop_uname = Puname_core,
331 .pop_zonename = Pzonename_core,
332 .pop_secflags = Psecflags_core,
333 #ifdef __x86
334 .pop_ldt = Pldt_core
335 #endif
339 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
340 * encountered yet, allocate a new structure and return a pointer to it.
341 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
343 static lwp_info_t *
344 lwpid2info(struct ps_prochandle *P, lwpid_t id)
346 core_info_t *core = P->data;
347 lwp_info_t *lwp = list_next(&core->core_lwp_head);
348 lwp_info_t *next;
349 uint_t i;
351 for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
352 if (lwp->lwp_id == id) {
353 core->core_lwp = lwp;
354 return (lwp);
356 if (lwp->lwp_id < id) {
357 break;
361 next = lwp;
362 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
363 return (NULL);
365 list_link(lwp, next);
366 lwp->lwp_id = id;
368 core->core_lwp = lwp;
369 core->core_nlwp++;
371 return (lwp);
375 * The core file itself contains a series of NOTE segments containing saved
376 * structures from /proc at the time the process died. For each note we
377 * comprehend, we define a function to read it in from the core file,
378 * convert it to our native data model if necessary, and store it inside
379 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
380 * seek pointer on P->asfd positioned appropriately. We populate a table
381 * of pointers to these note functions below.
384 static int
385 note_pstatus(struct ps_prochandle *P, size_t nbytes)
387 #ifdef _LP64
388 core_info_t *core = P->data;
390 if (core->core_dmodel == PR_MODEL_ILP32) {
391 pstatus32_t ps32;
393 if (nbytes < sizeof (pstatus32_t) ||
394 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
395 goto err;
397 pstatus_32_to_n(&ps32, &P->status);
399 } else
400 #endif
401 if (nbytes < sizeof (pstatus_t) ||
402 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
403 goto err;
405 P->orig_status = P->status;
406 P->pid = P->status.pr_pid;
408 return (0);
410 err:
411 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
412 return (-1);
415 static int
416 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
418 lwp_info_t *lwp;
419 lwpstatus_t lps;
421 #ifdef _LP64
422 core_info_t *core = P->data;
424 if (core->core_dmodel == PR_MODEL_ILP32) {
425 lwpstatus32_t l32;
427 if (nbytes < sizeof (lwpstatus32_t) ||
428 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
429 goto err;
431 lwpstatus_32_to_n(&l32, &lps);
432 } else
433 #endif
434 if (nbytes < sizeof (lwpstatus_t) ||
435 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
436 goto err;
438 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
439 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
440 return (-1);
444 * Erase a useless and confusing artifact of the kernel implementation:
445 * the lwps which did *not* create the core will show SIGKILL. We can
446 * be assured this is bogus because SIGKILL can't produce core files.
448 if (lps.pr_cursig == SIGKILL)
449 lps.pr_cursig = 0;
451 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
452 return (0);
454 err:
455 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
456 return (-1);
459 #ifdef __x86
461 static void
462 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
464 psinfo->pr_flag = p32->pr_flag;
465 psinfo->pr_pid = p32->pr_pid;
466 psinfo->pr_ppid = p32->pr_ppid;
467 psinfo->pr_uid = p32->pr_uid;
468 psinfo->pr_gid = p32->pr_gid;
469 psinfo->pr_sid = p32->pr_sid;
470 psinfo->pr_pgid = p32->pr_pgrp;
472 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
473 sizeof (psinfo->pr_fname));
474 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
475 sizeof (psinfo->pr_psargs));
478 static void
479 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
481 psinfo->pr_flag = p64->pr_flag;
482 psinfo->pr_pid = p64->pr_pid;
483 psinfo->pr_ppid = p64->pr_ppid;
484 psinfo->pr_uid = p64->pr_uid;
485 psinfo->pr_gid = p64->pr_gid;
486 psinfo->pr_sid = p64->pr_sid;
487 psinfo->pr_pgid = p64->pr_pgrp;
488 psinfo->pr_pgid = p64->pr_pgrp;
490 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
491 sizeof (psinfo->pr_fname));
492 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
493 sizeof (psinfo->pr_psargs));
496 static int
497 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
499 core_info_t *core = P->data;
500 lx_prpsinfo32_t p32;
501 lx_prpsinfo64_t p64;
503 if (core->core_dmodel == PR_MODEL_ILP32) {
504 if (nbytes < sizeof (p32) ||
505 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
506 goto err;
508 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
509 } else {
510 if (nbytes < sizeof (p64) ||
511 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
512 goto err;
514 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
518 P->status.pr_pid = P->psinfo.pr_pid;
519 P->status.pr_ppid = P->psinfo.pr_ppid;
520 P->status.pr_pgid = P->psinfo.pr_pgid;
521 P->status.pr_sid = P->psinfo.pr_sid;
523 P->psinfo.pr_nlwp = 0;
524 P->status.pr_nlwp = 0;
526 return (0);
527 err:
528 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
529 return (-1);
532 static void
533 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
535 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
536 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
538 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
539 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
540 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
541 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
542 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
543 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
544 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
545 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
547 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
548 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
549 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
550 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
551 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
552 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
553 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
555 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
556 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
557 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
558 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
559 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
560 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
561 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
562 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
564 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
565 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
568 static void
569 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
571 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
572 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
574 #ifdef __amd64
575 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
576 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
577 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
578 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
579 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
580 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
581 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
582 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
583 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
584 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
585 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
586 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
587 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
588 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
589 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
590 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
591 #else /* __amd64 */
592 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
593 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
594 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
595 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
596 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
597 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
598 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
599 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
600 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
602 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
603 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
604 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
605 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
606 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
607 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
609 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
610 #endif /* !__amd64 */
613 static int
614 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
616 core_info_t *core = P->data;
618 lx_prstatus64_t prs64;
619 lx_prstatus32_t prs32;
620 lwp_info_t *lwp;
621 lwpid_t tid;
623 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
624 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
625 if (core->core_dmodel == PR_MODEL_ILP32) {
626 if (nbytes < sizeof (prs32) ||
627 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
628 goto err;
629 tid = prs32.pr_pid;
630 } else {
631 if (nbytes < sizeof (prs64) ||
632 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
633 goto err;
634 tid = prs64.pr_pid;
637 if ((lwp = lwpid2info(P, tid)) == NULL) {
638 dprintf("Pgrab_core: failed to add lwpid2info "
639 "linux_prstatus\n");
640 return (-1);
643 P->psinfo.pr_nlwp++;
644 P->status.pr_nlwp++;
646 lwp->lwp_status.pr_lwpid = tid;
648 if (core->core_dmodel == PR_MODEL_ILP32)
649 lx_prstatus32_to_lwp(&prs32, lwp);
650 else
651 lx_prstatus64_to_lwp(&prs64, lwp);
653 return (0);
654 err:
655 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
656 return (-1);
659 #endif /* __x86 */
661 static int
662 note_psinfo(struct ps_prochandle *P, size_t nbytes)
664 #ifdef _LP64
665 core_info_t *core = P->data;
667 if (core->core_dmodel == PR_MODEL_ILP32) {
668 psinfo32_t ps32;
670 if (nbytes < sizeof (psinfo32_t) ||
671 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
672 goto err;
674 psinfo_32_to_n(&ps32, &P->psinfo);
675 } else
676 #endif
677 if (nbytes < sizeof (psinfo_t) ||
678 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
679 goto err;
681 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
682 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
683 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
685 return (0);
687 err:
688 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
689 return (-1);
692 static int
693 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
695 lwp_info_t *lwp;
696 lwpsinfo_t lps;
698 #ifdef _LP64
699 core_info_t *core = P->data;
701 if (core->core_dmodel == PR_MODEL_ILP32) {
702 lwpsinfo32_t l32;
704 if (nbytes < sizeof (lwpsinfo32_t) ||
705 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
706 goto err;
708 lwpsinfo_32_to_n(&l32, &lps);
709 } else
710 #endif
711 if (nbytes < sizeof (lwpsinfo_t) ||
712 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
713 goto err;
715 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
716 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
717 return (-1);
720 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
721 return (0);
723 err:
724 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
725 return (-1);
728 static int
729 note_lwpname(struct ps_prochandle *P, size_t nbytes)
731 prlwpname_t name;
732 lwp_info_t *lwp;
734 if (nbytes != sizeof (name) ||
735 read(P->asfd, &name, sizeof (name)) != sizeof (name))
736 goto err;
738 if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
739 goto err;
741 if (strlcpy(lwp->lwp_name, name.pr_lwpname,
742 sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
743 errno = ENAMETOOLONG;
744 goto err;
747 return (0);
749 err:
750 dprintf("Pgrab_core: failed to read NT_LWPNAME\n");
751 return (-1);
754 static int
755 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
757 prfdinfo_t prfd;
758 fd_info_t *fip;
760 if ((nbytes < sizeof (prfd)) ||
761 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
762 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
763 return (-1);
766 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
767 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
768 return (-1);
770 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
771 return (0);
774 static int
775 note_platform(struct ps_prochandle *P, size_t nbytes)
777 core_info_t *core = P->data;
778 char *plat;
780 if (core->core_platform != NULL)
781 return (0); /* Already seen */
783 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
784 if (read(P->asfd, plat, nbytes) != nbytes) {
785 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
786 free(plat);
787 return (-1);
789 plat[nbytes - 1] = '\0';
790 core->core_platform = plat;
793 return (0);
796 static int
797 note_secflags(struct ps_prochandle *P, size_t nbytes)
799 core_info_t *core = P->data;
800 prsecflags_t *psf;
802 if (core->core_secflags != NULL)
803 return (0); /* Already seen */
805 if (sizeof (*psf) != nbytes) {
806 dprintf("Pgrab_core: NT_SECFLAGS changed size."
807 " Need to handle a version change?\n");
808 return (-1);
811 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
812 if (read(P->asfd, psf, nbytes) != nbytes) {
813 dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
814 free(psf);
815 return (-1);
818 core->core_secflags = psf;
821 return (0);
824 static int
825 note_utsname(struct ps_prochandle *P, size_t nbytes)
827 core_info_t *core = P->data;
828 size_t ubytes = sizeof (struct utsname);
829 struct utsname *utsp;
831 if (core->core_uts != NULL || nbytes < ubytes)
832 return (0); /* Already seen or bad size */
834 if ((utsp = malloc(ubytes)) == NULL)
835 return (-1);
837 if (read(P->asfd, utsp, ubytes) != ubytes) {
838 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
839 free(utsp);
840 return (-1);
843 if (_libproc_debug) {
844 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
845 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
846 dprintf("uts.release = \"%s\"\n", utsp->release);
847 dprintf("uts.version = \"%s\"\n", utsp->version);
848 dprintf("uts.machine = \"%s\"\n", utsp->machine);
851 core->core_uts = utsp;
852 return (0);
855 static int
856 note_content(struct ps_prochandle *P, size_t nbytes)
858 core_info_t *core = P->data;
859 core_content_t content;
861 if (sizeof (core->core_content) != nbytes)
862 return (-1);
864 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
865 return (-1);
867 core->core_content = content;
869 dprintf("core content = %llx\n", content);
871 return (0);
874 static int
875 note_cred(struct ps_prochandle *P, size_t nbytes)
877 core_info_t *core = P->data;
878 prcred_t *pcrp;
879 int ngroups;
880 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
883 * We allow for prcred_t notes that are actually smaller than a
884 * prcred_t since the last member isn't essential if there are
885 * no group memberships. This allows for more flexibility when it
886 * comes to slightly malformed -- but still valid -- notes.
888 if (core->core_cred != NULL || nbytes < min_size)
889 return (0); /* Already seen or bad size */
891 ngroups = (nbytes - min_size) / sizeof (gid_t);
892 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
894 if ((pcrp = malloc(nbytes)) == NULL)
895 return (-1);
897 if (read(P->asfd, pcrp, nbytes) != nbytes) {
898 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
899 free(pcrp);
900 return (-1);
903 if (pcrp->pr_ngroups > ngroups) {
904 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
905 pcrp->pr_ngroups, ngroups);
906 pcrp->pr_ngroups = ngroups;
909 core->core_cred = pcrp;
910 return (0);
913 #ifdef __x86
914 static int
915 note_ldt(struct ps_prochandle *P, size_t nbytes)
917 core_info_t *core = P->data;
918 struct ssd *pldt;
919 uint_t nldt;
921 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
922 return (0); /* Already seen or bad size */
924 nldt = nbytes / sizeof (struct ssd);
925 nbytes = nldt * sizeof (struct ssd);
927 if ((pldt = malloc(nbytes)) == NULL)
928 return (-1);
930 if (read(P->asfd, pldt, nbytes) != nbytes) {
931 dprintf("Pgrab_core: failed to read NT_LDT\n");
932 free(pldt);
933 return (-1);
936 core->core_ldt = pldt;
937 core->core_nldt = nldt;
938 return (0);
940 #endif /* __i386 */
942 static int
943 note_priv(struct ps_prochandle *P, size_t nbytes)
945 core_info_t *core = P->data;
946 prpriv_t *pprvp;
948 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
949 return (0); /* Already seen or bad size */
951 if ((pprvp = malloc(nbytes)) == NULL)
952 return (-1);
954 if (read(P->asfd, pprvp, nbytes) != nbytes) {
955 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
956 free(pprvp);
957 return (-1);
960 core->core_priv = pprvp;
961 core->core_priv_size = nbytes;
962 return (0);
965 static int
966 note_priv_info(struct ps_prochandle *P, size_t nbytes)
968 core_info_t *core = P->data;
969 extern void *__priv_parse_info();
970 priv_impl_info_t *ppii;
972 if (core->core_privinfo != NULL ||
973 nbytes < sizeof (priv_impl_info_t))
974 return (0); /* Already seen or bad size */
976 if ((ppii = malloc(nbytes)) == NULL)
977 return (-1);
979 if (read(P->asfd, ppii, nbytes) != nbytes ||
980 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
981 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
982 free(ppii);
983 return (-1);
986 core->core_privinfo = __priv_parse_info(ppii);
987 core->core_ppii = ppii;
988 return (0);
991 static int
992 note_zonename(struct ps_prochandle *P, size_t nbytes)
994 core_info_t *core = P->data;
995 char *zonename;
997 if (core->core_zonename != NULL)
998 return (0); /* Already seen */
1000 if (nbytes != 0) {
1001 if ((zonename = malloc(nbytes)) == NULL)
1002 return (-1);
1003 if (read(P->asfd, zonename, nbytes) != nbytes) {
1004 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1005 free(zonename);
1006 return (-1);
1008 zonename[nbytes - 1] = '\0';
1009 core->core_zonename = zonename;
1012 return (0);
1015 static int
1016 note_auxv(struct ps_prochandle *P, size_t nbytes)
1018 size_t n, i;
1020 #ifdef _LP64
1021 core_info_t *core = P->data;
1023 if (core->core_dmodel == PR_MODEL_ILP32) {
1024 auxv32_t *a32;
1026 n = nbytes / sizeof (auxv32_t);
1027 nbytes = n * sizeof (auxv32_t);
1028 a32 = alloca(nbytes);
1030 if (read(P->asfd, a32, nbytes) != nbytes) {
1031 dprintf("Pgrab_core: failed to read NT_AUXV\n");
1032 return (-1);
1035 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1036 return (-1);
1038 for (i = 0; i < n; i++)
1039 auxv_32_to_n(&a32[i], &P->auxv[i]);
1041 } else {
1042 #endif
1043 n = nbytes / sizeof (auxv_t);
1044 nbytes = n * sizeof (auxv_t);
1046 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1047 return (-1);
1049 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1050 free(P->auxv);
1051 P->auxv = NULL;
1052 return (-1);
1054 #ifdef _LP64
1056 #endif
1058 if (_libproc_debug) {
1059 for (i = 0; i < n; i++) {
1060 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1061 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1066 * Defensive coding for loops which depend upon the auxv array being
1067 * terminated by an AT_NULL element; in each case, we've allocated
1068 * P->auxv to have an additional element which we force to be AT_NULL.
1070 P->auxv[n].a_type = AT_NULL;
1071 P->auxv[n].a_un.a_val = 0L;
1072 P->nauxv = (int)n;
1074 return (0);
1077 #ifdef __sparc
1078 static int
1079 note_xreg(struct ps_prochandle *P, size_t nbytes)
1081 core_info_t *core = P->data;
1082 lwp_info_t *lwp = core->core_lwp;
1083 size_t xbytes = sizeof (prxregset_t);
1084 prxregset_t *xregs;
1086 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1087 return (0); /* No lwp yet, already seen, or bad size */
1089 if ((xregs = malloc(xbytes)) == NULL)
1090 return (-1);
1092 if (read(P->asfd, xregs, xbytes) != xbytes) {
1093 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1094 free(xregs);
1095 return (-1);
1098 lwp->lwp_xregs = xregs;
1099 return (0);
1102 static int
1103 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1105 core_info_t *core = P->data;
1106 lwp_info_t *lwp = core->core_lwp;
1108 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1109 return (0); /* No lwp yet or already seen or no data */
1111 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1112 return (-1);
1115 * Since the amount of gwindows data varies with how many windows were
1116 * actually saved, we just read up to the minimum of the note size
1117 * and the size of the gwindows_t type. It doesn't matter if the read
1118 * fails since we have to zero out gwindows first anyway.
1120 #ifdef _LP64
1121 if (core->core_dmodel == PR_MODEL_ILP32) {
1122 gwindows32_t g32;
1124 (void) memset(&g32, 0, sizeof (g32));
1125 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1126 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1128 } else {
1129 #endif
1130 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1131 (void) read(P->asfd, lwp->lwp_gwins,
1132 MIN(nbytes, sizeof (gwindows_t)));
1133 #ifdef _LP64
1135 #endif
1136 return (0);
1139 #ifdef __sparcv9
1140 static int
1141 note_asrs(struct ps_prochandle *P, size_t nbytes)
1143 core_info_t *core = P->data;
1144 lwp_info_t *lwp = core->core_lwp;
1145 int64_t *asrs;
1147 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1148 return (0); /* No lwp yet, already seen, or bad size */
1150 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1151 return (-1);
1153 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1154 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1155 free(asrs);
1156 return (-1);
1159 lwp->lwp_asrs = asrs;
1160 return (0);
1162 #endif /* __sparcv9 */
1163 #endif /* __sparc */
1165 static int
1166 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1168 #ifdef _LP64
1169 core_info_t *core = P->data;
1171 if (core->core_dmodel == PR_MODEL_ILP32) {
1172 psinfo32_t ps32;
1174 if (nbytes < sizeof (psinfo32_t) ||
1175 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1176 goto err;
1178 psinfo_32_to_n(&ps32, &P->spymaster);
1179 } else
1180 #endif
1181 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1182 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1183 goto err;
1185 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1186 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1187 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1189 return (0);
1191 err:
1192 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1193 return (-1);
1196 /*ARGSUSED*/
1197 static int
1198 note_notsup(struct ps_prochandle *P, size_t nbytes)
1200 dprintf("skipping unsupported note type of size %ld bytes\n",
1201 (ulong_t)nbytes);
1202 return (0);
1206 * Populate a table of function pointers indexed by Note type with our
1207 * functions to process each type of core file note:
1209 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1210 note_notsup, /* 0 unassigned */
1211 #ifdef __x86
1212 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */
1213 #else
1214 note_notsup, /* 1 NT_PRSTATUS (old) */
1215 #endif
1216 note_notsup, /* 2 NT_PRFPREG (old) */
1217 #ifdef __x86
1218 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */
1219 #else
1220 note_notsup, /* 3 NT_PRPSINFO (old) */
1221 #endif
1222 #ifdef __sparc
1223 note_xreg, /* 4 NT_PRXREG */
1224 #else
1225 note_notsup, /* 4 NT_PRXREG */
1226 #endif
1227 note_platform, /* 5 NT_PLATFORM */
1228 note_auxv, /* 6 NT_AUXV */
1229 #ifdef __sparc
1230 note_gwindows, /* 7 NT_GWINDOWS */
1231 #ifdef __sparcv9
1232 note_asrs, /* 8 NT_ASRS */
1233 #else
1234 note_notsup, /* 8 NT_ASRS */
1235 #endif
1236 #else
1237 note_notsup, /* 7 NT_GWINDOWS */
1238 note_notsup, /* 8 NT_ASRS */
1239 #endif
1240 #ifdef __x86
1241 note_ldt, /* 9 NT_LDT */
1242 #else
1243 note_notsup, /* 9 NT_LDT */
1244 #endif
1245 note_pstatus, /* 10 NT_PSTATUS */
1246 note_notsup, /* 11 unassigned */
1247 note_notsup, /* 12 unassigned */
1248 note_psinfo, /* 13 NT_PSINFO */
1249 note_cred, /* 14 NT_PRCRED */
1250 note_utsname, /* 15 NT_UTSNAME */
1251 note_lwpstatus, /* 16 NT_LWPSTATUS */
1252 note_lwpsinfo, /* 17 NT_LWPSINFO */
1253 note_priv, /* 18 NT_PRPRIV */
1254 note_priv_info, /* 19 NT_PRPRIVINFO */
1255 note_content, /* 20 NT_CONTENT */
1256 note_zonename, /* 21 NT_ZONENAME */
1257 note_fdinfo, /* 22 NT_FDINFO */
1258 note_spymaster, /* 23 NT_SPYMASTER */
1259 note_secflags, /* 24 NT_SECFLAGS */
1260 note_lwpname, /* 25 NT_LWPNAME */
1263 static void
1264 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1266 prkillinfo_t killinfo;
1267 siginfo_t *si = &killinfo.prk_info;
1268 char signame[SIG2STR_MAX], sig[64], info[64];
1269 void *addr = (void *)(uintptr_t)php->p_vaddr;
1271 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1272 const char *incfmt = "core file incomplete due to %s%s\n";
1273 const char *msgfmt = "mappings at and above %p are missing\n";
1275 if (!(php->p_flags & PF_SUNW_KILLED)) {
1276 int err = 0;
1278 (void) pread64(P->asfd, &err,
1279 sizeof (err), (off64_t)php->p_offset);
1281 Perror_printf(P, errfmt, addr, strerror(err));
1282 dprintf(errfmt, addr, strerror(err));
1283 return;
1286 if (!(php->p_flags & PF_SUNW_SIGINFO))
1287 return;
1289 (void) memset(&killinfo, 0, sizeof (killinfo));
1291 (void) pread64(P->asfd, &killinfo,
1292 sizeof (killinfo), (off64_t)php->p_offset);
1295 * While there is (or at least should be) only one segment that has
1296 * PF_SUNW_SIGINFO set, the signal information there is globally
1297 * useful (even if only to those debugging libproc consumers); we hang
1298 * the signal information gleaned here off of the ps_prochandle.
1300 P->map_missing = php->p_vaddr;
1301 P->killinfo = killinfo.prk_info;
1303 if (sig2str(si->si_signo, signame) == -1) {
1304 (void) snprintf(sig, sizeof (sig),
1305 "<Unknown signal: 0x%x>, ", si->si_signo);
1306 } else {
1307 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1310 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1311 (void) snprintf(info, sizeof (info),
1312 "pid=%d uid=%d zone=%d ctid=%d",
1313 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1314 } else {
1315 (void) snprintf(info, sizeof (info),
1316 "code=%d", si->si_code);
1319 Perror_printf(P, incfmt, sig, info);
1320 Perror_printf(P, msgfmt, addr);
1322 dprintf(incfmt, sig, info);
1323 dprintf(msgfmt, addr);
1327 * Add information on the address space mapping described by the given
1328 * PT_LOAD program header. We fill in more information on the mapping later.
1330 static int
1331 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1333 core_info_t *core = P->data;
1334 prmap_t pmap;
1336 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1337 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1338 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1340 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1341 pmap.pr_size = php->p_memsz;
1344 * If Pgcore() or elfcore() fail to write a mapping, they will set
1345 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1347 if (php->p_flags & PF_SUNW_FAILURE) {
1348 core_report_mapping(P, php);
1349 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1350 Perror_printf(P, "core file may be corrupt -- data for mapping "
1351 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1352 dprintf("core file may be corrupt -- data for mapping "
1353 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1357 * The mapping name and offset will hopefully be filled in
1358 * by the librtld_db agent. Unfortunately, if it isn't a
1359 * shared library mapping, this information is gone forever.
1361 pmap.pr_mapname[0] = '\0';
1362 pmap.pr_offset = 0;
1364 pmap.pr_mflags = 0;
1365 if (php->p_flags & PF_R)
1366 pmap.pr_mflags |= MA_READ;
1367 if (php->p_flags & PF_W)
1368 pmap.pr_mflags |= MA_WRITE;
1369 if (php->p_flags & PF_X)
1370 pmap.pr_mflags |= MA_EXEC;
1372 if (php->p_filesz == 0)
1373 pmap.pr_mflags |= MA_RESERVED1;
1376 * At the time of adding this mapping, we just zero the pagesize.
1377 * Once we've processed more of the core file, we'll have the
1378 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1380 pmap.pr_pagesize = 0;
1383 * Unfortunately whether or not the mapping was a System V
1384 * shared memory segment is lost. We use -1 to mark it as not shm.
1386 pmap.pr_shmid = -1;
1388 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1392 * Given a virtual address, name the mapping at that address using the
1393 * specified name, and return the map_info_t pointer.
1395 static map_info_t *
1396 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1398 map_info_t *mp = Paddr2mptr(P, addr);
1400 if (mp != NULL) {
1401 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1402 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1405 return (mp);
1409 * libproc uses libelf for all of its symbol table manipulation. This function
1410 * takes a symbol table and string table from a core file and places them
1411 * in a memory backed elf file.
1413 static void
1414 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1415 GElf_Shdr *symtab, GElf_Shdr *strtab)
1417 size_t size;
1418 off64_t off, base;
1419 map_info_t *mp;
1420 file_info_t *fp;
1421 Elf_Scn *scn;
1422 Elf_Data *data;
1424 if (symtab->sh_addr == 0 ||
1425 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1426 (fp = mp->map_file) == NULL) {
1427 dprintf("fake_up_symtab: invalid section\n");
1428 return;
1431 if (fp->file_symtab.sym_data_pri != NULL) {
1432 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1433 (long)symtab->sh_addr);
1434 return;
1437 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1438 struct {
1439 Elf32_Ehdr ehdr;
1440 Elf32_Shdr shdr[3];
1441 char data[1];
1442 } *b;
1444 base = sizeof (b->ehdr) + sizeof (b->shdr);
1445 size = base + symtab->sh_size + strtab->sh_size;
1447 if ((b = calloc(1, size)) == NULL)
1448 return;
1450 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1451 sizeof (ehdr->e_ident));
1452 b->ehdr.e_type = ehdr->e_type;
1453 b->ehdr.e_machine = ehdr->e_machine;
1454 b->ehdr.e_version = ehdr->e_version;
1455 b->ehdr.e_flags = ehdr->e_flags;
1456 b->ehdr.e_ehsize = sizeof (b->ehdr);
1457 b->ehdr.e_shoff = sizeof (b->ehdr);
1458 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1459 b->ehdr.e_shnum = 3;
1460 off = 0;
1462 b->shdr[1].sh_size = symtab->sh_size;
1463 b->shdr[1].sh_type = SHT_SYMTAB;
1464 b->shdr[1].sh_offset = off + base;
1465 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1466 b->shdr[1].sh_link = 2;
1467 b->shdr[1].sh_info = symtab->sh_info;
1468 b->shdr[1].sh_addralign = symtab->sh_addralign;
1470 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1471 symtab->sh_offset) != b->shdr[1].sh_size) {
1472 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1473 free(b);
1474 return;
1477 off += b->shdr[1].sh_size;
1479 b->shdr[2].sh_flags = SHF_STRINGS;
1480 b->shdr[2].sh_size = strtab->sh_size;
1481 b->shdr[2].sh_type = SHT_STRTAB;
1482 b->shdr[2].sh_offset = off + base;
1483 b->shdr[2].sh_info = strtab->sh_info;
1484 b->shdr[2].sh_addralign = 1;
1486 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1487 strtab->sh_offset) != b->shdr[2].sh_size) {
1488 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1489 free(b);
1490 return;
1493 off += b->shdr[2].sh_size;
1495 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1496 if (fp->file_symtab.sym_elf == NULL) {
1497 free(b);
1498 return;
1501 fp->file_symtab.sym_elfmem = b;
1502 #ifdef _LP64
1503 } else {
1504 struct {
1505 Elf64_Ehdr ehdr;
1506 Elf64_Shdr shdr[3];
1507 char data[1];
1508 } *b;
1510 base = sizeof (b->ehdr) + sizeof (b->shdr);
1511 size = base + symtab->sh_size + strtab->sh_size;
1513 if ((b = calloc(1, size)) == NULL)
1514 return;
1516 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1517 sizeof (ehdr->e_ident));
1518 b->ehdr.e_type = ehdr->e_type;
1519 b->ehdr.e_machine = ehdr->e_machine;
1520 b->ehdr.e_version = ehdr->e_version;
1521 b->ehdr.e_flags = ehdr->e_flags;
1522 b->ehdr.e_ehsize = sizeof (b->ehdr);
1523 b->ehdr.e_shoff = sizeof (b->ehdr);
1524 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1525 b->ehdr.e_shnum = 3;
1526 off = 0;
1528 b->shdr[1].sh_size = symtab->sh_size;
1529 b->shdr[1].sh_type = SHT_SYMTAB;
1530 b->shdr[1].sh_offset = off + base;
1531 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1532 b->shdr[1].sh_link = 2;
1533 b->shdr[1].sh_info = symtab->sh_info;
1534 b->shdr[1].sh_addralign = symtab->sh_addralign;
1536 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1537 symtab->sh_offset) != b->shdr[1].sh_size) {
1538 free(b);
1539 return;
1542 off += b->shdr[1].sh_size;
1544 b->shdr[2].sh_flags = SHF_STRINGS;
1545 b->shdr[2].sh_size = strtab->sh_size;
1546 b->shdr[2].sh_type = SHT_STRTAB;
1547 b->shdr[2].sh_offset = off + base;
1548 b->shdr[2].sh_info = strtab->sh_info;
1549 b->shdr[2].sh_addralign = 1;
1551 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1552 strtab->sh_offset) != b->shdr[2].sh_size) {
1553 free(b);
1554 return;
1557 off += b->shdr[2].sh_size;
1559 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1560 if (fp->file_symtab.sym_elf == NULL) {
1561 free(b);
1562 return;
1565 fp->file_symtab.sym_elfmem = b;
1566 #endif
1569 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1570 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1571 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1572 (data = elf_getdata(scn, NULL)) == NULL) {
1573 dprintf("fake_up_symtab: failed to get section data at %p\n",
1574 (void *)scn);
1575 goto err;
1578 fp->file_symtab.sym_strs = data->d_buf;
1579 fp->file_symtab.sym_strsz = data->d_size;
1580 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1581 fp->file_symtab.sym_hdr_pri = *symtab;
1582 fp->file_symtab.sym_strhdr = *strtab;
1584 optimize_symtab(&fp->file_symtab);
1586 return;
1587 err:
1588 (void) elf_end(fp->file_symtab.sym_elf);
1589 free(fp->file_symtab.sym_elfmem);
1590 fp->file_symtab.sym_elf = NULL;
1591 fp->file_symtab.sym_elfmem = NULL;
1594 static void
1595 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1597 dst->p_type = src->p_type;
1598 dst->p_flags = src->p_flags;
1599 dst->p_offset = (Elf64_Off)src->p_offset;
1600 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1601 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1602 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1603 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1604 dst->p_align = (Elf64_Xword)src->p_align;
1607 static void
1608 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1610 dst->sh_name = src->sh_name;
1611 dst->sh_type = src->sh_type;
1612 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1613 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1614 dst->sh_offset = (Elf64_Off)src->sh_offset;
1615 dst->sh_size = (Elf64_Xword)src->sh_size;
1616 dst->sh_link = src->sh_link;
1617 dst->sh_info = src->sh_info;
1618 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1619 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1623 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1625 static int
1626 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1628 #ifdef _BIG_ENDIAN
1629 uchar_t order = ELFDATA2MSB;
1630 #else
1631 uchar_t order = ELFDATA2LSB;
1632 #endif
1633 Elf32_Ehdr e32;
1634 int is_noelf = -1;
1635 int isa_err = 0;
1638 * Because 32-bit libelf cannot deal with large files, we need to read,
1639 * check, and convert the file header manually in case type == ET_CORE.
1641 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1642 if (perr != NULL)
1643 *perr = G_FORMAT;
1644 goto err;
1646 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1647 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1648 e32.e_version != EV_CURRENT) {
1649 if (perr != NULL) {
1650 if (is_noelf == 0 && isa_err) {
1651 *perr = G_ISAINVAL;
1652 } else {
1653 *perr = G_FORMAT;
1656 goto err;
1660 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1661 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1662 * and convert it to a elf_file_header_t. Otherwise, the file is
1663 * 32-bit, so convert e32 to a elf_file_header_t.
1665 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1666 #ifdef _LP64
1667 Elf64_Ehdr e64;
1669 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1670 if (perr != NULL)
1671 *perr = G_FORMAT;
1672 goto err;
1675 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1676 efp->e_hdr.e_type = e64.e_type;
1677 efp->e_hdr.e_machine = e64.e_machine;
1678 efp->e_hdr.e_version = e64.e_version;
1679 efp->e_hdr.e_entry = e64.e_entry;
1680 efp->e_hdr.e_phoff = e64.e_phoff;
1681 efp->e_hdr.e_shoff = e64.e_shoff;
1682 efp->e_hdr.e_flags = e64.e_flags;
1683 efp->e_hdr.e_ehsize = e64.e_ehsize;
1684 efp->e_hdr.e_phentsize = e64.e_phentsize;
1685 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1686 efp->e_hdr.e_shentsize = e64.e_shentsize;
1687 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1688 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1689 #else /* _LP64 */
1690 if (perr != NULL)
1691 *perr = G_LP64;
1692 goto err;
1693 #endif /* _LP64 */
1694 } else {
1695 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1696 efp->e_hdr.e_type = e32.e_type;
1697 efp->e_hdr.e_machine = e32.e_machine;
1698 efp->e_hdr.e_version = e32.e_version;
1699 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1700 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1701 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1702 efp->e_hdr.e_flags = e32.e_flags;
1703 efp->e_hdr.e_ehsize = e32.e_ehsize;
1704 efp->e_hdr.e_phentsize = e32.e_phentsize;
1705 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1706 efp->e_hdr.e_shentsize = e32.e_shentsize;
1707 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1708 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1712 * If the number of section headers or program headers or the section
1713 * header string table index would overflow their respective fields
1714 * in the ELF header, they're stored in the section header at index
1715 * zero. To simplify use elsewhere, we look for those sentinel values
1716 * here.
1718 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1719 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1720 efp->e_hdr.e_phnum == PN_XNUM) {
1721 GElf_Shdr shdr;
1723 dprintf("extended ELF header\n");
1725 if (efp->e_hdr.e_shoff == 0) {
1726 if (perr != NULL)
1727 *perr = G_FORMAT;
1728 goto err;
1731 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1732 Elf32_Shdr shdr32;
1734 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1735 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1736 if (perr != NULL)
1737 *perr = G_FORMAT;
1738 goto err;
1741 core_shdr_to_gelf(&shdr32, &shdr);
1742 } else {
1743 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1744 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1745 if (perr != NULL)
1746 *perr = G_FORMAT;
1747 goto err;
1751 if (efp->e_hdr.e_shnum == 0) {
1752 efp->e_hdr.e_shnum = shdr.sh_size;
1753 dprintf("section header count %lu\n",
1754 (ulong_t)shdr.sh_size);
1757 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1758 efp->e_hdr.e_shstrndx = shdr.sh_link;
1759 dprintf("section string index %u\n", shdr.sh_link);
1762 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1763 efp->e_hdr.e_phnum = shdr.sh_info;
1764 dprintf("program header count %u\n", shdr.sh_info);
1767 } else if (efp->e_hdr.e_phoff != 0) {
1768 GElf_Phdr phdr;
1769 uint64_t phnum;
1772 * It's possible this core file came from a system that
1773 * accidentally truncated the e_phnum field without correctly
1774 * using the extended format in the section header at index
1775 * zero. We try to detect and correct that specific type of
1776 * corruption by using the knowledge that the core dump
1777 * routines usually place the data referenced by the first
1778 * program header immediately after the last header element.
1780 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1781 Elf32_Phdr phdr32;
1783 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1784 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1785 if (perr != NULL)
1786 *perr = G_FORMAT;
1787 goto err;
1790 core_phdr_to_gelf(&phdr32, &phdr);
1791 } else {
1792 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1793 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1794 if (perr != NULL)
1795 *perr = G_FORMAT;
1796 goto err;
1800 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1801 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1802 phnum /= efp->e_hdr.e_phentsize;
1804 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1805 dprintf("suspicious program header count %u %u\n",
1806 (uint_t)phnum, efp->e_hdr.e_phnum);
1809 * If the new program header count we computed doesn't
1810 * jive with count in the ELF header, we'll use the
1811 * data that's there and hope for the best.
1813 * If it does, it's also possible that the section
1814 * header offset is incorrect; we'll check that and
1815 * possibly try to fix it.
1817 if (phnum <= INT_MAX &&
1818 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1820 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1821 efp->e_hdr.e_phentsize *
1822 (uint_t)efp->e_hdr.e_phnum) {
1823 efp->e_hdr.e_shoff =
1824 efp->e_hdr.e_phoff +
1825 efp->e_hdr.e_phentsize * phnum;
1828 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1829 dprintf("using new program header count\n");
1830 } else {
1831 dprintf("inconsistent program header count\n");
1837 * The libelf implementation was never ported to be large-file aware.
1838 * This is typically not a problem for your average executable or
1839 * shared library, but a large 32-bit core file can exceed 2GB in size.
1840 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1841 * in Pfgrab_core() below will do its own i/o and struct conversion.
1844 if (type == ET_CORE) {
1845 efp->e_elf = NULL;
1846 return (0);
1849 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1850 if (perr != NULL)
1851 *perr = G_ELF;
1852 goto err;
1855 return (0);
1857 err:
1858 efp->e_elf = NULL;
1859 return (-1);
1863 * Open the specified file and then do a core_elf_fdopen on it.
1865 static int
1866 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1868 (void) memset(efp, 0, sizeof (elf_file_t));
1870 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1871 if (core_elf_fdopen(efp, type, perr) == 0)
1872 return (0);
1874 (void) close(efp->e_fd);
1875 efp->e_fd = -1;
1878 return (-1);
1882 * Close the ELF handle and file descriptor.
1884 static void
1885 core_elf_close(elf_file_t *efp)
1887 if (efp->e_elf != NULL) {
1888 (void) elf_end(efp->e_elf);
1889 efp->e_elf = NULL;
1892 if (efp->e_fd != -1) {
1893 (void) close(efp->e_fd);
1894 efp->e_fd = -1;
1899 * Given an ELF file for a statically linked executable, locate the likely
1900 * primary text section and fill in rl_base with its virtual address.
1902 static map_info_t *
1903 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1905 GElf_Phdr phdr;
1906 uint_t i;
1907 size_t nphdrs;
1909 if (elf_getphdrnum(elf, &nphdrs) == -1)
1910 return (NULL);
1912 for (i = 0; i < nphdrs; i++) {
1913 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1914 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1915 rlp->rl_base = phdr.p_vaddr;
1916 return (Paddr2mptr(P, rlp->rl_base));
1920 return (NULL);
1924 * Given an ELF file and the librtld_db structure corresponding to its primary
1925 * text mapping, deduce where its data segment was loaded and fill in
1926 * rl_data_base and prmap_t.pr_offset accordingly.
1928 static map_info_t *
1929 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1931 GElf_Ehdr ehdr;
1932 GElf_Phdr phdr;
1933 map_info_t *mp;
1934 uint_t i, pagemask;
1935 size_t nphdrs;
1937 rlp->rl_data_base = NULL;
1940 * Find the first loadable, writeable Phdr and compute rl_data_base
1941 * as the virtual address at which is was loaded.
1943 if (gelf_getehdr(elf, &ehdr) == NULL ||
1944 elf_getphdrnum(elf, &nphdrs) == -1)
1945 return (NULL);
1947 for (i = 0; i < nphdrs; i++) {
1948 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1949 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1950 rlp->rl_data_base = phdr.p_vaddr;
1951 if (ehdr.e_type == ET_DYN)
1952 rlp->rl_data_base += rlp->rl_base;
1953 break;
1958 * If we didn't find an appropriate phdr or if the address we
1959 * computed has no mapping, return NULL.
1961 if (rlp->rl_data_base == NULL ||
1962 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1963 return (NULL);
1966 * It wouldn't be procfs-related code if we didn't make use of
1967 * unclean knowledge of segvn, even in userland ... the prmap_t's
1968 * pr_offset field will be the segvn offset from mmap(2)ing the
1969 * data section, which will be the file offset & PAGEMASK.
1971 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1972 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1974 return (mp);
1978 * Librtld_db agent callback for iterating over load object mappings.
1979 * For each load object, we allocate a new file_info_t, perform naming,
1980 * and attempt to construct a symbol table for the load object.
1982 static int
1983 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1985 core_info_t *core = P->data;
1986 char lname[PATH_MAX], buf[PATH_MAX];
1987 file_info_t *fp;
1988 map_info_t *mp;
1990 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1991 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1992 return (1); /* Keep going; forget this if we can't get a name */
1995 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1996 lname, (void *)rlp->rl_base);
1998 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1999 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
2000 return (1); /* No mapping; advance to next mapping */
2004 * Create a new file_info_t for this mapping, and therefore for
2005 * this load object.
2007 * If there's an ELF header at the beginning of this mapping,
2008 * file_info_new() will try to use its section headers to
2009 * identify any other mappings that belong to this load object.
2011 if ((fp = mp->map_file) == NULL &&
2012 (fp = file_info_new(P, mp)) == NULL) {
2013 core->core_errno = errno;
2014 dprintf("failed to malloc mapping data\n");
2015 return (0); /* Abort */
2017 fp->file_map = mp;
2019 /* Create a local copy of the load object representation */
2020 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2021 core->core_errno = errno;
2022 dprintf("failed to malloc mapping data\n");
2023 return (0); /* Abort */
2025 *fp->file_lo = *rlp;
2027 if (lname[0] != '\0') {
2029 * Naming dance part 1: if we got a name from librtld_db, then
2030 * copy this name to the prmap_t if it is unnamed. If the
2031 * file_info_t is unnamed, name it after the lname.
2033 if (mp->map_pmap.pr_mapname[0] == '\0') {
2034 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2035 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2038 if (fp->file_lname == NULL)
2039 fp->file_lname = strdup(lname);
2041 } else if (fp->file_lname == NULL &&
2042 mp->map_pmap.pr_mapname[0] != '\0') {
2044 * Naming dance part 2: if the mapping is named and the
2045 * file_info_t is not, name the file after the mapping.
2047 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2050 if ((fp->file_rname == NULL) &&
2051 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2052 fp->file_rname = strdup(buf);
2054 if (fp->file_lname != NULL)
2055 fp->file_lbase = basename(fp->file_lname);
2056 if (fp->file_rname != NULL)
2057 fp->file_rbase = basename(fp->file_rname);
2059 /* Associate the file and the mapping. */
2060 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2061 fp->file_pname[PRMAPSZ - 1] = '\0';
2064 * If no section headers were available then we'll have to
2065 * identify this load object's other mappings with what we've
2066 * got: the start and end of the object's corresponding
2067 * address space.
2069 if (fp->file_saddrs == NULL) {
2070 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2071 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2073 if (mp->map_file == NULL) {
2074 dprintf("core_iter_mapping %s: associating "
2075 "segment at %p\n",
2076 fp->file_pname,
2077 (void *)mp->map_pmap.pr_vaddr);
2078 mp->map_file = fp;
2079 fp->file_ref++;
2080 } else {
2081 dprintf("core_iter_mapping %s: segment at "
2082 "%p already associated with %s\n",
2083 fp->file_pname,
2084 (void *)mp->map_pmap.pr_vaddr,
2085 (mp == fp->file_map ? "this file" :
2086 mp->map_file->file_pname));
2091 /* Ensure that all this file's mappings are named. */
2092 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2093 mp->map_file == fp; mp++) {
2094 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2095 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2096 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2097 PRMAPSZ);
2098 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2102 /* Attempt to build a symbol table for this file. */
2103 Pbuild_file_symtab(P, fp);
2104 if (fp->file_elf == NULL)
2105 dprintf("core_iter_mapping: no symtab for %s\n",
2106 fp->file_pname);
2108 /* Locate the start of a data segment associated with this file. */
2109 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2110 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2111 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2112 mp->map_pmap.pr_offset);
2113 } else {
2114 dprintf("core_iter_mapping: no data found for %s\n",
2115 fp->file_pname);
2118 return (1); /* Advance to next mapping */
2122 * Callback function for Pfindexec(). In order to confirm a given pathname,
2123 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2125 static int
2126 core_exec_open(const char *path, void *efp)
2128 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2129 return (1);
2130 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2131 return (1);
2132 return (0);
2136 * Attempt to load any section headers found in the core file. If present,
2137 * this will refer to non-loadable data added to the core file by the kernel
2138 * based on coreadm(1M) settings, including CTF data and the symbol table.
2140 static void
2141 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2143 GElf_Shdr *shp, *shdrs = NULL;
2144 char *shstrtab = NULL;
2145 ulong_t shstrtabsz;
2146 const char *name;
2147 map_info_t *mp;
2149 size_t nbytes;
2150 void *buf;
2151 int i;
2153 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2154 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2155 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2156 return;
2160 * Read the section header table from the core file and then iterate
2161 * over the section headers, converting each to a GElf_Shdr.
2163 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2164 dprintf("failed to malloc %u section headers: %s\n",
2165 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2166 return;
2169 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2170 if ((buf = malloc(nbytes)) == NULL) {
2171 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2172 strerror(errno));
2173 free(shdrs);
2174 goto out;
2177 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2178 dprintf("failed to read section headers at off %lld: %s\n",
2179 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2180 free(buf);
2181 goto out;
2184 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2185 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2187 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2188 core_shdr_to_gelf(p, &shdrs[i]);
2189 else
2190 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2193 free(buf);
2194 buf = NULL;
2197 * Read the .shstrtab section from the core file, terminating it with
2198 * an extra \0 so that a corrupt section will not cause us to die.
2200 shp = &shdrs[efp->e_hdr.e_shstrndx];
2201 shstrtabsz = shp->sh_size;
2203 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2204 dprintf("failed to allocate %lu bytes for shstrtab\n",
2205 (ulong_t)shstrtabsz);
2206 goto out;
2209 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2210 shp->sh_offset) != shstrtabsz) {
2211 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2212 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2213 goto out;
2216 shstrtab[shstrtabsz] = '\0';
2219 * Now iterate over each section in the section header table, locating
2220 * sections of interest and initializing more of the ps_prochandle.
2222 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2223 shp = &shdrs[i];
2224 name = shstrtab + shp->sh_name;
2226 if (shp->sh_name >= shstrtabsz) {
2227 dprintf("skipping section [%d]: corrupt sh_name\n", i);
2228 continue;
2231 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2232 dprintf("skipping section [%d]: corrupt sh_link\n", i);
2233 continue;
2236 dprintf("found section header %s (sh_addr 0x%llx)\n",
2237 name, (u_longlong_t)shp->sh_addr);
2239 if (strcmp(name, ".SUNW_ctf") == 0) {
2240 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2241 dprintf("no map at addr 0x%llx for %s [%d]\n",
2242 (u_longlong_t)shp->sh_addr, name, i);
2243 continue;
2246 if (mp->map_file == NULL ||
2247 mp->map_file->file_ctf_buf != NULL) {
2248 dprintf("no mapping file or duplicate buffer "
2249 "for %s [%d]\n", name, i);
2250 continue;
2253 if ((buf = malloc(shp->sh_size)) == NULL ||
2254 pread64(efp->e_fd, buf, shp->sh_size,
2255 shp->sh_offset) != shp->sh_size) {
2256 dprintf("skipping section %s [%d]: %s\n",
2257 name, i, strerror(errno));
2258 free(buf);
2259 continue;
2262 mp->map_file->file_ctf_size = shp->sh_size;
2263 mp->map_file->file_ctf_buf = buf;
2265 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2266 mp->map_file->file_ctf_dyn = 1;
2268 } else if (strcmp(name, ".symtab") == 0) {
2269 fake_up_symtab(P, &efp->e_hdr,
2270 shp, &shdrs[shp->sh_link]);
2273 out:
2274 free(shstrtab);
2275 free(shdrs);
2279 * Main engine for core file initialization: given an fd for the core file
2280 * and an optional pathname, construct the ps_prochandle. The aout_path can
2281 * either be a suggested executable pathname, or a suggested directory to
2282 * use as a possible current working directory.
2284 struct ps_prochandle *
2285 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2287 struct ps_prochandle *P;
2288 core_info_t *core_info;
2289 map_info_t *stk_mp, *brk_mp;
2290 const char *execname;
2291 char *interp;
2292 int i, notes, pagesize;
2293 uintptr_t addr, base_addr;
2294 struct stat64 stbuf;
2295 void *phbuf, *php;
2296 size_t nbytes;
2297 #ifdef __x86
2298 boolean_t from_linux = B_FALSE;
2299 #endif
2301 elf_file_t aout;
2302 elf_file_t core;
2304 Elf_Scn *scn, *intp_scn = NULL;
2305 Elf_Data *dp;
2307 GElf_Phdr phdr, note_phdr;
2308 GElf_Shdr shdr;
2309 GElf_Xword nleft;
2311 if (elf_version(EV_CURRENT) == EV_NONE) {
2312 dprintf("libproc ELF version is more recent than libelf\n");
2313 *perr = G_ELF;
2314 return (NULL);
2317 aout.e_elf = NULL;
2318 aout.e_fd = -1;
2320 core.e_elf = NULL;
2321 core.e_fd = core_fd;
2324 * Allocate and initialize a ps_prochandle structure for the core.
2325 * There are several key pieces of initialization here:
2327 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2328 * PS_DEAD also thus prevents all operations which require state
2329 * to be PS_STOP from operating on this handle.
2331 * 2. We keep the core file fd in P->asfd since the core file contains
2332 * the remnants of the process address space.
2334 * 3. We set the P->info_valid bit because all information about the
2335 * core is determined by the end of this function; there is no need
2336 * for proc_update_maps() to reload mappings at any later point.
2338 * 4. The read/write ops vector uses our core_rw() function defined
2339 * above to handle i/o requests.
2341 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2342 *perr = G_STRANGE;
2343 return (NULL);
2346 (void) memset(P, 0, sizeof (struct ps_prochandle));
2347 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2348 P->state = PS_DEAD;
2349 P->pid = (pid_t)-1;
2350 P->asfd = core.e_fd;
2351 P->ctlfd = -1;
2352 P->statfd = -1;
2353 P->agentctlfd = -1;
2354 P->agentstatfd = -1;
2355 P->zoneroot = NULL;
2356 P->info_valid = 1;
2357 Pinit_ops(&P->ops, &P_core_ops);
2359 Pinitsym(P);
2362 * Fstat and open the core file and make sure it is a valid ELF core.
2364 if (fstat64(P->asfd, &stbuf) == -1) {
2365 *perr = G_STRANGE;
2366 goto err;
2369 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2370 goto err;
2373 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2374 * structure. We keep all core-specific information in this structure.
2376 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2377 *perr = G_STRANGE;
2378 goto err;
2381 P->data = core_info;
2382 list_link(&core_info->core_lwp_head, NULL);
2383 core_info->core_size = stbuf.st_size;
2385 * In the days before adjustable core file content, this was the
2386 * default core file content. For new core files, this value will
2387 * be overwritten by the NT_CONTENT note section.
2389 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2390 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2391 CC_CONTENT_SHANON;
2393 switch (core.e_hdr.e_ident[EI_CLASS]) {
2394 case ELFCLASS32:
2395 core_info->core_dmodel = PR_MODEL_ILP32;
2396 break;
2397 case ELFCLASS64:
2398 core_info->core_dmodel = PR_MODEL_LP64;
2399 break;
2400 default:
2401 *perr = G_FORMAT;
2402 goto err;
2404 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2407 * Because the core file may be a large file, we can't use libelf to
2408 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2410 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2412 if ((phbuf = malloc(nbytes)) == NULL) {
2413 *perr = G_STRANGE;
2414 goto err;
2417 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2418 *perr = G_STRANGE;
2419 free(phbuf);
2420 goto err;
2424 * Iterate through the program headers in the core file.
2425 * We're interested in two types of Phdrs: PT_NOTE (which
2426 * contains a set of saved /proc structures), and PT_LOAD (which
2427 * represents a memory mapping from the process's address space).
2428 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2429 * in the core file; currently the first PT_NOTE (if present)
2430 * contains /proc structs in the pre-2.6 unstructured /proc format.
2432 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2433 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2434 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2435 else
2436 core_phdr_to_gelf(php, &phdr);
2438 switch (phdr.p_type) {
2439 case PT_NOTE:
2440 note_phdr = phdr;
2441 notes++;
2442 break;
2444 case PT_LOAD:
2445 if (core_add_mapping(P, &phdr) == -1) {
2446 *perr = G_STRANGE;
2447 free(phbuf);
2448 goto err;
2450 break;
2451 default:
2452 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2453 break;
2456 php = (char *)php + core.e_hdr.e_phentsize;
2459 free(phbuf);
2461 Psort_mappings(P);
2464 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2465 * was present, abort. The core file is either corrupt or too old.
2467 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2468 ELFOSABI_SOLARIS)) {
2469 *perr = G_NOTE;
2470 goto err;
2474 * Advance the seek pointer to the start of the PT_NOTE data
2476 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2477 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2478 *perr = G_STRANGE;
2479 goto err;
2483 * Now process the PT_NOTE structures. Each one is preceded by
2484 * an Elf{32/64}_Nhdr structure describing its type and size.
2486 * +--------+
2487 * | header |
2488 * +--------+
2489 * | name |
2490 * | ... |
2491 * +--------+
2492 * | desc |
2493 * | ... |
2494 * +--------+
2496 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2497 Elf64_Nhdr nhdr;
2498 off64_t off, namesz, descsz;
2501 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2502 * as different types, they are both of the same content and
2503 * size, so we don't need to worry about 32/64 conversion here.
2505 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2506 dprintf("Pgrab_core: failed to read ELF note header\n");
2507 *perr = G_NOTE;
2508 goto err;
2512 * According to the System V ABI, the amount of padding
2513 * following the name field should align the description
2514 * field on a 4 byte boundary for 32-bit binaries or on an 8
2515 * byte boundary for 64-bit binaries. However, this change
2516 * was not made correctly during the 64-bit port so all
2517 * descriptions can assume only 4-byte alignment. We ignore
2518 * the name field and the padding to 4-byte alignment.
2520 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2522 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2523 dprintf("failed to seek past name and padding\n");
2524 *perr = G_STRANGE;
2525 goto err;
2528 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2529 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2531 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2534 * Invoke the note handler function from our table
2536 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2537 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2538 dprintf("handler for type %d returned < 0",
2539 nhdr.n_type);
2540 *perr = G_NOTE;
2541 goto err;
2544 * The presence of either of these notes indicates that
2545 * the dump was generated on Linux.
2547 #ifdef __x86
2548 if (nhdr.n_type == NT_PRSTATUS ||
2549 nhdr.n_type == NT_PRPSINFO)
2550 from_linux = B_TRUE;
2551 #endif
2552 } else {
2553 (void) note_notsup(P, nhdr.n_descsz);
2557 * Seek past the current note data to the next Elf_Nhdr
2559 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2560 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2561 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2562 *perr = G_STRANGE;
2563 goto err;
2567 * Subtract the size of the header and its data from what
2568 * we have left to process.
2570 nleft -= sizeof (nhdr) + namesz + descsz;
2573 #ifdef __x86
2574 if (from_linux) {
2575 size_t tcount, pid;
2576 lwp_info_t *lwp;
2578 P->status.pr_dmodel = core_info->core_dmodel;
2580 lwp = list_next(&core_info->core_lwp_head);
2582 pid = P->status.pr_pid;
2584 for (tcount = 0; tcount < core_info->core_nlwp;
2585 tcount++, lwp = list_next(lwp)) {
2586 dprintf("Linux thread with id %d\n", lwp->lwp_id);
2589 * In the case we don't have a valid psinfo (i.e. pid is
2590 * 0, probably because of gdb creating the core) assume
2591 * lowest pid count is the first thread (what if the
2592 * next thread wraps the pid around?)
2594 if (P->status.pr_pid == 0 &&
2595 ((pid == 0 && lwp->lwp_id > 0) ||
2596 (lwp->lwp_id < pid))) {
2597 pid = lwp->lwp_id;
2601 if (P->status.pr_pid != pid) {
2602 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2603 P->status.pr_pid = pid;
2604 P->psinfo.pr_pid = pid;
2608 * Consumers like mdb expect the first thread to actually have
2609 * an id of 1, on linux that is actually the pid. Find the the
2610 * thread with our process id, and set the id to 1
2612 if ((lwp = lwpid2info(P, pid)) == NULL) {
2613 dprintf("Couldn't find first thread\n");
2614 *perr = G_STRANGE;
2615 goto err;
2618 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2620 lwp->lwp_id = 1;
2621 lwp->lwp_status.pr_lwpid = 1;
2623 /* set representative thread */
2624 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2625 sizeof (P->status.pr_lwp));
2627 #endif /* __x86 */
2629 if (nleft != 0) {
2630 dprintf("Pgrab_core: note section malformed\n");
2631 *perr = G_STRANGE;
2632 goto err;
2635 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2636 pagesize = getpagesize();
2637 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2641 * Locate and label the mappings corresponding to the end of the
2642 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2644 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2645 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2646 P->status.pr_brksize - 1)) != NULL)
2647 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2648 else
2649 brk_mp = NULL;
2651 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2652 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2655 * At this point, we have enough information to look for the
2656 * executable and open it: we have access to the auxv, a psinfo_t,
2657 * and the ability to read from mappings provided by the core file.
2659 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2660 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2661 execname = P->execname ? P->execname : "a.out";
2664 * Iterate through the sections, looking for the .dynamic and .interp
2665 * sections. If we encounter them, remember their section pointers.
2667 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2668 char *sname;
2670 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2671 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2672 (size_t)shdr.sh_name)) == NULL)
2673 continue;
2675 if (strcmp(sname, ".interp") == 0)
2676 intp_scn = scn;
2680 * Get the AT_BASE auxv element. If this is missing (-1), then
2681 * we assume this is a statically-linked executable.
2683 base_addr = Pgetauxval(P, AT_BASE);
2686 * In order to get librtld_db initialized, we'll need to identify
2687 * and name the mapping corresponding to the run-time linker. The
2688 * AT_BASE auxv element tells us the address where it was mapped,
2689 * and the .interp section of the executable tells us its path.
2690 * If for some reason that doesn't pan out, just use ld.so.1.
2692 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2693 dp->d_size != 0) {
2694 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2695 interp = dp->d_buf;
2697 } else if (base_addr != (uintptr_t)-1L) {
2698 if (core_info->core_dmodel == PR_MODEL_LP64)
2699 interp = "/usr/lib/64/ld.so.1";
2700 else
2701 interp = "/usr/lib/ld.so.1";
2703 dprintf(".interp section is missing or could not be read; "
2704 "defaulting to %s\n", interp);
2705 } else
2706 dprintf("detected statically linked executable\n");
2709 * If we have an AT_BASE element, name the mapping at that address
2710 * using the interpreter pathname. Name the corresponding data
2711 * mapping after the interpreter as well.
2713 if (base_addr != (uintptr_t)-1L) {
2714 elf_file_t intf;
2716 P->map_ldso = core_name_mapping(P, base_addr, interp);
2718 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2719 rd_loadobj_t rl;
2720 map_info_t *dmp;
2722 rl.rl_base = base_addr;
2723 dmp = core_find_data(P, intf.e_elf, &rl);
2725 if (dmp != NULL) {
2726 dprintf("renamed data at %p to %s\n",
2727 (void *)rl.rl_data_base, interp);
2728 (void) strncpy(dmp->map_pmap.pr_mapname,
2729 interp, PRMAPSZ);
2730 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2734 core_elf_close(&intf);
2738 * If we have an AT_ENTRY element, name the mapping at that address
2739 * using the special name "a.out" just like /proc does.
2741 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2742 P->map_exec = core_name_mapping(P, addr, "a.out");
2745 * If we're a statically linked executable (or we're on x86 and looking
2746 * at a Linux core dump), then just locate the executable's text and
2747 * data and name them after the executable.
2749 #ifndef __x86
2750 if (base_addr == (uintptr_t)-1L) {
2751 #else
2752 if (base_addr == (uintptr_t)-1L || from_linux) {
2753 #endif
2754 dprintf("looking for text and data: %s\n", execname);
2755 map_info_t *tmp, *dmp;
2756 file_info_t *fp;
2757 rd_loadobj_t rl;
2759 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2760 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2761 (void) strncpy(tmp->map_pmap.pr_mapname,
2762 execname, PRMAPSZ);
2763 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2764 (void) strncpy(dmp->map_pmap.pr_mapname,
2765 execname, PRMAPSZ);
2766 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2769 if ((P->map_exec = tmp) != NULL &&
2770 (fp = malloc(sizeof (file_info_t))) != NULL) {
2772 (void) memset(fp, 0, sizeof (file_info_t));
2774 list_link(fp, &P->file_head);
2775 tmp->map_file = fp;
2776 P->num_files++;
2778 fp->file_ref = 1;
2779 fp->file_fd = -1;
2781 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2782 fp->file_lname = strdup(execname);
2784 if (fp->file_lo)
2785 *fp->file_lo = rl;
2786 if (fp->file_lname)
2787 fp->file_lbase = basename(fp->file_lname);
2788 if (fp->file_rname)
2789 fp->file_rbase = basename(fp->file_rname);
2791 (void) strcpy(fp->file_pname,
2792 P->mappings[0].map_pmap.pr_mapname);
2793 fp->file_map = tmp;
2795 Pbuild_file_symtab(P, fp);
2797 if (dmp != NULL) {
2798 dmp->map_file = fp;
2799 fp->file_ref++;
2804 core_elf_close(&aout);
2807 * We now have enough information to initialize librtld_db.
2808 * After it warms up, we can iterate through the load object chain
2809 * in the core, which will allow us to construct the file info
2810 * we need to provide symbol information for the other shared
2811 * libraries, and also to fill in the missing mapping names.
2813 rd_log(_libproc_debug);
2815 if ((P->rap = rd_new(P)) != NULL) {
2816 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2817 core_iter_mapping, P);
2819 if (core_info->core_errno != 0) {
2820 errno = core_info->core_errno;
2821 *perr = G_STRANGE;
2822 goto err;
2824 } else
2825 dprintf("failed to initialize rtld_db agent\n");
2828 * If there are sections, load them and process the data from any
2829 * sections that we can use to annotate the file_info_t's.
2831 core_load_shdrs(P, &core);
2834 * If we previously located a stack or break mapping, and they are
2835 * still anonymous, we now assume that they were MAP_ANON mappings.
2836 * If brk_mp turns out to now have a name, then the heap is still
2837 * sitting at the end of the executable's data+bss mapping: remove
2838 * the previous MA_BREAK setting to be consistent with /proc.
2840 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2841 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2842 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2843 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2844 else if (brk_mp != NULL)
2845 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2847 *perr = 0;
2848 return (P);
2850 err:
2851 Pfree(P);
2852 core_elf_close(&aout);
2853 return (NULL);
2857 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2859 struct ps_prochandle *
2860 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2862 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2864 if ((fd = open64(core, oflag)) >= 0)
2865 return (Pfgrab_core(fd, aout, perr));
2867 if (errno != ENOENT)
2868 *perr = G_STRANGE;
2869 else
2870 *perr = G_NOCORE;
2872 return (NULL);