9597 Want hypervisor API for FPU management
[unleashed.git] / usr / src / uts / i86pc / os / startup.c
blob8c1d4e0697d4893feea73a02106ba73c78e10c5c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2018 Joyent, Inc.
27 * Copyright (c) 2015 by Delphix. All rights reserved.
30 * Copyright (c) 2010, Intel Corporation.
31 * All rights reserved.
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/mman.h>
42 #include <sys/vm.h>
43 #include <sys/conf.h>
44 #include <sys/avintr.h>
45 #include <sys/autoconf.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <sys/bitmap.h>
50 #include <sys/privregs.h>
52 #include <sys/proc.h>
53 #include <sys/buf.h>
54 #include <sys/kmem.h>
55 #include <sys/mem.h>
56 #include <sys/kstat.h>
58 #include <sys/reboot.h>
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/file.h>
64 #include <sys/procfs.h>
66 #include <sys/vfs.h>
67 #include <sys/cmn_err.h>
68 #include <sys/utsname.h>
69 #include <sys/debug.h>
70 #include <sys/kdi.h>
72 #include <sys/dumphdr.h>
73 #include <sys/bootconf.h>
74 #include <sys/memlist_plat.h>
75 #include <sys/varargs.h>
76 #include <sys/promif.h>
77 #include <sys/modctl.h>
79 #include <sys/sunddi.h>
80 #include <sys/sunndi.h>
81 #include <sys/ndi_impldefs.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/psw.h>
84 #include <sys/regset.h>
85 #include <sys/clock.h>
86 #include <sys/pte.h>
87 #include <sys/tss.h>
88 #include <sys/stack.h>
89 #include <sys/trap.h>
90 #include <sys/fp.h>
91 #include <vm/kboot_mmu.h>
92 #include <vm/anon.h>
93 #include <vm/as.h>
94 #include <vm/page.h>
95 #include <vm/seg.h>
96 #include <vm/seg_dev.h>
97 #include <vm/seg_kmem.h>
98 #include <vm/seg_kpm.h>
99 #include <vm/seg_map.h>
100 #include <vm/seg_vn.h>
101 #include <vm/seg_kp.h>
102 #include <sys/memnode.h>
103 #include <vm/vm_dep.h>
104 #include <sys/thread.h>
105 #include <sys/sysconf.h>
106 #include <sys/vm_machparam.h>
107 #include <sys/archsystm.h>
108 #include <sys/machsystm.h>
109 #include <vm/hat.h>
110 #include <vm/hat_i86.h>
111 #include <sys/pmem.h>
112 #include <sys/smp_impldefs.h>
113 #include <sys/x86_archext.h>
114 #include <sys/cpuvar.h>
115 #include <sys/segments.h>
116 #include <sys/clconf.h>
117 #include <sys/kobj.h>
118 #include <sys/kobj_lex.h>
119 #include <sys/cpc_impl.h>
120 #include <sys/cpu_module.h>
121 #include <sys/smbios.h>
122 #include <sys/debug_info.h>
123 #include <sys/bootinfo.h>
124 #include <sys/ddi_periodic.h>
125 #include <sys/systeminfo.h>
126 #include <sys/multiboot.h>
127 #include <sys/ramdisk.h>
129 #ifdef __xpv
131 #include <sys/hypervisor.h>
132 #include <sys/xen_mmu.h>
133 #include <sys/evtchn_impl.h>
134 #include <sys/gnttab.h>
135 #include <sys/xpv_panic.h>
136 #include <xen/sys/xenbus_comms.h>
137 #include <xen/public/physdev.h>
139 extern void xen_late_startup(void);
141 struct xen_evt_data cpu0_evt_data;
143 #else /* __xpv */
144 #include <sys/memlist_impl.h>
146 extern void mem_config_init(void);
147 #endif /* __xpv */
149 extern void progressbar_init(void);
150 extern void brand_init(void);
151 extern void pcf_init(void);
152 extern void pg_init(void);
153 extern void ssp_init(void);
155 extern int size_pse_array(pgcnt_t, int);
157 #if defined(_SOFT_HOSTID)
159 #include <sys/rtc.h>
161 static int32_t set_soft_hostid(void);
162 static char hostid_file[] = "/etc/hostid";
164 #endif
166 void *gfx_devinfo_list;
168 #if defined(__amd64) && !defined(__xpv)
169 extern void immu_startup(void);
170 #endif
173 * XXX make declaration below "static" when drivers no longer use this
174 * interface.
176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
179 * segkp
181 extern int segkp_fromheap;
183 static void kvm_init(void);
184 static void startup_init(void);
185 static void startup_memlist(void);
186 static void startup_kmem(void);
187 static void startup_modules(void);
188 static void startup_vm(void);
189 static void startup_end(void);
190 static void layout_kernel_va(void);
193 * Declare these as initialized data so we can patch them.
195 #ifdef __i386
198 * Due to virtual address space limitations running in 32 bit mode, restrict
199 * the amount of physical memory configured to a max of PHYSMEM pages (16g).
201 * If the physical max memory size of 64g were allowed to be configured, the
202 * size of user virtual address space will be less than 1g. A limited user
203 * address space greatly reduces the range of applications that can run.
205 * If more physical memory than PHYSMEM is required, users should preferably
206 * run in 64 bit mode which has far looser virtual address space limitations.
208 * If 64 bit mode is not available (as in IA32) and/or more physical memory
209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
211 * should also be carefully tuned to balance out the need of the user
212 * application while minimizing the risk of kernel heap exhaustion due to
213 * kernelbase being set too high.
215 #define PHYSMEM 0x400000
217 #else /* __amd64 */
220 * For now we can handle memory with physical addresses up to about
221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
222 * half the VA space for seg_kpm. When systems get bigger than 64TB this
223 * code will need revisiting. There is an implicit assumption that there
224 * are no *huge* holes in the physical address space too.
226 #define TERABYTE (1ul << 40)
227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
228 #define PHYSMEM PHYSMEM_MAX64
229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
231 #endif /* __amd64 */
233 pgcnt_t physmem = PHYSMEM;
234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
236 char *kobj_file_buf;
237 int kobj_file_bufsize; /* set in /etc/system */
239 /* Global variables for MP support. Used in mp_startup */
240 caddr_t rm_platter_va = 0;
241 uint32_t rm_platter_pa;
243 int auto_lpg_disable = 1;
246 * Some CPUs have holes in the middle of the 64-bit virtual address range.
248 uintptr_t hole_start, hole_end;
251 * kpm mapping window
253 caddr_t kpm_vbase;
254 size_t kpm_size;
255 static int kpm_desired;
256 #ifdef __amd64
257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
258 #endif
261 * Configuration parameters set at boot time.
264 caddr_t econtig; /* end of first block of contiguous kernel */
266 struct bootops *bootops = 0; /* passed in from boot */
267 struct bootops **bootopsp;
268 struct boot_syscalls *sysp; /* passed in from boot */
270 char bootblock_fstype[16];
272 char kern_bootargs[OBP_MAXPATHLEN];
273 char kern_bootfile[OBP_MAXPATHLEN];
276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
278 * zio buffers from their own segment, otherwise they are allocated from the
279 * heap. The optimization of allocating zio buffers from their own segment is
280 * only valid on 64-bit kernels.
282 #if defined(__amd64)
283 int segzio_fromheap = 0;
284 #else
285 int segzio_fromheap = 1;
286 #endif
289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
290 * post-boot.
292 int disable_smap = 0;
295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
296 * depends on number of BOP_ALLOC calls made and requested size, memory size
297 * combination and whether boot.bin memory needs to be freed.
299 #define POSS_NEW_FRAGMENTS 12
302 * VM data structures
304 long page_hashsz; /* Size of page hash table (power of two) */
305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
306 struct page *pp_base; /* Base of initial system page struct array */
307 struct page **page_hash; /* Page hash table */
308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
310 int pse_shift; /* log2(pse_table_size) */
311 struct seg ktextseg; /* Segment used for kernel executable image */
312 struct seg kvalloc; /* Segment used for "valloc" mapping */
313 struct seg kpseg; /* Segment used for pageable kernel virt mem */
314 struct seg kmapseg; /* Segment used for generic kernel mappings */
315 struct seg kdebugseg; /* Segment used for the kernel debugger */
317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
322 #if defined(__amd64)
323 struct seg kvseg_core; /* Segment used for the core heap */
324 struct seg kpmseg; /* Segment used for physical mapping */
325 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
326 #else
327 struct seg *segkpm = NULL; /* Unused on IA32 */
328 #endif
330 caddr_t segkp_base; /* Base address of segkp */
331 caddr_t segzio_base; /* Base address of segzio */
332 #if defined(__amd64)
333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
334 #else
335 pgcnt_t segkpsize = 0;
336 #endif
337 pgcnt_t segziosize = 0; /* size of zio segment in pages */
340 * A static DR page_t VA map is reserved that can map the page structures
341 * for a domain's entire RA space. The pages that back this space are
342 * dynamically allocated and need not be physically contiguous. The DR
343 * map size is derived from KPM size.
344 * This mechanism isn't used by x86 yet, so just stubs here.
346 int ppvm_enable = 0; /* Static virtual map for page structs */
347 page_t *ppvm_base = NULL; /* Base of page struct map */
348 pgcnt_t ppvm_size = 0; /* Size of page struct map */
351 * VA range available to the debugger
353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
354 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
356 struct memseg *memseg_base;
357 struct vnode unused_pages_vp;
359 #define FOURGB 0x100000000LL
361 struct memlist *memlist;
363 caddr_t s_text; /* start of kernel text segment */
364 caddr_t e_text; /* end of kernel text segment */
365 caddr_t s_data; /* start of kernel data segment */
366 caddr_t e_data; /* end of kernel data segment */
367 caddr_t modtext; /* start of loadable module text reserved */
368 caddr_t e_modtext; /* end of loadable module text reserved */
369 caddr_t moddata; /* start of loadable module data reserved */
370 caddr_t e_moddata; /* end of loadable module data reserved */
372 struct memlist *phys_install; /* Total installed physical memory */
373 struct memlist *phys_avail; /* Total available physical memory */
374 struct memlist *bios_rsvd; /* Bios reserved memory */
377 * kphysm_init returns the number of pages that were processed
379 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
381 #define IO_PROP_SIZE 64 /* device property size */
384 * a couple useful roundup macros
386 #define ROUND_UP_PAGE(x) \
387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
388 #define ROUND_UP_LPAGE(x) \
389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
390 #define ROUND_UP_4MEG(x) \
391 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
392 #define ROUND_UP_TOPLEVEL(x) \
393 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
396 * 32-bit Kernel's Virtual memory layout.
397 * +-----------------------+
398 * | |
399 * 0xFFC00000 -|-----------------------|- ARGSBASE
400 * | debugger |
401 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
402 * | Kernel Data |
403 * 0xFEC00000 -|-----------------------|
404 * | Kernel Text |
405 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
406 * |--- GDT ---|- GDT page (GDT_VA)
407 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
408 * | |
409 * | page_t structures |
410 * | memsegs, memlists, |
411 * | page hash, etc. |
412 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
413 * | | (segkp is just an arena in the heap)
414 * | |
415 * | kvseg |
416 * | |
417 * | |
418 * --- -|-----------------------|- kernelheap (floating)
419 * | Segkmap |
420 * 0xC3002000 -|-----------------------|- segmap_start (floating)
421 * | Red Zone |
422 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
423 * | | ||
424 * | Shared objects | \/
425 * | |
426 * : :
427 * | user data |
428 * |-----------------------|
429 * | user text |
430 * 0x08048000 -|-----------------------|
431 * | user stack |
432 * : :
433 * | invalid |
434 * 0x00000000 +-----------------------+
437 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
438 * +-----------------------+
439 * | |
440 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
441 * | debugger (?) |
442 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
443 * | unused |
444 * +-----------------------+
445 * | Kernel Data |
446 * 0xFFFFFFFF.FBC00000 |-----------------------|
447 * | Kernel Text |
448 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
449 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
450 * |--- GDT ---|- GDT page (GDT_VA)
451 * |--- IDT ---|- IDT page (IDT_VA)
452 * |--- LDT ---|- LDT pages (LDT_VA)
453 * | |
454 * | Core heap | (used for loadable modules)
455 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
456 * | Kernel |
457 * | heap |
458 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
459 * | segmap |
460 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
461 * | device mappings |
462 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
463 * | segzio |
464 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
465 * | segkp |
466 * --- |-----------------------|- segkp_base (floating)
467 * | page_t structures | valloc_base + valloc_sz
468 * | memsegs, memlists, |
469 * | page hash, etc. |
470 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if >256GB)
471 * | segkpm |
472 * 0xFFFFFE00.00000000 |-----------------------|
473 * | Red Zone |
474 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if >256GB)
475 * | User stack |- User space memory
476 * | |
477 * | shared objects, etc | (grows downwards)
478 * : :
479 * | |
480 * 0xFFFF8000.00000000 |-----------------------|
481 * | |
482 * | VA Hole / unused |
483 * | |
484 * 0x00008000.00000000 |-----------------------|
485 * | |
486 * | |
487 * : :
488 * | user heap | (grows upwards)
489 * | |
490 * | user data |
491 * |-----------------------|
492 * | user text |
493 * 0x00000000.04000000 |-----------------------|
494 * | invalid |
495 * 0x00000000.00000000 +-----------------------+
497 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
498 * kernel, except that userlimit is raised to 0xfe000000
500 * Floating values:
502 * valloc_base: start of the kernel's memory management/tracking data
503 * structures. This region contains page_t structures for
504 * physical memory, memsegs, memlists, and the page hash.
506 * core_base: start of the kernel's "core" heap area on 64-bit systems.
507 * This area is intended to be used for global data as well as for module
508 * text/data that does not fit into the nucleus pages. The core heap is
509 * restricted to a 2GB range, allowing every address within it to be
510 * accessed using rip-relative addressing
512 * ekernelheap: end of kernelheap and start of segmap.
514 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
515 * above a red zone that separates the user's address space from the
516 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
518 * segmap_start: start of segmap. The length of segmap can be modified
519 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
520 * on 64-bit systems.
522 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
523 * decreased by 2X the size required for page_t. This allows the kernel
524 * heap to grow in size with physical memory. With sizeof(page_t) == 80
525 * bytes, the following shows the values of kernelbase and kernel heap
526 * sizes for different memory configurations (assuming default segmap and
527 * segkp sizes).
529 * mem size for kernelbase kernel heap
530 * size page_t's size
531 * ---- --------- ---------- -----------
532 * 1gb 0x01400000 0xd1800000 684MB
533 * 2gb 0x02800000 0xcf000000 704MB
534 * 4gb 0x05000000 0xca000000 744MB
535 * 6gb 0x07800000 0xc5000000 784MB
536 * 8gb 0x0a000000 0xc0000000 824MB
537 * 16gb 0x14000000 0xac000000 984MB
538 * 32gb 0x28000000 0x84000000 1304MB
539 * 64gb 0x50000000 0x34000000 1944MB (*)
541 * kernelbase is less than the abi minimum of 0xc0000000 for memory
542 * configurations above 8gb.
544 * (*) support for memory configurations above 32gb will require manual tuning
545 * of kernelbase to balance out the need of user applications.
548 /* real-time-clock initialization parameters */
549 extern time_t process_rtc_config_file(void);
551 uintptr_t kernelbase;
552 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
553 uintptr_t eprom_kernelbase;
554 size_t segmapsize;
555 uintptr_t segmap_start;
556 int segmapfreelists;
557 pgcnt_t npages;
558 pgcnt_t orig_npages;
559 size_t core_size; /* size of "core" heap */
560 uintptr_t core_base; /* base address of "core" heap */
563 * List of bootstrap pages. We mark these as allocated in startup.
564 * release_bootstrap() will free them when we're completely done with
565 * the bootstrap.
567 static page_t *bootpages;
570 * boot time pages that have a vnode from the ramdisk will keep that forever.
572 static page_t *rd_pages;
575 * Lower 64K
577 static page_t *lower_pages = NULL;
578 static int lower_pages_count = 0;
580 struct system_hardware system_hardware;
583 * Enable some debugging messages concerning memory usage...
585 static void
586 print_memlist(char *title, struct memlist *mp)
588 prom_printf("MEMLIST: %s:\n", title);
589 while (mp != NULL) {
590 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
591 mp->ml_address, mp->ml_size);
592 mp = mp->ml_next;
597 * XX64 need a comment here.. are these just default values, surely
598 * we read the "cpuid" type information to figure this out.
600 int l2cache_sz = 0x80000;
601 int l2cache_linesz = 0x40;
602 int l2cache_assoc = 1;
604 static size_t textrepl_min_gb = 10;
607 * on 64 bit we use a predifined VA range for mapping devices in the kernel
608 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
610 #ifdef __amd64
612 vmem_t *device_arena;
613 uintptr_t toxic_addr = (uintptr_t)NULL;
614 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
616 #else /* __i386 */
618 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
619 size_t toxic_bit_map_len = 0; /* in bits */
621 #endif /* __i386 */
624 * Simple boot time debug facilities
626 static char *prm_dbg_str[] = {
627 "%s:%d: '%s' is 0x%x\n",
628 "%s:%d: '%s' is 0x%llx\n"
631 int prom_debug;
633 #define PRM_DEBUG(q) if (prom_debug) \
634 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
635 #define PRM_POINT(q) if (prom_debug) \
636 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
639 * This structure is used to keep track of the intial allocations
640 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
641 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
643 #define NUM_ALLOCATIONS 8
644 int num_allocations = 0;
645 struct {
646 void **al_ptr;
647 size_t al_size;
648 } allocations[NUM_ALLOCATIONS];
649 size_t valloc_sz = 0;
650 uintptr_t valloc_base;
652 #define ADD_TO_ALLOCATIONS(ptr, size) { \
653 size = ROUND_UP_PAGE(size); \
654 if (num_allocations == NUM_ALLOCATIONS) \
655 panic("too many ADD_TO_ALLOCATIONS()"); \
656 allocations[num_allocations].al_ptr = (void**)&ptr; \
657 allocations[num_allocations].al_size = size; \
658 valloc_sz += size; \
659 ++num_allocations; \
663 * Allocate all the initial memory needed by the page allocator.
665 static void
666 perform_allocations(void)
668 caddr_t mem;
669 int i;
670 int valloc_align;
672 PRM_DEBUG(valloc_base);
673 PRM_DEBUG(valloc_sz);
674 valloc_align = mmu.level_size[mmu.max_page_level > 0];
675 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
676 if (mem != (caddr_t)valloc_base)
677 panic("BOP_ALLOC() failed");
678 bzero(mem, valloc_sz);
679 for (i = 0; i < num_allocations; ++i) {
680 *allocations[i].al_ptr = (void *)mem;
681 mem += allocations[i].al_size;
686 * Set up and enable SMAP now before we start other CPUs, but after the kernel's
687 * VM has been set up so we can use hot_patch_kernel_text().
689 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
690 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s
691 * for more information on what's going on here.
693 static void
694 startup_smap(void)
696 int i;
697 uint32_t inst;
698 uint8_t *instp;
699 char sym[128];
701 extern int _smap_enable_patch_count;
702 extern int _smap_disable_patch_count;
704 if (disable_smap != 0)
705 remove_x86_feature(x86_featureset, X86FSET_SMAP);
707 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
708 return;
710 for (i = 0; i < _smap_enable_patch_count; i++) {
711 int sizep;
713 VERIFY3U(i, <, _smap_enable_patch_count);
714 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
715 sizeof (sym));
716 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
717 VERIFY(instp != 0);
718 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
719 hot_patch_kernel_text((caddr_t)instp, inst, 4);
722 for (i = 0; i < _smap_disable_patch_count; i++) {
723 int sizep;
725 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
726 i) < sizeof (sym));
727 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
728 VERIFY(instp != 0);
729 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
730 hot_patch_kernel_text((caddr_t)instp, inst, 4);
733 hot_patch_kernel_text((caddr_t)smap_enable, SMAP_CLAC_INSTR, 4);
734 hot_patch_kernel_text((caddr_t)smap_disable, SMAP_STAC_INSTR, 4);
735 setcr4(getcr4() | CR4_SMAP);
736 smap_enable();
740 * Our world looks like this at startup time.
742 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
743 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
744 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
745 * addresses are fixed in the binary at link time.
747 * On the text page:
748 * unix/genunix/krtld/module text loads.
750 * On the data page:
751 * unix/genunix/krtld/module data loads.
753 * Machine-dependent startup code
755 void
756 startup(void)
758 #if !defined(__xpv)
759 extern void startup_pci_bios(void);
760 #endif
761 extern cpuset_t cpu_ready_set;
764 * Make sure that nobody tries to use sekpm until we have
765 * initialized it properly.
767 #if defined(__amd64)
768 kpm_desired = 1;
769 #endif
770 kpm_enable = 0;
771 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
773 #if defined(__xpv) /* XXPV fix me! */
775 extern int segvn_use_regions;
776 segvn_use_regions = 0;
778 #endif
779 ssp_init();
780 progressbar_init();
781 startup_init();
782 #if defined(__xpv)
783 startup_xen_version();
784 #endif
785 startup_memlist();
786 startup_kmem();
787 startup_vm();
788 #if !defined(__xpv)
790 * Note we need to do this even on fast reboot in order to access
791 * the irq routing table (used for pci labels).
793 startup_pci_bios();
794 startup_smap();
795 #endif
796 #if defined(__xpv)
797 startup_xen_mca();
798 #endif
799 startup_modules();
801 startup_end();
804 static void
805 startup_init()
807 PRM_POINT("startup_init() starting...");
810 * Complete the extraction of cpuid data
812 cpuid_pass2(CPU);
814 (void) check_boot_version(BOP_GETVERSION(bootops));
817 * Check for prom_debug in boot environment
819 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
820 ++prom_debug;
821 PRM_POINT("prom_debug found in boot enviroment");
825 * Collect node, cpu and memory configuration information.
827 get_system_configuration();
830 * Halt if this is an unsupported processor.
832 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
833 printf("\n486 processor (\"%s\") detected.\n",
834 CPU->cpu_brandstr);
835 halt("This processor is not supported by this release "
836 "of Solaris.");
839 PRM_POINT("startup_init() done");
843 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
844 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
845 * also filters out physical page zero. There is some reliance on the
846 * boot loader allocating only a few contiguous physical memory chunks.
848 static void
849 avail_filter(uint64_t *addr, uint64_t *size)
851 uintptr_t va;
852 uintptr_t next_va;
853 pfn_t pfn;
854 uint64_t pfn_addr;
855 uint64_t pfn_eaddr;
856 uint_t prot;
857 size_t len;
858 uint_t change;
860 if (prom_debug)
861 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
862 *addr, *size);
865 * page zero is required for BIOS.. never make it available
867 if (*addr == 0) {
868 *addr += MMU_PAGESIZE;
869 *size -= MMU_PAGESIZE;
873 * First we trim from the front of the range. Since kbm_probe()
874 * walks ranges in virtual order, but addr/size are physical, we need
875 * to the list until no changes are seen. This deals with the case
876 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
877 * but w < v.
879 do {
880 change = 0;
881 for (va = KERNEL_TEXT;
882 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
883 va = next_va) {
885 next_va = va + len;
886 pfn_addr = pfn_to_pa(pfn);
887 pfn_eaddr = pfn_addr + len;
889 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
890 change = 1;
891 while (*size > 0 && len > 0) {
892 *addr += MMU_PAGESIZE;
893 *size -= MMU_PAGESIZE;
894 len -= MMU_PAGESIZE;
898 if (change && prom_debug)
899 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
900 *addr, *size);
901 } while (change);
904 * Trim pages from the end of the range.
906 for (va = KERNEL_TEXT;
907 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
908 va = next_va) {
910 next_va = va + len;
911 pfn_addr = pfn_to_pa(pfn);
913 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
914 *size = pfn_addr - *addr;
917 if (prom_debug)
918 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
919 *addr, *size);
922 static void
923 kpm_init()
925 struct segkpm_crargs b;
928 * These variables were all designed for sfmmu in which segkpm is
929 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
930 * might use 2+ page sizes on a single machine, so none of these
931 * variables have a single correct value. They are set up as if we
932 * always use a 4KB pagesize, which should do no harm. In the long
933 * run, we should get rid of KPM's assumption that only a single
934 * pagesize is used.
936 kpm_pgshft = MMU_PAGESHIFT;
937 kpm_pgsz = MMU_PAGESIZE;
938 kpm_pgoff = MMU_PAGEOFFSET;
939 kpmp2pshft = 0;
940 kpmpnpgs = 1;
941 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
943 PRM_POINT("about to create segkpm");
944 rw_enter(&kas.a_lock, RW_WRITER);
946 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
947 panic("cannot attach segkpm");
949 b.prot = PROT_READ | PROT_WRITE;
950 b.nvcolors = 1;
952 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
953 panic("segkpm_create segkpm");
955 rw_exit(&kas.a_lock);
957 kpm_enable = 1;
960 * As the KPM was disabled while setting up the system, go back and fix
961 * CPU zero's access to its user page table. This is a bit gross, but
962 * we have a chicken and egg problem otherwise.
964 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL);
965 CPU->cpu_hat_info->hci_user_l3ptes =
966 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn);
970 * The debug info page provides enough information to allow external
971 * inspectors (e.g. when running under a hypervisor) to bootstrap
972 * themselves into allowing full-blown kernel debugging.
974 static void
975 init_debug_info(void)
977 caddr_t mem;
978 debug_info_t *di;
980 #ifndef __lint
981 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
982 #endif
984 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
985 MMU_PAGESIZE);
987 if (mem != (caddr_t)DEBUG_INFO_VA)
988 panic("BOP_ALLOC() failed");
989 bzero(mem, MMU_PAGESIZE);
991 di = (debug_info_t *)mem;
993 di->di_magic = DEBUG_INFO_MAGIC;
994 di->di_version = DEBUG_INFO_VERSION;
995 di->di_modules = (uintptr_t)&modules;
996 di->di_s_text = (uintptr_t)s_text;
997 di->di_e_text = (uintptr_t)e_text;
998 di->di_s_data = (uintptr_t)s_data;
999 di->di_e_data = (uintptr_t)e_data;
1000 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
1001 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
1005 * Build the memlists and other kernel essential memory system data structures.
1006 * This is everything at valloc_base.
1008 static void
1009 startup_memlist(void)
1011 size_t memlist_sz;
1012 size_t memseg_sz;
1013 size_t pagehash_sz;
1014 size_t pp_sz;
1015 uintptr_t va;
1016 size_t len;
1017 uint_t prot;
1018 pfn_t pfn;
1019 int memblocks;
1020 pfn_t rsvd_high_pfn;
1021 pgcnt_t rsvd_pgcnt;
1022 size_t rsvdmemlist_sz;
1023 int rsvdmemblocks;
1024 caddr_t pagecolor_mem;
1025 size_t pagecolor_memsz;
1026 caddr_t page_ctrs_mem;
1027 size_t page_ctrs_size;
1028 size_t pse_table_alloc_size;
1029 struct memlist *current;
1030 extern void startup_build_mem_nodes(struct memlist *);
1032 /* XX64 fix these - they should be in include files */
1033 extern size_t page_coloring_init(uint_t, int, int);
1034 extern void page_coloring_setup(caddr_t);
1036 PRM_POINT("startup_memlist() starting...");
1039 * Use leftover large page nucleus text/data space for loadable modules.
1040 * Use at most MODTEXT/MODDATA.
1042 len = kbm_nucleus_size;
1043 ASSERT(len > MMU_PAGESIZE);
1045 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1046 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1047 if (e_moddata - moddata > MODDATA)
1048 e_moddata = moddata + MODDATA;
1050 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1051 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1052 if (e_modtext - modtext > MODTEXT)
1053 e_modtext = modtext + MODTEXT;
1055 econtig = e_moddata;
1057 PRM_DEBUG(modtext);
1058 PRM_DEBUG(e_modtext);
1059 PRM_DEBUG(moddata);
1060 PRM_DEBUG(e_moddata);
1061 PRM_DEBUG(econtig);
1064 * Examine the boot loader physical memory map to find out:
1065 * - total memory in system - physinstalled
1066 * - the max physical address - physmax
1067 * - the number of discontiguous segments of memory.
1069 if (prom_debug)
1070 print_memlist("boot physinstalled",
1071 bootops->boot_mem->physinstalled);
1072 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1073 &physinstalled, &memblocks);
1074 PRM_DEBUG(physmax);
1075 PRM_DEBUG(physinstalled);
1076 PRM_DEBUG(memblocks);
1079 * Compute maximum physical address for memory DR operations.
1080 * Memory DR operations are unsupported on xpv or 32bit OSes.
1082 #ifdef __amd64
1083 if (plat_dr_support_memory()) {
1084 if (plat_dr_physmax == 0) {
1085 uint_t pabits = UINT_MAX;
1087 cpuid_get_addrsize(CPU, &pabits, NULL);
1088 plat_dr_physmax = btop(1ULL << pabits);
1090 if (plat_dr_physmax > PHYSMEM_MAX64)
1091 plat_dr_physmax = PHYSMEM_MAX64;
1092 } else
1093 #endif
1094 plat_dr_physmax = 0;
1097 * Examine the bios reserved memory to find out:
1098 * - the number of discontiguous segments of memory.
1100 if (prom_debug)
1101 print_memlist("boot reserved mem",
1102 bootops->boot_mem->rsvdmem);
1103 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1104 &rsvd_pgcnt, &rsvdmemblocks);
1105 PRM_DEBUG(rsvd_high_pfn);
1106 PRM_DEBUG(rsvd_pgcnt);
1107 PRM_DEBUG(rsvdmemblocks);
1110 * Initialize hat's mmu parameters.
1111 * Check for enforce-prot-exec in boot environment. It's used to
1112 * enable/disable support for the page table entry NX bit.
1113 * The default is to enforce PROT_EXEC on processors that support NX.
1114 * Boot seems to round up the "len", but 8 seems to be big enough.
1116 mmu_init();
1118 #ifdef __i386
1120 * physmax is lowered if there is more memory than can be
1121 * physically addressed in 32 bit (PAE/non-PAE) modes.
1123 if (mmu.pae_hat) {
1124 if (PFN_ABOVE64G(physmax)) {
1125 physinstalled -= (physmax - (PFN_64G - 1));
1126 physmax = PFN_64G - 1;
1128 } else {
1129 if (PFN_ABOVE4G(physmax)) {
1130 physinstalled -= (physmax - (PFN_4G - 1));
1131 physmax = PFN_4G - 1;
1134 #endif
1136 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1138 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1139 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1140 char value[8];
1142 if (len < 8)
1143 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1144 else
1145 (void) strcpy(value, "");
1146 if (strcmp(value, "off") == 0)
1147 mmu.pt_nx = 0;
1149 PRM_DEBUG(mmu.pt_nx);
1152 * We will need page_t's for every page in the system, except for
1153 * memory mapped at or above above the start of the kernel text segment.
1155 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1157 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1158 obp_pages = 0;
1159 va = KERNEL_TEXT;
1160 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1161 npages -= len >> MMU_PAGESHIFT;
1162 if (va >= (uintptr_t)e_moddata)
1163 obp_pages += len >> MMU_PAGESHIFT;
1164 va += len;
1166 PRM_DEBUG(npages);
1167 PRM_DEBUG(obp_pages);
1170 * If physmem is patched to be non-zero, use it instead of the computed
1171 * value unless it is larger than the actual amount of memory on hand.
1173 if (physmem == 0 || physmem > npages) {
1174 physmem = npages;
1175 } else if (physmem < npages) {
1176 orig_npages = npages;
1177 npages = physmem;
1179 PRM_DEBUG(physmem);
1182 * We now compute the sizes of all the initial allocations for
1183 * structures the kernel needs in order do kmem_alloc(). These
1184 * include:
1185 * memsegs
1186 * memlists
1187 * page hash table
1188 * page_t's
1189 * page coloring data structs
1191 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1192 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1193 PRM_DEBUG(memseg_sz);
1196 * Reserve space for memlists. There's no real good way to know exactly
1197 * how much room we'll need, but this should be a good upper bound.
1199 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1200 (memblocks + POSS_NEW_FRAGMENTS));
1201 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1202 PRM_DEBUG(memlist_sz);
1205 * Reserve space for bios reserved memlists.
1207 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1208 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1209 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1210 PRM_DEBUG(rsvdmemlist_sz);
1212 /* LINTED */
1213 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1215 * The page structure hash table size is a power of 2
1216 * such that the average hash chain length is PAGE_HASHAVELEN.
1218 page_hashsz = npages / PAGE_HASHAVELEN;
1219 page_hashsz_shift = highbit(page_hashsz);
1220 page_hashsz = 1 << page_hashsz_shift;
1221 pagehash_sz = sizeof (struct page *) * page_hashsz;
1222 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1223 PRM_DEBUG(pagehash_sz);
1226 * Set aside room for the page structures themselves.
1228 PRM_DEBUG(npages);
1229 pp_sz = sizeof (struct page) * npages;
1230 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1231 PRM_DEBUG(pp_sz);
1234 * determine l2 cache info and memory size for page coloring
1236 (void) getl2cacheinfo(CPU,
1237 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1238 pagecolor_memsz =
1239 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1240 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1241 PRM_DEBUG(pagecolor_memsz);
1243 page_ctrs_size = page_ctrs_sz();
1244 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1245 PRM_DEBUG(page_ctrs_size);
1248 * Allocate the array that protects pp->p_selock.
1250 pse_shift = size_pse_array(physmem, max_ncpus);
1251 pse_table_size = 1 << pse_shift;
1252 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1253 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1255 #if defined(__amd64)
1256 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1257 valloc_base = VALLOC_BASE;
1260 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1261 * for values of physmax up to 256GB (1/4 TB). They need adjusting when
1262 * memory is at addresses above 256GB. When adjusted, segkpm_base must
1263 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1265 * In the general case (>256GB), we use (4 * physmem) for the
1266 * kernel's virtual addresses, which is divided approximately
1267 * as follows:
1268 * - 1 * physmem for segkpm
1269 * - 1.5 * physmem for segzio
1270 * - 1.5 * physmem for heap
1271 * Total: 4.0 * physmem
1273 * Note that the segzio and heap sizes are more than physmem so that
1274 * VA fragmentation does not prevent either of them from being
1275 * able to use nearly all of physmem. The value of 1.5x is determined
1276 * experimentally and may need to change if the workload changes.
1278 if (physmax + 1 > mmu_btop(TERABYTE / 4) ||
1279 plat_dr_physmax > mmu_btop(TERABYTE / 4)) {
1280 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1282 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1283 kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1287 * This is what actually controls the KVA : UVA split.
1288 * The kernel uses high VA, and this is lowering the
1289 * boundary, thus increasing the amount of VA for the kernel.
1290 * This gives the kernel 4 * (amount of physical memory) VA.
1292 * The maximum VA is UINT64_MAX and we are using
1293 * 64-bit 2's complement math, so e.g. if you have 512GB
1294 * of memory, segkpm_base = -(4 * 512GB) == -2TB ==
1295 * UINT64_MAX - 2TB (approximately). So the kernel's
1296 * VA is [UINT64_MAX-2TB to UINT64_MAX].
1298 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount),
1299 KERNEL_REDZONE_SIZE));
1301 /* make sure we leave some space for user apps above hole */
1302 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1303 if (segkpm_base > SEGKPM_BASE)
1304 segkpm_base = SEGKPM_BASE;
1305 PRM_DEBUG(segkpm_base);
1307 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1308 if (valloc_base < segkpm_base)
1309 panic("not enough kernel VA to support memory size");
1310 PRM_DEBUG(valloc_base);
1312 #else /* __i386 */
1313 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1314 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1315 PRM_DEBUG(valloc_base);
1316 #endif /* __i386 */
1319 * do all the initial allocations
1321 perform_allocations();
1324 * Build phys_install and phys_avail in kernel memspace.
1325 * - phys_install should be all memory in the system.
1326 * - phys_avail is phys_install minus any memory mapped before this
1327 * point above KERNEL_TEXT.
1329 current = phys_install = memlist;
1330 copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1331 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1332 panic("physinstalled was too big!");
1333 if (prom_debug)
1334 print_memlist("phys_install", phys_install);
1336 phys_avail = current;
1337 PRM_POINT("Building phys_avail:\n");
1338 copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1339 avail_filter);
1340 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1341 panic("physavail was too big!");
1342 if (prom_debug)
1343 print_memlist("phys_avail", phys_avail);
1344 #ifndef __xpv
1346 * Free unused memlist items, which may be used by memory DR driver
1347 * at runtime.
1349 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1350 memlist_free_block((caddr_t)current,
1351 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1353 #endif
1356 * Build bios reserved memspace
1358 current = bios_rsvd;
1359 copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1360 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1361 panic("bios_rsvd was too big!");
1362 if (prom_debug)
1363 print_memlist("bios_rsvd", bios_rsvd);
1364 #ifndef __xpv
1366 * Free unused memlist items, which may be used by memory DR driver
1367 * at runtime.
1369 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1370 memlist_free_block((caddr_t)current,
1371 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1373 #endif
1376 * setup page coloring
1378 page_coloring_setup(pagecolor_mem);
1379 page_lock_init(); /* currently a no-op */
1382 * free page list counters
1384 (void) page_ctrs_alloc(page_ctrs_mem);
1387 * Size the pcf array based on the number of cpus in the box at
1388 * boot time.
1391 pcf_init();
1394 * Initialize the page structures from the memory lists.
1396 availrmem_initial = availrmem = freemem = 0;
1397 PRM_POINT("Calling kphysm_init()...");
1398 npages = kphysm_init(pp_base, npages);
1399 PRM_POINT("kphysm_init() done");
1400 PRM_DEBUG(npages);
1402 init_debug_info();
1405 * Now that page_t's have been initialized, remove all the
1406 * initial allocation pages from the kernel free page lists.
1408 boot_mapin((caddr_t)valloc_base, valloc_sz);
1409 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1410 PRM_POINT("startup_memlist() done");
1412 PRM_DEBUG(valloc_sz);
1414 #if defined(__amd64)
1415 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1416 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1417 extern size_t textrepl_size_thresh;
1418 textrepl_size_thresh = (16 << 20) - 1;
1420 #endif
1424 * Layout the kernel's part of address space and initialize kmem allocator.
1426 static void
1427 startup_kmem(void)
1429 extern void page_set_colorequiv_arr(void);
1430 #if !defined(__xpv)
1431 extern uint64_t kpti_kbase;
1432 #endif
1434 PRM_POINT("startup_kmem() starting...");
1436 #if defined(__amd64)
1437 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1438 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1439 "systems.");
1440 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1441 core_base = (uintptr_t)COREHEAP_BASE;
1442 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1443 #else /* __i386 */
1445 * We configure kernelbase based on:
1447 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1448 * KERNELBASE_MAX. we large page align eprom_kernelbase
1450 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1451 * On large memory systems we must lower kernelbase to allow
1452 * enough room for page_t's for all of memory.
1454 * The value set here, might be changed a little later.
1456 if (eprom_kernelbase) {
1457 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1458 if (kernelbase > KERNELBASE_MAX)
1459 kernelbase = KERNELBASE_MAX;
1460 } else {
1461 kernelbase = (uintptr_t)KERNELBASE;
1462 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1464 ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1465 core_base = valloc_base;
1466 core_size = 0;
1467 #endif /* __i386 */
1469 PRM_DEBUG(core_base);
1470 PRM_DEBUG(core_size);
1471 PRM_DEBUG(kernelbase);
1473 #if defined(__i386)
1474 segkp_fromheap = 1;
1475 #endif /* __i386 */
1477 ekernelheap = (char *)core_base;
1478 PRM_DEBUG(ekernelheap);
1481 * Now that we know the real value of kernelbase,
1482 * update variables that were initialized with a value of
1483 * KERNELBASE (in common/conf/param.c).
1485 * XXX The problem with this sort of hackery is that the
1486 * compiler just may feel like putting the const declarations
1487 * (in param.c) into the .text section. Perhaps they should
1488 * just be declared as variables there?
1491 *(uintptr_t *)&_kernelbase = kernelbase;
1492 *(uintptr_t *)&_userlimit = kernelbase;
1493 #if defined(__amd64)
1494 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1495 #if !defined(__xpv)
1496 kpti_kbase = kernelbase;
1497 #endif
1498 #else
1499 *(uintptr_t *)&_userlimit32 = _userlimit;
1500 #endif
1501 PRM_DEBUG(_kernelbase);
1502 PRM_DEBUG(_userlimit);
1503 PRM_DEBUG(_userlimit32);
1505 /* We have to re-do this now that we've modified _userlimit. */
1506 mmu_calc_user_slots();
1508 layout_kernel_va();
1510 #if defined(__i386)
1512 * If segmap is too large we can push the bottom of the kernel heap
1513 * higher than the base. Or worse, it could exceed the top of the
1514 * VA space entirely, causing it to wrap around.
1516 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1517 panic("too little address space available for kernelheap,"
1518 " use eeprom for lower kernelbase or smaller segmapsize");
1519 #endif /* __i386 */
1522 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1524 kernelheap_init(kernelheap, ekernelheap,
1525 kernelheap + MMU_PAGESIZE,
1526 (void *)core_base, (void *)(core_base + core_size));
1528 #if defined(__xpv)
1530 * Link pending events struct into cpu struct
1532 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1533 #endif
1535 * Initialize kernel memory allocator.
1537 kmem_init();
1540 * Factor in colorequiv to check additional 'equivalent' bins
1542 page_set_colorequiv_arr();
1545 * print this out early so that we know what's going on
1547 print_x86_featureset(x86_featureset);
1550 * Initialize bp_mapin().
1552 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1555 * orig_npages is non-zero if physmem has been configured for less
1556 * than the available memory.
1558 if (orig_npages) {
1559 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1560 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1561 npages, orig_npages);
1563 #if defined(__i386)
1564 if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1565 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1566 "System using 0x%lx",
1567 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1568 #endif
1570 #ifdef KERNELBASE_ABI_MIN
1571 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1572 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1573 "i386 ABI compliant.", (uintptr_t)kernelbase);
1575 #endif
1577 #ifndef __xpv
1578 if (plat_dr_support_memory()) {
1579 mem_config_init();
1581 #else /* __xpv */
1583 * Some of the xen start information has to be relocated up
1584 * into the kernel's permanent address space.
1586 PRM_POINT("calling xen_relocate_start_info()");
1587 xen_relocate_start_info();
1588 PRM_POINT("xen_relocate_start_info() done");
1591 * (Update the vcpu pointer in our cpu structure to point into
1592 * the relocated shared info.)
1594 CPU->cpu_m.mcpu_vcpu_info =
1595 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1596 #endif /* __xpv */
1598 PRM_POINT("startup_kmem() done");
1601 #ifndef __xpv
1603 * If we have detected that we are running in an HVM environment, we need
1604 * to prepend the PV driver directory to the module search path.
1606 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1607 static void
1608 update_default_path()
1610 char *current, *newpath;
1611 int newlen;
1614 * We are about to resync with krtld. krtld will reset its
1615 * internal module search path iff Solaris has set default_path.
1616 * We want to be sure we're prepending this new directory to the
1617 * right search path.
1619 current = (default_path == NULL) ? kobj_module_path : default_path;
1621 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1622 newpath = kmem_alloc(newlen, KM_SLEEP);
1623 (void) strcpy(newpath, HVM_MOD_DIR);
1624 (void) strcat(newpath, " ");
1625 (void) strcat(newpath, current);
1627 default_path = newpath;
1629 #endif
1631 static void
1632 startup_modules(void)
1634 int cnt;
1635 extern void prom_setup(void);
1636 int32_t v, h;
1637 char d[11];
1638 char *cp;
1639 cmi_hdl_t hdl;
1641 PRM_POINT("startup_modules() starting...");
1643 #ifndef __xpv
1645 * Initialize ten-micro second timer so that drivers will
1646 * not get short changed in their init phase. This was
1647 * not getting called until clkinit which, on fast cpu's
1648 * caused the drv_usecwait to be way too short.
1650 microfind();
1652 if ((get_hwenv() & HW_XEN_HVM) != 0)
1653 update_default_path();
1654 #endif
1657 * Read the GMT lag from /etc/rtc_config.
1659 sgmtl(process_rtc_config_file());
1662 * Calculate default settings of system parameters based upon
1663 * maxusers, yet allow to be overridden via the /etc/system file.
1665 param_calc(0);
1667 mod_setup();
1670 * Initialize system parameters.
1672 param_init();
1675 * Initialize the default brands
1677 brand_init();
1680 * maxmem is the amount of physical memory we're playing with.
1682 maxmem = physmem;
1685 * Initialize segment management stuff.
1687 seg_init();
1689 if (modload("fs", "specfs") == -1)
1690 halt("Can't load specfs");
1692 if (modload("fs", "devfs") == -1)
1693 halt("Can't load devfs");
1695 if (modload("fs", "dev") == -1)
1696 halt("Can't load dev");
1698 if (modload("fs", "procfs") == -1)
1699 halt("Can't load procfs");
1701 (void) modloadonly("sys", "lbl_edition");
1703 dispinit();
1705 /* Read cluster configuration data. */
1706 clconf_init();
1708 #if defined(__xpv)
1709 (void) ec_init();
1710 gnttab_init();
1711 (void) xs_early_init();
1712 #endif /* __xpv */
1715 * Create a kernel device tree. First, create rootnex and
1716 * then invoke bus specific code to probe devices.
1718 setup_ddi();
1720 #ifdef __xpv
1721 if (DOMAIN_IS_INITDOMAIN(xen_info))
1722 #endif
1724 id_t smid;
1725 smbios_system_t smsys;
1726 smbios_info_t sminfo;
1727 char *mfg;
1729 * Load the System Management BIOS into the global ksmbios
1730 * handle, if an SMBIOS is present on this system.
1731 * Also set "si-hw-provider" property, if not already set.
1733 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1734 if (ksmbios != NULL &&
1735 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1736 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1737 mfg = (char *)sminfo.smbi_manufacturer;
1738 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1739 extern char hw_provider[];
1740 int i;
1741 for (i = 0; i < SYS_NMLN; i++) {
1742 if (isprint(mfg[i]))
1743 hw_provider[i] = mfg[i];
1744 else {
1745 hw_provider[i] = '\0';
1746 break;
1749 hw_provider[SYS_NMLN - 1] = '\0';
1756 * Originally clconf_init() apparently needed the hostid. But
1757 * this no longer appears to be true - it uses its own nodeid.
1758 * By placing the hostid logic here, we are able to make use of
1759 * the SMBIOS UUID.
1761 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1762 cmn_err(CE_WARN, "Unable to set hostid");
1763 } else {
1764 for (v = h, cnt = 0; cnt < 10; cnt++) {
1765 d[cnt] = (char)(v % 10);
1766 v /= 10;
1767 if (v == 0)
1768 break;
1770 for (cp = hw_serial; cnt >= 0; cnt--)
1771 *cp++ = d[cnt] + '0';
1772 *cp = 0;
1776 * Set up the CPU module subsystem for the boot cpu in the native
1777 * case, and all physical cpu resource in the xpv dom0 case.
1778 * Modifies the device tree, so this must be done after
1779 * setup_ddi().
1781 #ifdef __xpv
1783 * If paravirtualized and on dom0 then we initialize all physical
1784 * cpu handles now; if paravirtualized on a domU then do not
1785 * initialize.
1787 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1788 xen_mc_lcpu_cookie_t cpi;
1790 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1791 cpi = xen_physcpu_next(cpi)) {
1792 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1793 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1794 xen_physcpu_strandid(cpi))) != NULL &&
1795 is_x86_feature(x86_featureset, X86FSET_MCA))
1796 cmi_mca_init(hdl);
1799 #else
1801 * Initialize a handle for the boot cpu - others will initialize
1802 * as they startup.
1804 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1805 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1806 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1807 cmi_mca_init(hdl);
1808 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1810 #endif /* __xpv */
1813 * Fake a prom tree such that /dev/openprom continues to work
1815 PRM_POINT("startup_modules: calling prom_setup...");
1816 prom_setup();
1817 PRM_POINT("startup_modules: done");
1820 * Load all platform specific modules
1822 PRM_POINT("startup_modules: calling psm_modload...");
1823 psm_modload();
1825 PRM_POINT("startup_modules() done");
1829 * claim a "setaside" boot page for use in the kernel
1831 page_t *
1832 boot_claim_page(pfn_t pfn)
1834 page_t *pp;
1836 pp = page_numtopp_nolock(pfn);
1837 ASSERT(pp != NULL);
1839 if (PP_ISBOOTPAGES(pp)) {
1840 if (pp->p_next != NULL)
1841 pp->p_next->p_prev = pp->p_prev;
1842 if (pp->p_prev == NULL)
1843 bootpages = pp->p_next;
1844 else
1845 pp->p_prev->p_next = pp->p_next;
1846 } else {
1848 * htable_attach() expects a base pagesize page
1850 if (pp->p_szc != 0)
1851 page_boot_demote(pp);
1852 pp = page_numtopp(pfn, SE_EXCL);
1854 return (pp);
1858 * Walk through the pagetables looking for pages mapped in by boot. If the
1859 * setaside flag is set the pages are expected to be returned to the
1860 * kernel later in boot, so we add them to the bootpages list.
1862 static void
1863 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1865 uintptr_t va = low;
1866 size_t len;
1867 uint_t prot;
1868 pfn_t pfn;
1869 page_t *pp;
1870 pgcnt_t boot_protect_cnt = 0;
1872 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1873 if (va + len >= high)
1874 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1875 "legal range.", len, (void *)va);
1877 while (len > 0) {
1878 pp = page_numtopp_alloc(pfn);
1879 if (pp != NULL) {
1880 if (setaside == 0)
1881 panic("Unexpected mapping by boot. "
1882 "addr=%p pfn=%lx\n",
1883 (void *)va, pfn);
1885 pp->p_next = bootpages;
1886 pp->p_prev = NULL;
1887 PP_SETBOOTPAGES(pp);
1888 if (bootpages != NULL) {
1889 bootpages->p_prev = pp;
1891 bootpages = pp;
1892 ++boot_protect_cnt;
1895 ++pfn;
1896 len -= MMU_PAGESIZE;
1897 va += MMU_PAGESIZE;
1900 PRM_DEBUG(boot_protect_cnt);
1906 static void
1907 layout_kernel_va(void)
1909 PRM_POINT("layout_kernel_va() starting...");
1911 * Establish the final size of the kernel's heap, size of segmap,
1912 * segkp, etc.
1915 #if defined(__amd64)
1917 kpm_vbase = (caddr_t)segkpm_base;
1918 if (physmax + 1 < plat_dr_physmax) {
1919 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1920 } else {
1921 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1923 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1924 panic("not enough room for kpm!");
1925 PRM_DEBUG(kpm_size);
1926 PRM_DEBUG(kpm_vbase);
1929 * By default we create a seg_kp in 64 bit kernels, it's a little
1930 * faster to access than embedding it in the heap.
1932 segkp_base = (caddr_t)valloc_base + valloc_sz;
1933 if (!segkp_fromheap) {
1934 size_t sz = mmu_ptob(segkpsize);
1937 * determine size of segkp
1939 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1940 sz = SEGKPDEFSIZE;
1941 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1942 "segkpsize has been reset to %ld pages",
1943 mmu_btop(sz));
1945 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1947 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1949 PRM_DEBUG(segkp_base);
1950 PRM_DEBUG(segkpsize);
1953 * segzio is used for ZFS cached data. It uses a distinct VA
1954 * segment (from kernel heap) so that we can easily tell not to
1955 * include it in kernel crash dumps on 64 bit kernels. The trick is
1956 * to give it lots of VA, but not constrain the kernel heap.
1957 * We can use 1.5x physmem for segzio, leaving approximately
1958 * another 1.5x physmem for heap. See also the comment in
1959 * startup_memlist().
1961 segzio_base = segkp_base + mmu_ptob(segkpsize);
1962 if (segzio_fromheap) {
1963 segziosize = 0;
1964 } else {
1965 size_t physmem_size = mmu_ptob(physmem);
1966 size_t size = (segziosize == 0) ?
1967 physmem_size * 3 / 2 : mmu_ptob(segziosize);
1969 if (size < SEGZIOMINSIZE)
1970 size = SEGZIOMINSIZE;
1971 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1973 PRM_DEBUG(segziosize);
1974 PRM_DEBUG(segzio_base);
1977 * Put the range of VA for device mappings next, kmdb knows to not
1978 * grep in this range of addresses.
1980 toxic_addr =
1981 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1982 PRM_DEBUG(toxic_addr);
1983 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1984 #else /* __i386 */
1985 segmap_start = ROUND_UP_LPAGE(kernelbase);
1986 #endif /* __i386 */
1987 PRM_DEBUG(segmap_start);
1990 * Users can change segmapsize through eeprom. If the variable
1991 * is tuned through eeprom, there is no upper bound on the
1992 * size of segmap.
1994 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1996 #if defined(__i386)
1998 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1999 * the bottom of the kernel's address range. Set aside space for a
2000 * small red zone just below the start of segmap.
2002 segmap_start += KERNEL_REDZONE_SIZE;
2003 segmapsize -= KERNEL_REDZONE_SIZE;
2004 #endif
2006 PRM_DEBUG(segmap_start);
2007 PRM_DEBUG(segmapsize);
2008 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
2009 PRM_DEBUG(kernelheap);
2010 PRM_POINT("layout_kernel_va() done...");
2014 * Finish initializing the VM system, now that we are no longer
2015 * relying on the boot time memory allocators.
2017 static void
2018 startup_vm(void)
2020 struct segmap_crargs a;
2022 extern int use_brk_lpg, use_stk_lpg;
2024 PRM_POINT("startup_vm() starting...");
2027 * Initialize the hat layer.
2029 hat_init();
2032 * Do final allocations of HAT data structures that need to
2033 * be allocated before quiescing the boot loader.
2035 PRM_POINT("Calling hat_kern_alloc()...");
2036 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
2037 PRM_POINT("hat_kern_alloc() done");
2039 #ifndef __xpv
2041 * Setup Page Attribute Table
2043 pat_sync();
2044 #endif
2047 * The next two loops are done in distinct steps in order
2048 * to be sure that any page that is doubly mapped (both above
2049 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
2050 * Note this may never happen, but it might someday.
2052 bootpages = NULL;
2053 PRM_POINT("Protecting boot pages");
2056 * Protect any pages mapped above KERNEL_TEXT that somehow have
2057 * page_t's. This can only happen if something weird allocated
2058 * in this range (like kadb/kmdb).
2060 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
2063 * Before we can take over memory allocation/mapping from the boot
2064 * loader we must remove from our free page lists any boot allocated
2065 * pages that stay mapped until release_bootstrap().
2067 protect_boot_range(0, kernelbase, 1);
2071 * Switch to running on regular HAT (not boot_mmu)
2073 PRM_POINT("Calling hat_kern_setup()...");
2074 hat_kern_setup();
2077 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
2079 bop_no_more_mem();
2081 PRM_POINT("hat_kern_setup() done");
2083 hat_cpu_online(CPU);
2086 * Initialize VM system
2088 PRM_POINT("Calling kvm_init()...");
2089 kvm_init();
2090 PRM_POINT("kvm_init() done");
2093 * Tell kmdb that the VM system is now working
2095 if (boothowto & RB_DEBUG)
2096 kdi_dvec_vmready();
2098 #if defined(__xpv)
2100 * Populate the I/O pool on domain 0
2102 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2103 extern long populate_io_pool(void);
2104 long init_io_pool_cnt;
2106 PRM_POINT("Populating reserve I/O page pool");
2107 init_io_pool_cnt = populate_io_pool();
2108 PRM_DEBUG(init_io_pool_cnt);
2110 #endif
2112 * Mangle the brand string etc.
2114 cpuid_pass3(CPU);
2116 #if defined(__amd64)
2119 * Create the device arena for toxic (to dtrace/kmdb) mappings.
2121 device_arena = vmem_create("device", (void *)toxic_addr,
2122 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
2124 #else /* __i386 */
2127 * allocate the bit map that tracks toxic pages
2129 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2130 PRM_DEBUG(toxic_bit_map_len);
2131 toxic_bit_map =
2132 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2133 ASSERT(toxic_bit_map != NULL);
2134 PRM_DEBUG(toxic_bit_map);
2136 #endif /* __i386 */
2140 * Now that we've got more VA, as well as the ability to allocate from
2141 * it, tell the debugger.
2143 if (boothowto & RB_DEBUG)
2144 kdi_dvec_memavail();
2146 #if !defined(__xpv)
2148 * Map page pfn=0 for drivers, such as kd, that need to pick up
2149 * parameters left there by controllers/BIOS.
2151 PRM_POINT("setup up p0_va");
2152 p0_va = i86devmap(0, 1, PROT_READ);
2153 PRM_DEBUG(p0_va);
2154 #endif
2156 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2157 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2160 * disable automatic large pages for small memory systems or
2161 * when the disable flag is set.
2163 * Do not yet consider page sizes larger than 2m/4m.
2165 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2166 max_uheap_lpsize = LEVEL_SIZE(1);
2167 max_ustack_lpsize = LEVEL_SIZE(1);
2168 max_privmap_lpsize = LEVEL_SIZE(1);
2169 max_uidata_lpsize = LEVEL_SIZE(1);
2170 max_utext_lpsize = LEVEL_SIZE(1);
2171 max_shm_lpsize = LEVEL_SIZE(1);
2173 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2174 auto_lpg_disable) {
2175 use_brk_lpg = 0;
2176 use_stk_lpg = 0;
2178 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2180 PRM_POINT("Calling hat_init_finish()...");
2181 hat_init_finish();
2182 PRM_POINT("hat_init_finish() done");
2185 * Initialize the segkp segment type.
2187 rw_enter(&kas.a_lock, RW_WRITER);
2188 PRM_POINT("Attaching segkp");
2189 if (segkp_fromheap) {
2190 segkp->s_as = &kas;
2191 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2192 segkp) < 0) {
2193 panic("startup: cannot attach segkp");
2194 /*NOTREACHED*/
2196 PRM_POINT("Doing segkp_create()");
2197 if (segkp_create(segkp) != 0) {
2198 panic("startup: segkp_create failed");
2199 /*NOTREACHED*/
2201 PRM_DEBUG(segkp);
2202 rw_exit(&kas.a_lock);
2205 * kpm segment
2207 segmap_kpm = 0;
2208 if (kpm_desired)
2209 kpm_init();
2212 * Now create segmap segment.
2214 rw_enter(&kas.a_lock, RW_WRITER);
2215 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2216 panic("cannot attach segmap");
2217 /*NOTREACHED*/
2219 PRM_DEBUG(segmap);
2221 a.prot = PROT_READ | PROT_WRITE;
2222 a.shmsize = 0;
2223 a.nfreelist = segmapfreelists;
2225 if (segmap_create(segmap, (caddr_t)&a) != 0)
2226 panic("segmap_create segmap");
2227 rw_exit(&kas.a_lock);
2229 setup_vaddr_for_ppcopy(CPU);
2231 segdev_init();
2232 #if defined(__xpv)
2233 if (DOMAIN_IS_INITDOMAIN(xen_info))
2234 #endif
2235 pmem_init();
2237 PRM_POINT("startup_vm() done");
2241 * Load a tod module for the non-standard tod part found on this system.
2243 static void
2244 load_tod_module(char *todmod)
2246 if (modload("tod", todmod) == -1)
2247 halt("Can't load TOD module");
2250 static void
2251 startup_end(void)
2253 int i;
2254 extern void setx86isalist(void);
2255 extern void cpu_event_init(void);
2257 PRM_POINT("startup_end() starting...");
2260 * Perform tasks that get done after most of the VM
2261 * initialization has been done but before the clock
2262 * and other devices get started.
2264 kern_setup1();
2267 * Perform CPC initialization for this CPU.
2269 kcpc_hw_init(CPU);
2272 * Initialize cpu event framework.
2274 cpu_event_init();
2276 #if defined(OPTERON_WORKAROUND_6323525)
2277 if (opteron_workaround_6323525)
2278 patch_workaround_6323525();
2279 #endif
2281 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2282 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2284 if (tod_module_name != NULL) {
2285 PRM_POINT("load_tod_module()");
2286 load_tod_module(tod_module_name);
2289 #if defined(__xpv)
2291 * Forceload interposing TOD module for the hypervisor.
2293 PRM_POINT("load_tod_module()");
2294 load_tod_module("xpvtod");
2295 #endif
2298 * Configure the system.
2300 PRM_POINT("Calling configure()...");
2301 configure(); /* set up devices */
2302 PRM_POINT("configure() done");
2305 * We can now setup for XSAVE because fpu_probe is done in configure().
2307 if (fp_save_mech == FP_XSAVE) {
2308 xsave_setup_msr(CPU);
2312 * Set the isa_list string to the defined instruction sets we
2313 * support.
2315 setx86isalist();
2316 cpu_intr_alloc(CPU, NINTR_THREADS);
2317 psm_install();
2320 * We're done with bootops. We don't unmap the bootstrap yet because
2321 * we're still using bootsvcs.
2323 PRM_POINT("NULLing out bootops");
2324 *bootopsp = (struct bootops *)NULL;
2325 bootops = (struct bootops *)NULL;
2327 #if defined(__xpv)
2328 ec_init_debug_irq();
2329 xs_domu_init();
2330 #endif
2332 #if !defined(__xpv)
2334 * Intel IOMMU has been setup/initialized in ddi_impl.c
2335 * Start it up now.
2337 immu_startup();
2340 * Now that we're no longer going to drop into real mode for a BIOS call
2341 * via bootops, we can enable PCID (which requires CR0.PG).
2343 enable_pcid();
2344 #endif
2346 PRM_POINT("Enabling interrupts");
2347 (*picinitf)();
2348 sti();
2349 #if defined(__xpv)
2350 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2351 xen_late_startup();
2352 #endif
2354 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2355 "softlevel1", NULL, NULL); /* XXX to be moved later */
2358 * Register software interrupt handlers for ddi_periodic_add(9F).
2359 * Software interrupts up to the level 10 are supported.
2361 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2362 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2363 (avfunc)ddi_periodic_softintr, "ddi_periodic",
2364 (caddr_t)(uintptr_t)i, NULL);
2367 #if !defined(__xpv)
2368 if (modload("drv", "amd_iommu") < 0) {
2369 PRM_POINT("No AMD IOMMU present\n");
2370 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2371 "amd_iommu")) == NULL) {
2372 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2374 #endif
2375 post_startup_cpu_fixups();
2377 PRM_POINT("startup_end() done");
2381 * Don't remove the following 2 variables. They are necessary
2382 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2384 char *_hs1107 = hw_serial;
2385 ulong_t _bdhs34;
2387 void
2388 post_startup(void)
2390 extern void cpupm_init(cpu_t *);
2391 extern void cpu_event_init_cpu(cpu_t *);
2394 * Set the system wide, processor-specific flags to be passed
2395 * to userland via the aux vector for performance hints and
2396 * instruction set extensions.
2398 bind_hwcap();
2400 #ifdef __xpv
2401 if (DOMAIN_IS_INITDOMAIN(xen_info))
2402 #endif
2404 #if defined(__xpv)
2405 xpv_panic_init();
2406 #else
2408 * Startup the memory scrubber.
2409 * XXPV This should be running somewhere ..
2411 if ((get_hwenv() & HW_VIRTUAL) == 0)
2412 memscrub_init();
2413 #endif
2417 * Complete CPU module initialization
2419 cmi_post_startup();
2422 * Perform forceloading tasks for /etc/system.
2424 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2427 * ON4.0: Force /proc module in until clock interrupt handle fixed
2428 * ON4.0: This must be fixed or restated in /etc/systems.
2430 (void) modload("fs", "procfs");
2432 (void) i_ddi_attach_hw_nodes("pit_beep");
2434 #if defined(__i386)
2436 * Check for required functional Floating Point hardware,
2437 * unless FP hardware explicitly disabled.
2439 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2440 halt("No working FP hardware found");
2441 #endif
2443 maxmem = freemem;
2445 cpu_event_init_cpu(CPU);
2446 cpupm_init(CPU);
2447 (void) mach_cpu_create_device_node(CPU, NULL);
2449 pg_init();
2452 static int
2453 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2455 return ((pp->p_pagenum >= btop(low_addr)) &&
2456 (pp->p_pagenum < btopr(high_addr)));
2459 static int
2460 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2462 uint_t i;
2464 for (i = 0; modranges[i].phys != 0; i++) {
2465 if (pp_in_range(pp, modranges[i].phys,
2466 modranges[i].phys + modranges[i].size))
2467 return (1);
2470 return (0);
2473 void
2474 release_bootstrap(void)
2476 int root_is_ramdisk;
2477 page_t *pp;
2478 extern void kobj_boot_unmountroot(void);
2479 extern dev_t rootdev;
2480 uint_t i;
2481 char propname[32];
2482 rd_existing_t *modranges;
2483 #if !defined(__xpv)
2484 pfn_t pfn;
2485 #endif
2488 * Save the bootfs module ranges so that we can reserve them below
2489 * for the real bootfs.
2491 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2492 KM_SLEEP);
2493 for (i = 0; ; i++) {
2494 uint64_t start, size;
2496 modranges[i].phys = 0;
2498 (void) snprintf(propname, sizeof (propname),
2499 "module-addr-%u", i);
2500 if (do_bsys_getproplen(NULL, propname) <= 0)
2501 break;
2502 (void) do_bsys_getprop(NULL, propname, &start);
2504 (void) snprintf(propname, sizeof (propname),
2505 "module-size-%u", i);
2506 if (do_bsys_getproplen(NULL, propname) <= 0)
2507 break;
2508 (void) do_bsys_getprop(NULL, propname, &size);
2510 modranges[i].phys = start;
2511 modranges[i].size = size;
2514 /* unmount boot ramdisk and release kmem usage */
2515 kobj_boot_unmountroot();
2518 * We're finished using the boot loader so free its pages.
2520 PRM_POINT("Unmapping lower boot pages");
2522 clear_boot_mappings(0, _userlimit);
2524 postbootkernelbase = kernelbase;
2527 * If root isn't on ramdisk, destroy the hardcoded
2528 * ramdisk node now and release the memory. Else,
2529 * ramdisk memory is kept in rd_pages.
2531 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2532 if (!root_is_ramdisk) {
2533 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2534 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2535 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2536 (void) ddi_remove_child(dip, 0);
2539 PRM_POINT("Releasing boot pages");
2540 while (bootpages) {
2541 extern uint64_t ramdisk_start, ramdisk_end;
2542 pp = bootpages;
2543 bootpages = pp->p_next;
2546 /* Keep pages for the lower 64K */
2547 if (pp_in_range(pp, 0, 0x40000)) {
2548 pp->p_next = lower_pages;
2549 lower_pages = pp;
2550 lower_pages_count++;
2551 continue;
2554 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2555 ramdisk_end) || pp_in_module(pp, modranges)) {
2556 pp->p_next = rd_pages;
2557 rd_pages = pp;
2558 continue;
2560 pp->p_next = (struct page *)0;
2561 pp->p_prev = (struct page *)0;
2562 PP_CLRBOOTPAGES(pp);
2563 page_free(pp, 1);
2565 PRM_POINT("Boot pages released");
2567 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2569 #if !defined(__xpv)
2570 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2572 * Find 1 page below 1 MB so that other processors can boot up or
2573 * so that any processor can resume.
2574 * Make sure it has a kernel VA as well as a 1:1 mapping.
2575 * We should have just free'd one up.
2579 * 0x10 pages is 64K. Leave the bottom 64K alone
2580 * for BIOS.
2582 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2583 if (page_numtopp_alloc(pfn) == NULL)
2584 continue;
2585 rm_platter_va = i86devmap(pfn, 1,
2586 PROT_READ | PROT_WRITE | PROT_EXEC);
2587 rm_platter_pa = ptob(pfn);
2588 break;
2590 if (pfn == btop(1*1024*1024) && use_mp)
2591 panic("No page below 1M available for starting "
2592 "other processors or for resuming from system-suspend");
2593 #endif /* !__xpv */
2597 * Initialize the platform-specific parts of a page_t.
2599 void
2600 add_physmem_cb(page_t *pp, pfn_t pnum)
2602 pp->p_pagenum = pnum;
2603 pp->p_mapping = NULL;
2604 pp->p_embed = 0;
2605 pp->p_share = 0;
2606 pp->p_mlentry = 0;
2610 * kphysm_init() initializes physical memory.
2612 static pgcnt_t
2613 kphysm_init(
2614 page_t *pp,
2615 pgcnt_t npages)
2617 struct memlist *pmem;
2618 struct memseg *cur_memseg;
2619 pfn_t base_pfn;
2620 pfn_t end_pfn;
2621 pgcnt_t num;
2622 pgcnt_t pages_done = 0;
2623 uint64_t addr;
2624 uint64_t size;
2625 extern pfn_t ddiphysmin;
2626 extern int mnode_xwa;
2627 int ms = 0, me = 0;
2629 ASSERT(page_hash != NULL && page_hashsz != 0);
2631 cur_memseg = memseg_base;
2632 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2634 * In a 32 bit kernel can't use higher memory if we're
2635 * not booting in PAE mode. This check takes care of that.
2637 addr = pmem->ml_address;
2638 size = pmem->ml_size;
2639 if (btop(addr) > physmax)
2640 continue;
2643 * align addr and size - they may not be at page boundaries
2645 if ((addr & MMU_PAGEOFFSET) != 0) {
2646 addr += MMU_PAGEOFFSET;
2647 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2648 size -= addr - pmem->ml_address;
2651 /* only process pages below or equal to physmax */
2652 if ((btop(addr + size) - 1) > physmax)
2653 size = ptob(physmax - btop(addr) + 1);
2655 num = btop(size);
2656 if (num == 0)
2657 continue;
2659 if (num > npages)
2660 num = npages;
2662 npages -= num;
2663 pages_done += num;
2664 base_pfn = btop(addr);
2666 if (prom_debug)
2667 prom_printf("MEMSEG addr=0x%" PRIx64
2668 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2669 addr, num, base_pfn, base_pfn + num);
2672 * Ignore pages below ddiphysmin to simplify ddi memory
2673 * allocation with non-zero addr_lo requests.
2675 if (base_pfn < ddiphysmin) {
2676 if (base_pfn + num <= ddiphysmin)
2677 continue;
2678 pp += (ddiphysmin - base_pfn);
2679 num -= (ddiphysmin - base_pfn);
2680 base_pfn = ddiphysmin;
2684 * mnode_xwa is greater than 1 when large pages regions can
2685 * cross memory node boundaries. To prevent the formation
2686 * of these large pages, configure the memsegs based on the
2687 * memory node ranges which had been made non-contiguous.
2689 if (mnode_xwa > 1) {
2691 end_pfn = base_pfn + num - 1;
2692 ms = PFN_2_MEM_NODE(base_pfn);
2693 me = PFN_2_MEM_NODE(end_pfn);
2695 if (ms != me) {
2697 * current range spans more than 1 memory node.
2698 * Set num to only the pfn range in the start
2699 * memory node.
2701 num = mem_node_config[ms].physmax - base_pfn
2702 + 1;
2703 ASSERT(end_pfn > mem_node_config[ms].physmax);
2707 for (;;) {
2709 * Build the memsegs entry
2711 cur_memseg->pages = pp;
2712 cur_memseg->epages = pp + num;
2713 cur_memseg->pages_base = base_pfn;
2714 cur_memseg->pages_end = base_pfn + num;
2717 * Insert into memseg list in decreasing pfn range
2718 * order. Low memory is typically more fragmented such
2719 * that this ordering keeps the larger ranges at the
2720 * front of the list for code that searches memseg.
2721 * This ASSERTS that the memsegs coming in from boot
2722 * are in increasing physical address order and not
2723 * contiguous.
2725 if (memsegs != NULL) {
2726 ASSERT(cur_memseg->pages_base >=
2727 memsegs->pages_end);
2728 cur_memseg->next = memsegs;
2730 memsegs = cur_memseg;
2733 * add_physmem() initializes the PSM part of the page
2734 * struct by calling the PSM back with add_physmem_cb().
2735 * In addition it coalesces pages into larger pages as
2736 * it initializes them.
2738 add_physmem(pp, num, base_pfn);
2739 cur_memseg++;
2740 availrmem_initial += num;
2741 availrmem += num;
2743 pp += num;
2744 if (ms >= me)
2745 break;
2747 /* process next memory node range */
2748 ms++;
2749 base_pfn = mem_node_config[ms].physbase;
2750 num = MIN(mem_node_config[ms].physmax,
2751 end_pfn) - base_pfn + 1;
2755 PRM_DEBUG(availrmem_initial);
2756 PRM_DEBUG(availrmem);
2757 PRM_DEBUG(freemem);
2758 build_pfn_hash();
2759 return (pages_done);
2763 * Kernel VM initialization.
2765 static void
2766 kvm_init(void)
2768 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2771 * Put the kernel segments in kernel address space.
2773 rw_enter(&kas.a_lock, RW_WRITER);
2774 as_avlinit(&kas);
2776 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2777 (void) segkmem_create(&ktextseg);
2779 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2780 (void) segkmem_create(&kvalloc);
2782 (void) seg_attach(&kas, kernelheap,
2783 ekernelheap - kernelheap, &kvseg);
2784 (void) segkmem_create(&kvseg);
2786 if (core_size > 0) {
2787 PRM_POINT("attaching kvseg_core");
2788 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2789 &kvseg_core);
2790 (void) segkmem_create(&kvseg_core);
2793 if (segziosize > 0) {
2794 PRM_POINT("attaching segzio");
2795 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2796 &kzioseg);
2797 (void) segkmem_zio_create(&kzioseg);
2799 /* create zio area covering new segment */
2800 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2803 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2804 (void) segkmem_create(&kdebugseg);
2806 rw_exit(&kas.a_lock);
2809 * Ensure that the red zone at kernelbase is never accessible.
2811 PRM_POINT("protecting redzone");
2812 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2815 * Make the text writable so that it can be hot patched by DTrace.
2817 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2818 PROT_READ | PROT_WRITE | PROT_EXEC);
2821 * Make data writable until end.
2823 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2824 PROT_READ | PROT_WRITE | PROT_EXEC);
2827 #ifndef __xpv
2829 * Solaris adds an entry for Write Combining caching to the PAT
2831 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2833 void
2834 pat_sync(void)
2836 ulong_t cr0, cr0_orig, cr4;
2838 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2839 return;
2840 cr0_orig = cr0 = getcr0();
2841 cr4 = getcr4();
2843 /* disable caching and flush all caches and TLBs */
2844 cr0 |= CR0_CD;
2845 cr0 &= ~CR0_NW;
2846 setcr0(cr0);
2847 invalidate_cache();
2848 if (cr4 & CR4_PGE) {
2849 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2850 setcr4(cr4);
2851 } else {
2852 reload_cr3();
2855 /* add our entry to the PAT */
2856 wrmsr(REG_PAT, pat_attr_reg);
2858 /* flush TLBs and cache again, then reenable cr0 caching */
2859 if (cr4 & CR4_PGE) {
2860 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2861 setcr4(cr4);
2862 } else {
2863 reload_cr3();
2865 invalidate_cache();
2866 setcr0(cr0_orig);
2869 #endif /* !__xpv */
2871 #if defined(_SOFT_HOSTID)
2873 * On platforms that do not have a hardware serial number, attempt
2874 * to set one based on the contents of /etc/hostid. If this file does
2875 * not exist, assume that we are to generate a new hostid and set
2876 * it in the kernel, for subsequent saving by a userland process
2877 * once the system is up and the root filesystem is mounted r/w.
2879 * In order to gracefully support upgrade on OpenSolaris, if
2880 * /etc/hostid does not exist, we will attempt to get a serial number
2881 * using the legacy method (/kernel/misc/sysinit).
2883 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2884 * a hardware serial number. Note that we don't automatically trust
2885 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2886 * UUIDs in violation of the standard), we check against a blacklist.
2888 * In an attempt to make the hostid less prone to abuse
2889 * (for license circumvention, etc), we store it in /etc/hostid
2890 * in rot47 format.
2892 extern volatile unsigned long tenmicrodata;
2893 static int atoi(char *);
2896 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2897 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2898 * array can be updated.)
2900 int smbios_broken_uuid = 0;
2903 * List of known bad UUIDs. This is just the lower 32-bit values, since
2904 * that's what we use for the host id. If your hostid falls here, you need
2905 * to contact your hardware OEM for a fix for your BIOS.
2907 static unsigned char
2908 smbios_uuid_blacklist[][16] = {
2910 { /* Reported bad UUID (Google search) */
2911 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2912 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2914 { /* Known bad DELL UUID */
2915 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2916 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2918 { /* Uninitialized flash */
2919 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2920 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2922 { /* All zeros */
2923 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2924 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2928 static int32_t
2929 uuid_to_hostid(const uint8_t *uuid)
2932 * Although the UUIDs are 128-bits, they may not distribute entropy
2933 * evenly. We would like to use SHA or MD5, but those are located
2934 * in loadable modules and not available this early in boot. As we
2935 * don't need the values to be cryptographically strong, we just
2936 * generate 32-bit vaue by xor'ing the various sequences together,
2937 * which ensures that the entire UUID contributes to the hostid.
2939 uint32_t id = 0;
2941 /* first check against the blacklist */
2942 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2943 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2944 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2945 "Contact BIOS manufacturer for repair.\n");
2946 return ((int32_t)HW_INVALID_HOSTID);
2950 for (int i = 0; i < 16; i++)
2951 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2953 /* Make sure return value is positive */
2954 return (id & 0x7fffffff);
2957 static int32_t
2958 set_soft_hostid(void)
2960 struct _buf *file;
2961 char tokbuf[MAXNAMELEN];
2962 token_t token;
2963 int done = 0;
2964 u_longlong_t tmp;
2965 int i;
2966 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2967 unsigned char *c;
2968 hrtime_t tsc;
2969 smbios_system_t smsys;
2972 * If /etc/hostid file not found, we'd like to get a pseudo
2973 * random number to use at the hostid. A nice way to do this
2974 * is to read the real time clock. To remain xen-compatible,
2975 * we can't poke the real hardware, so we use tsc_read() to
2976 * read the real time clock. However, there is an ominous
2977 * warning in tsc_read that says it can return zero, so we
2978 * deal with that possibility by falling back to using the
2979 * (hopefully random enough) value in tenmicrodata.
2982 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2984 * hostid file not found - try to load sysinit module
2985 * and see if it has a nonzero hostid value...use that
2986 * instead of generating a new hostid here if so.
2988 if ((i = modload("misc", "sysinit")) != -1) {
2989 if (strlen(hw_serial) > 0)
2990 hostid = (int32_t)atoi(hw_serial);
2991 (void) modunload(i);
2995 * We try to use the SMBIOS UUID. But not if it is blacklisted
2996 * in /etc/system.
2998 if ((hostid == HW_INVALID_HOSTID) &&
2999 (smbios_broken_uuid == 0) &&
3000 (ksmbios != NULL) &&
3001 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
3002 (smsys.smbs_uuidlen >= 16)) {
3003 hostid = uuid_to_hostid(smsys.smbs_uuid);
3007 * Generate a "random" hostid using the clock. These
3008 * hostids will change on each boot if the value is not
3009 * saved to a persistent /etc/hostid file.
3011 if (hostid == HW_INVALID_HOSTID) {
3012 tsc = tsc_read();
3013 if (tsc == 0) /* tsc_read can return zero sometimes */
3014 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
3015 else
3016 hostid = (int32_t)tsc & 0x0CFFFFF;
3018 } else {
3019 /* hostid file found */
3020 while (!done) {
3021 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
3023 switch (token) {
3024 case POUND:
3026 * skip comments
3028 kobj_find_eol(file);
3029 break;
3030 case STRING:
3032 * un-rot47 - obviously this
3033 * nonsense is ascii-specific
3035 for (c = (unsigned char *)tokbuf;
3036 *c != '\0'; c++) {
3037 *c += 47;
3038 if (*c > '~')
3039 *c -= 94;
3040 else if (*c < '!')
3041 *c += 94;
3044 * now we should have a real number
3047 if (kobj_getvalue(tokbuf, &tmp) != 0)
3048 kobj_file_err(CE_WARN, file,
3049 "Bad value %s for hostid",
3050 tokbuf);
3051 else
3052 hostid = (int32_t)tmp;
3054 break;
3055 case EOF:
3056 done = 1;
3057 /* FALLTHROUGH */
3058 case NEWLINE:
3059 kobj_newline(file);
3060 break;
3061 default:
3062 break;
3066 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
3067 kobj_file_err(CE_WARN, file,
3068 "hostid missing or corrupt");
3070 kobj_close_file(file);
3073 * hostid is now the value read from /etc/hostid, or the
3074 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
3075 * set.
3077 return (hostid);
3080 static int
3081 atoi(char *p)
3083 int i = 0;
3085 while (*p != '\0')
3086 i = 10 * i + (*p++ - '0');
3088 return (i);
3091 #endif /* _SOFT_HOSTID */
3093 void
3094 get_system_configuration(void)
3096 char prop[32];
3097 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
3099 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
3100 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
3101 kobj_getvalue(prop, &nodes_ll) == -1 ||
3102 nodes_ll > MAXNODES ||
3103 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
3104 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
3105 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3106 system_hardware.hd_nodes = 1;
3107 system_hardware.hd_cpus_per_node = 0;
3108 } else {
3109 system_hardware.hd_nodes = (int)nodes_ll;
3110 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3113 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3114 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3115 kobj_getvalue(prop, &lvalue) == -1)
3116 eprom_kernelbase = NULL;
3117 else
3118 eprom_kernelbase = (uintptr_t)lvalue;
3120 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3121 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3122 kobj_getvalue(prop, &lvalue) == -1)
3123 segmapsize = SEGMAPDEFAULT;
3124 else
3125 segmapsize = (uintptr_t)lvalue;
3127 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3128 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3129 kobj_getvalue(prop, &lvalue) == -1)
3130 segmapfreelists = 0; /* use segmap driver default */
3131 else
3132 segmapfreelists = (int)lvalue;
3134 /* physmem used to be here, but moved much earlier to fakebop.c */
3138 * Add to a memory list.
3139 * start = start of new memory segment
3140 * len = length of new memory segment in bytes
3141 * new = pointer to a new struct memlist
3142 * memlistp = memory list to which to add segment.
3144 void
3145 memlist_add(
3146 uint64_t start,
3147 uint64_t len,
3148 struct memlist *new,
3149 struct memlist **memlistp)
3151 struct memlist *cur;
3152 uint64_t end = start + len;
3154 new->ml_address = start;
3155 new->ml_size = len;
3157 cur = *memlistp;
3159 while (cur) {
3160 if (cur->ml_address >= end) {
3161 new->ml_next = cur;
3162 *memlistp = new;
3163 new->ml_prev = cur->ml_prev;
3164 cur->ml_prev = new;
3165 return;
3167 ASSERT(cur->ml_address + cur->ml_size <= start);
3168 if (cur->ml_next == NULL) {
3169 cur->ml_next = new;
3170 new->ml_prev = cur;
3171 new->ml_next = NULL;
3172 return;
3174 memlistp = &cur->ml_next;
3175 cur = cur->ml_next;
3179 void
3180 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3182 size_t tsize = e_modtext - modtext;
3183 size_t dsize = e_moddata - moddata;
3185 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3186 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3187 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3188 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3191 caddr_t
3192 kobj_text_alloc(vmem_t *arena, size_t size)
3194 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3197 /*ARGSUSED*/
3198 caddr_t
3199 kobj_texthole_alloc(caddr_t addr, size_t size)
3201 panic("unexpected call to kobj_texthole_alloc()");
3202 /*NOTREACHED*/
3203 return (0);
3206 /*ARGSUSED*/
3207 void
3208 kobj_texthole_free(caddr_t addr, size_t size)
3210 panic("unexpected call to kobj_texthole_free()");
3214 * This is called just after configure() in startup().
3216 * The ISALIST concept is a bit hopeless on Intel, because
3217 * there's no guarantee of an ever-more-capable processor
3218 * given that various parts of the instruction set may appear
3219 * and disappear between different implementations.
3221 * While it would be possible to correct it and even enhance
3222 * it somewhat, the explicit hardware capability bitmask allows
3223 * more flexibility.
3225 * So, we just leave this alone.
3227 void
3228 setx86isalist(void)
3230 char *tp;
3231 size_t len;
3232 extern char *isa_list;
3234 #define TBUFSIZE 1024
3236 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3237 *tp = '\0';
3239 #if defined(__amd64)
3240 (void) strcpy(tp, "amd64 ");
3241 #endif
3243 switch (x86_vendor) {
3244 case X86_VENDOR_Intel:
3245 case X86_VENDOR_AMD:
3246 case X86_VENDOR_TM:
3247 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3249 * Pentium Pro or later
3251 (void) strcat(tp, "pentium_pro");
3252 (void) strcat(tp,
3253 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3254 "+mmx pentium_pro " : " ");
3256 /*FALLTHROUGH*/
3257 case X86_VENDOR_Cyrix:
3259 * The Cyrix 6x86 does not have any Pentium features
3260 * accessible while not at privilege level 0.
3262 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3263 (void) strcat(tp, "pentium");
3264 (void) strcat(tp,
3265 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3266 "+mmx pentium " : " ");
3268 break;
3269 default:
3270 break;
3272 (void) strcat(tp, "i486 i386 i86");
3273 len = strlen(tp) + 1; /* account for NULL at end of string */
3274 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3275 kmem_free(tp, TBUFSIZE);
3277 #undef TBUFSIZE
3281 #ifdef __amd64
3283 void *
3284 device_arena_alloc(size_t size, int vm_flag)
3286 return (vmem_alloc(device_arena, size, vm_flag));
3289 void
3290 device_arena_free(void *vaddr, size_t size)
3292 vmem_free(device_arena, vaddr, size);
3295 #else /* __i386 */
3297 void *
3298 device_arena_alloc(size_t size, int vm_flag)
3300 caddr_t vaddr;
3301 uintptr_t v;
3302 size_t start;
3303 size_t end;
3305 vaddr = vmem_alloc(heap_arena, size, vm_flag);
3306 if (vaddr == NULL)
3307 return (NULL);
3309 v = (uintptr_t)vaddr;
3310 ASSERT(v >= kernelbase);
3311 ASSERT(v + size <= valloc_base);
3313 start = btop(v - kernelbase);
3314 end = btop(v + size - 1 - kernelbase);
3315 ASSERT(start < toxic_bit_map_len);
3316 ASSERT(end < toxic_bit_map_len);
3318 while (start <= end) {
3319 BT_ATOMIC_SET(toxic_bit_map, start);
3320 ++start;
3322 return (vaddr);
3325 void
3326 device_arena_free(void *vaddr, size_t size)
3328 uintptr_t v = (uintptr_t)vaddr;
3329 size_t start;
3330 size_t end;
3332 ASSERT(v >= kernelbase);
3333 ASSERT(v + size <= valloc_base);
3335 start = btop(v - kernelbase);
3336 end = btop(v + size - 1 - kernelbase);
3337 ASSERT(start < toxic_bit_map_len);
3338 ASSERT(end < toxic_bit_map_len);
3340 while (start <= end) {
3341 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3342 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3343 ++start;
3345 vmem_free(heap_arena, vaddr, size);
3349 * returns 1st address in range that is in device arena, or NULL
3350 * if len is not NULL it returns the length of the toxic range
3352 void *
3353 device_arena_contains(void *vaddr, size_t size, size_t *len)
3355 uintptr_t v = (uintptr_t)vaddr;
3356 uintptr_t eaddr = v + size;
3357 size_t start;
3358 size_t end;
3361 * if called very early by kmdb, just return NULL
3363 if (toxic_bit_map == NULL)
3364 return (NULL);
3367 * First check if we're completely outside the bitmap range.
3369 if (v >= valloc_base || eaddr < kernelbase)
3370 return (NULL);
3373 * Trim ends of search to look at only what the bitmap covers.
3375 if (v < kernelbase)
3376 v = kernelbase;
3377 start = btop(v - kernelbase);
3378 end = btop(eaddr - kernelbase);
3379 if (end >= toxic_bit_map_len)
3380 end = toxic_bit_map_len;
3382 if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3383 return (NULL);
3385 v = kernelbase + ptob(start);
3386 if (len != NULL)
3387 *len = ptob(end - start);
3388 return ((void *)v);
3391 #endif /* __i386 */