9597 Want hypervisor API for FPU management
[unleashed.git] / usr / src / uts / i86pc / os / mp_pc.c
blob98fa4cc131af77c0f043b0cb4a89a5129c1afbb6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
29 * Copyright 2018 Joyent, Inc
33 * Welcome to the world of the "real mode platter".
34 * See also startup.c, mpcore.s and apic.c for related routines.
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/cpuvar.h>
40 #include <sys/cpu_module.h>
41 #include <sys/kmem.h>
42 #include <sys/archsystm.h>
43 #include <sys/machsystm.h>
44 #include <sys/controlregs.h>
45 #include <sys/x86_archext.h>
46 #include <sys/smp_impldefs.h>
47 #include <sys/sysmacros.h>
48 #include <sys/mach_mmu.h>
49 #include <sys/promif.h>
50 #include <sys/cpu.h>
51 #include <sys/cpu_event.h>
52 #include <sys/sunndi.h>
53 #include <sys/fs/dv_node.h>
54 #include <vm/hat_i86.h>
55 #include <vm/as.h>
57 extern cpuset_t cpu_ready_set;
59 extern int mp_start_cpu_common(cpu_t *cp, boolean_t boot);
60 extern void real_mode_start_cpu(void);
61 extern void real_mode_start_cpu_end(void);
62 extern void real_mode_stop_cpu_stage1(void);
63 extern void real_mode_stop_cpu_stage1_end(void);
64 extern void real_mode_stop_cpu_stage2(void);
65 extern void real_mode_stop_cpu_stage2_end(void);
67 void rmp_gdt_init(rm_platter_t *);
70 * Fill up the real mode platter to make it easy for real mode code to
71 * kick it off. This area should really be one passed by boot to kernel
72 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
73 * have identical physical and virtual address in paged mode.
75 static ushort_t *warm_reset_vector = NULL;
77 int
78 mach_cpucontext_init(void)
80 ushort_t *vec;
81 ulong_t addr;
82 struct rm_platter *rm = (struct rm_platter *)rm_platter_va;
84 if (!(vec = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
85 sizeof (vec), PROT_READ | PROT_WRITE)))
86 return (-1);
89 * setup secondary cpu bios boot up vector
90 * Write page offset to 0x467 and page frame number to 0x469.
92 addr = (ulong_t)((caddr_t)rm->rm_code - (caddr_t)rm) + rm_platter_pa;
93 vec[0] = (ushort_t)(addr & PAGEOFFSET);
94 vec[1] = (ushort_t)((addr & (0xfffff & PAGEMASK)) >> 4);
95 warm_reset_vector = vec;
97 /* Map real mode platter into kas so kernel can access it. */
98 hat_devload(kas.a_hat,
99 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
100 btop(rm_platter_pa), PROT_READ | PROT_WRITE | PROT_EXEC,
101 HAT_LOAD_NOCONSIST);
103 /* Copy CPU startup code to rm_platter if it's still during boot. */
104 if (!plat_dr_enabled()) {
105 ASSERT((size_t)real_mode_start_cpu_end -
106 (size_t)real_mode_start_cpu <= RM_PLATTER_CODE_SIZE);
107 bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
108 (size_t)real_mode_start_cpu_end -
109 (size_t)real_mode_start_cpu);
112 return (0);
115 void
116 mach_cpucontext_fini(void)
118 if (warm_reset_vector)
119 psm_unmap_phys((caddr_t)warm_reset_vector,
120 sizeof (warm_reset_vector));
121 hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
122 HAT_UNLOAD);
125 #if defined(__amd64)
126 extern void *long_mode_64(void);
127 #endif /* __amd64 */
129 /*ARGSUSED*/
130 void
131 rmp_gdt_init(rm_platter_t *rm)
134 #if defined(__amd64)
135 /* Use the kas address space for the CPU startup thread. */
136 if (mmu_ptob(kas.a_hat->hat_htable->ht_pfn) > 0xffffffffUL) {
137 panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
138 "located above 4G in physical memory (@ 0x%lx)",
139 mmu_ptob(kas.a_hat->hat_htable->ht_pfn));
143 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
144 * by code in real_mode_start_cpu():
146 * GDT[0]: NULL selector
147 * GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
149 * Clear the IDT as interrupts will be off and a limit of 0 will cause
150 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
151 * a course of action as any other, though it may cause the entire
152 * platform to reset in some cases...
154 rm->rm_temp_gdt[0] = 0;
155 rm->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
157 rm->rm_temp_gdt_lim = (ushort_t)(sizeof (rm->rm_temp_gdt) - 1);
158 rm->rm_temp_gdt_base = rm_platter_pa +
159 (uint32_t)offsetof(rm_platter_t, rm_temp_gdt);
160 rm->rm_temp_idt_lim = 0;
161 rm->rm_temp_idt_base = 0;
164 * Since the CPU needs to jump to protected mode using an identity
165 * mapped address, we need to calculate it here.
167 rm->rm_longmode64_addr = rm_platter_pa +
168 (uint32_t)((uintptr_t)long_mode_64 -
169 (uintptr_t)real_mode_start_cpu);
170 #endif /* __amd64 */
173 static void *
174 mach_cpucontext_alloc_tables(struct cpu *cp)
176 tss_t *ntss;
177 struct cpu_tables *ct;
178 size_t ctsize;
181 * Allocate space for stack, tss, gdt and idt. We round the size
182 * allotted for cpu_tables up, so that the TSS is on a unique page.
183 * This is more efficient when running in virtual machines.
185 ctsize = P2ROUNDUP(sizeof (*ct), PAGESIZE);
186 ct = kmem_zalloc(ctsize, KM_SLEEP);
187 if ((uintptr_t)ct & PAGEOFFSET)
188 panic("mach_cpucontext_alloc_tables: cpu%d misaligned tables",
189 cp->cpu_id);
191 ntss = cp->cpu_tss = &ct->ct_tss;
193 #if defined(__amd64)
194 uintptr_t va;
195 size_t len;
198 * #DF (double fault).
200 ntss->tss_ist1 = (uintptr_t)&ct->ct_stack1[sizeof (ct->ct_stack1)];
203 * #NM (non-maskable interrupt)
205 ntss->tss_ist2 = (uintptr_t)&ct->ct_stack2[sizeof (ct->ct_stack2)];
208 * #MC (machine check exception / hardware error)
210 ntss->tss_ist3 = (uintptr_t)&ct->ct_stack3[sizeof (ct->ct_stack3)];
213 * #DB, #BP debug interrupts and KDI/kmdb
215 ntss->tss_ist4 = (uintptr_t)&cp->cpu_m.mcpu_kpti_dbg.kf_tr_rsp;
217 if (kpti_enable == 1) {
219 * #GP, #PF, #SS fault interrupts
221 ntss->tss_ist5 = (uintptr_t)&cp->cpu_m.mcpu_kpti_flt.kf_tr_rsp;
224 * Used by all other interrupts
226 ntss->tss_ist6 = (uint64_t)&cp->cpu_m.mcpu_kpti.kf_tr_rsp;
229 * On AMD64 we need to make sure that all of the pages of the
230 * struct cpu_tables are punched through onto the user CPU for
231 * kpti.
233 * The final page will always be the TSS, so treat that
234 * separately.
236 for (va = (uintptr_t)ct, len = ctsize - MMU_PAGESIZE;
237 len >= MMU_PAGESIZE;
238 len -= MMU_PAGESIZE, va += MMU_PAGESIZE) {
239 /* The doublefault stack must be RW */
240 hati_cpu_punchin(cp, va, PROT_READ | PROT_WRITE);
242 ASSERT3U((uintptr_t)ntss, ==, va);
243 hati_cpu_punchin(cp, (uintptr_t)ntss, PROT_READ);
246 #elif defined(__i386)
248 ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
249 (uint32_t)&ct->ct_stack1[sizeof (ct->ct_stack1)];
251 ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
253 ntss->tss_eip = (uint32_t)cp->cpu_thread->t_pc;
255 ntss->tss_cs = KCS_SEL;
256 ntss->tss_ds = ntss->tss_es = KDS_SEL;
257 ntss->tss_fs = KFS_SEL;
258 ntss->tss_gs = KGS_SEL;
260 #endif /* __i386 */
263 * Set I/O bit map offset equal to size of TSS segment limit
264 * for no I/O permission map. This will cause all user I/O
265 * instructions to generate #gp fault.
267 ntss->tss_bitmapbase = sizeof (*ntss);
270 * Setup kernel tss.
272 set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
273 sizeof (*cp->cpu_tss) - 1, SDT_SYSTSS, SEL_KPL);
275 return (ct);
278 void *
279 mach_cpucontext_xalloc(struct cpu *cp, int optype)
281 size_t len;
282 struct cpu_tables *ct;
283 rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
284 static int cpu_halt_code_ready;
286 if (optype == MACH_CPUCONTEXT_OP_STOP) {
287 ASSERT(plat_dr_enabled());
290 * The WARM_RESET_VECTOR has a limitation that the physical
291 * address written to it must be page-aligned. To work around
292 * this limitation, the CPU stop code has been splitted into
293 * two stages.
294 * The stage 2 code, which implements the real logic to halt
295 * CPUs, is copied to the rm_cpu_halt_code field in the real
296 * mode platter. The stage 1 code, which simply jumps to the
297 * stage 2 code in the rm_cpu_halt_code field, is copied to
298 * rm_code field in the real mode platter and it may be
299 * overwritten after the CPU has been stopped.
301 if (!cpu_halt_code_ready) {
303 * The rm_cpu_halt_code field in the real mode platter
304 * is used by the CPU stop code only. So only copy the
305 * CPU stop stage 2 code into the rm_cpu_halt_code
306 * field on the first call.
308 len = (size_t)real_mode_stop_cpu_stage2_end -
309 (size_t)real_mode_stop_cpu_stage2;
310 ASSERT(len <= RM_PLATTER_CPU_HALT_CODE_SIZE);
311 bcopy((caddr_t)real_mode_stop_cpu_stage2,
312 (caddr_t)rm->rm_cpu_halt_code, len);
313 cpu_halt_code_ready = 1;
317 * The rm_code field in the real mode platter is shared by
318 * the CPU start, CPU stop, CPR and fast reboot code. So copy
319 * the CPU stop stage 1 code into the rm_code field every time.
321 len = (size_t)real_mode_stop_cpu_stage1_end -
322 (size_t)real_mode_stop_cpu_stage1;
323 ASSERT(len <= RM_PLATTER_CODE_SIZE);
324 bcopy((caddr_t)real_mode_stop_cpu_stage1,
325 (caddr_t)rm->rm_code, len);
326 rm->rm_cpu_halted = 0;
328 return (cp->cpu_m.mcpu_mach_ctx_ptr);
329 } else if (optype != MACH_CPUCONTEXT_OP_START) {
330 return (NULL);
334 * Only need to allocate tables when starting CPU.
335 * Tables allocated when starting CPU will be reused when stopping CPU.
337 ct = mach_cpucontext_alloc_tables(cp);
338 if (ct == NULL) {
339 return (NULL);
342 /* Copy CPU startup code to rm_platter for CPU hot-add operations. */
343 if (plat_dr_enabled()) {
344 bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
345 (size_t)real_mode_start_cpu_end -
346 (size_t)real_mode_start_cpu);
350 * Now copy all that we've set up onto the real mode platter
351 * for the real mode code to digest as part of starting the cpu.
353 rm->rm_idt_base = cp->cpu_idt;
354 rm->rm_idt_lim = sizeof (*cp->cpu_idt) * NIDT - 1;
355 rm->rm_gdt_base = cp->cpu_gdt;
356 rm->rm_gdt_lim = sizeof (*cp->cpu_gdt) * NGDT - 1;
359 * CPU needs to access kernel address space after powering on.
361 rm->rm_pdbr = MAKECR3(kas.a_hat->hat_htable->ht_pfn, PCID_NONE);
362 rm->rm_cpu = cp->cpu_id;
365 * We need to mask off any bits set on our boot CPU that can't apply
366 * while the subject CPU is initializing. If appropriate, they are
367 * enabled later on.
369 rm->rm_cr4 = getcr4();
370 rm->rm_cr4 &= ~(CR4_MCE | CR4_PCE | CR4_PCIDE);
372 rmp_gdt_init(rm);
374 return (ct);
377 void
378 mach_cpucontext_xfree(struct cpu *cp, void *arg, int err, int optype)
380 struct cpu_tables *ct = arg;
382 ASSERT(&ct->ct_tss == cp->cpu_tss);
383 if (optype == MACH_CPUCONTEXT_OP_START) {
384 switch (err) {
385 case 0:
387 * Save pointer for reuse when stopping CPU.
389 cp->cpu_m.mcpu_mach_ctx_ptr = arg;
390 break;
391 case ETIMEDOUT:
393 * The processor was poked, but failed to start before
394 * we gave up waiting for it. In case it starts later,
395 * don't free anything.
397 cp->cpu_m.mcpu_mach_ctx_ptr = arg;
398 break;
399 default:
401 * Some other, passive, error occurred.
403 kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
404 cp->cpu_tss = NULL;
405 break;
407 } else if (optype == MACH_CPUCONTEXT_OP_STOP) {
408 switch (err) {
409 case 0:
411 * Free resources allocated when starting CPU.
413 kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
414 cp->cpu_tss = NULL;
415 cp->cpu_m.mcpu_mach_ctx_ptr = NULL;
416 break;
417 default:
419 * Don't touch table pointer in case of failure.
421 break;
423 } else {
424 ASSERT(0);
428 void *
429 mach_cpucontext_alloc(struct cpu *cp)
431 return (mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_START));
434 void
435 mach_cpucontext_free(struct cpu *cp, void *arg, int err)
437 mach_cpucontext_xfree(cp, arg, err, MACH_CPUCONTEXT_OP_START);
441 * "Enter monitor." Called via cross-call from stop_other_cpus().
443 void
444 mach_cpu_halt(char *msg)
446 if (msg)
447 prom_printf("%s\n", msg);
449 /*CONSTANTCONDITION*/
450 while (1)
454 void
455 mach_cpu_idle(void)
457 i86_halt();
460 void
461 mach_cpu_pause(volatile char *safe)
464 * This cpu is now safe.
466 *safe = PAUSE_WAIT;
467 membar_enter(); /* make sure stores are flushed */
470 * Now we wait. When we are allowed to continue, safe
471 * will be set to PAUSE_IDLE.
473 while (*safe != PAUSE_IDLE)
474 SMT_PAUSE();
478 * Power on the target CPU.
481 mp_cpu_poweron(struct cpu *cp)
483 int error;
484 cpuset_t tempset;
485 processorid_t cpuid;
487 ASSERT(cp != NULL);
488 cpuid = cp->cpu_id;
489 if (use_mp == 0 || plat_dr_support_cpu() == 0) {
490 return (ENOTSUP);
491 } else if (cpuid < 0 || cpuid >= max_ncpus) {
492 return (EINVAL);
496 * The currrent x86 implementaiton of mp_cpu_configure() and
497 * mp_cpu_poweron() have a limitation that mp_cpu_poweron() could only
498 * be called once after calling mp_cpu_configure() for a specific CPU.
499 * It's because mp_cpu_poweron() will destroy data structure created
500 * by mp_cpu_configure(). So reject the request if the CPU has already
501 * been powered on once after calling mp_cpu_configure().
502 * This limitaiton only affects the p_online syscall and the DR driver
503 * won't be affected because the DR driver always invoke public CPU
504 * management interfaces in the predefined order:
505 * cpu_configure()->cpu_poweron()...->cpu_poweroff()->cpu_unconfigure()
507 if (cpuid_checkpass(cp, 4) || cp->cpu_thread == cp->cpu_idle_thread) {
508 return (ENOTSUP);
512 * Check if there's at least a Mbyte of kmem available
513 * before attempting to start the cpu.
515 if (kmem_avail() < 1024 * 1024) {
517 * Kick off a reap in case that helps us with
518 * later attempts ..
520 kmem_reap();
521 return (ENOMEM);
524 affinity_set(CPU->cpu_id);
527 * Start the target CPU. No need to call mach_cpucontext_fini()
528 * if mach_cpucontext_init() fails.
530 if ((error = mach_cpucontext_init()) == 0) {
531 error = mp_start_cpu_common(cp, B_FALSE);
532 mach_cpucontext_fini();
534 if (error != 0) {
535 affinity_clear();
536 return (error);
539 /* Wait for the target cpu to reach READY state. */
540 tempset = cpu_ready_set;
541 while (!CPU_IN_SET(tempset, cpuid)) {
542 delay(1);
543 tempset = *((volatile cpuset_t *)&cpu_ready_set);
546 /* Mark the target CPU as available for mp operation. */
547 CPUSET_ATOMIC_ADD(mp_cpus, cpuid);
549 /* Free the space allocated to hold the microcode file */
550 ucode_cleanup();
552 affinity_clear();
554 return (0);
557 #define MP_CPU_DETACH_MAX_TRIES 5
558 #define MP_CPU_DETACH_DELAY 100
560 static int
561 mp_cpu_detach_driver(dev_info_t *dip)
563 int i;
564 int rv = EBUSY;
565 dev_info_t *pdip;
567 pdip = ddi_get_parent(dip);
568 ASSERT(pdip != NULL);
570 * Check if caller holds pdip busy - can cause deadlocks in
571 * e_ddi_branch_unconfigure(), which calls devfs_clean().
573 if (DEVI_BUSY_OWNED(pdip)) {
574 return (EDEADLOCK);
577 for (i = 0; i < MP_CPU_DETACH_MAX_TRIES; i++) {
578 if (e_ddi_branch_unconfigure(dip, NULL, 0) == 0) {
579 rv = 0;
580 break;
582 DELAY(MP_CPU_DETACH_DELAY);
585 return (rv);
589 * Power off the target CPU.
590 * Note: cpu_lock will be released and then reacquired.
593 mp_cpu_poweroff(struct cpu *cp)
595 int rv = 0;
596 void *ctx;
597 dev_info_t *dip = NULL;
598 rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
599 extern void cpupm_start(cpu_t *);
600 extern void cpupm_stop(cpu_t *);
602 ASSERT(cp != NULL);
603 ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
604 ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
606 if (use_mp == 0 || plat_dr_support_cpu() == 0) {
607 return (ENOTSUP);
610 * There is no support for powering off cpu0 yet.
611 * There are many pieces of code which have a hard dependency on cpu0.
613 if (cp->cpu_id == 0) {
614 return (ENOTSUP);
617 if (mach_cpu_get_device_node(cp, &dip) != PSM_SUCCESS) {
618 return (ENXIO);
620 ASSERT(dip != NULL);
621 if (mp_cpu_detach_driver(dip) != 0) {
622 rv = EBUSY;
623 goto out_online;
626 /* Allocate CPU context for stopping */
627 if (mach_cpucontext_init() != 0) {
628 rv = ENXIO;
629 goto out_online;
631 ctx = mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_STOP);
632 if (ctx == NULL) {
633 rv = ENXIO;
634 goto out_context_fini;
637 cpupm_stop(cp);
638 cpu_event_fini_cpu(cp);
640 if (cp->cpu_m.mcpu_cmi_hdl != NULL) {
641 cmi_fini(cp->cpu_m.mcpu_cmi_hdl);
642 cp->cpu_m.mcpu_cmi_hdl = NULL;
645 rv = mach_cpu_stop(cp, ctx);
646 if (rv != 0) {
647 goto out_enable_cmi;
650 /* Wait until the target CPU has been halted. */
651 while (*(volatile ushort_t *)&(rm->rm_cpu_halted) != 0xdead) {
652 delay(1);
654 rm->rm_cpu_halted = 0xffff;
656 /* CPU_READY has been cleared by mach_cpu_stop. */
657 ASSERT((cp->cpu_flags & CPU_READY) == 0);
658 ASSERT((cp->cpu_flags & CPU_RUNNING) == 0);
659 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
660 CPUSET_ATOMIC_DEL(mp_cpus, cp->cpu_id);
662 mach_cpucontext_xfree(cp, ctx, 0, MACH_CPUCONTEXT_OP_STOP);
663 mach_cpucontext_fini();
665 return (0);
667 out_enable_cmi:
669 cmi_hdl_t hdl;
671 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
672 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp))) != NULL) {
673 if (is_x86_feature(x86_featureset, X86FSET_MCA))
674 cmi_mca_init(hdl);
675 cp->cpu_m.mcpu_cmi_hdl = hdl;
678 cpu_event_init_cpu(cp);
679 cpupm_start(cp);
680 mach_cpucontext_xfree(cp, ctx, rv, MACH_CPUCONTEXT_OP_STOP);
682 out_context_fini:
683 mach_cpucontext_fini();
685 out_online:
686 (void) e_ddi_branch_configure(dip, NULL, 0);
688 if (rv != EAGAIN && rv != ETIME) {
689 rv = ENXIO;
692 return (rv);
696 * Return vcpu state, since this could be a virtual environment that we
697 * are unaware of, return "unknown".
699 /* ARGSUSED */
701 vcpu_on_pcpu(processorid_t cpu)
703 return (VCPU_STATE_UNKNOWN);