9597 Want hypervisor API for FPU management
[unleashed.git] / usr / src / uts / i86pc / os / fakebop.c
bloba62e45d89de9aac8bc6d1845f8edcc0cda1c8b1a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
29 * Copyright 2018 Joyent, Inc. All rights reserved.
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/cmn_err.h>
54 #include <sys/systm.h>
55 #include <sys/promif.h>
56 #include <sys/archsystm.h>
57 #include <sys/x86_archext.h>
58 #include <sys/kobj.h>
59 #include <sys/privregs.h>
60 #include <sys/sysmacros.h>
61 #include <sys/ctype.h>
62 #include <sys/fastboot.h>
63 #ifdef __xpv
64 #include <sys/hypervisor.h>
65 #include <net/if.h>
66 #endif
67 #include <vm/kboot_mmu.h>
68 #include <vm/hat_pte.h>
69 #include <sys/kobj.h>
70 #include <sys/kobj_lex.h>
71 #include <sys/pci_cfgspace_impl.h>
72 #include <sys/fastboot_impl.h>
73 #include <sys/acpi/acconfig.h>
74 #include <sys/acpi/acpi.h>
76 static int have_console = 0; /* set once primitive console is initialized */
77 static char *boot_args = "";
80 * Debugging macros
82 static uint_t kbm_debug = 0;
83 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
84 #define DBG(x) { if (kbm_debug) \
85 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
88 #define PUT_STRING(s) { \
89 char *cp; \
90 for (cp = (s); *cp; ++cp) \
91 bcons_putchar(*cp); \
94 bootops_t bootop; /* simple bootops we'll pass on to kernel */
95 struct bsys_mem bm;
98 * Boot info from "glue" code in low memory. xbootp is used by:
99 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
101 static struct xboot_info *xbootp;
102 static uintptr_t next_virt; /* next available virtual address */
103 static paddr_t next_phys; /* next available physical address from dboot */
104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
107 * buffer for vsnprintf for console I/O
109 #define BUFFERSIZE 512
110 static char buffer[BUFFERSIZE];
113 * stuff to store/report/manipulate boot property settings.
115 typedef struct bootprop {
116 struct bootprop *bp_next;
117 char *bp_name;
118 uint_t bp_vlen;
119 char *bp_value;
120 } bootprop_t;
122 static bootprop_t *bprops = NULL;
123 static char *curr_page = NULL; /* ptr to avail bprop memory */
124 static int curr_space = 0; /* amount of memory at curr_page */
126 #ifdef __xpv
127 start_info_t *xen_info;
128 shared_info_t *HYPERVISOR_shared_info;
129 #endif
132 * some allocator statistics
134 static ulong_t total_bop_alloc_scratch = 0;
135 static ulong_t total_bop_alloc_kernel = 0;
137 static void build_firmware_properties(struct xboot_info *);
139 static int early_allocation = 1;
141 int force_fastreboot = 0;
142 volatile int fastreboot_onpanic = 0;
143 int post_fastreboot = 0;
144 #ifdef __xpv
145 volatile int fastreboot_capable = 0;
146 #else
147 volatile int fastreboot_capable = 1;
148 #endif
151 * Information saved from current boot for fast reboot.
152 * If the information size exceeds what we have allocated, fast reboot
153 * will not be supported.
155 multiboot_info_t saved_mbi;
156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159 int saved_cmdline_len = 0;
160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
163 * Turn off fastreboot_onpanic to avoid panic loop.
165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
169 * Pointers to where System Resource Affinity Table (SRAT), System Locality
170 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171 * are mapped into virtual memory
173 ACPI_TABLE_SRAT *srat_ptr = NULL;
174 ACPI_TABLE_SLIT *slit_ptr = NULL;
175 ACPI_TABLE_MSCT *msct_ptr = NULL;
178 * Arbitrary limit on number of localities we handle; if
179 * this limit is raised to more than UINT16_MAX, make sure
180 * process_slit() knows how to handle it.
182 #define SLIT_LOCALITIES_MAX (4096)
184 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
185 #define SLIT_PROPNAME "acpi-slit"
188 * Allocate aligned physical memory at boot time. This allocator allocates
189 * from the highest possible addresses. This avoids exhausting memory that
190 * would be useful for DMA buffers.
192 paddr_t
193 do_bop_phys_alloc(uint64_t size, uint64_t align)
195 paddr_t pa = 0;
196 paddr_t start;
197 paddr_t end;
198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
201 * Be careful if high memory usage is limited in startup.c
202 * Since there are holes in the low part of the physical address
203 * space we can treat physmem as a pfn (not just a pgcnt) and
204 * get a conservative upper limit.
206 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207 high_phys = pfn_to_pa(physmem);
210 * find the highest available memory in physinstalled
212 size = P2ROUNDUP(size, align);
213 for (; ml; ml = ml->ml_next) {
214 start = P2ROUNDUP(ml->ml_address, align);
215 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
216 if (start < next_phys)
217 start = P2ROUNDUP(next_phys, align);
218 if (end > high_phys)
219 end = P2ALIGN(high_phys, align);
221 if (end <= start)
222 continue;
223 if (end - start < size)
224 continue;
227 * Early allocations need to use low memory, since
228 * physmem might be further limited by bootenv.rc
230 if (early_allocation) {
231 if (pa == 0 || start < pa)
232 pa = start;
233 } else {
234 if (end - size > pa)
235 pa = end - size;
238 if (pa != 0) {
239 if (early_allocation)
240 next_phys = pa + size;
241 else
242 high_phys = pa;
243 return (pa);
245 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
246 ") Out of memory\n", size, align);
247 /*NOTREACHED*/
250 uintptr_t
251 alloc_vaddr(size_t size, paddr_t align)
253 uintptr_t rv;
255 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
256 rv = (uintptr_t)next_virt;
257 next_virt += size;
258 return (rv);
262 * Allocate virtual memory. The size is always rounded up to a multiple
263 * of base pagesize.
266 /*ARGSUSED*/
267 static caddr_t
268 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
270 paddr_t a = align; /* same type as pa for masking */
271 uint_t pgsize;
272 paddr_t pa;
273 uintptr_t va;
274 ssize_t s; /* the aligned size */
275 uint_t level;
276 uint_t is_kernel = (virthint != 0);
278 if (a < MMU_PAGESIZE)
279 a = MMU_PAGESIZE;
280 else if (!ISP2(a))
281 prom_panic("do_bsys_alloc() incorrect alignment");
282 size = P2ROUNDUP(size, MMU_PAGESIZE);
285 * Use the next aligned virtual address if we weren't given one.
287 if (virthint == NULL) {
288 virthint = (caddr_t)alloc_vaddr(size, a);
289 total_bop_alloc_scratch += size;
290 } else {
291 total_bop_alloc_kernel += size;
295 * allocate the physical memory
297 pa = do_bop_phys_alloc(size, a);
300 * Add the mappings to the page tables, try large pages first.
302 va = (uintptr_t)virthint;
303 s = size;
304 level = 1;
305 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
306 if (xbootp->bi_use_largepage && a == pgsize) {
307 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
308 s >= pgsize) {
309 kbm_map(va, pa, level, is_kernel);
310 va += pgsize;
311 pa += pgsize;
312 s -= pgsize;
317 * Map remaining pages use small mappings
319 level = 0;
320 pgsize = MMU_PAGESIZE;
321 while (s > 0) {
322 kbm_map(va, pa, level, is_kernel);
323 va += pgsize;
324 pa += pgsize;
325 s -= pgsize;
327 return (virthint);
331 * Free virtual memory - we'll just ignore these.
333 /*ARGSUSED*/
334 static void
335 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
337 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
338 (void *)virt, size);
342 * Old interface
344 /*ARGSUSED*/
345 static caddr_t
346 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
347 int align, int flags)
349 prom_panic("unsupported call to BOP_EALLOC()\n");
350 return (0);
354 static void
355 bsetprop(char *name, int nlen, void *value, int vlen)
357 uint_t size;
358 uint_t need_size;
359 bootprop_t *b;
362 * align the size to 16 byte boundary
364 size = sizeof (bootprop_t) + nlen + 1 + vlen;
365 size = (size + 0xf) & ~0xf;
366 if (size > curr_space) {
367 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
368 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
369 curr_space = need_size;
373 * use a bootprop_t at curr_page and link into list
375 b = (bootprop_t *)curr_page;
376 curr_page += sizeof (bootprop_t);
377 curr_space -= sizeof (bootprop_t);
378 b->bp_next = bprops;
379 bprops = b;
382 * follow by name and ending zero byte
384 b->bp_name = curr_page;
385 bcopy(name, curr_page, nlen);
386 curr_page += nlen;
387 *curr_page++ = 0;
388 curr_space -= nlen + 1;
391 * copy in value, but no ending zero byte
393 b->bp_value = curr_page;
394 b->bp_vlen = vlen;
395 if (vlen > 0) {
396 bcopy(value, curr_page, vlen);
397 curr_page += vlen;
398 curr_space -= vlen;
402 * align new values of curr_page, curr_space
404 while (curr_space & 0xf) {
405 ++curr_page;
406 --curr_space;
410 static void
411 bsetprops(char *name, char *value)
413 bsetprop(name, strlen(name), value, strlen(value) + 1);
416 static void
417 bsetprop64(char *name, uint64_t value)
419 bsetprop(name, strlen(name), (void *)&value, sizeof (value));
422 static void
423 bsetpropsi(char *name, int value)
425 char prop_val[32];
427 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
428 bsetprops(name, prop_val);
432 * to find the size of the buffer to allocate
434 /*ARGSUSED*/
436 do_bsys_getproplen(bootops_t *bop, const char *name)
438 bootprop_t *b;
440 for (b = bprops; b; b = b->bp_next) {
441 if (strcmp(name, b->bp_name) != 0)
442 continue;
443 return (b->bp_vlen);
445 return (-1);
449 * get the value associated with this name
451 /*ARGSUSED*/
453 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
455 bootprop_t *b;
457 for (b = bprops; b; b = b->bp_next) {
458 if (strcmp(name, b->bp_name) != 0)
459 continue;
460 bcopy(b->bp_value, value, b->bp_vlen);
461 return (0);
463 return (-1);
467 * get the name of the next property in succession from the standalone
469 /*ARGSUSED*/
470 static char *
471 do_bsys_nextprop(bootops_t *bop, char *name)
473 bootprop_t *b;
476 * A null name is a special signal for the 1st boot property
478 if (name == NULL || strlen(name) == 0) {
479 if (bprops == NULL)
480 return (NULL);
481 return (bprops->bp_name);
484 for (b = bprops; b; b = b->bp_next) {
485 if (name != b->bp_name)
486 continue;
487 b = b->bp_next;
488 if (b == NULL)
489 return (NULL);
490 return (b->bp_name);
492 return (NULL);
496 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
498 static int
499 parse_value(char *p, uint64_t *retval)
501 int adjust = 0;
502 uint64_t tmp = 0;
503 int digit;
504 int radix = 10;
506 *retval = 0;
507 if (*p == '-' || *p == '~')
508 adjust = *p++;
510 if (*p == '0') {
511 ++p;
512 if (*p == 0)
513 return (0);
514 if (*p == 'x' || *p == 'X') {
515 radix = 16;
516 ++p;
517 } else {
518 radix = 8;
519 ++p;
522 while (*p) {
523 if ('0' <= *p && *p <= '9')
524 digit = *p - '0';
525 else if ('a' <= *p && *p <= 'f')
526 digit = 10 + *p - 'a';
527 else if ('A' <= *p && *p <= 'F')
528 digit = 10 + *p - 'A';
529 else
530 return (-1);
531 if (digit >= radix)
532 return (-1);
533 tmp = tmp * radix + digit;
534 ++p;
536 if (adjust == '-')
537 tmp = -tmp;
538 else if (adjust == '~')
539 tmp = ~tmp;
540 *retval = tmp;
541 return (0);
544 static boolean_t
545 unprintable(char *value, int size)
547 int i;
549 if (size <= 0 || value[0] == '\0')
550 return (B_TRUE);
552 for (i = 0; i < size; i++) {
553 if (value[i] == '\0')
554 return (i != (size - 1));
556 if (!isprint(value[i]))
557 return (B_TRUE);
559 return (B_FALSE);
563 * Print out information about all boot properties.
564 * buffer is pointer to pre-allocated space to be used as temporary
565 * space for property values.
567 static void
568 boot_prop_display(char *buffer)
570 char *name = "";
571 int i, len;
573 bop_printf(NULL, "\nBoot properties:\n");
575 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
576 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
577 (void) do_bsys_getprop(NULL, name, buffer);
578 len = do_bsys_getproplen(NULL, name);
579 bop_printf(NULL, "len=%d ", len);
580 if (!unprintable(buffer, len)) {
581 buffer[len] = 0;
582 bop_printf(NULL, "%s\n", buffer);
583 continue;
585 for (i = 0; i < len; i++) {
586 bop_printf(NULL, "%02x", buffer[i] & 0xff);
587 if (i < len - 1)
588 bop_printf(NULL, ".");
590 bop_printf(NULL, "\n");
595 * 2nd part of building the table of boot properties. This includes:
596 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
598 * lines look like one of:
599 * ^$
600 * ^# comment till end of line
601 * setprop name 'value'
602 * setprop name value
603 * setprop name "value"
605 * we do single character I/O since this is really just looking at memory
607 void
608 boot_prop_finish(void)
610 int fd;
611 char *line;
612 int c;
613 int bytes_read;
614 char *name;
615 int n_len;
616 char *value;
617 int v_len;
618 char *inputdev; /* these override the command line if serial ports */
619 char *outputdev;
620 char *consoledev;
621 uint64_t lvalue;
622 int use_xencons = 0;
624 #ifdef __xpv
625 if (!DOMAIN_IS_INITDOMAIN(xen_info))
626 use_xencons = 1;
627 #endif /* __xpv */
629 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
630 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
631 DBG(fd);
633 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
634 while (fd >= 0) {
637 * get a line
639 for (c = 0; ; ++c) {
640 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
641 if (bytes_read == 0) {
642 if (c == 0)
643 goto done;
644 break;
646 if (line[c] == '\n')
647 break;
649 line[c] = 0;
652 * ignore comment lines
654 c = 0;
655 while (ISSPACE(line[c]))
656 ++c;
657 if (line[c] == '#' || line[c] == 0)
658 continue;
661 * must have "setprop " or "setprop\t"
663 if (strncmp(line + c, "setprop ", 8) != 0 &&
664 strncmp(line + c, "setprop\t", 8) != 0)
665 continue;
666 c += 8;
667 while (ISSPACE(line[c]))
668 ++c;
669 if (line[c] == 0)
670 continue;
673 * gather up the property name
675 name = line + c;
676 n_len = 0;
677 while (line[c] && !ISSPACE(line[c]))
678 ++n_len, ++c;
681 * gather up the value, if any
683 value = "";
684 v_len = 0;
685 while (ISSPACE(line[c]))
686 ++c;
687 if (line[c] != 0) {
688 value = line + c;
689 while (line[c] && !ISSPACE(line[c]))
690 ++v_len, ++c;
693 if (v_len >= 2 && value[0] == value[v_len - 1] &&
694 (value[0] == '\'' || value[0] == '"')) {
695 ++value;
696 v_len -= 2;
698 name[n_len] = 0;
699 if (v_len > 0)
700 value[v_len] = 0;
701 else
702 continue;
705 * ignore "boot-file" property, it's now meaningless
707 if (strcmp(name, "boot-file") == 0)
708 continue;
709 if (strcmp(name, "boot-args") == 0 &&
710 strlen(boot_args) > 0)
711 continue;
714 * If a property was explicitly set on the command line
715 * it will override a setting in bootenv.rc
717 if (do_bsys_getproplen(NULL, name) > 0)
718 continue;
720 bsetprop(name, n_len, value, v_len + 1);
722 done:
723 if (fd >= 0)
724 (void) BRD_CLOSE(bfs_ops, fd);
727 * Check if we have to limit the boot time allocator
729 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
730 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
731 parse_value(line, &lvalue) != -1) {
732 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
733 physmem = (pgcnt_t)lvalue;
734 DBG(physmem);
737 early_allocation = 0;
740 * check to see if we have to override the default value of the console
742 if (!use_xencons) {
743 inputdev = line;
744 v_len = do_bsys_getproplen(NULL, "input-device");
745 if (v_len > 0)
746 (void) do_bsys_getprop(NULL, "input-device", inputdev);
747 else
748 v_len = 0;
749 inputdev[v_len] = 0;
751 outputdev = inputdev + v_len + 1;
752 v_len = do_bsys_getproplen(NULL, "output-device");
753 if (v_len > 0)
754 (void) do_bsys_getprop(NULL, "output-device",
755 outputdev);
756 else
757 v_len = 0;
758 outputdev[v_len] = 0;
760 consoledev = outputdev + v_len + 1;
761 v_len = do_bsys_getproplen(NULL, "console");
762 if (v_len > 0) {
763 (void) do_bsys_getprop(NULL, "console", consoledev);
764 if (post_fastreboot &&
765 strcmp(consoledev, "graphics") == 0) {
766 bsetprops("console", "text");
767 v_len = strlen("text");
768 bcopy("text", consoledev, v_len);
770 } else {
771 v_len = 0;
773 consoledev[v_len] = 0;
774 bcons_init2(inputdev, outputdev, consoledev);
775 } else {
777 * Ensure console property exists
778 * If not create it as "hypervisor"
780 v_len = do_bsys_getproplen(NULL, "console");
781 if (v_len < 0)
782 bsetprops("console", "hypervisor");
783 inputdev = outputdev = consoledev = "hypervisor";
784 bcons_init2(inputdev, outputdev, consoledev);
787 if (find_boot_prop("prom_debug") || kbm_debug)
788 boot_prop_display(line);
792 * print formatted output
794 /*PRINTFLIKE2*/
795 /*ARGSUSED*/
796 void
797 bop_printf(bootops_t *bop, const char *fmt, ...)
799 va_list ap;
801 if (have_console == 0)
802 return;
804 va_start(ap, fmt);
805 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
806 va_end(ap);
807 PUT_STRING(buffer);
811 * Another panic() variant; this one can be used even earlier during boot than
812 * prom_panic().
814 /*PRINTFLIKE1*/
815 void
816 bop_panic(const char *fmt, ...)
818 va_list ap;
820 va_start(ap, fmt);
821 bop_printf(NULL, fmt, ap);
822 va_end(ap);
824 bop_printf(NULL, "\nPress any key to reboot.\n");
825 (void) bcons_getchar();
826 bop_printf(NULL, "Resetting...\n");
827 pc_reset();
831 * Do a real mode interrupt BIOS call
833 typedef struct bios_regs {
834 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
835 } bios_regs_t;
836 typedef int (*bios_func_t)(int, bios_regs_t *);
838 /*ARGSUSED*/
839 static void
840 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
842 #if defined(__xpv)
843 prom_panic("unsupported call to BOP_DOINT()\n");
844 #else /* __xpv */
845 static int firsttime = 1;
846 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
847 bios_regs_t br;
850 * We're about to disable paging; we shouldn't be PCID enabled.
852 if (getcr4() & CR4_PCIDE)
853 prom_panic("do_bsys_doint() with PCID enabled\n");
856 * The first time we do this, we have to copy the pre-packaged
857 * low memory bios call code image into place.
859 if (firsttime) {
860 extern char bios_image[];
861 extern uint32_t bios_size;
863 bcopy(bios_image, (void *)bios_func, bios_size);
864 firsttime = 0;
867 br.ax = rp->eax.word.ax;
868 br.bx = rp->ebx.word.bx;
869 br.cx = rp->ecx.word.cx;
870 br.dx = rp->edx.word.dx;
871 br.bp = rp->ebp.word.bp;
872 br.si = rp->esi.word.si;
873 br.di = rp->edi.word.di;
874 br.ds = rp->ds;
875 br.es = rp->es;
877 DBG_MSG("Doing BIOS call...");
878 DBG(br.ax);
879 DBG(br.bx);
880 DBG(br.dx);
881 rp->eflags = bios_func(intnum, &br);
882 DBG_MSG("done\n");
884 rp->eax.word.ax = br.ax;
885 rp->ebx.word.bx = br.bx;
886 rp->ecx.word.cx = br.cx;
887 rp->edx.word.dx = br.dx;
888 rp->ebp.word.bp = br.bp;
889 rp->esi.word.si = br.si;
890 rp->edi.word.di = br.di;
891 rp->ds = br.ds;
892 rp->es = br.es;
893 #endif /* __xpv */
896 static struct boot_syscalls bop_sysp = {
897 bcons_getchar,
898 bcons_putchar,
899 bcons_ischar,
902 static char *whoami;
904 #define BUFLEN 64
906 #if defined(__xpv)
908 static char namebuf[32];
910 static void
911 xen_parse_props(char *s, char *prop_map[], int n_prop)
913 char **prop_name = prop_map;
914 char *cp = s, *scp;
916 do {
917 scp = cp;
918 while ((*cp != NULL) && (*cp != ':'))
919 cp++;
921 if ((scp != cp) && (*prop_name != NULL)) {
922 *cp = NULL;
923 bsetprops(*prop_name, scp);
926 cp++;
927 prop_name++;
928 n_prop--;
929 } while (n_prop > 0);
932 #define VBDPATHLEN 64
935 * parse the 'xpv-root' property to create properties used by
936 * ufs_mountroot.
938 static void
939 xen_vbdroot_props(char *s)
941 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
942 const char lnamefix[] = "/dev/dsk/c0d";
943 char *pnp;
944 char *prop_p;
945 char mi;
946 short minor;
947 long addr = 0;
949 pnp = vbdpath + strlen(vbdpath);
950 prop_p = s + strlen(lnamefix);
951 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
952 addr = addr * 10 + *prop_p++ - '0';
953 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
954 pnp = vbdpath + strlen(vbdpath);
955 if (*prop_p == 's')
956 mi = 'a';
957 else if (*prop_p == 'p')
958 mi = 'q';
959 else
960 ASSERT(0); /* shouldn't be here */
961 prop_p++;
962 ASSERT(*prop_p != '\0');
963 if (ISDIGIT(*prop_p)) {
964 minor = *prop_p - '0';
965 prop_p++;
966 if (ISDIGIT(*prop_p)) {
967 minor = minor * 10 + *prop_p - '0';
969 } else {
970 /* malformed root path, use 0 as default */
971 minor = 0;
973 ASSERT(minor < 16); /* at most 16 partitions */
974 mi += minor;
975 *pnp++ = ':';
976 *pnp++ = mi;
977 *pnp++ = '\0';
978 bsetprops("fstype", "ufs");
979 bsetprops("bootpath", vbdpath);
981 DBG_MSG("VBD bootpath set to ");
982 DBG_MSG(vbdpath);
983 DBG_MSG("\n");
987 * parse the xpv-nfsroot property to create properties used by
988 * nfs_mountroot.
990 static void
991 xen_nfsroot_props(char *s)
993 char *prop_map[] = {
994 BP_SERVER_IP, /* server IP address */
995 BP_SERVER_NAME, /* server hostname */
996 BP_SERVER_PATH, /* root path */
998 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1000 bsetprop("fstype", 6, "nfs", 4);
1002 xen_parse_props(s, prop_map, n_prop);
1005 * If a server name wasn't specified, use a default.
1007 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1008 bsetprops(BP_SERVER_NAME, "unknown");
1012 * Extract our IP address, etc. from the "xpv-ip" property.
1014 static void
1015 xen_ip_props(char *s)
1017 char *prop_map[] = {
1018 BP_HOST_IP, /* IP address */
1019 NULL, /* NFS server IP address (ignored in */
1020 /* favour of xpv-nfsroot) */
1021 BP_ROUTER_IP, /* IP gateway */
1022 BP_SUBNET_MASK, /* IP subnet mask */
1023 "xpv-hostname", /* hostname (ignored) */
1024 BP_NETWORK_INTERFACE, /* interface name */
1025 "xpv-hcp", /* host configuration protocol */
1027 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1028 char ifname[IFNAMSIZ];
1030 xen_parse_props(s, prop_map, n_prop);
1033 * A Linux dom0 administrator expects all interfaces to be
1034 * called "ethX", which is not the case here.
1036 * If the interface name specified is "eth0", presume that
1037 * this is really intended to be "xnf0" (the first domU ->
1038 * dom0 interface for this domain).
1040 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1041 (strcmp("eth0", ifname) == 0)) {
1042 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1043 bop_printf(NULL,
1044 "network interface name 'eth0' replaced with 'xnf0'\n");
1048 #else /* __xpv */
1050 static void
1051 setup_rarp_props(struct sol_netinfo *sip)
1053 char buf[BUFLEN]; /* to hold ip/mac addrs */
1054 uint8_t *val;
1056 val = (uint8_t *)&sip->sn_ciaddr;
1057 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1058 val[0], val[1], val[2], val[3]);
1059 bsetprops(BP_HOST_IP, buf);
1061 val = (uint8_t *)&sip->sn_siaddr;
1062 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1063 val[0], val[1], val[2], val[3]);
1064 bsetprops(BP_SERVER_IP, buf);
1066 if (sip->sn_giaddr != 0) {
1067 val = (uint8_t *)&sip->sn_giaddr;
1068 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1069 val[0], val[1], val[2], val[3]);
1070 bsetprops(BP_ROUTER_IP, buf);
1073 if (sip->sn_netmask != 0) {
1074 val = (uint8_t *)&sip->sn_netmask;
1075 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1076 val[0], val[1], val[2], val[3]);
1077 bsetprops(BP_SUBNET_MASK, buf);
1080 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1081 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1082 sip->sn_mactype, sip->sn_maclen);
1083 } else {
1084 val = sip->sn_macaddr;
1085 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1086 val[0], val[1], val[2], val[3], val[4], val[5]);
1087 bsetprops(BP_BOOT_MAC, buf);
1091 #endif /* __xpv */
1093 static void
1094 build_panic_cmdline(const char *cmd, int cmdlen)
1096 int proplen;
1097 size_t arglen;
1099 arglen = sizeof (fastreboot_onpanic_args);
1101 * If we allready have fastreboot-onpanic set to zero,
1102 * don't add them again.
1104 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1105 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1106 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1107 fastreboot_onpanic_cmdline);
1108 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1109 arglen = 1;
1113 * construct fastreboot_onpanic_cmdline
1115 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1116 DBG_MSG("Command line too long: clearing "
1117 FASTREBOOT_ONPANIC "\n");
1118 fastreboot_onpanic = 0;
1119 } else {
1120 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1121 if (arglen != 1)
1122 bcopy(fastreboot_onpanic_args,
1123 fastreboot_onpanic_cmdline + cmdlen, arglen);
1124 else
1125 fastreboot_onpanic_cmdline[cmdlen] = 0;
1130 #ifndef __xpv
1132 * Construct boot command line for Fast Reboot. The saved_cmdline
1133 * is also reported by "eeprom bootcmd".
1135 static void
1136 build_fastboot_cmdline(struct xboot_info *xbp)
1138 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1139 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1140 DBG(saved_cmdline_len);
1141 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1142 fastreboot_capable = 0;
1143 } else {
1144 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1145 saved_cmdline_len);
1146 saved_cmdline[saved_cmdline_len - 1] = '\0';
1147 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1152 * Save memory layout, disk drive information, unix and boot archive sizes for
1153 * Fast Reboot.
1155 static void
1156 save_boot_info(struct xboot_info *xbi)
1158 multiboot_info_t *mbi = xbi->bi_mb_info;
1159 struct boot_modules *modp;
1160 int i;
1162 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1163 if (mbi->mmap_length > sizeof (saved_mmap)) {
1164 DBG_MSG("mbi->mmap_length too big: clearing "
1165 "fastreboot_capable\n");
1166 fastreboot_capable = 0;
1167 } else {
1168 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1169 mbi->mmap_length);
1172 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1173 if (mbi->drives_length > sizeof (saved_drives)) {
1174 DBG(mbi->drives_length);
1175 DBG_MSG("mbi->drives_length too big: clearing "
1176 "fastreboot_capable\n");
1177 fastreboot_capable = 0;
1178 } else {
1179 bcopy((void *)(uintptr_t)mbi->drives_addr,
1180 (void *)saved_drives, mbi->drives_length);
1182 } else {
1183 saved_mbi.drives_length = 0;
1184 saved_mbi.drives_addr = NULL;
1188 * Current file sizes. Used by fastboot.c to figure out how much
1189 * memory to reserve for panic reboot.
1190 * Use the module list from the dboot-constructed xboot_info
1191 * instead of the list referenced by the multiboot structure
1192 * because that structure may not be addressable now.
1194 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1195 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1196 i < xbi->bi_module_cnt; i++, modp++) {
1197 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1200 #endif /* __xpv */
1203 * Import boot environment module variables as properties, applying
1204 * blacklist filter for variables we know we will not use.
1206 * Since the environment can be relatively large, containing many variables
1207 * used only for boot loader purposes, we will use a blacklist based filter.
1208 * To keep the blacklist from growing too large, we use prefix based filtering.
1209 * This is possible because in many cases, the loader variable names are
1210 * using a structured layout.
1212 * We will not overwrite already set properties.
1214 static struct bop_blacklist {
1215 const char *bl_name;
1216 int bl_name_len;
1217 } bop_prop_blacklist[] = {
1218 { "ISADIR", sizeof ("ISADIR") },
1219 { "acpi", sizeof ("acpi") },
1220 { "autoboot_delay", sizeof ("autoboot_delay") },
1221 { "autoboot_delay", sizeof ("autoboot_delay") },
1222 { "beansi_", sizeof ("beansi_") },
1223 { "beastie", sizeof ("beastie") },
1224 { "bemenu", sizeof ("bemenu") },
1225 { "boot.", sizeof ("boot.") },
1226 { "bootenv", sizeof ("bootenv") },
1227 { "currdev", sizeof ("currdev") },
1228 { "dhcp.", sizeof ("dhcp.") },
1229 { "interpret", sizeof ("interpret") },
1230 { "kernel", sizeof ("kernel") },
1231 { "loaddev", sizeof ("loaddev") },
1232 { "loader_", sizeof ("loader_") },
1233 { "module_path", sizeof ("module_path") },
1234 { "nfs.", sizeof ("nfs.") },
1235 { "pcibios", sizeof ("pcibios") },
1236 { "prompt", sizeof ("prompt") },
1237 { "smbios", sizeof ("smbios") },
1238 { "tem", sizeof ("tem") },
1239 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1240 { "zfs_be", sizeof ("zfs_be") },
1244 * Match the name against prefixes in above blacklist. If the match was
1245 * found, this name is blacklisted.
1247 static boolean_t
1248 name_is_blacklisted(const char *name)
1250 int i, n;
1252 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1253 for (i = 0; i < n; i++) {
1254 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1255 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1256 return (B_TRUE);
1259 return (B_FALSE);
1262 static void
1263 process_boot_environment(struct boot_modules *benv)
1265 char *env, *ptr, *name, *value;
1266 uint32_t size, name_len, value_len;
1268 if (benv == NULL || benv->bm_type != BMT_ENV)
1269 return;
1270 ptr = env = benv->bm_addr;
1271 size = benv->bm_size;
1272 do {
1273 name = ptr;
1274 /* find '=' */
1275 while (*ptr != '=') {
1276 ptr++;
1277 if (ptr > env + size) /* Something is very wrong. */
1278 return;
1280 name_len = ptr - name;
1281 if (sizeof (buffer) <= name_len)
1282 continue;
1284 (void) strncpy(buffer, name, sizeof (buffer));
1285 buffer[name_len] = '\0';
1286 name = buffer;
1288 value_len = 0;
1289 value = ++ptr;
1290 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1291 if (*ptr == '\0') {
1292 ptr++;
1293 value_len = (uintptr_t)ptr - (uintptr_t)env;
1294 break;
1296 ptr++;
1299 /* Did we reach the end of the module? */
1300 if (value_len == 0)
1301 return;
1303 if (*value == '\0')
1304 continue;
1306 /* Is this property already set? */
1307 if (do_bsys_getproplen(NULL, name) >= 0)
1308 continue;
1310 if (name_is_blacklisted(name) == B_TRUE)
1311 continue;
1313 /* Create new property. */
1314 bsetprops(name, value);
1316 /* Avoid reading past the module end. */
1317 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1318 return;
1319 } while (*ptr != '\0');
1323 * 1st pass at building the table of boot properties. This includes:
1324 * - values set on the command line: -B a=x,b=y,c=z ....
1325 * - known values we just compute (ie. from xbp)
1326 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1328 * the grub command line looked like:
1329 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1331 * whoami is the same as boot-file
1333 static void
1334 build_boot_properties(struct xboot_info *xbp)
1336 char *name;
1337 int name_len;
1338 char *value;
1339 int value_len;
1340 struct boot_modules *bm, *rdbm, *benv = NULL;
1341 char *propbuf;
1342 int quoted = 0;
1343 int boot_arg_len;
1344 uint_t i, midx;
1345 char modid[32];
1346 #ifndef __xpv
1347 static int stdout_val = 0;
1348 uchar_t boot_device;
1349 char str[3];
1350 #endif
1353 * These have to be done first, so that kobj_mount_root() works
1355 DBG_MSG("Building boot properties\n");
1356 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1357 DBG((uintptr_t)propbuf);
1358 if (xbp->bi_module_cnt > 0) {
1359 bm = xbp->bi_modules;
1360 rdbm = NULL;
1361 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1362 if (bm[i].bm_type == BMT_ROOTFS) {
1363 rdbm = &bm[i];
1364 continue;
1366 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1367 continue;
1369 if (bm[i].bm_type == BMT_ENV) {
1370 if (benv == NULL)
1371 benv = &bm[i];
1372 else
1373 continue;
1376 (void) snprintf(modid, sizeof (modid),
1377 "module-name-%u", midx);
1378 bsetprops(modid, (char *)bm[i].bm_name);
1379 (void) snprintf(modid, sizeof (modid),
1380 "module-addr-%u", midx);
1381 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1382 (void) snprintf(modid, sizeof (modid),
1383 "module-size-%u", midx);
1384 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1385 ++midx;
1387 if (rdbm != NULL) {
1388 bsetprop64("ramdisk_start",
1389 (uint64_t)(uintptr_t)rdbm->bm_addr);
1390 bsetprop64("ramdisk_end",
1391 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1396 * If there are any boot time modules or hashes present, then disable
1397 * fast reboot.
1399 if (xbp->bi_module_cnt > 1) {
1400 fastreboot_disable(FBNS_BOOTMOD);
1403 #ifndef __xpv
1405 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1406 * since we don't currently support MB2 info and module relocation.
1407 * Note that fast reboot will have already been disabled if multiple
1408 * modules are present, since the current implementation assumes that
1409 * we only have a single module, the boot_archive.
1411 if (xbp->bi_mb_version != 1) {
1412 fastreboot_disable(FBNS_MULTIBOOT2);
1414 #endif
1416 DBG_MSG("Parsing command line for boot properties\n");
1417 value = xbp->bi_cmdline;
1420 * allocate memory to collect boot_args into
1422 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1423 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1424 boot_args[0] = 0;
1425 boot_arg_len = 0;
1427 #ifdef __xpv
1429 * Xen puts a lot of device information in front of the kernel name
1430 * let's grab them and make them boot properties. The first
1431 * string w/o an "=" in it will be the boot-file property.
1433 (void) strcpy(namebuf, "xpv-");
1434 for (;;) {
1436 * get to next property
1438 while (ISSPACE(*value))
1439 ++value;
1440 name = value;
1442 * look for an "="
1444 while (*value && !ISSPACE(*value) && *value != '=') {
1445 value++;
1447 if (*value != '=') { /* no "=" in the property */
1448 value = name;
1449 break;
1451 name_len = value - name;
1452 value_len = 0;
1454 * skip over the "="
1456 value++;
1457 while (value[value_len] && !ISSPACE(value[value_len])) {
1458 ++value_len;
1461 * build property name with "xpv-" prefix
1463 if (name_len + 4 > 32) { /* skip if name too long */
1464 value += value_len;
1465 continue;
1467 bcopy(name, &namebuf[4], name_len);
1468 name_len += 4;
1469 namebuf[name_len] = 0;
1470 bcopy(value, propbuf, value_len);
1471 propbuf[value_len] = 0;
1472 bsetprops(namebuf, propbuf);
1475 * xpv-root is set to the logical disk name of the xen
1476 * VBD when booting from a disk-based filesystem.
1478 if (strcmp(namebuf, "xpv-root") == 0)
1479 xen_vbdroot_props(propbuf);
1481 * While we're here, if we have a "xpv-nfsroot" property
1482 * then we need to set "fstype" to "nfs" so we mount
1483 * our root from the nfs server. Also parse the xpv-nfsroot
1484 * property to create the properties that nfs_mountroot will
1485 * need to find the root and mount it.
1487 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1488 xen_nfsroot_props(propbuf);
1490 if (strcmp(namebuf, "xpv-ip") == 0)
1491 xen_ip_props(propbuf);
1492 value += value_len;
1494 #endif
1496 while (ISSPACE(*value))
1497 ++value;
1499 * value now points at the boot-file
1501 value_len = 0;
1502 while (value[value_len] && !ISSPACE(value[value_len]))
1503 ++value_len;
1504 if (value_len > 0) {
1505 whoami = propbuf;
1506 bcopy(value, whoami, value_len);
1507 whoami[value_len] = 0;
1508 bsetprops("boot-file", whoami);
1510 * strip leading path stuff from whoami, so running from
1511 * PXE/miniroot makes sense.
1513 if (strstr(whoami, "/platform/") != NULL)
1514 whoami = strstr(whoami, "/platform/");
1515 bsetprops("whoami", whoami);
1519 * Values forcibly set boot properties on the command line via -B.
1520 * Allow use of quotes in values. Other stuff goes on kernel
1521 * command line.
1523 name = value + value_len;
1524 while (*name != 0) {
1526 * anything not " -B" is copied to the command line
1528 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1529 boot_args[boot_arg_len++] = *name;
1530 boot_args[boot_arg_len] = 0;
1531 ++name;
1532 continue;
1536 * skip the " -B" and following white space
1538 name += 3;
1539 while (ISSPACE(*name))
1540 ++name;
1541 while (*name && !ISSPACE(*name)) {
1542 value = strstr(name, "=");
1543 if (value == NULL)
1544 break;
1545 name_len = value - name;
1546 ++value;
1547 value_len = 0;
1548 quoted = 0;
1549 for (; ; ++value_len) {
1550 if (!value[value_len])
1551 break;
1554 * is this value quoted?
1556 if (value_len == 0 &&
1557 (value[0] == '\'' || value[0] == '"')) {
1558 quoted = value[0];
1559 ++value_len;
1563 * In the quote accept any character,
1564 * but look for ending quote.
1566 if (quoted) {
1567 if (value[value_len] == quoted)
1568 quoted = 0;
1569 continue;
1573 * a comma or white space ends the value
1575 if (value[value_len] == ',' ||
1576 ISSPACE(value[value_len]))
1577 break;
1580 if (value_len == 0) {
1581 bsetprop(name, name_len, "true", 5);
1582 } else {
1583 char *v = value;
1584 int l = value_len;
1585 if (v[0] == v[l - 1] &&
1586 (v[0] == '\'' || v[0] == '"')) {
1587 ++v;
1588 l -= 2;
1590 bcopy(v, propbuf, l);
1591 propbuf[l] = '\0';
1592 bsetprop(name, name_len, propbuf,
1593 l + 1);
1595 name = value + value_len;
1596 while (*name == ',')
1597 ++name;
1602 * set boot-args property
1603 * 1275 name is bootargs, so set
1604 * that too
1606 bsetprops("boot-args", boot_args);
1607 bsetprops("bootargs", boot_args);
1609 process_boot_environment(benv);
1611 #ifndef __xpv
1613 * Build boot command line for Fast Reboot
1615 build_fastboot_cmdline(xbp);
1617 if (xbp->bi_mb_version == 1) {
1618 multiboot_info_t *mbi = xbp->bi_mb_info;
1619 int netboot;
1620 struct sol_netinfo *sip;
1623 * set the BIOS boot device from GRUB
1625 netboot = 0;
1628 * Save various boot information for Fast Reboot
1630 save_boot_info(xbp);
1632 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1633 boot_device = mbi->boot_device >> 24;
1634 if (boot_device == 0x20)
1635 netboot++;
1636 str[0] = (boot_device >> 4) + '0';
1637 str[1] = (boot_device & 0xf) + '0';
1638 str[2] = 0;
1639 bsetprops("bios-boot-device", str);
1640 } else {
1641 netboot = 1;
1645 * In the netboot case, drives_info is overloaded with the
1646 * dhcp ack. This is not multiboot compliant and requires
1647 * special pxegrub!
1649 if (netboot && mbi->drives_length != 0) {
1650 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1651 if (sip->sn_infotype == SN_TYPE_BOOTP)
1652 bsetprop("bootp-response",
1653 sizeof ("bootp-response"),
1654 (void *)(uintptr_t)mbi->drives_addr,
1655 mbi->drives_length);
1656 else if (sip->sn_infotype == SN_TYPE_RARP)
1657 setup_rarp_props(sip);
1659 } else {
1660 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1661 multiboot_tag_bootdev_t *bootdev = NULL;
1662 multiboot_tag_network_t *netdev = NULL;
1664 if (mbi != NULL) {
1665 bootdev = dboot_multiboot2_find_tag(mbi,
1666 MULTIBOOT_TAG_TYPE_BOOTDEV);
1667 netdev = dboot_multiboot2_find_tag(mbi,
1668 MULTIBOOT_TAG_TYPE_NETWORK);
1670 if (bootdev != NULL) {
1671 DBG(bootdev->mb_biosdev);
1672 boot_device = bootdev->mb_biosdev;
1673 str[0] = (boot_device >> 4) + '0';
1674 str[1] = (boot_device & 0xf) + '0';
1675 str[2] = 0;
1676 bsetprops("bios-boot-device", str);
1678 if (netdev != NULL) {
1679 bsetprop("bootp-response", sizeof ("bootp-response"),
1680 (void *)(uintptr_t)netdev->mb_dhcpack,
1681 netdev->mb_size -
1682 sizeof (multiboot_tag_network_t));
1686 bsetprop("stdout", strlen("stdout"),
1687 &stdout_val, sizeof (stdout_val));
1688 #endif /* __xpv */
1691 * more conjured up values for made up things....
1693 #if defined(__xpv)
1694 bsetprops("mfg-name", "i86xpv");
1695 bsetprops("impl-arch-name", "i86xpv");
1696 #else
1697 bsetprops("mfg-name", "i86pc");
1698 bsetprops("impl-arch-name", "i86pc");
1699 #endif
1702 * Build firmware-provided system properties
1704 build_firmware_properties(xbp);
1707 * XXPV
1709 * Find out what these are:
1710 * - cpuid_feature_ecx_include
1711 * - cpuid_feature_ecx_exclude
1712 * - cpuid_feature_edx_include
1713 * - cpuid_feature_edx_exclude
1715 * Find out what these are in multiboot:
1716 * - netdev-path
1717 * - fstype
1721 #ifdef __xpv
1723 * Under the Hypervisor, memory usable for DMA may be scarce. One
1724 * very likely large pool of DMA friendly memory is occupied by
1725 * the boot_archive, as it was loaded by grub into low MFNs.
1727 * Here we free up that memory by copying the boot archive to what are
1728 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1730 #define PFN_2GIG 0x80000
1731 static void
1732 relocate_boot_archive(struct xboot_info *xbp)
1734 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1735 struct boot_modules *bm = xbp->bi_modules;
1736 uintptr_t va;
1737 pfn_t va_pfn;
1738 mfn_t va_mfn;
1739 caddr_t copy;
1740 pfn_t copy_pfn;
1741 mfn_t copy_mfn;
1742 size_t len;
1743 int slop;
1744 int total = 0;
1745 int relocated = 0;
1746 int mmu_update_return;
1747 mmu_update_t t[2];
1748 x86pte_t pte;
1751 * If all MFN's are below 2Gig, don't bother doing this.
1753 if (max_mfn < PFN_2GIG)
1754 return;
1755 if (xbp->bi_module_cnt < 1) {
1756 DBG_MSG("no boot_archive!");
1757 return;
1760 DBG_MSG("moving boot_archive to high MFN memory\n");
1761 va = (uintptr_t)bm->bm_addr;
1762 len = bm->bm_size;
1763 slop = va & MMU_PAGEOFFSET;
1764 if (slop) {
1765 va += MMU_PAGESIZE - slop;
1766 len -= MMU_PAGESIZE - slop;
1768 len = P2ALIGN(len, MMU_PAGESIZE);
1771 * Go through all boot_archive pages, swapping any low MFN pages
1772 * with memory at next_phys.
1774 while (len != 0) {
1775 ++total;
1776 va_pfn = mmu_btop(va - ONE_GIG);
1777 va_mfn = mfn_list[va_pfn];
1778 if (mfn_list[va_pfn] < PFN_2GIG) {
1779 copy = kbm_remap_window(next_phys, 1);
1780 bcopy((void *)va, copy, MMU_PAGESIZE);
1781 copy_pfn = mmu_btop(next_phys);
1782 copy_mfn = mfn_list[copy_pfn];
1784 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1785 if (HYPERVISOR_update_va_mapping(va, pte,
1786 UVMF_INVLPG | UVMF_LOCAL))
1787 bop_panic("relocate_boot_archive(): "
1788 "HYPERVISOR_update_va_mapping() failed");
1790 mfn_list[va_pfn] = copy_mfn;
1791 mfn_list[copy_pfn] = va_mfn;
1793 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1794 t[0].val = va_pfn;
1795 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1796 t[1].val = copy_pfn;
1797 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1798 DOMID_SELF) != 0 || mmu_update_return != 2)
1799 bop_panic("relocate_boot_archive(): "
1800 "HYPERVISOR_mmu_update() failed");
1802 next_phys += MMU_PAGESIZE;
1803 ++relocated;
1805 len -= MMU_PAGESIZE;
1806 va += MMU_PAGESIZE;
1808 DBG_MSG("Relocated pages:\n");
1809 DBG(relocated);
1810 DBG_MSG("Out of total pages:\n");
1811 DBG(total);
1813 #endif /* __xpv */
1815 #if !defined(__xpv)
1817 * simple description of a stack frame (args are 32 bit only currently)
1819 typedef struct bop_frame {
1820 struct bop_frame *old_frame;
1821 pc_t retaddr;
1822 long arg[1];
1823 } bop_frame_t;
1825 void
1826 bop_traceback(bop_frame_t *frame)
1828 pc_t pc;
1829 int cnt;
1830 char *ksym;
1831 ulong_t off;
1833 bop_printf(NULL, "Stack traceback:\n");
1834 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1835 pc = frame->retaddr;
1836 if (pc == 0)
1837 break;
1838 ksym = kobj_getsymname(pc, &off);
1839 if (ksym)
1840 bop_printf(NULL, " %s+%lx", ksym, off);
1841 else
1842 bop_printf(NULL, " 0x%lx", pc);
1844 frame = frame->old_frame;
1845 if (frame == 0) {
1846 bop_printf(NULL, "\n");
1847 break;
1849 bop_printf(NULL, "\n");
1853 struct trapframe {
1854 ulong_t error_code; /* optional */
1855 ulong_t inst_ptr;
1856 ulong_t code_seg;
1857 ulong_t flags_reg;
1858 ulong_t stk_ptr;
1859 ulong_t stk_seg;
1862 void
1863 bop_trap(ulong_t *tfp)
1865 struct trapframe *tf = (struct trapframe *)tfp;
1866 bop_frame_t fakeframe;
1867 static int depth = 0;
1870 * Check for an infinite loop of traps.
1872 if (++depth > 2)
1873 bop_panic("Nested trap");
1875 bop_printf(NULL, "Unexpected trap\n");
1878 * adjust the tf for optional error_code by detecting the code selector
1880 if (tf->code_seg != B64CODE_SEL)
1881 tf = (struct trapframe *)(tfp - 1);
1882 else
1883 bop_printf(NULL, "error code 0x%lx\n",
1884 tf->error_code & 0xffffffff);
1886 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
1887 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
1888 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
1889 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
1890 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
1892 /* grab %[er]bp pushed by our code from the stack */
1893 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1894 fakeframe.retaddr = (pc_t)tf->inst_ptr;
1895 bop_printf(NULL, "Attempting stack backtrace:\n");
1896 bop_traceback(&fakeframe);
1897 bop_panic("unexpected trap in early boot");
1900 extern void bop_trap_handler(void);
1902 static gate_desc_t *bop_idt;
1904 static desctbr_t bop_idt_info;
1907 * Install a temporary IDT that lets us catch errors in the boot time code.
1908 * We shouldn't get any faults at all while this is installed, so we'll
1909 * just generate a traceback and exit.
1911 static void
1912 bop_idt_init(void)
1914 int t;
1916 bop_idt = (gate_desc_t *)
1917 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1918 bzero(bop_idt, MMU_PAGESIZE);
1919 for (t = 0; t < NIDT; ++t) {
1921 * Note that since boot runs without a TSS, the
1922 * double fault handler cannot use an alternate stack (64-bit).
1924 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
1925 SDT_SYSIGT, TRP_KPL, 0);
1927 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1928 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1929 wr_idtr(&bop_idt_info);
1931 #endif /* !defined(__xpv) */
1934 * This is where we enter the kernel. It dummies up the boot_ops and
1935 * boot_syscalls vectors and jumps off to _kobj_boot()
1937 void
1938 _start(struct xboot_info *xbp)
1940 bootops_t *bops = &bootop;
1941 extern void _kobj_boot();
1944 * 1st off - initialize the console for any error messages
1946 xbootp = xbp;
1947 #ifdef __xpv
1948 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1949 xen_info = xbp->bi_xen_start_info;
1950 #endif
1952 #ifndef __xpv
1953 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1954 FASTBOOT_MAGIC) {
1955 post_fastreboot = 1;
1956 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1958 #endif
1960 bcons_init(xbp);
1961 have_console = 1;
1964 * enable debugging
1966 if (find_boot_prop("kbm_debug") != NULL)
1967 kbm_debug = 1;
1969 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1970 DBG_MSG((char *)xbp->bi_cmdline);
1971 DBG_MSG("\n\n\n");
1974 * physavail is no longer used by startup
1976 bm.physinstalled = xbp->bi_phys_install;
1977 bm.pcimem = xbp->bi_pcimem;
1978 bm.rsvdmem = xbp->bi_rsvdmem;
1979 bm.physavail = NULL;
1982 * initialize the boot time allocator
1984 next_phys = xbp->bi_next_paddr;
1985 DBG(next_phys);
1986 next_virt = (uintptr_t)xbp->bi_next_vaddr;
1987 DBG(next_virt);
1988 DBG_MSG("Initializing boot time memory management...");
1989 #ifdef __xpv
1991 xen_platform_parameters_t p;
1993 /* This call shouldn't fail, dboot already did it once. */
1994 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1995 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1996 DBG(xen_virt_start);
1998 #endif
1999 kbm_init(xbp);
2000 DBG_MSG("done\n");
2003 * Fill in the bootops vector
2005 bops->bsys_version = BO_VERSION;
2006 bops->boot_mem = &bm;
2007 bops->bsys_alloc = do_bsys_alloc;
2008 bops->bsys_free = do_bsys_free;
2009 bops->bsys_getproplen = do_bsys_getproplen;
2010 bops->bsys_getprop = do_bsys_getprop;
2011 bops->bsys_nextprop = do_bsys_nextprop;
2012 bops->bsys_printf = bop_printf;
2013 bops->bsys_doint = do_bsys_doint;
2016 * BOP_EALLOC() is no longer needed
2018 bops->bsys_ealloc = do_bsys_ealloc;
2020 #ifdef __xpv
2022 * On domain 0 we need to free up some physical memory that is
2023 * usable for DMA. Since GRUB loaded the boot_archive, it is
2024 * sitting in low MFN memory. We'll relocated the boot archive
2025 * pages to high PFN memory.
2027 if (DOMAIN_IS_INITDOMAIN(xen_info))
2028 relocate_boot_archive(xbp);
2029 #endif
2031 #ifndef __xpv
2033 * Install an IDT to catch early pagefaults (shouldn't have any).
2034 * Also needed for kmdb.
2036 bop_idt_init();
2037 #endif
2040 * Start building the boot properties from the command line
2042 DBG_MSG("Initializing boot properties:\n");
2043 build_boot_properties(xbp);
2045 if (find_boot_prop("prom_debug") || kbm_debug) {
2046 char *value;
2048 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2049 boot_prop_display(value);
2053 * jump into krtld...
2055 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2059 /*ARGSUSED*/
2060 static caddr_t
2061 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2063 panic("Attempt to bsys_alloc() too late\n");
2064 return (NULL);
2067 /*ARGSUSED*/
2068 static void
2069 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2071 panic("Attempt to bsys_free() too late\n");
2074 void
2075 bop_no_more_mem(void)
2077 DBG(total_bop_alloc_scratch);
2078 DBG(total_bop_alloc_kernel);
2079 bootops->bsys_alloc = no_more_alloc;
2080 bootops->bsys_free = no_more_free;
2085 * Set ACPI firmware properties
2088 static caddr_t
2089 vmap_phys(size_t length, paddr_t pa)
2091 paddr_t start, end;
2092 caddr_t va;
2093 size_t len, page;
2095 #ifdef __xpv
2096 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2097 #endif
2098 start = P2ALIGN(pa, MMU_PAGESIZE);
2099 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2100 len = end - start;
2101 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2102 for (page = 0; page < len; page += MMU_PAGESIZE)
2103 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2104 return (va + (pa & MMU_PAGEOFFSET));
2107 static uint8_t
2108 checksum_table(uint8_t *tp, size_t len)
2110 uint8_t sum = 0;
2112 while (len-- > 0)
2113 sum += *tp++;
2115 return (sum);
2118 static int
2119 valid_rsdp(ACPI_TABLE_RSDP *rp)
2122 /* validate the V1.x checksum */
2123 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2124 return (0);
2126 /* If pre-ACPI 2.0, this is a valid RSDP */
2127 if (rp->Revision < 2)
2128 return (1);
2130 /* validate the V2.x checksum */
2131 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2132 return (0);
2134 return (1);
2138 * Scan memory range for an RSDP;
2139 * see ACPI 3.0 Spec, 5.2.5.1
2141 static ACPI_TABLE_RSDP *
2142 scan_rsdp(paddr_t start, paddr_t end)
2144 ssize_t len = end - start;
2145 caddr_t ptr;
2147 ptr = vmap_phys(len, start);
2148 while (len > 0) {
2149 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2150 valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2151 return ((ACPI_TABLE_RSDP *)ptr);
2153 ptr += ACPI_RSDP_SCAN_STEP;
2154 len -= ACPI_RSDP_SCAN_STEP;
2157 return (NULL);
2161 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2163 static ACPI_TABLE_RSDP *
2164 find_rsdp()
2166 ACPI_TABLE_RSDP *rsdp;
2167 uint64_t rsdp_val = 0;
2168 uint16_t *ebda_seg;
2169 paddr_t ebda_addr;
2171 /* check for "acpi-root-tab" property */
2172 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2173 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2174 if (rsdp_val != 0) {
2175 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2176 if (rsdp != NULL) {
2177 if (kbm_debug) {
2178 bop_printf(NULL,
2179 "Using RSDP from bootloader: "
2180 "0x%p\n", (void *)rsdp);
2182 return (rsdp);
2188 * Get the EBDA segment and scan the first 1K
2190 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2191 ACPI_EBDA_PTR_LOCATION);
2192 ebda_addr = *ebda_seg << 4;
2193 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2194 if (rsdp == NULL)
2195 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2196 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2197 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2198 return (rsdp);
2201 static ACPI_TABLE_HEADER *
2202 map_fw_table(paddr_t table_addr)
2204 ACPI_TABLE_HEADER *tp;
2205 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2208 * Map at least a page; if the table is larger than this, remap it
2210 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2211 if (tp->Length > len)
2212 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2213 return (tp);
2216 static ACPI_TABLE_HEADER *
2217 find_fw_table(char *signature)
2219 static int revision = 0;
2220 static ACPI_TABLE_XSDT *xsdt;
2221 static int len;
2222 paddr_t xsdt_addr;
2223 ACPI_TABLE_RSDP *rsdp;
2224 ACPI_TABLE_HEADER *tp;
2225 paddr_t table_addr;
2226 int n;
2228 if (strlen(signature) != ACPI_NAME_SIZE)
2229 return (NULL);
2232 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2233 * understand this code. If we haven't already found the RSDT/XSDT,
2234 * revision will be 0. Find the RSDP and check the revision
2235 * to find out whether to use the RSDT or XSDT. If revision is
2236 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2237 * use the XSDT. If the XSDT address is 0, though, fall back to
2238 * revision 1 and use the RSDT.
2240 if (revision == 0) {
2241 if ((rsdp = find_rsdp()) != NULL) {
2242 revision = rsdp->Revision;
2244 * ACPI 6.0 states that current revision is 2
2245 * from acpi_table_rsdp definition:
2246 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2248 if (revision > 2)
2249 revision = 2;
2250 switch (revision) {
2251 case 2:
2253 * Use the XSDT unless BIOS is buggy and
2254 * claims to be rev 2 but has a null XSDT
2255 * address
2257 xsdt_addr = rsdp->XsdtPhysicalAddress;
2258 if (xsdt_addr != 0)
2259 break;
2260 /* FALLTHROUGH */
2261 case 0:
2262 /* treat RSDP rev 0 as revision 1 internally */
2263 revision = 1;
2264 /* FALLTHROUGH */
2265 case 1:
2266 /* use the RSDT for rev 0/1 */
2267 xsdt_addr = rsdp->RsdtPhysicalAddress;
2268 break;
2269 default:
2270 /* unknown revision */
2271 revision = 0;
2272 break;
2275 if (revision == 0)
2276 return (NULL);
2278 /* cache the XSDT info */
2279 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2280 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2281 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2285 * Scan the table headers looking for a signature match
2287 for (n = 0; n < len; n++) {
2288 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2289 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2290 xsdt->TableOffsetEntry[n];
2292 if (table_addr == 0)
2293 continue;
2294 tp = map_fw_table(table_addr);
2295 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2296 return (tp);
2299 return (NULL);
2302 static void
2303 process_mcfg(ACPI_TABLE_MCFG *tp)
2305 ACPI_MCFG_ALLOCATION *cfg_baap;
2306 char *cfg_baa_endp;
2307 int64_t ecfginfo[4];
2309 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2310 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2311 while ((char *)cfg_baap < cfg_baa_endp) {
2312 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2313 ecfginfo[0] = cfg_baap->Address;
2314 ecfginfo[1] = cfg_baap->PciSegment;
2315 ecfginfo[2] = cfg_baap->StartBusNumber;
2316 ecfginfo[3] = cfg_baap->EndBusNumber;
2317 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2318 ecfginfo, sizeof (ecfginfo));
2319 break;
2321 cfg_baap++;
2325 #ifndef __xpv
2326 static void
2327 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2328 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2330 ACPI_SUBTABLE_HEADER *item, *end;
2331 uint32_t cpu_count = 0;
2332 uint32_t cpu_possible_count = 0;
2335 * Determine number of CPUs and keep track of "final" APIC ID
2336 * for each CPU by walking through ACPI MADT processor list
2338 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2339 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2341 while (item < end) {
2342 switch (item->Type) {
2343 case ACPI_MADT_TYPE_LOCAL_APIC: {
2344 ACPI_MADT_LOCAL_APIC *cpu =
2345 (ACPI_MADT_LOCAL_APIC *) item;
2347 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2348 if (cpu_apicid_array != NULL)
2349 cpu_apicid_array[cpu_count] = cpu->Id;
2350 cpu_count++;
2352 cpu_possible_count++;
2353 break;
2355 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2356 ACPI_MADT_LOCAL_X2APIC *cpu =
2357 (ACPI_MADT_LOCAL_X2APIC *) item;
2359 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2360 if (cpu_apicid_array != NULL)
2361 cpu_apicid_array[cpu_count] =
2362 cpu->LocalApicId;
2363 cpu_count++;
2365 cpu_possible_count++;
2366 break;
2368 default:
2369 if (kbm_debug)
2370 bop_printf(NULL, "MADT type %d\n", item->Type);
2371 break;
2374 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2376 if (cpu_countp)
2377 *cpu_countp = cpu_count;
2378 if (cpu_possible_countp)
2379 *cpu_possible_countp = cpu_possible_count;
2382 static void
2383 process_madt(ACPI_TABLE_MADT *tp)
2385 uint32_t cpu_count = 0;
2386 uint32_t cpu_possible_count = 0;
2387 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2389 if (tp != NULL) {
2390 /* count cpu's */
2391 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2393 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2394 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2395 if (cpu_apicid_array == NULL)
2396 bop_panic("Not enough memory for APIC ID array");
2398 /* copy IDs */
2399 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2402 * Make boot property for array of "final" APIC IDs for each
2403 * CPU
2405 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2406 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2410 * Check whether property plat-max-ncpus is already set.
2412 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2414 * Set plat-max-ncpus to number of maximum possible CPUs given
2415 * in MADT if it hasn't been set.
2416 * There's no formal way to detect max possible CPUs supported
2417 * by platform according to ACPI spec3.0b. So current CPU
2418 * hotplug implementation expects that all possible CPUs will
2419 * have an entry in MADT table and set plat-max-ncpus to number
2420 * of entries in MADT.
2421 * With introducing of ACPI4.0, Maximum System Capability Table
2422 * (MSCT) provides maximum number of CPUs supported by platform.
2423 * If MSCT is unavailable, fall back to old way.
2425 if (tp != NULL)
2426 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2430 * Set boot property boot-max-ncpus to number of CPUs existing at
2431 * boot time. boot-max-ncpus is mainly used for optimization.
2433 if (tp != NULL)
2434 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2437 * User-set boot-ncpus overrides firmware count
2439 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2440 return;
2443 * Set boot property boot-ncpus to number of active CPUs given in MADT
2444 * if it hasn't been set yet.
2446 if (tp != NULL)
2447 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2450 static void
2451 process_srat(ACPI_TABLE_SRAT *tp)
2453 ACPI_SUBTABLE_HEADER *item, *end;
2454 int i;
2455 int proc_num, mem_num;
2456 #pragma pack(1)
2457 struct {
2458 uint32_t domain;
2459 uint32_t apic_id;
2460 uint32_t sapic_id;
2461 } processor;
2462 struct {
2463 uint32_t domain;
2464 uint32_t x2apic_id;
2465 } x2apic;
2466 struct {
2467 uint32_t domain;
2468 uint64_t addr;
2469 uint64_t length;
2470 uint32_t flags;
2471 } memory;
2472 #pragma pack()
2473 char prop_name[30];
2474 uint64_t maxmem = 0;
2476 if (tp == NULL)
2477 return;
2479 proc_num = mem_num = 0;
2480 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2481 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2482 while (item < end) {
2483 switch (item->Type) {
2484 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2485 ACPI_SRAT_CPU_AFFINITY *cpu =
2486 (ACPI_SRAT_CPU_AFFINITY *) item;
2488 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2489 break;
2490 processor.domain = cpu->ProximityDomainLo;
2491 for (i = 0; i < 3; i++)
2492 processor.domain +=
2493 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2494 processor.apic_id = cpu->ApicId;
2495 processor.sapic_id = cpu->LocalSapicEid;
2496 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2497 proc_num);
2498 bsetprop(prop_name, strlen(prop_name), &processor,
2499 sizeof (processor));
2500 proc_num++;
2501 break;
2503 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2504 ACPI_SRAT_MEM_AFFINITY *mem =
2505 (ACPI_SRAT_MEM_AFFINITY *)item;
2507 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2508 break;
2509 memory.domain = mem->ProximityDomain;
2510 memory.addr = mem->BaseAddress;
2511 memory.length = mem->Length;
2512 memory.flags = mem->Flags;
2513 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2514 mem_num);
2515 bsetprop(prop_name, strlen(prop_name), &memory,
2516 sizeof (memory));
2517 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2518 (memory.addr + memory.length > maxmem)) {
2519 maxmem = memory.addr + memory.length;
2521 mem_num++;
2522 break;
2524 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2525 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2526 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2528 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2529 break;
2530 x2apic.domain = x2cpu->ProximityDomain;
2531 x2apic.x2apic_id = x2cpu->ApicId;
2532 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2533 proc_num);
2534 bsetprop(prop_name, strlen(prop_name), &x2apic,
2535 sizeof (x2apic));
2536 proc_num++;
2537 break;
2539 default:
2540 if (kbm_debug)
2541 bop_printf(NULL, "SRAT type %d\n", item->Type);
2542 break;
2545 item = (ACPI_SUBTABLE_HEADER *)
2546 (item->Length + (uintptr_t)item);
2550 * The maximum physical address calculated from the SRAT table is more
2551 * accurate than that calculated from the MSCT table.
2553 if (maxmem != 0) {
2554 plat_dr_physmax = btop(maxmem);
2558 static void
2559 process_slit(ACPI_TABLE_SLIT *tp)
2563 * Check the number of localities; if it's too huge, we just
2564 * return and locality enumeration code will handle this later,
2565 * if possible.
2567 * Note that the size of the table is the square of the
2568 * number of localities; if the number of localities exceeds
2569 * UINT16_MAX, the table size may overflow an int when being
2570 * passed to bsetprop() below.
2572 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2573 return;
2575 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2576 &tp->LocalityCount, sizeof (tp->LocalityCount));
2577 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2578 tp->LocalityCount * tp->LocalityCount);
2581 static ACPI_TABLE_MSCT *
2582 process_msct(ACPI_TABLE_MSCT *tp)
2584 int last_seen = 0;
2585 int proc_num = 0;
2586 ACPI_MSCT_PROXIMITY *item, *end;
2587 extern uint64_t plat_dr_options;
2589 ASSERT(tp != NULL);
2591 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2592 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2593 item < end;
2594 item = (void *)(item->Length + (uintptr_t)item)) {
2596 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2597 * Revision 1
2598 * Length 22
2600 if (item->Revision != 1 || item->Length != 22) {
2601 cmn_err(CE_CONT,
2602 "?boot: unknown proximity domain structure in MSCT "
2603 "with Revision(%d), Length(%d).\n",
2604 (int)item->Revision, (int)item->Length);
2605 return (NULL);
2606 } else if (item->RangeStart > item->RangeEnd) {
2607 cmn_err(CE_CONT,
2608 "?boot: invalid proximity domain structure in MSCT "
2609 "with RangeStart(%u), RangeEnd(%u).\n",
2610 item->RangeStart, item->RangeEnd);
2611 return (NULL);
2612 } else if (item->RangeStart != last_seen) {
2614 * Items must be organized in ascending order of the
2615 * proximity domain enumerations.
2617 cmn_err(CE_CONT,
2618 "?boot: invalid proximity domain structure in MSCT,"
2619 " items are not orginized in ascending order.\n");
2620 return (NULL);
2624 * If ProcessorCapacity is 0 then there would be no CPUs in this
2625 * domain.
2627 if (item->ProcessorCapacity != 0) {
2628 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2629 item->ProcessorCapacity;
2632 last_seen = item->RangeEnd - item->RangeStart + 1;
2634 * Break out if all proximity domains have been processed.
2635 * Some BIOSes may have unused items at the end of MSCT table.
2637 if (last_seen > tp->MaxProximityDomains) {
2638 break;
2641 if (last_seen != tp->MaxProximityDomains + 1) {
2642 cmn_err(CE_CONT,
2643 "?boot: invalid proximity domain structure in MSCT, "
2644 "proximity domain count doesn't match.\n");
2645 return (NULL);
2649 * Set plat-max-ncpus property if it hasn't been set yet.
2651 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2652 if (proc_num != 0) {
2653 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2658 * Use Maximum Physical Address from the MSCT table as upper limit for
2659 * memory hot-adding by default. It may be overridden by value from
2660 * the SRAT table or the "plat-dr-physmax" boot option.
2662 plat_dr_physmax = btop(tp->MaxAddress + 1);
2665 * Existence of MSCT implies CPU/memory hotplug-capability for the
2666 * platform.
2668 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2669 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2671 return (tp);
2674 #else /* __xpv */
2675 static void
2676 enumerate_xen_cpus()
2678 processorid_t id, max_id;
2681 * User-set boot-ncpus overrides enumeration
2683 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2684 return;
2687 * Probe every possible virtual CPU id and remember the
2688 * highest id present; the count of CPUs is one greater
2689 * than this. This tacitly assumes at least cpu 0 is present.
2691 max_id = 0;
2692 for (id = 0; id < MAX_VIRT_CPUS; id++)
2693 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2694 max_id = id;
2696 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2699 #endif /* __xpv */
2701 /*ARGSUSED*/
2702 static void
2703 build_firmware_properties(struct xboot_info *xbp)
2705 ACPI_TABLE_HEADER *tp = NULL;
2707 #ifndef __xpv
2708 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2709 bsetprops("efi-systype", "64");
2710 bsetprop64("efi-systab",
2711 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2712 if (kbm_debug)
2713 bop_printf(NULL, "64-bit UEFI detected.\n");
2714 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2715 bsetprops("efi-systype", "32");
2716 bsetprop64("efi-systab",
2717 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2718 if (kbm_debug)
2719 bop_printf(NULL, "32-bit UEFI detected.\n");
2722 if (xbp->bi_acpi_rsdp != NULL) {
2723 bsetprop64("acpi-root-tab",
2724 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2727 if (xbp->bi_smbios != NULL) {
2728 bsetprop64("smbios-address",
2729 (uint64_t)(uintptr_t)xbp->bi_smbios);
2732 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2733 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2734 else
2735 msct_ptr = NULL;
2737 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2738 process_madt((ACPI_TABLE_MADT *)tp);
2740 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2741 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2742 process_srat(srat_ptr);
2744 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2745 process_slit(slit_ptr);
2747 tp = find_fw_table(ACPI_SIG_MCFG);
2748 #else /* __xpv */
2749 enumerate_xen_cpus();
2750 if (DOMAIN_IS_INITDOMAIN(xen_info))
2751 tp = find_fw_table(ACPI_SIG_MCFG);
2752 #endif /* __xpv */
2753 if (tp != NULL)
2754 process_mcfg((ACPI_TABLE_MCFG *)tp);
2758 * fake up a boot property for deferred early console output
2759 * this is used by both graphical boot and the (developer only)
2760 * USB serial console
2762 void *
2763 defcons_init(size_t size)
2765 static char *p = NULL;
2767 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2768 *p = 0;
2769 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2770 &p, sizeof (p));
2771 return (p);
2774 /*ARGSUSED*/
2776 boot_compinfo(int fd, struct compinfo *cbp)
2778 cbp->iscmp = 0;
2779 cbp->blksize = MAXBSIZE;
2780 return (0);
2783 #define BP_MAX_STRLEN 32
2786 * Get value for given boot property
2789 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2791 int boot_prop_len;
2792 char str[BP_MAX_STRLEN];
2793 u_longlong_t value;
2795 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2796 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2797 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2798 kobj_getvalue(str, &value) == -1)
2799 return (-1);
2801 if (prop_value)
2802 *prop_value = value;
2804 return (0);