5960 zfs recv should prefetch indirect blocks
[unleashed.git] / usr / src / uts / common / fs / zfs / dbuf.c
blob623d57ab4404e60b08c3009185927c8253ba4a27
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
49 * Number of times that zfs_free_range() took the slow path while doing
50 * a zfs receive. A nonzero value indicates a potential performance problem.
52 uint64_t zfs_free_range_recv_miss;
54 static void dbuf_destroy(dmu_buf_impl_t *db);
55 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
56 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58 #ifndef __lint
59 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
60 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
61 #endif /* ! __lint */
64 * Global data structures and functions for the dbuf cache.
66 static kmem_cache_t *dbuf_cache;
67 static taskq_t *dbu_evict_taskq;
69 /* ARGSUSED */
70 static int
71 dbuf_cons(void *vdb, void *unused, int kmflag)
73 dmu_buf_impl_t *db = vdb;
74 bzero(db, sizeof (dmu_buf_impl_t));
76 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
77 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
78 refcount_create(&db->db_holds);
80 return (0);
83 /* ARGSUSED */
84 static void
85 dbuf_dest(void *vdb, void *unused)
87 dmu_buf_impl_t *db = vdb;
88 mutex_destroy(&db->db_mtx);
89 cv_destroy(&db->db_changed);
90 refcount_destroy(&db->db_holds);
94 * dbuf hash table routines
96 static dbuf_hash_table_t dbuf_hash_table;
98 static uint64_t dbuf_hash_count;
100 static uint64_t
101 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
103 uintptr_t osv = (uintptr_t)os;
104 uint64_t crc = -1ULL;
106 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
107 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
108 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
109 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
110 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
111 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
112 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
114 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
116 return (crc);
119 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
121 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
122 ((dbuf)->db.db_object == (obj) && \
123 (dbuf)->db_objset == (os) && \
124 (dbuf)->db_level == (level) && \
125 (dbuf)->db_blkid == (blkid))
127 dmu_buf_impl_t *
128 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
130 dbuf_hash_table_t *h = &dbuf_hash_table;
131 uint64_t hv = DBUF_HASH(os, obj, level, blkid);
132 uint64_t idx = hv & h->hash_table_mask;
133 dmu_buf_impl_t *db;
135 mutex_enter(DBUF_HASH_MUTEX(h, idx));
136 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
137 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
138 mutex_enter(&db->db_mtx);
139 if (db->db_state != DB_EVICTING) {
140 mutex_exit(DBUF_HASH_MUTEX(h, idx));
141 return (db);
143 mutex_exit(&db->db_mtx);
146 mutex_exit(DBUF_HASH_MUTEX(h, idx));
147 return (NULL);
150 static dmu_buf_impl_t *
151 dbuf_find_bonus(objset_t *os, uint64_t object)
153 dnode_t *dn;
154 dmu_buf_impl_t *db = NULL;
156 if (dnode_hold(os, object, FTAG, &dn) == 0) {
157 rw_enter(&dn->dn_struct_rwlock, RW_READER);
158 if (dn->dn_bonus != NULL) {
159 db = dn->dn_bonus;
160 mutex_enter(&db->db_mtx);
162 rw_exit(&dn->dn_struct_rwlock);
163 dnode_rele(dn, FTAG);
165 return (db);
169 * Insert an entry into the hash table. If there is already an element
170 * equal to elem in the hash table, then the already existing element
171 * will be returned and the new element will not be inserted.
172 * Otherwise returns NULL.
174 static dmu_buf_impl_t *
175 dbuf_hash_insert(dmu_buf_impl_t *db)
177 dbuf_hash_table_t *h = &dbuf_hash_table;
178 objset_t *os = db->db_objset;
179 uint64_t obj = db->db.db_object;
180 int level = db->db_level;
181 uint64_t blkid = db->db_blkid;
182 uint64_t hv = DBUF_HASH(os, obj, level, blkid);
183 uint64_t idx = hv & h->hash_table_mask;
184 dmu_buf_impl_t *dbf;
186 mutex_enter(DBUF_HASH_MUTEX(h, idx));
187 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
188 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
189 mutex_enter(&dbf->db_mtx);
190 if (dbf->db_state != DB_EVICTING) {
191 mutex_exit(DBUF_HASH_MUTEX(h, idx));
192 return (dbf);
194 mutex_exit(&dbf->db_mtx);
198 mutex_enter(&db->db_mtx);
199 db->db_hash_next = h->hash_table[idx];
200 h->hash_table[idx] = db;
201 mutex_exit(DBUF_HASH_MUTEX(h, idx));
202 atomic_inc_64(&dbuf_hash_count);
204 return (NULL);
208 * Remove an entry from the hash table. It must be in the EVICTING state.
210 static void
211 dbuf_hash_remove(dmu_buf_impl_t *db)
213 dbuf_hash_table_t *h = &dbuf_hash_table;
214 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
215 db->db_level, db->db_blkid);
216 uint64_t idx = hv & h->hash_table_mask;
217 dmu_buf_impl_t *dbf, **dbp;
220 * We musn't hold db_mtx to maintain lock ordering:
221 * DBUF_HASH_MUTEX > db_mtx.
223 ASSERT(refcount_is_zero(&db->db_holds));
224 ASSERT(db->db_state == DB_EVICTING);
225 ASSERT(!MUTEX_HELD(&db->db_mtx));
227 mutex_enter(DBUF_HASH_MUTEX(h, idx));
228 dbp = &h->hash_table[idx];
229 while ((dbf = *dbp) != db) {
230 dbp = &dbf->db_hash_next;
231 ASSERT(dbf != NULL);
233 *dbp = db->db_hash_next;
234 db->db_hash_next = NULL;
235 mutex_exit(DBUF_HASH_MUTEX(h, idx));
236 atomic_dec_64(&dbuf_hash_count);
239 static arc_evict_func_t dbuf_do_evict;
241 typedef enum {
242 DBVU_EVICTING,
243 DBVU_NOT_EVICTING
244 } dbvu_verify_type_t;
246 static void
247 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
249 #ifdef ZFS_DEBUG
250 int64_t holds;
252 if (db->db_user == NULL)
253 return;
255 /* Only data blocks support the attachment of user data. */
256 ASSERT(db->db_level == 0);
258 /* Clients must resolve a dbuf before attaching user data. */
259 ASSERT(db->db.db_data != NULL);
260 ASSERT3U(db->db_state, ==, DB_CACHED);
262 holds = refcount_count(&db->db_holds);
263 if (verify_type == DBVU_EVICTING) {
265 * Immediate eviction occurs when holds == dirtycnt.
266 * For normal eviction buffers, holds is zero on
267 * eviction, except when dbuf_fix_old_data() calls
268 * dbuf_clear_data(). However, the hold count can grow
269 * during eviction even though db_mtx is held (see
270 * dmu_bonus_hold() for an example), so we can only
271 * test the generic invariant that holds >= dirtycnt.
273 ASSERT3U(holds, >=, db->db_dirtycnt);
274 } else {
275 if (db->db_immediate_evict == TRUE)
276 ASSERT3U(holds, >=, db->db_dirtycnt);
277 else
278 ASSERT3U(holds, >, 0);
280 #endif
283 static void
284 dbuf_evict_user(dmu_buf_impl_t *db)
286 dmu_buf_user_t *dbu = db->db_user;
288 ASSERT(MUTEX_HELD(&db->db_mtx));
290 if (dbu == NULL)
291 return;
293 dbuf_verify_user(db, DBVU_EVICTING);
294 db->db_user = NULL;
296 #ifdef ZFS_DEBUG
297 if (dbu->dbu_clear_on_evict_dbufp != NULL)
298 *dbu->dbu_clear_on_evict_dbufp = NULL;
299 #endif
302 * Invoke the callback from a taskq to avoid lock order reversals
303 * and limit stack depth.
305 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
306 &dbu->dbu_tqent);
309 boolean_t
310 dbuf_is_metadata(dmu_buf_impl_t *db)
312 if (db->db_level > 0) {
313 return (B_TRUE);
314 } else {
315 boolean_t is_metadata;
317 DB_DNODE_ENTER(db);
318 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
319 DB_DNODE_EXIT(db);
321 return (is_metadata);
325 void
326 dbuf_evict(dmu_buf_impl_t *db)
328 ASSERT(MUTEX_HELD(&db->db_mtx));
329 ASSERT(db->db_buf == NULL);
330 ASSERT(db->db_data_pending == NULL);
332 dbuf_clear(db);
333 dbuf_destroy(db);
336 void
337 dbuf_init(void)
339 uint64_t hsize = 1ULL << 16;
340 dbuf_hash_table_t *h = &dbuf_hash_table;
341 int i;
344 * The hash table is big enough to fill all of physical memory
345 * with an average 4K block size. The table will take up
346 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
348 while (hsize * 4096 < physmem * PAGESIZE)
349 hsize <<= 1;
351 retry:
352 h->hash_table_mask = hsize - 1;
353 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
354 if (h->hash_table == NULL) {
355 /* XXX - we should really return an error instead of assert */
356 ASSERT(hsize > (1ULL << 10));
357 hsize >>= 1;
358 goto retry;
361 dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
362 sizeof (dmu_buf_impl_t),
363 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
365 for (i = 0; i < DBUF_MUTEXES; i++)
366 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
369 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
370 * configuration is not required.
372 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
375 void
376 dbuf_fini(void)
378 dbuf_hash_table_t *h = &dbuf_hash_table;
379 int i;
381 for (i = 0; i < DBUF_MUTEXES; i++)
382 mutex_destroy(&h->hash_mutexes[i]);
383 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
384 kmem_cache_destroy(dbuf_cache);
385 taskq_destroy(dbu_evict_taskq);
389 * Other stuff.
392 #ifdef ZFS_DEBUG
393 static void
394 dbuf_verify(dmu_buf_impl_t *db)
396 dnode_t *dn;
397 dbuf_dirty_record_t *dr;
399 ASSERT(MUTEX_HELD(&db->db_mtx));
401 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
402 return;
404 ASSERT(db->db_objset != NULL);
405 DB_DNODE_ENTER(db);
406 dn = DB_DNODE(db);
407 if (dn == NULL) {
408 ASSERT(db->db_parent == NULL);
409 ASSERT(db->db_blkptr == NULL);
410 } else {
411 ASSERT3U(db->db.db_object, ==, dn->dn_object);
412 ASSERT3P(db->db_objset, ==, dn->dn_objset);
413 ASSERT3U(db->db_level, <, dn->dn_nlevels);
414 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
415 db->db_blkid == DMU_SPILL_BLKID ||
416 !avl_is_empty(&dn->dn_dbufs));
418 if (db->db_blkid == DMU_BONUS_BLKID) {
419 ASSERT(dn != NULL);
420 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
421 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
422 } else if (db->db_blkid == DMU_SPILL_BLKID) {
423 ASSERT(dn != NULL);
424 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
425 ASSERT0(db->db.db_offset);
426 } else {
427 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
430 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
431 ASSERT(dr->dr_dbuf == db);
433 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
434 ASSERT(dr->dr_dbuf == db);
437 * We can't assert that db_size matches dn_datablksz because it
438 * can be momentarily different when another thread is doing
439 * dnode_set_blksz().
441 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
442 dr = db->db_data_pending;
444 * It should only be modified in syncing context, so
445 * make sure we only have one copy of the data.
447 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
450 /* verify db->db_blkptr */
451 if (db->db_blkptr) {
452 if (db->db_parent == dn->dn_dbuf) {
453 /* db is pointed to by the dnode */
454 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
455 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
456 ASSERT(db->db_parent == NULL);
457 else
458 ASSERT(db->db_parent != NULL);
459 if (db->db_blkid != DMU_SPILL_BLKID)
460 ASSERT3P(db->db_blkptr, ==,
461 &dn->dn_phys->dn_blkptr[db->db_blkid]);
462 } else {
463 /* db is pointed to by an indirect block */
464 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
465 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
466 ASSERT3U(db->db_parent->db.db_object, ==,
467 db->db.db_object);
469 * dnode_grow_indblksz() can make this fail if we don't
470 * have the struct_rwlock. XXX indblksz no longer
471 * grows. safe to do this now?
473 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
474 ASSERT3P(db->db_blkptr, ==,
475 ((blkptr_t *)db->db_parent->db.db_data +
476 db->db_blkid % epb));
480 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
481 (db->db_buf == NULL || db->db_buf->b_data) &&
482 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
483 db->db_state != DB_FILL && !dn->dn_free_txg) {
485 * If the blkptr isn't set but they have nonzero data,
486 * it had better be dirty, otherwise we'll lose that
487 * data when we evict this buffer.
489 if (db->db_dirtycnt == 0) {
490 uint64_t *buf = db->db.db_data;
491 int i;
493 for (i = 0; i < db->db.db_size >> 3; i++) {
494 ASSERT(buf[i] == 0);
498 DB_DNODE_EXIT(db);
500 #endif
502 static void
503 dbuf_clear_data(dmu_buf_impl_t *db)
505 ASSERT(MUTEX_HELD(&db->db_mtx));
506 dbuf_evict_user(db);
507 db->db_buf = NULL;
508 db->db.db_data = NULL;
509 if (db->db_state != DB_NOFILL)
510 db->db_state = DB_UNCACHED;
513 static void
514 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
516 ASSERT(MUTEX_HELD(&db->db_mtx));
517 ASSERT(buf != NULL);
519 db->db_buf = buf;
520 ASSERT(buf->b_data != NULL);
521 db->db.db_data = buf->b_data;
522 if (!arc_released(buf))
523 arc_set_callback(buf, dbuf_do_evict, db);
527 * Loan out an arc_buf for read. Return the loaned arc_buf.
529 arc_buf_t *
530 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
532 arc_buf_t *abuf;
534 mutex_enter(&db->db_mtx);
535 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
536 int blksz = db->db.db_size;
537 spa_t *spa = db->db_objset->os_spa;
539 mutex_exit(&db->db_mtx);
540 abuf = arc_loan_buf(spa, blksz);
541 bcopy(db->db.db_data, abuf->b_data, blksz);
542 } else {
543 abuf = db->db_buf;
544 arc_loan_inuse_buf(abuf, db);
545 dbuf_clear_data(db);
546 mutex_exit(&db->db_mtx);
548 return (abuf);
552 * Calculate which level n block references the data at the level 0 offset
553 * provided.
555 uint64_t
556 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
558 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
560 * The level n blkid is equal to the level 0 blkid divided by
561 * the number of level 0s in a level n block.
563 * The level 0 blkid is offset >> datablkshift =
564 * offset / 2^datablkshift.
566 * The number of level 0s in a level n is the number of block
567 * pointers in an indirect block, raised to the power of level.
568 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
569 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
571 * Thus, the level n blkid is: offset /
572 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
573 * = offset / 2^(datablkshift + level *
574 * (indblkshift - SPA_BLKPTRSHIFT))
575 * = offset >> (datablkshift + level *
576 * (indblkshift - SPA_BLKPTRSHIFT))
578 return (offset >> (dn->dn_datablkshift + level *
579 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
580 } else {
581 ASSERT3U(offset, <, dn->dn_datablksz);
582 return (0);
586 static void
587 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
589 dmu_buf_impl_t *db = vdb;
591 mutex_enter(&db->db_mtx);
592 ASSERT3U(db->db_state, ==, DB_READ);
594 * All reads are synchronous, so we must have a hold on the dbuf
596 ASSERT(refcount_count(&db->db_holds) > 0);
597 ASSERT(db->db_buf == NULL);
598 ASSERT(db->db.db_data == NULL);
599 if (db->db_level == 0 && db->db_freed_in_flight) {
600 /* we were freed in flight; disregard any error */
601 arc_release(buf, db);
602 bzero(buf->b_data, db->db.db_size);
603 arc_buf_freeze(buf);
604 db->db_freed_in_flight = FALSE;
605 dbuf_set_data(db, buf);
606 db->db_state = DB_CACHED;
607 } else if (zio == NULL || zio->io_error == 0) {
608 dbuf_set_data(db, buf);
609 db->db_state = DB_CACHED;
610 } else {
611 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
612 ASSERT3P(db->db_buf, ==, NULL);
613 VERIFY(arc_buf_remove_ref(buf, db));
614 db->db_state = DB_UNCACHED;
616 cv_broadcast(&db->db_changed);
617 dbuf_rele_and_unlock(db, NULL);
620 static void
621 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
623 dnode_t *dn;
624 zbookmark_phys_t zb;
625 arc_flags_t aflags = ARC_FLAG_NOWAIT;
627 DB_DNODE_ENTER(db);
628 dn = DB_DNODE(db);
629 ASSERT(!refcount_is_zero(&db->db_holds));
630 /* We need the struct_rwlock to prevent db_blkptr from changing. */
631 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
632 ASSERT(MUTEX_HELD(&db->db_mtx));
633 ASSERT(db->db_state == DB_UNCACHED);
634 ASSERT(db->db_buf == NULL);
636 if (db->db_blkid == DMU_BONUS_BLKID) {
637 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
639 ASSERT3U(bonuslen, <=, db->db.db_size);
640 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
641 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
642 if (bonuslen < DN_MAX_BONUSLEN)
643 bzero(db->db.db_data, DN_MAX_BONUSLEN);
644 if (bonuslen)
645 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
646 DB_DNODE_EXIT(db);
647 db->db_state = DB_CACHED;
648 mutex_exit(&db->db_mtx);
649 return;
653 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
654 * processes the delete record and clears the bp while we are waiting
655 * for the dn_mtx (resulting in a "no" from block_freed).
657 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
658 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
659 BP_IS_HOLE(db->db_blkptr)))) {
660 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
662 DB_DNODE_EXIT(db);
663 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
664 db->db.db_size, db, type));
665 bzero(db->db.db_data, db->db.db_size);
666 db->db_state = DB_CACHED;
667 *flags |= DB_RF_CACHED;
668 mutex_exit(&db->db_mtx);
669 return;
672 DB_DNODE_EXIT(db);
674 db->db_state = DB_READ;
675 mutex_exit(&db->db_mtx);
677 if (DBUF_IS_L2CACHEABLE(db))
678 aflags |= ARC_FLAG_L2CACHE;
679 if (DBUF_IS_L2COMPRESSIBLE(db))
680 aflags |= ARC_FLAG_L2COMPRESS;
682 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
683 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
684 db->db.db_object, db->db_level, db->db_blkid);
686 dbuf_add_ref(db, NULL);
688 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
689 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
690 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
691 &aflags, &zb);
692 if (aflags & ARC_FLAG_CACHED)
693 *flags |= DB_RF_CACHED;
697 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
699 int err = 0;
700 boolean_t havepzio = (zio != NULL);
701 boolean_t prefetch;
702 dnode_t *dn;
705 * We don't have to hold the mutex to check db_state because it
706 * can't be freed while we have a hold on the buffer.
708 ASSERT(!refcount_is_zero(&db->db_holds));
710 if (db->db_state == DB_NOFILL)
711 return (SET_ERROR(EIO));
713 DB_DNODE_ENTER(db);
714 dn = DB_DNODE(db);
715 if ((flags & DB_RF_HAVESTRUCT) == 0)
716 rw_enter(&dn->dn_struct_rwlock, RW_READER);
718 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
719 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
720 DBUF_IS_CACHEABLE(db);
722 mutex_enter(&db->db_mtx);
723 if (db->db_state == DB_CACHED) {
724 mutex_exit(&db->db_mtx);
725 if (prefetch)
726 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
727 db->db.db_size, TRUE);
728 if ((flags & DB_RF_HAVESTRUCT) == 0)
729 rw_exit(&dn->dn_struct_rwlock);
730 DB_DNODE_EXIT(db);
731 } else if (db->db_state == DB_UNCACHED) {
732 spa_t *spa = dn->dn_objset->os_spa;
734 if (zio == NULL)
735 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
736 dbuf_read_impl(db, zio, &flags);
738 /* dbuf_read_impl has dropped db_mtx for us */
740 if (prefetch)
741 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
742 db->db.db_size, flags & DB_RF_CACHED);
744 if ((flags & DB_RF_HAVESTRUCT) == 0)
745 rw_exit(&dn->dn_struct_rwlock);
746 DB_DNODE_EXIT(db);
748 if (!havepzio)
749 err = zio_wait(zio);
750 } else {
752 * Another reader came in while the dbuf was in flight
753 * between UNCACHED and CACHED. Either a writer will finish
754 * writing the buffer (sending the dbuf to CACHED) or the
755 * first reader's request will reach the read_done callback
756 * and send the dbuf to CACHED. Otherwise, a failure
757 * occurred and the dbuf went to UNCACHED.
759 mutex_exit(&db->db_mtx);
760 if (prefetch)
761 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
762 db->db.db_size, TRUE);
763 if ((flags & DB_RF_HAVESTRUCT) == 0)
764 rw_exit(&dn->dn_struct_rwlock);
765 DB_DNODE_EXIT(db);
767 /* Skip the wait per the caller's request. */
768 mutex_enter(&db->db_mtx);
769 if ((flags & DB_RF_NEVERWAIT) == 0) {
770 while (db->db_state == DB_READ ||
771 db->db_state == DB_FILL) {
772 ASSERT(db->db_state == DB_READ ||
773 (flags & DB_RF_HAVESTRUCT) == 0);
774 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
775 db, zio_t *, zio);
776 cv_wait(&db->db_changed, &db->db_mtx);
778 if (db->db_state == DB_UNCACHED)
779 err = SET_ERROR(EIO);
781 mutex_exit(&db->db_mtx);
784 ASSERT(err || havepzio || db->db_state == DB_CACHED);
785 return (err);
788 static void
789 dbuf_noread(dmu_buf_impl_t *db)
791 ASSERT(!refcount_is_zero(&db->db_holds));
792 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
793 mutex_enter(&db->db_mtx);
794 while (db->db_state == DB_READ || db->db_state == DB_FILL)
795 cv_wait(&db->db_changed, &db->db_mtx);
796 if (db->db_state == DB_UNCACHED) {
797 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
798 spa_t *spa = db->db_objset->os_spa;
800 ASSERT(db->db_buf == NULL);
801 ASSERT(db->db.db_data == NULL);
802 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
803 db->db_state = DB_FILL;
804 } else if (db->db_state == DB_NOFILL) {
805 dbuf_clear_data(db);
806 } else {
807 ASSERT3U(db->db_state, ==, DB_CACHED);
809 mutex_exit(&db->db_mtx);
813 * This is our just-in-time copy function. It makes a copy of
814 * buffers, that have been modified in a previous transaction
815 * group, before we modify them in the current active group.
817 * This function is used in two places: when we are dirtying a
818 * buffer for the first time in a txg, and when we are freeing
819 * a range in a dnode that includes this buffer.
821 * Note that when we are called from dbuf_free_range() we do
822 * not put a hold on the buffer, we just traverse the active
823 * dbuf list for the dnode.
825 static void
826 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
828 dbuf_dirty_record_t *dr = db->db_last_dirty;
830 ASSERT(MUTEX_HELD(&db->db_mtx));
831 ASSERT(db->db.db_data != NULL);
832 ASSERT(db->db_level == 0);
833 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
835 if (dr == NULL ||
836 (dr->dt.dl.dr_data !=
837 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
838 return;
841 * If the last dirty record for this dbuf has not yet synced
842 * and its referencing the dbuf data, either:
843 * reset the reference to point to a new copy,
844 * or (if there a no active holders)
845 * just null out the current db_data pointer.
847 ASSERT(dr->dr_txg >= txg - 2);
848 if (db->db_blkid == DMU_BONUS_BLKID) {
849 /* Note that the data bufs here are zio_bufs */
850 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
851 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
852 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
853 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
854 int size = db->db.db_size;
855 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
856 spa_t *spa = db->db_objset->os_spa;
858 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
859 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
860 } else {
861 dbuf_clear_data(db);
865 void
866 dbuf_unoverride(dbuf_dirty_record_t *dr)
868 dmu_buf_impl_t *db = dr->dr_dbuf;
869 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
870 uint64_t txg = dr->dr_txg;
872 ASSERT(MUTEX_HELD(&db->db_mtx));
873 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
874 ASSERT(db->db_level == 0);
876 if (db->db_blkid == DMU_BONUS_BLKID ||
877 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
878 return;
880 ASSERT(db->db_data_pending != dr);
882 /* free this block */
883 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
884 zio_free(db->db_objset->os_spa, txg, bp);
886 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
887 dr->dt.dl.dr_nopwrite = B_FALSE;
890 * Release the already-written buffer, so we leave it in
891 * a consistent dirty state. Note that all callers are
892 * modifying the buffer, so they will immediately do
893 * another (redundant) arc_release(). Therefore, leave
894 * the buf thawed to save the effort of freezing &
895 * immediately re-thawing it.
897 arc_release(dr->dt.dl.dr_data, db);
901 * Evict (if its unreferenced) or clear (if its referenced) any level-0
902 * data blocks in the free range, so that any future readers will find
903 * empty blocks.
905 * This is a no-op if the dataset is in the middle of an incremental
906 * receive; see comment below for details.
908 void
909 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
910 dmu_tx_t *tx)
912 dmu_buf_impl_t db_search;
913 dmu_buf_impl_t *db, *db_next;
914 uint64_t txg = tx->tx_txg;
915 avl_index_t where;
917 if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
918 end_blkid = dn->dn_maxblkid;
919 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
921 db_search.db_level = 0;
922 db_search.db_blkid = start_blkid;
923 db_search.db_state = DB_SEARCH;
925 mutex_enter(&dn->dn_dbufs_mtx);
926 if (start_blkid >= dn->dn_unlisted_l0_blkid) {
927 /* There can't be any dbufs in this range; no need to search. */
928 #ifdef DEBUG
929 db = avl_find(&dn->dn_dbufs, &db_search, &where);
930 ASSERT3P(db, ==, NULL);
931 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
932 ASSERT(db == NULL || db->db_level > 0);
933 #endif
934 mutex_exit(&dn->dn_dbufs_mtx);
935 return;
936 } else if (dmu_objset_is_receiving(dn->dn_objset)) {
938 * If we are receiving, we expect there to be no dbufs in
939 * the range to be freed, because receive modifies each
940 * block at most once, and in offset order. If this is
941 * not the case, it can lead to performance problems,
942 * so note that we unexpectedly took the slow path.
944 atomic_inc_64(&zfs_free_range_recv_miss);
947 db = avl_find(&dn->dn_dbufs, &db_search, &where);
948 ASSERT3P(db, ==, NULL);
949 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
951 for (; db != NULL; db = db_next) {
952 db_next = AVL_NEXT(&dn->dn_dbufs, db);
953 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
955 if (db->db_level != 0 || db->db_blkid > end_blkid) {
956 break;
958 ASSERT3U(db->db_blkid, >=, start_blkid);
960 /* found a level 0 buffer in the range */
961 mutex_enter(&db->db_mtx);
962 if (dbuf_undirty(db, tx)) {
963 /* mutex has been dropped and dbuf destroyed */
964 continue;
967 if (db->db_state == DB_UNCACHED ||
968 db->db_state == DB_NOFILL ||
969 db->db_state == DB_EVICTING) {
970 ASSERT(db->db.db_data == NULL);
971 mutex_exit(&db->db_mtx);
972 continue;
974 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
975 /* will be handled in dbuf_read_done or dbuf_rele */
976 db->db_freed_in_flight = TRUE;
977 mutex_exit(&db->db_mtx);
978 continue;
980 if (refcount_count(&db->db_holds) == 0) {
981 ASSERT(db->db_buf);
982 dbuf_clear(db);
983 continue;
985 /* The dbuf is referenced */
987 if (db->db_last_dirty != NULL) {
988 dbuf_dirty_record_t *dr = db->db_last_dirty;
990 if (dr->dr_txg == txg) {
992 * This buffer is "in-use", re-adjust the file
993 * size to reflect that this buffer may
994 * contain new data when we sync.
996 if (db->db_blkid != DMU_SPILL_BLKID &&
997 db->db_blkid > dn->dn_maxblkid)
998 dn->dn_maxblkid = db->db_blkid;
999 dbuf_unoverride(dr);
1000 } else {
1002 * This dbuf is not dirty in the open context.
1003 * Either uncache it (if its not referenced in
1004 * the open context) or reset its contents to
1005 * empty.
1007 dbuf_fix_old_data(db, txg);
1010 /* clear the contents if its cached */
1011 if (db->db_state == DB_CACHED) {
1012 ASSERT(db->db.db_data != NULL);
1013 arc_release(db->db_buf, db);
1014 bzero(db->db.db_data, db->db.db_size);
1015 arc_buf_freeze(db->db_buf);
1018 mutex_exit(&db->db_mtx);
1020 mutex_exit(&dn->dn_dbufs_mtx);
1023 static int
1024 dbuf_block_freeable(dmu_buf_impl_t *db)
1026 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1027 uint64_t birth_txg = 0;
1030 * We don't need any locking to protect db_blkptr:
1031 * If it's syncing, then db_last_dirty will be set
1032 * so we'll ignore db_blkptr.
1034 * This logic ensures that only block births for
1035 * filled blocks are considered.
1037 ASSERT(MUTEX_HELD(&db->db_mtx));
1038 if (db->db_last_dirty && (db->db_blkptr == NULL ||
1039 !BP_IS_HOLE(db->db_blkptr))) {
1040 birth_txg = db->db_last_dirty->dr_txg;
1041 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1042 birth_txg = db->db_blkptr->blk_birth;
1046 * If this block don't exist or is in a snapshot, it can't be freed.
1047 * Don't pass the bp to dsl_dataset_block_freeable() since we
1048 * are holding the db_mtx lock and might deadlock if we are
1049 * prefetching a dedup-ed block.
1051 if (birth_txg != 0)
1052 return (ds == NULL ||
1053 dsl_dataset_block_freeable(ds, NULL, birth_txg));
1054 else
1055 return (B_FALSE);
1058 void
1059 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1061 arc_buf_t *buf, *obuf;
1062 int osize = db->db.db_size;
1063 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1064 dnode_t *dn;
1066 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1068 DB_DNODE_ENTER(db);
1069 dn = DB_DNODE(db);
1071 /* XXX does *this* func really need the lock? */
1072 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1075 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1076 * is OK, because there can be no other references to the db
1077 * when we are changing its size, so no concurrent DB_FILL can
1078 * be happening.
1081 * XXX we should be doing a dbuf_read, checking the return
1082 * value and returning that up to our callers
1084 dmu_buf_will_dirty(&db->db, tx);
1086 /* create the data buffer for the new block */
1087 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1089 /* copy old block data to the new block */
1090 obuf = db->db_buf;
1091 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1092 /* zero the remainder */
1093 if (size > osize)
1094 bzero((uint8_t *)buf->b_data + osize, size - osize);
1096 mutex_enter(&db->db_mtx);
1097 dbuf_set_data(db, buf);
1098 VERIFY(arc_buf_remove_ref(obuf, db));
1099 db->db.db_size = size;
1101 if (db->db_level == 0) {
1102 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1103 db->db_last_dirty->dt.dl.dr_data = buf;
1105 mutex_exit(&db->db_mtx);
1107 dnode_willuse_space(dn, size-osize, tx);
1108 DB_DNODE_EXIT(db);
1111 void
1112 dbuf_release_bp(dmu_buf_impl_t *db)
1114 objset_t *os = db->db_objset;
1116 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1117 ASSERT(arc_released(os->os_phys_buf) ||
1118 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1119 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1121 (void) arc_release(db->db_buf, db);
1124 dbuf_dirty_record_t *
1125 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1127 dnode_t *dn;
1128 objset_t *os;
1129 dbuf_dirty_record_t **drp, *dr;
1130 int drop_struct_lock = FALSE;
1131 boolean_t do_free_accounting = B_FALSE;
1132 int txgoff = tx->tx_txg & TXG_MASK;
1134 ASSERT(tx->tx_txg != 0);
1135 ASSERT(!refcount_is_zero(&db->db_holds));
1136 DMU_TX_DIRTY_BUF(tx, db);
1138 DB_DNODE_ENTER(db);
1139 dn = DB_DNODE(db);
1141 * Shouldn't dirty a regular buffer in syncing context. Private
1142 * objects may be dirtied in syncing context, but only if they
1143 * were already pre-dirtied in open context.
1145 ASSERT(!dmu_tx_is_syncing(tx) ||
1146 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1147 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1148 dn->dn_objset->os_dsl_dataset == NULL);
1150 * We make this assert for private objects as well, but after we
1151 * check if we're already dirty. They are allowed to re-dirty
1152 * in syncing context.
1154 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1155 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1156 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1158 mutex_enter(&db->db_mtx);
1160 * XXX make this true for indirects too? The problem is that
1161 * transactions created with dmu_tx_create_assigned() from
1162 * syncing context don't bother holding ahead.
1164 ASSERT(db->db_level != 0 ||
1165 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1166 db->db_state == DB_NOFILL);
1168 mutex_enter(&dn->dn_mtx);
1170 * Don't set dirtyctx to SYNC if we're just modifying this as we
1171 * initialize the objset.
1173 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1174 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1175 dn->dn_dirtyctx =
1176 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1177 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1178 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1180 mutex_exit(&dn->dn_mtx);
1182 if (db->db_blkid == DMU_SPILL_BLKID)
1183 dn->dn_have_spill = B_TRUE;
1186 * If this buffer is already dirty, we're done.
1188 drp = &db->db_last_dirty;
1189 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1190 db->db.db_object == DMU_META_DNODE_OBJECT);
1191 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1192 drp = &dr->dr_next;
1193 if (dr && dr->dr_txg == tx->tx_txg) {
1194 DB_DNODE_EXIT(db);
1196 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1198 * If this buffer has already been written out,
1199 * we now need to reset its state.
1201 dbuf_unoverride(dr);
1202 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1203 db->db_state != DB_NOFILL)
1204 arc_buf_thaw(db->db_buf);
1206 mutex_exit(&db->db_mtx);
1207 return (dr);
1211 * Only valid if not already dirty.
1213 ASSERT(dn->dn_object == 0 ||
1214 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1215 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1217 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1218 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1219 dn->dn_phys->dn_nlevels > db->db_level ||
1220 dn->dn_next_nlevels[txgoff] > db->db_level ||
1221 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1222 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1225 * We should only be dirtying in syncing context if it's the
1226 * mos or we're initializing the os or it's a special object.
1227 * However, we are allowed to dirty in syncing context provided
1228 * we already dirtied it in open context. Hence we must make
1229 * this assertion only if we're not already dirty.
1231 os = dn->dn_objset;
1232 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1233 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1234 ASSERT(db->db.db_size != 0);
1236 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1238 if (db->db_blkid != DMU_BONUS_BLKID) {
1240 * Update the accounting.
1241 * Note: we delay "free accounting" until after we drop
1242 * the db_mtx. This keeps us from grabbing other locks
1243 * (and possibly deadlocking) in bp_get_dsize() while
1244 * also holding the db_mtx.
1246 dnode_willuse_space(dn, db->db.db_size, tx);
1247 do_free_accounting = dbuf_block_freeable(db);
1251 * If this buffer is dirty in an old transaction group we need
1252 * to make a copy of it so that the changes we make in this
1253 * transaction group won't leak out when we sync the older txg.
1255 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1256 if (db->db_level == 0) {
1257 void *data_old = db->db_buf;
1259 if (db->db_state != DB_NOFILL) {
1260 if (db->db_blkid == DMU_BONUS_BLKID) {
1261 dbuf_fix_old_data(db, tx->tx_txg);
1262 data_old = db->db.db_data;
1263 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1265 * Release the data buffer from the cache so
1266 * that we can modify it without impacting
1267 * possible other users of this cached data
1268 * block. Note that indirect blocks and
1269 * private objects are not released until the
1270 * syncing state (since they are only modified
1271 * then).
1273 arc_release(db->db_buf, db);
1274 dbuf_fix_old_data(db, tx->tx_txg);
1275 data_old = db->db_buf;
1277 ASSERT(data_old != NULL);
1279 dr->dt.dl.dr_data = data_old;
1280 } else {
1281 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1282 list_create(&dr->dt.di.dr_children,
1283 sizeof (dbuf_dirty_record_t),
1284 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1286 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1287 dr->dr_accounted = db->db.db_size;
1288 dr->dr_dbuf = db;
1289 dr->dr_txg = tx->tx_txg;
1290 dr->dr_next = *drp;
1291 *drp = dr;
1294 * We could have been freed_in_flight between the dbuf_noread
1295 * and dbuf_dirty. We win, as though the dbuf_noread() had
1296 * happened after the free.
1298 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1299 db->db_blkid != DMU_SPILL_BLKID) {
1300 mutex_enter(&dn->dn_mtx);
1301 if (dn->dn_free_ranges[txgoff] != NULL) {
1302 range_tree_clear(dn->dn_free_ranges[txgoff],
1303 db->db_blkid, 1);
1305 mutex_exit(&dn->dn_mtx);
1306 db->db_freed_in_flight = FALSE;
1310 * This buffer is now part of this txg
1312 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1313 db->db_dirtycnt += 1;
1314 ASSERT3U(db->db_dirtycnt, <=, 3);
1316 mutex_exit(&db->db_mtx);
1318 if (db->db_blkid == DMU_BONUS_BLKID ||
1319 db->db_blkid == DMU_SPILL_BLKID) {
1320 mutex_enter(&dn->dn_mtx);
1321 ASSERT(!list_link_active(&dr->dr_dirty_node));
1322 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1323 mutex_exit(&dn->dn_mtx);
1324 dnode_setdirty(dn, tx);
1325 DB_DNODE_EXIT(db);
1326 return (dr);
1327 } else if (do_free_accounting) {
1328 blkptr_t *bp = db->db_blkptr;
1329 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1330 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1332 * This is only a guess -- if the dbuf is dirty
1333 * in a previous txg, we don't know how much
1334 * space it will use on disk yet. We should
1335 * really have the struct_rwlock to access
1336 * db_blkptr, but since this is just a guess,
1337 * it's OK if we get an odd answer.
1339 ddt_prefetch(os->os_spa, bp);
1340 dnode_willuse_space(dn, -willfree, tx);
1343 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1344 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1345 drop_struct_lock = TRUE;
1348 if (db->db_level == 0) {
1349 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1350 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1353 if (db->db_level+1 < dn->dn_nlevels) {
1354 dmu_buf_impl_t *parent = db->db_parent;
1355 dbuf_dirty_record_t *di;
1356 int parent_held = FALSE;
1358 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1359 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1361 parent = dbuf_hold_level(dn, db->db_level+1,
1362 db->db_blkid >> epbs, FTAG);
1363 ASSERT(parent != NULL);
1364 parent_held = TRUE;
1366 if (drop_struct_lock)
1367 rw_exit(&dn->dn_struct_rwlock);
1368 ASSERT3U(db->db_level+1, ==, parent->db_level);
1369 di = dbuf_dirty(parent, tx);
1370 if (parent_held)
1371 dbuf_rele(parent, FTAG);
1373 mutex_enter(&db->db_mtx);
1375 * Since we've dropped the mutex, it's possible that
1376 * dbuf_undirty() might have changed this out from under us.
1378 if (db->db_last_dirty == dr ||
1379 dn->dn_object == DMU_META_DNODE_OBJECT) {
1380 mutex_enter(&di->dt.di.dr_mtx);
1381 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1382 ASSERT(!list_link_active(&dr->dr_dirty_node));
1383 list_insert_tail(&di->dt.di.dr_children, dr);
1384 mutex_exit(&di->dt.di.dr_mtx);
1385 dr->dr_parent = di;
1387 mutex_exit(&db->db_mtx);
1388 } else {
1389 ASSERT(db->db_level+1 == dn->dn_nlevels);
1390 ASSERT(db->db_blkid < dn->dn_nblkptr);
1391 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1392 mutex_enter(&dn->dn_mtx);
1393 ASSERT(!list_link_active(&dr->dr_dirty_node));
1394 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1395 mutex_exit(&dn->dn_mtx);
1396 if (drop_struct_lock)
1397 rw_exit(&dn->dn_struct_rwlock);
1400 dnode_setdirty(dn, tx);
1401 DB_DNODE_EXIT(db);
1402 return (dr);
1406 * Undirty a buffer in the transaction group referenced by the given
1407 * transaction. Return whether this evicted the dbuf.
1409 static boolean_t
1410 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1412 dnode_t *dn;
1413 uint64_t txg = tx->tx_txg;
1414 dbuf_dirty_record_t *dr, **drp;
1416 ASSERT(txg != 0);
1419 * Due to our use of dn_nlevels below, this can only be called
1420 * in open context, unless we are operating on the MOS.
1421 * From syncing context, dn_nlevels may be different from the
1422 * dn_nlevels used when dbuf was dirtied.
1424 ASSERT(db->db_objset ==
1425 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1426 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1427 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1428 ASSERT0(db->db_level);
1429 ASSERT(MUTEX_HELD(&db->db_mtx));
1432 * If this buffer is not dirty, we're done.
1434 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1435 if (dr->dr_txg <= txg)
1436 break;
1437 if (dr == NULL || dr->dr_txg < txg)
1438 return (B_FALSE);
1439 ASSERT(dr->dr_txg == txg);
1440 ASSERT(dr->dr_dbuf == db);
1442 DB_DNODE_ENTER(db);
1443 dn = DB_DNODE(db);
1445 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1447 ASSERT(db->db.db_size != 0);
1449 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1450 dr->dr_accounted, txg);
1452 *drp = dr->dr_next;
1455 * Note that there are three places in dbuf_dirty()
1456 * where this dirty record may be put on a list.
1457 * Make sure to do a list_remove corresponding to
1458 * every one of those list_insert calls.
1460 if (dr->dr_parent) {
1461 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1462 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1463 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1464 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1465 db->db_level + 1 == dn->dn_nlevels) {
1466 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1467 mutex_enter(&dn->dn_mtx);
1468 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1469 mutex_exit(&dn->dn_mtx);
1471 DB_DNODE_EXIT(db);
1473 if (db->db_state != DB_NOFILL) {
1474 dbuf_unoverride(dr);
1476 ASSERT(db->db_buf != NULL);
1477 ASSERT(dr->dt.dl.dr_data != NULL);
1478 if (dr->dt.dl.dr_data != db->db_buf)
1479 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1482 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1484 ASSERT(db->db_dirtycnt > 0);
1485 db->db_dirtycnt -= 1;
1487 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1488 arc_buf_t *buf = db->db_buf;
1490 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1491 dbuf_clear_data(db);
1492 VERIFY(arc_buf_remove_ref(buf, db));
1493 dbuf_evict(db);
1494 return (B_TRUE);
1497 return (B_FALSE);
1500 void
1501 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1503 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1504 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1506 ASSERT(tx->tx_txg != 0);
1507 ASSERT(!refcount_is_zero(&db->db_holds));
1509 DB_DNODE_ENTER(db);
1510 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1511 rf |= DB_RF_HAVESTRUCT;
1512 DB_DNODE_EXIT(db);
1513 (void) dbuf_read(db, NULL, rf);
1514 (void) dbuf_dirty(db, tx);
1517 void
1518 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1520 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1522 db->db_state = DB_NOFILL;
1524 dmu_buf_will_fill(db_fake, tx);
1527 void
1528 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1530 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1532 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1533 ASSERT(tx->tx_txg != 0);
1534 ASSERT(db->db_level == 0);
1535 ASSERT(!refcount_is_zero(&db->db_holds));
1537 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1538 dmu_tx_private_ok(tx));
1540 dbuf_noread(db);
1541 (void) dbuf_dirty(db, tx);
1544 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1545 /* ARGSUSED */
1546 void
1547 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1549 mutex_enter(&db->db_mtx);
1550 DBUF_VERIFY(db);
1552 if (db->db_state == DB_FILL) {
1553 if (db->db_level == 0 && db->db_freed_in_flight) {
1554 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1555 /* we were freed while filling */
1556 /* XXX dbuf_undirty? */
1557 bzero(db->db.db_data, db->db.db_size);
1558 db->db_freed_in_flight = FALSE;
1560 db->db_state = DB_CACHED;
1561 cv_broadcast(&db->db_changed);
1563 mutex_exit(&db->db_mtx);
1566 void
1567 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1568 bp_embedded_type_t etype, enum zio_compress comp,
1569 int uncompressed_size, int compressed_size, int byteorder,
1570 dmu_tx_t *tx)
1572 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1573 struct dirty_leaf *dl;
1574 dmu_object_type_t type;
1576 DB_DNODE_ENTER(db);
1577 type = DB_DNODE(db)->dn_type;
1578 DB_DNODE_EXIT(db);
1580 ASSERT0(db->db_level);
1581 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1583 dmu_buf_will_not_fill(dbuf, tx);
1585 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1586 dl = &db->db_last_dirty->dt.dl;
1587 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1588 data, comp, uncompressed_size, compressed_size);
1589 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1590 BP_SET_TYPE(&dl->dr_overridden_by, type);
1591 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1592 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1594 dl->dr_override_state = DR_OVERRIDDEN;
1595 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1599 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1600 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1602 void
1603 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1605 ASSERT(!refcount_is_zero(&db->db_holds));
1606 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1607 ASSERT(db->db_level == 0);
1608 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1609 ASSERT(buf != NULL);
1610 ASSERT(arc_buf_size(buf) == db->db.db_size);
1611 ASSERT(tx->tx_txg != 0);
1613 arc_return_buf(buf, db);
1614 ASSERT(arc_released(buf));
1616 mutex_enter(&db->db_mtx);
1618 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1619 cv_wait(&db->db_changed, &db->db_mtx);
1621 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1623 if (db->db_state == DB_CACHED &&
1624 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1625 mutex_exit(&db->db_mtx);
1626 (void) dbuf_dirty(db, tx);
1627 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1628 VERIFY(arc_buf_remove_ref(buf, db));
1629 xuio_stat_wbuf_copied();
1630 return;
1633 xuio_stat_wbuf_nocopy();
1634 if (db->db_state == DB_CACHED) {
1635 dbuf_dirty_record_t *dr = db->db_last_dirty;
1637 ASSERT(db->db_buf != NULL);
1638 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1639 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1640 if (!arc_released(db->db_buf)) {
1641 ASSERT(dr->dt.dl.dr_override_state ==
1642 DR_OVERRIDDEN);
1643 arc_release(db->db_buf, db);
1645 dr->dt.dl.dr_data = buf;
1646 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1647 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1648 arc_release(db->db_buf, db);
1649 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1651 db->db_buf = NULL;
1653 ASSERT(db->db_buf == NULL);
1654 dbuf_set_data(db, buf);
1655 db->db_state = DB_FILL;
1656 mutex_exit(&db->db_mtx);
1657 (void) dbuf_dirty(db, tx);
1658 dmu_buf_fill_done(&db->db, tx);
1662 * "Clear" the contents of this dbuf. This will mark the dbuf
1663 * EVICTING and clear *most* of its references. Unfortunately,
1664 * when we are not holding the dn_dbufs_mtx, we can't clear the
1665 * entry in the dn_dbufs list. We have to wait until dbuf_destroy()
1666 * in this case. For callers from the DMU we will usually see:
1667 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1668 * For the arc callback, we will usually see:
1669 * dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1670 * Sometimes, though, we will get a mix of these two:
1671 * DMU: dbuf_clear()->arc_clear_callback()
1672 * ARC: dbuf_do_evict()->dbuf_destroy()
1674 * This routine will dissociate the dbuf from the arc, by calling
1675 * arc_clear_callback(), but will not evict the data from the ARC.
1677 void
1678 dbuf_clear(dmu_buf_impl_t *db)
1680 dnode_t *dn;
1681 dmu_buf_impl_t *parent = db->db_parent;
1682 dmu_buf_impl_t *dndb;
1683 boolean_t dbuf_gone = B_FALSE;
1685 ASSERT(MUTEX_HELD(&db->db_mtx));
1686 ASSERT(refcount_is_zero(&db->db_holds));
1688 dbuf_evict_user(db);
1690 if (db->db_state == DB_CACHED) {
1691 ASSERT(db->db.db_data != NULL);
1692 if (db->db_blkid == DMU_BONUS_BLKID) {
1693 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1694 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1696 db->db.db_data = NULL;
1697 db->db_state = DB_UNCACHED;
1700 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1701 ASSERT(db->db_data_pending == NULL);
1703 db->db_state = DB_EVICTING;
1704 db->db_blkptr = NULL;
1706 DB_DNODE_ENTER(db);
1707 dn = DB_DNODE(db);
1708 dndb = dn->dn_dbuf;
1709 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1710 avl_remove(&dn->dn_dbufs, db);
1711 atomic_dec_32(&dn->dn_dbufs_count);
1712 membar_producer();
1713 DB_DNODE_EXIT(db);
1715 * Decrementing the dbuf count means that the hold corresponding
1716 * to the removed dbuf is no longer discounted in dnode_move(),
1717 * so the dnode cannot be moved until after we release the hold.
1718 * The membar_producer() ensures visibility of the decremented
1719 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1720 * release any lock.
1722 dnode_rele(dn, db);
1723 db->db_dnode_handle = NULL;
1724 } else {
1725 DB_DNODE_EXIT(db);
1728 if (db->db_buf)
1729 dbuf_gone = arc_clear_callback(db->db_buf);
1731 if (!dbuf_gone)
1732 mutex_exit(&db->db_mtx);
1735 * If this dbuf is referenced from an indirect dbuf,
1736 * decrement the ref count on the indirect dbuf.
1738 if (parent && parent != dndb)
1739 dbuf_rele(parent, db);
1743 * Note: While bpp will always be updated if the function returns success,
1744 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1745 * this happens when the dnode is the meta-dnode, or a userused or groupused
1746 * object.
1748 static int
1749 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1750 dmu_buf_impl_t **parentp, blkptr_t **bpp)
1752 int nlevels, epbs;
1754 *parentp = NULL;
1755 *bpp = NULL;
1757 ASSERT(blkid != DMU_BONUS_BLKID);
1759 if (blkid == DMU_SPILL_BLKID) {
1760 mutex_enter(&dn->dn_mtx);
1761 if (dn->dn_have_spill &&
1762 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1763 *bpp = &dn->dn_phys->dn_spill;
1764 else
1765 *bpp = NULL;
1766 dbuf_add_ref(dn->dn_dbuf, NULL);
1767 *parentp = dn->dn_dbuf;
1768 mutex_exit(&dn->dn_mtx);
1769 return (0);
1772 if (dn->dn_phys->dn_nlevels == 0)
1773 nlevels = 1;
1774 else
1775 nlevels = dn->dn_phys->dn_nlevels;
1777 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1779 ASSERT3U(level * epbs, <, 64);
1780 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1781 if (level >= nlevels ||
1782 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1783 /* the buffer has no parent yet */
1784 return (SET_ERROR(ENOENT));
1785 } else if (level < nlevels-1) {
1786 /* this block is referenced from an indirect block */
1787 int err = dbuf_hold_impl(dn, level+1,
1788 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1789 if (err)
1790 return (err);
1791 err = dbuf_read(*parentp, NULL,
1792 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1793 if (err) {
1794 dbuf_rele(*parentp, NULL);
1795 *parentp = NULL;
1796 return (err);
1798 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1799 (blkid & ((1ULL << epbs) - 1));
1800 return (0);
1801 } else {
1802 /* the block is referenced from the dnode */
1803 ASSERT3U(level, ==, nlevels-1);
1804 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1805 blkid < dn->dn_phys->dn_nblkptr);
1806 if (dn->dn_dbuf) {
1807 dbuf_add_ref(dn->dn_dbuf, NULL);
1808 *parentp = dn->dn_dbuf;
1810 *bpp = &dn->dn_phys->dn_blkptr[blkid];
1811 return (0);
1815 static dmu_buf_impl_t *
1816 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1817 dmu_buf_impl_t *parent, blkptr_t *blkptr)
1819 objset_t *os = dn->dn_objset;
1820 dmu_buf_impl_t *db, *odb;
1822 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1823 ASSERT(dn->dn_type != DMU_OT_NONE);
1825 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1827 db->db_objset = os;
1828 db->db.db_object = dn->dn_object;
1829 db->db_level = level;
1830 db->db_blkid = blkid;
1831 db->db_last_dirty = NULL;
1832 db->db_dirtycnt = 0;
1833 db->db_dnode_handle = dn->dn_handle;
1834 db->db_parent = parent;
1835 db->db_blkptr = blkptr;
1837 db->db_user = NULL;
1838 db->db_immediate_evict = 0;
1839 db->db_freed_in_flight = 0;
1841 if (blkid == DMU_BONUS_BLKID) {
1842 ASSERT3P(parent, ==, dn->dn_dbuf);
1843 db->db.db_size = DN_MAX_BONUSLEN -
1844 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1845 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1846 db->db.db_offset = DMU_BONUS_BLKID;
1847 db->db_state = DB_UNCACHED;
1848 /* the bonus dbuf is not placed in the hash table */
1849 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1850 return (db);
1851 } else if (blkid == DMU_SPILL_BLKID) {
1852 db->db.db_size = (blkptr != NULL) ?
1853 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1854 db->db.db_offset = 0;
1855 } else {
1856 int blocksize =
1857 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1858 db->db.db_size = blocksize;
1859 db->db.db_offset = db->db_blkid * blocksize;
1863 * Hold the dn_dbufs_mtx while we get the new dbuf
1864 * in the hash table *and* added to the dbufs list.
1865 * This prevents a possible deadlock with someone
1866 * trying to look up this dbuf before its added to the
1867 * dn_dbufs list.
1869 mutex_enter(&dn->dn_dbufs_mtx);
1870 db->db_state = DB_EVICTING;
1871 if ((odb = dbuf_hash_insert(db)) != NULL) {
1872 /* someone else inserted it first */
1873 kmem_cache_free(dbuf_cache, db);
1874 mutex_exit(&dn->dn_dbufs_mtx);
1875 return (odb);
1877 avl_add(&dn->dn_dbufs, db);
1878 if (db->db_level == 0 && db->db_blkid >=
1879 dn->dn_unlisted_l0_blkid)
1880 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1881 db->db_state = DB_UNCACHED;
1882 mutex_exit(&dn->dn_dbufs_mtx);
1883 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1885 if (parent && parent != dn->dn_dbuf)
1886 dbuf_add_ref(parent, db);
1888 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1889 refcount_count(&dn->dn_holds) > 0);
1890 (void) refcount_add(&dn->dn_holds, db);
1891 atomic_inc_32(&dn->dn_dbufs_count);
1893 dprintf_dbuf(db, "db=%p\n", db);
1895 return (db);
1898 static int
1899 dbuf_do_evict(void *private)
1901 dmu_buf_impl_t *db = private;
1903 if (!MUTEX_HELD(&db->db_mtx))
1904 mutex_enter(&db->db_mtx);
1906 ASSERT(refcount_is_zero(&db->db_holds));
1908 if (db->db_state != DB_EVICTING) {
1909 ASSERT(db->db_state == DB_CACHED);
1910 DBUF_VERIFY(db);
1911 db->db_buf = NULL;
1912 dbuf_evict(db);
1913 } else {
1914 mutex_exit(&db->db_mtx);
1915 dbuf_destroy(db);
1917 return (0);
1920 static void
1921 dbuf_destroy(dmu_buf_impl_t *db)
1923 ASSERT(refcount_is_zero(&db->db_holds));
1925 if (db->db_blkid != DMU_BONUS_BLKID) {
1927 * If this dbuf is still on the dn_dbufs list,
1928 * remove it from that list.
1930 if (db->db_dnode_handle != NULL) {
1931 dnode_t *dn;
1933 DB_DNODE_ENTER(db);
1934 dn = DB_DNODE(db);
1935 mutex_enter(&dn->dn_dbufs_mtx);
1936 avl_remove(&dn->dn_dbufs, db);
1937 atomic_dec_32(&dn->dn_dbufs_count);
1938 mutex_exit(&dn->dn_dbufs_mtx);
1939 DB_DNODE_EXIT(db);
1941 * Decrementing the dbuf count means that the hold
1942 * corresponding to the removed dbuf is no longer
1943 * discounted in dnode_move(), so the dnode cannot be
1944 * moved until after we release the hold.
1946 dnode_rele(dn, db);
1947 db->db_dnode_handle = NULL;
1949 dbuf_hash_remove(db);
1951 db->db_parent = NULL;
1952 db->db_buf = NULL;
1954 ASSERT(db->db.db_data == NULL);
1955 ASSERT(db->db_hash_next == NULL);
1956 ASSERT(db->db_blkptr == NULL);
1957 ASSERT(db->db_data_pending == NULL);
1959 kmem_cache_free(dbuf_cache, db);
1960 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1963 typedef struct dbuf_prefetch_arg {
1964 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
1965 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
1966 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
1967 int dpa_curlevel; /* The current level that we're reading */
1968 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
1969 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
1970 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
1971 } dbuf_prefetch_arg_t;
1974 * Actually issue the prefetch read for the block given.
1976 static void
1977 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
1979 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1980 return;
1982 arc_flags_t aflags =
1983 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
1985 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
1986 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
1987 ASSERT(dpa->dpa_zio != NULL);
1988 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
1989 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1990 &aflags, &dpa->dpa_zb);
1994 * Called when an indirect block above our prefetch target is read in. This
1995 * will either read in the next indirect block down the tree or issue the actual
1996 * prefetch if the next block down is our target.
1998 static void
1999 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2001 dbuf_prefetch_arg_t *dpa = private;
2003 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2004 ASSERT3S(dpa->dpa_curlevel, >, 0);
2005 if (zio != NULL) {
2006 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2007 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2008 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2011 dpa->dpa_curlevel--;
2013 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2014 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2015 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2016 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2017 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2018 kmem_free(dpa, sizeof (*dpa));
2019 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2020 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2021 dbuf_issue_final_prefetch(dpa, bp);
2022 kmem_free(dpa, sizeof (*dpa));
2023 } else {
2024 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2025 zbookmark_phys_t zb;
2027 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2029 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2030 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2032 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2033 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2034 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2035 &iter_aflags, &zb);
2037 (void) arc_buf_remove_ref(abuf, private);
2041 * Issue prefetch reads for the given block on the given level. If the indirect
2042 * blocks above that block are not in memory, we will read them in
2043 * asynchronously. As a result, this call never blocks waiting for a read to
2044 * complete.
2046 void
2047 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2048 arc_flags_t aflags)
2050 blkptr_t bp;
2051 int epbs, nlevels, curlevel;
2052 uint64_t curblkid;
2054 ASSERT(blkid != DMU_BONUS_BLKID);
2055 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2057 if (dnode_block_freed(dn, blkid))
2058 return;
2061 * This dnode hasn't been written to disk yet, so there's nothing to
2062 * prefetch.
2064 nlevels = dn->dn_phys->dn_nlevels;
2065 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2066 return;
2068 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2069 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2070 return;
2072 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2073 level, blkid);
2074 if (db != NULL) {
2075 mutex_exit(&db->db_mtx);
2077 * This dbuf already exists. It is either CACHED, or
2078 * (we assume) about to be read or filled.
2080 return;
2084 * Find the closest ancestor (indirect block) of the target block
2085 * that is present in the cache. In this indirect block, we will
2086 * find the bp that is at curlevel, curblkid.
2088 curlevel = level;
2089 curblkid = blkid;
2090 while (curlevel < nlevels - 1) {
2091 int parent_level = curlevel + 1;
2092 uint64_t parent_blkid = curblkid >> epbs;
2093 dmu_buf_impl_t *db;
2095 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2096 FALSE, TRUE, FTAG, &db) == 0) {
2097 blkptr_t *bpp = db->db_buf->b_data;
2098 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2099 dbuf_rele(db, FTAG);
2100 break;
2103 curlevel = parent_level;
2104 curblkid = parent_blkid;
2107 if (curlevel == nlevels - 1) {
2108 /* No cached indirect blocks found. */
2109 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2110 bp = dn->dn_phys->dn_blkptr[curblkid];
2112 if (BP_IS_HOLE(&bp))
2113 return;
2115 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2117 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2118 ZIO_FLAG_CANFAIL);
2120 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2121 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2122 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2123 dn->dn_object, level, blkid);
2124 dpa->dpa_curlevel = curlevel;
2125 dpa->dpa_prio = prio;
2126 dpa->dpa_aflags = aflags;
2127 dpa->dpa_spa = dn->dn_objset->os_spa;
2128 dpa->dpa_epbs = epbs;
2129 dpa->dpa_zio = pio;
2132 * If we have the indirect just above us, no need to do the asynchronous
2133 * prefetch chain; we'll just run the last step ourselves. If we're at
2134 * a higher level, though, we want to issue the prefetches for all the
2135 * indirect blocks asynchronously, so we can go on with whatever we were
2136 * doing.
2138 if (curlevel == level) {
2139 ASSERT3U(curblkid, ==, blkid);
2140 dbuf_issue_final_prefetch(dpa, &bp);
2141 kmem_free(dpa, sizeof (*dpa));
2142 } else {
2143 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2144 zbookmark_phys_t zb;
2146 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2147 dn->dn_object, curlevel, curblkid);
2148 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2149 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2150 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2151 &iter_aflags, &zb);
2154 * We use pio here instead of dpa_zio since it's possible that
2155 * dpa may have already been freed.
2157 zio_nowait(pio);
2161 * Returns with db_holds incremented, and db_mtx not held.
2162 * Note: dn_struct_rwlock must be held.
2165 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2166 boolean_t fail_sparse, boolean_t fail_uncached,
2167 void *tag, dmu_buf_impl_t **dbp)
2169 dmu_buf_impl_t *db, *parent = NULL;
2171 ASSERT(blkid != DMU_BONUS_BLKID);
2172 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2173 ASSERT3U(dn->dn_nlevels, >, level);
2175 *dbp = NULL;
2176 top:
2177 /* dbuf_find() returns with db_mtx held */
2178 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2180 if (db == NULL) {
2181 blkptr_t *bp = NULL;
2182 int err;
2184 if (fail_uncached)
2185 return (SET_ERROR(ENOENT));
2187 ASSERT3P(parent, ==, NULL);
2188 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2189 if (fail_sparse) {
2190 if (err == 0 && bp && BP_IS_HOLE(bp))
2191 err = SET_ERROR(ENOENT);
2192 if (err) {
2193 if (parent)
2194 dbuf_rele(parent, NULL);
2195 return (err);
2198 if (err && err != ENOENT)
2199 return (err);
2200 db = dbuf_create(dn, level, blkid, parent, bp);
2203 if (fail_uncached && db->db_state != DB_CACHED) {
2204 mutex_exit(&db->db_mtx);
2205 return (SET_ERROR(ENOENT));
2208 if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2209 arc_buf_add_ref(db->db_buf, db);
2210 if (db->db_buf->b_data == NULL) {
2211 dbuf_clear(db);
2212 if (parent) {
2213 dbuf_rele(parent, NULL);
2214 parent = NULL;
2216 goto top;
2218 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2221 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2224 * If this buffer is currently syncing out, and we are are
2225 * still referencing it from db_data, we need to make a copy
2226 * of it in case we decide we want to dirty it again in this txg.
2228 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2229 dn->dn_object != DMU_META_DNODE_OBJECT &&
2230 db->db_state == DB_CACHED && db->db_data_pending) {
2231 dbuf_dirty_record_t *dr = db->db_data_pending;
2233 if (dr->dt.dl.dr_data == db->db_buf) {
2234 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2236 dbuf_set_data(db,
2237 arc_buf_alloc(dn->dn_objset->os_spa,
2238 db->db.db_size, db, type));
2239 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2240 db->db.db_size);
2244 (void) refcount_add(&db->db_holds, tag);
2245 DBUF_VERIFY(db);
2246 mutex_exit(&db->db_mtx);
2248 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2249 if (parent)
2250 dbuf_rele(parent, NULL);
2252 ASSERT3P(DB_DNODE(db), ==, dn);
2253 ASSERT3U(db->db_blkid, ==, blkid);
2254 ASSERT3U(db->db_level, ==, level);
2255 *dbp = db;
2257 return (0);
2260 dmu_buf_impl_t *
2261 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2263 return (dbuf_hold_level(dn, 0, blkid, tag));
2266 dmu_buf_impl_t *
2267 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2269 dmu_buf_impl_t *db;
2270 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2271 return (err ? NULL : db);
2274 void
2275 dbuf_create_bonus(dnode_t *dn)
2277 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2279 ASSERT(dn->dn_bonus == NULL);
2280 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2284 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2287 dnode_t *dn;
2289 if (db->db_blkid != DMU_SPILL_BLKID)
2290 return (SET_ERROR(ENOTSUP));
2291 if (blksz == 0)
2292 blksz = SPA_MINBLOCKSIZE;
2293 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2294 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2296 DB_DNODE_ENTER(db);
2297 dn = DB_DNODE(db);
2298 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2299 dbuf_new_size(db, blksz, tx);
2300 rw_exit(&dn->dn_struct_rwlock);
2301 DB_DNODE_EXIT(db);
2303 return (0);
2306 void
2307 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2309 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2312 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2313 void
2314 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2316 int64_t holds = refcount_add(&db->db_holds, tag);
2317 ASSERT(holds > 1);
2320 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2321 boolean_t
2322 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2323 void *tag)
2325 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2326 dmu_buf_impl_t *found_db;
2327 boolean_t result = B_FALSE;
2329 if (db->db_blkid == DMU_BONUS_BLKID)
2330 found_db = dbuf_find_bonus(os, obj);
2331 else
2332 found_db = dbuf_find(os, obj, 0, blkid);
2334 if (found_db != NULL) {
2335 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2336 (void) refcount_add(&db->db_holds, tag);
2337 result = B_TRUE;
2339 mutex_exit(&db->db_mtx);
2341 return (result);
2345 * If you call dbuf_rele() you had better not be referencing the dnode handle
2346 * unless you have some other direct or indirect hold on the dnode. (An indirect
2347 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2348 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2349 * dnode's parent dbuf evicting its dnode handles.
2351 void
2352 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2354 mutex_enter(&db->db_mtx);
2355 dbuf_rele_and_unlock(db, tag);
2358 void
2359 dmu_buf_rele(dmu_buf_t *db, void *tag)
2361 dbuf_rele((dmu_buf_impl_t *)db, tag);
2365 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2366 * db_dirtycnt and db_holds to be updated atomically.
2368 void
2369 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2371 int64_t holds;
2373 ASSERT(MUTEX_HELD(&db->db_mtx));
2374 DBUF_VERIFY(db);
2377 * Remove the reference to the dbuf before removing its hold on the
2378 * dnode so we can guarantee in dnode_move() that a referenced bonus
2379 * buffer has a corresponding dnode hold.
2381 holds = refcount_remove(&db->db_holds, tag);
2382 ASSERT(holds >= 0);
2385 * We can't freeze indirects if there is a possibility that they
2386 * may be modified in the current syncing context.
2388 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2389 arc_buf_freeze(db->db_buf);
2391 if (holds == db->db_dirtycnt &&
2392 db->db_level == 0 && db->db_immediate_evict)
2393 dbuf_evict_user(db);
2395 if (holds == 0) {
2396 if (db->db_blkid == DMU_BONUS_BLKID) {
2397 dnode_t *dn;
2400 * If the dnode moves here, we cannot cross this
2401 * barrier until the move completes.
2403 DB_DNODE_ENTER(db);
2405 dn = DB_DNODE(db);
2406 atomic_dec_32(&dn->dn_dbufs_count);
2409 * Decrementing the dbuf count means that the bonus
2410 * buffer's dnode hold is no longer discounted in
2411 * dnode_move(). The dnode cannot move until after
2412 * the dnode_rele_and_unlock() below.
2414 DB_DNODE_EXIT(db);
2417 * Do not reference db after its lock is dropped.
2418 * Another thread may evict it.
2420 mutex_exit(&db->db_mtx);
2423 * If the dnode has been freed, evict the bonus
2424 * buffer immediately. The data in the bonus
2425 * buffer is no longer relevant and this prevents
2426 * a stale bonus buffer from being associated
2427 * with this dnode_t should the dnode_t be reused
2428 * prior to being destroyed.
2430 mutex_enter(&dn->dn_mtx);
2431 if (dn->dn_type == DMU_OT_NONE ||
2432 dn->dn_free_txg != 0) {
2434 * Drop dn_mtx. It is a leaf lock and
2435 * cannot be held when dnode_evict_bonus()
2436 * acquires other locks in order to
2437 * perform the eviction.
2439 * Freed dnodes cannot be reused until the
2440 * last hold is released. Since this bonus
2441 * buffer has a hold, the dnode will remain
2442 * in the free state, even without dn_mtx
2443 * held, until the dnode_rele_and_unlock()
2444 * below.
2446 mutex_exit(&dn->dn_mtx);
2447 dnode_evict_bonus(dn);
2448 mutex_enter(&dn->dn_mtx);
2450 dnode_rele_and_unlock(dn, db);
2451 } else if (db->db_buf == NULL) {
2453 * This is a special case: we never associated this
2454 * dbuf with any data allocated from the ARC.
2456 ASSERT(db->db_state == DB_UNCACHED ||
2457 db->db_state == DB_NOFILL);
2458 dbuf_evict(db);
2459 } else if (arc_released(db->db_buf)) {
2460 arc_buf_t *buf = db->db_buf;
2462 * This dbuf has anonymous data associated with it.
2464 dbuf_clear_data(db);
2465 VERIFY(arc_buf_remove_ref(buf, db));
2466 dbuf_evict(db);
2467 } else {
2468 VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2471 * A dbuf will be eligible for eviction if either the
2472 * 'primarycache' property is set or a duplicate
2473 * copy of this buffer is already cached in the arc.
2475 * In the case of the 'primarycache' a buffer
2476 * is considered for eviction if it matches the
2477 * criteria set in the property.
2479 * To decide if our buffer is considered a
2480 * duplicate, we must call into the arc to determine
2481 * if multiple buffers are referencing the same
2482 * block on-disk. If so, then we simply evict
2483 * ourselves.
2485 if (!DBUF_IS_CACHEABLE(db)) {
2486 if (db->db_blkptr != NULL &&
2487 !BP_IS_HOLE(db->db_blkptr) &&
2488 !BP_IS_EMBEDDED(db->db_blkptr)) {
2489 spa_t *spa =
2490 dmu_objset_spa(db->db_objset);
2491 blkptr_t bp = *db->db_blkptr;
2492 dbuf_clear(db);
2493 arc_freed(spa, &bp);
2494 } else {
2495 dbuf_clear(db);
2497 } else if (db->db_objset->os_evicting ||
2498 arc_buf_eviction_needed(db->db_buf)) {
2499 dbuf_clear(db);
2500 } else {
2501 mutex_exit(&db->db_mtx);
2504 } else {
2505 mutex_exit(&db->db_mtx);
2509 #pragma weak dmu_buf_refcount = dbuf_refcount
2510 uint64_t
2511 dbuf_refcount(dmu_buf_impl_t *db)
2513 return (refcount_count(&db->db_holds));
2516 void *
2517 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2518 dmu_buf_user_t *new_user)
2520 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2522 mutex_enter(&db->db_mtx);
2523 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2524 if (db->db_user == old_user)
2525 db->db_user = new_user;
2526 else
2527 old_user = db->db_user;
2528 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2529 mutex_exit(&db->db_mtx);
2531 return (old_user);
2534 void *
2535 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2537 return (dmu_buf_replace_user(db_fake, NULL, user));
2540 void *
2541 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2543 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2545 db->db_immediate_evict = TRUE;
2546 return (dmu_buf_set_user(db_fake, user));
2549 void *
2550 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2552 return (dmu_buf_replace_user(db_fake, user, NULL));
2555 void *
2556 dmu_buf_get_user(dmu_buf_t *db_fake)
2558 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2560 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2561 return (db->db_user);
2564 void
2565 dmu_buf_user_evict_wait()
2567 taskq_wait(dbu_evict_taskq);
2570 boolean_t
2571 dmu_buf_freeable(dmu_buf_t *dbuf)
2573 boolean_t res = B_FALSE;
2574 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2576 if (db->db_blkptr)
2577 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2578 db->db_blkptr, db->db_blkptr->blk_birth);
2580 return (res);
2583 blkptr_t *
2584 dmu_buf_get_blkptr(dmu_buf_t *db)
2586 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2587 return (dbi->db_blkptr);
2590 static void
2591 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2593 /* ASSERT(dmu_tx_is_syncing(tx) */
2594 ASSERT(MUTEX_HELD(&db->db_mtx));
2596 if (db->db_blkptr != NULL)
2597 return;
2599 if (db->db_blkid == DMU_SPILL_BLKID) {
2600 db->db_blkptr = &dn->dn_phys->dn_spill;
2601 BP_ZERO(db->db_blkptr);
2602 return;
2604 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2606 * This buffer was allocated at a time when there was
2607 * no available blkptrs from the dnode, or it was
2608 * inappropriate to hook it in (i.e., nlevels mis-match).
2610 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2611 ASSERT(db->db_parent == NULL);
2612 db->db_parent = dn->dn_dbuf;
2613 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2614 DBUF_VERIFY(db);
2615 } else {
2616 dmu_buf_impl_t *parent = db->db_parent;
2617 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2619 ASSERT(dn->dn_phys->dn_nlevels > 1);
2620 if (parent == NULL) {
2621 mutex_exit(&db->db_mtx);
2622 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2623 parent = dbuf_hold_level(dn, db->db_level + 1,
2624 db->db_blkid >> epbs, db);
2625 rw_exit(&dn->dn_struct_rwlock);
2626 mutex_enter(&db->db_mtx);
2627 db->db_parent = parent;
2629 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2630 (db->db_blkid & ((1ULL << epbs) - 1));
2631 DBUF_VERIFY(db);
2635 static void
2636 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2638 dmu_buf_impl_t *db = dr->dr_dbuf;
2639 dnode_t *dn;
2640 zio_t *zio;
2642 ASSERT(dmu_tx_is_syncing(tx));
2644 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2646 mutex_enter(&db->db_mtx);
2648 ASSERT(db->db_level > 0);
2649 DBUF_VERIFY(db);
2651 /* Read the block if it hasn't been read yet. */
2652 if (db->db_buf == NULL) {
2653 mutex_exit(&db->db_mtx);
2654 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2655 mutex_enter(&db->db_mtx);
2657 ASSERT3U(db->db_state, ==, DB_CACHED);
2658 ASSERT(db->db_buf != NULL);
2660 DB_DNODE_ENTER(db);
2661 dn = DB_DNODE(db);
2662 /* Indirect block size must match what the dnode thinks it is. */
2663 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2664 dbuf_check_blkptr(dn, db);
2665 DB_DNODE_EXIT(db);
2667 /* Provide the pending dirty record to child dbufs */
2668 db->db_data_pending = dr;
2670 mutex_exit(&db->db_mtx);
2671 dbuf_write(dr, db->db_buf, tx);
2673 zio = dr->dr_zio;
2674 mutex_enter(&dr->dt.di.dr_mtx);
2675 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2676 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2677 mutex_exit(&dr->dt.di.dr_mtx);
2678 zio_nowait(zio);
2681 static void
2682 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2684 arc_buf_t **datap = &dr->dt.dl.dr_data;
2685 dmu_buf_impl_t *db = dr->dr_dbuf;
2686 dnode_t *dn;
2687 objset_t *os;
2688 uint64_t txg = tx->tx_txg;
2690 ASSERT(dmu_tx_is_syncing(tx));
2692 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2694 mutex_enter(&db->db_mtx);
2696 * To be synced, we must be dirtied. But we
2697 * might have been freed after the dirty.
2699 if (db->db_state == DB_UNCACHED) {
2700 /* This buffer has been freed since it was dirtied */
2701 ASSERT(db->db.db_data == NULL);
2702 } else if (db->db_state == DB_FILL) {
2703 /* This buffer was freed and is now being re-filled */
2704 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2705 } else {
2706 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2708 DBUF_VERIFY(db);
2710 DB_DNODE_ENTER(db);
2711 dn = DB_DNODE(db);
2713 if (db->db_blkid == DMU_SPILL_BLKID) {
2714 mutex_enter(&dn->dn_mtx);
2715 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2716 mutex_exit(&dn->dn_mtx);
2720 * If this is a bonus buffer, simply copy the bonus data into the
2721 * dnode. It will be written out when the dnode is synced (and it
2722 * will be synced, since it must have been dirty for dbuf_sync to
2723 * be called).
2725 if (db->db_blkid == DMU_BONUS_BLKID) {
2726 dbuf_dirty_record_t **drp;
2728 ASSERT(*datap != NULL);
2729 ASSERT0(db->db_level);
2730 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2731 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2732 DB_DNODE_EXIT(db);
2734 if (*datap != db->db.db_data) {
2735 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2736 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2738 db->db_data_pending = NULL;
2739 drp = &db->db_last_dirty;
2740 while (*drp != dr)
2741 drp = &(*drp)->dr_next;
2742 ASSERT(dr->dr_next == NULL);
2743 ASSERT(dr->dr_dbuf == db);
2744 *drp = dr->dr_next;
2745 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2746 ASSERT(db->db_dirtycnt > 0);
2747 db->db_dirtycnt -= 1;
2748 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2749 return;
2752 os = dn->dn_objset;
2755 * This function may have dropped the db_mtx lock allowing a dmu_sync
2756 * operation to sneak in. As a result, we need to ensure that we
2757 * don't check the dr_override_state until we have returned from
2758 * dbuf_check_blkptr.
2760 dbuf_check_blkptr(dn, db);
2763 * If this buffer is in the middle of an immediate write,
2764 * wait for the synchronous IO to complete.
2766 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2767 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2768 cv_wait(&db->db_changed, &db->db_mtx);
2769 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2772 if (db->db_state != DB_NOFILL &&
2773 dn->dn_object != DMU_META_DNODE_OBJECT &&
2774 refcount_count(&db->db_holds) > 1 &&
2775 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2776 *datap == db->db_buf) {
2778 * If this buffer is currently "in use" (i.e., there
2779 * are active holds and db_data still references it),
2780 * then make a copy before we start the write so that
2781 * any modifications from the open txg will not leak
2782 * into this write.
2784 * NOTE: this copy does not need to be made for
2785 * objects only modified in the syncing context (e.g.
2786 * DNONE_DNODE blocks).
2788 int blksz = arc_buf_size(*datap);
2789 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2790 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2791 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2793 db->db_data_pending = dr;
2795 mutex_exit(&db->db_mtx);
2797 dbuf_write(dr, *datap, tx);
2799 ASSERT(!list_link_active(&dr->dr_dirty_node));
2800 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2801 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2802 DB_DNODE_EXIT(db);
2803 } else {
2805 * Although zio_nowait() does not "wait for an IO", it does
2806 * initiate the IO. If this is an empty write it seems plausible
2807 * that the IO could actually be completed before the nowait
2808 * returns. We need to DB_DNODE_EXIT() first in case
2809 * zio_nowait() invalidates the dbuf.
2811 DB_DNODE_EXIT(db);
2812 zio_nowait(dr->dr_zio);
2816 void
2817 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2819 dbuf_dirty_record_t *dr;
2821 while (dr = list_head(list)) {
2822 if (dr->dr_zio != NULL) {
2824 * If we find an already initialized zio then we
2825 * are processing the meta-dnode, and we have finished.
2826 * The dbufs for all dnodes are put back on the list
2827 * during processing, so that we can zio_wait()
2828 * these IOs after initiating all child IOs.
2830 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2831 DMU_META_DNODE_OBJECT);
2832 break;
2834 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2835 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2836 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2838 list_remove(list, dr);
2839 if (dr->dr_dbuf->db_level > 0)
2840 dbuf_sync_indirect(dr, tx);
2841 else
2842 dbuf_sync_leaf(dr, tx);
2846 /* ARGSUSED */
2847 static void
2848 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2850 dmu_buf_impl_t *db = vdb;
2851 dnode_t *dn;
2852 blkptr_t *bp = zio->io_bp;
2853 blkptr_t *bp_orig = &zio->io_bp_orig;
2854 spa_t *spa = zio->io_spa;
2855 int64_t delta;
2856 uint64_t fill = 0;
2857 int i;
2859 ASSERT3P(db->db_blkptr, ==, bp);
2861 DB_DNODE_ENTER(db);
2862 dn = DB_DNODE(db);
2863 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2864 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2865 zio->io_prev_space_delta = delta;
2867 if (bp->blk_birth != 0) {
2868 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2869 BP_GET_TYPE(bp) == dn->dn_type) ||
2870 (db->db_blkid == DMU_SPILL_BLKID &&
2871 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2872 BP_IS_EMBEDDED(bp));
2873 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2876 mutex_enter(&db->db_mtx);
2878 #ifdef ZFS_DEBUG
2879 if (db->db_blkid == DMU_SPILL_BLKID) {
2880 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2881 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2882 db->db_blkptr == &dn->dn_phys->dn_spill);
2884 #endif
2886 if (db->db_level == 0) {
2887 mutex_enter(&dn->dn_mtx);
2888 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2889 db->db_blkid != DMU_SPILL_BLKID)
2890 dn->dn_phys->dn_maxblkid = db->db_blkid;
2891 mutex_exit(&dn->dn_mtx);
2893 if (dn->dn_type == DMU_OT_DNODE) {
2894 dnode_phys_t *dnp = db->db.db_data;
2895 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2896 i--, dnp++) {
2897 if (dnp->dn_type != DMU_OT_NONE)
2898 fill++;
2900 } else {
2901 if (BP_IS_HOLE(bp)) {
2902 fill = 0;
2903 } else {
2904 fill = 1;
2907 } else {
2908 blkptr_t *ibp = db->db.db_data;
2909 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2910 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2911 if (BP_IS_HOLE(ibp))
2912 continue;
2913 fill += BP_GET_FILL(ibp);
2916 DB_DNODE_EXIT(db);
2918 if (!BP_IS_EMBEDDED(bp))
2919 bp->blk_fill = fill;
2921 mutex_exit(&db->db_mtx);
2925 * The SPA will call this callback several times for each zio - once
2926 * for every physical child i/o (zio->io_phys_children times). This
2927 * allows the DMU to monitor the progress of each logical i/o. For example,
2928 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2929 * block. There may be a long delay before all copies/fragments are completed,
2930 * so this callback allows us to retire dirty space gradually, as the physical
2931 * i/os complete.
2933 /* ARGSUSED */
2934 static void
2935 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2937 dmu_buf_impl_t *db = arg;
2938 objset_t *os = db->db_objset;
2939 dsl_pool_t *dp = dmu_objset_pool(os);
2940 dbuf_dirty_record_t *dr;
2941 int delta = 0;
2943 dr = db->db_data_pending;
2944 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2947 * The callback will be called io_phys_children times. Retire one
2948 * portion of our dirty space each time we are called. Any rounding
2949 * error will be cleaned up by dsl_pool_sync()'s call to
2950 * dsl_pool_undirty_space().
2952 delta = dr->dr_accounted / zio->io_phys_children;
2953 dsl_pool_undirty_space(dp, delta, zio->io_txg);
2956 /* ARGSUSED */
2957 static void
2958 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2960 dmu_buf_impl_t *db = vdb;
2961 blkptr_t *bp_orig = &zio->io_bp_orig;
2962 blkptr_t *bp = db->db_blkptr;
2963 objset_t *os = db->db_objset;
2964 dmu_tx_t *tx = os->os_synctx;
2965 dbuf_dirty_record_t **drp, *dr;
2967 ASSERT0(zio->io_error);
2968 ASSERT(db->db_blkptr == bp);
2971 * For nopwrites and rewrites we ensure that the bp matches our
2972 * original and bypass all the accounting.
2974 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2975 ASSERT(BP_EQUAL(bp, bp_orig));
2976 } else {
2977 dsl_dataset_t *ds = os->os_dsl_dataset;
2978 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2979 dsl_dataset_block_born(ds, bp, tx);
2982 mutex_enter(&db->db_mtx);
2984 DBUF_VERIFY(db);
2986 drp = &db->db_last_dirty;
2987 while ((dr = *drp) != db->db_data_pending)
2988 drp = &dr->dr_next;
2989 ASSERT(!list_link_active(&dr->dr_dirty_node));
2990 ASSERT(dr->dr_dbuf == db);
2991 ASSERT(dr->dr_next == NULL);
2992 *drp = dr->dr_next;
2994 #ifdef ZFS_DEBUG
2995 if (db->db_blkid == DMU_SPILL_BLKID) {
2996 dnode_t *dn;
2998 DB_DNODE_ENTER(db);
2999 dn = DB_DNODE(db);
3000 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3001 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3002 db->db_blkptr == &dn->dn_phys->dn_spill);
3003 DB_DNODE_EXIT(db);
3005 #endif
3007 if (db->db_level == 0) {
3008 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3009 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3010 if (db->db_state != DB_NOFILL) {
3011 if (dr->dt.dl.dr_data != db->db_buf)
3012 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3013 db));
3014 else if (!arc_released(db->db_buf))
3015 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3017 } else {
3018 dnode_t *dn;
3020 DB_DNODE_ENTER(db);
3021 dn = DB_DNODE(db);
3022 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3023 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3024 if (!BP_IS_HOLE(db->db_blkptr)) {
3025 int epbs =
3026 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3027 ASSERT3U(db->db_blkid, <=,
3028 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3029 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3030 db->db.db_size);
3031 if (!arc_released(db->db_buf))
3032 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3034 DB_DNODE_EXIT(db);
3035 mutex_destroy(&dr->dt.di.dr_mtx);
3036 list_destroy(&dr->dt.di.dr_children);
3038 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3040 cv_broadcast(&db->db_changed);
3041 ASSERT(db->db_dirtycnt > 0);
3042 db->db_dirtycnt -= 1;
3043 db->db_data_pending = NULL;
3044 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3047 static void
3048 dbuf_write_nofill_ready(zio_t *zio)
3050 dbuf_write_ready(zio, NULL, zio->io_private);
3053 static void
3054 dbuf_write_nofill_done(zio_t *zio)
3056 dbuf_write_done(zio, NULL, zio->io_private);
3059 static void
3060 dbuf_write_override_ready(zio_t *zio)
3062 dbuf_dirty_record_t *dr = zio->io_private;
3063 dmu_buf_impl_t *db = dr->dr_dbuf;
3065 dbuf_write_ready(zio, NULL, db);
3068 static void
3069 dbuf_write_override_done(zio_t *zio)
3071 dbuf_dirty_record_t *dr = zio->io_private;
3072 dmu_buf_impl_t *db = dr->dr_dbuf;
3073 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3075 mutex_enter(&db->db_mtx);
3076 if (!BP_EQUAL(zio->io_bp, obp)) {
3077 if (!BP_IS_HOLE(obp))
3078 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3079 arc_release(dr->dt.dl.dr_data, db);
3081 mutex_exit(&db->db_mtx);
3083 dbuf_write_done(zio, NULL, db);
3086 /* Issue I/O to commit a dirty buffer to disk. */
3087 static void
3088 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3090 dmu_buf_impl_t *db = dr->dr_dbuf;
3091 dnode_t *dn;
3092 objset_t *os;
3093 dmu_buf_impl_t *parent = db->db_parent;
3094 uint64_t txg = tx->tx_txg;
3095 zbookmark_phys_t zb;
3096 zio_prop_t zp;
3097 zio_t *zio;
3098 int wp_flag = 0;
3100 DB_DNODE_ENTER(db);
3101 dn = DB_DNODE(db);
3102 os = dn->dn_objset;
3104 if (db->db_state != DB_NOFILL) {
3105 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3107 * Private object buffers are released here rather
3108 * than in dbuf_dirty() since they are only modified
3109 * in the syncing context and we don't want the
3110 * overhead of making multiple copies of the data.
3112 if (BP_IS_HOLE(db->db_blkptr)) {
3113 arc_buf_thaw(data);
3114 } else {
3115 dbuf_release_bp(db);
3120 if (parent != dn->dn_dbuf) {
3121 /* Our parent is an indirect block. */
3122 /* We have a dirty parent that has been scheduled for write. */
3123 ASSERT(parent && parent->db_data_pending);
3124 /* Our parent's buffer is one level closer to the dnode. */
3125 ASSERT(db->db_level == parent->db_level-1);
3127 * We're about to modify our parent's db_data by modifying
3128 * our block pointer, so the parent must be released.
3130 ASSERT(arc_released(parent->db_buf));
3131 zio = parent->db_data_pending->dr_zio;
3132 } else {
3133 /* Our parent is the dnode itself. */
3134 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3135 db->db_blkid != DMU_SPILL_BLKID) ||
3136 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3137 if (db->db_blkid != DMU_SPILL_BLKID)
3138 ASSERT3P(db->db_blkptr, ==,
3139 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3140 zio = dn->dn_zio;
3143 ASSERT(db->db_level == 0 || data == db->db_buf);
3144 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3145 ASSERT(zio);
3147 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3148 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3149 db->db.db_object, db->db_level, db->db_blkid);
3151 if (db->db_blkid == DMU_SPILL_BLKID)
3152 wp_flag = WP_SPILL;
3153 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3155 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3156 DB_DNODE_EXIT(db);
3158 if (db->db_level == 0 &&
3159 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3161 * The BP for this block has been provided by open context
3162 * (by dmu_sync() or dmu_buf_write_embedded()).
3164 void *contents = (data != NULL) ? data->b_data : NULL;
3166 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3167 db->db_blkptr, contents, db->db.db_size, &zp,
3168 dbuf_write_override_ready, NULL, dbuf_write_override_done,
3169 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3170 mutex_enter(&db->db_mtx);
3171 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3172 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3173 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3174 mutex_exit(&db->db_mtx);
3175 } else if (db->db_state == DB_NOFILL) {
3176 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3177 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3178 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3179 db->db_blkptr, NULL, db->db.db_size, &zp,
3180 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3181 ZIO_PRIORITY_ASYNC_WRITE,
3182 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3183 } else {
3184 ASSERT(arc_released(data));
3185 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3186 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3187 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3188 dbuf_write_physdone, dbuf_write_done, db,
3189 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);