Unleashed v1.4
[unleashed.git] / usr / src / boot / sys / boot / common / load_elf.c
blobb7fc4bea09b550ff9caeece42b8b664ba6fae539
1 /*-
2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
31 #include <sys/param.h>
32 #include <sys/exec.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/stdint.h>
36 #include <string.h>
37 #include <machine/elf.h>
38 #include <stand.h>
39 #define FREEBSD_ELF
40 #include <link.h>
42 #include "bootstrap.h"
44 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l)
46 #if defined(__i386__) && __ELF_WORD_SIZE == 64
47 #undef ELF_TARG_CLASS
48 #undef ELF_TARG_MACH
49 #define ELF_TARG_CLASS ELFCLASS64
50 #define ELF_TARG_MACH EM_X86_64
51 #endif
53 typedef struct elf_file {
54 Elf_Phdr *ph;
55 Elf_Ehdr *ehdr;
56 Elf_Sym *symtab;
57 Elf_Hashelt *hashtab;
58 Elf_Hashelt nbuckets;
59 Elf_Hashelt nchains;
60 Elf_Hashelt *buckets;
61 Elf_Hashelt *chains;
62 Elf_Rel *rel;
63 size_t relsz;
64 Elf_Rela *rela;
65 size_t relasz;
66 char *strtab;
67 size_t strsz;
68 int fd;
69 caddr_t firstpage;
70 size_t firstlen;
71 int kernel;
72 u_int64_t off;
73 } *elf_file_t;
75 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef, u_int64_t loadaddr);
76 static int __elfN(lookup_symbol)(struct preloaded_file *mp, elf_file_t ef, const char* name, Elf_Sym* sym);
77 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
78 Elf_Addr p, void *val, size_t len);
79 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
80 Elf_Addr p_start, Elf_Addr p_end);
81 static symaddr_fn __elfN(symaddr);
82 static char *fake_modname(const char *name);
84 const char *__elfN(kerneltype) = "elf kernel";
85 const char *__elfN(moduletype) = "elf module";
87 u_int64_t __elfN(relocation_offset) = 0;
89 static int
90 __elfN(load_elf_header)(char *filename, elf_file_t ef)
92 ssize_t bytes_read;
93 Elf_Ehdr *ehdr;
94 int err;
97 * Open the image, read and validate the ELF header
99 if (filename == NULL) /* can't handle nameless */
100 return (EFTYPE);
101 if ((ef->fd = open(filename, O_RDONLY)) == -1)
102 return (errno);
103 ef->firstpage = malloc(PAGE_SIZE);
104 if (ef->firstpage == NULL) {
105 close(ef->fd);
106 return (ENOMEM);
108 bytes_read = read(ef->fd, ef->firstpage, PAGE_SIZE);
109 ef->firstlen = (size_t)bytes_read;
110 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
111 err = EFTYPE; /* could be EIO, but may be small file */
112 goto error;
114 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
116 /* Is it ELF? */
117 if (!IS_ELF(*ehdr)) {
118 err = EFTYPE;
119 goto error;
121 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
122 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
123 ehdr->e_ident[EI_VERSION] != EV_CURRENT || /* Version ? */
124 ehdr->e_version != EV_CURRENT ||
125 ehdr->e_machine != ELF_TARG_MACH) { /* Machine ? */
126 err = EFTYPE;
127 goto error;
130 return (0);
132 error:
133 if (ef->firstpage != NULL) {
134 free(ef->firstpage);
135 ef->firstpage = NULL;
137 if (ef->fd != -1) {
138 close(ef->fd);
139 ef->fd = -1;
141 return (err);
145 * Attempt to load the file (file) as an ELF module. It will be stored at
146 * (dest), and a pointer to a module structure describing the loaded object
147 * will be saved in (result).
150 __elfN(loadfile)(char *filename, u_int64_t dest, struct preloaded_file **result)
152 return (__elfN(loadfile_raw)(filename, dest, result, 0));
156 __elfN(loadfile_raw)(char *filename, u_int64_t dest,
157 struct preloaded_file **result, int multiboot)
159 struct preloaded_file *fp, *kfp;
160 struct elf_file ef;
161 Elf_Ehdr *ehdr;
162 int err;
164 fp = NULL;
165 bzero(&ef, sizeof(struct elf_file));
166 ef.fd = -1;
168 err = __elfN(load_elf_header)(filename, &ef);
169 if (err != 0)
170 return (err);
172 ehdr = ef.ehdr;
175 * Check to see what sort of module we are.
177 kfp = file_findfile(NULL, __elfN(kerneltype));
178 #ifdef __powerpc__
180 * Kernels can be ET_DYN, so just assume the first loaded object is the
181 * kernel. This assumption will be checked later.
183 if (kfp == NULL)
184 ef.kernel = 1;
185 #endif
186 if (ef.kernel || ehdr->e_type == ET_EXEC) {
187 /* Looks like a kernel */
188 if (kfp != NULL) {
189 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: kernel already loaded\n");
190 err = EPERM;
191 goto oerr;
194 * Calculate destination address based on kernel entrypoint.
196 * For ARM, the destination address is independent of any values in the
197 * elf header (an ARM kernel can be loaded at any 2MB boundary), so we
198 * leave dest set to the value calculated by archsw.arch_loadaddr() and
199 * passed in to this function.
201 #ifndef __arm__
202 if (ehdr->e_type == ET_EXEC)
203 dest = (ehdr->e_entry & ~PAGE_MASK);
204 #endif
205 if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
206 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: not a kernel (maybe static binary?)\n");
207 err = EPERM;
208 goto oerr;
210 ef.kernel = 1;
212 } else if (ehdr->e_type == ET_DYN) {
213 /* Looks like a kld module */
214 if (multiboot != 0) {
215 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module as multiboot\n");
216 err = EPERM;
217 goto oerr;
219 if (kfp == NULL) {
220 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module before kernel\n");
221 err = EPERM;
222 goto oerr;
224 if (strcmp(__elfN(kerneltype), kfp->f_type)) {
225 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module with kernel type '%s'\n", kfp->f_type);
226 err = EPERM;
227 goto oerr;
229 /* Looks OK, got ahead */
230 ef.kernel = 0;
232 } else {
233 err = EFTYPE;
234 goto oerr;
237 if (archsw.arch_loadaddr != NULL)
238 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
239 else
240 dest = roundup(dest, PAGE_SIZE);
243 * Ok, we think we should handle this.
245 fp = file_alloc();
246 if (fp == NULL) {
247 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: cannot allocate module info\n");
248 err = EPERM;
249 goto out;
251 if (ef.kernel == 1 && multiboot == 0)
252 setenv("kernelname", filename, 1);
253 fp->f_name = strdup(filename);
254 if (multiboot == 0) {
255 fp->f_type = strdup(ef.kernel ?
256 __elfN(kerneltype) : __elfN(moduletype));
257 } else {
258 if (multiboot == 1)
259 fp->f_type = strdup("elf multiboot kernel");
260 else
261 fp->f_type = strdup("elf multiboot2 kernel");
264 #ifdef ELF_VERBOSE
265 if (ef.kernel)
266 printf("%s entry at 0x%jx\n", filename, (uintmax_t)ehdr->e_entry);
267 #else
268 printf("%s ", filename);
269 #endif
271 fp->f_size = __elfN(loadimage)(fp, &ef, dest);
272 if (fp->f_size == 0 || fp->f_addr == 0)
273 goto ioerr;
275 /* save exec header as metadata */
276 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
278 /* Load OK, return module pointer */
279 *result = (struct preloaded_file *)fp;
280 err = 0;
281 goto out;
283 ioerr:
284 err = EIO;
285 oerr:
286 file_discard(fp);
287 out:
288 if (ef.firstpage)
289 free(ef.firstpage);
290 if (ef.fd != -1)
291 close(ef.fd);
292 return(err);
296 * With the file (fd) open on the image, and (ehdr) containing
297 * the Elf header, load the image at (off)
299 static int
300 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, u_int64_t off)
302 int i;
303 u_int j;
304 Elf_Ehdr *ehdr;
305 Elf_Phdr *phdr, *php;
306 Elf_Shdr *shdr;
307 char *shstr;
308 int ret;
309 vm_offset_t firstaddr;
310 vm_offset_t lastaddr;
311 size_t chunk;
312 ssize_t result;
313 Elf_Addr ssym, esym;
314 Elf_Dyn *dp;
315 Elf_Addr adp;
316 Elf_Addr ctors;
317 int ndp;
318 int symstrindex;
319 int symtabindex;
320 Elf_Size size;
321 u_int fpcopy;
322 Elf_Sym sym;
323 Elf_Addr p_start, p_end;
325 dp = NULL;
326 shdr = NULL;
327 ret = 0;
328 firstaddr = lastaddr = 0;
329 ehdr = ef->ehdr;
330 if (ehdr->e_type == ET_EXEC) {
331 #if defined(__i386__) || defined(__amd64__)
332 #if __ELF_WORD_SIZE == 64
333 off = - (off & 0xffffffffff000000ull);/* x86_64 relocates after locore */
334 #else
335 off = - (off & 0xff000000u); /* i386 relocates after locore */
336 #endif
337 #elif defined(__powerpc__)
339 * On the purely virtual memory machines like e500, the kernel is
340 * linked against its final VA range, which is most often not
341 * available at the loader stage, but only after kernel initializes
342 * and completes its VM settings. In such cases we cannot use p_vaddr
343 * field directly to load ELF segments, but put them at some
344 * 'load-time' locations.
346 if (off & 0xf0000000u) {
347 off = -(off & 0xf0000000u);
349 * XXX the physical load address should not be hardcoded. Note
350 * that the Book-E kernel assumes that it's loaded at a 16MB
351 * boundary for now...
353 off += 0x01000000;
354 ehdr->e_entry += off;
355 #ifdef ELF_VERBOSE
356 printf("Converted entry 0x%08x\n", ehdr->e_entry);
357 #endif
358 } else
359 off = 0;
360 #elif defined(__arm__) && !defined(EFI)
362 * The elf headers in arm kernels specify virtual addresses in all
363 * header fields, even the ones that should be physical addresses.
364 * We assume the entry point is in the first page, and masking the page
365 * offset will leave us with the virtual address the kernel was linked
366 * at. We subtract that from the load offset, making 'off' into the
367 * value which, when added to a virtual address in an elf header,
368 * translates it to a physical address. We do the va->pa conversion on
369 * the entry point address in the header now, so that later we can
370 * launch the kernel by just jumping to that address.
372 * When booting from UEFI the copyin and copyout functions handle
373 * adjusting the location relative to the first virtual address.
374 * Because of this there is no need to adjust the offset or entry
375 * point address as these will both be handled by the efi code.
377 off -= ehdr->e_entry & ~PAGE_MASK;
378 ehdr->e_entry += off;
379 #ifdef ELF_VERBOSE
380 printf("ehdr->e_entry 0x%08x, va<->pa off %llx\n", ehdr->e_entry, off);
381 #endif
382 #else
383 off = 0; /* other archs use direct mapped kernels */
384 #endif
386 ef->off = off;
388 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
389 /* use entry address from header */
390 fp->f_addr = ehdr->e_entry;
393 if (ef->kernel)
394 __elfN(relocation_offset) = off;
396 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
397 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: program header not within first page\n");
398 goto out;
400 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
402 for (i = 0; i < ehdr->e_phnum; i++) {
403 /* We want to load PT_LOAD segments only.. */
404 if (phdr[i].p_type != PT_LOAD)
405 continue;
407 #ifdef ELF_VERBOSE
408 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
409 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
410 (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
411 (long)(phdr[i].p_paddr + off),
412 (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1));
413 } else {
414 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
415 (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
416 (long)(phdr[i].p_vaddr + off),
417 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
419 #else
420 if ((phdr[i].p_flags & PF_W) == 0) {
421 printf("text=0x%lx ", (long)phdr[i].p_filesz);
422 } else {
423 printf("data=0x%lx", (long)phdr[i].p_filesz);
424 if (phdr[i].p_filesz < phdr[i].p_memsz)
425 printf("+0x%lx", (long)(phdr[i].p_memsz -phdr[i].p_filesz));
426 printf(" ");
428 #endif
429 fpcopy = 0;
430 if (ef->firstlen > phdr[i].p_offset) {
431 fpcopy = ef->firstlen - phdr[i].p_offset;
432 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
433 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
434 phdr[i].p_paddr + off, fpcopy);
435 } else {
436 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
437 phdr[i].p_vaddr + off, fpcopy);
440 if (phdr[i].p_filesz > fpcopy) {
441 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
442 if (kern_pread(ef->fd, phdr[i].p_paddr + off + fpcopy,
443 phdr[i].p_filesz - fpcopy,
444 phdr[i].p_offset + fpcopy) != 0) {
445 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
446 "_loadimage: read failed\n");
447 goto out;
449 } else {
450 if (kern_pread(ef->fd, phdr[i].p_vaddr + off + fpcopy,
451 phdr[i].p_filesz - fpcopy,
452 phdr[i].p_offset + fpcopy) != 0) {
453 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
454 "_loadimage: read failed\n");
455 goto out;
459 /* clear space from oversized segments; eg: bss */
460 if (phdr[i].p_filesz < phdr[i].p_memsz) {
461 #ifdef ELF_VERBOSE
462 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
463 printf(" (bss: 0x%lx-0x%lx)",
464 (long)(phdr[i].p_paddr + off + phdr[i].p_filesz),
465 (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1));
466 } else {
467 printf(" (bss: 0x%lx-0x%lx)",
468 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
469 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
471 #endif
473 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
474 kern_bzero(phdr[i].p_paddr + off + phdr[i].p_filesz,
475 phdr[i].p_memsz - phdr[i].p_filesz);
476 } else {
477 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
478 phdr[i].p_memsz - phdr[i].p_filesz);
481 #ifdef ELF_VERBOSE
482 printf("\n");
483 #endif
485 if (archsw.arch_loadseg != NULL)
486 archsw.arch_loadseg(ehdr, phdr + i, off);
488 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) {
489 if (firstaddr == 0 || firstaddr > (phdr[i].p_paddr + off))
490 firstaddr = phdr[i].p_paddr + off;
491 if (lastaddr == 0 ||
492 lastaddr < (phdr[i].p_paddr + off + phdr[i].p_memsz))
493 lastaddr = phdr[i].p_paddr + off + phdr[i].p_memsz;
494 } else {
495 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
496 firstaddr = phdr[i].p_vaddr + off;
497 if (lastaddr == 0 ||
498 lastaddr < (phdr[i].p_vaddr + off + phdr[i].p_memsz))
499 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
502 lastaddr = roundup(lastaddr, sizeof(long));
505 * Get the section headers. We need this for finding the .ctors
506 * section as well as for loading any symbols. Both may be hard
507 * to do if reading from a .gz file as it involves seeking. I
508 * think the rule is going to have to be that you must strip a
509 * file to remove symbols before gzipping it.
511 chunk = ehdr->e_shnum * ehdr->e_shentsize;
512 if (chunk == 0 || ehdr->e_shoff == 0)
513 goto nosyms;
514 shdr = alloc_pread(ef->fd, ehdr->e_shoff, chunk);
515 if (shdr == NULL) {
516 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
517 "_loadimage: failed to read section headers");
518 goto nosyms;
520 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
523 * Read the section string table and look for the .ctors section.
524 * We need to tell the kernel where it is so that it can call the
525 * ctors.
527 chunk = shdr[ehdr->e_shstrndx].sh_size;
528 if (chunk) {
529 shstr = alloc_pread(ef->fd, shdr[ehdr->e_shstrndx].sh_offset, chunk);
530 if (shstr) {
531 for (i = 0; i < ehdr->e_shnum; i++) {
532 if (strcmp(shstr + shdr[i].sh_name, ".ctors") != 0)
533 continue;
534 ctors = shdr[i].sh_addr;
535 file_addmetadata(fp, MODINFOMD_CTORS_ADDR, sizeof(ctors),
536 &ctors);
537 size = shdr[i].sh_size;
538 file_addmetadata(fp, MODINFOMD_CTORS_SIZE, sizeof(size),
539 &size);
540 break;
542 free(shstr);
547 * Now load any symbols.
549 symtabindex = -1;
550 symstrindex = -1;
551 for (i = 0; i < ehdr->e_shnum; i++) {
552 if (shdr[i].sh_type != SHT_SYMTAB)
553 continue;
554 for (j = 0; j < ehdr->e_phnum; j++) {
555 if (phdr[j].p_type != PT_LOAD)
556 continue;
557 if (shdr[i].sh_offset >= phdr[j].p_offset &&
558 (shdr[i].sh_offset + shdr[i].sh_size <=
559 phdr[j].p_offset + phdr[j].p_filesz)) {
560 shdr[i].sh_offset = 0;
561 shdr[i].sh_size = 0;
562 break;
565 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
566 continue; /* alread loaded in a PT_LOAD above */
567 /* Save it for loading below */
568 symtabindex = i;
569 symstrindex = shdr[i].sh_link;
571 if (symtabindex < 0 || symstrindex < 0)
572 goto nosyms;
574 /* Ok, committed to a load. */
575 #ifndef ELF_VERBOSE
576 printf("syms=[");
577 #endif
578 ssym = lastaddr;
579 for (i = symtabindex; i >= 0; i = symstrindex) {
580 #ifdef ELF_VERBOSE
581 char *secname;
583 switch(shdr[i].sh_type) {
584 case SHT_SYMTAB: /* Symbol table */
585 secname = "symtab";
586 break;
587 case SHT_STRTAB: /* String table */
588 secname = "strtab";
589 break;
590 default:
591 secname = "WHOA!!";
592 break;
594 #endif
596 size = shdr[i].sh_size;
597 archsw.arch_copyin(&size, lastaddr, sizeof(size));
598 lastaddr += sizeof(size);
600 #ifdef ELF_VERBOSE
601 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
602 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
603 (uintmax_t)lastaddr, (uintmax_t)(lastaddr + shdr[i].sh_size));
604 #else
605 if (i == symstrindex)
606 printf("+");
607 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
608 #endif
610 if (lseek(ef->fd, (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
611 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not seek for symbols - skipped!");
612 lastaddr = ssym;
613 ssym = 0;
614 goto nosyms;
616 result = archsw.arch_readin(ef->fd, lastaddr, shdr[i].sh_size);
617 if (result < 0 || (size_t)result != shdr[i].sh_size) {
618 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not read symbols - skipped! (%ju != %ju)", (uintmax_t)result,
619 (uintmax_t)shdr[i].sh_size);
620 lastaddr = ssym;
621 ssym = 0;
622 goto nosyms;
624 /* Reset offsets relative to ssym */
625 lastaddr += shdr[i].sh_size;
626 lastaddr = roundup(lastaddr, sizeof(size));
627 if (i == symtabindex)
628 symtabindex = -1;
629 else if (i == symstrindex)
630 symstrindex = -1;
632 esym = lastaddr;
633 #ifndef ELF_VERBOSE
634 printf("]");
635 #endif
637 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
638 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
640 nosyms:
641 printf("\n");
643 ret = lastaddr - firstaddr;
644 if (ehdr->e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
645 fp->f_addr = firstaddr;
647 php = NULL;
648 for (i = 0; i < ehdr->e_phnum; i++) {
649 if (phdr[i].p_type == PT_DYNAMIC) {
650 php = phdr + i;
651 adp = php->p_vaddr;
652 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), &adp);
653 break;
657 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
658 goto out;
660 ndp = php->p_filesz / sizeof(Elf_Dyn);
661 if (ndp == 0)
662 goto out;
663 dp = malloc(php->p_filesz);
664 if (dp == NULL)
665 goto out;
666 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
667 archsw.arch_copyout(php->p_paddr + off, dp, php->p_filesz);
668 else
669 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
671 ef->strsz = 0;
672 for (i = 0; i < ndp; i++) {
673 if (dp[i].d_tag == 0)
674 break;
675 switch (dp[i].d_tag) {
676 case DT_HASH:
677 ef->hashtab = (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
678 break;
679 case DT_STRTAB:
680 ef->strtab = (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
681 break;
682 case DT_STRSZ:
683 ef->strsz = dp[i].d_un.d_val;
684 break;
685 case DT_SYMTAB:
686 ef->symtab = (Elf_Sym*)(uintptr_t)(dp[i].d_un.d_ptr + off);
687 break;
688 case DT_REL:
689 ef->rel = (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
690 break;
691 case DT_RELSZ:
692 ef->relsz = dp[i].d_un.d_val;
693 break;
694 case DT_RELA:
695 ef->rela = (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
696 break;
697 case DT_RELASZ:
698 ef->relasz = dp[i].d_un.d_val;
699 break;
700 default:
701 break;
704 if (ef->hashtab == NULL || ef->symtab == NULL ||
705 ef->strtab == NULL || ef->strsz == 0)
706 goto out;
707 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
708 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
709 ef->buckets = ef->hashtab + 2;
710 ef->chains = ef->buckets + ef->nbuckets;
712 if (__elfN(lookup_symbol)(fp, ef, "__start_set_modmetadata_set", &sym) != 0)
713 return 0;
714 p_start = sym.st_value + ef->off;
715 if (__elfN(lookup_symbol)(fp, ef, "__stop_set_modmetadata_set", &sym) != 0)
716 return ENOENT;
717 p_end = sym.st_value + ef->off;
719 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
720 goto out;
722 if (ef->kernel) /* kernel must not depend on anything */
723 goto out;
725 out:
726 if (dp)
727 free(dp);
728 if (shdr)
729 free(shdr);
730 return ret;
733 static char invalid_name[] = "bad";
735 char *
736 fake_modname(const char *name)
738 const char *sp, *ep;
739 char *fp;
740 size_t len;
742 sp = strrchr(name, '/');
743 if (sp)
744 sp++;
745 else
746 sp = name;
747 ep = strrchr(name, '.');
748 if (ep) {
749 if (ep == name) {
750 sp = invalid_name;
751 ep = invalid_name + sizeof(invalid_name) - 1;
753 } else
754 ep = name + strlen(name);
755 len = ep - sp;
756 fp = malloc(len + 1);
757 if (fp == NULL)
758 return NULL;
759 memcpy(fp, sp, len);
760 fp[len] = '\0';
761 return fp;
764 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
765 struct mod_metadata64 {
766 int md_version; /* structure version MDTV_* */
767 int md_type; /* type of entry MDT_* */
768 u_int64_t md_data; /* specific data */
769 u_int64_t md_cval; /* common string label */
771 #endif
772 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
773 struct mod_metadata32 {
774 int md_version; /* structure version MDTV_* */
775 int md_type; /* type of entry MDT_* */
776 u_int32_t md_data; /* specific data */
777 u_int32_t md_cval; /* common string label */
779 #endif
782 __elfN(load_modmetadata)(struct preloaded_file *fp, u_int64_t dest)
784 struct elf_file ef;
785 int err, i, j;
786 Elf_Shdr *sh_meta, *shdr = NULL;
787 Elf_Shdr *sh_data[2];
788 char *shstrtab = NULL;
789 size_t size;
790 Elf_Addr p_start, p_end;
792 bzero(&ef, sizeof(struct elf_file));
793 ef.fd = -1;
795 err = __elfN(load_elf_header)(fp->f_name, &ef);
796 if (err != 0)
797 goto out;
799 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
800 ef.kernel = 1;
801 } else if (ef.ehdr->e_type != ET_DYN) {
802 err = EFTYPE;
803 goto out;
806 size = ef.ehdr->e_shnum * ef.ehdr->e_shentsize;
807 shdr = alloc_pread(ef.fd, ef.ehdr->e_shoff, size);
808 if (shdr == NULL) {
809 err = ENOMEM;
810 goto out;
813 /* Load shstrtab. */
814 shstrtab = alloc_pread(ef.fd, shdr[ef.ehdr->e_shstrndx].sh_offset,
815 shdr[ef.ehdr->e_shstrndx].sh_size);
816 if (shstrtab == NULL) {
817 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
818 "load_modmetadata: unable to load shstrtab\n");
819 err = EFTYPE;
820 goto out;
823 /* Find set_modmetadata_set and data sections. */
824 sh_data[0] = sh_data[1] = sh_meta = NULL;
825 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
826 if (strcmp(&shstrtab[shdr[i].sh_name],
827 "set_modmetadata_set") == 0) {
828 sh_meta = &shdr[i];
830 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
831 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
832 sh_data[j++] = &shdr[i];
835 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
836 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
837 "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
838 err = EFTYPE;
839 goto out;
842 /* Load set_modmetadata_set into memory */
843 err = kern_pread(ef.fd, dest, sh_meta->sh_size, sh_meta->sh_offset);
844 if (err != 0) {
845 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
846 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
847 goto out;
849 p_start = dest;
850 p_end = dest + sh_meta->sh_size;
851 dest += sh_meta->sh_size;
853 /* Load data sections into memory. */
854 err = kern_pread(ef.fd, dest, sh_data[0]->sh_size,
855 sh_data[0]->sh_offset);
856 if (err != 0) {
857 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
858 "load_modmetadata: unable to load data: %d\n", err);
859 goto out;
863 * We have to increment the dest, so that the offset is the same into
864 * both the .rodata and .data sections.
866 ef.off = -(sh_data[0]->sh_addr - dest);
867 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr);
869 err = kern_pread(ef.fd, dest, sh_data[1]->sh_size,
870 sh_data[1]->sh_offset);
871 if (err != 0) {
872 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
873 "load_modmetadata: unable to load data: %d\n", err);
874 goto out;
877 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
878 if (err != 0) {
879 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
880 "load_modmetadata: unable to parse metadata: %d\n", err);
881 goto out;
884 out:
885 if (shstrtab != NULL)
886 free(shstrtab);
887 if (shdr != NULL)
888 free(shdr);
889 if (ef.firstpage != NULL)
890 free(ef.firstpage);
891 if (ef.fd != -1)
892 close(ef.fd);
893 return (err);
897 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
898 Elf_Addr p_start, Elf_Addr p_end)
900 struct mod_metadata md;
901 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
902 struct mod_metadata64 md64;
903 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
904 struct mod_metadata32 md32;
905 #endif
906 struct mod_depend *mdepend;
907 struct mod_version mver;
908 char *s;
909 int error, modcnt, minfolen;
910 Elf_Addr v, p;
912 modcnt = 0;
913 p = p_start;
914 while (p < p_end) {
915 COPYOUT(p, &v, sizeof(v));
916 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
917 if (error == EOPNOTSUPP)
918 v += ef->off;
919 else if (error != 0)
920 return (error);
921 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
922 COPYOUT(v, &md64, sizeof(md64));
923 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
924 if (error == EOPNOTSUPP) {
925 md64.md_cval += ef->off;
926 md64.md_data += ef->off;
927 } else if (error != 0)
928 return (error);
929 md.md_version = md64.md_version;
930 md.md_type = md64.md_type;
931 md.md_cval = (const char *)(uintptr_t)md64.md_cval;
932 md.md_data = (void *)(uintptr_t)md64.md_data;
933 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
934 COPYOUT(v, &md32, sizeof(md32));
935 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
936 if (error == EOPNOTSUPP) {
937 md32.md_cval += ef->off;
938 md32.md_data += ef->off;
939 } else if (error != 0)
940 return (error);
941 md.md_version = md32.md_version;
942 md.md_type = md32.md_type;
943 md.md_cval = (const char *)(uintptr_t)md32.md_cval;
944 md.md_data = (void *)(uintptr_t)md32.md_data;
945 #else
946 COPYOUT(v, &md, sizeof(md));
947 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
948 if (error == EOPNOTSUPP) {
949 md.md_cval += ef->off;
950 md.md_data = (void *)((uintptr_t)md.md_data + (uintptr_t)ef->off);
951 } else if (error != 0)
952 return (error);
953 #endif
954 p += sizeof(Elf_Addr);
955 switch(md.md_type) {
956 case MDT_DEPEND:
957 if (ef->kernel) /* kernel must not depend on anything */
958 break;
959 s = strdupout((vm_offset_t)md.md_cval);
960 minfolen = sizeof(*mdepend) + strlen(s) + 1;
961 mdepend = malloc(minfolen);
962 if (mdepend == NULL)
963 return ENOMEM;
964 COPYOUT((vm_offset_t)md.md_data, mdepend, sizeof(*mdepend));
965 strcpy((char*)(mdepend + 1), s);
966 free(s);
967 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, mdepend);
968 free(mdepend);
969 break;
970 case MDT_VERSION:
971 s = strdupout((vm_offset_t)md.md_cval);
972 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
973 file_addmodule(fp, s, mver.mv_version, NULL);
974 free(s);
975 modcnt++;
976 break;
979 if (modcnt == 0) {
980 s = fake_modname(fp->f_name);
981 file_addmodule(fp, s, 1, NULL);
982 free(s);
984 return 0;
987 static unsigned long
988 elf_hash(const char *name)
990 const unsigned char *p = (const unsigned char *) name;
991 unsigned long h = 0;
992 unsigned long g;
994 while (*p != '\0') {
995 h = (h << 4) + *p++;
996 if ((g = h & 0xf0000000) != 0)
997 h ^= g >> 24;
998 h &= ~g;
1000 return h;
1003 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE) "_lookup_symbol: corrupt symbol table\n";
1005 __elfN(lookup_symbol)(struct preloaded_file *fp __unused, elf_file_t ef,
1006 const char* name, Elf_Sym *symp)
1008 Elf_Hashelt symnum;
1009 Elf_Sym sym;
1010 char *strp;
1011 unsigned long hash;
1013 hash = elf_hash(name);
1014 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1016 while (symnum != STN_UNDEF) {
1017 if (symnum >= ef->nchains) {
1018 printf(__elfN(bad_symtable));
1019 return ENOENT;
1022 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1023 if (sym.st_name == 0) {
1024 printf(__elfN(bad_symtable));
1025 return ENOENT;
1028 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1029 if (strcmp(name, strp) == 0) {
1030 free(strp);
1031 if (sym.st_shndx != SHN_UNDEF ||
1032 (sym.st_value != 0 &&
1033 ELF_ST_TYPE(sym.st_info) == STT_FUNC)) {
1034 *symp = sym;
1035 return 0;
1037 return ENOENT;
1039 free(strp);
1040 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1042 return ENOENT;
1046 * Apply any intra-module relocations to the value. p is the load address
1047 * of the value and val/len is the value to be modified. This does NOT modify
1048 * the image in-place, because this is done by kern_linker later on.
1050 * Returns EOPNOTSUPP if no relocation method is supplied.
1052 static int
1053 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1054 Elf_Addr p, void *val, size_t len)
1056 size_t n;
1057 Elf_Rela a;
1058 Elf_Rel r;
1059 int error;
1061 (void)mp;
1063 * The kernel is already relocated, but we still want to apply
1064 * offset adjustments.
1066 if (ef->kernel)
1067 return (EOPNOTSUPP);
1069 for (n = 0; n < ef->relsz / sizeof(r); n++) {
1070 COPYOUT(ef->rel + n, &r, sizeof(r));
1072 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1073 ef->off, p, val, len);
1074 if (error != 0)
1075 return (error);
1077 for (n = 0; n < ef->relasz / sizeof(a); n++) {
1078 COPYOUT(ef->rela + n, &a, sizeof(a));
1080 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1081 ef->off, p, val, len);
1082 if (error != 0)
1083 return (error);
1086 return (0);
1089 static Elf_Addr
1090 __elfN(symaddr)(struct elf_file *ef __unused, Elf_Size symidx __unused)
1092 /* Symbol lookup by index not required here. */
1093 return (0);