Unleashed v1.4
[unleashed.git] / kernel / vm / page_retire.c
bloba7d6434dfc4310e696209a5cc7666a4996d3e7ad
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
28 * Page Retire - Big Theory Statement.
30 * This file handles removing sections of faulty memory from use when the
31 * user land FMA Diagnosis Engine requests that a page be removed or when
32 * a CE or UE is detected by the hardware.
34 * In the bad old days, the kernel side of Page Retire did a lot of the work
35 * on its own. Now, with the DE keeping track of errors, the kernel side is
36 * rather simple minded on most platforms.
38 * Errors are all reflected to the DE, and after digesting the error and
39 * looking at all previously reported errors, the DE decides what should
40 * be done about the current error. If the DE wants a particular page to
41 * be retired, then the kernel page retire code is invoked via an ioctl.
42 * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
43 * page retire to handle the error. Since page retire is just a simple
44 * mechanism it doesn't need to differentiate between the different callers.
46 * The p_toxic field in the page_t is used to indicate which errors have
47 * occurred and what action has been taken on a given page. Because errors are
48 * reported without regard to the locked state of a page, no locks are used
49 * to SET the error bits in p_toxic. However, in order to clear the error
50 * bits, the page_t must be held exclusively locked.
52 * When page_retire() is called, it must be able to acquire locks, sleep, etc.
53 * It must not be called from high-level interrupt context.
55 * Depending on how the requested page is being used at the time of the retire
56 * request (and on the availability of sufficient system resources), the page
57 * may be retired immediately, or just marked for retirement later. For
58 * example, locked pages are marked, while free pages are retired. Multiple
59 * requests may be made to retire the same page, although there is no need
60 * to: once the p_toxic flags are set, the page will be retired as soon as it
61 * can be exclusively locked.
63 * The retire mechanism is driven centrally out of page_unlock(). To expedite
64 * the retirement of pages, further requests for SE_SHARED locks are denied
65 * as long as a page retirement is pending. In addition, as long as pages are
66 * pending retirement a background thread runs periodically trying to retire
67 * those pages. Pages which could not be retired while the system is running
68 * are scrubbed prior to rebooting to avoid latent errors on the next boot.
70 * UE pages without persistent errors are scrubbed and returned to service.
71 * Recidivist pages, as well as FMA-directed requests for retirement, result
72 * in the page being taken out of service. Once the decision is made to take
73 * a page out of service, the page is cleared, hashed onto the retired_pages
74 * vnode, marked as retired, and it is unlocked. No other requesters (except
75 * for unretire) are allowed to lock retired pages.
77 * The public routines return (sadly) 0 if they worked and a non-zero error
78 * value if something went wrong. This is done for the ioctl side of the
79 * world to allow errors to be reflected all the way out to user land. The
80 * non-zero values are explained in comments atop each function.
84 * Things to fix:
86 * 1. Trying to retire non-relocatable kvp pages may result in a
87 * quagmire. This is because seg_kmem() no longer keeps its pages locked,
88 * and calls page_lookup() in the free path; since kvp pages are modified
89 * and don't have a usable backing store, page_retire() can't do anything
90 * with them, and we'll keep denying the lock to seg_kmem_free() in a
91 * vicious cycle. To prevent that, we don't deny locks to kvp pages, and
92 * hence only try to retire a page from page_unlock() in the free path.
93 * Since most kernel pages are indefinitely held anyway, and don't
94 * participate in I/O, this is of little consequence.
96 * 2. Low memory situations will be interesting. If we don't have
97 * enough memory for page_relocate() to succeed, we won't be able to
98 * retire dirty pages; nobody will be able to push them out to disk
99 * either, since we aggressively deny the page lock. We could change
100 * fsflush so it can recognize this situation, grab the lock, and push
101 * the page out, where we'll catch it in the free path and retire it.
103 * 3. Beware of places that have code like this in them:
105 * if (! page_tryupgrade(pp)) {
106 * page_unlock(pp);
107 * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
108 * / *NOTHING* /
111 * page_free(pp);
113 * The problem is that pp can change identity right after the
114 * page_unlock() call. In particular, page_retire() can step in
115 * there, change pp's identity, and hash pp onto the retired_vnode.
117 * Of course, other functions besides page_retire() can have the
118 * same effect. A kmem reader can waltz by, set up a mapping to the
119 * page, and then unlock the page. Page_free() will then go castors
120 * up. So if anybody is doing this, it's already a bug.
122 * 4. mdboot()'s call into page_retire_mdboot() should probably be
123 * moved lower. Where the call is made now, we can get into trouble
124 * by scrubbing a kernel page that is then accessed later.
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/systm.h>
130 #include <sys/mman.h>
131 #include <sys/vnode.h>
132 #include <sys/vfs.h>
133 #include <sys/cmn_err.h>
134 #include <sys/ksynch.h>
135 #include <sys/thread.h>
136 #include <sys/disp.h>
137 #include <sys/ontrap.h>
138 #include <sys/vmsystm.h>
139 #include <sys/mem_config.h>
140 #include <sys/atomic.h>
141 #include <sys/callb.h>
142 #include <sys/kobj.h>
143 #include <vm/page.h>
144 #include <vm/vm_dep.h>
145 #include <vm/as.h>
146 #include <vm/hat.h>
147 #include <vm/seg_kmem.h>
150 * vnode for all pages which are retired from the VM system;
152 vnode_t *retired_pages;
155 * vnode ops - all defaults
157 static const struct vnodeops retired_vnodeops = {
158 .vnop_name = "retired_pages",
161 static int page_retire_pp_finish(page_t *, void *, uint_t);
164 * Make a list of all of the pages that have been marked for retirement
165 * but are not yet retired. At system shutdown, we will scrub all of the
166 * pages in the list in case there are outstanding UEs. Then, we
167 * cross-check this list against the number of pages that are yet to be
168 * retired, and if we find inconsistencies, we scan every page_t in the
169 * whole system looking for any pages that need to be scrubbed for UEs.
170 * The background thread also uses this queue to determine which pages
171 * it should keep trying to retire.
173 #ifdef DEBUG
174 #define PR_PENDING_QMAX 32
175 #else /* DEBUG */
176 #define PR_PENDING_QMAX 256
177 #endif /* DEBUG */
178 page_t *pr_pending_q[PR_PENDING_QMAX];
179 kmutex_t pr_q_mutex;
182 * Page retire global kstats
184 struct page_retire_kstat {
185 kstat_named_t pr_retired;
186 kstat_named_t pr_requested;
187 kstat_named_t pr_requested_free;
188 kstat_named_t pr_enqueue_fail;
189 kstat_named_t pr_dequeue_fail;
190 kstat_named_t pr_pending;
191 kstat_named_t pr_pending_kas;
192 kstat_named_t pr_failed;
193 kstat_named_t pr_failed_kernel;
194 kstat_named_t pr_limit;
195 kstat_named_t pr_limit_exceeded;
196 kstat_named_t pr_fma;
197 kstat_named_t pr_mce;
198 kstat_named_t pr_ue;
199 kstat_named_t pr_ue_cleared_retire;
200 kstat_named_t pr_ue_cleared_free;
201 kstat_named_t pr_ue_persistent;
202 kstat_named_t pr_unretired;
205 static struct page_retire_kstat page_retire_kstat = {
206 { "pages_retired", KSTAT_DATA_UINT64},
207 { "pages_retire_request", KSTAT_DATA_UINT64},
208 { "pages_retire_request_free", KSTAT_DATA_UINT64},
209 { "pages_notenqueued", KSTAT_DATA_UINT64},
210 { "pages_notdequeued", KSTAT_DATA_UINT64},
211 { "pages_pending", KSTAT_DATA_UINT64},
212 { "pages_pending_kas", KSTAT_DATA_UINT64},
213 { "pages_deferred", KSTAT_DATA_UINT64},
214 { "pages_deferred_kernel", KSTAT_DATA_UINT64},
215 { "pages_limit", KSTAT_DATA_UINT64},
216 { "pages_limit_exceeded", KSTAT_DATA_UINT64},
217 { "pages_fma", KSTAT_DATA_UINT64},
218 { "pages_multiple_ce", KSTAT_DATA_UINT64},
219 { "pages_ue", KSTAT_DATA_UINT64},
220 { "pages_ue_cleared_retired", KSTAT_DATA_UINT64},
221 { "pages_ue_cleared_freed", KSTAT_DATA_UINT64},
222 { "pages_ue_persistent", KSTAT_DATA_UINT64},
223 { "pages_unretired", KSTAT_DATA_UINT64},
226 static kstat_t *page_retire_ksp = NULL;
228 #define PR_INCR_KSTAT(stat) \
229 atomic_inc_64(&(page_retire_kstat.stat.value.ui64))
230 #define PR_DECR_KSTAT(stat) \
231 atomic_dec_64(&(page_retire_kstat.stat.value.ui64))
233 #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64)
234 #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64)
235 #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
236 #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64)
237 #define PR_KSTAT_PENDING_KAS (page_retire_kstat.pr_pending_kas.value.ui64)
238 #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64)
239 #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64)
242 * page retire kstats to list all retired pages
244 static int pr_list_kstat_update(kstat_t *ksp, int rw);
245 static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
246 kmutex_t pr_list_kstat_mutex;
249 * Limit the number of multiple CE page retires.
250 * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
251 * basis points, where 100 basis points equals one percent.
253 #define MCE_BPT 10
254 uint64_t max_pages_retired_bps = MCE_BPT;
255 #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000)
258 * Control over the verbosity of page retirement.
260 * When set to zero (the default), no messages will be printed.
261 * When set to one, summary messages will be printed.
262 * When set > one, all messages will be printed.
264 * A value of one will trigger detailed messages for retirement operations,
265 * and is intended as a platform tunable for processors where FMA's DE does
266 * not run (e.g., spitfire). Values > one are intended for debugging only.
268 int page_retire_messages = 0;
271 * Control whether or not we return scrubbed UE pages to service.
272 * By default we do not since FMA wants to run its diagnostics first
273 * and then ask us to unretire the page if it passes. Non-FMA platforms
274 * may set this to zero so we will only retire recidivist pages. It should
275 * not be changed by the user.
277 int page_retire_first_ue = 1;
280 * Master enable for page retire. This prevents a CE or UE early in boot
281 * from trying to retire a page before page_retire_init() has finished
282 * setting things up. This is internal only and is not a tunable!
284 static int pr_enable = 0;
286 static void (*memscrub_notify_func)(uint64_t);
288 #ifdef DEBUG
289 struct page_retire_debug {
290 int prd_dup1;
291 int prd_dup2;
292 int prd_qdup;
293 int prd_noaction;
294 int prd_queued;
295 int prd_notqueued;
296 int prd_dequeue;
297 int prd_top;
298 int prd_locked;
299 int prd_reloc;
300 int prd_relocfail;
301 int prd_mod;
302 int prd_mod_late;
303 int prd_kern;
304 int prd_free;
305 int prd_noreclaim;
306 int prd_hashout;
307 int prd_fma;
308 int prd_uescrubbed;
309 int prd_uenotscrubbed;
310 int prd_mce;
311 int prd_prlocked;
312 int prd_prnotlocked;
313 int prd_prretired;
314 int prd_ulocked;
315 int prd_unotretired;
316 int prd_udestroy;
317 int prd_uhashout;
318 int prd_uunretired;
319 int prd_unotlocked;
320 int prd_checkhit;
321 int prd_checkmiss_pend;
322 int prd_checkmiss_noerr;
323 int prd_tctop;
324 int prd_tclocked;
325 int prd_hunt;
326 int prd_dohunt;
327 int prd_earlyhunt;
328 int prd_latehunt;
329 int prd_nofreedemote;
330 int prd_nodemote;
331 int prd_demoted;
332 } pr_debug;
334 #define PR_DEBUG(foo) ((pr_debug.foo)++)
337 * A type histogram. We record the incidence of the various toxic
338 * flag combinations along with the interesting page attributes. The
339 * goal is to get as many combinations as we can while driving all
340 * pr_debug values nonzero (indicating we've exercised all possible
341 * code paths across all possible page types). Not all combinations
342 * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
344 * pr_type offset bit encoding (when examining with a debugger):
346 * PRT_NAMED - 0x4
347 * PRT_KERNEL - 0x8
348 * PRT_FREE - 0x10
349 * PRT_MOD - 0x20
350 * PRT_FMA - 0x0
351 * PRT_MCE - 0x40
352 * PRT_UE - 0x80
355 #define PRT_NAMED 0x01
356 #define PRT_KERNEL 0x02
357 #define PRT_FREE 0x04
358 #define PRT_MOD 0x08
359 #define PRT_FMA 0x00 /* yes, this is not a mistake */
360 #define PRT_MCE 0x10
361 #define PRT_UE 0x20
362 #define PRT_ALL 0x3F
364 int pr_types[PRT_ALL+1];
366 #define PR_TYPES(pp) { \
367 int whichtype = 0; \
368 if (pp->p_vnode) \
369 whichtype |= PRT_NAMED; \
370 if (PP_ISKAS(pp)) \
371 whichtype |= PRT_KERNEL; \
372 if (PP_ISFREE(pp)) \
373 whichtype |= PRT_FREE; \
374 if (hat_ismod(pp)) \
375 whichtype |= PRT_MOD; \
376 if (pp->p_toxic & PR_UE) \
377 whichtype |= PRT_UE; \
378 if (pp->p_toxic & PR_MCE) \
379 whichtype |= PRT_MCE; \
380 pr_types[whichtype]++; \
383 int recl_calls;
384 int recl_mtbf = 3;
385 int reloc_calls;
386 int reloc_mtbf = 7;
387 int pr_calls;
388 int pr_mtbf = 15;
390 #define MTBF(v, f) (((++(v)) & (f)) != (f))
392 #else /* DEBUG */
394 #define PR_DEBUG(foo) /* nothing */
395 #define PR_TYPES(foo) /* nothing */
396 #define MTBF(v, f) (1)
398 #endif /* DEBUG */
401 * page_retire_done() - completion processing
403 * Used by the page_retire code for common completion processing.
404 * It keeps track of how many times a given result has happened,
405 * and writes out an occasional message.
407 * May be called with a NULL pp (PRD_INVALID_PA case).
409 #define PRD_INVALID_KEY -1
410 #define PRD_SUCCESS 0
411 #define PRD_PENDING 1
412 #define PRD_FAILED 2
413 #define PRD_DUPLICATE 3
414 #define PRD_INVALID_PA 4
415 #define PRD_LIMIT 5
416 #define PRD_UE_SCRUBBED 6
417 #define PRD_UNR_SUCCESS 7
418 #define PRD_UNR_CANTLOCK 8
419 #define PRD_UNR_NOT 9
421 typedef struct page_retire_op {
422 int pr_key; /* one of the PRD_* defines from above */
423 int pr_count; /* How many times this has happened */
424 int pr_retval; /* return value */
425 int pr_msglvl; /* message level - when to print */
426 char *pr_message; /* Cryptic message for field service */
427 } page_retire_op_t;
429 static page_retire_op_t page_retire_ops[] = {
430 /* key count retval msglvl message */
431 {PRD_SUCCESS, 0, 0, 1,
432 "Page 0x%08x.%08x removed from service"},
433 {PRD_PENDING, 0, EAGAIN, 2,
434 "Page 0x%08x.%08x will be retired on free"},
435 {PRD_FAILED, 0, EAGAIN, 0, NULL},
436 {PRD_DUPLICATE, 0, EIO, 2,
437 "Page 0x%08x.%08x already retired or pending"},
438 {PRD_INVALID_PA, 0, EINVAL, 2,
439 "PA 0x%08x.%08x is not a relocatable page"},
440 {PRD_LIMIT, 0, 0, 1,
441 "Page 0x%08x.%08x not retired due to limit exceeded"},
442 {PRD_UE_SCRUBBED, 0, 0, 1,
443 "Previously reported error on page 0x%08x.%08x cleared"},
444 {PRD_UNR_SUCCESS, 0, 0, 1,
445 "Page 0x%08x.%08x returned to service"},
446 {PRD_UNR_CANTLOCK, 0, EAGAIN, 2,
447 "Page 0x%08x.%08x could not be unretired"},
448 {PRD_UNR_NOT, 0, EIO, 2,
449 "Page 0x%08x.%08x is not retired"},
450 {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */
454 * print a message if page_retire_messages is true.
456 #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \
458 uint64_t p = (uint64_t)pa; \
459 if (page_retire_messages >= msglvl && msg != NULL) { \
460 cmn_err(debuglvl, msg, \
461 (uint32_t)(p >> 32), (uint32_t)p); \
466 * Note that multiple bits may be set in a single settoxic operation.
467 * May be called without the page locked.
469 void
470 page_settoxic(page_t *pp, uchar_t bits)
472 atomic_or_8(&pp->p_toxic, bits);
476 * Note that multiple bits may cleared in a single clrtoxic operation.
477 * Must be called with the page exclusively locked to prevent races which
478 * may attempt to retire a page without any toxic bits set.
479 * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
480 * being held as there is a separate mutex which protects that bit.
482 void
483 page_clrtoxic(page_t *pp, uchar_t bits)
485 ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
486 atomic_and_8(&pp->p_toxic, ~bits);
490 * Prints any page retire messages to the user, and decides what
491 * error code is appropriate for the condition reported.
493 static int
494 page_retire_done(page_t *pp, int code)
496 page_retire_op_t *prop;
497 uint64_t pa = 0;
498 int i;
500 if (pp != NULL) {
501 pa = mmu_ptob((uint64_t)pp->p_pagenum);
504 prop = NULL;
505 for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
506 if (page_retire_ops[i].pr_key == code) {
507 prop = &page_retire_ops[i];
508 break;
512 #ifdef DEBUG
513 if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
514 cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
516 #endif
518 ASSERT(prop->pr_key == code);
520 prop->pr_count++;
522 PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
523 if (pp != NULL) {
524 page_settoxic(pp, PR_MSG);
527 return (prop->pr_retval);
531 * Act like page_destroy(), but instead of freeing the page, hash it onto
532 * the retired_pages vnode, and mark it retired.
534 * For fun, we try to scrub the page until it's squeaky clean.
535 * availrmem is adjusted here.
537 static void
538 page_retire_destroy(page_t *pp)
540 uoff_t off = (uoff_t)((uintptr_t)pp);
542 ASSERT(PAGE_EXCL(pp));
543 ASSERT(!PP_ISFREE(pp));
544 ASSERT(pp->p_szc == 0);
545 ASSERT(!hat_page_is_mapped(pp));
546 ASSERT(!pp->p_vnode);
548 page_clr_all_props(pp);
549 pagescrub(pp, 0, MMU_PAGESIZE);
551 pp->p_next = NULL;
552 pp->p_prev = NULL;
553 if (page_hashin(pp, &retired_pages->v_object, off, false) == 0) {
554 cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
557 page_settoxic(pp, PR_RETIRED);
558 PR_INCR_KSTAT(pr_retired);
560 if (pp->p_toxic & PR_FMA) {
561 PR_INCR_KSTAT(pr_fma);
562 } else if (pp->p_toxic & PR_UE) {
563 PR_INCR_KSTAT(pr_ue);
564 } else {
565 PR_INCR_KSTAT(pr_mce);
568 mutex_enter(&freemem_lock);
569 availrmem--;
570 mutex_exit(&freemem_lock);
572 page_unlock(pp);
576 * Check whether the number of pages which have been retired already exceeds
577 * the maximum allowable percentage of memory which may be retired.
579 * Returns 1 if the limit has been exceeded.
581 static int
582 page_retire_limit(void)
584 if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
585 PR_INCR_KSTAT(pr_limit_exceeded);
586 return (1);
589 return (0);
592 #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \
593 "[ 0x%x != 0x%x ] while attempting to clear previously " \
594 "reported error; page removed from service"
596 #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \
597 "attempting to clear previously reported error; page removed " \
598 "from service"
601 * Attempt to clear a UE from a page.
602 * Returns 1 if the error has been successfully cleared.
604 static int
605 page_clear_transient_ue(page_t *pp)
607 caddr_t kaddr;
608 uint8_t rb, wb;
609 uint64_t pa;
610 uint32_t pa_hi, pa_lo;
611 on_trap_data_t otd;
612 int errors = 0;
613 int i;
615 ASSERT(PAGE_EXCL(pp));
616 ASSERT(PP_PR_REQ(pp));
617 ASSERT(pp->p_szc == 0);
618 ASSERT(!hat_page_is_mapped(pp));
621 * Clear the page and attempt to clear the UE. If we trap
622 * on the next access to the page, we know the UE has recurred.
624 pagescrub(pp, 0, PAGESIZE);
627 * Map the page and write a bunch of bit patterns to compare
628 * what we wrote with what we read back. This isn't a perfect
629 * test but it should be good enough to catch most of the
630 * recurring UEs. If this fails to catch a recurrent UE, we'll
631 * retire the page the next time we see a UE on the page.
633 kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
635 pa = ptob((uint64_t)page_pptonum(pp));
636 pa_hi = (uint32_t)(pa >> 32);
637 pa_lo = (uint32_t)pa;
640 * Disable preemption to prevent the off chance that
641 * we migrate while in the middle of running through
642 * the bit pattern and run on a different processor
643 * than what we started on.
645 kpreempt_disable();
648 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
649 * the cache in between reading and writing. We do this under
650 * on_trap() protection to avoid recursion.
652 if (on_trap(&otd, OT_DATA_EC)) {
653 PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
654 errors = 1;
655 } else {
656 for (wb = 0xff; wb > 0; wb--) {
657 for (i = 0; i < PAGESIZE; i++) {
658 kaddr[i] = wb;
661 sync_data_memory(kaddr, PAGESIZE);
663 for (i = 0; i < PAGESIZE; i++) {
664 rb = kaddr[i];
665 if (rb != wb) {
667 * We had a mismatch without a trap.
668 * Uh-oh. Something is really wrong
669 * with this system.
671 if (page_retire_messages) {
672 cmn_err(CE_WARN, MSG_DM,
673 pa_hi, pa_lo, rb, wb);
675 errors = 1;
676 goto out; /* double break */
681 out:
682 no_trap();
683 kpreempt_enable();
684 ppmapout(kaddr);
686 return (errors ? 0 : 1);
690 * Try to clear a page_t with a single UE. If the UE was transient, it is
691 * returned to service, and we return 1. Otherwise we return 0 meaning
692 * that further processing is required to retire the page.
694 static int
695 page_retire_transient_ue(page_t *pp)
697 ASSERT(PAGE_EXCL(pp));
698 ASSERT(!hat_page_is_mapped(pp));
701 * If this page is a repeat offender, retire it under the
702 * "two strikes and you're out" rule. The caller is responsible
703 * for scrubbing the page to try to clear the error.
705 if (pp->p_toxic & PR_UE_SCRUBBED) {
706 PR_INCR_KSTAT(pr_ue_persistent);
707 return (0);
710 if (page_clear_transient_ue(pp)) {
712 * We set the PR_SCRUBBED_UE bit; if we ever see this
713 * page again, we will retire it, no questions asked.
715 page_settoxic(pp, PR_UE_SCRUBBED);
717 if (page_retire_first_ue) {
718 PR_INCR_KSTAT(pr_ue_cleared_retire);
719 return (0);
720 } else {
721 PR_INCR_KSTAT(pr_ue_cleared_free);
723 page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
725 VN_DISPOSE(pp, B_FREE, 1, kcred);
726 return (1);
730 PR_INCR_KSTAT(pr_ue_persistent);
731 return (0);
735 * Update the statistics dynamically when our kstat is read.
737 static int
738 page_retire_kstat_update(kstat_t *ksp, int rw)
740 struct page_retire_kstat *pr;
742 if (ksp == NULL)
743 return (EINVAL);
745 switch (rw) {
747 case KSTAT_READ:
748 pr = (struct page_retire_kstat *)ksp->ks_data;
749 ASSERT(pr == &page_retire_kstat);
750 pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
751 return (0);
753 case KSTAT_WRITE:
754 return (EACCES);
756 default:
757 return (EINVAL);
759 /*NOTREACHED*/
762 static int
763 pr_list_kstat_update(kstat_t *ksp, int rw)
765 struct vmobject *obj = &retired_pages->v_object;
766 uint_t count;
767 page_t *pp;
769 if (rw == KSTAT_WRITE)
770 return (EACCES);
772 vmobject_lock(obj);
773 /* Needs to be under a lock so that for loop will work right */
774 if (!vn_has_cached_data(retired_pages)) {
775 vmobject_unlock(obj);
776 ksp->ks_ndata = 0;
777 ksp->ks_data_size = 0;
778 return (0);
781 count = 1;
782 for (pp = vmobject_get_next(obj, vmobject_get_head(obj));
783 pp != NULL; pp = vmobject_get_next(obj, pp)) {
784 count++;
786 vmobject_unlock(obj);
788 ksp->ks_ndata = count;
789 ksp->ks_data_size = count * 2 * sizeof (uint64_t);
791 return (0);
795 * all spans will be pagesize and no coalescing will be done with the
796 * list produced.
798 static int
799 pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
801 struct vmobject *obj = &retired_pages->v_object;
802 page_t *pp;
803 struct memunit {
804 uint64_t address;
805 uint64_t size;
806 } *kspmem;
808 if (rw == KSTAT_WRITE)
809 return (EACCES);
811 ksp->ks_snaptime = gethrtime();
813 kspmem = (struct memunit *)buf;
815 vmobject_lock(obj);
816 pp = vmobject_get_head(obj);
817 if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
818 (pp == NULL)) {
819 vmobject_unlock(obj);
820 return (0);
822 kspmem->address = ptob(pp->p_pagenum);
823 kspmem->size = PAGESIZE;
824 kspmem++;
825 for (pp = vmobject_get_next(obj, pp); pp != NULL;
826 pp = vmobject_get_next(obj, pp), kspmem++) {
827 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
828 break;
829 kspmem->address = ptob(pp->p_pagenum);
830 kspmem->size = PAGESIZE;
832 vmobject_unlock(obj);
834 return (0);
838 * page_retire_pend_count -- helper function for page_capture_thread,
839 * returns the number of pages pending retirement.
841 uint64_t
842 page_retire_pend_count(void)
844 return (PR_KSTAT_PENDING);
847 uint64_t
848 page_retire_pend_kas_count(void)
850 return (PR_KSTAT_PENDING_KAS);
853 void
854 page_retire_incr_pend_count(void *datap)
856 PR_INCR_KSTAT(pr_pending);
858 if ((datap == &kvp) || (datap == &zvp)) {
859 PR_INCR_KSTAT(pr_pending_kas);
863 void
864 page_retire_decr_pend_count(void *datap)
866 PR_DECR_KSTAT(pr_pending);
868 if ((datap == &kvp) || (datap == &zvp)) {
869 PR_DECR_KSTAT(pr_pending_kas);
874 * Initialize the page retire mechanism:
876 * - Establish the correctable error retire limit.
877 * - Initialize locks.
878 * - Build the retired_pages vnode.
879 * - Set up the kstats.
880 * - Fire off the background thread.
881 * - Tell page_retire() it's OK to start retiring pages.
883 void
884 page_retire_init(void)
886 kstat_t *ksp;
888 const uint_t page_retire_ndata =
889 sizeof (page_retire_kstat) / sizeof (kstat_named_t);
891 ASSERT(page_retire_ksp == NULL);
893 if (max_pages_retired_bps <= 0) {
894 max_pages_retired_bps = MCE_BPT;
897 mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
899 retired_pages = vn_alloc(KM_SLEEP);
900 vn_setops(retired_pages, &retired_vnodeops);
902 if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
903 "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
904 KSTAT_FLAG_VIRTUAL)) == NULL) {
905 cmn_err(CE_WARN, "kstat_create for page_retire failed");
906 } else {
907 page_retire_ksp->ks_data = (void *)&page_retire_kstat;
908 page_retire_ksp->ks_update = page_retire_kstat_update;
909 kstat_install(page_retire_ksp);
912 mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
913 ksp = kstat_create("unix", 0, "page_retire_list", "misc",
914 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
915 if (ksp != NULL) {
916 ksp->ks_update = pr_list_kstat_update;
917 ksp->ks_snapshot = pr_list_kstat_snapshot;
918 ksp->ks_lock = &pr_list_kstat_mutex;
919 kstat_install(ksp);
922 memscrub_notify_func =
923 (void(*)(uint64_t))kobj_getsymvalue("memscrub_notify", 0);
925 page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
926 pr_enable = 1;
930 * page_retire_hunt() callback for the retire thread.
932 static void
933 page_retire_thread_cb(page_t *pp)
935 PR_DEBUG(prd_tctop);
936 if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
937 PR_DEBUG(prd_tclocked);
938 page_unlock(pp);
943 * Callback used by page_trycapture() to finish off retiring a page.
944 * The page has already been cleaned and we've been given sole access to
945 * it.
946 * Always returns 0 to indicate that callback succeded as the callback never
947 * fails to finish retiring the given page.
949 /*ARGSUSED*/
950 static int
951 page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
953 int toxic;
955 ASSERT(PAGE_EXCL(pp));
956 ASSERT(pp->p_iolock_state == 0);
957 ASSERT(pp->p_szc == 0);
959 toxic = pp->p_toxic;
962 * The problem page is locked, demoted, unmapped, not free,
963 * hashed out, and not COW or mlocked (whew!).
965 * Now we select our ammunition, take it around back, and shoot it.
967 if (toxic & PR_UE) {
968 ue_error:
969 if (page_retire_transient_ue(pp)) {
970 PR_DEBUG(prd_uescrubbed);
971 (void) page_retire_done(pp, PRD_UE_SCRUBBED);
972 } else {
973 PR_DEBUG(prd_uenotscrubbed);
974 page_retire_destroy(pp);
975 (void) page_retire_done(pp, PRD_SUCCESS);
977 return (0);
978 } else if (toxic & PR_FMA) {
979 PR_DEBUG(prd_fma);
980 page_retire_destroy(pp);
981 (void) page_retire_done(pp, PRD_SUCCESS);
982 return (0);
983 } else if (toxic & PR_MCE) {
984 PR_DEBUG(prd_mce);
985 page_retire_destroy(pp);
986 (void) page_retire_done(pp, PRD_SUCCESS);
987 return (0);
991 * When page_retire_first_ue is set to zero and a UE occurs which is
992 * transient, it's possible that we clear some flags set by a second
993 * UE error on the page which occurs while the first is currently being
994 * handled and thus we need to handle the case where none of the above
995 * are set. In this instance, PR_UE_SCRUBBED should be set and thus
996 * we should execute the UE code above.
998 if (toxic & PR_UE_SCRUBBED) {
999 goto ue_error;
1003 * It's impossible to get here.
1005 panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
1006 return (0);
1010 * page_retire() - the front door in to retire a page.
1012 * Ideally, page_retire() would instantly retire the requested page.
1013 * Unfortunately, some pages are locked or otherwise tied up and cannot be
1014 * retired right away. We use the page capture logic to deal with this
1015 * situation as it will continuously try to retire the page in the background
1016 * if the first attempt fails. Success is determined by looking to see whether
1017 * the page has been retired after the page_trycapture() attempt.
1019 * Returns:
1021 * - 0 on success,
1022 * - EINVAL when the PA is whacko,
1023 * - EIO if the page is already retired or already pending retirement, or
1024 * - EAGAIN if the page could not be _immediately_ retired but is pending.
1027 page_retire(uint64_t pa, uchar_t reason)
1029 page_t *pp;
1031 ASSERT(reason & PR_REASONS); /* there must be a reason */
1032 ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */
1034 pp = page_numtopp_nolock(mmu_btop(pa));
1035 if (pp == NULL) {
1036 PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1037 " page 0x%08x.%08x; page is not relocatable memory", pa);
1038 return (page_retire_done(pp, PRD_INVALID_PA));
1040 if (PP_RETIRED(pp)) {
1041 PR_DEBUG(prd_dup1);
1042 return (page_retire_done(pp, PRD_DUPLICATE));
1045 if (memscrub_notify_func != NULL) {
1046 (void) memscrub_notify_func(pa);
1049 if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1050 PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1051 " page 0x%08x.%08x", pa);
1052 } else if (PP_PR_REQ(pp)) {
1053 PR_DEBUG(prd_dup2);
1054 return (page_retire_done(pp, PRD_DUPLICATE));
1055 } else {
1056 PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1057 " page 0x%08x.%08x", pa);
1060 /* Avoid setting toxic bits in the first place */
1061 if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
1062 page_retire_limit()) {
1063 return (page_retire_done(pp, PRD_LIMIT));
1066 if (MTBF(pr_calls, pr_mtbf)) {
1067 page_settoxic(pp, reason);
1068 if (page_trycapture(pp, 0, CAPTURE_RETIRE, pp->p_vnode) == 0) {
1069 PR_DEBUG(prd_prlocked);
1070 } else {
1071 PR_DEBUG(prd_prnotlocked);
1073 } else {
1074 PR_DEBUG(prd_prnotlocked);
1077 if (PP_RETIRED(pp)) {
1078 PR_DEBUG(prd_prretired);
1079 return (0);
1080 } else {
1081 cv_signal(&pc_cv);
1082 PR_INCR_KSTAT(pr_failed);
1084 if (pp->p_toxic & PR_MSG) {
1085 return (page_retire_done(pp, PRD_FAILED));
1086 } else {
1087 return (page_retire_done(pp, PRD_PENDING));
1093 * Take a retired page off the retired-pages vnode and clear the toxic flags.
1094 * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1095 * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1096 * and don't do anything else with it.
1098 * Any unretire messages are printed from this routine.
1100 * Returns 0 if page pp was unretired; else an error code.
1102 * If flags is:
1103 * PR_UNR_FREE - lock the page, clear the toxic flags and free it
1104 * to the freelist.
1105 * PR_UNR_TEMP - lock the page, unretire it, leave the toxic
1106 * bits set as is and return it to the caller.
1107 * PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
1108 * toxic flags and return it to caller as is.
1111 page_unretire_pp(page_t *pp, int flags)
1114 * To be retired, a page has to be hashed onto the retired_pages vnode
1115 * and have PR_RETIRED set in p_toxic.
1117 if (flags == PR_UNR_CLEAN ||
1118 page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1119 ASSERT(PAGE_EXCL(pp));
1120 PR_DEBUG(prd_ulocked);
1121 if (!PP_RETIRED(pp)) {
1122 PR_DEBUG(prd_unotretired);
1123 page_unlock(pp);
1124 return (page_retire_done(pp, PRD_UNR_NOT));
1127 PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1128 " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1129 if (pp->p_toxic & PR_FMA) {
1130 PR_DECR_KSTAT(pr_fma);
1131 } else if (pp->p_toxic & PR_UE) {
1132 PR_DECR_KSTAT(pr_ue);
1133 } else {
1134 PR_DECR_KSTAT(pr_mce);
1137 if (flags == PR_UNR_TEMP)
1138 page_clrtoxic(pp, PR_RETIRED);
1139 else
1140 page_clrtoxic(pp, PR_TOXICFLAGS);
1142 if (flags == PR_UNR_FREE) {
1143 PR_DEBUG(prd_udestroy);
1144 page_destroy(pp, 0);
1145 } else {
1146 PR_DEBUG(prd_uhashout);
1147 page_hashout(pp, false);
1150 mutex_enter(&freemem_lock);
1151 availrmem++;
1152 mutex_exit(&freemem_lock);
1154 PR_DEBUG(prd_uunretired);
1155 PR_DECR_KSTAT(pr_retired);
1156 PR_INCR_KSTAT(pr_unretired);
1157 return (page_retire_done(pp, PRD_UNR_SUCCESS));
1159 PR_DEBUG(prd_unotlocked);
1160 return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1164 * Return a page to service by moving it from the retired_pages vnode
1165 * onto the freelist.
1167 * Called from mmioctl_page_retire() on behalf of the FMA DE.
1169 * Returns:
1171 * - 0 if the page is unretired,
1172 * - EAGAIN if the pp can not be locked,
1173 * - EINVAL if the PA is whacko, and
1174 * - EIO if the pp is not retired.
1177 page_unretire(uint64_t pa)
1179 page_t *pp;
1181 pp = page_numtopp_nolock(mmu_btop(pa));
1182 if (pp == NULL) {
1183 return (page_retire_done(pp, PRD_INVALID_PA));
1186 return (page_unretire_pp(pp, PR_UNR_FREE));
1190 * Test a page to see if it is retired. If errors is non-NULL, the toxic
1191 * bits of the page are returned. Returns 0 on success, error code on failure.
1194 page_retire_check_pp(page_t *pp, uint64_t *errors)
1196 int rc;
1198 if (PP_RETIRED(pp)) {
1199 PR_DEBUG(prd_checkhit);
1200 rc = 0;
1201 } else if (PP_PR_REQ(pp)) {
1202 PR_DEBUG(prd_checkmiss_pend);
1203 rc = EAGAIN;
1204 } else {
1205 PR_DEBUG(prd_checkmiss_noerr);
1206 rc = EIO;
1210 * We have magically arranged the bit values returned to fmd(8)
1211 * to line up with the FMA, MCE, and UE bits of the page_t.
1213 if (errors) {
1214 uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1215 if (toxic & PR_UE_SCRUBBED) {
1216 toxic &= ~PR_UE_SCRUBBED;
1217 toxic |= PR_UE;
1219 *errors = toxic;
1222 return (rc);
1226 * Test to see if the page_t for a given PA is retired, and return the
1227 * hardware errors we have seen on the page if requested.
1229 * Called from mmioctl_page_retire on behalf of the FMA DE.
1231 * Returns:
1233 * - 0 if the page is retired,
1234 * - EIO if the page is not retired and has no errors,
1235 * - EAGAIN if the page is not retired but is pending; and
1236 * - EINVAL if the PA is whacko.
1239 page_retire_check(uint64_t pa, uint64_t *errors)
1241 page_t *pp;
1243 if (errors) {
1244 *errors = 0;
1247 pp = page_numtopp_nolock(mmu_btop(pa));
1248 if (pp == NULL) {
1249 return (page_retire_done(pp, PRD_INVALID_PA));
1252 return (page_retire_check_pp(pp, errors));
1256 * Page retire self-test. For now, it always returns 0.
1259 page_retire_test(void)
1261 page_t *first, *pp, *cpp, *cpp2, *lpp;
1264 * Tests the corner case where a large page can't be retired
1265 * because one of the constituent pages is locked. We mark
1266 * one page to be retired and try to retire it, and mark the
1267 * other page to be retired but don't try to retire it, so
1268 * that page_unlock() in the failure path will recurse and try
1269 * to retire THAT page. This is the worst possible situation
1270 * we can get ourselves into.
1272 memsegs_lock(0);
1273 pp = first = page_first();
1274 do {
1275 if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1276 cpp = pp + 1;
1277 lpp = PP_ISFREE(pp)? pp : pp + 2;
1278 cpp2 = pp + 3;
1279 if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1280 continue;
1281 if (!page_trylock(cpp, SE_EXCL)) {
1282 page_unlock(lpp);
1283 continue;
1286 /* fails */
1287 (void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1289 page_unlock(lpp);
1290 page_unlock(cpp);
1291 (void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1292 (void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1294 } while ((pp = page_next(pp)) != first);
1295 memsegs_unlock(0);
1297 return (0);