Unleashed v1.4
[unleashed.git] / kernel / os / pool.c
blob6d183cd71c5cdb09eba522ef54d4b1f71f9ad263
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
26 #include <sys/pool.h>
27 #include <sys/pool_impl.h>
28 #include <sys/pool_pset.h>
29 #include <sys/id_space.h>
30 #include <sys/mutex.h>
31 #include <sys/nvpair.h>
32 #include <sys/cpuvar.h>
33 #include <sys/errno.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/proc.h>
37 #include <sys/fss.h>
38 #include <sys/class.h>
39 #include <sys/exacct.h>
40 #include <sys/utsname.h>
41 #include <sys/procset.h>
42 #include <sys/atomic.h>
43 #include <sys/zone.h>
44 #include <sys/policy.h>
45 #include <sys/schedctl.h>
46 #include <sys/taskq.h>
49 * RESOURCE POOLS
51 * The resource pools facility brings together process-bindable resource into
52 * a common abstraction called a pool. Processor sets and other entities can
53 * be configured, grouped, and labelled such that workload components can be
54 * associated with a subset of a system's total resources.
56 * When disabled, the pools facility is "invisible". All processes belong
57 * to the same pool (pool_default), and processor sets can be managed through
58 * the old pset() system call. When enabled, processor sets can only be
59 * managed via the pools facility. New pools can be created and associated
60 * with processor sets. Processes can be bound to pools which have non-empty
61 * resource sets.
63 * Locking: pool_lock() protects global pools state and must be called
64 * before modifying the configuration, or when taking a snapshot of the
65 * configuration. If pool_lock_intr() is used, the operation may be
66 * interrupted by a signal or a request.
68 * To prevent processes from being rebound between pools while they are
69 * the middle of an operation which affects resource set bindings, such
70 * operations must be surrounded by calls to pool_barrier_enter() and
71 * pool_barrier_exit(). This mechanism guarantees that such processes will
72 * be stopped either at the beginning or at the end of the barrier so that
73 * the rebind operation can atomically bind the process and its threads
74 * to new resource sets, and then let process run again.
76 * Lock ordering with respect to other locks is as follows:
78 * pool_lock() -> cpu_lock -> pidlock -> p_lock -> pool_barrier_lock
80 * Most static and global variables defined in this file are protected
81 * by calling pool_lock().
83 * The operation that binds tasks and projects to pools is atomic. That is,
84 * either all processes in a given task or a project will be bound to a
85 * new pool, or (in case of an error) they will be all left bound to the
86 * old pool. Processes in a given task or a given project can only be bound to
87 * different pools if they were rebound individually one by one as single
88 * processes. Threads or LWPs of the same process do not have pool bindings,
89 * and are bound to the same resource sets associated with the resource pool
90 * of that process.
92 * The following picture shows one possible pool configuration with three
93 * pools and three processor sets. Note that processor set "foo" is not
94 * associated with any pools and therefore cannot have any processes
95 * bound to it. Two pools (default and foo) are associated with the
96 * same processor set (default). Also, note that processes in Task 2
97 * are bound to different pools.
100 * Processor Sets
101 * +---------+
102 * +--------------+========================>| default |
103 * a| | +---------+
104 * s| | ||
105 * s| | +---------+
106 * o| | | foo |
107 * c| | +---------+
108 * i| | ||
109 * a| | +---------+
110 * t| | +------>| bar |
111 * e| | | +---------+
112 * d| | |
113 * | | |
114 * +---------+ +---------+ +---------+
115 * Pools | default |======| foo |======| bar |
116 * +---------+ +---------+ +---------+
117 * @ @ @ @ @ @
118 * b| | | | | |
119 * o| | | | | |
120 * u| +-----+ | +-------+ | +---+
121 * n| | | | | |
122 * ....d|........|......|......|.........|.......|....
123 * : | :: | | | :: | | :
124 * : +---+ :: +---+ +---+ +---+ :: +---+ +---+ :
125 * Processes : | p | :: | p | | p | | p | :: | p |...| p | :
126 * : +---+ :: +---+ +---+ +---+ :: +---+ +---+ :
127 * :........::......................::...............:
128 * Task 1 Task 2 Task N
129 * | | |
130 * | | |
131 * | +-----------+ | +-----------+
132 * +--| Project 1 |--+ | Project N |
133 * +-----------+ +-----------+
135 * This is just an illustration of relationships between processes, tasks,
136 * projects, pools, and processor sets. New types of resource sets will be
137 * added in the future.
140 pool_t *pool_default; /* default pool which always exists */
141 int pool_count; /* number of pools created on this system */
142 int pool_state; /* pools state -- enabled/disabled */
143 void *pool_buf; /* pre-commit snapshot of the pools state */
144 size_t pool_bufsz; /* size of pool_buf */
145 static hrtime_t pool_pool_mod; /* last modification time for pools */
146 static hrtime_t pool_sys_mod; /* last modification time for system */
147 static nvlist_t *pool_sys_prop; /* system properties */
148 static id_space_t *pool_ids; /* pool ID space */
149 static list_t pool_list; /* doubly-linked list of pools */
150 static kmutex_t pool_mutex; /* protects pool_busy_* */
151 static kcondvar_t pool_busy_cv; /* waiting for "pool_lock" */
152 static kthread_t *pool_busy_thread; /* thread holding "pool_lock" */
153 static kmutex_t pool_barrier_lock; /* synch. with pool_barrier_* */
154 static kcondvar_t pool_barrier_cv; /* synch. with pool_barrier_* */
155 static int pool_barrier_count; /* synch. with pool_barrier_* */
156 static list_t pool_event_cb_list; /* pool event callbacks */
157 static boolean_t pool_event_cb_init = B_FALSE;
158 static kmutex_t pool_event_cb_lock;
159 static taskq_t *pool_event_cb_taskq = NULL;
161 void pool_event_dispatch(pool_event_t, poolid_t);
164 * Boot-time pool initialization.
166 void
167 pool_init(void)
169 pool_ids = id_space_create("pool_ids", POOL_DEFAULT + 1, POOL_MAXID);
172 * Initialize default pool.
174 pool_default = kmem_zalloc(sizeof (pool_t), KM_SLEEP);
175 pool_default->pool_id = POOL_DEFAULT;
176 list_create(&pool_list, sizeof (pool_t), offsetof(pool_t, pool_link));
177 list_insert_head(&pool_list, pool_default);
180 * Initialize plugins for resource sets.
182 pool_pset_init();
183 pool_count = 1;
184 p0.p_pool = pool_default;
185 global_zone->zone_pool = pool_default;
186 pool_default->pool_ref = 1;
190 * Synchronization routines.
192 * pool_lock is only called from syscall-level routines (processor_bind(),
193 * pset_*(), and /dev/pool ioctls). The pool "lock" may be held for long
194 * periods of time, including across sleeping operations, so we allow its
195 * acquisition to be interruptible.
197 * The current thread that owns the "lock" is stored in the variable
198 * pool_busy_thread, both to let pool_lock_held() work and to aid debugging.
200 void
201 pool_lock(void)
203 mutex_enter(&pool_mutex);
204 ASSERT(!pool_lock_held());
205 while (pool_busy_thread != NULL)
206 cv_wait(&pool_busy_cv, &pool_mutex);
207 pool_busy_thread = curthread;
208 mutex_exit(&pool_mutex);
212 pool_lock_intr(void)
214 mutex_enter(&pool_mutex);
215 ASSERT(!pool_lock_held());
216 while (pool_busy_thread != NULL) {
217 if (cv_wait_sig(&pool_busy_cv, &pool_mutex) == 0) {
218 cv_signal(&pool_busy_cv);
219 mutex_exit(&pool_mutex);
220 return (1);
223 pool_busy_thread = curthread;
224 mutex_exit(&pool_mutex);
225 return (0);
229 pool_lock_held(void)
231 return (pool_busy_thread == curthread);
234 void
235 pool_unlock(void)
237 mutex_enter(&pool_mutex);
238 ASSERT(pool_lock_held());
239 pool_busy_thread = NULL;
240 cv_signal(&pool_busy_cv);
241 mutex_exit(&pool_mutex);
245 * Routines allowing fork(), exec(), exit(), and lwp_create() to synchronize
246 * with pool_do_bind().
248 * Calls to pool_barrier_enter() and pool_barrier_exit() must bracket all
249 * operations which modify pool or pset associations. They can be called
250 * while the process is multi-threaded. In the common case, when current
251 * process is not being rebound (PBWAIT flag is not set), these functions
252 * will be just incrementing and decrementing reference counts.
254 void
255 pool_barrier_enter(void)
257 proc_t *p = curproc;
259 ASSERT(MUTEX_HELD(&p->p_lock));
260 while (p->p_poolflag & PBWAIT)
261 cv_wait(&p->p_poolcv, &p->p_lock);
262 p->p_poolcnt++;
265 void
266 pool_barrier_exit(void)
268 proc_t *p = curproc;
270 ASSERT(MUTEX_HELD(&p->p_lock));
271 ASSERT(p->p_poolcnt > 0);
272 p->p_poolcnt--;
273 if (p->p_poolflag & PBWAIT) {
274 mutex_enter(&pool_barrier_lock);
275 ASSERT(pool_barrier_count > 0);
276 pool_barrier_count--;
277 if (pool_barrier_count == 0)
278 cv_signal(&pool_barrier_cv);
279 mutex_exit(&pool_barrier_lock);
280 while (p->p_poolflag & PBWAIT)
281 cv_wait(&p->p_poolcv, &p->p_lock);
286 * Enable pools facility.
288 static int
289 pool_enable(void)
291 int ret;
293 ASSERT(pool_lock_held());
294 ASSERT(pool_count == 1);
296 ret = pool_pset_enable();
297 if (ret != 0)
298 return (ret);
299 (void) nvlist_alloc(&pool_sys_prop, NV_UNIQUE_NAME, KM_SLEEP);
300 (void) nvlist_add_string(pool_sys_prop, "system.name",
301 "default");
302 (void) nvlist_add_string(pool_sys_prop, "system.comment", "");
303 (void) nvlist_add_int64(pool_sys_prop, "system.version", 1);
304 (void) nvlist_add_byte(pool_sys_prop, "system.bind-default", 1);
305 (void) nvlist_add_string(pool_sys_prop, "system.poold.objectives",
306 "wt-load");
308 (void) nvlist_alloc(&pool_default->pool_props,
309 NV_UNIQUE_NAME, KM_SLEEP);
310 (void) nvlist_add_string(pool_default->pool_props,
311 "pool.name", "pool_default");
312 (void) nvlist_add_string(pool_default->pool_props, "pool.comment", "");
313 (void) nvlist_add_byte(pool_default->pool_props, "pool.default", 1);
314 (void) nvlist_add_byte(pool_default->pool_props, "pool.active", 1);
315 (void) nvlist_add_int64(pool_default->pool_props,
316 "pool.importance", 1);
317 (void) nvlist_add_int64(pool_default->pool_props, "pool.sys_id",
318 pool_default->pool_id);
320 pool_sys_mod = pool_pool_mod = gethrtime();
322 return (ret);
326 * Disable pools facility.
328 static int
329 pool_disable(void)
331 int ret;
333 ASSERT(pool_lock_held());
335 if (pool_count > 1) /* must destroy all pools first */
336 return (EBUSY);
338 ret = pool_pset_disable();
339 if (ret != 0)
340 return (ret);
341 if (pool_sys_prop != NULL) {
342 nvlist_free(pool_sys_prop);
343 pool_sys_prop = NULL;
345 if (pool_default->pool_props != NULL) {
346 nvlist_free(pool_default->pool_props);
347 pool_default->pool_props = NULL;
349 return (0);
352 pool_t *
353 pool_lookup_pool_by_name(char *name)
355 pool_t *pool = pool_default;
356 char *p;
358 ASSERT(pool_lock_held());
359 for (pool = list_head(&pool_list); pool;
360 pool = list_next(&pool_list, pool)) {
361 if (nvlist_lookup_string(pool->pool_props,
362 "pool.name", &p) == 0 && strcmp(name, p) == 0)
363 return (pool);
365 return (NULL);
368 pool_t *
369 pool_lookup_pool_by_id(poolid_t poolid)
371 pool_t *pool = pool_default;
373 ASSERT(pool_lock_held());
374 for (pool = list_head(&pool_list); pool;
375 pool = list_next(&pool_list, pool)) {
376 if (pool->pool_id == poolid)
377 return (pool);
379 return (NULL);
382 pool_t *
383 pool_lookup_pool_by_pset(int id)
385 pool_t *pool = pool_default;
386 psetid_t psetid = (psetid_t)id;
388 ASSERT(pool_lock_held());
389 for (pool = list_head(&pool_list); pool != NULL;
390 pool = list_next(&pool_list, pool)) {
391 if (pool->pool_pset->pset_id == psetid)
392 return (pool);
394 return (NULL);
398 * Create new pool, associate it with default resource sets, and give
399 * it a temporary name.
401 static int
402 pool_pool_create(poolid_t *poolid)
404 pool_t *pool;
405 char pool_name[40];
407 ASSERT(pool_lock_held());
409 pool = kmem_zalloc(sizeof (pool_t), KM_SLEEP);
410 pool->pool_id = *poolid = id_alloc(pool_ids);
411 pool->pool_pset = pool_pset_default;
412 pool_pset_default->pset_npools++;
413 list_insert_tail(&pool_list, pool);
414 (void) nvlist_alloc(&pool->pool_props, NV_UNIQUE_NAME, KM_SLEEP);
415 (void) nvlist_add_int64(pool->pool_props, "pool.sys_id", pool->pool_id);
416 (void) nvlist_add_byte(pool->pool_props, "pool.default", 0);
417 pool_pool_mod = gethrtime();
418 (void) snprintf(pool_name, sizeof (pool_name), "pool_%lld",
419 pool_pool_mod);
420 (void) nvlist_add_string(pool->pool_props, "pool.name", pool_name);
421 pool_count++;
422 return (0);
425 struct destroy_zone_arg {
426 pool_t *old;
427 pool_t *new;
431 * Update pool pointers for zones that are currently bound to pool "old"
432 * to be bound to pool "new".
434 static int
435 pool_destroy_zone_cb(zone_t *zone, void *arg)
437 struct destroy_zone_arg *dza = arg;
439 ASSERT(pool_lock_held());
440 ASSERT(MUTEX_HELD(&cpu_lock));
442 if (zone_pool_get(zone) == dza->old)
443 zone_pool_set(zone, dza->new);
444 return (0);
448 * Destroy specified pool, and rebind all processes in it
449 * to the default pool.
451 static int
452 pool_pool_destroy(poolid_t poolid)
454 pool_t *pool;
455 int ret;
457 ASSERT(pool_lock_held());
459 if (poolid == POOL_DEFAULT)
460 return (EINVAL);
461 if ((pool = pool_lookup_pool_by_id(poolid)) == NULL)
462 return (ESRCH);
463 ret = pool_do_bind(pool_default, P_POOLID, poolid, POOL_BIND_ALL);
464 if (ret == 0) {
465 struct destroy_zone_arg dzarg;
467 dzarg.old = pool;
468 dzarg.new = pool_default;
469 mutex_enter(&cpu_lock);
470 ret = zone_walk(pool_destroy_zone_cb, &dzarg);
471 mutex_exit(&cpu_lock);
472 ASSERT(ret == 0);
473 ASSERT(pool->pool_ref == 0);
474 (void) nvlist_free(pool->pool_props);
475 id_free(pool_ids, pool->pool_id);
476 pool->pool_pset->pset_npools--;
477 list_remove(&pool_list, pool);
478 pool_count--;
479 pool_pool_mod = gethrtime();
480 kmem_free(pool, sizeof (pool_t));
482 return (ret);
486 * Create new pool or resource set.
489 pool_create(int class, int subclass, id_t *id)
491 int ret;
493 ASSERT(pool_lock_held());
494 if (pool_state == POOL_DISABLED)
495 return (ENOTACTIVE);
496 switch (class) {
497 case PEC_POOL:
498 ret = pool_pool_create((poolid_t *)id);
499 break;
500 case PEC_RES_COMP:
501 switch (subclass) {
502 case PREC_PSET:
503 ret = pool_pset_create((psetid_t *)id);
504 break;
505 default:
506 ret = EINVAL;
508 break;
509 case PEC_RES_AGG:
510 ret = ENOTSUP;
511 break;
512 default:
513 ret = EINVAL;
515 return (ret);
519 * Destroy an existing pool or resource set.
522 pool_destroy(int class, int subclass, id_t id)
524 int ret;
526 ASSERT(pool_lock_held());
527 if (pool_state == POOL_DISABLED)
528 return (ENOTACTIVE);
529 switch (class) {
530 case PEC_POOL:
531 ret = pool_pool_destroy((poolid_t)id);
532 break;
533 case PEC_RES_COMP:
534 switch (subclass) {
535 case PREC_PSET:
536 ret = pool_pset_destroy((psetid_t)id);
537 break;
538 default:
539 ret = EINVAL;
541 break;
542 case PEC_RES_AGG:
543 ret = ENOTSUP;
544 break;
545 default:
546 ret = EINVAL;
548 return (ret);
552 * Enable or disable pools.
555 pool_status(int status)
557 int ret = 0;
559 ASSERT(pool_lock_held());
561 if (pool_state == status)
562 return (0);
563 switch (status) {
564 case POOL_ENABLED:
565 ret = pool_enable();
566 if (ret != 0)
567 return (ret);
568 pool_state = POOL_ENABLED;
569 pool_event_dispatch(POOL_E_ENABLE, 0);
570 break;
571 case POOL_DISABLED:
572 ret = pool_disable();
573 if (ret != 0)
574 return (ret);
575 pool_state = POOL_DISABLED;
576 pool_event_dispatch(POOL_E_DISABLE, 0);
577 break;
578 default:
579 ret = EINVAL;
581 return (ret);
585 * Associate pool with resource set.
588 pool_assoc(poolid_t poolid, int idtype, id_t id)
590 int ret;
592 ASSERT(pool_lock_held());
593 if (pool_state == POOL_DISABLED)
594 return (ENOTACTIVE);
595 switch (idtype) {
596 case PREC_PSET:
597 ret = pool_pset_assoc(poolid, (psetid_t)id);
598 if (ret == 0)
599 pool_event_dispatch(POOL_E_CHANGE, poolid);
600 break;
601 default:
602 ret = EINVAL;
604 if (ret == 0)
605 pool_pool_mod = gethrtime();
606 return (ret);
610 * Disassociate resource set from pool.
613 pool_dissoc(poolid_t poolid, int idtype)
615 int ret;
617 ASSERT(pool_lock_held());
618 if (pool_state == POOL_DISABLED)
619 return (ENOTACTIVE);
620 switch (idtype) {
621 case PREC_PSET:
622 ret = pool_pset_assoc(poolid, PS_NONE);
623 if (ret == 0)
624 pool_event_dispatch(POOL_E_CHANGE, poolid);
625 break;
626 default:
627 ret = EINVAL;
629 if (ret == 0)
630 pool_pool_mod = gethrtime();
631 return (ret);
635 * Transfer specified quantity of resources between resource sets.
637 /*ARGSUSED*/
639 pool_transfer(int type, id_t src, id_t dst, uint64_t qty)
641 int ret = EINVAL;
643 return (ret);
646 static poolid_t
647 pool_lookup_id_by_pset(int id)
649 pool_t *pool = pool_default;
650 psetid_t psetid = (psetid_t)id;
652 ASSERT(pool_lock_held());
653 for (pool = list_head(&pool_list); pool != NULL;
654 pool = list_next(&pool_list, pool)) {
655 if (pool->pool_pset->pset_id == psetid)
656 return (pool->pool_id);
658 return (POOL_INVALID);
662 * Transfer resources specified by their IDs between resource sets.
665 pool_xtransfer(int type, id_t src_pset, id_t dst_pset, uint_t size, id_t *ids)
667 int ret;
668 poolid_t src_pool, dst_pool;
670 ASSERT(pool_lock_held());
671 if (pool_state == POOL_DISABLED)
672 return (ENOTACTIVE);
673 switch (type) {
674 case PREC_PSET:
675 ret = pool_pset_xtransfer((psetid_t)src_pset,
676 (psetid_t)dst_pset, size, ids);
677 if (ret == 0) {
678 if ((src_pool = pool_lookup_id_by_pset(src_pset)) !=
679 POOL_INVALID)
680 pool_event_dispatch(POOL_E_CHANGE, src_pool);
681 if ((dst_pool = pool_lookup_id_by_pset(dst_pset)) !=
682 POOL_INVALID)
683 pool_event_dispatch(POOL_E_CHANGE, dst_pool);
685 break;
686 default:
687 ret = EINVAL;
689 return (ret);
693 * Bind processes to pools.
696 pool_bind(poolid_t poolid, idtype_t idtype, id_t id)
698 pool_t *pool;
700 ASSERT(pool_lock_held());
702 if (pool_state == POOL_DISABLED)
703 return (ENOTACTIVE);
704 if ((pool = pool_lookup_pool_by_id(poolid)) == NULL)
705 return (ESRCH);
707 switch (idtype) {
708 case P_PID:
709 case P_TASKID:
710 case P_PROJID:
711 case P_ZONEID:
712 break;
713 default:
714 return (EINVAL);
716 return (pool_do_bind(pool, idtype, id, POOL_BIND_ALL));
720 * Query pool binding of the specifed process.
723 pool_query_binding(idtype_t idtype, id_t id, id_t *poolid)
725 proc_t *p;
727 if (idtype != P_PID)
728 return (ENOTSUP);
729 if (id == P_MYID)
730 id = curproc->p_pid;
732 ASSERT(pool_lock_held());
734 mutex_enter(&pidlock);
735 if ((p = prfind((pid_t)id)) == NULL) {
736 mutex_exit(&pidlock);
737 return (ESRCH);
739 mutex_enter(&p->p_lock);
741 * In local zones, lie about pool bindings of processes from
742 * the global zone.
744 if (!INGLOBALZONE(curproc) && INGLOBALZONE(p)) {
745 pool_t *pool;
747 pool = zone_pool_get(curproc->p_zone);
748 *poolid = pool->pool_id;
749 } else {
750 *poolid = p->p_pool->pool_id;
752 mutex_exit(&p->p_lock);
753 mutex_exit(&pidlock);
754 return (0);
757 static ea_object_t *
758 pool_system_pack(void)
760 ea_object_t *eo_system;
761 size_t bufsz = 0;
762 char *buf = NULL;
764 ASSERT(pool_lock_held());
766 eo_system = ea_alloc_group(EXT_GROUP | EXC_LOCAL | EXD_GROUP_SYSTEM);
767 (void) ea_attach_item(eo_system, &pool_sys_mod, sizeof (hrtime_t),
768 EXC_LOCAL | EXD_SYSTEM_TSTAMP | EXT_UINT64);
769 if (INGLOBALZONE(curproc))
770 (void) ea_attach_item(eo_system, &pool_pool_mod,
771 sizeof (hrtime_t),
772 EXC_LOCAL | EXD_POOL_TSTAMP | EXT_UINT64);
773 else
774 (void) ea_attach_item(eo_system,
775 &curproc->p_zone->zone_pool_mod,
776 sizeof (hrtime_t),
777 EXC_LOCAL | EXD_POOL_TSTAMP | EXT_UINT64);
778 (void) ea_attach_item(eo_system, &pool_pset_mod, sizeof (hrtime_t),
779 EXC_LOCAL | EXD_PSET_TSTAMP | EXT_UINT64);
780 (void) ea_attach_item(eo_system, &pool_cpu_mod, sizeof (hrtime_t),
781 EXC_LOCAL | EXD_CPU_TSTAMP | EXT_UINT64);
782 (void) nvlist_pack(pool_sys_prop, &buf, &bufsz, NV_ENCODE_NATIVE, 0);
783 (void) ea_attach_item(eo_system, buf, bufsz,
784 EXC_LOCAL | EXD_SYSTEM_PROP | EXT_RAW);
785 kmem_free(buf, bufsz);
786 return (eo_system);
790 * Pack information about pools and attach it to specified exacct group.
792 static int
793 pool_pool_pack(ea_object_t *eo_system)
795 ea_object_t *eo_pool;
796 pool_t *pool;
797 size_t bufsz;
798 char *buf;
799 pool_t *myzonepool;
801 ASSERT(pool_lock_held());
802 myzonepool = zone_pool_get(curproc->p_zone);
803 for (pool = list_head(&pool_list); pool;
804 pool = list_next(&pool_list, pool)) {
805 if (!INGLOBALZONE(curproc) && myzonepool != pool)
806 continue;
807 bufsz = 0;
808 buf = NULL;
809 eo_pool = ea_alloc_group(EXT_GROUP |
810 EXC_LOCAL | EXD_GROUP_POOL);
811 (void) ea_attach_item(eo_pool, &pool->pool_id, sizeof (id_t),
812 EXC_LOCAL | EXD_POOL_POOLID | EXT_UINT32);
813 (void) ea_attach_item(eo_pool, &pool->pool_pset->pset_id,
814 sizeof (id_t), EXC_LOCAL | EXD_POOL_PSETID | EXT_UINT32);
815 (void) nvlist_pack(pool->pool_props, &buf, &bufsz,
816 NV_ENCODE_NATIVE, 0);
817 (void) ea_attach_item(eo_pool, buf, bufsz,
818 EXC_LOCAL | EXD_POOL_PROP | EXT_RAW);
819 kmem_free(buf, bufsz);
820 (void) ea_attach_to_group(eo_system, eo_pool);
822 return (0);
826 * Pack the whole pool configuration in the specified buffer.
829 pool_pack_conf(void *kbuf, size_t kbufsz, size_t *asize)
831 ea_object_t *eo_system;
832 size_t ksize;
833 int ret = 0;
835 ASSERT(pool_lock_held());
837 eo_system = pool_system_pack(); /* 1. pack system */
838 (void) pool_pool_pack(eo_system); /* 2. pack all pools */
839 (void) pool_pset_pack(eo_system); /* 3. pack all psets */
840 ksize = ea_pack_object(eo_system, NULL, 0);
841 if (kbuf == NULL || kbufsz == 0)
842 *asize = ksize;
843 else if (ksize > kbufsz)
844 ret = ENOMEM;
845 else
846 *asize = ea_pack_object(eo_system, kbuf, kbufsz);
847 ea_free_object(eo_system, EUP_ALLOC);
848 return (ret);
852 * Start/end the commit transaction. If commit transaction is currently
853 * in progress, then all POOL_QUERY ioctls will return pools configuration
854 * at the beginning of transaction.
857 pool_commit(int state)
859 ea_object_t *eo_system;
860 int ret = 0;
862 ASSERT(pool_lock_held());
864 if (pool_state == POOL_DISABLED)
865 return (ENOTACTIVE);
866 switch (state) {
867 case 1:
869 * Beginning commit transation.
871 if (pool_buf != NULL) /* transaction in progress */
872 return (EBUSY);
873 eo_system = pool_system_pack(); /* 1. pack system */
874 (void) pool_pool_pack(eo_system); /* 2. pack all pools */
875 (void) pool_pset_pack(eo_system); /* 3. pack all psets */
876 pool_bufsz = ea_pack_object(eo_system, NULL, 0);
877 pool_buf = kmem_alloc(pool_bufsz, KM_SLEEP);
878 pool_bufsz = ea_pack_object(eo_system, pool_buf, pool_bufsz);
879 ea_free_object(eo_system, EUP_ALLOC);
880 break;
881 case 0:
883 * Finishing commit transaction.
885 if (pool_buf != NULL) {
886 kmem_free(pool_buf, pool_bufsz);
887 pool_buf = NULL;
888 pool_bufsz = 0;
890 break;
891 default:
892 ret = EINVAL;
894 return (ret);
898 * Check is the specified property is special
900 static pool_property_t *
901 pool_property_find(char *name, pool_property_t *list)
903 pool_property_t *prop;
905 for (prop = list; prop->pp_name != NULL; prop++)
906 if (strcmp(prop->pp_name, name) == 0)
907 return (prop);
908 return (NULL);
911 static pool_property_t pool_prop_sys[] = {
912 { "system.name", DATA_TYPE_STRING, PP_RDWR },
913 { "system.comment", DATA_TYPE_STRING, PP_RDWR },
914 { "system.version", DATA_TYPE_UINT64, PP_READ },
915 { "system.bind-default", DATA_TYPE_BYTE, PP_RDWR },
916 { "system.allocate-method", DATA_TYPE_STRING,
917 PP_RDWR | PP_OPTIONAL },
918 { "system.poold.log-level", DATA_TYPE_STRING,
919 PP_RDWR | PP_OPTIONAL },
920 { "system.poold.log-location", DATA_TYPE_STRING,
921 PP_RDWR | PP_OPTIONAL },
922 { "system.poold.monitor-interval", DATA_TYPE_UINT64,
923 PP_RDWR | PP_OPTIONAL },
924 { "system.poold.history-file", DATA_TYPE_STRING,
925 PP_RDWR | PP_OPTIONAL },
926 { "system.poold.objectives", DATA_TYPE_STRING,
927 PP_RDWR | PP_OPTIONAL },
928 { NULL, 0, 0 }
931 static pool_property_t pool_prop_pool[] = {
932 { "pool.sys_id", DATA_TYPE_UINT64, PP_READ },
933 { "pool.name", DATA_TYPE_STRING, PP_RDWR },
934 { "pool.default", DATA_TYPE_BYTE, PP_READ },
935 { "pool.active", DATA_TYPE_BYTE, PP_RDWR },
936 { "pool.importance", DATA_TYPE_INT64, PP_RDWR },
937 { "pool.comment", DATA_TYPE_STRING, PP_RDWR },
938 { "pool.scheduler", DATA_TYPE_STRING,
939 PP_RDWR | PP_OPTIONAL },
940 { NULL, 0, 0 }
944 * Common routine to put new property on the specified list
947 pool_propput_common(nvlist_t *nvlist, nvpair_t *pair, pool_property_t *props)
949 pool_property_t *prop;
951 if ((prop = pool_property_find(nvpair_name(pair), props)) != NULL) {
953 * No read-only properties or properties with bad types
955 if (!(prop->pp_perm & PP_WRITE) ||
956 prop->pp_type != nvpair_type(pair))
957 return (EINVAL);
959 return (nvlist_add_nvpair(nvlist, pair));
963 * Common routine to remove property from the given list
966 pool_proprm_common(nvlist_t *nvlist, char *name, pool_property_t *props)
968 pool_property_t *prop;
970 if ((prop = pool_property_find(name, props)) != NULL) {
971 if (!(prop->pp_perm & PP_OPTIONAL))
972 return (EINVAL);
974 return (nvlist_remove_all(nvlist, name));
977 static int
978 pool_system_propput(nvpair_t *pair)
980 int ret;
982 ASSERT(pool_lock_held());
983 ret = pool_propput_common(pool_sys_prop, pair, pool_prop_sys);
984 if (ret == 0)
985 pool_sys_mod = gethrtime();
986 return (ret);
989 static int
990 pool_system_proprm(char *name)
992 int ret;
994 ASSERT(pool_lock_held());
995 ret = pool_proprm_common(pool_sys_prop, name, pool_prop_sys);
996 if (ret == 0)
997 pool_sys_mod = gethrtime();
998 return (ret);
1001 static int
1002 pool_pool_propput(poolid_t poolid, nvpair_t *pair)
1004 pool_t *pool;
1005 int ret;
1007 ASSERT(pool_lock_held());
1008 if ((pool = pool_lookup_pool_by_id(poolid)) == NULL)
1009 return (ESRCH);
1010 ret = pool_propput_common(pool->pool_props, pair, pool_prop_pool);
1011 if (ret == 0)
1012 pool_pool_mod = gethrtime();
1013 return (ret);
1016 static int
1017 pool_pool_proprm(poolid_t poolid, char *name)
1019 int ret;
1020 pool_t *pool;
1022 ASSERT(pool_lock_held());
1023 if ((pool = pool_lookup_pool_by_id(poolid)) == NULL)
1024 return (ESRCH);
1025 ret = pool_proprm_common(pool->pool_props, name, pool_prop_pool);
1026 if (ret == 0)
1027 pool_pool_mod = gethrtime();
1028 return (ret);
1032 pool_propput(int class, int subclass, id_t id, nvpair_t *pair)
1034 int ret;
1036 ASSERT(pool_lock_held());
1037 if (pool_state == POOL_DISABLED)
1038 return (ENOTACTIVE);
1039 switch (class) {
1040 case PEC_SYSTEM:
1041 ret = pool_system_propput(pair);
1042 break;
1043 case PEC_POOL:
1044 ret = pool_pool_propput((poolid_t)id, pair);
1045 break;
1046 case PEC_RES_COMP:
1047 switch (subclass) {
1048 case PREC_PSET:
1049 ret = pool_pset_propput((psetid_t)id, pair);
1050 break;
1051 default:
1052 ret = EINVAL;
1054 break;
1055 case PEC_RES_AGG:
1056 ret = ENOTSUP;
1057 break;
1058 case PEC_COMP:
1059 switch (subclass) {
1060 case PCEC_CPU:
1061 ret = pool_cpu_propput((processorid_t)id, pair);
1062 break;
1063 default:
1064 ret = EINVAL;
1066 break;
1067 default:
1068 ret = EINVAL;
1070 return (ret);
1074 pool_proprm(int class, int subclass, id_t id, char *name)
1076 int ret;
1078 ASSERT(pool_lock_held());
1079 if (pool_state == POOL_DISABLED)
1080 return (ENOTACTIVE);
1081 switch (class) {
1082 case PEC_SYSTEM:
1083 ret = pool_system_proprm(name);
1084 break;
1085 case PEC_POOL:
1086 ret = pool_pool_proprm((poolid_t)id, name);
1087 break;
1088 case PEC_RES_COMP:
1089 switch (subclass) {
1090 case PREC_PSET:
1091 ret = pool_pset_proprm((psetid_t)id, name);
1092 break;
1093 default:
1094 ret = EINVAL;
1096 break;
1097 case PEC_RES_AGG:
1098 ret = ENOTSUP;
1099 break;
1100 case PEC_COMP:
1101 switch (subclass) {
1102 case PCEC_CPU:
1103 ret = pool_cpu_proprm((processorid_t)id, name);
1104 break;
1105 default:
1106 ret = EINVAL;
1108 break;
1109 default:
1110 ret = EINVAL;
1112 return (ret);
1116 pool_propget(char *name, int class, int subclass, id_t id, nvlist_t **nvlp)
1118 int ret;
1119 nvlist_t *nvl;
1121 ASSERT(pool_lock_held());
1122 if (pool_state == POOL_DISABLED)
1123 return (ENOTACTIVE);
1125 (void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
1127 switch (class) {
1128 case PEC_SYSTEM:
1129 case PEC_POOL:
1130 ret = EINVAL;
1131 break;
1132 case PEC_RES_COMP:
1133 switch (subclass) {
1134 case PREC_PSET:
1135 ret = pool_pset_propget((psetid_t)id, name, nvl);
1136 break;
1137 default:
1138 ret = EINVAL;
1140 break;
1141 case PEC_RES_AGG:
1142 ret = ENOTSUP;
1143 break;
1144 case PEC_COMP:
1145 switch (subclass) {
1146 case PCEC_CPU:
1147 ret = pool_cpu_propget((processorid_t)id, name, nvl);
1148 break;
1149 default:
1150 ret = EINVAL;
1152 break;
1153 default:
1154 ret = EINVAL;
1156 if (ret == 0)
1157 *nvlp = nvl;
1158 else
1159 nvlist_free(nvl);
1160 return (ret);
1164 * pool_bind_wake and pool_bind_wakeall are helper functions to undo PBWAITs
1165 * in case of failure in pool_do_bind().
1167 static void
1168 pool_bind_wake(proc_t *p)
1170 ASSERT(pool_lock_held());
1172 mutex_enter(&p->p_lock);
1173 ASSERT(p->p_poolflag & PBWAIT);
1174 if (p->p_poolcnt > 0) {
1175 mutex_enter(&pool_barrier_lock);
1176 pool_barrier_count -= p->p_poolcnt;
1177 mutex_exit(&pool_barrier_lock);
1179 p->p_poolflag &= ~PBWAIT;
1180 cv_signal(&p->p_poolcv);
1181 mutex_exit(&p->p_lock);
1184 static void
1185 pool_bind_wakeall(proc_t **procs)
1187 proc_t *p, **pp;
1189 ASSERT(pool_lock_held());
1190 for (pp = procs; (p = *pp) != NULL; pp++)
1191 pool_bind_wake(p);
1195 * Return the scheduling class for this pool, or
1196 * POOL_CLASS_UNSET if not set
1197 * POOL_CLASS_INVAL if set to an invalid class ID.
1199 id_t
1200 pool_get_class(pool_t *pool)
1202 char *name;
1203 id_t cid;
1205 ASSERT(pool_lock_held());
1207 if (nvlist_lookup_string(pool->pool_props, "pool.scheduler",
1208 &name) == 0) {
1209 if (getcidbyname(name, &cid) == 0)
1210 return (cid);
1211 else
1212 return (POOL_CLASS_INVAL);
1214 return (POOL_CLASS_UNSET);
1218 * Move process to the new scheduling class.
1220 static void
1221 pool_change_class(proc_t *p, id_t cid)
1223 kthread_t *t;
1224 void *cldata;
1225 id_t oldcid;
1226 void **bufs;
1227 void **buf;
1228 int nlwp;
1229 int ret;
1230 int i;
1233 * Do not move kernel processes (such as zsched).
1235 if (p->p_flag & SSYS)
1236 return;
1238 * This process is in the pool barrier, so it can't possibly be
1239 * adding new threads and we can use p_lwpcnt + p_zombcnt + 1
1240 * (for possible agent LWP which doesn't use pool barrier) as
1241 * our upper bound.
1243 nlwp = p->p_lwpcnt + p->p_zombcnt + 1;
1246 * Pre-allocate scheduling class specific buffers before
1247 * grabbing p_lock.
1249 bufs = kmem_zalloc(nlwp * sizeof (void *), KM_SLEEP);
1250 for (i = 0, buf = bufs; i < nlwp; i++, buf++) {
1251 ret = CL_ALLOC(buf, cid, KM_SLEEP);
1252 ASSERT(ret == 0);
1256 * Move threads one by one to the new scheduling class.
1257 * This never fails because we have all the right
1258 * privileges here.
1260 mutex_enter(&p->p_lock);
1261 ASSERT(p->p_poolflag & PBWAIT);
1262 buf = bufs;
1263 t = p->p_tlist;
1264 ASSERT(t != NULL);
1265 do {
1266 if (t->t_cid != cid) {
1267 oldcid = t->t_cid;
1268 cldata = t->t_cldata;
1269 ret = CL_ENTERCLASS(t, cid, NULL, NULL, *buf);
1270 ASSERT(ret == 0);
1271 CL_EXITCLASS(oldcid, cldata);
1272 schedctl_set_cidpri(t);
1273 *buf++ = NULL;
1275 } while ((t = t->t_forw) != p->p_tlist);
1276 mutex_exit(&p->p_lock);
1278 * Free unused scheduling class specific buffers.
1280 for (i = 0, buf = bufs; i < nlwp; i++, buf++) {
1281 if (*buf != NULL) {
1282 CL_FREE(cid, *buf);
1283 *buf = NULL;
1286 kmem_free(bufs, nlwp * sizeof (void *));
1289 void
1290 pool_get_name(pool_t *pool, char **name)
1292 ASSERT(pool_lock_held());
1294 (void) nvlist_lookup_string(pool->pool_props, "pool.name", name);
1296 ASSERT(strlen(*name) != 0);
1301 * The meat of the bind operation. The steps in pool_do_bind are:
1303 * 1) Set PBWAIT in the p_poolflag of any process of interest, and add all
1304 * such processes to an array. For any interesting process that has
1305 * threads inside the pool barrier set, increment a counter by the
1306 * count of such threads. Once PBWAIT is set on a process, that process
1307 * will not disappear.
1309 * 2) Wait for the counter from step 2 to drop to zero. Any process which
1310 * calls pool_barrier_exit() and notices that PBWAIT has been set on it
1311 * will decrement that counter before going to sleep, and the process
1312 * calling pool_barrier_exit() which does the final decrement will wake us.
1314 * 3) For each interesting process, perform a calculation on it to see if
1315 * the bind will actually succeed. This uses the following three
1316 * resource-set-specific functions:
1318 * - int set_bind_start(procs, pool)
1320 * Determine whether the given array of processes can be bound to the
1321 * resource set associated with the given pool. If it can, take and hold
1322 * any locks necessary to ensure that the operation will succeed, and
1323 * make any necessary reservations in the target resource set. If it
1324 * can't, return failure with no reservations made and no new locks held.
1326 * - void set_bind_abort(procs, pool)
1328 * set_bind_start() has completed successfully, but another resource set's
1329 * set_bind_start() has failed, and we haven't begun the bind yet. Undo
1330 * any reservations made and drop any locks acquired by our
1331 * set_bind_start().
1333 * - void set_bind_finish(void)
1335 * The bind has completed successfully. The processes have been released,
1336 * and the reservation acquired in set_bind_start() has been depleted as
1337 * the processes have finished their bindings. Drop any locks acquired by
1338 * set_bind_start().
1340 * 4) If we've decided that we can proceed with the bind, iterate through
1341 * the list of interesting processes, grab the necessary locks (which
1342 * may differ per resource set), perform the bind, and ASSERT that it
1343 * succeeds. Once a process has been rebound, it can be awakened.
1345 * The operations from step 4 must be kept in sync with anything which might
1346 * cause the bind operations (e.g., cpupart_bind_thread()) to fail, and
1347 * are thus located in the same source files as the associated bind operations.
1350 pool_do_bind(pool_t *pool, idtype_t idtype, id_t id, int flags)
1352 extern uint_t nproc;
1353 klwp_t *lwp = ttolwp(curthread);
1354 proc_t **pp, **procs;
1355 proc_t *prstart;
1356 int procs_count = 0;
1357 kproject_t *kpj;
1358 procset_t set;
1359 zone_t *zone;
1360 int procs_size;
1361 int rv = 0;
1362 proc_t *p;
1363 id_t cid = -1;
1365 ASSERT(pool_lock_held());
1367 if ((cid = pool_get_class(pool)) == POOL_CLASS_INVAL)
1368 return (EINVAL);
1370 if (idtype == P_ZONEID) {
1371 zone = zone_find_by_id(id);
1372 if (zone == NULL)
1373 return (ESRCH);
1374 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
1375 zone_rele(zone);
1376 return (EBUSY);
1380 if (idtype == P_PROJID) {
1381 kpj = project_hold_by_id(id, global_zone, PROJECT_HOLD_FIND);
1382 if (kpj == NULL)
1383 return (ESRCH);
1384 mutex_enter(&kpj->kpj_poolbind);
1387 if (idtype == P_PID) {
1389 * Fast-path for a single process case.
1391 procs_size = 2; /* procs is NULL-terminated */
1392 procs = kmem_zalloc(procs_size * sizeof (proc_t *), KM_SLEEP);
1393 mutex_enter(&pidlock);
1394 } else {
1396 * We will need enough slots for proc_t pointers for as many as
1397 * twice the number of currently running processes (assuming
1398 * that each one could be in fork() creating a new child).
1400 for (;;) {
1401 procs_size = nproc * 2;
1402 procs = kmem_zalloc(procs_size * sizeof (proc_t *),
1403 KM_SLEEP);
1404 mutex_enter(&pidlock);
1406 if (nproc * 2 <= procs_size)
1407 break;
1409 * If nproc has changed, try again.
1411 mutex_exit(&pidlock);
1412 kmem_free(procs, procs_size * sizeof (proc_t *));
1416 if (id == P_MYID)
1417 id = getmyid(idtype);
1418 setprocset(&set, POP_AND, idtype, id, P_ALL, 0);
1421 * Do a first scan, and select target processes.
1423 if (idtype == P_PID)
1424 prstart = prfind(id);
1425 else
1426 prstart = practive;
1427 for (p = prstart, pp = procs; p != NULL; p = p->p_next) {
1428 mutex_enter(&p->p_lock);
1430 * Skip processes that don't match our (id, idtype) set or
1431 * on the way of becoming zombies. Skip kernel processes
1432 * from the global zone.
1434 if (procinset(p, &set) == 0 ||
1435 p->p_poolflag & PEXITED ||
1436 ((p->p_flag & SSYS) && INGLOBALZONE(p))) {
1437 mutex_exit(&p->p_lock);
1438 continue;
1440 if (!INGLOBALZONE(p)) {
1441 switch (idtype) {
1442 case P_PID:
1443 case P_TASKID:
1445 * Can't bind processes or tasks
1446 * in local zones to pools.
1448 mutex_exit(&p->p_lock);
1449 mutex_exit(&pidlock);
1450 pool_bind_wakeall(procs);
1451 rv = EINVAL;
1452 goto out;
1453 case P_PROJID:
1455 * Only projects in the global
1456 * zone can be rebound.
1458 mutex_exit(&p->p_lock);
1459 continue;
1460 case P_POOLID:
1462 * When rebinding pools, processes can be
1463 * in different zones.
1465 break;
1469 p->p_poolflag |= PBWAIT;
1471 * If some threads in this process are inside the pool
1472 * barrier, add them to pool_barrier_count, as we have
1473 * to wait for all of them to exit the barrier.
1475 if (p->p_poolcnt > 0) {
1476 mutex_enter(&pool_barrier_lock);
1477 pool_barrier_count += p->p_poolcnt;
1478 mutex_exit(&pool_barrier_lock);
1480 ASSERT(pp < &procs[procs_size]);
1481 *pp++ = p;
1482 procs_count++;
1483 mutex_exit(&p->p_lock);
1486 * We just found our process, so if we're only rebinding a
1487 * single process then get out of this loop.
1489 if (idtype == P_PID)
1490 break;
1492 *pp = NULL; /* cap off the end of the array */
1493 mutex_exit(&pidlock);
1496 * Wait for relevant processes to stop before they try to enter the
1497 * barrier or at the exit from the barrier. Make sure that we do
1498 * not get stopped here while we're holding pool_lock. If we were
1499 * requested to stop, or got a signal then return EAGAIN to let the
1500 * library know that it needs to retry.
1502 mutex_enter(&pool_barrier_lock);
1503 lwp->lwp_nostop++;
1504 while (pool_barrier_count > 0) {
1505 (void) cv_wait_sig(&pool_barrier_cv, &pool_barrier_lock);
1506 if (pool_barrier_count > 0) {
1508 * We either got a signal or were requested to
1509 * stop by /proc. Bail out with EAGAIN. If we were
1510 * requested to stop, we'll stop in post_syscall()
1511 * on our way back to userland.
1513 mutex_exit(&pool_barrier_lock);
1514 pool_bind_wakeall(procs);
1515 lwp->lwp_nostop--;
1516 rv = EAGAIN;
1517 goto out;
1520 lwp->lwp_nostop--;
1521 mutex_exit(&pool_barrier_lock);
1523 if (idtype == P_PID) {
1524 if ((p = *procs) == NULL)
1525 goto skip;
1526 mutex_enter(&p->p_lock);
1527 /* Drop the process if it is exiting */
1528 if (p->p_poolflag & PEXITED) {
1529 mutex_exit(&p->p_lock);
1530 pool_bind_wake(p);
1531 procs_count--;
1532 } else
1533 mutex_exit(&p->p_lock);
1534 goto skip;
1538 * Do another run, and drop processes that were inside the barrier
1539 * in exit(), but when they have dropped to pool_barrier_exit
1540 * they have become of no interest to us. Pick up child processes that
1541 * were created by fork() but didn't exist during our first scan.
1542 * Their parents are now stopped at pool_barrier_exit in cfork().
1544 mutex_enter(&pidlock);
1545 for (pp = procs; (p = *pp) != NULL; pp++) {
1546 mutex_enter(&p->p_lock);
1547 if (p->p_poolflag & PEXITED) {
1548 ASSERT(p->p_lwpcnt == 0);
1549 mutex_exit(&p->p_lock);
1550 pool_bind_wake(p);
1551 /* flip w/last non-NULL slot */
1552 *pp = procs[procs_count - 1];
1553 procs[procs_count - 1] = NULL;
1554 procs_count--;
1555 pp--; /* try this slot again */
1556 continue;
1557 } else
1558 mutex_exit(&p->p_lock);
1560 * Look at the child and check if it should be rebound also.
1561 * We're holding pidlock, so it is safe to reference p_child.
1563 if ((p = p->p_child) == NULL)
1564 continue;
1566 mutex_enter(&p->p_lock);
1569 * Skip system processes and make sure that the child is in
1570 * the same task/project/pool/zone as the parent.
1572 if ((!INGLOBALZONE(p) && idtype != P_ZONEID &&
1573 idtype != P_POOLID) || p->p_flag & SSYS) {
1574 mutex_exit(&p->p_lock);
1575 continue;
1579 * If the child process has been already created by fork(), has
1580 * not exited, and has not been added to the list already,
1581 * then add it now. We will hit this process again (since we
1582 * stick it at the end of the procs list) but it will ignored
1583 * because it will have the PBWAIT flag set.
1585 if (procinset(p, &set) &&
1586 !(p->p_poolflag & PEXITED) &&
1587 !(p->p_poolflag & PBWAIT)) {
1588 ASSERT(p->p_child == NULL); /* no child of a child */
1589 procs[procs_count] = p;
1590 procs[procs_count + 1] = NULL;
1591 procs_count++;
1592 p->p_poolflag |= PBWAIT;
1594 mutex_exit(&p->p_lock);
1596 mutex_exit(&pidlock);
1597 skip:
1599 * If there's no processes to rebind then return ESRCH, unless
1600 * we're associating a pool with new resource set, destroying it,
1601 * or binding a zone to a pool.
1603 if (procs_count == 0) {
1604 if (idtype == P_POOLID || idtype == P_ZONEID)
1605 rv = 0;
1606 else
1607 rv = ESRCH;
1608 goto out;
1611 #ifdef DEBUG
1613 * All processes in the array should have PBWAIT set, and none
1614 * should be in the critical section. Thus, although p_poolflag
1615 * and p_poolcnt are protected by p_lock, their ASSERTions below
1616 * should be stable without it. procinset(), however, ASSERTs that
1617 * the p_lock is held upon entry.
1619 for (pp = procs; (p = *pp) != NULL; pp++) {
1620 int in_set;
1622 mutex_enter(&p->p_lock);
1623 in_set = procinset(p, &set);
1624 mutex_exit(&p->p_lock);
1626 ASSERT(in_set);
1627 ASSERT(p->p_poolflag & PBWAIT);
1628 ASSERT(p->p_poolcnt == 0);
1630 #endif
1633 * Do the check if processor set rebinding is going to succeed or not.
1635 if ((flags & POOL_BIND_PSET) &&
1636 (rv = pset_bind_start(procs, pool)) != 0) {
1637 pool_bind_wakeall(procs);
1638 goto out;
1642 * At this point, all bind operations should succeed.
1644 for (pp = procs; (p = *pp) != NULL; pp++) {
1645 if (flags & POOL_BIND_PSET) {
1646 psetid_t psetid = pool->pool_pset->pset_id;
1647 void *zonebuf;
1648 void *projbuf;
1651 * Pre-allocate one buffer for FSS (per-project
1652 * buffer for a new pset) in case if this is the
1653 * first thread from its current project getting
1654 * bound to this processor set.
1656 projbuf = fss_allocbuf(FSS_ONE_BUF, FSS_ALLOC_PROJ);
1657 zonebuf = fss_allocbuf(FSS_ONE_BUF, FSS_ALLOC_ZONE);
1659 mutex_enter(&pidlock);
1660 mutex_enter(&p->p_lock);
1661 pool_pset_bind(p, psetid, projbuf, zonebuf);
1662 mutex_exit(&p->p_lock);
1663 mutex_exit(&pidlock);
1665 * Free buffers pre-allocated above if it
1666 * wasn't actually used.
1668 fss_freebuf(projbuf, FSS_ALLOC_PROJ);
1669 fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
1672 * Now let's change the scheduling class of this
1673 * process if our target pool has it defined.
1675 if (cid != POOL_CLASS_UNSET)
1676 pool_change_class(p, cid);
1679 * It is safe to reference p_pool here without holding
1680 * p_lock because it cannot change underneath of us.
1681 * We're holding pool_lock here, so nobody else can be
1682 * moving this process between pools. If process "p"
1683 * would be exiting, we're guaranteed that it would be blocked
1684 * at pool_barrier_enter() in exit(). Otherwise, it would've
1685 * been skipped by one of our scans of the practive list
1686 * as a process with PEXITED flag set.
1688 if (p->p_pool != pool) {
1689 ASSERT(p->p_pool->pool_ref > 0);
1690 atomic_dec_32(&p->p_pool->pool_ref);
1691 p->p_pool = pool;
1692 atomic_inc_32(&p->p_pool->pool_ref);
1695 * Okay, we've tortured this guy enough.
1696 * Let this poor process go now.
1698 pool_bind_wake(p);
1700 if (flags & POOL_BIND_PSET)
1701 pset_bind_finish();
1703 out: switch (idtype) {
1704 case P_PROJID:
1705 ASSERT(kpj != NULL);
1706 mutex_exit(&kpj->kpj_poolbind);
1707 project_rele(kpj);
1708 break;
1709 case P_ZONEID:
1710 if (rv == 0) {
1711 mutex_enter(&cpu_lock);
1712 zone_pool_set(zone, pool);
1713 mutex_exit(&cpu_lock);
1715 zone->zone_pool_mod = gethrtime();
1716 zone_rele(zone);
1717 break;
1720 kmem_free(procs, procs_size * sizeof (proc_t *));
1721 ASSERT(pool_barrier_count == 0);
1722 return (rv);
1725 void
1726 pool_event_cb_register(pool_event_cb_t *cb)
1728 ASSERT(!pool_lock_held() || panicstr);
1729 ASSERT(cb->pec_func != NULL);
1731 mutex_enter(&pool_event_cb_lock);
1732 if (!pool_event_cb_init) {
1733 list_create(&pool_event_cb_list, sizeof (pool_event_cb_t),
1734 offsetof(pool_event_cb_t, pec_list));
1735 pool_event_cb_init = B_TRUE;
1737 list_insert_tail(&pool_event_cb_list, cb);
1738 mutex_exit(&pool_event_cb_lock);
1741 void
1742 pool_event_cb_unregister(pool_event_cb_t *cb)
1744 ASSERT(!pool_lock_held() || panicstr);
1746 mutex_enter(&pool_event_cb_lock);
1747 list_remove(&pool_event_cb_list, cb);
1748 mutex_exit(&pool_event_cb_lock);
1751 typedef struct {
1752 pool_event_t tqd_what;
1753 poolid_t tqd_id;
1754 } pool_tqd_t;
1756 void
1757 pool_event_notify(void *arg)
1759 pool_tqd_t *tqd = (pool_tqd_t *)arg;
1760 pool_event_cb_t *cb;
1762 ASSERT(!pool_lock_held() || panicstr);
1764 mutex_enter(&pool_event_cb_lock);
1765 for (cb = list_head(&pool_event_cb_list); cb != NULL;
1766 cb = list_next(&pool_event_cb_list, cb)) {
1767 cb->pec_func(tqd->tqd_what, tqd->tqd_id, cb->pec_arg);
1769 mutex_exit(&pool_event_cb_lock);
1770 kmem_free(tqd, sizeof (*tqd));
1773 void
1774 pool_event_dispatch(pool_event_t what, poolid_t id)
1776 pool_tqd_t *tqd = NULL;
1778 ASSERT(pool_lock_held());
1780 if (pool_event_cb_taskq == NULL) {
1781 pool_event_cb_taskq = taskq_create("pool_event_cb_taskq", 1,
1782 -1, 1, 1, TASKQ_PREPOPULATE);
1785 tqd = kmem_alloc(sizeof (*tqd), KM_SLEEP);
1786 tqd->tqd_what = what;
1787 tqd->tqd_id = id;
1789 (void) taskq_dispatch(pool_event_cb_taskq, pool_event_notify, tqd,
1790 KM_SLEEP);