import libcrypto (LibreSSL 2.5.2)
[unleashed.git] / lib / libcrypto / sha / sha512.c
blob6b95cfa72e1291408e91d2d1a5cd0ee30230334e
1 /* $OpenBSD: sha512.c,v 1.15 2016/11/04 13:56:05 miod Exp $ */
2 /* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
8 #include <machine/endian.h>
10 #include <stdlib.h>
11 #include <string.h>
13 #include <openssl/opensslconf.h>
15 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
17 * IMPLEMENTATION NOTES.
19 * As you might have noticed 32-bit hash algorithms:
21 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
22 * - optimized versions implement two transform functions: one operating
23 * on [aligned] data in host byte order and one - on data in input
24 * stream byte order;
25 * - share common byte-order neutral collector and padding function
26 * implementations, ../md32_common.h;
28 * Neither of the above applies to this SHA-512 implementations. Reasons
29 * [in reverse order] are:
31 * - it's the only 64-bit hash algorithm for the moment of this writing,
32 * there is no need for common collector/padding implementation [yet];
33 * - by supporting only one transform function [which operates on
34 * *aligned* data in input stream byte order, big-endian in this case]
35 * we minimize burden of maintenance in two ways: a) collector/padding
36 * function is simpler; b) only one transform function to stare at;
37 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
38 * apply a number of optimizations to mitigate potential performance
39 * penalties caused by previous design decision;
41 * Caveat lector.
43 * Implementation relies on the fact that "long long" is 64-bit on
44 * both 32- and 64-bit platforms. If some compiler vendor comes up
45 * with 128-bit long long, adjustment to sha.h would be required.
46 * As this implementation relies on 64-bit integer type, it's totally
47 * inappropriate for platforms which don't support it, most notably
48 * 16-bit platforms.
49 * <appro@fy.chalmers.se>
52 #include <openssl/crypto.h>
53 #include <openssl/opensslv.h>
54 #include <openssl/sha.h>
56 #if !defined(__STRICT_ALIGNMENT) || defined(SHA512_ASM)
57 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
58 #endif
60 int SHA384_Init(SHA512_CTX *c)
62 c->h[0]=U64(0xcbbb9d5dc1059ed8);
63 c->h[1]=U64(0x629a292a367cd507);
64 c->h[2]=U64(0x9159015a3070dd17);
65 c->h[3]=U64(0x152fecd8f70e5939);
66 c->h[4]=U64(0x67332667ffc00b31);
67 c->h[5]=U64(0x8eb44a8768581511);
68 c->h[6]=U64(0xdb0c2e0d64f98fa7);
69 c->h[7]=U64(0x47b5481dbefa4fa4);
71 c->Nl=0; c->Nh=0;
72 c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
73 return 1;
76 int SHA512_Init(SHA512_CTX *c)
78 c->h[0]=U64(0x6a09e667f3bcc908);
79 c->h[1]=U64(0xbb67ae8584caa73b);
80 c->h[2]=U64(0x3c6ef372fe94f82b);
81 c->h[3]=U64(0xa54ff53a5f1d36f1);
82 c->h[4]=U64(0x510e527fade682d1);
83 c->h[5]=U64(0x9b05688c2b3e6c1f);
84 c->h[6]=U64(0x1f83d9abfb41bd6b);
85 c->h[7]=U64(0x5be0cd19137e2179);
87 c->Nl=0; c->Nh=0;
88 c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
89 return 1;
92 #ifndef SHA512_ASM
93 static
94 #endif
95 void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
97 int SHA512_Final (unsigned char *md, SHA512_CTX *c)
99 unsigned char *p=(unsigned char *)c->u.p;
100 size_t n=c->num;
102 p[n]=0x80; /* There always is a room for one */
103 n++;
104 if (n > (sizeof(c->u)-16))
105 memset (p+n,0,sizeof(c->u)-n), n=0,
106 sha512_block_data_order (c,p,1);
108 memset (p+n,0,sizeof(c->u)-16-n);
109 #if BYTE_ORDER == BIG_ENDIAN
110 c->u.d[SHA_LBLOCK-2] = c->Nh;
111 c->u.d[SHA_LBLOCK-1] = c->Nl;
112 #else
113 p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
114 p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
115 p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
116 p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
117 p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
118 p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
119 p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
120 p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
121 p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
122 p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
123 p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
124 p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
125 p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
126 p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
127 p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
128 p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
129 #endif
131 sha512_block_data_order (c,p,1);
133 if (md==0) return 0;
135 switch (c->md_len)
137 /* Let compiler decide if it's appropriate to unroll... */
138 case SHA384_DIGEST_LENGTH:
139 for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
141 SHA_LONG64 t = c->h[n];
143 *(md++) = (unsigned char)(t>>56);
144 *(md++) = (unsigned char)(t>>48);
145 *(md++) = (unsigned char)(t>>40);
146 *(md++) = (unsigned char)(t>>32);
147 *(md++) = (unsigned char)(t>>24);
148 *(md++) = (unsigned char)(t>>16);
149 *(md++) = (unsigned char)(t>>8);
150 *(md++) = (unsigned char)(t);
152 break;
153 case SHA512_DIGEST_LENGTH:
154 for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
156 SHA_LONG64 t = c->h[n];
158 *(md++) = (unsigned char)(t>>56);
159 *(md++) = (unsigned char)(t>>48);
160 *(md++) = (unsigned char)(t>>40);
161 *(md++) = (unsigned char)(t>>32);
162 *(md++) = (unsigned char)(t>>24);
163 *(md++) = (unsigned char)(t>>16);
164 *(md++) = (unsigned char)(t>>8);
165 *(md++) = (unsigned char)(t);
167 break;
168 /* ... as well as make sure md_len is not abused. */
169 default: return 0;
172 return 1;
175 int SHA384_Final (unsigned char *md,SHA512_CTX *c)
176 { return SHA512_Final (md,c); }
178 int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
180 SHA_LONG64 l;
181 unsigned char *p=c->u.p;
182 const unsigned char *data=(const unsigned char *)_data;
184 if (len==0) return 1;
186 l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
187 if (l < c->Nl) c->Nh++;
188 if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
189 c->Nl=l;
191 if (c->num != 0)
193 size_t n = sizeof(c->u) - c->num;
195 if (len < n)
197 memcpy (p+c->num,data,len), c->num += (unsigned int)len;
198 return 1;
200 else {
201 memcpy (p+c->num,data,n), c->num = 0;
202 len-=n, data+=n;
203 sha512_block_data_order (c,p,1);
207 if (len >= sizeof(c->u))
209 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
210 if ((size_t)data%sizeof(c->u.d[0]) != 0)
211 while (len >= sizeof(c->u))
212 memcpy (p,data,sizeof(c->u)),
213 sha512_block_data_order (c,p,1),
214 len -= sizeof(c->u),
215 data += sizeof(c->u);
216 else
217 #endif
218 sha512_block_data_order (c,data,len/sizeof(c->u)),
219 data += len,
220 len %= sizeof(c->u),
221 data -= len;
224 if (len != 0) memcpy (p,data,len), c->num = (int)len;
226 return 1;
229 int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
230 { return SHA512_Update (c,data,len); }
232 void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
234 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
235 if ((size_t)data%sizeof(c->u.d[0]) != 0)
236 memcpy(c->u.p,data,sizeof(c->u.p)),
237 data = c->u.p;
238 #endif
239 sha512_block_data_order (c,data,1);
242 unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
244 SHA512_CTX c;
245 static unsigned char m[SHA384_DIGEST_LENGTH];
247 if (md == NULL) md=m;
248 SHA384_Init(&c);
249 SHA512_Update(&c,d,n);
250 SHA512_Final(md,&c);
251 explicit_bzero(&c,sizeof(c));
252 return(md);
255 unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
257 SHA512_CTX c;
258 static unsigned char m[SHA512_DIGEST_LENGTH];
260 if (md == NULL) md=m;
261 SHA512_Init(&c);
262 SHA512_Update(&c,d,n);
263 SHA512_Final(md,&c);
264 explicit_bzero(&c,sizeof(c));
265 return(md);
268 #ifndef SHA512_ASM
269 static const SHA_LONG64 K512[80] = {
270 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
271 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
272 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
273 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
274 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
275 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
276 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
277 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
278 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
279 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
280 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
281 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
282 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
283 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
284 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
285 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
286 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
287 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
288 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
289 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
290 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
291 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
292 U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
293 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
294 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
295 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
296 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
297 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
298 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
299 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
300 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
301 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
302 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
303 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
304 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
305 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
306 U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
307 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
308 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
309 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
311 #if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
312 # if defined(__x86_64) || defined(__x86_64__)
313 # define ROTR(a,n) ({ SHA_LONG64 ret; \
314 asm ("rorq %1,%0" \
315 : "=r"(ret) \
316 : "J"(n),"0"(a) \
317 : "cc"); ret; })
318 # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
319 asm ("bswapq %0" \
320 : "=r"(ret) \
321 : "0"(ret)); ret; })
322 # elif (defined(__i386) || defined(__i386__))
323 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
324 unsigned int hi=p[0],lo=p[1]; \
325 asm ("bswapl %0; bswapl %1;" \
326 : "=r"(lo),"=r"(hi) \
327 : "0"(lo),"1"(hi)); \
328 ((SHA_LONG64)hi)<<32|lo; })
329 # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
330 # define ROTR(a,n) ({ SHA_LONG64 ret; \
331 asm ("rotrdi %0,%1,%2" \
332 : "=r"(ret) \
333 : "r"(a),"K"(n)); ret; })
334 # endif
335 #endif
337 #ifndef PULL64
338 #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
339 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
340 #endif
342 #ifndef ROTR
343 #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
344 #endif
346 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
347 #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
348 #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
349 #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
351 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
352 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
355 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
357 * This code should give better results on 32-bit CPU with less than
358 * ~24 registers, both size and performance wise...
360 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
362 const SHA_LONG64 *W=in;
363 SHA_LONG64 A,E,T;
364 SHA_LONG64 X[9+80],*F;
365 int i;
367 while (num--) {
369 F = X+80;
370 A = ctx->h[0]; F[1] = ctx->h[1];
371 F[2] = ctx->h[2]; F[3] = ctx->h[3];
372 E = ctx->h[4]; F[5] = ctx->h[5];
373 F[6] = ctx->h[6]; F[7] = ctx->h[7];
375 for (i=0;i<16;i++,F--)
377 T = PULL64(W[i]);
378 F[0] = A;
379 F[4] = E;
380 F[8] = T;
381 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
382 E = F[3] + T;
383 A = T + Sigma0(A) + Maj(A,F[1],F[2]);
386 for (;i<80;i++,F--)
388 T = sigma0(F[8+16-1]);
389 T += sigma1(F[8+16-14]);
390 T += F[8+16] + F[8+16-9];
392 F[0] = A;
393 F[4] = E;
394 F[8] = T;
395 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
396 E = F[3] + T;
397 A = T + Sigma0(A) + Maj(A,F[1],F[2]);
400 ctx->h[0] += A; ctx->h[1] += F[1];
401 ctx->h[2] += F[2]; ctx->h[3] += F[3];
402 ctx->h[4] += E; ctx->h[5] += F[5];
403 ctx->h[6] += F[6]; ctx->h[7] += F[7];
405 W+=SHA_LBLOCK;
409 #elif defined(OPENSSL_SMALL_FOOTPRINT)
411 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
413 const SHA_LONG64 *W=in;
414 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
415 SHA_LONG64 X[16];
416 int i;
418 while (num--) {
420 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
421 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
423 for (i=0;i<16;i++)
425 #if BYTE_ORDER == BIG_ENDIAN
426 T1 = X[i] = W[i];
427 #else
428 T1 = X[i] = PULL64(W[i]);
429 #endif
430 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
431 T2 = Sigma0(a) + Maj(a,b,c);
432 h = g; g = f; f = e; e = d + T1;
433 d = c; c = b; b = a; a = T1 + T2;
436 for (;i<80;i++)
438 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
439 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
441 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
442 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
443 T2 = Sigma0(a) + Maj(a,b,c);
444 h = g; g = f; f = e; e = d + T1;
445 d = c; c = b; b = a; a = T1 + T2;
448 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
449 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
451 W+=SHA_LBLOCK;
455 #else
457 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
458 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
459 h = Sigma0(a) + Maj(a,b,c); \
460 d += T1; h += T1; } while (0)
462 #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
463 s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
464 s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
465 T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
466 ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
468 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
470 const SHA_LONG64 *W=in;
471 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
472 SHA_LONG64 X[16];
473 int i;
475 while (num--) {
477 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
478 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
480 #if BYTE_ORDER == BIG_ENDIAN
481 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
482 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
483 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
484 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
485 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
486 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
487 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
488 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
489 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
490 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
491 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
492 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
493 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
494 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
495 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
496 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
497 #else
498 T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
499 T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
500 T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
501 T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
502 T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
503 T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
504 T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
505 T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
506 T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
507 T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
508 T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
509 T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
510 T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
511 T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
512 T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
513 T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
514 #endif
516 for (i=16;i<80;i+=16)
518 ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
519 ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
520 ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
521 ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
522 ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
523 ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
524 ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
525 ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
526 ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
527 ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
528 ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
529 ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
530 ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
531 ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
532 ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
533 ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
536 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
537 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
539 W+=SHA_LBLOCK;
543 #endif
545 #endif /* SHA512_ASM */
547 #endif /* !OPENSSL_NO_SHA512 */