import libcrypto (LibreSSL 2.5.2)
[unleashed.git] / lib / libcrypto / rc4 / asm / rc4-x86_64.pl
blob2135b38ef8258195cf56677cfe786d80f3f26ad1
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # July 2004
12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13 # "hand-coded assembler"] doesn't stand for the whole improvement
14 # coefficient. It turned out that eliminating RC4_CHAR from config
15 # line results in ~40% improvement (yes, even for C implementation).
16 # Presumably it has everything to do with AMD cache architecture and
17 # RAW or whatever penalties. Once again! The module *requires* config
18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
19 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20 # I simply 'inc %r8b'. Even though optimization manual discourages
21 # to operate on partial registers, it turned out to be the best bet.
22 # At least for AMD... How IA32E would perform remains to be seen...
24 # November 2004
26 # As was shown by Marc Bevand reordering of couple of load operations
27 # results in even higher performance gain of 3.3x:-) At least on
28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30 # Latter means that if you want to *estimate* what to expect from
31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
33 # November 2004
35 # Intel P4 EM64T core was found to run the AMD64 code really slow...
36 # The only way to achieve comparable performance on P4 was to keep
37 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38 # compose blended code, which would perform even within 30% marginal
39 # on either AMD and Intel platforms, I implement both cases. See
40 # rc4_skey.c for further details...
42 # April 2005
44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45 # those with add/sub results in 50% performance improvement of folded
46 # loop...
48 # May 2005
50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51 # performance by >30% [unlike P4 32-bit case that is]. But this is
52 # provided that loads are reordered even more aggressively! Both code
53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
54 # as my IA-64 implementation. On Opteron this resulted in modest 5%
55 # improvement [I had to test it], while final Intel P4 performance
56 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58 # RC4_INT code-path. While if executed on Opteron, it's only 25%
59 # slower than the RC4_INT one [meaning that if CPU ยต-arch detection
60 # is not implemented, then this final RC4_CHAR code-path should be
61 # preferred, as it provides better *all-round* performance].
63 # March 2007
65 # Intel Core2 was observed to perform poorly on both code paths:-( It
66 # apparently suffers from some kind of partial register stall, which
67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was
68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69 # cloop1 boosts its performance by 80%! This loop appears to be optimal
70 # fit for Core2 and therefore the code was modified to skip cloop8 on
71 # this CPU.
73 # May 2010
75 # Intel Westmere was observed to perform suboptimally. Adding yet
76 # another movzb to cloop1 improved performance by almost 50%! Core2
77 # performance is improved too, but nominally...
79 # May 2011
81 # The only code path that was not modified is P4-specific one. Non-P4
82 # Intel code path optimization is heavily based on submission by Maxim
83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84 # some of the ideas even in attempt to optmize the original RC4_INT
85 # code path... Current performance in cycles per processed byte (less
86 # is better) and improvement coefficients relative to previous
87 # version of this module are:
89 # Opteron 5.3/+0%(*)
90 # P4 6.5
91 # Core2 6.2/+15%(**)
92 # Westmere 4.2/+60%
93 # Sandy Bridge 4.2/+120%
94 # Atom 9.3/+80%
96 # (*) But corresponding loop has less instructions, which should have
97 # positive effect on upcoming Bulldozer, which has one less ALU.
98 # For reference, Intel code runs at 6.8 cpb rate on Opteron.
99 # (**) Note that Core2 result is ~15% lower than corresponding result
100 # for 32-bit code, meaning that it's possible to improve it,
101 # but more than likely at the cost of the others (see rc4-586.pl
102 # to get the idea)...
104 $flavour = shift;
105 $output = shift;
106 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
108 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
109 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
110 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
111 die "can't locate x86_64-xlate.pl";
113 open OUT,"| \"$^X\" $xlate $flavour $output";
114 *STDOUT=*OUT;
116 $dat="%rdi"; # arg1
117 $len="%rsi"; # arg2
118 $inp="%rdx"; # arg3
119 $out="%rcx"; # arg4
122 $code=<<___;
123 .text
124 .extern OPENSSL_ia32cap_P
125 .hidden OPENSSL_ia32cap_P
127 .globl RC4
128 .type RC4,\@function,4
129 .align 16
130 RC4: or $len,$len
131 jne .Lentry
133 .Lentry:
134 push %rbx
135 push %r12
136 push %r13
137 .Lprologue:
138 mov $len,%r11
139 mov $inp,%r12
140 mov $out,%r13
142 my $len="%r11"; # reassign input arguments
143 my $inp="%r12";
144 my $out="%r13";
146 my @XX=("%r10","%rsi");
147 my @TX=("%rax","%rbx");
148 my $YY="%rcx";
149 my $TY="%rdx";
151 $code.=<<___;
152 xor $XX[0],$XX[0]
153 xor $YY,$YY
155 lea 8($dat),$dat
156 mov -8($dat),$XX[0]#b
157 mov -4($dat),$YY#b
158 cmpl \$-1,256($dat)
159 je .LRC4_CHAR
160 mov OPENSSL_ia32cap_P(%rip),%r8d
161 xor $TX[1],$TX[1]
162 inc $XX[0]#b
163 sub $XX[0],$TX[1]
164 sub $inp,$out
165 movl ($dat,$XX[0],4),$TX[0]#d
166 test \$-16,$len
167 jz .Lloop1
168 bt \$IA32CAP_BIT0_INTEL,%r8d # Intel CPU?
169 jc .Lintel
170 and \$7,$TX[1]
171 lea 1($XX[0]),$XX[1]
172 jz .Loop8
173 sub $TX[1],$len
174 .Loop8_warmup:
175 add $TX[0]#b,$YY#b
176 movl ($dat,$YY,4),$TY#d
177 movl $TX[0]#d,($dat,$YY,4)
178 movl $TY#d,($dat,$XX[0],4)
179 add $TY#b,$TX[0]#b
180 inc $XX[0]#b
181 movl ($dat,$TX[0],4),$TY#d
182 movl ($dat,$XX[0],4),$TX[0]#d
183 xorb ($inp),$TY#b
184 movb $TY#b,($out,$inp)
185 lea 1($inp),$inp
186 dec $TX[1]
187 jnz .Loop8_warmup
189 lea 1($XX[0]),$XX[1]
190 jmp .Loop8
191 .align 16
192 .Loop8:
194 for ($i=0;$i<8;$i++) {
195 $code.=<<___ if ($i==7);
196 add \$8,$XX[1]#b
198 $code.=<<___;
199 add $TX[0]#b,$YY#b
200 movl ($dat,$YY,4),$TY#d
201 movl $TX[0]#d,($dat,$YY,4)
202 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
203 ror \$8,%r8 # ror is redundant when $i=0
204 movl $TY#d,4*$i($dat,$XX[0],4)
205 add $TX[0]#b,$TY#b
206 movb ($dat,$TY,4),%r8b
208 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
210 $code.=<<___;
211 add \$8,$XX[0]#b
212 ror \$8,%r8
213 sub \$8,$len
215 xor ($inp),%r8
216 mov %r8,($out,$inp)
217 lea 8($inp),$inp
219 test \$-8,$len
220 jnz .Loop8
221 cmp \$0,$len
222 jne .Lloop1
223 jmp .Lexit
225 .align 16
226 .Lintel:
227 test \$-32,$len
228 jz .Lloop1
229 and \$15,$TX[1]
230 jz .Loop16_is_hot
231 sub $TX[1],$len
232 .Loop16_warmup:
233 add $TX[0]#b,$YY#b
234 movl ($dat,$YY,4),$TY#d
235 movl $TX[0]#d,($dat,$YY,4)
236 movl $TY#d,($dat,$XX[0],4)
237 add $TY#b,$TX[0]#b
238 inc $XX[0]#b
239 movl ($dat,$TX[0],4),$TY#d
240 movl ($dat,$XX[0],4),$TX[0]#d
241 xorb ($inp),$TY#b
242 movb $TY#b,($out,$inp)
243 lea 1($inp),$inp
244 dec $TX[1]
245 jnz .Loop16_warmup
247 mov $YY,$TX[1]
248 xor $YY,$YY
249 mov $TX[1]#b,$YY#b
251 .Loop16_is_hot:
252 lea ($dat,$XX[0],4),$XX[1]
254 sub RC4_loop {
255 my $i=shift;
256 my $j=$i<0?0:$i;
257 my $xmm="%xmm".($j&1);
259 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
260 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
261 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
262 $code.=" movl ($dat,$YY,4),$TY#d\n";
263 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
264 $code.=" psllq \$8,%xmm1\n" if ($i==0);
265 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
266 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
267 $code.=" add $TY#b,$TX[0]#b\n";
268 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
269 $code.=" movz $TX[0]#b,$TX[0]#d\n";
270 $code.=" movl $TY#d,4*$j($XX[1])\n";
271 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
272 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
273 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
274 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
275 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
276 $code.=" lea 16($inp),$inp\n" if ($i==0);
277 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
279 RC4_loop(-1);
280 $code.=<<___;
281 jmp .Loop16_enter
282 .align 16
283 .Loop16:
286 for ($i=0;$i<16;$i++) {
287 $code.=".Loop16_enter:\n" if ($i==1);
288 RC4_loop($i);
289 push(@TX,shift(@TX)); # "rotate" registers
291 $code.=<<___;
292 mov $YY,$TX[1]
293 xor $YY,$YY # keyword to partial register
294 sub \$16,$len
295 mov $TX[1]#b,$YY#b
296 test \$-16,$len
297 jnz .Loop16
299 psllq \$8,%xmm1
300 pxor %xmm0,%xmm2
301 pxor %xmm1,%xmm2
302 movdqu %xmm2,($out,$inp)
303 lea 16($inp),$inp
305 cmp \$0,$len
306 jne .Lloop1
307 jmp .Lexit
309 .align 16
310 .Lloop1:
311 add $TX[0]#b,$YY#b
312 movl ($dat,$YY,4),$TY#d
313 movl $TX[0]#d,($dat,$YY,4)
314 movl $TY#d,($dat,$XX[0],4)
315 add $TY#b,$TX[0]#b
316 inc $XX[0]#b
317 movl ($dat,$TX[0],4),$TY#d
318 movl ($dat,$XX[0],4),$TX[0]#d
319 xorb ($inp),$TY#b
320 movb $TY#b,($out,$inp)
321 lea 1($inp),$inp
322 dec $len
323 jnz .Lloop1
324 jmp .Lexit
326 .align 16
327 .LRC4_CHAR:
328 add \$1,$XX[0]#b
329 movzb ($dat,$XX[0]),$TX[0]#d
330 test \$-8,$len
331 jz .Lcloop1
332 jmp .Lcloop8
333 .align 16
334 .Lcloop8:
335 mov ($inp),%r8d
336 mov 4($inp),%r9d
338 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
339 for ($i=0;$i<4;$i++) {
340 $code.=<<___;
341 add $TX[0]#b,$YY#b
342 lea 1($XX[0]),$XX[1]
343 movzb ($dat,$YY),$TY#d
344 movzb $XX[1]#b,$XX[1]#d
345 movzb ($dat,$XX[1]),$TX[1]#d
346 movb $TX[0]#b,($dat,$YY)
347 cmp $XX[1],$YY
348 movb $TY#b,($dat,$XX[0])
349 jne .Lcmov$i # Intel cmov is sloooow...
350 mov $TX[0],$TX[1]
351 .Lcmov$i:
352 add $TX[0]#b,$TY#b
353 xor ($dat,$TY),%r8b
354 ror \$8,%r8d
356 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
358 for ($i=4;$i<8;$i++) {
359 $code.=<<___;
360 add $TX[0]#b,$YY#b
361 lea 1($XX[0]),$XX[1]
362 movzb ($dat,$YY),$TY#d
363 movzb $XX[1]#b,$XX[1]#d
364 movzb ($dat,$XX[1]),$TX[1]#d
365 movb $TX[0]#b,($dat,$YY)
366 cmp $XX[1],$YY
367 movb $TY#b,($dat,$XX[0])
368 jne .Lcmov$i # Intel cmov is sloooow...
369 mov $TX[0],$TX[1]
370 .Lcmov$i:
371 add $TX[0]#b,$TY#b
372 xor ($dat,$TY),%r9b
373 ror \$8,%r9d
375 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
377 $code.=<<___;
378 lea -8($len),$len
379 mov %r8d,($out)
380 lea 8($inp),$inp
381 mov %r9d,4($out)
382 lea 8($out),$out
384 test \$-8,$len
385 jnz .Lcloop8
386 cmp \$0,$len
387 jne .Lcloop1
388 jmp .Lexit
390 $code.=<<___;
391 .align 16
392 .Lcloop1:
393 add $TX[0]#b,$YY#b
394 movzb $YY#b,$YY#d
395 movzb ($dat,$YY),$TY#d
396 movb $TX[0]#b,($dat,$YY)
397 movb $TY#b,($dat,$XX[0])
398 add $TX[0]#b,$TY#b
399 add \$1,$XX[0]#b
400 movzb $TY#b,$TY#d
401 movzb $XX[0]#b,$XX[0]#d
402 movzb ($dat,$TY),$TY#d
403 movzb ($dat,$XX[0]),$TX[0]#d
404 xorb ($inp),$TY#b
405 lea 1($inp),$inp
406 movb $TY#b,($out)
407 lea 1($out),$out
408 sub \$1,$len
409 jnz .Lcloop1
410 jmp .Lexit
412 .align 16
413 .Lexit:
414 sub \$1,$XX[0]#b
415 movl $XX[0]#d,-8($dat)
416 movl $YY#d,-4($dat)
418 mov (%rsp),%r13
419 mov 8(%rsp),%r12
420 mov 16(%rsp),%rbx
421 add \$24,%rsp
422 .Lepilogue:
424 .size RC4,.-RC4
428 $idx="%r8";
429 $ido="%r9";
431 $code.=<<___;
432 .globl RC4_set_key
433 .type RC4_set_key,\@function,3
434 .align 16
435 RC4_set_key:
436 lea 8($dat),$dat
437 lea ($inp,$len),$inp
438 neg $len
439 mov $len,%rcx
440 xor %eax,%eax
441 xor $ido,$ido
442 xor %r10,%r10
443 xor %r11,%r11
445 mov OPENSSL_ia32cap_P(%rip),$idx#d
446 bt \$IA32CAP_BIT0_INTELP4,$idx#d # RC4_CHAR?
447 jc .Lc1stloop
448 jmp .Lw1stloop
450 .align 16
451 .Lw1stloop:
452 mov %eax,($dat,%rax,4)
453 add \$1,%al
454 jnc .Lw1stloop
456 xor $ido,$ido
457 xor $idx,$idx
458 .align 16
459 .Lw2ndloop:
460 mov ($dat,$ido,4),%r10d
461 add ($inp,$len,1),$idx#b
462 add %r10b,$idx#b
463 add \$1,$len
464 mov ($dat,$idx,4),%r11d
465 cmovz %rcx,$len
466 mov %r10d,($dat,$idx,4)
467 mov %r11d,($dat,$ido,4)
468 add \$1,$ido#b
469 jnc .Lw2ndloop
470 jmp .Lexit_key
472 .align 16
473 .Lc1stloop:
474 mov %al,($dat,%rax)
475 add \$1,%al
476 jnc .Lc1stloop
478 xor $ido,$ido
479 xor $idx,$idx
480 .align 16
481 .Lc2ndloop:
482 mov ($dat,$ido),%r10b
483 add ($inp,$len),$idx#b
484 add %r10b,$idx#b
485 add \$1,$len
486 mov ($dat,$idx),%r11b
487 jnz .Lcnowrap
488 mov %rcx,$len
489 .Lcnowrap:
490 mov %r10b,($dat,$idx)
491 mov %r11b,($dat,$ido)
492 add \$1,$ido#b
493 jnc .Lc2ndloop
494 movl \$-1,256($dat)
496 .align 16
497 .Lexit_key:
498 xor %eax,%eax
499 mov %eax,-8($dat)
500 mov %eax,-4($dat)
502 .size RC4_set_key,.-RC4_set_key
504 .globl RC4_options
505 .type RC4_options,\@abi-omnipotent
506 .align 16
507 RC4_options:
508 lea .Lopts(%rip),%rax
509 mov OPENSSL_ia32cap_P(%rip),%edx
510 bt \$IA32CAP_BIT0_INTELP4,%edx
511 jc .L8xchar
512 bt \$IA32CAP_BIT0_INTEL,%edx
513 jnc .Ldone
514 add \$25,%rax
516 .L8xchar:
517 add \$12,%rax
518 .Ldone:
520 .align 64
521 .Lopts:
522 .asciz "rc4(8x,int)"
523 .asciz "rc4(8x,char)"
524 .asciz "rc4(16x,int)"
525 .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
526 .align 64
527 .size RC4_options,.-RC4_options
530 sub reg_part {
531 my ($reg,$conv)=@_;
532 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
533 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
534 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
535 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
536 return $reg;
539 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
540 $code =~ s/\`([^\`]*)\`/eval $1/gem;
542 print $code;
544 close STDOUT;