import libcrypto (LibreSSL 2.5.2)
[unleashed.git] / lib / libcrypto / modes / asm / ghash-x86.pl
blob83c727e07f951764e1fa6f818733f4ba9eb12f04
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # March, May, June 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that it
14 # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15 # code paths: vanilla x86 and vanilla MMX. Former will be executed on
16 # 486 and Pentium, latter on all others. MMX GHASH features so called
17 # "528B" variant of "4-bit" method utilizing additional 256+16 bytes
18 # of per-key storage [+512 bytes shared table]. Performance results
19 # are for streamed GHASH subroutine and are expressed in cycles per
20 # processed byte, less is better:
22 # gcc 2.95.3(*) MMX assembler x86 assembler
24 # Pentium 105/111(**) - 50
25 # PIII 68 /75 12.2 24
26 # P4 125/125 17.8 84(***)
27 # Opteron 66 /70 10.1 30
28 # Core2 54 /67 8.4 18
30 # (*) gcc 3.4.x was observed to generate few percent slower code,
31 # which is one of reasons why 2.95.3 results were chosen,
32 # another reason is lack of 3.4.x results for older CPUs;
33 # comparison with MMX results is not completely fair, because C
34 # results are for vanilla "256B" implementation, while
35 # assembler results are for "528B";-)
36 # (**) second number is result for code compiled with -fPIC flag,
37 # which is actually more relevant, because assembler code is
38 # position-independent;
39 # (***) see comment in non-MMX routine for further details;
41 # To summarize, it's >2-5 times faster than gcc-generated code. To
42 # anchor it to something else SHA1 assembler processes one byte in
43 # 11-13 cycles on contemporary x86 cores. As for choice of MMX in
44 # particular, see comment at the end of the file...
46 # May 2010
48 # Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
49 # The question is how close is it to theoretical limit? The pclmulqdq
50 # instruction latency appears to be 14 cycles and there can't be more
51 # than 2 of them executing at any given time. This means that single
52 # Karatsuba multiplication would take 28 cycles *plus* few cycles for
53 # pre- and post-processing. Then multiplication has to be followed by
54 # modulo-reduction. Given that aggregated reduction method [see
55 # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
56 # white paper by Intel] allows you to perform reduction only once in
57 # a while we can assume that asymptotic performance can be estimated
58 # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
59 # and Naggr is the aggregation factor.
61 # Before we proceed to this implementation let's have closer look at
62 # the best-performing code suggested by Intel in their white paper.
63 # By tracing inter-register dependencies Tmod is estimated as ~19
64 # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
65 # processed byte. As implied, this is quite optimistic estimate,
66 # because it does not account for Karatsuba pre- and post-processing,
67 # which for a single multiplication is ~5 cycles. Unfortunately Intel
68 # does not provide performance data for GHASH alone. But benchmarking
69 # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
70 # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
71 # the result accounts even for pre-computing of degrees of the hash
72 # key H, but its portion is negligible at 16KB buffer size.
74 # Moving on to the implementation in question. Tmod is estimated as
75 # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
76 # 2.16. How is it possible that measured performance is better than
77 # optimistic theoretical estimate? There is one thing Intel failed
78 # to recognize. By serializing GHASH with CTR in same subroutine
79 # former's performance is really limited to above (Tmul + Tmod/Naggr)
80 # equation. But if GHASH procedure is detached, the modulo-reduction
81 # can be interleaved with Naggr-1 multiplications at instruction level
82 # and under ideal conditions even disappear from the equation. So that
83 # optimistic theoretical estimate for this implementation is ...
84 # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
85 # at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
86 # where Tproc is time required for Karatsuba pre- and post-processing,
87 # is more realistic estimate. In this case it gives ... 1.91 cycles.
88 # Or in other words, depending on how well we can interleave reduction
89 # and one of the two multiplications the performance should be betwen
90 # 1.91 and 2.16. As already mentioned, this implementation processes
91 # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
92 # - in 2.02. x86_64 performance is better, because larger register
93 # bank allows to interleave reduction and multiplication better.
95 # Does it make sense to increase Naggr? To start with it's virtually
96 # impossible in 32-bit mode, because of limited register bank
97 # capacity. Otherwise improvement has to be weighed agiainst slower
98 # setup, as well as code size and complexity increase. As even
99 # optimistic estimate doesn't promise 30% performance improvement,
100 # there are currently no plans to increase Naggr.
102 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
103 # providing access to a Westmere-based system on behalf of Intel
104 # Open Source Technology Centre.
106 # January 2010
108 # Tweaked to optimize transitions between integer and FP operations
109 # on same XMM register, PCLMULQDQ subroutine was measured to process
110 # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
111 # The minor regression on Westmere is outweighed by ~15% improvement
112 # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
113 # similar manner resulted in almost 20% degradation on Sandy Bridge,
114 # where original 64-bit code processes one byte in 1.95 cycles.
116 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
117 push(@INC,"${dir}","${dir}../../perlasm");
118 require "x86asm.pl";
120 &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
122 $sse2=0;
123 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
125 ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
126 $inp = "edi";
127 $Htbl = "esi";
129 $unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
130 # than unrolled, which has to be weighted against
131 # 2.5x x86-specific code size reduction.
133 sub x86_loop {
134 my $off = shift;
135 my $rem = "eax";
137 &mov ($Zhh,&DWP(4,$Htbl,$Zll));
138 &mov ($Zhl,&DWP(0,$Htbl,$Zll));
139 &mov ($Zlh,&DWP(12,$Htbl,$Zll));
140 &mov ($Zll,&DWP(8,$Htbl,$Zll));
141 &xor ($rem,$rem); # avoid partial register stalls on PIII
143 # shrd practically kills P4, 2.5x deterioration, but P4 has
144 # MMX code-path to execute. shrd runs tad faster [than twice
145 # the shifts, move's and or's] on pre-MMX Pentium (as well as
146 # PIII and Core2), *but* minimizes code size, spares register
147 # and thus allows to fold the loop...
148 if (!$unroll) {
149 my $cnt = $inp;
150 &mov ($cnt,15);
151 &jmp (&label("x86_loop"));
152 &set_label("x86_loop",16);
153 for($i=1;$i<=2;$i++) {
154 &mov (&LB($rem),&LB($Zll));
155 &shrd ($Zll,$Zlh,4);
156 &and (&LB($rem),0xf);
157 &shrd ($Zlh,$Zhl,4);
158 &shrd ($Zhl,$Zhh,4);
159 &shr ($Zhh,4);
160 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
162 &mov (&LB($rem),&BP($off,"esp",$cnt));
163 if ($i&1) {
164 &and (&LB($rem),0xf0);
165 } else {
166 &shl (&LB($rem),4);
169 &xor ($Zll,&DWP(8,$Htbl,$rem));
170 &xor ($Zlh,&DWP(12,$Htbl,$rem));
171 &xor ($Zhl,&DWP(0,$Htbl,$rem));
172 &xor ($Zhh,&DWP(4,$Htbl,$rem));
174 if ($i&1) {
175 &dec ($cnt);
176 &js (&label("x86_break"));
177 } else {
178 &jmp (&label("x86_loop"));
181 &set_label("x86_break",16);
182 } else {
183 for($i=1;$i<32;$i++) {
184 &comment($i);
185 &mov (&LB($rem),&LB($Zll));
186 &shrd ($Zll,$Zlh,4);
187 &and (&LB($rem),0xf);
188 &shrd ($Zlh,$Zhl,4);
189 &shrd ($Zhl,$Zhh,4);
190 &shr ($Zhh,4);
191 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
193 if ($i&1) {
194 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
195 &and (&LB($rem),0xf0);
196 } else {
197 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
198 &shl (&LB($rem),4);
201 &xor ($Zll,&DWP(8,$Htbl,$rem));
202 &xor ($Zlh,&DWP(12,$Htbl,$rem));
203 &xor ($Zhl,&DWP(0,$Htbl,$rem));
204 &xor ($Zhh,&DWP(4,$Htbl,$rem));
207 &bswap ($Zll);
208 &bswap ($Zlh);
209 &bswap ($Zhl);
210 if (!$x86only) {
211 &bswap ($Zhh);
212 } else {
213 &mov ("eax",$Zhh);
214 &bswap ("eax");
215 &mov ($Zhh,"eax");
219 if ($unroll) {
220 &function_begin_B("_x86_gmult_4bit_inner");
221 &x86_loop(4);
222 &ret ();
223 &function_end_B("_x86_gmult_4bit_inner");
226 sub deposit_rem_4bit {
227 my $bias = shift;
229 &mov (&DWP($bias+0, "esp"),0x0000<<16);
230 &mov (&DWP($bias+4, "esp"),0x1C20<<16);
231 &mov (&DWP($bias+8, "esp"),0x3840<<16);
232 &mov (&DWP($bias+12,"esp"),0x2460<<16);
233 &mov (&DWP($bias+16,"esp"),0x7080<<16);
234 &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
235 &mov (&DWP($bias+24,"esp"),0x48C0<<16);
236 &mov (&DWP($bias+28,"esp"),0x54E0<<16);
237 &mov (&DWP($bias+32,"esp"),0xE100<<16);
238 &mov (&DWP($bias+36,"esp"),0xFD20<<16);
239 &mov (&DWP($bias+40,"esp"),0xD940<<16);
240 &mov (&DWP($bias+44,"esp"),0xC560<<16);
241 &mov (&DWP($bias+48,"esp"),0x9180<<16);
242 &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
243 &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
244 &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
247 $suffix = $x86only ? "" : "_x86";
249 &function_begin("gcm_gmult_4bit".$suffix);
250 &stack_push(16+4+1); # +1 for stack alignment
251 &mov ($inp,&wparam(0)); # load Xi
252 &mov ($Htbl,&wparam(1)); # load Htable
254 &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
255 &mov ($Zhl,&DWP(4,$inp));
256 &mov ($Zlh,&DWP(8,$inp));
257 &mov ($Zll,&DWP(12,$inp));
259 &deposit_rem_4bit(16);
261 &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
262 &mov (&DWP(4,"esp"),$Zhl);
263 &mov (&DWP(8,"esp"),$Zlh);
264 &mov (&DWP(12,"esp"),$Zll);
265 &shr ($Zll,20);
266 &and ($Zll,0xf0);
268 if ($unroll) {
269 &call ("_x86_gmult_4bit_inner");
270 } else {
271 &x86_loop(0);
272 &mov ($inp,&wparam(0));
275 &mov (&DWP(12,$inp),$Zll);
276 &mov (&DWP(8,$inp),$Zlh);
277 &mov (&DWP(4,$inp),$Zhl);
278 &mov (&DWP(0,$inp),$Zhh);
279 &stack_pop(16+4+1);
280 &function_end("gcm_gmult_4bit".$suffix);
282 &function_begin("gcm_ghash_4bit".$suffix);
283 &stack_push(16+4+1); # +1 for 64-bit alignment
284 &mov ($Zll,&wparam(0)); # load Xi
285 &mov ($Htbl,&wparam(1)); # load Htable
286 &mov ($inp,&wparam(2)); # load in
287 &mov ("ecx",&wparam(3)); # load len
288 &add ("ecx",$inp);
289 &mov (&wparam(3),"ecx");
291 &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
292 &mov ($Zhl,&DWP(4,$Zll));
293 &mov ($Zlh,&DWP(8,$Zll));
294 &mov ($Zll,&DWP(12,$Zll));
296 &deposit_rem_4bit(16);
298 &set_label("x86_outer_loop",16);
299 &xor ($Zll,&DWP(12,$inp)); # xor with input
300 &xor ($Zlh,&DWP(8,$inp));
301 &xor ($Zhl,&DWP(4,$inp));
302 &xor ($Zhh,&DWP(0,$inp));
303 &mov (&DWP(12,"esp"),$Zll); # dump it on stack
304 &mov (&DWP(8,"esp"),$Zlh);
305 &mov (&DWP(4,"esp"),$Zhl);
306 &mov (&DWP(0,"esp"),$Zhh);
308 &shr ($Zll,20);
309 &and ($Zll,0xf0);
311 if ($unroll) {
312 &call ("_x86_gmult_4bit_inner");
313 } else {
314 &x86_loop(0);
315 &mov ($inp,&wparam(2));
317 &lea ($inp,&DWP(16,$inp));
318 &cmp ($inp,&wparam(3));
319 &mov (&wparam(2),$inp) if (!$unroll);
320 &jb (&label("x86_outer_loop"));
322 &mov ($inp,&wparam(0)); # load Xi
323 &mov (&DWP(12,$inp),$Zll);
324 &mov (&DWP(8,$inp),$Zlh);
325 &mov (&DWP(4,$inp),$Zhl);
326 &mov (&DWP(0,$inp),$Zhh);
327 &stack_pop(16+4+1);
328 &function_end("gcm_ghash_4bit".$suffix);
330 if (!$x86only) {{{
332 &static_label("rem_4bit");
334 if (!$sse2) {{ # pure-MMX "May" version...
336 $S=12; # shift factor for rem_4bit
338 &function_begin_B("_mmx_gmult_4bit_inner");
339 # MMX version performs 3.5 times better on P4 (see comment in non-MMX
340 # routine for further details), 100% better on Opteron, ~70% better
341 # on Core2 and PIII... In other words effort is considered to be well
342 # spent... Since initial release the loop was unrolled in order to
343 # "liberate" register previously used as loop counter. Instead it's
344 # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
345 # The path involves move of Z.lo from MMX to integer register,
346 # effective address calculation and finally merge of value to Z.hi.
347 # Reference to rem_4bit is scheduled so late that I had to >>4
348 # rem_4bit elements. This resulted in 20-45% procent improvement
349 # on contemporary µ-archs.
351 my $cnt;
352 my $rem_4bit = "eax";
353 my @rem = ($Zhh,$Zll);
354 my $nhi = $Zhl;
355 my $nlo = $Zlh;
357 my ($Zlo,$Zhi) = ("mm0","mm1");
358 my $tmp = "mm2";
360 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
361 &mov ($nhi,$Zll);
362 &mov (&LB($nlo),&LB($nhi));
363 &shl (&LB($nlo),4);
364 &and ($nhi,0xf0);
365 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
366 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
367 &movd ($rem[0],$Zlo);
369 for ($cnt=28;$cnt>=-2;$cnt--) {
370 my $odd = $cnt&1;
371 my $nix = $odd ? $nlo : $nhi;
373 &shl (&LB($nlo),4) if ($odd);
374 &psrlq ($Zlo,4);
375 &movq ($tmp,$Zhi);
376 &psrlq ($Zhi,4);
377 &pxor ($Zlo,&QWP(8,$Htbl,$nix));
378 &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
379 &psllq ($tmp,60);
380 &and ($nhi,0xf0) if ($odd);
381 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
382 &and ($rem[0],0xf);
383 &pxor ($Zhi,&QWP(0,$Htbl,$nix));
384 &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
385 &movd ($rem[1],$Zlo);
386 &pxor ($Zlo,$tmp);
388 push (@rem,shift(@rem)); # "rotate" registers
391 &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
393 &psrlq ($Zlo,32); # lower part of Zlo is already there
394 &movd ($Zhl,$Zhi);
395 &psrlq ($Zhi,32);
396 &movd ($Zlh,$Zlo);
397 &movd ($Zhh,$Zhi);
398 &shl ($inp,4); # compensate for rem_4bit[i] being >>4
400 &bswap ($Zll);
401 &bswap ($Zhl);
402 &bswap ($Zlh);
403 &xor ($Zhh,$inp);
404 &bswap ($Zhh);
406 &ret ();
408 &function_end_B("_mmx_gmult_4bit_inner");
410 &function_begin("gcm_gmult_4bit_mmx");
411 &mov ($inp,&wparam(0)); # load Xi
412 &mov ($Htbl,&wparam(1)); # load Htable
414 &call (&label("pic_point"));
415 &set_label("pic_point");
416 &blindpop("eax");
417 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
419 &movz ($Zll,&BP(15,$inp));
421 &call ("_mmx_gmult_4bit_inner");
423 &mov ($inp,&wparam(0)); # load Xi
424 &emms ();
425 &mov (&DWP(12,$inp),$Zll);
426 &mov (&DWP(4,$inp),$Zhl);
427 &mov (&DWP(8,$inp),$Zlh);
428 &mov (&DWP(0,$inp),$Zhh);
429 &function_end("gcm_gmult_4bit_mmx");
431 # Streamed version performs 20% better on P4, 7% on Opteron,
432 # 10% on Core2 and PIII...
433 &function_begin("gcm_ghash_4bit_mmx");
434 &mov ($Zhh,&wparam(0)); # load Xi
435 &mov ($Htbl,&wparam(1)); # load Htable
436 &mov ($inp,&wparam(2)); # load in
437 &mov ($Zlh,&wparam(3)); # load len
439 &call (&label("pic_point"));
440 &set_label("pic_point");
441 &blindpop("eax");
442 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
444 &add ($Zlh,$inp);
445 &mov (&wparam(3),$Zlh); # len to point at the end of input
446 &stack_push(4+1); # +1 for stack alignment
448 &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
449 &mov ($Zhl,&DWP(4,$Zhh));
450 &mov ($Zlh,&DWP(8,$Zhh));
451 &mov ($Zhh,&DWP(0,$Zhh));
452 &jmp (&label("mmx_outer_loop"));
454 &set_label("mmx_outer_loop",16);
455 &xor ($Zll,&DWP(12,$inp));
456 &xor ($Zhl,&DWP(4,$inp));
457 &xor ($Zlh,&DWP(8,$inp));
458 &xor ($Zhh,&DWP(0,$inp));
459 &mov (&wparam(2),$inp);
460 &mov (&DWP(12,"esp"),$Zll);
461 &mov (&DWP(4,"esp"),$Zhl);
462 &mov (&DWP(8,"esp"),$Zlh);
463 &mov (&DWP(0,"esp"),$Zhh);
465 &mov ($inp,"esp");
466 &shr ($Zll,24);
468 &call ("_mmx_gmult_4bit_inner");
470 &mov ($inp,&wparam(2));
471 &lea ($inp,&DWP(16,$inp));
472 &cmp ($inp,&wparam(3));
473 &jb (&label("mmx_outer_loop"));
475 &mov ($inp,&wparam(0)); # load Xi
476 &emms ();
477 &mov (&DWP(12,$inp),$Zll);
478 &mov (&DWP(4,$inp),$Zhl);
479 &mov (&DWP(8,$inp),$Zlh);
480 &mov (&DWP(0,$inp),$Zhh);
482 &stack_pop(4+1);
483 &function_end("gcm_ghash_4bit_mmx");
485 }} else {{ # "June" MMX version...
486 # ... has slower "April" gcm_gmult_4bit_mmx with folded
487 # loop. This is done to conserve code size...
488 $S=16; # shift factor for rem_4bit
490 sub mmx_loop() {
491 # MMX version performs 2.8 times better on P4 (see comment in non-MMX
492 # routine for further details), 40% better on Opteron and Core2, 50%
493 # better on PIII... In other words effort is considered to be well
494 # spent...
495 my $inp = shift;
496 my $rem_4bit = shift;
497 my $cnt = $Zhh;
498 my $nhi = $Zhl;
499 my $nlo = $Zlh;
500 my $rem = $Zll;
502 my ($Zlo,$Zhi) = ("mm0","mm1");
503 my $tmp = "mm2";
505 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
506 &mov ($nhi,$Zll);
507 &mov (&LB($nlo),&LB($nhi));
508 &mov ($cnt,14);
509 &shl (&LB($nlo),4);
510 &and ($nhi,0xf0);
511 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
512 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
513 &movd ($rem,$Zlo);
514 &jmp (&label("mmx_loop"));
516 &set_label("mmx_loop",16);
517 &psrlq ($Zlo,4);
518 &and ($rem,0xf);
519 &movq ($tmp,$Zhi);
520 &psrlq ($Zhi,4);
521 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
522 &mov (&LB($nlo),&BP(0,$inp,$cnt));
523 &psllq ($tmp,60);
524 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
525 &dec ($cnt);
526 &movd ($rem,$Zlo);
527 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
528 &mov ($nhi,$nlo);
529 &pxor ($Zlo,$tmp);
530 &js (&label("mmx_break"));
532 &shl (&LB($nlo),4);
533 &and ($rem,0xf);
534 &psrlq ($Zlo,4);
535 &and ($nhi,0xf0);
536 &movq ($tmp,$Zhi);
537 &psrlq ($Zhi,4);
538 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
539 &psllq ($tmp,60);
540 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
541 &movd ($rem,$Zlo);
542 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
543 &pxor ($Zlo,$tmp);
544 &jmp (&label("mmx_loop"));
546 &set_label("mmx_break",16);
547 &shl (&LB($nlo),4);
548 &and ($rem,0xf);
549 &psrlq ($Zlo,4);
550 &and ($nhi,0xf0);
551 &movq ($tmp,$Zhi);
552 &psrlq ($Zhi,4);
553 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
554 &psllq ($tmp,60);
555 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
556 &movd ($rem,$Zlo);
557 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
558 &pxor ($Zlo,$tmp);
560 &psrlq ($Zlo,4);
561 &and ($rem,0xf);
562 &movq ($tmp,$Zhi);
563 &psrlq ($Zhi,4);
564 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
565 &psllq ($tmp,60);
566 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
567 &movd ($rem,$Zlo);
568 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
569 &pxor ($Zlo,$tmp);
571 &psrlq ($Zlo,32); # lower part of Zlo is already there
572 &movd ($Zhl,$Zhi);
573 &psrlq ($Zhi,32);
574 &movd ($Zlh,$Zlo);
575 &movd ($Zhh,$Zhi);
577 &bswap ($Zll);
578 &bswap ($Zhl);
579 &bswap ($Zlh);
580 &bswap ($Zhh);
583 &function_begin("gcm_gmult_4bit_mmx");
584 &mov ($inp,&wparam(0)); # load Xi
585 &mov ($Htbl,&wparam(1)); # load Htable
587 &call (&label("pic_point"));
588 &set_label("pic_point");
589 &blindpop("eax");
590 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
592 &movz ($Zll,&BP(15,$inp));
594 &mmx_loop($inp,"eax");
596 &emms ();
597 &mov (&DWP(12,$inp),$Zll);
598 &mov (&DWP(4,$inp),$Zhl);
599 &mov (&DWP(8,$inp),$Zlh);
600 &mov (&DWP(0,$inp),$Zhh);
601 &function_end("gcm_gmult_4bit_mmx");
603 ######################################################################
604 # Below subroutine is "528B" variant of "4-bit" GCM GHASH function
605 # (see gcm128.c for details). It provides further 20-40% performance
606 # improvement over above mentioned "May" version.
608 &static_label("rem_8bit");
610 &function_begin("gcm_ghash_4bit_mmx");
611 { my ($Zlo,$Zhi) = ("mm7","mm6");
612 my $rem_8bit = "esi";
613 my $Htbl = "ebx";
615 # parameter block
616 &mov ("eax",&wparam(0)); # Xi
617 &mov ("ebx",&wparam(1)); # Htable
618 &mov ("ecx",&wparam(2)); # inp
619 &mov ("edx",&wparam(3)); # len
620 &mov ("ebp","esp"); # original %esp
621 &call (&label("pic_point"));
622 &set_label ("pic_point");
623 &blindpop ($rem_8bit);
624 &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
626 &sub ("esp",512+16+16); # allocate stack frame...
627 &and ("esp",-64); # ...and align it
628 &sub ("esp",16); # place for (u8)(H[]<<4)
630 &add ("edx","ecx"); # pointer to the end of input
631 &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
632 &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
633 &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
635 { my @lo = ("mm0","mm1","mm2");
636 my @hi = ("mm3","mm4","mm5");
637 my @tmp = ("mm6","mm7");
638 my ($off1,$off2,$i) = (0,0,);
640 &add ($Htbl,128); # optimize for size
641 &lea ("edi",&DWP(16+128,"esp"));
642 &lea ("ebp",&DWP(16+256+128,"esp"));
644 # decompose Htable (low and high parts are kept separately),
645 # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
646 for ($i=0;$i<18;$i++) {
648 &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
649 &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
650 &psllq ($tmp[1],60) if ($i>1);
651 &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
652 &por ($lo[2],$tmp[1]) if ($i>1);
653 &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
654 &psrlq ($lo[1],4) if ($i>0 && $i<17);
655 &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
656 &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
657 &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
658 &psrlq ($hi[1],4) if ($i>0 && $i<17);
659 &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
660 &shl ("edx",4) if ($i<16);
661 &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
663 unshift (@lo,pop(@lo)); # "rotate" registers
664 unshift (@hi,pop(@hi));
665 unshift (@tmp,pop(@tmp));
666 $off1 += 8 if ($i>0);
667 $off2 += 8 if ($i>1);
671 &movq ($Zhi,&QWP(0,"eax"));
672 &mov ("ebx",&DWP(8,"eax"));
673 &mov ("edx",&DWP(12,"eax")); # load Xi
675 &set_label("outer",16);
676 { my $nlo = "eax";
677 my $dat = "edx";
678 my @nhi = ("edi","ebp");
679 my @rem = ("ebx","ecx");
680 my @red = ("mm0","mm1","mm2");
681 my $tmp = "mm3";
683 &xor ($dat,&DWP(12,"ecx")); # merge input data
684 &xor ("ebx",&DWP(8,"ecx"));
685 &pxor ($Zhi,&QWP(0,"ecx"));
686 &lea ("ecx",&DWP(16,"ecx")); # inp+=16
687 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
688 &mov (&DWP(528+8,"esp"),"ebx");
689 &movq (&QWP(528+0,"esp"),$Zhi);
690 &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
692 &xor ($nlo,$nlo);
693 &rol ($dat,8);
694 &mov (&LB($nlo),&LB($dat));
695 &mov ($nhi[1],$nlo);
696 &and (&LB($nlo),0x0f);
697 &shr ($nhi[1],4);
698 &pxor ($red[0],$red[0]);
699 &rol ($dat,8); # next byte
700 &pxor ($red[1],$red[1]);
701 &pxor ($red[2],$red[2]);
703 # Just like in "May" verson modulo-schedule for critical path in
704 # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
705 # is scheduled so late that rem_8bit[] has to be shifted *right*
706 # by 16, which is why last argument to pinsrw is 2, which
707 # corresponds to <<32=<<48>>16...
708 for ($j=11,$i=0;$i<15;$i++) {
710 if ($i>0) {
711 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
712 &rol ($dat,8); # next byte
713 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
715 &pxor ($Zlo,$tmp);
716 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
717 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
718 } else {
719 &movq ($Zlo,&QWP(16,"esp",$nlo,8));
720 &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
723 &mov (&LB($nlo),&LB($dat));
724 &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
726 &movd ($rem[0],$Zlo);
727 &movz ($rem[1],&LB($rem[1])) if ($i>0);
728 &psrlq ($Zlo,8); # Z>>=8
730 &movq ($tmp,$Zhi);
731 &mov ($nhi[0],$nlo);
732 &psrlq ($Zhi,8);
734 &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
735 &and (&LB($nlo),0x0f);
736 &psllq ($tmp,56);
738 &pxor ($Zhi,$red[1]) if ($i>1);
739 &shr ($nhi[0],4);
740 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
742 unshift (@red,pop(@red)); # "rotate" registers
743 unshift (@rem,pop(@rem));
744 unshift (@nhi,pop(@nhi));
747 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
748 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
749 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
751 &pxor ($Zlo,$tmp);
752 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
753 &movz ($rem[1],&LB($rem[1]));
755 &pxor ($red[2],$red[2]); # clear 2nd word
756 &psllq ($red[1],4);
758 &movd ($rem[0],$Zlo);
759 &psrlq ($Zlo,4); # Z>>=4
761 &movq ($tmp,$Zhi);
762 &psrlq ($Zhi,4);
763 &shl ($rem[0],4); # rem<<4
765 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
766 &psllq ($tmp,60);
767 &movz ($rem[0],&LB($rem[0]));
769 &pxor ($Zlo,$tmp);
770 &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
772 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
773 &pxor ($Zhi,$red[1]);
775 &movd ($dat,$Zlo);
776 &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
778 &psllq ($red[0],12); # correct by <<16>>4
779 &pxor ($Zhi,$red[0]);
780 &psrlq ($Zlo,32);
781 &pxor ($Zhi,$red[2]);
783 &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
784 &movd ("ebx",$Zlo);
785 &movq ($tmp,$Zhi); # 01234567
786 &psllw ($Zhi,8); # 1.3.5.7.
787 &psrlw ($tmp,8); # .0.2.4.6
788 &por ($Zhi,$tmp); # 10325476
789 &bswap ($dat);
790 &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
791 &bswap ("ebx");
793 &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
794 &jne (&label("outer"));
797 &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
798 &mov (&DWP(12,"eax"),"edx");
799 &mov (&DWP(8,"eax"),"ebx");
800 &movq (&QWP(0,"eax"),$Zhi);
802 &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
803 &emms ();
805 &function_end("gcm_ghash_4bit_mmx");
808 if ($sse2) {{
809 ######################################################################
810 # PCLMULQDQ version.
812 $Xip="eax";
813 $Htbl="edx";
814 $const="ecx";
815 $inp="esi";
816 $len="ebx";
818 ($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
819 ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
820 ($Xn,$Xhn)=("xmm6","xmm7");
822 &static_label("bswap");
824 sub clmul64x64_T2 { # minimal "register" pressure
825 my ($Xhi,$Xi,$Hkey)=@_;
827 &movdqa ($Xhi,$Xi); #
828 &pshufd ($T1,$Xi,0b01001110);
829 &pshufd ($T2,$Hkey,0b01001110);
830 &pxor ($T1,$Xi); #
831 &pxor ($T2,$Hkey);
833 &pclmulqdq ($Xi,$Hkey,0x00); #######
834 &pclmulqdq ($Xhi,$Hkey,0x11); #######
835 &pclmulqdq ($T1,$T2,0x00); #######
836 &xorps ($T1,$Xi); #
837 &xorps ($T1,$Xhi); #
839 &movdqa ($T2,$T1); #
840 &psrldq ($T1,8);
841 &pslldq ($T2,8); #
842 &pxor ($Xhi,$T1);
843 &pxor ($Xi,$T2); #
846 sub clmul64x64_T3 {
847 # Even though this subroutine offers visually better ILP, it
848 # was empirically found to be a tad slower than above version.
849 # At least in gcm_ghash_clmul context. But it's just as well,
850 # because loop modulo-scheduling is possible only thanks to
851 # minimized "register" pressure...
852 my ($Xhi,$Xi,$Hkey)=@_;
854 &movdqa ($T1,$Xi); #
855 &movdqa ($Xhi,$Xi);
856 &pclmulqdq ($Xi,$Hkey,0x00); #######
857 &pclmulqdq ($Xhi,$Hkey,0x11); #######
858 &pshufd ($T2,$T1,0b01001110); #
859 &pshufd ($T3,$Hkey,0b01001110);
860 &pxor ($T2,$T1); #
861 &pxor ($T3,$Hkey);
862 &pclmulqdq ($T2,$T3,0x00); #######
863 &pxor ($T2,$Xi); #
864 &pxor ($T2,$Xhi); #
866 &movdqa ($T3,$T2); #
867 &psrldq ($T2,8);
868 &pslldq ($T3,8); #
869 &pxor ($Xhi,$T2);
870 &pxor ($Xi,$T3); #
873 if (1) { # Algorithm 9 with <<1 twist.
874 # Reduction is shorter and uses only two
875 # temporary registers, which makes it better
876 # candidate for interleaving with 64x64
877 # multiplication. Pre-modulo-scheduled loop
878 # was found to be ~20% faster than Algorithm 5
879 # below. Algorithm 9 was therefore chosen for
880 # further optimization...
882 sub reduction_alg9 { # 17/13 times faster than Intel version
883 my ($Xhi,$Xi) = @_;
885 # 1st phase
886 &movdqa ($T1,$Xi); #
887 &psllq ($Xi,1);
888 &pxor ($Xi,$T1); #
889 &psllq ($Xi,5); #
890 &pxor ($Xi,$T1); #
891 &psllq ($Xi,57); #
892 &movdqa ($T2,$Xi); #
893 &pslldq ($Xi,8);
894 &psrldq ($T2,8); #
895 &pxor ($Xi,$T1);
896 &pxor ($Xhi,$T2); #
898 # 2nd phase
899 &movdqa ($T2,$Xi);
900 &psrlq ($Xi,5);
901 &pxor ($Xi,$T2); #
902 &psrlq ($Xi,1); #
903 &pxor ($Xi,$T2); #
904 &pxor ($T2,$Xhi);
905 &psrlq ($Xi,1); #
906 &pxor ($Xi,$T2); #
909 &function_begin_B("gcm_init_clmul");
910 &mov ($Htbl,&wparam(0));
911 &mov ($Xip,&wparam(1));
913 &call (&label("pic"));
914 &set_label("pic");
915 &blindpop ($const);
916 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
918 &movdqu ($Hkey,&QWP(0,$Xip));
919 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
921 # <<1 twist
922 &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
923 &movdqa ($T1,$Hkey);
924 &psllq ($Hkey,1);
925 &pxor ($T3,$T3); #
926 &psrlq ($T1,63);
927 &pcmpgtd ($T3,$T2); # broadcast carry bit
928 &pslldq ($T1,8);
929 &por ($Hkey,$T1); # H<<=1
931 # magic reduction
932 &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
933 &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
935 # calculate H^2
936 &movdqa ($Xi,$Hkey);
937 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
938 &reduction_alg9 ($Xhi,$Xi);
940 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
941 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
943 &ret ();
944 &function_end_B("gcm_init_clmul");
946 &function_begin_B("gcm_gmult_clmul");
947 &mov ($Xip,&wparam(0));
948 &mov ($Htbl,&wparam(1));
950 &call (&label("pic"));
951 &set_label("pic");
952 &blindpop ($const);
953 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
955 &movdqu ($Xi,&QWP(0,$Xip));
956 &movdqa ($T3,&QWP(0,$const));
957 &movups ($Hkey,&QWP(0,$Htbl));
958 &pshufb ($Xi,$T3);
960 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
961 &reduction_alg9 ($Xhi,$Xi);
963 &pshufb ($Xi,$T3);
964 &movdqu (&QWP(0,$Xip),$Xi);
966 &ret ();
967 &function_end_B("gcm_gmult_clmul");
969 &function_begin("gcm_ghash_clmul");
970 &mov ($Xip,&wparam(0));
971 &mov ($Htbl,&wparam(1));
972 &mov ($inp,&wparam(2));
973 &mov ($len,&wparam(3));
975 &call (&label("pic"));
976 &set_label("pic");
977 &blindpop ($const);
978 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
980 &movdqu ($Xi,&QWP(0,$Xip));
981 &movdqa ($T3,&QWP(0,$const));
982 &movdqu ($Hkey,&QWP(0,$Htbl));
983 &pshufb ($Xi,$T3);
985 &sub ($len,0x10);
986 &jz (&label("odd_tail"));
988 #######
989 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
990 # [(H*Ii+1) + (H*Xi+1)] mod P =
991 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
993 &movdqu ($T1,&QWP(0,$inp)); # Ii
994 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
995 &pshufb ($T1,$T3);
996 &pshufb ($Xn,$T3);
997 &pxor ($Xi,$T1); # Ii+Xi
999 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
1000 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1002 &lea ($inp,&DWP(32,$inp)); # i+=2
1003 &sub ($len,0x20);
1004 &jbe (&label("even_tail"));
1006 &set_label("mod_loop");
1007 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1008 &movdqu ($T1,&QWP(0,$inp)); # Ii
1009 &movups ($Hkey,&QWP(0,$Htbl)); # load H
1011 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1012 &pxor ($Xhi,$Xhn);
1014 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1015 &pshufb ($T1,$T3);
1016 &pshufb ($Xn,$T3);
1018 &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
1019 &movdqa ($Xhn,$Xn);
1020 &pxor ($Xhi,$T1); # "Ii+Xi", consume early
1022 &movdqa ($T1,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase
1023 &psllq ($Xi,1);
1024 &pxor ($Xi,$T1); #
1025 &psllq ($Xi,5); #
1026 &pxor ($Xi,$T1); #
1027 &pclmulqdq ($Xn,$Hkey,0x00); #######
1028 &psllq ($Xi,57); #
1029 &movdqa ($T2,$Xi); #
1030 &pslldq ($Xi,8);
1031 &psrldq ($T2,8); #
1032 &pxor ($Xi,$T1);
1033 &pshufd ($T1,$T3,0b01001110);
1034 &pxor ($Xhi,$T2); #
1035 &pxor ($T1,$T3);
1036 &pshufd ($T3,$Hkey,0b01001110);
1037 &pxor ($T3,$Hkey); #
1039 &pclmulqdq ($Xhn,$Hkey,0x11); #######
1040 &movdqa ($T2,$Xi); # 2nd phase
1041 &psrlq ($Xi,5);
1042 &pxor ($Xi,$T2); #
1043 &psrlq ($Xi,1); #
1044 &pxor ($Xi,$T2); #
1045 &pxor ($T2,$Xhi);
1046 &psrlq ($Xi,1); #
1047 &pxor ($Xi,$T2); #
1049 &pclmulqdq ($T1,$T3,0x00); #######
1050 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1051 &xorps ($T1,$Xn); #
1052 &xorps ($T1,$Xhn); #
1054 &movdqa ($T3,$T1); #
1055 &psrldq ($T1,8);
1056 &pslldq ($T3,8); #
1057 &pxor ($Xhn,$T1);
1058 &pxor ($Xn,$T3); #
1059 &movdqa ($T3,&QWP(0,$const));
1061 &lea ($inp,&DWP(32,$inp));
1062 &sub ($len,0x20);
1063 &ja (&label("mod_loop"));
1065 &set_label("even_tail");
1066 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1068 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1069 &pxor ($Xhi,$Xhn);
1071 &reduction_alg9 ($Xhi,$Xi);
1073 &test ($len,$len);
1074 &jnz (&label("done"));
1076 &movups ($Hkey,&QWP(0,$Htbl)); # load H
1077 &set_label("odd_tail");
1078 &movdqu ($T1,&QWP(0,$inp)); # Ii
1079 &pshufb ($T1,$T3);
1080 &pxor ($Xi,$T1); # Ii+Xi
1082 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1083 &reduction_alg9 ($Xhi,$Xi);
1085 &set_label("done");
1086 &pshufb ($Xi,$T3);
1087 &movdqu (&QWP(0,$Xip),$Xi);
1088 &function_end("gcm_ghash_clmul");
1090 } else { # Algorith 5. Kept for reference purposes.
1092 sub reduction_alg5 { # 19/16 times faster than Intel version
1093 my ($Xhi,$Xi)=@_;
1095 # <<1
1096 &movdqa ($T1,$Xi); #
1097 &movdqa ($T2,$Xhi);
1098 &pslld ($Xi,1);
1099 &pslld ($Xhi,1); #
1100 &psrld ($T1,31);
1101 &psrld ($T2,31); #
1102 &movdqa ($T3,$T1);
1103 &pslldq ($T1,4);
1104 &psrldq ($T3,12); #
1105 &pslldq ($T2,4);
1106 &por ($Xhi,$T3); #
1107 &por ($Xi,$T1);
1108 &por ($Xhi,$T2); #
1110 # 1st phase
1111 &movdqa ($T1,$Xi);
1112 &movdqa ($T2,$Xi);
1113 &movdqa ($T3,$Xi); #
1114 &pslld ($T1,31);
1115 &pslld ($T2,30);
1116 &pslld ($Xi,25); #
1117 &pxor ($T1,$T2);
1118 &pxor ($T1,$Xi); #
1119 &movdqa ($T2,$T1); #
1120 &pslldq ($T1,12);
1121 &psrldq ($T2,4); #
1122 &pxor ($T3,$T1);
1124 # 2nd phase
1125 &pxor ($Xhi,$T3); #
1126 &movdqa ($Xi,$T3);
1127 &movdqa ($T1,$T3);
1128 &psrld ($Xi,1); #
1129 &psrld ($T1,2);
1130 &psrld ($T3,7); #
1131 &pxor ($Xi,$T1);
1132 &pxor ($Xhi,$T2);
1133 &pxor ($Xi,$T3); #
1134 &pxor ($Xi,$Xhi); #
1137 &function_begin_B("gcm_init_clmul");
1138 &mov ($Htbl,&wparam(0));
1139 &mov ($Xip,&wparam(1));
1141 &call (&label("pic"));
1142 &set_label("pic");
1143 &blindpop ($const);
1144 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1146 &movdqu ($Hkey,&QWP(0,$Xip));
1147 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
1149 # calculate H^2
1150 &movdqa ($Xi,$Hkey);
1151 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1152 &reduction_alg5 ($Xhi,$Xi);
1154 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
1155 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
1157 &ret ();
1158 &function_end_B("gcm_init_clmul");
1160 &function_begin_B("gcm_gmult_clmul");
1161 &mov ($Xip,&wparam(0));
1162 &mov ($Htbl,&wparam(1));
1164 &call (&label("pic"));
1165 &set_label("pic");
1166 &blindpop ($const);
1167 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1169 &movdqu ($Xi,&QWP(0,$Xip));
1170 &movdqa ($Xn,&QWP(0,$const));
1171 &movdqu ($Hkey,&QWP(0,$Htbl));
1172 &pshufb ($Xi,$Xn);
1174 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1175 &reduction_alg5 ($Xhi,$Xi);
1177 &pshufb ($Xi,$Xn);
1178 &movdqu (&QWP(0,$Xip),$Xi);
1180 &ret ();
1181 &function_end_B("gcm_gmult_clmul");
1183 &function_begin("gcm_ghash_clmul");
1184 &mov ($Xip,&wparam(0));
1185 &mov ($Htbl,&wparam(1));
1186 &mov ($inp,&wparam(2));
1187 &mov ($len,&wparam(3));
1189 &call (&label("pic"));
1190 &set_label("pic");
1191 &blindpop ($const);
1192 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1194 &movdqu ($Xi,&QWP(0,$Xip));
1195 &movdqa ($T3,&QWP(0,$const));
1196 &movdqu ($Hkey,&QWP(0,$Htbl));
1197 &pshufb ($Xi,$T3);
1199 &sub ($len,0x10);
1200 &jz (&label("odd_tail"));
1202 #######
1203 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1204 # [(H*Ii+1) + (H*Xi+1)] mod P =
1205 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1207 &movdqu ($T1,&QWP(0,$inp)); # Ii
1208 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1209 &pshufb ($T1,$T3);
1210 &pshufb ($Xn,$T3);
1211 &pxor ($Xi,$T1); # Ii+Xi
1213 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1214 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1216 &sub ($len,0x20);
1217 &lea ($inp,&DWP(32,$inp)); # i+=2
1218 &jbe (&label("even_tail"));
1220 &set_label("mod_loop");
1221 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1222 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1224 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1225 &pxor ($Xhi,$Xhn);
1227 &reduction_alg5 ($Xhi,$Xi);
1229 #######
1230 &movdqa ($T3,&QWP(0,$const));
1231 &movdqu ($T1,&QWP(0,$inp)); # Ii
1232 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1233 &pshufb ($T1,$T3);
1234 &pshufb ($Xn,$T3);
1235 &pxor ($Xi,$T1); # Ii+Xi
1237 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1238 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1240 &sub ($len,0x20);
1241 &lea ($inp,&DWP(32,$inp));
1242 &ja (&label("mod_loop"));
1244 &set_label("even_tail");
1245 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1247 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1248 &pxor ($Xhi,$Xhn);
1250 &reduction_alg5 ($Xhi,$Xi);
1252 &movdqa ($T3,&QWP(0,$const));
1253 &test ($len,$len);
1254 &jnz (&label("done"));
1256 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1257 &set_label("odd_tail");
1258 &movdqu ($T1,&QWP(0,$inp)); # Ii
1259 &pshufb ($T1,$T3);
1260 &pxor ($Xi,$T1); # Ii+Xi
1262 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1263 &reduction_alg5 ($Xhi,$Xi);
1265 &movdqa ($T3,&QWP(0,$const));
1266 &set_label("done");
1267 &pshufb ($Xi,$T3);
1268 &movdqu (&QWP(0,$Xip),$Xi);
1269 &function_end("gcm_ghash_clmul");
1273 &set_label("bswap",64);
1274 &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1275 &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
1276 }} # $sse2
1278 &set_label("rem_4bit",64);
1279 &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1280 &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1281 &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1282 &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1283 &set_label("rem_8bit",64);
1284 &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1285 &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1286 &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1287 &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1288 &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1289 &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1290 &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1291 &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1292 &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1293 &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1294 &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1295 &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1296 &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1297 &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1298 &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1299 &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1300 &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1301 &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1302 &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1303 &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1304 &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1305 &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1306 &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1307 &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1308 &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1309 &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1310 &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1311 &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1312 &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1313 &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1314 &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1315 &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1316 }}} # !$x86only
1318 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1319 &asm_finish();
1321 # A question was risen about choice of vanilla MMX. Or rather why wasn't
1322 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1323 # CPUs such as PIII, "4-bit" MMX version was observed to provide better
1324 # performance than *corresponding* SSE2 one even on contemporary CPUs.
1325 # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1326 # implementation featuring full range of lookup-table sizes, but with
1327 # per-invocation lookup table setup. Latter means that table size is
1328 # chosen depending on how much data is to be hashed in every given call,
1329 # more data - larger table. Best reported result for Core2 is ~4 cycles
1330 # per processed byte out of 64KB block. This number accounts even for
1331 # 64KB table setup overhead. As discussed in gcm128.c we choose to be
1332 # more conservative in respect to lookup table sizes, but how do the
1333 # results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1334 # on same platform. As also discussed in gcm128.c, next in line "8-bit
1335 # Shoup's" or "4KB" method should deliver twice the performance of
1336 # "256B" one, in other words not worse than ~6 cycles per byte. It
1337 # should be also be noted that in SSE2 case improvement can be "super-
1338 # linear," i.e. more than twice, mostly because >>8 maps to single
1339 # instruction on SSE2 register. This is unlike "4-bit" case when >>4
1340 # maps to same amount of instructions in both MMX and SSE2 cases.
1341 # Bottom line is that switch to SSE2 is considered to be justifiable
1342 # only in case we choose to implement "8-bit" method...