import libcrypto (LibreSSL 2.5.2)
[unleashed.git] / lib / libcrypto / bn / asm / ppc64-mont.pl
bloba14e769ad055d9edf2a2fa9ba3c622acaf72c975
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # December 2007
12 # The reason for undertaken effort is basically following. Even though
13 # Power 6 CPU operates at incredible 4.7GHz clock frequency, its PKI
14 # performance was observed to be less than impressive, essentially as
15 # fast as 1.8GHz PPC970, or 2.6 times(!) slower than one would hope.
16 # Well, it's not surprising that IBM had to make some sacrifices to
17 # boost the clock frequency that much, but no overall improvement?
18 # Having observed how much difference did switching to FPU make on
19 # UltraSPARC, playing same stunt on Power 6 appeared appropriate...
20 # Unfortunately the resulting performance improvement is not as
21 # impressive, ~30%, and in absolute terms is still very far from what
22 # one would expect from 4.7GHz CPU. There is a chance that I'm doing
23 # something wrong, but in the lack of assembler level micro-profiling
24 # data or at least decent platform guide I can't tell... Or better
25 # results might be achieved with VMX... Anyway, this module provides
26 # *worse* performance on other PowerPC implementations, ~40-15% slower
27 # on PPC970 depending on key length and ~40% slower on Power 5 for all
28 # key lengths. As it's obviously inappropriate as "best all-round"
29 # alternative, it has to be complemented with run-time CPU family
30 # detection. Oh! It should also be noted that unlike other PowerPC
31 # implementation IALU ppc-mont.pl module performs *suboptimaly* on
32 # >=1024-bit key lengths on Power 6. It should also be noted that
33 # *everything* said so far applies to 64-bit builds! As far as 32-bit
34 # application executed on 64-bit CPU goes, this module is likely to
35 # become preferred choice, because it's easy to adapt it for such
36 # case and *is* faster than 32-bit ppc-mont.pl on *all* processors.
38 # February 2008
40 # Micro-profiling assisted optimization results in ~15% improvement
41 # over original ppc64-mont.pl version, or overall ~50% improvement
42 # over ppc.pl module on Power 6. If compared to ppc-mont.pl on same
43 # Power 6 CPU, this module is 5-150% faster depending on key length,
44 # [hereafter] more for longer keys. But if compared to ppc-mont.pl
45 # on 1.8GHz PPC970, it's only 5-55% faster. Still far from impressive
46 # in absolute terms, but it's apparently the way Power 6 is...
48 # December 2009
50 # Adapted for 32-bit build this module delivers 25-120%, yes, more
51 # than *twice* for longer keys, performance improvement over 32-bit
52 # ppc-mont.pl on 1.8GHz PPC970. However! This implementation utilizes
53 # even 64-bit integer operations and the trouble is that most PPC
54 # operating systems don't preserve upper halves of general purpose
55 # registers upon 32-bit signal delivery. They do preserve them upon
56 # context switch, but not signalling:-( This means that asynchronous
57 # signals have to be blocked upon entry to this subroutine. Signal
58 # masking (and of course complementary unmasking) has quite an impact
59 # on performance, naturally larger for shorter keys. It's so severe
60 # that 512-bit key performance can be as low as 1/3 of expected one.
61 # This is why this routine can be engaged for longer key operations
62 # only on these OSes, see crypto/ppccap.c for further details. MacOS X
63 # is an exception from this and doesn't require signal masking, and
64 # that's where above improvement coefficients were collected. For
65 # others alternative would be to break dependence on upper halves of
66 # GPRs by sticking to 32-bit integer operations...
68 $flavour = shift;
70 if ($flavour =~ /32/) {
71 $SIZE_T=4;
72 $RZONE= 224;
73 $fname= "bn_mul_mont_fpu64";
75 $STUX= "stwux"; # store indexed and update
76 $PUSH= "stw";
77 $POP= "lwz";
78 } elsif ($flavour =~ /64/) {
79 $SIZE_T=8;
80 $RZONE= 288;
81 $fname= "bn_mul_mont_fpu64";
83 # same as above, but 64-bit mnemonics...
84 $STUX= "stdux"; # store indexed and update
85 $PUSH= "std";
86 $POP= "ld";
87 } else { die "nonsense $flavour"; }
89 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
90 ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
91 ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
92 die "can't locate ppc-xlate.pl";
94 open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!";
96 $FRAME=64; # padded frame header
97 $TRANSFER=16*8;
99 $carry="r0";
100 $sp="r1";
101 $toc="r2";
102 $rp="r3"; $ovf="r3";
103 $ap="r4";
104 $bp="r5";
105 $np="r6";
106 $n0="r7";
107 $num="r8";
108 $rp="r9"; # $rp is reassigned
109 $tp="r10";
110 $j="r11";
111 $i="r12";
112 # non-volatile registers
113 $nap_d="r22"; # interleaved ap and np in double format
114 $a0="r23"; # ap[0]
115 $t0="r24"; # temporary registers
116 $t1="r25";
117 $t2="r26";
118 $t3="r27";
119 $t4="r28";
120 $t5="r29";
121 $t6="r30";
122 $t7="r31";
124 # PPC offers enough register bank capacity to unroll inner loops twice
126 # ..A3A2A1A0
127 # dcba
128 # -----------
129 # A0a
130 # A0b
131 # A0c
132 # A0d
133 # A1a
134 # A1b
135 # A1c
136 # A1d
137 # A2a
138 # A2b
139 # A2c
140 # A2d
141 # A3a
142 # A3b
143 # A3c
144 # A3d
145 # ..a
146 # ..b
148 $ba="f0"; $bb="f1"; $bc="f2"; $bd="f3";
149 $na="f4"; $nb="f5"; $nc="f6"; $nd="f7";
150 $dota="f8"; $dotb="f9";
151 $A0="f10"; $A1="f11"; $A2="f12"; $A3="f13";
152 $N0="f20"; $N1="f21"; $N2="f22"; $N3="f23";
153 $T0a="f24"; $T0b="f25";
154 $T1a="f26"; $T1b="f27";
155 $T2a="f28"; $T2b="f29";
156 $T3a="f30"; $T3b="f31";
158 # sp----------->+-------------------------------+
159 # | saved sp |
160 # +-------------------------------+
161 # . .
162 # +64 +-------------------------------+
163 # | 16 gpr<->fpr transfer zone |
164 # . .
165 # . .
166 # +16*8 +-------------------------------+
167 # | __int64 tmp[-1] |
168 # +-------------------------------+
169 # | __int64 tmp[num] |
170 # . .
171 # . .
172 # . .
173 # +(num+1)*8 +-------------------------------+
174 # | padding to 64 byte boundary |
175 # . .
176 # +X +-------------------------------+
177 # | double nap_d[4*num] |
178 # . .
179 # . .
180 # . .
181 # +-------------------------------+
182 # . .
183 # -12*size_t +-------------------------------+
184 # | 10 saved gpr, r22-r31 |
185 # . .
186 # . .
187 # -12*8 +-------------------------------+
188 # | 12 saved fpr, f20-f31 |
189 # . .
190 # . .
191 # +-------------------------------+
193 $code=<<___;
194 .machine "any"
195 .text
197 .globl .$fname
198 .align 5
199 .$fname:
200 cmpwi $num,`3*8/$SIZE_T`
201 mr $rp,r3 ; $rp is reassigned
202 li r3,0 ; possible "not handled" return code
203 bltlr-
204 andi. r0,$num,`16/$SIZE_T-1` ; $num has to be "even"
205 bnelr-
207 slwi $num,$num,`log($SIZE_T)/log(2)` ; num*=sizeof(BN_LONG)
208 li $i,-4096
209 slwi $tp,$num,2 ; place for {an}p_{lh}[num], i.e. 4*num
210 add $tp,$tp,$num ; place for tp[num+1]
211 addi $tp,$tp,`$FRAME+$TRANSFER+8+64+$RZONE`
212 subf $tp,$tp,$sp ; $sp-$tp
213 and $tp,$tp,$i ; minimize TLB usage
214 subf $tp,$sp,$tp ; $tp-$sp
215 mr $i,$sp
216 $STUX $sp,$sp,$tp ; alloca
218 $PUSH r22,`-12*8-10*$SIZE_T`($i)
219 $PUSH r23,`-12*8-9*$SIZE_T`($i)
220 $PUSH r24,`-12*8-8*$SIZE_T`($i)
221 $PUSH r25,`-12*8-7*$SIZE_T`($i)
222 $PUSH r26,`-12*8-6*$SIZE_T`($i)
223 $PUSH r27,`-12*8-5*$SIZE_T`($i)
224 $PUSH r28,`-12*8-4*$SIZE_T`($i)
225 $PUSH r29,`-12*8-3*$SIZE_T`($i)
226 $PUSH r30,`-12*8-2*$SIZE_T`($i)
227 $PUSH r31,`-12*8-1*$SIZE_T`($i)
228 stfd f20,`-12*8`($i)
229 stfd f21,`-11*8`($i)
230 stfd f22,`-10*8`($i)
231 stfd f23,`-9*8`($i)
232 stfd f24,`-8*8`($i)
233 stfd f25,`-7*8`($i)
234 stfd f26,`-6*8`($i)
235 stfd f27,`-5*8`($i)
236 stfd f28,`-4*8`($i)
237 stfd f29,`-3*8`($i)
238 stfd f30,`-2*8`($i)
239 stfd f31,`-1*8`($i)
241 $code.=<<___ if ($SIZE_T==8);
242 ld $a0,0($ap) ; pull ap[0] value
243 ld $n0,0($n0) ; pull n0[0] value
244 ld $t3,0($bp) ; bp[0]
246 $code.=<<___ if ($SIZE_T==4);
247 mr $t1,$n0
248 lwz $a0,0($ap) ; pull ap[0,1] value
249 lwz $t0,4($ap)
250 lwz $n0,0($t1) ; pull n0[0,1] value
251 lwz $t1,4($t1)
252 lwz $t3,0($bp) ; bp[0,1]
253 lwz $t2,4($bp)
254 insrdi $a0,$t0,32,0
255 insrdi $n0,$t1,32,0
256 insrdi $t3,$t2,32,0
258 $code.=<<___;
259 addi $tp,$sp,`$FRAME+$TRANSFER+8+64`
260 li $i,-64
261 add $nap_d,$tp,$num
262 and $nap_d,$nap_d,$i ; align to 64 bytes
264 mulld $t7,$a0,$t3 ; ap[0]*bp[0]
265 ; nap_d is off by 1, because it's used with stfdu/lfdu
266 addi $nap_d,$nap_d,-8
267 srwi $j,$num,`3+1` ; counter register, num/2
268 mulld $t7,$t7,$n0 ; tp[0]*n0
269 addi $j,$j,-1
270 addi $tp,$sp,`$FRAME+$TRANSFER-8`
271 li $carry,0
272 mtctr $j
274 ; transfer bp[0] to FPU as 4x16-bit values
275 extrdi $t0,$t3,16,48
276 extrdi $t1,$t3,16,32
277 extrdi $t2,$t3,16,16
278 extrdi $t3,$t3,16,0
279 std $t0,`$FRAME+0`($sp)
280 std $t1,`$FRAME+8`($sp)
281 std $t2,`$FRAME+16`($sp)
282 std $t3,`$FRAME+24`($sp)
283 ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values
284 extrdi $t4,$t7,16,48
285 extrdi $t5,$t7,16,32
286 extrdi $t6,$t7,16,16
287 extrdi $t7,$t7,16,0
288 std $t4,`$FRAME+32`($sp)
289 std $t5,`$FRAME+40`($sp)
290 std $t6,`$FRAME+48`($sp)
291 std $t7,`$FRAME+56`($sp)
293 $code.=<<___ if ($SIZE_T==8);
294 lwz $t0,4($ap) ; load a[j] as 32-bit word pair
295 lwz $t1,0($ap)
296 lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair
297 lwz $t3,8($ap)
298 lwz $t4,4($np) ; load n[j] as 32-bit word pair
299 lwz $t5,0($np)
300 lwz $t6,12($np) ; load n[j+1] as 32-bit word pair
301 lwz $t7,8($np)
303 $code.=<<___ if ($SIZE_T==4);
304 lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs
305 lwz $t1,4($ap)
306 lwz $t2,8($ap)
307 lwz $t3,12($ap)
308 lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs
309 lwz $t5,4($np)
310 lwz $t6,8($np)
311 lwz $t7,12($np)
313 $code.=<<___;
314 lfd $ba,`$FRAME+0`($sp)
315 lfd $bb,`$FRAME+8`($sp)
316 lfd $bc,`$FRAME+16`($sp)
317 lfd $bd,`$FRAME+24`($sp)
318 lfd $na,`$FRAME+32`($sp)
319 lfd $nb,`$FRAME+40`($sp)
320 lfd $nc,`$FRAME+48`($sp)
321 lfd $nd,`$FRAME+56`($sp)
322 std $t0,`$FRAME+64`($sp)
323 std $t1,`$FRAME+72`($sp)
324 std $t2,`$FRAME+80`($sp)
325 std $t3,`$FRAME+88`($sp)
326 std $t4,`$FRAME+96`($sp)
327 std $t5,`$FRAME+104`($sp)
328 std $t6,`$FRAME+112`($sp)
329 std $t7,`$FRAME+120`($sp)
330 fcfid $ba,$ba
331 fcfid $bb,$bb
332 fcfid $bc,$bc
333 fcfid $bd,$bd
334 fcfid $na,$na
335 fcfid $nb,$nb
336 fcfid $nc,$nc
337 fcfid $nd,$nd
339 lfd $A0,`$FRAME+64`($sp)
340 lfd $A1,`$FRAME+72`($sp)
341 lfd $A2,`$FRAME+80`($sp)
342 lfd $A3,`$FRAME+88`($sp)
343 lfd $N0,`$FRAME+96`($sp)
344 lfd $N1,`$FRAME+104`($sp)
345 lfd $N2,`$FRAME+112`($sp)
346 lfd $N3,`$FRAME+120`($sp)
347 fcfid $A0,$A0
348 fcfid $A1,$A1
349 fcfid $A2,$A2
350 fcfid $A3,$A3
351 fcfid $N0,$N0
352 fcfid $N1,$N1
353 fcfid $N2,$N2
354 fcfid $N3,$N3
355 addi $ap,$ap,16
356 addi $np,$np,16
358 fmul $T1a,$A1,$ba
359 fmul $T1b,$A1,$bb
360 stfd $A0,8($nap_d) ; save a[j] in double format
361 stfd $A1,16($nap_d)
362 fmul $T2a,$A2,$ba
363 fmul $T2b,$A2,$bb
364 stfd $A2,24($nap_d) ; save a[j+1] in double format
365 stfd $A3,32($nap_d)
366 fmul $T3a,$A3,$ba
367 fmul $T3b,$A3,$bb
368 stfd $N0,40($nap_d) ; save n[j] in double format
369 stfd $N1,48($nap_d)
370 fmul $T0a,$A0,$ba
371 fmul $T0b,$A0,$bb
372 stfd $N2,56($nap_d) ; save n[j+1] in double format
373 stfdu $N3,64($nap_d)
375 fmadd $T1a,$A0,$bc,$T1a
376 fmadd $T1b,$A0,$bd,$T1b
377 fmadd $T2a,$A1,$bc,$T2a
378 fmadd $T2b,$A1,$bd,$T2b
379 fmadd $T3a,$A2,$bc,$T3a
380 fmadd $T3b,$A2,$bd,$T3b
381 fmul $dota,$A3,$bc
382 fmul $dotb,$A3,$bd
384 fmadd $T1a,$N1,$na,$T1a
385 fmadd $T1b,$N1,$nb,$T1b
386 fmadd $T2a,$N2,$na,$T2a
387 fmadd $T2b,$N2,$nb,$T2b
388 fmadd $T3a,$N3,$na,$T3a
389 fmadd $T3b,$N3,$nb,$T3b
390 fmadd $T0a,$N0,$na,$T0a
391 fmadd $T0b,$N0,$nb,$T0b
393 fmadd $T1a,$N0,$nc,$T1a
394 fmadd $T1b,$N0,$nd,$T1b
395 fmadd $T2a,$N1,$nc,$T2a
396 fmadd $T2b,$N1,$nd,$T2b
397 fmadd $T3a,$N2,$nc,$T3a
398 fmadd $T3b,$N2,$nd,$T3b
399 fmadd $dota,$N3,$nc,$dota
400 fmadd $dotb,$N3,$nd,$dotb
402 fctid $T0a,$T0a
403 fctid $T0b,$T0b
404 fctid $T1a,$T1a
405 fctid $T1b,$T1b
406 fctid $T2a,$T2a
407 fctid $T2b,$T2b
408 fctid $T3a,$T3a
409 fctid $T3b,$T3b
411 stfd $T0a,`$FRAME+0`($sp)
412 stfd $T0b,`$FRAME+8`($sp)
413 stfd $T1a,`$FRAME+16`($sp)
414 stfd $T1b,`$FRAME+24`($sp)
415 stfd $T2a,`$FRAME+32`($sp)
416 stfd $T2b,`$FRAME+40`($sp)
417 stfd $T3a,`$FRAME+48`($sp)
418 stfd $T3b,`$FRAME+56`($sp)
420 .align 5
421 L1st:
423 $code.=<<___ if ($SIZE_T==8);
424 lwz $t0,4($ap) ; load a[j] as 32-bit word pair
425 lwz $t1,0($ap)
426 lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair
427 lwz $t3,8($ap)
428 lwz $t4,4($np) ; load n[j] as 32-bit word pair
429 lwz $t5,0($np)
430 lwz $t6,12($np) ; load n[j+1] as 32-bit word pair
431 lwz $t7,8($np)
433 $code.=<<___ if ($SIZE_T==4);
434 lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs
435 lwz $t1,4($ap)
436 lwz $t2,8($ap)
437 lwz $t3,12($ap)
438 lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs
439 lwz $t5,4($np)
440 lwz $t6,8($np)
441 lwz $t7,12($np)
443 $code.=<<___;
444 std $t0,`$FRAME+64`($sp)
445 std $t1,`$FRAME+72`($sp)
446 std $t2,`$FRAME+80`($sp)
447 std $t3,`$FRAME+88`($sp)
448 std $t4,`$FRAME+96`($sp)
449 std $t5,`$FRAME+104`($sp)
450 std $t6,`$FRAME+112`($sp)
451 std $t7,`$FRAME+120`($sp)
452 ld $t0,`$FRAME+0`($sp)
453 ld $t1,`$FRAME+8`($sp)
454 ld $t2,`$FRAME+16`($sp)
455 ld $t3,`$FRAME+24`($sp)
456 ld $t4,`$FRAME+32`($sp)
457 ld $t5,`$FRAME+40`($sp)
458 ld $t6,`$FRAME+48`($sp)
459 ld $t7,`$FRAME+56`($sp)
460 lfd $A0,`$FRAME+64`($sp)
461 lfd $A1,`$FRAME+72`($sp)
462 lfd $A2,`$FRAME+80`($sp)
463 lfd $A3,`$FRAME+88`($sp)
464 lfd $N0,`$FRAME+96`($sp)
465 lfd $N1,`$FRAME+104`($sp)
466 lfd $N2,`$FRAME+112`($sp)
467 lfd $N3,`$FRAME+120`($sp)
468 fcfid $A0,$A0
469 fcfid $A1,$A1
470 fcfid $A2,$A2
471 fcfid $A3,$A3
472 fcfid $N0,$N0
473 fcfid $N1,$N1
474 fcfid $N2,$N2
475 fcfid $N3,$N3
476 addi $ap,$ap,16
477 addi $np,$np,16
479 fmul $T1a,$A1,$ba
480 fmul $T1b,$A1,$bb
481 fmul $T2a,$A2,$ba
482 fmul $T2b,$A2,$bb
483 stfd $A0,8($nap_d) ; save a[j] in double format
484 stfd $A1,16($nap_d)
485 fmul $T3a,$A3,$ba
486 fmul $T3b,$A3,$bb
487 fmadd $T0a,$A0,$ba,$dota
488 fmadd $T0b,$A0,$bb,$dotb
489 stfd $A2,24($nap_d) ; save a[j+1] in double format
490 stfd $A3,32($nap_d)
492 fmadd $T1a,$A0,$bc,$T1a
493 fmadd $T1b,$A0,$bd,$T1b
494 fmadd $T2a,$A1,$bc,$T2a
495 fmadd $T2b,$A1,$bd,$T2b
496 stfd $N0,40($nap_d) ; save n[j] in double format
497 stfd $N1,48($nap_d)
498 fmadd $T3a,$A2,$bc,$T3a
499 fmadd $T3b,$A2,$bd,$T3b
500 add $t0,$t0,$carry ; can not overflow
501 fmul $dota,$A3,$bc
502 fmul $dotb,$A3,$bd
503 stfd $N2,56($nap_d) ; save n[j+1] in double format
504 stfdu $N3,64($nap_d)
505 srdi $carry,$t0,16
506 add $t1,$t1,$carry
507 srdi $carry,$t1,16
509 fmadd $T1a,$N1,$na,$T1a
510 fmadd $T1b,$N1,$nb,$T1b
511 insrdi $t0,$t1,16,32
512 fmadd $T2a,$N2,$na,$T2a
513 fmadd $T2b,$N2,$nb,$T2b
514 add $t2,$t2,$carry
515 fmadd $T3a,$N3,$na,$T3a
516 fmadd $T3b,$N3,$nb,$T3b
517 srdi $carry,$t2,16
518 fmadd $T0a,$N0,$na,$T0a
519 fmadd $T0b,$N0,$nb,$T0b
520 insrdi $t0,$t2,16,16
521 add $t3,$t3,$carry
522 srdi $carry,$t3,16
524 fmadd $T1a,$N0,$nc,$T1a
525 fmadd $T1b,$N0,$nd,$T1b
526 insrdi $t0,$t3,16,0 ; 0..63 bits
527 fmadd $T2a,$N1,$nc,$T2a
528 fmadd $T2b,$N1,$nd,$T2b
529 add $t4,$t4,$carry
530 fmadd $T3a,$N2,$nc,$T3a
531 fmadd $T3b,$N2,$nd,$T3b
532 srdi $carry,$t4,16
533 fmadd $dota,$N3,$nc,$dota
534 fmadd $dotb,$N3,$nd,$dotb
535 add $t5,$t5,$carry
536 srdi $carry,$t5,16
537 insrdi $t4,$t5,16,32
539 fctid $T0a,$T0a
540 fctid $T0b,$T0b
541 add $t6,$t6,$carry
542 fctid $T1a,$T1a
543 fctid $T1b,$T1b
544 srdi $carry,$t6,16
545 fctid $T2a,$T2a
546 fctid $T2b,$T2b
547 insrdi $t4,$t6,16,16
548 fctid $T3a,$T3a
549 fctid $T3b,$T3b
550 add $t7,$t7,$carry
551 insrdi $t4,$t7,16,0 ; 64..127 bits
552 srdi $carry,$t7,16 ; upper 33 bits
554 stfd $T0a,`$FRAME+0`($sp)
555 stfd $T0b,`$FRAME+8`($sp)
556 stfd $T1a,`$FRAME+16`($sp)
557 stfd $T1b,`$FRAME+24`($sp)
558 stfd $T2a,`$FRAME+32`($sp)
559 stfd $T2b,`$FRAME+40`($sp)
560 stfd $T3a,`$FRAME+48`($sp)
561 stfd $T3b,`$FRAME+56`($sp)
562 std $t0,8($tp) ; tp[j-1]
563 stdu $t4,16($tp) ; tp[j]
564 bdnz- L1st
566 fctid $dota,$dota
567 fctid $dotb,$dotb
569 ld $t0,`$FRAME+0`($sp)
570 ld $t1,`$FRAME+8`($sp)
571 ld $t2,`$FRAME+16`($sp)
572 ld $t3,`$FRAME+24`($sp)
573 ld $t4,`$FRAME+32`($sp)
574 ld $t5,`$FRAME+40`($sp)
575 ld $t6,`$FRAME+48`($sp)
576 ld $t7,`$FRAME+56`($sp)
577 stfd $dota,`$FRAME+64`($sp)
578 stfd $dotb,`$FRAME+72`($sp)
580 add $t0,$t0,$carry ; can not overflow
581 srdi $carry,$t0,16
582 add $t1,$t1,$carry
583 srdi $carry,$t1,16
584 insrdi $t0,$t1,16,32
585 add $t2,$t2,$carry
586 srdi $carry,$t2,16
587 insrdi $t0,$t2,16,16
588 add $t3,$t3,$carry
589 srdi $carry,$t3,16
590 insrdi $t0,$t3,16,0 ; 0..63 bits
591 add $t4,$t4,$carry
592 srdi $carry,$t4,16
593 add $t5,$t5,$carry
594 srdi $carry,$t5,16
595 insrdi $t4,$t5,16,32
596 add $t6,$t6,$carry
597 srdi $carry,$t6,16
598 insrdi $t4,$t6,16,16
599 add $t7,$t7,$carry
600 insrdi $t4,$t7,16,0 ; 64..127 bits
601 srdi $carry,$t7,16 ; upper 33 bits
602 ld $t6,`$FRAME+64`($sp)
603 ld $t7,`$FRAME+72`($sp)
605 std $t0,8($tp) ; tp[j-1]
606 stdu $t4,16($tp) ; tp[j]
608 add $t6,$t6,$carry ; can not overflow
609 srdi $carry,$t6,16
610 add $t7,$t7,$carry
611 insrdi $t6,$t7,48,0
612 srdi $ovf,$t7,48
613 std $t6,8($tp) ; tp[num-1]
615 slwi $t7,$num,2
616 subf $nap_d,$t7,$nap_d ; rewind pointer
618 li $i,8 ; i=1
619 .align 5
620 Louter:
622 $code.=<<___ if ($SIZE_T==8);
623 ldx $t3,$bp,$i ; bp[i]
625 $code.=<<___ if ($SIZE_T==4);
626 add $t0,$bp,$i
627 lwz $t3,0($t0) ; bp[i,i+1]
628 lwz $t0,4($t0)
629 insrdi $t3,$t0,32,0
631 $code.=<<___;
632 ld $t6,`$FRAME+$TRANSFER+8`($sp) ; tp[0]
633 mulld $t7,$a0,$t3 ; ap[0]*bp[i]
635 addi $tp,$sp,`$FRAME+$TRANSFER`
636 add $t7,$t7,$t6 ; ap[0]*bp[i]+tp[0]
637 li $carry,0
638 mulld $t7,$t7,$n0 ; tp[0]*n0
639 mtctr $j
641 ; transfer bp[i] to FPU as 4x16-bit values
642 extrdi $t0,$t3,16,48
643 extrdi $t1,$t3,16,32
644 extrdi $t2,$t3,16,16
645 extrdi $t3,$t3,16,0
646 std $t0,`$FRAME+0`($sp)
647 std $t1,`$FRAME+8`($sp)
648 std $t2,`$FRAME+16`($sp)
649 std $t3,`$FRAME+24`($sp)
650 ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values
651 extrdi $t4,$t7,16,48
652 extrdi $t5,$t7,16,32
653 extrdi $t6,$t7,16,16
654 extrdi $t7,$t7,16,0
655 std $t4,`$FRAME+32`($sp)
656 std $t5,`$FRAME+40`($sp)
657 std $t6,`$FRAME+48`($sp)
658 std $t7,`$FRAME+56`($sp)
660 lfd $A0,8($nap_d) ; load a[j] in double format
661 lfd $A1,16($nap_d)
662 lfd $A2,24($nap_d) ; load a[j+1] in double format
663 lfd $A3,32($nap_d)
664 lfd $N0,40($nap_d) ; load n[j] in double format
665 lfd $N1,48($nap_d)
666 lfd $N2,56($nap_d) ; load n[j+1] in double format
667 lfdu $N3,64($nap_d)
669 lfd $ba,`$FRAME+0`($sp)
670 lfd $bb,`$FRAME+8`($sp)
671 lfd $bc,`$FRAME+16`($sp)
672 lfd $bd,`$FRAME+24`($sp)
673 lfd $na,`$FRAME+32`($sp)
674 lfd $nb,`$FRAME+40`($sp)
675 lfd $nc,`$FRAME+48`($sp)
676 lfd $nd,`$FRAME+56`($sp)
678 fcfid $ba,$ba
679 fcfid $bb,$bb
680 fcfid $bc,$bc
681 fcfid $bd,$bd
682 fcfid $na,$na
683 fcfid $nb,$nb
684 fcfid $nc,$nc
685 fcfid $nd,$nd
687 fmul $T1a,$A1,$ba
688 fmul $T1b,$A1,$bb
689 fmul $T2a,$A2,$ba
690 fmul $T2b,$A2,$bb
691 fmul $T3a,$A3,$ba
692 fmul $T3b,$A3,$bb
693 fmul $T0a,$A0,$ba
694 fmul $T0b,$A0,$bb
696 fmadd $T1a,$A0,$bc,$T1a
697 fmadd $T1b,$A0,$bd,$T1b
698 fmadd $T2a,$A1,$bc,$T2a
699 fmadd $T2b,$A1,$bd,$T2b
700 fmadd $T3a,$A2,$bc,$T3a
701 fmadd $T3b,$A2,$bd,$T3b
702 fmul $dota,$A3,$bc
703 fmul $dotb,$A3,$bd
705 fmadd $T1a,$N1,$na,$T1a
706 fmadd $T1b,$N1,$nb,$T1b
707 lfd $A0,8($nap_d) ; load a[j] in double format
708 lfd $A1,16($nap_d)
709 fmadd $T2a,$N2,$na,$T2a
710 fmadd $T2b,$N2,$nb,$T2b
711 lfd $A2,24($nap_d) ; load a[j+1] in double format
712 lfd $A3,32($nap_d)
713 fmadd $T3a,$N3,$na,$T3a
714 fmadd $T3b,$N3,$nb,$T3b
715 fmadd $T0a,$N0,$na,$T0a
716 fmadd $T0b,$N0,$nb,$T0b
718 fmadd $T1a,$N0,$nc,$T1a
719 fmadd $T1b,$N0,$nd,$T1b
720 fmadd $T2a,$N1,$nc,$T2a
721 fmadd $T2b,$N1,$nd,$T2b
722 fmadd $T3a,$N2,$nc,$T3a
723 fmadd $T3b,$N2,$nd,$T3b
724 fmadd $dota,$N3,$nc,$dota
725 fmadd $dotb,$N3,$nd,$dotb
727 fctid $T0a,$T0a
728 fctid $T0b,$T0b
729 fctid $T1a,$T1a
730 fctid $T1b,$T1b
731 fctid $T2a,$T2a
732 fctid $T2b,$T2b
733 fctid $T3a,$T3a
734 fctid $T3b,$T3b
736 stfd $T0a,`$FRAME+0`($sp)
737 stfd $T0b,`$FRAME+8`($sp)
738 stfd $T1a,`$FRAME+16`($sp)
739 stfd $T1b,`$FRAME+24`($sp)
740 stfd $T2a,`$FRAME+32`($sp)
741 stfd $T2b,`$FRAME+40`($sp)
742 stfd $T3a,`$FRAME+48`($sp)
743 stfd $T3b,`$FRAME+56`($sp)
745 .align 5
746 Linner:
747 fmul $T1a,$A1,$ba
748 fmul $T1b,$A1,$bb
749 fmul $T2a,$A2,$ba
750 fmul $T2b,$A2,$bb
751 lfd $N0,40($nap_d) ; load n[j] in double format
752 lfd $N1,48($nap_d)
753 fmul $T3a,$A3,$ba
754 fmul $T3b,$A3,$bb
755 fmadd $T0a,$A0,$ba,$dota
756 fmadd $T0b,$A0,$bb,$dotb
757 lfd $N2,56($nap_d) ; load n[j+1] in double format
758 lfdu $N3,64($nap_d)
760 fmadd $T1a,$A0,$bc,$T1a
761 fmadd $T1b,$A0,$bd,$T1b
762 fmadd $T2a,$A1,$bc,$T2a
763 fmadd $T2b,$A1,$bd,$T2b
764 lfd $A0,8($nap_d) ; load a[j] in double format
765 lfd $A1,16($nap_d)
766 fmadd $T3a,$A2,$bc,$T3a
767 fmadd $T3b,$A2,$bd,$T3b
768 fmul $dota,$A3,$bc
769 fmul $dotb,$A3,$bd
770 lfd $A2,24($nap_d) ; load a[j+1] in double format
771 lfd $A3,32($nap_d)
773 fmadd $T1a,$N1,$na,$T1a
774 fmadd $T1b,$N1,$nb,$T1b
775 ld $t0,`$FRAME+0`($sp)
776 ld $t1,`$FRAME+8`($sp)
777 fmadd $T2a,$N2,$na,$T2a
778 fmadd $T2b,$N2,$nb,$T2b
779 ld $t2,`$FRAME+16`($sp)
780 ld $t3,`$FRAME+24`($sp)
781 fmadd $T3a,$N3,$na,$T3a
782 fmadd $T3b,$N3,$nb,$T3b
783 add $t0,$t0,$carry ; can not overflow
784 ld $t4,`$FRAME+32`($sp)
785 ld $t5,`$FRAME+40`($sp)
786 fmadd $T0a,$N0,$na,$T0a
787 fmadd $T0b,$N0,$nb,$T0b
788 srdi $carry,$t0,16
789 add $t1,$t1,$carry
790 srdi $carry,$t1,16
791 ld $t6,`$FRAME+48`($sp)
792 ld $t7,`$FRAME+56`($sp)
794 fmadd $T1a,$N0,$nc,$T1a
795 fmadd $T1b,$N0,$nd,$T1b
796 insrdi $t0,$t1,16,32
797 ld $t1,8($tp) ; tp[j]
798 fmadd $T2a,$N1,$nc,$T2a
799 fmadd $T2b,$N1,$nd,$T2b
800 add $t2,$t2,$carry
801 fmadd $T3a,$N2,$nc,$T3a
802 fmadd $T3b,$N2,$nd,$T3b
803 srdi $carry,$t2,16
804 insrdi $t0,$t2,16,16
805 fmadd $dota,$N3,$nc,$dota
806 fmadd $dotb,$N3,$nd,$dotb
807 add $t3,$t3,$carry
808 ldu $t2,16($tp) ; tp[j+1]
809 srdi $carry,$t3,16
810 insrdi $t0,$t3,16,0 ; 0..63 bits
811 add $t4,$t4,$carry
813 fctid $T0a,$T0a
814 fctid $T0b,$T0b
815 srdi $carry,$t4,16
816 fctid $T1a,$T1a
817 fctid $T1b,$T1b
818 add $t5,$t5,$carry
819 fctid $T2a,$T2a
820 fctid $T2b,$T2b
821 srdi $carry,$t5,16
822 insrdi $t4,$t5,16,32
823 fctid $T3a,$T3a
824 fctid $T3b,$T3b
825 add $t6,$t6,$carry
826 srdi $carry,$t6,16
827 insrdi $t4,$t6,16,16
829 stfd $T0a,`$FRAME+0`($sp)
830 stfd $T0b,`$FRAME+8`($sp)
831 add $t7,$t7,$carry
832 addc $t3,$t0,$t1
834 $code.=<<___ if ($SIZE_T==4); # adjust XER[CA]
835 extrdi $t0,$t0,32,0
836 extrdi $t1,$t1,32,0
837 adde $t0,$t0,$t1
839 $code.=<<___;
840 stfd $T1a,`$FRAME+16`($sp)
841 stfd $T1b,`$FRAME+24`($sp)
842 insrdi $t4,$t7,16,0 ; 64..127 bits
843 srdi $carry,$t7,16 ; upper 33 bits
844 stfd $T2a,`$FRAME+32`($sp)
845 stfd $T2b,`$FRAME+40`($sp)
846 adde $t5,$t4,$t2
848 $code.=<<___ if ($SIZE_T==4); # adjust XER[CA]
849 extrdi $t4,$t4,32,0
850 extrdi $t2,$t2,32,0
851 adde $t4,$t4,$t2
853 $code.=<<___;
854 stfd $T3a,`$FRAME+48`($sp)
855 stfd $T3b,`$FRAME+56`($sp)
856 addze $carry,$carry
857 std $t3,-16($tp) ; tp[j-1]
858 std $t5,-8($tp) ; tp[j]
859 bdnz- Linner
861 fctid $dota,$dota
862 fctid $dotb,$dotb
863 ld $t0,`$FRAME+0`($sp)
864 ld $t1,`$FRAME+8`($sp)
865 ld $t2,`$FRAME+16`($sp)
866 ld $t3,`$FRAME+24`($sp)
867 ld $t4,`$FRAME+32`($sp)
868 ld $t5,`$FRAME+40`($sp)
869 ld $t6,`$FRAME+48`($sp)
870 ld $t7,`$FRAME+56`($sp)
871 stfd $dota,`$FRAME+64`($sp)
872 stfd $dotb,`$FRAME+72`($sp)
874 add $t0,$t0,$carry ; can not overflow
875 srdi $carry,$t0,16
876 add $t1,$t1,$carry
877 srdi $carry,$t1,16
878 insrdi $t0,$t1,16,32
879 add $t2,$t2,$carry
880 ld $t1,8($tp) ; tp[j]
881 srdi $carry,$t2,16
882 insrdi $t0,$t2,16,16
883 add $t3,$t3,$carry
884 ldu $t2,16($tp) ; tp[j+1]
885 srdi $carry,$t3,16
886 insrdi $t0,$t3,16,0 ; 0..63 bits
887 add $t4,$t4,$carry
888 srdi $carry,$t4,16
889 add $t5,$t5,$carry
890 srdi $carry,$t5,16
891 insrdi $t4,$t5,16,32
892 add $t6,$t6,$carry
893 srdi $carry,$t6,16
894 insrdi $t4,$t6,16,16
895 add $t7,$t7,$carry
896 insrdi $t4,$t7,16,0 ; 64..127 bits
897 srdi $carry,$t7,16 ; upper 33 bits
898 ld $t6,`$FRAME+64`($sp)
899 ld $t7,`$FRAME+72`($sp)
901 addc $t3,$t0,$t1
903 $code.=<<___ if ($SIZE_T==4); # adjust XER[CA]
904 extrdi $t0,$t0,32,0
905 extrdi $t1,$t1,32,0
906 adde $t0,$t0,$t1
908 $code.=<<___;
909 adde $t5,$t4,$t2
911 $code.=<<___ if ($SIZE_T==4); # adjust XER[CA]
912 extrdi $t4,$t4,32,0
913 extrdi $t2,$t2,32,0
914 adde $t4,$t4,$t2
916 $code.=<<___;
917 addze $carry,$carry
919 std $t3,-16($tp) ; tp[j-1]
920 std $t5,-8($tp) ; tp[j]
922 add $carry,$carry,$ovf ; comsume upmost overflow
923 add $t6,$t6,$carry ; can not overflow
924 srdi $carry,$t6,16
925 add $t7,$t7,$carry
926 insrdi $t6,$t7,48,0
927 srdi $ovf,$t7,48
928 std $t6,0($tp) ; tp[num-1]
930 slwi $t7,$num,2
931 addi $i,$i,8
932 subf $nap_d,$t7,$nap_d ; rewind pointer
933 cmpw $i,$num
934 blt- Louter
937 $code.=<<___ if ($SIZE_T==8);
938 subf $np,$num,$np ; rewind np
939 addi $j,$j,1 ; restore counter
940 subfc $i,$i,$i ; j=0 and "clear" XER[CA]
941 addi $tp,$sp,`$FRAME+$TRANSFER+8`
942 addi $t4,$sp,`$FRAME+$TRANSFER+16`
943 addi $t5,$np,8
944 addi $t6,$rp,8
945 mtctr $j
947 .align 4
948 Lsub: ldx $t0,$tp,$i
949 ldx $t1,$np,$i
950 ldx $t2,$t4,$i
951 ldx $t3,$t5,$i
952 subfe $t0,$t1,$t0 ; tp[j]-np[j]
953 subfe $t2,$t3,$t2 ; tp[j+1]-np[j+1]
954 stdx $t0,$rp,$i
955 stdx $t2,$t6,$i
956 addi $i,$i,16
957 bdnz- Lsub
959 li $i,0
960 subfe $ovf,$i,$ovf ; handle upmost overflow bit
961 and $ap,$tp,$ovf
962 andc $np,$rp,$ovf
963 or $ap,$ap,$np ; ap=borrow?tp:rp
964 addi $t7,$ap,8
965 mtctr $j
967 .align 4
968 Lcopy: ; copy or in-place refresh
969 ldx $t0,$ap,$i
970 ldx $t1,$t7,$i
971 std $i,8($nap_d) ; zap nap_d
972 std $i,16($nap_d)
973 std $i,24($nap_d)
974 std $i,32($nap_d)
975 std $i,40($nap_d)
976 std $i,48($nap_d)
977 std $i,56($nap_d)
978 stdu $i,64($nap_d)
979 stdx $t0,$rp,$i
980 stdx $t1,$t6,$i
981 stdx $i,$tp,$i ; zap tp at once
982 stdx $i,$t4,$i
983 addi $i,$i,16
984 bdnz- Lcopy
986 $code.=<<___ if ($SIZE_T==4);
987 subf $np,$num,$np ; rewind np
988 addi $j,$j,1 ; restore counter
989 subfc $i,$i,$i ; j=0 and "clear" XER[CA]
990 addi $tp,$sp,`$FRAME+$TRANSFER`
991 addi $np,$np,-4
992 addi $rp,$rp,-4
993 addi $ap,$sp,`$FRAME+$TRANSFER+4`
994 mtctr $j
996 .align 4
997 Lsub: ld $t0,8($tp) ; load tp[j..j+3] in 64-bit word order
998 ldu $t2,16($tp)
999 lwz $t4,4($np) ; load np[j..j+3] in 32-bit word order
1000 lwz $t5,8($np)
1001 lwz $t6,12($np)
1002 lwzu $t7,16($np)
1003 extrdi $t1,$t0,32,0
1004 extrdi $t3,$t2,32,0
1005 subfe $t4,$t4,$t0 ; tp[j]-np[j]
1006 stw $t0,4($ap) ; save tp[j..j+3] in 32-bit word order
1007 subfe $t5,$t5,$t1 ; tp[j+1]-np[j+1]
1008 stw $t1,8($ap)
1009 subfe $t6,$t6,$t2 ; tp[j+2]-np[j+2]
1010 stw $t2,12($ap)
1011 subfe $t7,$t7,$t3 ; tp[j+3]-np[j+3]
1012 stwu $t3,16($ap)
1013 stw $t4,4($rp)
1014 stw $t5,8($rp)
1015 stw $t6,12($rp)
1016 stwu $t7,16($rp)
1017 bdnz- Lsub
1019 li $i,0
1020 subfe $ovf,$i,$ovf ; handle upmost overflow bit
1021 addi $tp,$sp,`$FRAME+$TRANSFER+4`
1022 subf $rp,$num,$rp ; rewind rp
1023 and $ap,$tp,$ovf
1024 andc $np,$rp,$ovf
1025 or $ap,$ap,$np ; ap=borrow?tp:rp
1026 addi $tp,$sp,`$FRAME+$TRANSFER`
1027 mtctr $j
1029 .align 4
1030 Lcopy: ; copy or in-place refresh
1031 lwz $t0,4($ap)
1032 lwz $t1,8($ap)
1033 lwz $t2,12($ap)
1034 lwzu $t3,16($ap)
1035 std $i,8($nap_d) ; zap nap_d
1036 std $i,16($nap_d)
1037 std $i,24($nap_d)
1038 std $i,32($nap_d)
1039 std $i,40($nap_d)
1040 std $i,48($nap_d)
1041 std $i,56($nap_d)
1042 stdu $i,64($nap_d)
1043 stw $t0,4($rp)
1044 stw $t1,8($rp)
1045 stw $t2,12($rp)
1046 stwu $t3,16($rp)
1047 std $i,8($tp) ; zap tp at once
1048 stdu $i,16($tp)
1049 bdnz- Lcopy
1052 $code.=<<___;
1053 $POP $i,0($sp)
1054 li r3,1 ; signal "handled"
1055 $POP r22,`-12*8-10*$SIZE_T`($i)
1056 $POP r23,`-12*8-9*$SIZE_T`($i)
1057 $POP r24,`-12*8-8*$SIZE_T`($i)
1058 $POP r25,`-12*8-7*$SIZE_T`($i)
1059 $POP r26,`-12*8-6*$SIZE_T`($i)
1060 $POP r27,`-12*8-5*$SIZE_T`($i)
1061 $POP r28,`-12*8-4*$SIZE_T`($i)
1062 $POP r29,`-12*8-3*$SIZE_T`($i)
1063 $POP r30,`-12*8-2*$SIZE_T`($i)
1064 $POP r31,`-12*8-1*$SIZE_T`($i)
1065 lfd f20,`-12*8`($i)
1066 lfd f21,`-11*8`($i)
1067 lfd f22,`-10*8`($i)
1068 lfd f23,`-9*8`($i)
1069 lfd f24,`-8*8`($i)
1070 lfd f25,`-7*8`($i)
1071 lfd f26,`-6*8`($i)
1072 lfd f27,`-5*8`($i)
1073 lfd f28,`-4*8`($i)
1074 lfd f29,`-3*8`($i)
1075 lfd f30,`-2*8`($i)
1076 lfd f31,`-1*8`($i)
1077 mr $sp,$i
1079 .long 0
1080 .byte 0,12,4,0,0x8c,10,6,0
1081 .long 0
1083 .asciz "Montgomery Multiplication for PPC64, CRYPTOGAMS by <appro\@openssl.org>"
1086 $code =~ s/\`([^\`]*)\`/eval $1/gem;
1087 print $code;
1088 close STDOUT;