import libcrypto (LibreSSL 2.5.2)
[unleashed.git] / lib / libcrypto / aes / asm / aesni-x86_64.pl
blobc073667fcbcd1d78433e6be7825c8409d0d245e9
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # This module implements support for Intel AES-NI extension. In
11 # OpenSSL context it's used with Intel engine, but can also be used as
12 # drop-in replacement for crypto/aes/asm/aes-x86_64.pl [see below for
13 # details].
15 # Performance.
17 # Given aes(enc|dec) instructions' latency asymptotic performance for
18 # non-parallelizable modes such as CBC encrypt is 3.75 cycles per byte
19 # processed with 128-bit key. And given their throughput asymptotic
20 # performance for parallelizable modes is 1.25 cycles per byte. Being
21 # asymptotic limit it's not something you commonly achieve in reality,
22 # but how close does one get? Below are results collected for
23 # different modes and block sized. Pairs of numbers are for en-/
24 # decryption.
26 # 16-byte 64-byte 256-byte 1-KB 8-KB
27 # ECB 4.25/4.25 1.38/1.38 1.28/1.28 1.26/1.26 1.26/1.26
28 # CTR 5.42/5.42 1.92/1.92 1.44/1.44 1.28/1.28 1.26/1.26
29 # CBC 4.38/4.43 4.15/1.43 4.07/1.32 4.07/1.29 4.06/1.28
30 # CCM 5.66/9.42 4.42/5.41 4.16/4.40 4.09/4.15 4.06/4.07
31 # OFB 5.42/5.42 4.64/4.64 4.44/4.44 4.39/4.39 4.38/4.38
32 # CFB 5.73/5.85 5.56/5.62 5.48/5.56 5.47/5.55 5.47/5.55
34 # ECB, CTR, CBC and CCM results are free from EVP overhead. This means
35 # that otherwise used 'openssl speed -evp aes-128-??? -engine aesni
36 # [-decrypt]' will exhibit 10-15% worse results for smaller blocks.
37 # The results were collected with specially crafted speed.c benchmark
38 # in order to compare them with results reported in "Intel Advanced
39 # Encryption Standard (AES) New Instruction Set" White Paper Revision
40 # 3.0 dated May 2010. All above results are consistently better. This
41 # module also provides better performance for block sizes smaller than
42 # 128 bytes in points *not* represented in the above table.
44 # Looking at the results for 8-KB buffer.
46 # CFB and OFB results are far from the limit, because implementation
47 # uses "generic" CRYPTO_[c|o]fb128_encrypt interfaces relying on
48 # single-block aesni_encrypt, which is not the most optimal way to go.
49 # CBC encrypt result is unexpectedly high and there is no documented
50 # explanation for it. Seemingly there is a small penalty for feeding
51 # the result back to AES unit the way it's done in CBC mode. There is
52 # nothing one can do and the result appears optimal. CCM result is
53 # identical to CBC, because CBC-MAC is essentially CBC encrypt without
54 # saving output. CCM CTR "stays invisible," because it's neatly
55 # interleaved wih CBC-MAC. This provides ~30% improvement over
56 # "straghtforward" CCM implementation with CTR and CBC-MAC performed
57 # disjointly. Parallelizable modes practically achieve the theoretical
58 # limit.
60 # Looking at how results vary with buffer size.
62 # Curves are practically saturated at 1-KB buffer size. In most cases
63 # "256-byte" performance is >95%, and "64-byte" is ~90% of "8-KB" one.
64 # CTR curve doesn't follow this pattern and is "slowest" changing one
65 # with "256-byte" result being 87% of "8-KB." This is because overhead
66 # in CTR mode is most computationally intensive. Small-block CCM
67 # decrypt is slower than encrypt, because first CTR and last CBC-MAC
68 # iterations can't be interleaved.
70 # Results for 192- and 256-bit keys.
72 # EVP-free results were observed to scale perfectly with number of
73 # rounds for larger block sizes, i.e. 192-bit result being 10/12 times
74 # lower and 256-bit one - 10/14. Well, in CBC encrypt case differences
75 # are a tad smaller, because the above mentioned penalty biases all
76 # results by same constant value. In similar way function call
77 # overhead affects small-block performance, as well as OFB and CFB
78 # results. Differences are not large, most common coefficients are
79 # 10/11.7 and 10/13.4 (as opposite to 10/12.0 and 10/14.0), but one
80 # observe even 10/11.2 and 10/12.4 (CTR, OFB, CFB)...
82 # January 2011
84 # While Westmere processor features 6 cycles latency for aes[enc|dec]
85 # instructions, which can be scheduled every second cycle, Sandy
86 # Bridge spends 8 cycles per instruction, but it can schedule them
87 # every cycle. This means that code targeting Westmere would perform
88 # suboptimally on Sandy Bridge. Therefore this update.
90 # In addition, non-parallelizable CBC encrypt (as well as CCM) is
91 # optimized. Relative improvement might appear modest, 8% on Westmere,
92 # but in absolute terms it's 3.77 cycles per byte encrypted with
93 # 128-bit key on Westmere, and 5.07 - on Sandy Bridge. These numbers
94 # should be compared to asymptotic limits of 3.75 for Westmere and
95 # 5.00 for Sandy Bridge. Actually, the fact that they get this close
96 # to asymptotic limits is quite amazing. Indeed, the limit is
97 # calculated as latency times number of rounds, 10 for 128-bit key,
98 # and divided by 16, the number of bytes in block, or in other words
99 # it accounts *solely* for aesenc instructions. But there are extra
100 # instructions, and numbers so close to the asymptotic limits mean
101 # that it's as if it takes as little as *one* additional cycle to
102 # execute all of them. How is it possible? It is possible thanks to
103 # out-of-order execution logic, which manages to overlap post-
104 # processing of previous block, things like saving the output, with
105 # actual encryption of current block, as well as pre-processing of
106 # current block, things like fetching input and xor-ing it with
107 # 0-round element of the key schedule, with actual encryption of
108 # previous block. Keep this in mind...
110 # For parallelizable modes, such as ECB, CBC decrypt, CTR, higher
111 # performance is achieved by interleaving instructions working on
112 # independent blocks. In which case asymptotic limit for such modes
113 # can be obtained by dividing above mentioned numbers by AES
114 # instructions' interleave factor. Westmere can execute at most 3
115 # instructions at a time, meaning that optimal interleave factor is 3,
116 # and that's where the "magic" number of 1.25 come from. "Optimal
117 # interleave factor" means that increase of interleave factor does
118 # not improve performance. The formula has proven to reflect reality
119 # pretty well on Westmere... Sandy Bridge on the other hand can
120 # execute up to 8 AES instructions at a time, so how does varying
121 # interleave factor affect the performance? Here is table for ECB
122 # (numbers are cycles per byte processed with 128-bit key):
124 # instruction interleave factor 3x 6x 8x
125 # theoretical asymptotic limit 1.67 0.83 0.625
126 # measured performance for 8KB block 1.05 0.86 0.84
128 # "as if" interleave factor 4.7x 5.8x 6.0x
130 # Further data for other parallelizable modes:
132 # CBC decrypt 1.16 0.93 0.93
133 # CTR 1.14 0.91 n/a
135 # Well, given 3x column it's probably inappropriate to call the limit
136 # asymptotic, if it can be surpassed, isn't it? What happens there?
137 # Rewind to CBC paragraph for the answer. Yes, out-of-order execution
138 # magic is responsible for this. Processor overlaps not only the
139 # additional instructions with AES ones, but even AES instuctions
140 # processing adjacent triplets of independent blocks. In the 6x case
141 # additional instructions still claim disproportionally small amount
142 # of additional cycles, but in 8x case number of instructions must be
143 # a tad too high for out-of-order logic to cope with, and AES unit
144 # remains underutilized... As you can see 8x interleave is hardly
145 # justifiable, so there no need to feel bad that 32-bit aesni-x86.pl
146 # utilizies 6x interleave because of limited register bank capacity.
148 # Higher interleave factors do have negative impact on Westmere
149 # performance. While for ECB mode it's negligible ~1.5%, other
150 # parallelizables perform ~5% worse, which is outweighed by ~25%
151 # improvement on Sandy Bridge. To balance regression on Westmere
152 # CTR mode was implemented with 6x aesenc interleave factor.
154 # April 2011
156 # Add aesni_xts_[en|de]crypt. Westmere spends 1.33 cycles processing
157 # one byte out of 8KB with 128-bit key, Sandy Bridge - 0.97. Just like
158 # in CTR mode AES instruction interleave factor was chosen to be 6x.
160 $PREFIX="aesni"; # if $PREFIX is set to "AES", the script
161 # generates drop-in replacement for
162 # crypto/aes/asm/aes-x86_64.pl:-)
164 $flavour = shift;
165 $output = shift;
166 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
168 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
170 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
171 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
172 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
173 die "can't locate x86_64-xlate.pl";
175 open OUT,"| \"$^X\" $xlate $flavour $output";
176 *STDOUT=*OUT;
178 $movkey = $PREFIX eq "aesni" ? "movups" : "movups";
179 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
180 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
182 $code=".text\n";
184 $rounds="%eax"; # input to and changed by aesni_[en|de]cryptN !!!
185 # this is natural Unix argument order for public $PREFIX_[ecb|cbc]_encrypt ...
186 $inp="%rdi";
187 $out="%rsi";
188 $len="%rdx";
189 $key="%rcx"; # input to and changed by aesni_[en|de]cryptN !!!
190 $ivp="%r8"; # cbc, ctr, ...
192 $rnds_="%r10d"; # backup copy for $rounds
193 $key_="%r11"; # backup copy for $key
195 # %xmm register layout
196 $rndkey0="%xmm0"; $rndkey1="%xmm1";
197 $inout0="%xmm2"; $inout1="%xmm3";
198 $inout2="%xmm4"; $inout3="%xmm5";
199 $inout4="%xmm6"; $inout5="%xmm7";
200 $inout6="%xmm8"; $inout7="%xmm9";
202 $in2="%xmm6"; $in1="%xmm7"; # used in CBC decrypt, CTR, ...
203 $in0="%xmm8"; $iv="%xmm9";
205 # Inline version of internal aesni_[en|de]crypt1.
207 # Why folded loop? Because aes[enc|dec] is slow enough to accommodate
208 # cycles which take care of loop variables...
209 { my $sn;
210 sub aesni_generate1 {
211 my ($p,$key,$rounds,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout));
212 ++$sn;
213 $code.=<<___;
214 $movkey ($key),$rndkey0
215 $movkey 16($key),$rndkey1
217 $code.=<<___ if (defined($ivec));
218 xorps $rndkey0,$ivec
219 lea 32($key),$key
220 xorps $ivec,$inout
222 $code.=<<___ if (!defined($ivec));
223 lea 32($key),$key
224 xorps $rndkey0,$inout
226 $code.=<<___;
227 .Loop_${p}1_$sn:
228 aes${p} $rndkey1,$inout
229 dec $rounds
230 $movkey ($key),$rndkey1
231 lea 16($key),$key
232 jnz .Loop_${p}1_$sn # loop body is 16 bytes
233 aes${p}last $rndkey1,$inout
236 # void $PREFIX_[en|de]crypt (const void *inp,void *out,const AES_KEY *key);
238 { my ($inp,$out,$key) = @_4args;
240 $code.=<<___;
241 .globl ${PREFIX}_encrypt
242 .type ${PREFIX}_encrypt,\@abi-omnipotent
243 .align 16
244 ${PREFIX}_encrypt:
245 movups ($inp),$inout0 # load input
246 mov 240($key),$rounds # key->rounds
248 &aesni_generate1("enc",$key,$rounds);
249 $code.=<<___;
250 movups $inout0,($out) # output
252 .size ${PREFIX}_encrypt,.-${PREFIX}_encrypt
254 .globl ${PREFIX}_decrypt
255 .type ${PREFIX}_decrypt,\@abi-omnipotent
256 .align 16
257 ${PREFIX}_decrypt:
258 movups ($inp),$inout0 # load input
259 mov 240($key),$rounds # key->rounds
261 &aesni_generate1("dec",$key,$rounds);
262 $code.=<<___;
263 movups $inout0,($out) # output
265 .size ${PREFIX}_decrypt, .-${PREFIX}_decrypt
269 # _aesni_[en|de]cryptN are private interfaces, N denotes interleave
270 # factor. Why 3x subroutine were originally used in loops? Even though
271 # aes[enc|dec] latency was originally 6, it could be scheduled only
272 # every *2nd* cycle. Thus 3x interleave was the one providing optimal
273 # utilization, i.e. when subroutine's throughput is virtually same as
274 # of non-interleaved subroutine [for number of input blocks up to 3].
275 # This is why it makes no sense to implement 2x subroutine.
276 # aes[enc|dec] latency in next processor generation is 8, but the
277 # instructions can be scheduled every cycle. Optimal interleave for
278 # new processor is therefore 8x...
279 sub aesni_generate3 {
280 my $dir=shift;
281 # As already mentioned it takes in $key and $rounds, which are *not*
282 # preserved. $inout[0-2] is cipher/clear text...
283 $code.=<<___;
284 .type _aesni_${dir}rypt3,\@abi-omnipotent
285 .align 16
286 _aesni_${dir}rypt3:
287 $movkey ($key),$rndkey0
288 shr \$1,$rounds
289 $movkey 16($key),$rndkey1
290 lea 32($key),$key
291 xorps $rndkey0,$inout0
292 xorps $rndkey0,$inout1
293 xorps $rndkey0,$inout2
294 $movkey ($key),$rndkey0
296 .L${dir}_loop3:
297 aes${dir} $rndkey1,$inout0
298 aes${dir} $rndkey1,$inout1
299 dec $rounds
300 aes${dir} $rndkey1,$inout2
301 $movkey 16($key),$rndkey1
302 aes${dir} $rndkey0,$inout0
303 aes${dir} $rndkey0,$inout1
304 lea 32($key),$key
305 aes${dir} $rndkey0,$inout2
306 $movkey ($key),$rndkey0
307 jnz .L${dir}_loop3
309 aes${dir} $rndkey1,$inout0
310 aes${dir} $rndkey1,$inout1
311 aes${dir} $rndkey1,$inout2
312 aes${dir}last $rndkey0,$inout0
313 aes${dir}last $rndkey0,$inout1
314 aes${dir}last $rndkey0,$inout2
316 .size _aesni_${dir}rypt3,.-_aesni_${dir}rypt3
319 # 4x interleave is implemented to improve small block performance,
320 # most notably [and naturally] 4 block by ~30%. One can argue that one
321 # should have implemented 5x as well, but improvement would be <20%,
322 # so it's not worth it...
323 sub aesni_generate4 {
324 my $dir=shift;
325 # As already mentioned it takes in $key and $rounds, which are *not*
326 # preserved. $inout[0-3] is cipher/clear text...
327 $code.=<<___;
328 .type _aesni_${dir}rypt4,\@abi-omnipotent
329 .align 16
330 _aesni_${dir}rypt4:
331 $movkey ($key),$rndkey0
332 shr \$1,$rounds
333 $movkey 16($key),$rndkey1
334 lea 32($key),$key
335 xorps $rndkey0,$inout0
336 xorps $rndkey0,$inout1
337 xorps $rndkey0,$inout2
338 xorps $rndkey0,$inout3
339 $movkey ($key),$rndkey0
341 .L${dir}_loop4:
342 aes${dir} $rndkey1,$inout0
343 aes${dir} $rndkey1,$inout1
344 dec $rounds
345 aes${dir} $rndkey1,$inout2
346 aes${dir} $rndkey1,$inout3
347 $movkey 16($key),$rndkey1
348 aes${dir} $rndkey0,$inout0
349 aes${dir} $rndkey0,$inout1
350 lea 32($key),$key
351 aes${dir} $rndkey0,$inout2
352 aes${dir} $rndkey0,$inout3
353 $movkey ($key),$rndkey0
354 jnz .L${dir}_loop4
356 aes${dir} $rndkey1,$inout0
357 aes${dir} $rndkey1,$inout1
358 aes${dir} $rndkey1,$inout2
359 aes${dir} $rndkey1,$inout3
360 aes${dir}last $rndkey0,$inout0
361 aes${dir}last $rndkey0,$inout1
362 aes${dir}last $rndkey0,$inout2
363 aes${dir}last $rndkey0,$inout3
365 .size _aesni_${dir}rypt4,.-_aesni_${dir}rypt4
368 sub aesni_generate6 {
369 my $dir=shift;
370 # As already mentioned it takes in $key and $rounds, which are *not*
371 # preserved. $inout[0-5] is cipher/clear text...
372 $code.=<<___;
373 .type _aesni_${dir}rypt6,\@abi-omnipotent
374 .align 16
375 _aesni_${dir}rypt6:
376 $movkey ($key),$rndkey0
377 shr \$1,$rounds
378 $movkey 16($key),$rndkey1
379 lea 32($key),$key
380 xorps $rndkey0,$inout0
381 pxor $rndkey0,$inout1
382 aes${dir} $rndkey1,$inout0
383 pxor $rndkey0,$inout2
384 aes${dir} $rndkey1,$inout1
385 pxor $rndkey0,$inout3
386 aes${dir} $rndkey1,$inout2
387 pxor $rndkey0,$inout4
388 aes${dir} $rndkey1,$inout3
389 pxor $rndkey0,$inout5
390 dec $rounds
391 aes${dir} $rndkey1,$inout4
392 $movkey ($key),$rndkey0
393 aes${dir} $rndkey1,$inout5
394 jmp .L${dir}_loop6_enter
395 .align 16
396 .L${dir}_loop6:
397 aes${dir} $rndkey1,$inout0
398 aes${dir} $rndkey1,$inout1
399 dec $rounds
400 aes${dir} $rndkey1,$inout2
401 aes${dir} $rndkey1,$inout3
402 aes${dir} $rndkey1,$inout4
403 aes${dir} $rndkey1,$inout5
404 .L${dir}_loop6_enter: # happens to be 16-byte aligned
405 $movkey 16($key),$rndkey1
406 aes${dir} $rndkey0,$inout0
407 aes${dir} $rndkey0,$inout1
408 lea 32($key),$key
409 aes${dir} $rndkey0,$inout2
410 aes${dir} $rndkey0,$inout3
411 aes${dir} $rndkey0,$inout4
412 aes${dir} $rndkey0,$inout5
413 $movkey ($key),$rndkey0
414 jnz .L${dir}_loop6
416 aes${dir} $rndkey1,$inout0
417 aes${dir} $rndkey1,$inout1
418 aes${dir} $rndkey1,$inout2
419 aes${dir} $rndkey1,$inout3
420 aes${dir} $rndkey1,$inout4
421 aes${dir} $rndkey1,$inout5
422 aes${dir}last $rndkey0,$inout0
423 aes${dir}last $rndkey0,$inout1
424 aes${dir}last $rndkey0,$inout2
425 aes${dir}last $rndkey0,$inout3
426 aes${dir}last $rndkey0,$inout4
427 aes${dir}last $rndkey0,$inout5
429 .size _aesni_${dir}rypt6,.-_aesni_${dir}rypt6
432 sub aesni_generate8 {
433 my $dir=shift;
434 # As already mentioned it takes in $key and $rounds, which are *not*
435 # preserved. $inout[0-7] is cipher/clear text...
436 $code.=<<___;
437 .type _aesni_${dir}rypt8,\@abi-omnipotent
438 .align 16
439 _aesni_${dir}rypt8:
440 $movkey ($key),$rndkey0
441 shr \$1,$rounds
442 $movkey 16($key),$rndkey1
443 lea 32($key),$key
444 xorps $rndkey0,$inout0
445 xorps $rndkey0,$inout1
446 aes${dir} $rndkey1,$inout0
447 pxor $rndkey0,$inout2
448 aes${dir} $rndkey1,$inout1
449 pxor $rndkey0,$inout3
450 aes${dir} $rndkey1,$inout2
451 pxor $rndkey0,$inout4
452 aes${dir} $rndkey1,$inout3
453 pxor $rndkey0,$inout5
454 dec $rounds
455 aes${dir} $rndkey1,$inout4
456 pxor $rndkey0,$inout6
457 aes${dir} $rndkey1,$inout5
458 pxor $rndkey0,$inout7
459 $movkey ($key),$rndkey0
460 aes${dir} $rndkey1,$inout6
461 aes${dir} $rndkey1,$inout7
462 $movkey 16($key),$rndkey1
463 jmp .L${dir}_loop8_enter
464 .align 16
465 .L${dir}_loop8:
466 aes${dir} $rndkey1,$inout0
467 aes${dir} $rndkey1,$inout1
468 dec $rounds
469 aes${dir} $rndkey1,$inout2
470 aes${dir} $rndkey1,$inout3
471 aes${dir} $rndkey1,$inout4
472 aes${dir} $rndkey1,$inout5
473 aes${dir} $rndkey1,$inout6
474 aes${dir} $rndkey1,$inout7
475 $movkey 16($key),$rndkey1
476 .L${dir}_loop8_enter: # happens to be 16-byte aligned
477 aes${dir} $rndkey0,$inout0
478 aes${dir} $rndkey0,$inout1
479 lea 32($key),$key
480 aes${dir} $rndkey0,$inout2
481 aes${dir} $rndkey0,$inout3
482 aes${dir} $rndkey0,$inout4
483 aes${dir} $rndkey0,$inout5
484 aes${dir} $rndkey0,$inout6
485 aes${dir} $rndkey0,$inout7
486 $movkey ($key),$rndkey0
487 jnz .L${dir}_loop8
489 aes${dir} $rndkey1,$inout0
490 aes${dir} $rndkey1,$inout1
491 aes${dir} $rndkey1,$inout2
492 aes${dir} $rndkey1,$inout3
493 aes${dir} $rndkey1,$inout4
494 aes${dir} $rndkey1,$inout5
495 aes${dir} $rndkey1,$inout6
496 aes${dir} $rndkey1,$inout7
497 aes${dir}last $rndkey0,$inout0
498 aes${dir}last $rndkey0,$inout1
499 aes${dir}last $rndkey0,$inout2
500 aes${dir}last $rndkey0,$inout3
501 aes${dir}last $rndkey0,$inout4
502 aes${dir}last $rndkey0,$inout5
503 aes${dir}last $rndkey0,$inout6
504 aes${dir}last $rndkey0,$inout7
506 .size _aesni_${dir}rypt8,.-_aesni_${dir}rypt8
509 &aesni_generate3("enc") if ($PREFIX eq "aesni");
510 &aesni_generate3("dec");
511 &aesni_generate4("enc") if ($PREFIX eq "aesni");
512 &aesni_generate4("dec");
513 &aesni_generate6("enc") if ($PREFIX eq "aesni");
514 &aesni_generate6("dec");
515 &aesni_generate8("enc") if ($PREFIX eq "aesni");
516 &aesni_generate8("dec");
518 if ($PREFIX eq "aesni") {
519 ########################################################################
520 # void aesni_ecb_encrypt (const void *in, void *out,
521 # size_t length, const AES_KEY *key,
522 # int enc);
523 $code.=<<___;
524 .globl aesni_ecb_encrypt
525 .type aesni_ecb_encrypt,\@function,5
526 .align 16
527 aesni_ecb_encrypt:
528 and \$-16,$len
529 jz .Lecb_ret
531 mov 240($key),$rounds # key->rounds
532 $movkey ($key),$rndkey0
533 mov $key,$key_ # backup $key
534 mov $rounds,$rnds_ # backup $rounds
535 test %r8d,%r8d # 5th argument
536 jz .Lecb_decrypt
537 #--------------------------- ECB ENCRYPT ------------------------------#
538 cmp \$0x80,$len
539 jb .Lecb_enc_tail
541 movdqu ($inp),$inout0
542 movdqu 0x10($inp),$inout1
543 movdqu 0x20($inp),$inout2
544 movdqu 0x30($inp),$inout3
545 movdqu 0x40($inp),$inout4
546 movdqu 0x50($inp),$inout5
547 movdqu 0x60($inp),$inout6
548 movdqu 0x70($inp),$inout7
549 lea 0x80($inp),$inp
550 sub \$0x80,$len
551 jmp .Lecb_enc_loop8_enter
552 .align 16
553 .Lecb_enc_loop8:
554 movups $inout0,($out)
555 mov $key_,$key # restore $key
556 movdqu ($inp),$inout0
557 mov $rnds_,$rounds # restore $rounds
558 movups $inout1,0x10($out)
559 movdqu 0x10($inp),$inout1
560 movups $inout2,0x20($out)
561 movdqu 0x20($inp),$inout2
562 movups $inout3,0x30($out)
563 movdqu 0x30($inp),$inout3
564 movups $inout4,0x40($out)
565 movdqu 0x40($inp),$inout4
566 movups $inout5,0x50($out)
567 movdqu 0x50($inp),$inout5
568 movups $inout6,0x60($out)
569 movdqu 0x60($inp),$inout6
570 movups $inout7,0x70($out)
571 lea 0x80($out),$out
572 movdqu 0x70($inp),$inout7
573 lea 0x80($inp),$inp
574 .Lecb_enc_loop8_enter:
576 call _aesni_encrypt8
578 sub \$0x80,$len
579 jnc .Lecb_enc_loop8
581 movups $inout0,($out)
582 mov $key_,$key # restore $key
583 movups $inout1,0x10($out)
584 mov $rnds_,$rounds # restore $rounds
585 movups $inout2,0x20($out)
586 movups $inout3,0x30($out)
587 movups $inout4,0x40($out)
588 movups $inout5,0x50($out)
589 movups $inout6,0x60($out)
590 movups $inout7,0x70($out)
591 lea 0x80($out),$out
592 add \$0x80,$len
593 jz .Lecb_ret
595 .Lecb_enc_tail:
596 movups ($inp),$inout0
597 cmp \$0x20,$len
598 jb .Lecb_enc_one
599 movups 0x10($inp),$inout1
600 je .Lecb_enc_two
601 movups 0x20($inp),$inout2
602 cmp \$0x40,$len
603 jb .Lecb_enc_three
604 movups 0x30($inp),$inout3
605 je .Lecb_enc_four
606 movups 0x40($inp),$inout4
607 cmp \$0x60,$len
608 jb .Lecb_enc_five
609 movups 0x50($inp),$inout5
610 je .Lecb_enc_six
611 movdqu 0x60($inp),$inout6
612 call _aesni_encrypt8
613 movups $inout0,($out)
614 movups $inout1,0x10($out)
615 movups $inout2,0x20($out)
616 movups $inout3,0x30($out)
617 movups $inout4,0x40($out)
618 movups $inout5,0x50($out)
619 movups $inout6,0x60($out)
620 jmp .Lecb_ret
621 .align 16
622 .Lecb_enc_one:
624 &aesni_generate1("enc",$key,$rounds);
625 $code.=<<___;
626 movups $inout0,($out)
627 jmp .Lecb_ret
628 .align 16
629 .Lecb_enc_two:
630 xorps $inout2,$inout2
631 call _aesni_encrypt3
632 movups $inout0,($out)
633 movups $inout1,0x10($out)
634 jmp .Lecb_ret
635 .align 16
636 .Lecb_enc_three:
637 call _aesni_encrypt3
638 movups $inout0,($out)
639 movups $inout1,0x10($out)
640 movups $inout2,0x20($out)
641 jmp .Lecb_ret
642 .align 16
643 .Lecb_enc_four:
644 call _aesni_encrypt4
645 movups $inout0,($out)
646 movups $inout1,0x10($out)
647 movups $inout2,0x20($out)
648 movups $inout3,0x30($out)
649 jmp .Lecb_ret
650 .align 16
651 .Lecb_enc_five:
652 xorps $inout5,$inout5
653 call _aesni_encrypt6
654 movups $inout0,($out)
655 movups $inout1,0x10($out)
656 movups $inout2,0x20($out)
657 movups $inout3,0x30($out)
658 movups $inout4,0x40($out)
659 jmp .Lecb_ret
660 .align 16
661 .Lecb_enc_six:
662 call _aesni_encrypt6
663 movups $inout0,($out)
664 movups $inout1,0x10($out)
665 movups $inout2,0x20($out)
666 movups $inout3,0x30($out)
667 movups $inout4,0x40($out)
668 movups $inout5,0x50($out)
669 jmp .Lecb_ret
670 \f#--------------------------- ECB DECRYPT ------------------------------#
671 .align 16
672 .Lecb_decrypt:
673 cmp \$0x80,$len
674 jb .Lecb_dec_tail
676 movdqu ($inp),$inout0
677 movdqu 0x10($inp),$inout1
678 movdqu 0x20($inp),$inout2
679 movdqu 0x30($inp),$inout3
680 movdqu 0x40($inp),$inout4
681 movdqu 0x50($inp),$inout5
682 movdqu 0x60($inp),$inout6
683 movdqu 0x70($inp),$inout7
684 lea 0x80($inp),$inp
685 sub \$0x80,$len
686 jmp .Lecb_dec_loop8_enter
687 .align 16
688 .Lecb_dec_loop8:
689 movups $inout0,($out)
690 mov $key_,$key # restore $key
691 movdqu ($inp),$inout0
692 mov $rnds_,$rounds # restore $rounds
693 movups $inout1,0x10($out)
694 movdqu 0x10($inp),$inout1
695 movups $inout2,0x20($out)
696 movdqu 0x20($inp),$inout2
697 movups $inout3,0x30($out)
698 movdqu 0x30($inp),$inout3
699 movups $inout4,0x40($out)
700 movdqu 0x40($inp),$inout4
701 movups $inout5,0x50($out)
702 movdqu 0x50($inp),$inout5
703 movups $inout6,0x60($out)
704 movdqu 0x60($inp),$inout6
705 movups $inout7,0x70($out)
706 lea 0x80($out),$out
707 movdqu 0x70($inp),$inout7
708 lea 0x80($inp),$inp
709 .Lecb_dec_loop8_enter:
711 call _aesni_decrypt8
713 $movkey ($key_),$rndkey0
714 sub \$0x80,$len
715 jnc .Lecb_dec_loop8
717 movups $inout0,($out)
718 mov $key_,$key # restore $key
719 movups $inout1,0x10($out)
720 mov $rnds_,$rounds # restore $rounds
721 movups $inout2,0x20($out)
722 movups $inout3,0x30($out)
723 movups $inout4,0x40($out)
724 movups $inout5,0x50($out)
725 movups $inout6,0x60($out)
726 movups $inout7,0x70($out)
727 lea 0x80($out),$out
728 add \$0x80,$len
729 jz .Lecb_ret
731 .Lecb_dec_tail:
732 movups ($inp),$inout0
733 cmp \$0x20,$len
734 jb .Lecb_dec_one
735 movups 0x10($inp),$inout1
736 je .Lecb_dec_two
737 movups 0x20($inp),$inout2
738 cmp \$0x40,$len
739 jb .Lecb_dec_three
740 movups 0x30($inp),$inout3
741 je .Lecb_dec_four
742 movups 0x40($inp),$inout4
743 cmp \$0x60,$len
744 jb .Lecb_dec_five
745 movups 0x50($inp),$inout5
746 je .Lecb_dec_six
747 movups 0x60($inp),$inout6
748 $movkey ($key),$rndkey0
749 call _aesni_decrypt8
750 movups $inout0,($out)
751 movups $inout1,0x10($out)
752 movups $inout2,0x20($out)
753 movups $inout3,0x30($out)
754 movups $inout4,0x40($out)
755 movups $inout5,0x50($out)
756 movups $inout6,0x60($out)
757 jmp .Lecb_ret
758 .align 16
759 .Lecb_dec_one:
761 &aesni_generate1("dec",$key,$rounds);
762 $code.=<<___;
763 movups $inout0,($out)
764 jmp .Lecb_ret
765 .align 16
766 .Lecb_dec_two:
767 xorps $inout2,$inout2
768 call _aesni_decrypt3
769 movups $inout0,($out)
770 movups $inout1,0x10($out)
771 jmp .Lecb_ret
772 .align 16
773 .Lecb_dec_three:
774 call _aesni_decrypt3
775 movups $inout0,($out)
776 movups $inout1,0x10($out)
777 movups $inout2,0x20($out)
778 jmp .Lecb_ret
779 .align 16
780 .Lecb_dec_four:
781 call _aesni_decrypt4
782 movups $inout0,($out)
783 movups $inout1,0x10($out)
784 movups $inout2,0x20($out)
785 movups $inout3,0x30($out)
786 jmp .Lecb_ret
787 .align 16
788 .Lecb_dec_five:
789 xorps $inout5,$inout5
790 call _aesni_decrypt6
791 movups $inout0,($out)
792 movups $inout1,0x10($out)
793 movups $inout2,0x20($out)
794 movups $inout3,0x30($out)
795 movups $inout4,0x40($out)
796 jmp .Lecb_ret
797 .align 16
798 .Lecb_dec_six:
799 call _aesni_decrypt6
800 movups $inout0,($out)
801 movups $inout1,0x10($out)
802 movups $inout2,0x20($out)
803 movups $inout3,0x30($out)
804 movups $inout4,0x40($out)
805 movups $inout5,0x50($out)
807 .Lecb_ret:
809 .size aesni_ecb_encrypt,.-aesni_ecb_encrypt
813 ######################################################################
814 # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out,
815 # size_t blocks, const AES_KEY *key,
816 # const char *ivec,char *cmac);
818 # Handles only complete blocks, operates on 64-bit counter and
819 # does not update *ivec! Nor does it finalize CMAC value
820 # (see engine/eng_aesni.c for details)
823 my $cmac="%r9"; # 6th argument
825 my $increment="%xmm6";
826 my $bswap_mask="%xmm7";
828 $code.=<<___;
829 .globl aesni_ccm64_encrypt_blocks
830 .type aesni_ccm64_encrypt_blocks,\@function,6
831 .align 16
832 aesni_ccm64_encrypt_blocks:
834 $code.=<<___ if ($win64);
835 lea -0x58(%rsp),%rsp
836 movaps %xmm6,(%rsp)
837 movaps %xmm7,0x10(%rsp)
838 movaps %xmm8,0x20(%rsp)
839 movaps %xmm9,0x30(%rsp)
840 .Lccm64_enc_body:
842 $code.=<<___;
843 mov 240($key),$rounds # key->rounds
844 movdqu ($ivp),$iv
845 movdqa .Lincrement64(%rip),$increment
846 movdqa .Lbswap_mask(%rip),$bswap_mask
848 shr \$1,$rounds
849 lea 0($key),$key_
850 movdqu ($cmac),$inout1
851 movdqa $iv,$inout0
852 mov $rounds,$rnds_
853 pshufb $bswap_mask,$iv
854 jmp .Lccm64_enc_outer
855 .align 16
856 .Lccm64_enc_outer:
857 $movkey ($key_),$rndkey0
858 mov $rnds_,$rounds
859 movups ($inp),$in0 # load inp
861 xorps $rndkey0,$inout0 # counter
862 $movkey 16($key_),$rndkey1
863 xorps $in0,$rndkey0
864 lea 32($key_),$key
865 xorps $rndkey0,$inout1 # cmac^=inp
866 $movkey ($key),$rndkey0
868 .Lccm64_enc2_loop:
869 aesenc $rndkey1,$inout0
870 dec $rounds
871 aesenc $rndkey1,$inout1
872 $movkey 16($key),$rndkey1
873 aesenc $rndkey0,$inout0
874 lea 32($key),$key
875 aesenc $rndkey0,$inout1
876 $movkey 0($key),$rndkey0
877 jnz .Lccm64_enc2_loop
878 aesenc $rndkey1,$inout0
879 aesenc $rndkey1,$inout1
880 paddq $increment,$iv
881 aesenclast $rndkey0,$inout0
882 aesenclast $rndkey0,$inout1
884 dec $len
885 lea 16($inp),$inp
886 xorps $inout0,$in0 # inp ^= E(iv)
887 movdqa $iv,$inout0
888 movups $in0,($out) # save output
889 lea 16($out),$out
890 pshufb $bswap_mask,$inout0
891 jnz .Lccm64_enc_outer
893 movups $inout1,($cmac)
895 $code.=<<___ if ($win64);
896 movaps (%rsp),%xmm6
897 movaps 0x10(%rsp),%xmm7
898 movaps 0x20(%rsp),%xmm8
899 movaps 0x30(%rsp),%xmm9
900 lea 0x58(%rsp),%rsp
901 .Lccm64_enc_ret:
903 $code.=<<___;
905 .size aesni_ccm64_encrypt_blocks,.-aesni_ccm64_encrypt_blocks
907 ######################################################################
908 $code.=<<___;
909 .globl aesni_ccm64_decrypt_blocks
910 .type aesni_ccm64_decrypt_blocks,\@function,6
911 .align 16
912 aesni_ccm64_decrypt_blocks:
914 $code.=<<___ if ($win64);
915 lea -0x58(%rsp),%rsp
916 movaps %xmm6,(%rsp)
917 movaps %xmm7,0x10(%rsp)
918 movaps %xmm8,0x20(%rsp)
919 movaps %xmm9,0x30(%rsp)
920 .Lccm64_dec_body:
922 $code.=<<___;
923 mov 240($key),$rounds # key->rounds
924 movups ($ivp),$iv
925 movdqu ($cmac),$inout1
926 movdqa .Lincrement64(%rip),$increment
927 movdqa .Lbswap_mask(%rip),$bswap_mask
929 movaps $iv,$inout0
930 mov $rounds,$rnds_
931 mov $key,$key_
932 pshufb $bswap_mask,$iv
934 &aesni_generate1("enc",$key,$rounds);
935 $code.=<<___;
936 movups ($inp),$in0 # load inp
937 paddq $increment,$iv
938 lea 16($inp),$inp
939 jmp .Lccm64_dec_outer
940 .align 16
941 .Lccm64_dec_outer:
942 xorps $inout0,$in0 # inp ^= E(iv)
943 movdqa $iv,$inout0
944 mov $rnds_,$rounds
945 movups $in0,($out) # save output
946 lea 16($out),$out
947 pshufb $bswap_mask,$inout0
949 sub \$1,$len
950 jz .Lccm64_dec_break
952 $movkey ($key_),$rndkey0
953 shr \$1,$rounds
954 $movkey 16($key_),$rndkey1
955 xorps $rndkey0,$in0
956 lea 32($key_),$key
957 xorps $rndkey0,$inout0
958 xorps $in0,$inout1 # cmac^=out
959 $movkey ($key),$rndkey0
961 .Lccm64_dec2_loop:
962 aesenc $rndkey1,$inout0
963 dec $rounds
964 aesenc $rndkey1,$inout1
965 $movkey 16($key),$rndkey1
966 aesenc $rndkey0,$inout0
967 lea 32($key),$key
968 aesenc $rndkey0,$inout1
969 $movkey 0($key),$rndkey0
970 jnz .Lccm64_dec2_loop
971 movups ($inp),$in0 # load inp
972 paddq $increment,$iv
973 aesenc $rndkey1,$inout0
974 aesenc $rndkey1,$inout1
975 lea 16($inp),$inp
976 aesenclast $rndkey0,$inout0
977 aesenclast $rndkey0,$inout1
978 jmp .Lccm64_dec_outer
980 .align 16
981 .Lccm64_dec_break:
982 #xorps $in0,$inout1 # cmac^=out
984 &aesni_generate1("enc",$key_,$rounds,$inout1,$in0);
985 $code.=<<___;
986 movups $inout1,($cmac)
988 $code.=<<___ if ($win64);
989 movaps (%rsp),%xmm6
990 movaps 0x10(%rsp),%xmm7
991 movaps 0x20(%rsp),%xmm8
992 movaps 0x30(%rsp),%xmm9
993 lea 0x58(%rsp),%rsp
994 .Lccm64_dec_ret:
996 $code.=<<___;
998 .size aesni_ccm64_decrypt_blocks,.-aesni_ccm64_decrypt_blocks
1001 ######################################################################
1002 # void aesni_ctr32_encrypt_blocks (const void *in, void *out,
1003 # size_t blocks, const AES_KEY *key,
1004 # const char *ivec);
1006 # Handles only complete blocks, operates on 32-bit counter and
1007 # does not update *ivec! (see engine/eng_aesni.c for details)
1010 my $reserved = $win64?0:-0x28;
1011 my ($in0,$in1,$in2,$in3)=map("%xmm$_",(8..11));
1012 my ($iv0,$iv1,$ivec)=("%xmm12","%xmm13","%xmm14");
1013 my $bswap_mask="%xmm15";
1015 $code.=<<___;
1016 .globl aesni_ctr32_encrypt_blocks
1017 .type aesni_ctr32_encrypt_blocks,\@function,5
1018 .align 16
1019 aesni_ctr32_encrypt_blocks:
1021 $code.=<<___ if ($win64);
1022 lea -0xc8(%rsp),%rsp
1023 movaps %xmm6,0x20(%rsp)
1024 movaps %xmm7,0x30(%rsp)
1025 movaps %xmm8,0x40(%rsp)
1026 movaps %xmm9,0x50(%rsp)
1027 movaps %xmm10,0x60(%rsp)
1028 movaps %xmm11,0x70(%rsp)
1029 movaps %xmm12,0x80(%rsp)
1030 movaps %xmm13,0x90(%rsp)
1031 movaps %xmm14,0xa0(%rsp)
1032 movaps %xmm15,0xb0(%rsp)
1033 .Lctr32_body:
1035 $code.=<<___;
1036 cmp \$1,$len
1037 je .Lctr32_one_shortcut
1039 movdqu ($ivp),$ivec
1040 movdqa .Lbswap_mask(%rip),$bswap_mask
1041 xor $rounds,$rounds
1042 pextrd \$3,$ivec,$rnds_ # pull 32-bit counter
1043 pinsrd \$3,$rounds,$ivec # wipe 32-bit counter
1045 mov 240($key),$rounds # key->rounds
1046 bswap $rnds_
1047 pxor $iv0,$iv0 # vector of 3 32-bit counters
1048 pxor $iv1,$iv1 # vector of 3 32-bit counters
1049 pinsrd \$0,$rnds_,$iv0
1050 lea 3($rnds_),$key_
1051 pinsrd \$0,$key_,$iv1
1052 inc $rnds_
1053 pinsrd \$1,$rnds_,$iv0
1054 inc $key_
1055 pinsrd \$1,$key_,$iv1
1056 inc $rnds_
1057 pinsrd \$2,$rnds_,$iv0
1058 inc $key_
1059 pinsrd \$2,$key_,$iv1
1060 movdqa $iv0,$reserved(%rsp)
1061 pshufb $bswap_mask,$iv0
1062 movdqa $iv1,`$reserved+0x10`(%rsp)
1063 pshufb $bswap_mask,$iv1
1065 pshufd \$`3<<6`,$iv0,$inout0 # place counter to upper dword
1066 pshufd \$`2<<6`,$iv0,$inout1
1067 pshufd \$`1<<6`,$iv0,$inout2
1068 cmp \$6,$len
1069 jb .Lctr32_tail
1070 shr \$1,$rounds
1071 mov $key,$key_ # backup $key
1072 mov $rounds,$rnds_ # backup $rounds
1073 sub \$6,$len
1074 jmp .Lctr32_loop6
1076 .align 16
1077 .Lctr32_loop6:
1078 pshufd \$`3<<6`,$iv1,$inout3
1079 por $ivec,$inout0 # merge counter-less ivec
1080 $movkey ($key_),$rndkey0
1081 pshufd \$`2<<6`,$iv1,$inout4
1082 por $ivec,$inout1
1083 $movkey 16($key_),$rndkey1
1084 pshufd \$`1<<6`,$iv1,$inout5
1085 por $ivec,$inout2
1086 por $ivec,$inout3
1087 xorps $rndkey0,$inout0
1088 por $ivec,$inout4
1089 por $ivec,$inout5
1091 # inline _aesni_encrypt6 and interleave last rounds
1092 # with own code...
1094 pxor $rndkey0,$inout1
1095 aesenc $rndkey1,$inout0
1096 lea 32($key_),$key
1097 pxor $rndkey0,$inout2
1098 aesenc $rndkey1,$inout1
1099 movdqa .Lincrement32(%rip),$iv1
1100 pxor $rndkey0,$inout3
1101 aesenc $rndkey1,$inout2
1102 movdqa $reserved(%rsp),$iv0
1103 pxor $rndkey0,$inout4
1104 aesenc $rndkey1,$inout3
1105 pxor $rndkey0,$inout5
1106 $movkey ($key),$rndkey0
1107 dec $rounds
1108 aesenc $rndkey1,$inout4
1109 aesenc $rndkey1,$inout5
1110 jmp .Lctr32_enc_loop6_enter
1111 .align 16
1112 .Lctr32_enc_loop6:
1113 aesenc $rndkey1,$inout0
1114 aesenc $rndkey1,$inout1
1115 dec $rounds
1116 aesenc $rndkey1,$inout2
1117 aesenc $rndkey1,$inout3
1118 aesenc $rndkey1,$inout4
1119 aesenc $rndkey1,$inout5
1120 .Lctr32_enc_loop6_enter:
1121 $movkey 16($key),$rndkey1
1122 aesenc $rndkey0,$inout0
1123 aesenc $rndkey0,$inout1
1124 lea 32($key),$key
1125 aesenc $rndkey0,$inout2
1126 aesenc $rndkey0,$inout3
1127 aesenc $rndkey0,$inout4
1128 aesenc $rndkey0,$inout5
1129 $movkey ($key),$rndkey0
1130 jnz .Lctr32_enc_loop6
1132 aesenc $rndkey1,$inout0
1133 paddd $iv1,$iv0 # increment counter vector
1134 aesenc $rndkey1,$inout1
1135 paddd `$reserved+0x10`(%rsp),$iv1
1136 aesenc $rndkey1,$inout2
1137 movdqa $iv0,$reserved(%rsp) # save counter vector
1138 aesenc $rndkey1,$inout3
1139 movdqa $iv1,`$reserved+0x10`(%rsp)
1140 aesenc $rndkey1,$inout4
1141 pshufb $bswap_mask,$iv0 # byte swap
1142 aesenc $rndkey1,$inout5
1143 pshufb $bswap_mask,$iv1
1145 aesenclast $rndkey0,$inout0
1146 movups ($inp),$in0 # load input
1147 aesenclast $rndkey0,$inout1
1148 movups 0x10($inp),$in1
1149 aesenclast $rndkey0,$inout2
1150 movups 0x20($inp),$in2
1151 aesenclast $rndkey0,$inout3
1152 movups 0x30($inp),$in3
1153 aesenclast $rndkey0,$inout4
1154 movups 0x40($inp),$rndkey1
1155 aesenclast $rndkey0,$inout5
1156 movups 0x50($inp),$rndkey0
1157 lea 0x60($inp),$inp
1159 xorps $inout0,$in0 # xor
1160 pshufd \$`3<<6`,$iv0,$inout0
1161 xorps $inout1,$in1
1162 pshufd \$`2<<6`,$iv0,$inout1
1163 movups $in0,($out) # store output
1164 xorps $inout2,$in2
1165 pshufd \$`1<<6`,$iv0,$inout2
1166 movups $in1,0x10($out)
1167 xorps $inout3,$in3
1168 movups $in2,0x20($out)
1169 xorps $inout4,$rndkey1
1170 movups $in3,0x30($out)
1171 xorps $inout5,$rndkey0
1172 movups $rndkey1,0x40($out)
1173 movups $rndkey0,0x50($out)
1174 lea 0x60($out),$out
1175 mov $rnds_,$rounds
1176 sub \$6,$len
1177 jnc .Lctr32_loop6
1179 add \$6,$len
1180 jz .Lctr32_done
1181 mov $key_,$key # restore $key
1182 lea 1($rounds,$rounds),$rounds # restore original value
1184 .Lctr32_tail:
1185 por $ivec,$inout0
1186 movups ($inp),$in0
1187 cmp \$2,$len
1188 jb .Lctr32_one
1190 por $ivec,$inout1
1191 movups 0x10($inp),$in1
1192 je .Lctr32_two
1194 pshufd \$`3<<6`,$iv1,$inout3
1195 por $ivec,$inout2
1196 movups 0x20($inp),$in2
1197 cmp \$4,$len
1198 jb .Lctr32_three
1200 pshufd \$`2<<6`,$iv1,$inout4
1201 por $ivec,$inout3
1202 movups 0x30($inp),$in3
1203 je .Lctr32_four
1205 por $ivec,$inout4
1206 xorps $inout5,$inout5
1208 call _aesni_encrypt6
1210 movups 0x40($inp),$rndkey1
1211 xorps $inout0,$in0
1212 xorps $inout1,$in1
1213 movups $in0,($out)
1214 xorps $inout2,$in2
1215 movups $in1,0x10($out)
1216 xorps $inout3,$in3
1217 movups $in2,0x20($out)
1218 xorps $inout4,$rndkey1
1219 movups $in3,0x30($out)
1220 movups $rndkey1,0x40($out)
1221 jmp .Lctr32_done
1223 .align 16
1224 .Lctr32_one_shortcut:
1225 movups ($ivp),$inout0
1226 movups ($inp),$in0
1227 mov 240($key),$rounds # key->rounds
1228 .Lctr32_one:
1230 &aesni_generate1("enc",$key,$rounds);
1231 $code.=<<___;
1232 xorps $inout0,$in0
1233 movups $in0,($out)
1234 jmp .Lctr32_done
1236 .align 16
1237 .Lctr32_two:
1238 xorps $inout2,$inout2
1239 call _aesni_encrypt3
1240 xorps $inout0,$in0
1241 xorps $inout1,$in1
1242 movups $in0,($out)
1243 movups $in1,0x10($out)
1244 jmp .Lctr32_done
1246 .align 16
1247 .Lctr32_three:
1248 call _aesni_encrypt3
1249 xorps $inout0,$in0
1250 xorps $inout1,$in1
1251 movups $in0,($out)
1252 xorps $inout2,$in2
1253 movups $in1,0x10($out)
1254 movups $in2,0x20($out)
1255 jmp .Lctr32_done
1257 .align 16
1258 .Lctr32_four:
1259 call _aesni_encrypt4
1260 xorps $inout0,$in0
1261 xorps $inout1,$in1
1262 movups $in0,($out)
1263 xorps $inout2,$in2
1264 movups $in1,0x10($out)
1265 xorps $inout3,$in3
1266 movups $in2,0x20($out)
1267 movups $in3,0x30($out)
1269 .Lctr32_done:
1271 $code.=<<___ if ($win64);
1272 movaps 0x20(%rsp),%xmm6
1273 movaps 0x30(%rsp),%xmm7
1274 movaps 0x40(%rsp),%xmm8
1275 movaps 0x50(%rsp),%xmm9
1276 movaps 0x60(%rsp),%xmm10
1277 movaps 0x70(%rsp),%xmm11
1278 movaps 0x80(%rsp),%xmm12
1279 movaps 0x90(%rsp),%xmm13
1280 movaps 0xa0(%rsp),%xmm14
1281 movaps 0xb0(%rsp),%xmm15
1282 lea 0xc8(%rsp),%rsp
1283 .Lctr32_ret:
1285 $code.=<<___;
1287 .size aesni_ctr32_encrypt_blocks,.-aesni_ctr32_encrypt_blocks
1291 ######################################################################
1292 # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len,
1293 # const AES_KEY *key1, const AES_KEY *key2
1294 # const unsigned char iv[16]);
1297 my @tweak=map("%xmm$_",(10..15));
1298 my ($twmask,$twres,$twtmp)=("%xmm8","%xmm9",@tweak[4]);
1299 my ($key2,$ivp,$len_)=("%r8","%r9","%r9");
1300 my $frame_size = 0x68 + ($win64?160:0);
1302 $code.=<<___;
1303 .globl aesni_xts_encrypt
1304 .type aesni_xts_encrypt,\@function,6
1305 .align 16
1306 aesni_xts_encrypt:
1307 lea -$frame_size(%rsp),%rsp
1309 $code.=<<___ if ($win64);
1310 movaps %xmm6,0x60(%rsp)
1311 movaps %xmm7,0x70(%rsp)
1312 movaps %xmm8,0x80(%rsp)
1313 movaps %xmm9,0x90(%rsp)
1314 movaps %xmm10,0xa0(%rsp)
1315 movaps %xmm11,0xb0(%rsp)
1316 movaps %xmm12,0xc0(%rsp)
1317 movaps %xmm13,0xd0(%rsp)
1318 movaps %xmm14,0xe0(%rsp)
1319 movaps %xmm15,0xf0(%rsp)
1320 .Lxts_enc_body:
1322 $code.=<<___;
1323 movups ($ivp),@tweak[5] # load clear-text tweak
1324 mov 240(%r8),$rounds # key2->rounds
1325 mov 240($key),$rnds_ # key1->rounds
1327 # generate the tweak
1328 &aesni_generate1("enc",$key2,$rounds,@tweak[5]);
1329 $code.=<<___;
1330 mov $key,$key_ # backup $key
1331 mov $rnds_,$rounds # backup $rounds
1332 mov $len,$len_ # backup $len
1333 and \$-16,$len
1335 movdqa .Lxts_magic(%rip),$twmask
1336 pxor $twtmp,$twtmp
1337 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1339 for ($i=0;$i<4;$i++) {
1340 $code.=<<___;
1341 pshufd \$0x13,$twtmp,$twres
1342 pxor $twtmp,$twtmp
1343 movdqa @tweak[5],@tweak[$i]
1344 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1345 pand $twmask,$twres # isolate carry and residue
1346 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1347 pxor $twres,@tweak[5]
1350 $code.=<<___;
1351 sub \$16*6,$len
1352 jc .Lxts_enc_short
1354 shr \$1,$rounds
1355 sub \$1,$rounds
1356 mov $rounds,$rnds_
1357 jmp .Lxts_enc_grandloop
1359 .align 16
1360 .Lxts_enc_grandloop:
1361 pshufd \$0x13,$twtmp,$twres
1362 movdqa @tweak[5],@tweak[4]
1363 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1364 movdqu `16*0`($inp),$inout0 # load input
1365 pand $twmask,$twres # isolate carry and residue
1366 movdqu `16*1`($inp),$inout1
1367 pxor $twres,@tweak[5]
1369 movdqu `16*2`($inp),$inout2
1370 pxor @tweak[0],$inout0 # input^=tweak
1371 movdqu `16*3`($inp),$inout3
1372 pxor @tweak[1],$inout1
1373 movdqu `16*4`($inp),$inout4
1374 pxor @tweak[2],$inout2
1375 movdqu `16*5`($inp),$inout5
1376 lea `16*6`($inp),$inp
1377 pxor @tweak[3],$inout3
1378 $movkey ($key_),$rndkey0
1379 pxor @tweak[4],$inout4
1380 pxor @tweak[5],$inout5
1382 # inline _aesni_encrypt6 and interleave first and last rounds
1383 # with own code...
1384 $movkey 16($key_),$rndkey1
1385 pxor $rndkey0,$inout0
1386 pxor $rndkey0,$inout1
1387 movdqa @tweak[0],`16*0`(%rsp) # put aside tweaks
1388 aesenc $rndkey1,$inout0
1389 lea 32($key_),$key
1390 pxor $rndkey0,$inout2
1391 movdqa @tweak[1],`16*1`(%rsp)
1392 aesenc $rndkey1,$inout1
1393 pxor $rndkey0,$inout3
1394 movdqa @tweak[2],`16*2`(%rsp)
1395 aesenc $rndkey1,$inout2
1396 pxor $rndkey0,$inout4
1397 movdqa @tweak[3],`16*3`(%rsp)
1398 aesenc $rndkey1,$inout3
1399 pxor $rndkey0,$inout5
1400 $movkey ($key),$rndkey0
1401 dec $rounds
1402 movdqa @tweak[4],`16*4`(%rsp)
1403 aesenc $rndkey1,$inout4
1404 movdqa @tweak[5],`16*5`(%rsp)
1405 aesenc $rndkey1,$inout5
1406 pxor $twtmp,$twtmp
1407 pcmpgtd @tweak[5],$twtmp
1408 jmp .Lxts_enc_loop6_enter
1410 .align 16
1411 .Lxts_enc_loop6:
1412 aesenc $rndkey1,$inout0
1413 aesenc $rndkey1,$inout1
1414 dec $rounds
1415 aesenc $rndkey1,$inout2
1416 aesenc $rndkey1,$inout3
1417 aesenc $rndkey1,$inout4
1418 aesenc $rndkey1,$inout5
1419 .Lxts_enc_loop6_enter:
1420 $movkey 16($key),$rndkey1
1421 aesenc $rndkey0,$inout0
1422 aesenc $rndkey0,$inout1
1423 lea 32($key),$key
1424 aesenc $rndkey0,$inout2
1425 aesenc $rndkey0,$inout3
1426 aesenc $rndkey0,$inout4
1427 aesenc $rndkey0,$inout5
1428 $movkey ($key),$rndkey0
1429 jnz .Lxts_enc_loop6
1431 pshufd \$0x13,$twtmp,$twres
1432 pxor $twtmp,$twtmp
1433 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1434 aesenc $rndkey1,$inout0
1435 pand $twmask,$twres # isolate carry and residue
1436 aesenc $rndkey1,$inout1
1437 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1438 aesenc $rndkey1,$inout2
1439 pxor $twres,@tweak[5]
1440 aesenc $rndkey1,$inout3
1441 aesenc $rndkey1,$inout4
1442 aesenc $rndkey1,$inout5
1443 $movkey 16($key),$rndkey1
1445 pshufd \$0x13,$twtmp,$twres
1446 pxor $twtmp,$twtmp
1447 movdqa @tweak[5],@tweak[0]
1448 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1449 aesenc $rndkey0,$inout0
1450 pand $twmask,$twres # isolate carry and residue
1451 aesenc $rndkey0,$inout1
1452 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1453 aesenc $rndkey0,$inout2
1454 pxor $twres,@tweak[5]
1455 aesenc $rndkey0,$inout3
1456 aesenc $rndkey0,$inout4
1457 aesenc $rndkey0,$inout5
1458 $movkey 32($key),$rndkey0
1460 pshufd \$0x13,$twtmp,$twres
1461 pxor $twtmp,$twtmp
1462 movdqa @tweak[5],@tweak[1]
1463 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1464 aesenc $rndkey1,$inout0
1465 pand $twmask,$twres # isolate carry and residue
1466 aesenc $rndkey1,$inout1
1467 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1468 aesenc $rndkey1,$inout2
1469 pxor $twres,@tweak[5]
1470 aesenc $rndkey1,$inout3
1471 aesenc $rndkey1,$inout4
1472 aesenc $rndkey1,$inout5
1474 pshufd \$0x13,$twtmp,$twres
1475 pxor $twtmp,$twtmp
1476 movdqa @tweak[5],@tweak[2]
1477 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1478 aesenclast $rndkey0,$inout0
1479 pand $twmask,$twres # isolate carry and residue
1480 aesenclast $rndkey0,$inout1
1481 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1482 aesenclast $rndkey0,$inout2
1483 pxor $twres,@tweak[5]
1484 aesenclast $rndkey0,$inout3
1485 aesenclast $rndkey0,$inout4
1486 aesenclast $rndkey0,$inout5
1488 pshufd \$0x13,$twtmp,$twres
1489 pxor $twtmp,$twtmp
1490 movdqa @tweak[5],@tweak[3]
1491 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1492 xorps `16*0`(%rsp),$inout0 # output^=tweak
1493 pand $twmask,$twres # isolate carry and residue
1494 xorps `16*1`(%rsp),$inout1
1495 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1496 pxor $twres,@tweak[5]
1498 xorps `16*2`(%rsp),$inout2
1499 movups $inout0,`16*0`($out) # write output
1500 xorps `16*3`(%rsp),$inout3
1501 movups $inout1,`16*1`($out)
1502 xorps `16*4`(%rsp),$inout4
1503 movups $inout2,`16*2`($out)
1504 xorps `16*5`(%rsp),$inout5
1505 movups $inout3,`16*3`($out)
1506 mov $rnds_,$rounds # restore $rounds
1507 movups $inout4,`16*4`($out)
1508 movups $inout5,`16*5`($out)
1509 lea `16*6`($out),$out
1510 sub \$16*6,$len
1511 jnc .Lxts_enc_grandloop
1513 lea 3($rounds,$rounds),$rounds # restore original value
1514 mov $key_,$key # restore $key
1515 mov $rounds,$rnds_ # backup $rounds
1517 .Lxts_enc_short:
1518 add \$16*6,$len
1519 jz .Lxts_enc_done
1521 cmp \$0x20,$len
1522 jb .Lxts_enc_one
1523 je .Lxts_enc_two
1525 cmp \$0x40,$len
1526 jb .Lxts_enc_three
1527 je .Lxts_enc_four
1529 pshufd \$0x13,$twtmp,$twres
1530 movdqa @tweak[5],@tweak[4]
1531 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1532 movdqu ($inp),$inout0
1533 pand $twmask,$twres # isolate carry and residue
1534 movdqu 16*1($inp),$inout1
1535 pxor $twres,@tweak[5]
1537 movdqu 16*2($inp),$inout2
1538 pxor @tweak[0],$inout0
1539 movdqu 16*3($inp),$inout3
1540 pxor @tweak[1],$inout1
1541 movdqu 16*4($inp),$inout4
1542 lea 16*5($inp),$inp
1543 pxor @tweak[2],$inout2
1544 pxor @tweak[3],$inout3
1545 pxor @tweak[4],$inout4
1547 call _aesni_encrypt6
1549 xorps @tweak[0],$inout0
1550 movdqa @tweak[5],@tweak[0]
1551 xorps @tweak[1],$inout1
1552 xorps @tweak[2],$inout2
1553 movdqu $inout0,($out)
1554 xorps @tweak[3],$inout3
1555 movdqu $inout1,16*1($out)
1556 xorps @tweak[4],$inout4
1557 movdqu $inout2,16*2($out)
1558 movdqu $inout3,16*3($out)
1559 movdqu $inout4,16*4($out)
1560 lea 16*5($out),$out
1561 jmp .Lxts_enc_done
1563 .align 16
1564 .Lxts_enc_one:
1565 movups ($inp),$inout0
1566 lea 16*1($inp),$inp
1567 xorps @tweak[0],$inout0
1569 &aesni_generate1("enc",$key,$rounds);
1570 $code.=<<___;
1571 xorps @tweak[0],$inout0
1572 movdqa @tweak[1],@tweak[0]
1573 movups $inout0,($out)
1574 lea 16*1($out),$out
1575 jmp .Lxts_enc_done
1577 .align 16
1578 .Lxts_enc_two:
1579 movups ($inp),$inout0
1580 movups 16($inp),$inout1
1581 lea 32($inp),$inp
1582 xorps @tweak[0],$inout0
1583 xorps @tweak[1],$inout1
1585 call _aesni_encrypt3
1587 xorps @tweak[0],$inout0
1588 movdqa @tweak[2],@tweak[0]
1589 xorps @tweak[1],$inout1
1590 movups $inout0,($out)
1591 movups $inout1,16*1($out)
1592 lea 16*2($out),$out
1593 jmp .Lxts_enc_done
1595 .align 16
1596 .Lxts_enc_three:
1597 movups ($inp),$inout0
1598 movups 16*1($inp),$inout1
1599 movups 16*2($inp),$inout2
1600 lea 16*3($inp),$inp
1601 xorps @tweak[0],$inout0
1602 xorps @tweak[1],$inout1
1603 xorps @tweak[2],$inout2
1605 call _aesni_encrypt3
1607 xorps @tweak[0],$inout0
1608 movdqa @tweak[3],@tweak[0]
1609 xorps @tweak[1],$inout1
1610 xorps @tweak[2],$inout2
1611 movups $inout0,($out)
1612 movups $inout1,16*1($out)
1613 movups $inout2,16*2($out)
1614 lea 16*3($out),$out
1615 jmp .Lxts_enc_done
1617 .align 16
1618 .Lxts_enc_four:
1619 movups ($inp),$inout0
1620 movups 16*1($inp),$inout1
1621 movups 16*2($inp),$inout2
1622 xorps @tweak[0],$inout0
1623 movups 16*3($inp),$inout3
1624 lea 16*4($inp),$inp
1625 xorps @tweak[1],$inout1
1626 xorps @tweak[2],$inout2
1627 xorps @tweak[3],$inout3
1629 call _aesni_encrypt4
1631 xorps @tweak[0],$inout0
1632 movdqa @tweak[5],@tweak[0]
1633 xorps @tweak[1],$inout1
1634 xorps @tweak[2],$inout2
1635 movups $inout0,($out)
1636 xorps @tweak[3],$inout3
1637 movups $inout1,16*1($out)
1638 movups $inout2,16*2($out)
1639 movups $inout3,16*3($out)
1640 lea 16*4($out),$out
1641 jmp .Lxts_enc_done
1643 .align 16
1644 .Lxts_enc_done:
1645 and \$15,$len_
1646 jz .Lxts_enc_ret
1647 mov $len_,$len
1649 .Lxts_enc_steal:
1650 movzb ($inp),%eax # borrow $rounds ...
1651 movzb -16($out),%ecx # ... and $key
1652 lea 1($inp),$inp
1653 mov %al,-16($out)
1654 mov %cl,0($out)
1655 lea 1($out),$out
1656 sub \$1,$len
1657 jnz .Lxts_enc_steal
1659 sub $len_,$out # rewind $out
1660 mov $key_,$key # restore $key
1661 mov $rnds_,$rounds # restore $rounds
1663 movups -16($out),$inout0
1664 xorps @tweak[0],$inout0
1666 &aesni_generate1("enc",$key,$rounds);
1667 $code.=<<___;
1668 xorps @tweak[0],$inout0
1669 movups $inout0,-16($out)
1671 .Lxts_enc_ret:
1673 $code.=<<___ if ($win64);
1674 movaps 0x60(%rsp),%xmm6
1675 movaps 0x70(%rsp),%xmm7
1676 movaps 0x80(%rsp),%xmm8
1677 movaps 0x90(%rsp),%xmm9
1678 movaps 0xa0(%rsp),%xmm10
1679 movaps 0xb0(%rsp),%xmm11
1680 movaps 0xc0(%rsp),%xmm12
1681 movaps 0xd0(%rsp),%xmm13
1682 movaps 0xe0(%rsp),%xmm14
1683 movaps 0xf0(%rsp),%xmm15
1685 $code.=<<___;
1686 lea $frame_size(%rsp),%rsp
1687 .Lxts_enc_epilogue:
1689 .size aesni_xts_encrypt,.-aesni_xts_encrypt
1692 $code.=<<___;
1693 .globl aesni_xts_decrypt
1694 .type aesni_xts_decrypt,\@function,6
1695 .align 16
1696 aesni_xts_decrypt:
1697 lea -$frame_size(%rsp),%rsp
1699 $code.=<<___ if ($win64);
1700 movaps %xmm6,0x60(%rsp)
1701 movaps %xmm7,0x70(%rsp)
1702 movaps %xmm8,0x80(%rsp)
1703 movaps %xmm9,0x90(%rsp)
1704 movaps %xmm10,0xa0(%rsp)
1705 movaps %xmm11,0xb0(%rsp)
1706 movaps %xmm12,0xc0(%rsp)
1707 movaps %xmm13,0xd0(%rsp)
1708 movaps %xmm14,0xe0(%rsp)
1709 movaps %xmm15,0xf0(%rsp)
1710 .Lxts_dec_body:
1712 $code.=<<___;
1713 movups ($ivp),@tweak[5] # load clear-text tweak
1714 mov 240($key2),$rounds # key2->rounds
1715 mov 240($key),$rnds_ # key1->rounds
1717 # generate the tweak
1718 &aesni_generate1("enc",$key2,$rounds,@tweak[5]);
1719 $code.=<<___;
1720 xor %eax,%eax # if ($len%16) len-=16;
1721 test \$15,$len
1722 setnz %al
1723 shl \$4,%rax
1724 sub %rax,$len
1726 mov $key,$key_ # backup $key
1727 mov $rnds_,$rounds # backup $rounds
1728 mov $len,$len_ # backup $len
1729 and \$-16,$len
1731 movdqa .Lxts_magic(%rip),$twmask
1732 pxor $twtmp,$twtmp
1733 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1735 for ($i=0;$i<4;$i++) {
1736 $code.=<<___;
1737 pshufd \$0x13,$twtmp,$twres
1738 pxor $twtmp,$twtmp
1739 movdqa @tweak[5],@tweak[$i]
1740 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1741 pand $twmask,$twres # isolate carry and residue
1742 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1743 pxor $twres,@tweak[5]
1746 $code.=<<___;
1747 sub \$16*6,$len
1748 jc .Lxts_dec_short
1750 shr \$1,$rounds
1751 sub \$1,$rounds
1752 mov $rounds,$rnds_
1753 jmp .Lxts_dec_grandloop
1755 .align 16
1756 .Lxts_dec_grandloop:
1757 pshufd \$0x13,$twtmp,$twres
1758 movdqa @tweak[5],@tweak[4]
1759 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1760 movdqu `16*0`($inp),$inout0 # load input
1761 pand $twmask,$twres # isolate carry and residue
1762 movdqu `16*1`($inp),$inout1
1763 pxor $twres,@tweak[5]
1765 movdqu `16*2`($inp),$inout2
1766 pxor @tweak[0],$inout0 # input^=tweak
1767 movdqu `16*3`($inp),$inout3
1768 pxor @tweak[1],$inout1
1769 movdqu `16*4`($inp),$inout4
1770 pxor @tweak[2],$inout2
1771 movdqu `16*5`($inp),$inout5
1772 lea `16*6`($inp),$inp
1773 pxor @tweak[3],$inout3
1774 $movkey ($key_),$rndkey0
1775 pxor @tweak[4],$inout4
1776 pxor @tweak[5],$inout5
1778 # inline _aesni_decrypt6 and interleave first and last rounds
1779 # with own code...
1780 $movkey 16($key_),$rndkey1
1781 pxor $rndkey0,$inout0
1782 pxor $rndkey0,$inout1
1783 movdqa @tweak[0],`16*0`(%rsp) # put aside tweaks
1784 aesdec $rndkey1,$inout0
1785 lea 32($key_),$key
1786 pxor $rndkey0,$inout2
1787 movdqa @tweak[1],`16*1`(%rsp)
1788 aesdec $rndkey1,$inout1
1789 pxor $rndkey0,$inout3
1790 movdqa @tweak[2],`16*2`(%rsp)
1791 aesdec $rndkey1,$inout2
1792 pxor $rndkey0,$inout4
1793 movdqa @tweak[3],`16*3`(%rsp)
1794 aesdec $rndkey1,$inout3
1795 pxor $rndkey0,$inout5
1796 $movkey ($key),$rndkey0
1797 dec $rounds
1798 movdqa @tweak[4],`16*4`(%rsp)
1799 aesdec $rndkey1,$inout4
1800 movdqa @tweak[5],`16*5`(%rsp)
1801 aesdec $rndkey1,$inout5
1802 pxor $twtmp,$twtmp
1803 pcmpgtd @tweak[5],$twtmp
1804 jmp .Lxts_dec_loop6_enter
1806 .align 16
1807 .Lxts_dec_loop6:
1808 aesdec $rndkey1,$inout0
1809 aesdec $rndkey1,$inout1
1810 dec $rounds
1811 aesdec $rndkey1,$inout2
1812 aesdec $rndkey1,$inout3
1813 aesdec $rndkey1,$inout4
1814 aesdec $rndkey1,$inout5
1815 .Lxts_dec_loop6_enter:
1816 $movkey 16($key),$rndkey1
1817 aesdec $rndkey0,$inout0
1818 aesdec $rndkey0,$inout1
1819 lea 32($key),$key
1820 aesdec $rndkey0,$inout2
1821 aesdec $rndkey0,$inout3
1822 aesdec $rndkey0,$inout4
1823 aesdec $rndkey0,$inout5
1824 $movkey ($key),$rndkey0
1825 jnz .Lxts_dec_loop6
1827 pshufd \$0x13,$twtmp,$twres
1828 pxor $twtmp,$twtmp
1829 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1830 aesdec $rndkey1,$inout0
1831 pand $twmask,$twres # isolate carry and residue
1832 aesdec $rndkey1,$inout1
1833 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1834 aesdec $rndkey1,$inout2
1835 pxor $twres,@tweak[5]
1836 aesdec $rndkey1,$inout3
1837 aesdec $rndkey1,$inout4
1838 aesdec $rndkey1,$inout5
1839 $movkey 16($key),$rndkey1
1841 pshufd \$0x13,$twtmp,$twres
1842 pxor $twtmp,$twtmp
1843 movdqa @tweak[5],@tweak[0]
1844 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1845 aesdec $rndkey0,$inout0
1846 pand $twmask,$twres # isolate carry and residue
1847 aesdec $rndkey0,$inout1
1848 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1849 aesdec $rndkey0,$inout2
1850 pxor $twres,@tweak[5]
1851 aesdec $rndkey0,$inout3
1852 aesdec $rndkey0,$inout4
1853 aesdec $rndkey0,$inout5
1854 $movkey 32($key),$rndkey0
1856 pshufd \$0x13,$twtmp,$twres
1857 pxor $twtmp,$twtmp
1858 movdqa @tweak[5],@tweak[1]
1859 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1860 aesdec $rndkey1,$inout0
1861 pand $twmask,$twres # isolate carry and residue
1862 aesdec $rndkey1,$inout1
1863 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1864 aesdec $rndkey1,$inout2
1865 pxor $twres,@tweak[5]
1866 aesdec $rndkey1,$inout3
1867 aesdec $rndkey1,$inout4
1868 aesdec $rndkey1,$inout5
1870 pshufd \$0x13,$twtmp,$twres
1871 pxor $twtmp,$twtmp
1872 movdqa @tweak[5],@tweak[2]
1873 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1874 aesdeclast $rndkey0,$inout0
1875 pand $twmask,$twres # isolate carry and residue
1876 aesdeclast $rndkey0,$inout1
1877 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1878 aesdeclast $rndkey0,$inout2
1879 pxor $twres,@tweak[5]
1880 aesdeclast $rndkey0,$inout3
1881 aesdeclast $rndkey0,$inout4
1882 aesdeclast $rndkey0,$inout5
1884 pshufd \$0x13,$twtmp,$twres
1885 pxor $twtmp,$twtmp
1886 movdqa @tweak[5],@tweak[3]
1887 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1888 xorps `16*0`(%rsp),$inout0 # output^=tweak
1889 pand $twmask,$twres # isolate carry and residue
1890 xorps `16*1`(%rsp),$inout1
1891 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1892 pxor $twres,@tweak[5]
1894 xorps `16*2`(%rsp),$inout2
1895 movups $inout0,`16*0`($out) # write output
1896 xorps `16*3`(%rsp),$inout3
1897 movups $inout1,`16*1`($out)
1898 xorps `16*4`(%rsp),$inout4
1899 movups $inout2,`16*2`($out)
1900 xorps `16*5`(%rsp),$inout5
1901 movups $inout3,`16*3`($out)
1902 mov $rnds_,$rounds # restore $rounds
1903 movups $inout4,`16*4`($out)
1904 movups $inout5,`16*5`($out)
1905 lea `16*6`($out),$out
1906 sub \$16*6,$len
1907 jnc .Lxts_dec_grandloop
1909 lea 3($rounds,$rounds),$rounds # restore original value
1910 mov $key_,$key # restore $key
1911 mov $rounds,$rnds_ # backup $rounds
1913 .Lxts_dec_short:
1914 add \$16*6,$len
1915 jz .Lxts_dec_done
1917 cmp \$0x20,$len
1918 jb .Lxts_dec_one
1919 je .Lxts_dec_two
1921 cmp \$0x40,$len
1922 jb .Lxts_dec_three
1923 je .Lxts_dec_four
1925 pshufd \$0x13,$twtmp,$twres
1926 movdqa @tweak[5],@tweak[4]
1927 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1928 movdqu ($inp),$inout0
1929 pand $twmask,$twres # isolate carry and residue
1930 movdqu 16*1($inp),$inout1
1931 pxor $twres,@tweak[5]
1933 movdqu 16*2($inp),$inout2
1934 pxor @tweak[0],$inout0
1935 movdqu 16*3($inp),$inout3
1936 pxor @tweak[1],$inout1
1937 movdqu 16*4($inp),$inout4
1938 lea 16*5($inp),$inp
1939 pxor @tweak[2],$inout2
1940 pxor @tweak[3],$inout3
1941 pxor @tweak[4],$inout4
1943 call _aesni_decrypt6
1945 xorps @tweak[0],$inout0
1946 xorps @tweak[1],$inout1
1947 xorps @tweak[2],$inout2
1948 movdqu $inout0,($out)
1949 xorps @tweak[3],$inout3
1950 movdqu $inout1,16*1($out)
1951 xorps @tweak[4],$inout4
1952 movdqu $inout2,16*2($out)
1953 pxor $twtmp,$twtmp
1954 movdqu $inout3,16*3($out)
1955 pcmpgtd @tweak[5],$twtmp
1956 movdqu $inout4,16*4($out)
1957 lea 16*5($out),$out
1958 pshufd \$0x13,$twtmp,@tweak[1] # $twres
1959 and \$15,$len_
1960 jz .Lxts_dec_ret
1962 movdqa @tweak[5],@tweak[0]
1963 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1964 pand $twmask,@tweak[1] # isolate carry and residue
1965 pxor @tweak[5],@tweak[1]
1966 jmp .Lxts_dec_done2
1968 .align 16
1969 .Lxts_dec_one:
1970 movups ($inp),$inout0
1971 lea 16*1($inp),$inp
1972 xorps @tweak[0],$inout0
1974 &aesni_generate1("dec",$key,$rounds);
1975 $code.=<<___;
1976 xorps @tweak[0],$inout0
1977 movdqa @tweak[1],@tweak[0]
1978 movups $inout0,($out)
1979 movdqa @tweak[2],@tweak[1]
1980 lea 16*1($out),$out
1981 jmp .Lxts_dec_done
1983 .align 16
1984 .Lxts_dec_two:
1985 movups ($inp),$inout0
1986 movups 16($inp),$inout1
1987 lea 32($inp),$inp
1988 xorps @tweak[0],$inout0
1989 xorps @tweak[1],$inout1
1991 call _aesni_decrypt3
1993 xorps @tweak[0],$inout0
1994 movdqa @tweak[2],@tweak[0]
1995 xorps @tweak[1],$inout1
1996 movdqa @tweak[3],@tweak[1]
1997 movups $inout0,($out)
1998 movups $inout1,16*1($out)
1999 lea 16*2($out),$out
2000 jmp .Lxts_dec_done
2002 .align 16
2003 .Lxts_dec_three:
2004 movups ($inp),$inout0
2005 movups 16*1($inp),$inout1
2006 movups 16*2($inp),$inout2
2007 lea 16*3($inp),$inp
2008 xorps @tweak[0],$inout0
2009 xorps @tweak[1],$inout1
2010 xorps @tweak[2],$inout2
2012 call _aesni_decrypt3
2014 xorps @tweak[0],$inout0
2015 movdqa @tweak[3],@tweak[0]
2016 xorps @tweak[1],$inout1
2017 movdqa @tweak[5],@tweak[1]
2018 xorps @tweak[2],$inout2
2019 movups $inout0,($out)
2020 movups $inout1,16*1($out)
2021 movups $inout2,16*2($out)
2022 lea 16*3($out),$out
2023 jmp .Lxts_dec_done
2025 .align 16
2026 .Lxts_dec_four:
2027 pshufd \$0x13,$twtmp,$twres
2028 movdqa @tweak[5],@tweak[4]
2029 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
2030 movups ($inp),$inout0
2031 pand $twmask,$twres # isolate carry and residue
2032 movups 16*1($inp),$inout1
2033 pxor $twres,@tweak[5]
2035 movups 16*2($inp),$inout2
2036 xorps @tweak[0],$inout0
2037 movups 16*3($inp),$inout3
2038 lea 16*4($inp),$inp
2039 xorps @tweak[1],$inout1
2040 xorps @tweak[2],$inout2
2041 xorps @tweak[3],$inout3
2043 call _aesni_decrypt4
2045 xorps @tweak[0],$inout0
2046 movdqa @tweak[4],@tweak[0]
2047 xorps @tweak[1],$inout1
2048 movdqa @tweak[5],@tweak[1]
2049 xorps @tweak[2],$inout2
2050 movups $inout0,($out)
2051 xorps @tweak[3],$inout3
2052 movups $inout1,16*1($out)
2053 movups $inout2,16*2($out)
2054 movups $inout3,16*3($out)
2055 lea 16*4($out),$out
2056 jmp .Lxts_dec_done
2058 .align 16
2059 .Lxts_dec_done:
2060 and \$15,$len_
2061 jz .Lxts_dec_ret
2062 .Lxts_dec_done2:
2063 mov $len_,$len
2064 mov $key_,$key # restore $key
2065 mov $rnds_,$rounds # restore $rounds
2067 movups ($inp),$inout0
2068 xorps @tweak[1],$inout0
2070 &aesni_generate1("dec",$key,$rounds);
2071 $code.=<<___;
2072 xorps @tweak[1],$inout0
2073 movups $inout0,($out)
2075 .Lxts_dec_steal:
2076 movzb 16($inp),%eax # borrow $rounds ...
2077 movzb ($out),%ecx # ... and $key
2078 lea 1($inp),$inp
2079 mov %al,($out)
2080 mov %cl,16($out)
2081 lea 1($out),$out
2082 sub \$1,$len
2083 jnz .Lxts_dec_steal
2085 sub $len_,$out # rewind $out
2086 mov $key_,$key # restore $key
2087 mov $rnds_,$rounds # restore $rounds
2089 movups ($out),$inout0
2090 xorps @tweak[0],$inout0
2092 &aesni_generate1("dec",$key,$rounds);
2093 $code.=<<___;
2094 xorps @tweak[0],$inout0
2095 movups $inout0,($out)
2097 .Lxts_dec_ret:
2099 $code.=<<___ if ($win64);
2100 movaps 0x60(%rsp),%xmm6
2101 movaps 0x70(%rsp),%xmm7
2102 movaps 0x80(%rsp),%xmm8
2103 movaps 0x90(%rsp),%xmm9
2104 movaps 0xa0(%rsp),%xmm10
2105 movaps 0xb0(%rsp),%xmm11
2106 movaps 0xc0(%rsp),%xmm12
2107 movaps 0xd0(%rsp),%xmm13
2108 movaps 0xe0(%rsp),%xmm14
2109 movaps 0xf0(%rsp),%xmm15
2111 $code.=<<___;
2112 lea $frame_size(%rsp),%rsp
2113 .Lxts_dec_epilogue:
2115 .size aesni_xts_decrypt,.-aesni_xts_decrypt
2117 } }}
2119 ########################################################################
2120 # void $PREFIX_cbc_encrypt (const void *inp, void *out,
2121 # size_t length, const AES_KEY *key,
2122 # unsigned char *ivp,const int enc);
2124 my $reserved = $win64?0x40:-0x18; # used in decrypt
2125 $code.=<<___;
2126 .globl ${PREFIX}_cbc_encrypt
2127 .type ${PREFIX}_cbc_encrypt,\@function,6
2128 .align 16
2129 ${PREFIX}_cbc_encrypt:
2130 test $len,$len # check length
2131 jz .Lcbc_ret
2133 mov 240($key),$rnds_ # key->rounds
2134 mov $key,$key_ # backup $key
2135 test %r9d,%r9d # 6th argument
2136 jz .Lcbc_decrypt
2137 #--------------------------- CBC ENCRYPT ------------------------------#
2138 movups ($ivp),$inout0 # load iv as initial state
2139 mov $rnds_,$rounds
2140 cmp \$16,$len
2141 jb .Lcbc_enc_tail
2142 sub \$16,$len
2143 jmp .Lcbc_enc_loop
2144 .align 16
2145 .Lcbc_enc_loop:
2146 movups ($inp),$inout1 # load input
2147 lea 16($inp),$inp
2148 #xorps $inout1,$inout0
2150 &aesni_generate1("enc",$key,$rounds,$inout0,$inout1);
2151 $code.=<<___;
2152 mov $rnds_,$rounds # restore $rounds
2153 mov $key_,$key # restore $key
2154 movups $inout0,0($out) # store output
2155 lea 16($out),$out
2156 sub \$16,$len
2157 jnc .Lcbc_enc_loop
2158 add \$16,$len
2159 jnz .Lcbc_enc_tail
2160 movups $inout0,($ivp)
2161 jmp .Lcbc_ret
2163 .Lcbc_enc_tail:
2164 mov $len,%rcx # zaps $key
2165 xchg $inp,$out # $inp is %rsi and $out is %rdi now
2166 .long 0x9066A4F3 # rep movsb
2167 mov \$16,%ecx # zero tail
2168 sub $len,%rcx
2169 xor %eax,%eax
2170 .long 0x9066AAF3 # rep stosb
2171 lea -16(%rdi),%rdi # rewind $out by 1 block
2172 mov $rnds_,$rounds # restore $rounds
2173 mov %rdi,%rsi # $inp and $out are the same
2174 mov $key_,$key # restore $key
2175 xor $len,$len # len=16
2176 jmp .Lcbc_enc_loop # one more spin
2177 \f#--------------------------- CBC DECRYPT ------------------------------#
2178 .align 16
2179 .Lcbc_decrypt:
2181 $code.=<<___ if ($win64);
2182 lea -0x58(%rsp),%rsp
2183 movaps %xmm6,(%rsp)
2184 movaps %xmm7,0x10(%rsp)
2185 movaps %xmm8,0x20(%rsp)
2186 movaps %xmm9,0x30(%rsp)
2187 .Lcbc_decrypt_body:
2189 $code.=<<___;
2190 movups ($ivp),$iv
2191 mov $rnds_,$rounds
2192 cmp \$0x70,$len
2193 jbe .Lcbc_dec_tail
2194 shr \$1,$rnds_
2195 sub \$0x70,$len
2196 mov $rnds_,$rounds
2197 movaps $iv,$reserved(%rsp)
2198 jmp .Lcbc_dec_loop8_enter
2199 .align 16
2200 .Lcbc_dec_loop8:
2201 movaps $rndkey0,$reserved(%rsp) # save IV
2202 movups $inout7,($out)
2203 lea 0x10($out),$out
2204 .Lcbc_dec_loop8_enter:
2205 $movkey ($key),$rndkey0
2206 movups ($inp),$inout0 # load input
2207 movups 0x10($inp),$inout1
2208 $movkey 16($key),$rndkey1
2210 lea 32($key),$key
2211 movdqu 0x20($inp),$inout2
2212 xorps $rndkey0,$inout0
2213 movdqu 0x30($inp),$inout3
2214 xorps $rndkey0,$inout1
2215 movdqu 0x40($inp),$inout4
2216 aesdec $rndkey1,$inout0
2217 pxor $rndkey0,$inout2
2218 movdqu 0x50($inp),$inout5
2219 aesdec $rndkey1,$inout1
2220 pxor $rndkey0,$inout3
2221 movdqu 0x60($inp),$inout6
2222 aesdec $rndkey1,$inout2
2223 pxor $rndkey0,$inout4
2224 movdqu 0x70($inp),$inout7
2225 aesdec $rndkey1,$inout3
2226 pxor $rndkey0,$inout5
2227 dec $rounds
2228 aesdec $rndkey1,$inout4
2229 pxor $rndkey0,$inout6
2230 aesdec $rndkey1,$inout5
2231 pxor $rndkey0,$inout7
2232 $movkey ($key),$rndkey0
2233 aesdec $rndkey1,$inout6
2234 aesdec $rndkey1,$inout7
2235 $movkey 16($key),$rndkey1
2237 call .Ldec_loop8_enter
2239 movups ($inp),$rndkey1 # re-load input
2240 movups 0x10($inp),$rndkey0
2241 xorps $reserved(%rsp),$inout0 # ^= IV
2242 xorps $rndkey1,$inout1
2243 movups 0x20($inp),$rndkey1
2244 xorps $rndkey0,$inout2
2245 movups 0x30($inp),$rndkey0
2246 xorps $rndkey1,$inout3
2247 movups 0x40($inp),$rndkey1
2248 xorps $rndkey0,$inout4
2249 movups 0x50($inp),$rndkey0
2250 xorps $rndkey1,$inout5
2251 movups 0x60($inp),$rndkey1
2252 xorps $rndkey0,$inout6
2253 movups 0x70($inp),$rndkey0 # IV
2254 xorps $rndkey1,$inout7
2255 movups $inout0,($out)
2256 movups $inout1,0x10($out)
2257 movups $inout2,0x20($out)
2258 movups $inout3,0x30($out)
2259 mov $rnds_,$rounds # restore $rounds
2260 movups $inout4,0x40($out)
2261 mov $key_,$key # restore $key
2262 movups $inout5,0x50($out)
2263 lea 0x80($inp),$inp
2264 movups $inout6,0x60($out)
2265 lea 0x70($out),$out
2266 sub \$0x80,$len
2267 ja .Lcbc_dec_loop8
2269 movaps $inout7,$inout0
2270 movaps $rndkey0,$iv
2271 add \$0x70,$len
2272 jle .Lcbc_dec_tail_collected
2273 movups $inout0,($out)
2274 lea 1($rnds_,$rnds_),$rounds
2275 lea 0x10($out),$out
2276 .Lcbc_dec_tail:
2277 movups ($inp),$inout0
2278 movaps $inout0,$in0
2279 cmp \$0x10,$len
2280 jbe .Lcbc_dec_one
2282 movups 0x10($inp),$inout1
2283 movaps $inout1,$in1
2284 cmp \$0x20,$len
2285 jbe .Lcbc_dec_two
2287 movups 0x20($inp),$inout2
2288 movaps $inout2,$in2
2289 cmp \$0x30,$len
2290 jbe .Lcbc_dec_three
2292 movups 0x30($inp),$inout3
2293 cmp \$0x40,$len
2294 jbe .Lcbc_dec_four
2296 movups 0x40($inp),$inout4
2297 cmp \$0x50,$len
2298 jbe .Lcbc_dec_five
2300 movups 0x50($inp),$inout5
2301 cmp \$0x60,$len
2302 jbe .Lcbc_dec_six
2304 movups 0x60($inp),$inout6
2305 movaps $iv,$reserved(%rsp) # save IV
2306 call _aesni_decrypt8
2307 movups ($inp),$rndkey1
2308 movups 0x10($inp),$rndkey0
2309 xorps $reserved(%rsp),$inout0 # ^= IV
2310 xorps $rndkey1,$inout1
2311 movups 0x20($inp),$rndkey1
2312 xorps $rndkey0,$inout2
2313 movups 0x30($inp),$rndkey0
2314 xorps $rndkey1,$inout3
2315 movups 0x40($inp),$rndkey1
2316 xorps $rndkey0,$inout4
2317 movups 0x50($inp),$rndkey0
2318 xorps $rndkey1,$inout5
2319 movups 0x60($inp),$iv # IV
2320 xorps $rndkey0,$inout6
2321 movups $inout0,($out)
2322 movups $inout1,0x10($out)
2323 movups $inout2,0x20($out)
2324 movups $inout3,0x30($out)
2325 movups $inout4,0x40($out)
2326 movups $inout5,0x50($out)
2327 lea 0x60($out),$out
2328 movaps $inout6,$inout0
2329 sub \$0x70,$len
2330 jmp .Lcbc_dec_tail_collected
2331 .align 16
2332 .Lcbc_dec_one:
2334 &aesni_generate1("dec",$key,$rounds);
2335 $code.=<<___;
2336 xorps $iv,$inout0
2337 movaps $in0,$iv
2338 sub \$0x10,$len
2339 jmp .Lcbc_dec_tail_collected
2340 .align 16
2341 .Lcbc_dec_two:
2342 xorps $inout2,$inout2
2343 call _aesni_decrypt3
2344 xorps $iv,$inout0
2345 xorps $in0,$inout1
2346 movups $inout0,($out)
2347 movaps $in1,$iv
2348 movaps $inout1,$inout0
2349 lea 0x10($out),$out
2350 sub \$0x20,$len
2351 jmp .Lcbc_dec_tail_collected
2352 .align 16
2353 .Lcbc_dec_three:
2354 call _aesni_decrypt3
2355 xorps $iv,$inout0
2356 xorps $in0,$inout1
2357 movups $inout0,($out)
2358 xorps $in1,$inout2
2359 movups $inout1,0x10($out)
2360 movaps $in2,$iv
2361 movaps $inout2,$inout0
2362 lea 0x20($out),$out
2363 sub \$0x30,$len
2364 jmp .Lcbc_dec_tail_collected
2365 .align 16
2366 .Lcbc_dec_four:
2367 call _aesni_decrypt4
2368 xorps $iv,$inout0
2369 movups 0x30($inp),$iv
2370 xorps $in0,$inout1
2371 movups $inout0,($out)
2372 xorps $in1,$inout2
2373 movups $inout1,0x10($out)
2374 xorps $in2,$inout3
2375 movups $inout2,0x20($out)
2376 movaps $inout3,$inout0
2377 lea 0x30($out),$out
2378 sub \$0x40,$len
2379 jmp .Lcbc_dec_tail_collected
2380 .align 16
2381 .Lcbc_dec_five:
2382 xorps $inout5,$inout5
2383 call _aesni_decrypt6
2384 movups 0x10($inp),$rndkey1
2385 movups 0x20($inp),$rndkey0
2386 xorps $iv,$inout0
2387 xorps $in0,$inout1
2388 xorps $rndkey1,$inout2
2389 movups 0x30($inp),$rndkey1
2390 xorps $rndkey0,$inout3
2391 movups 0x40($inp),$iv
2392 xorps $rndkey1,$inout4
2393 movups $inout0,($out)
2394 movups $inout1,0x10($out)
2395 movups $inout2,0x20($out)
2396 movups $inout3,0x30($out)
2397 lea 0x40($out),$out
2398 movaps $inout4,$inout0
2399 sub \$0x50,$len
2400 jmp .Lcbc_dec_tail_collected
2401 .align 16
2402 .Lcbc_dec_six:
2403 call _aesni_decrypt6
2404 movups 0x10($inp),$rndkey1
2405 movups 0x20($inp),$rndkey0
2406 xorps $iv,$inout0
2407 xorps $in0,$inout1
2408 xorps $rndkey1,$inout2
2409 movups 0x30($inp),$rndkey1
2410 xorps $rndkey0,$inout3
2411 movups 0x40($inp),$rndkey0
2412 xorps $rndkey1,$inout4
2413 movups 0x50($inp),$iv
2414 xorps $rndkey0,$inout5
2415 movups $inout0,($out)
2416 movups $inout1,0x10($out)
2417 movups $inout2,0x20($out)
2418 movups $inout3,0x30($out)
2419 movups $inout4,0x40($out)
2420 lea 0x50($out),$out
2421 movaps $inout5,$inout0
2422 sub \$0x60,$len
2423 jmp .Lcbc_dec_tail_collected
2424 .align 16
2425 .Lcbc_dec_tail_collected:
2426 and \$15,$len
2427 movups $iv,($ivp)
2428 jnz .Lcbc_dec_tail_partial
2429 movups $inout0,($out)
2430 jmp .Lcbc_dec_ret
2431 .align 16
2432 .Lcbc_dec_tail_partial:
2433 movaps $inout0,$reserved(%rsp)
2434 mov \$16,%rcx
2435 mov $out,%rdi
2436 sub $len,%rcx
2437 lea $reserved(%rsp),%rsi
2438 .long 0x9066A4F3 # rep movsb
2440 .Lcbc_dec_ret:
2442 $code.=<<___ if ($win64);
2443 movaps (%rsp),%xmm6
2444 movaps 0x10(%rsp),%xmm7
2445 movaps 0x20(%rsp),%xmm8
2446 movaps 0x30(%rsp),%xmm9
2447 lea 0x58(%rsp),%rsp
2449 $code.=<<___;
2450 .Lcbc_ret:
2452 .size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt
2454 } \f
2455 # int $PREFIX_set_[en|de]crypt_key (const unsigned char *userKey,
2456 # int bits, AES_KEY *key)
2457 { my ($inp,$bits,$key) = @_4args;
2458 $bits =~ s/%r/%e/;
2460 $code.=<<___;
2461 .globl ${PREFIX}_set_decrypt_key
2462 .type ${PREFIX}_set_decrypt_key,\@abi-omnipotent
2463 .align 16
2464 ${PREFIX}_set_decrypt_key:
2465 sub \$8,%rsp
2466 call __aesni_set_encrypt_key
2467 shl \$4,$bits # rounds-1 after _aesni_set_encrypt_key
2468 test %eax,%eax
2469 jnz .Ldec_key_ret
2470 lea 16($key,$bits),$inp # points at the end of key schedule
2472 $movkey ($key),%xmm0 # just swap
2473 $movkey ($inp),%xmm1
2474 $movkey %xmm0,($inp)
2475 $movkey %xmm1,($key)
2476 lea 16($key),$key
2477 lea -16($inp),$inp
2479 .Ldec_key_inverse:
2480 $movkey ($key),%xmm0 # swap and inverse
2481 $movkey ($inp),%xmm1
2482 aesimc %xmm0,%xmm0
2483 aesimc %xmm1,%xmm1
2484 lea 16($key),$key
2485 lea -16($inp),$inp
2486 $movkey %xmm0,16($inp)
2487 $movkey %xmm1,-16($key)
2488 cmp $key,$inp
2489 ja .Ldec_key_inverse
2491 $movkey ($key),%xmm0 # inverse middle
2492 aesimc %xmm0,%xmm0
2493 $movkey %xmm0,($inp)
2494 .Ldec_key_ret:
2495 add \$8,%rsp
2497 .LSEH_end_set_decrypt_key:
2498 .size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key
2501 # This is based on submission by
2503 # Huang Ying <ying.huang@intel.com>
2504 # Vinodh Gopal <vinodh.gopal@intel.com>
2505 # Kahraman Akdemir
2507 # Agressively optimized in respect to aeskeygenassist's critical path
2508 # and is contained in %xmm0-5 to meet Win64 ABI requirement.
2510 $code.=<<___;
2511 .globl ${PREFIX}_set_encrypt_key
2512 .type ${PREFIX}_set_encrypt_key,\@abi-omnipotent
2513 .align 16
2514 ${PREFIX}_set_encrypt_key:
2515 __aesni_set_encrypt_key:
2516 sub \$8,%rsp
2517 mov \$-1,%rax
2518 test $inp,$inp
2519 jz .Lenc_key_ret
2520 test $key,$key
2521 jz .Lenc_key_ret
2523 movups ($inp),%xmm0 # pull first 128 bits of *userKey
2524 xorps %xmm4,%xmm4 # low dword of xmm4 is assumed 0
2525 lea 16($key),%rax
2526 cmp \$256,$bits
2527 je .L14rounds
2528 cmp \$192,$bits
2529 je .L12rounds
2530 cmp \$128,$bits
2531 jne .Lbad_keybits
2533 .L10rounds:
2534 mov \$9,$bits # 10 rounds for 128-bit key
2535 $movkey %xmm0,($key) # round 0
2536 aeskeygenassist \$0x1,%xmm0,%xmm1 # round 1
2537 call .Lkey_expansion_128_cold
2538 aeskeygenassist \$0x2,%xmm0,%xmm1 # round 2
2539 call .Lkey_expansion_128
2540 aeskeygenassist \$0x4,%xmm0,%xmm1 # round 3
2541 call .Lkey_expansion_128
2542 aeskeygenassist \$0x8,%xmm0,%xmm1 # round 4
2543 call .Lkey_expansion_128
2544 aeskeygenassist \$0x10,%xmm0,%xmm1 # round 5
2545 call .Lkey_expansion_128
2546 aeskeygenassist \$0x20,%xmm0,%xmm1 # round 6
2547 call .Lkey_expansion_128
2548 aeskeygenassist \$0x40,%xmm0,%xmm1 # round 7
2549 call .Lkey_expansion_128
2550 aeskeygenassist \$0x80,%xmm0,%xmm1 # round 8
2551 call .Lkey_expansion_128
2552 aeskeygenassist \$0x1b,%xmm0,%xmm1 # round 9
2553 call .Lkey_expansion_128
2554 aeskeygenassist \$0x36,%xmm0,%xmm1 # round 10
2555 call .Lkey_expansion_128
2556 $movkey %xmm0,(%rax)
2557 mov $bits,80(%rax) # 240(%rdx)
2558 xor %eax,%eax
2559 jmp .Lenc_key_ret
2561 .align 16
2562 .L12rounds:
2563 movq 16($inp),%xmm2 # remaining 1/3 of *userKey
2564 mov \$11,$bits # 12 rounds for 192
2565 $movkey %xmm0,($key) # round 0
2566 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 1,2
2567 call .Lkey_expansion_192a_cold
2568 aeskeygenassist \$0x2,%xmm2,%xmm1 # round 2,3
2569 call .Lkey_expansion_192b
2570 aeskeygenassist \$0x4,%xmm2,%xmm1 # round 4,5
2571 call .Lkey_expansion_192a
2572 aeskeygenassist \$0x8,%xmm2,%xmm1 # round 5,6
2573 call .Lkey_expansion_192b
2574 aeskeygenassist \$0x10,%xmm2,%xmm1 # round 7,8
2575 call .Lkey_expansion_192a
2576 aeskeygenassist \$0x20,%xmm2,%xmm1 # round 8,9
2577 call .Lkey_expansion_192b
2578 aeskeygenassist \$0x40,%xmm2,%xmm1 # round 10,11
2579 call .Lkey_expansion_192a
2580 aeskeygenassist \$0x80,%xmm2,%xmm1 # round 11,12
2581 call .Lkey_expansion_192b
2582 $movkey %xmm0,(%rax)
2583 mov $bits,48(%rax) # 240(%rdx)
2584 xor %rax, %rax
2585 jmp .Lenc_key_ret
2587 .align 16
2588 .L14rounds:
2589 movups 16($inp),%xmm2 # remaning half of *userKey
2590 mov \$13,$bits # 14 rounds for 256
2591 lea 16(%rax),%rax
2592 $movkey %xmm0,($key) # round 0
2593 $movkey %xmm2,16($key) # round 1
2594 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 2
2595 call .Lkey_expansion_256a_cold
2596 aeskeygenassist \$0x1,%xmm0,%xmm1 # round 3
2597 call .Lkey_expansion_256b
2598 aeskeygenassist \$0x2,%xmm2,%xmm1 # round 4
2599 call .Lkey_expansion_256a
2600 aeskeygenassist \$0x2,%xmm0,%xmm1 # round 5
2601 call .Lkey_expansion_256b
2602 aeskeygenassist \$0x4,%xmm2,%xmm1 # round 6
2603 call .Lkey_expansion_256a
2604 aeskeygenassist \$0x4,%xmm0,%xmm1 # round 7
2605 call .Lkey_expansion_256b
2606 aeskeygenassist \$0x8,%xmm2,%xmm1 # round 8
2607 call .Lkey_expansion_256a
2608 aeskeygenassist \$0x8,%xmm0,%xmm1 # round 9
2609 call .Lkey_expansion_256b
2610 aeskeygenassist \$0x10,%xmm2,%xmm1 # round 10
2611 call .Lkey_expansion_256a
2612 aeskeygenassist \$0x10,%xmm0,%xmm1 # round 11
2613 call .Lkey_expansion_256b
2614 aeskeygenassist \$0x20,%xmm2,%xmm1 # round 12
2615 call .Lkey_expansion_256a
2616 aeskeygenassist \$0x20,%xmm0,%xmm1 # round 13
2617 call .Lkey_expansion_256b
2618 aeskeygenassist \$0x40,%xmm2,%xmm1 # round 14
2619 call .Lkey_expansion_256a
2620 $movkey %xmm0,(%rax)
2621 mov $bits,16(%rax) # 240(%rdx)
2622 xor %rax,%rax
2623 jmp .Lenc_key_ret
2625 .align 16
2626 .Lbad_keybits:
2627 mov \$-2,%rax
2628 .Lenc_key_ret:
2629 add \$8,%rsp
2631 .LSEH_end_set_encrypt_key:
2633 .align 16
2634 .Lkey_expansion_128:
2635 $movkey %xmm0,(%rax)
2636 lea 16(%rax),%rax
2637 .Lkey_expansion_128_cold:
2638 shufps \$0b00010000,%xmm0,%xmm4
2639 xorps %xmm4, %xmm0
2640 shufps \$0b10001100,%xmm0,%xmm4
2641 xorps %xmm4, %xmm0
2642 shufps \$0b11111111,%xmm1,%xmm1 # critical path
2643 xorps %xmm1,%xmm0
2646 .align 16
2647 .Lkey_expansion_192a:
2648 $movkey %xmm0,(%rax)
2649 lea 16(%rax),%rax
2650 .Lkey_expansion_192a_cold:
2651 movaps %xmm2, %xmm5
2652 .Lkey_expansion_192b_warm:
2653 shufps \$0b00010000,%xmm0,%xmm4
2654 movdqa %xmm2,%xmm3
2655 xorps %xmm4,%xmm0
2656 shufps \$0b10001100,%xmm0,%xmm4
2657 pslldq \$4,%xmm3
2658 xorps %xmm4,%xmm0
2659 pshufd \$0b01010101,%xmm1,%xmm1 # critical path
2660 pxor %xmm3,%xmm2
2661 pxor %xmm1,%xmm0
2662 pshufd \$0b11111111,%xmm0,%xmm3
2663 pxor %xmm3,%xmm2
2666 .align 16
2667 .Lkey_expansion_192b:
2668 movaps %xmm0,%xmm3
2669 shufps \$0b01000100,%xmm0,%xmm5
2670 $movkey %xmm5,(%rax)
2671 shufps \$0b01001110,%xmm2,%xmm3
2672 $movkey %xmm3,16(%rax)
2673 lea 32(%rax),%rax
2674 jmp .Lkey_expansion_192b_warm
2676 .align 16
2677 .Lkey_expansion_256a:
2678 $movkey %xmm2,(%rax)
2679 lea 16(%rax),%rax
2680 .Lkey_expansion_256a_cold:
2681 shufps \$0b00010000,%xmm0,%xmm4
2682 xorps %xmm4,%xmm0
2683 shufps \$0b10001100,%xmm0,%xmm4
2684 xorps %xmm4,%xmm0
2685 shufps \$0b11111111,%xmm1,%xmm1 # critical path
2686 xorps %xmm1,%xmm0
2689 .align 16
2690 .Lkey_expansion_256b:
2691 $movkey %xmm0,(%rax)
2692 lea 16(%rax),%rax
2694 shufps \$0b00010000,%xmm2,%xmm4
2695 xorps %xmm4,%xmm2
2696 shufps \$0b10001100,%xmm2,%xmm4
2697 xorps %xmm4,%xmm2
2698 shufps \$0b10101010,%xmm1,%xmm1 # critical path
2699 xorps %xmm1,%xmm2
2701 .size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key
2702 .size __aesni_set_encrypt_key,.-__aesni_set_encrypt_key
2706 $code.=<<___;
2707 .align 64
2708 .Lbswap_mask:
2709 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
2710 .Lincrement32:
2711 .long 6,6,6,0
2712 .Lincrement64:
2713 .long 1,0,0,0
2714 .Lxts_magic:
2715 .long 0x87,0,1,0
2717 .asciz "AES for Intel AES-NI, CRYPTOGAMS by <appro\@openssl.org>"
2718 .align 64
2721 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
2722 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
2723 if ($win64) {
2724 $rec="%rcx";
2725 $frame="%rdx";
2726 $context="%r8";
2727 $disp="%r9";
2729 $code.=<<___;
2730 .extern __imp_RtlVirtualUnwind
2732 $code.=<<___ if ($PREFIX eq "aesni");
2733 .type ecb_se_handler,\@abi-omnipotent
2734 .align 16
2735 ecb_se_handler:
2736 push %rsi
2737 push %rdi
2738 push %rbx
2739 push %rbp
2740 push %r12
2741 push %r13
2742 push %r14
2743 push %r15
2744 pushfq
2745 sub \$64,%rsp
2747 mov 152($context),%rax # pull context->Rsp
2749 jmp .Lcommon_seh_tail
2750 .size ecb_se_handler,.-ecb_se_handler
2752 .type ccm64_se_handler,\@abi-omnipotent
2753 .align 16
2754 ccm64_se_handler:
2755 push %rsi
2756 push %rdi
2757 push %rbx
2758 push %rbp
2759 push %r12
2760 push %r13
2761 push %r14
2762 push %r15
2763 pushfq
2764 sub \$64,%rsp
2766 mov 120($context),%rax # pull context->Rax
2767 mov 248($context),%rbx # pull context->Rip
2769 mov 8($disp),%rsi # disp->ImageBase
2770 mov 56($disp),%r11 # disp->HandlerData
2772 mov 0(%r11),%r10d # HandlerData[0]
2773 lea (%rsi,%r10),%r10 # prologue label
2774 cmp %r10,%rbx # context->Rip<prologue label
2775 jb .Lcommon_seh_tail
2777 mov 152($context),%rax # pull context->Rsp
2779 mov 4(%r11),%r10d # HandlerData[1]
2780 lea (%rsi,%r10),%r10 # epilogue label
2781 cmp %r10,%rbx # context->Rip>=epilogue label
2782 jae .Lcommon_seh_tail
2784 lea 0(%rax),%rsi # %xmm save area
2785 lea 512($context),%rdi # &context.Xmm6
2786 mov \$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2787 .long 0xa548f3fc # cld; rep movsq
2788 lea 0x58(%rax),%rax # adjust stack pointer
2790 jmp .Lcommon_seh_tail
2791 .size ccm64_se_handler,.-ccm64_se_handler
2793 .type ctr32_se_handler,\@abi-omnipotent
2794 .align 16
2795 ctr32_se_handler:
2796 push %rsi
2797 push %rdi
2798 push %rbx
2799 push %rbp
2800 push %r12
2801 push %r13
2802 push %r14
2803 push %r15
2804 pushfq
2805 sub \$64,%rsp
2807 mov 120($context),%rax # pull context->Rax
2808 mov 248($context),%rbx # pull context->Rip
2810 lea .Lctr32_body(%rip),%r10
2811 cmp %r10,%rbx # context->Rip<"prologue" label
2812 jb .Lcommon_seh_tail
2814 mov 152($context),%rax # pull context->Rsp
2816 lea .Lctr32_ret(%rip),%r10
2817 cmp %r10,%rbx
2818 jae .Lcommon_seh_tail
2820 lea 0x20(%rax),%rsi # %xmm save area
2821 lea 512($context),%rdi # &context.Xmm6
2822 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2823 .long 0xa548f3fc # cld; rep movsq
2824 lea 0xc8(%rax),%rax # adjust stack pointer
2826 jmp .Lcommon_seh_tail
2827 .size ctr32_se_handler,.-ctr32_se_handler
2829 .type xts_se_handler,\@abi-omnipotent
2830 .align 16
2831 xts_se_handler:
2832 push %rsi
2833 push %rdi
2834 push %rbx
2835 push %rbp
2836 push %r12
2837 push %r13
2838 push %r14
2839 push %r15
2840 pushfq
2841 sub \$64,%rsp
2843 mov 120($context),%rax # pull context->Rax
2844 mov 248($context),%rbx # pull context->Rip
2846 mov 8($disp),%rsi # disp->ImageBase
2847 mov 56($disp),%r11 # disp->HandlerData
2849 mov 0(%r11),%r10d # HandlerData[0]
2850 lea (%rsi,%r10),%r10 # prologue lable
2851 cmp %r10,%rbx # context->Rip<prologue label
2852 jb .Lcommon_seh_tail
2854 mov 152($context),%rax # pull context->Rsp
2856 mov 4(%r11),%r10d # HandlerData[1]
2857 lea (%rsi,%r10),%r10 # epilogue label
2858 cmp %r10,%rbx # context->Rip>=epilogue label
2859 jae .Lcommon_seh_tail
2861 lea 0x60(%rax),%rsi # %xmm save area
2862 lea 512($context),%rdi # & context.Xmm6
2863 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2864 .long 0xa548f3fc # cld; rep movsq
2865 lea 0x68+160(%rax),%rax # adjust stack pointer
2867 jmp .Lcommon_seh_tail
2868 .size xts_se_handler,.-xts_se_handler
2870 $code.=<<___;
2871 .type cbc_se_handler,\@abi-omnipotent
2872 .align 16
2873 cbc_se_handler:
2874 push %rsi
2875 push %rdi
2876 push %rbx
2877 push %rbp
2878 push %r12
2879 push %r13
2880 push %r14
2881 push %r15
2882 pushfq
2883 sub \$64,%rsp
2885 mov 152($context),%rax # pull context->Rsp
2886 mov 248($context),%rbx # pull context->Rip
2888 lea .Lcbc_decrypt(%rip),%r10
2889 cmp %r10,%rbx # context->Rip<"prologue" label
2890 jb .Lcommon_seh_tail
2892 lea .Lcbc_decrypt_body(%rip),%r10
2893 cmp %r10,%rbx # context->Rip<cbc_decrypt_body
2894 jb .Lrestore_cbc_rax
2896 lea .Lcbc_ret(%rip),%r10
2897 cmp %r10,%rbx # context->Rip>="epilogue" label
2898 jae .Lcommon_seh_tail
2900 lea 0(%rax),%rsi # top of stack
2901 lea 512($context),%rdi # &context.Xmm6
2902 mov \$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2903 .long 0xa548f3fc # cld; rep movsq
2904 lea 0x58(%rax),%rax # adjust stack pointer
2905 jmp .Lcommon_seh_tail
2907 .Lrestore_cbc_rax:
2908 mov 120($context),%rax
2910 .Lcommon_seh_tail:
2911 mov 8(%rax),%rdi
2912 mov 16(%rax),%rsi
2913 mov %rax,152($context) # restore context->Rsp
2914 mov %rsi,168($context) # restore context->Rsi
2915 mov %rdi,176($context) # restore context->Rdi
2917 mov 40($disp),%rdi # disp->ContextRecord
2918 mov $context,%rsi # context
2919 mov \$154,%ecx # sizeof(CONTEXT)
2920 .long 0xa548f3fc # cld; rep movsq
2922 mov $disp,%rsi
2923 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
2924 mov 8(%rsi),%rdx # arg2, disp->ImageBase
2925 mov 0(%rsi),%r8 # arg3, disp->ControlPc
2926 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
2927 mov 40(%rsi),%r10 # disp->ContextRecord
2928 lea 56(%rsi),%r11 # &disp->HandlerData
2929 lea 24(%rsi),%r12 # &disp->EstablisherFrame
2930 mov %r10,32(%rsp) # arg5
2931 mov %r11,40(%rsp) # arg6
2932 mov %r12,48(%rsp) # arg7
2933 mov %rcx,56(%rsp) # arg8, (NULL)
2934 call *__imp_RtlVirtualUnwind(%rip)
2936 mov \$1,%eax # ExceptionContinueSearch
2937 add \$64,%rsp
2938 popfq
2939 pop %r15
2940 pop %r14
2941 pop %r13
2942 pop %r12
2943 pop %rbp
2944 pop %rbx
2945 pop %rdi
2946 pop %rsi
2948 .size cbc_se_handler,.-cbc_se_handler
2950 .section .pdata
2951 .align 4
2953 $code.=<<___ if ($PREFIX eq "aesni");
2954 .rva .LSEH_begin_aesni_ecb_encrypt
2955 .rva .LSEH_end_aesni_ecb_encrypt
2956 .rva .LSEH_info_ecb
2958 .rva .LSEH_begin_aesni_ccm64_encrypt_blocks
2959 .rva .LSEH_end_aesni_ccm64_encrypt_blocks
2960 .rva .LSEH_info_ccm64_enc
2962 .rva .LSEH_begin_aesni_ccm64_decrypt_blocks
2963 .rva .LSEH_end_aesni_ccm64_decrypt_blocks
2964 .rva .LSEH_info_ccm64_dec
2966 .rva .LSEH_begin_aesni_ctr32_encrypt_blocks
2967 .rva .LSEH_end_aesni_ctr32_encrypt_blocks
2968 .rva .LSEH_info_ctr32
2970 .rva .LSEH_begin_aesni_xts_encrypt
2971 .rva .LSEH_end_aesni_xts_encrypt
2972 .rva .LSEH_info_xts_enc
2974 .rva .LSEH_begin_aesni_xts_decrypt
2975 .rva .LSEH_end_aesni_xts_decrypt
2976 .rva .LSEH_info_xts_dec
2978 $code.=<<___;
2979 .rva .LSEH_begin_${PREFIX}_cbc_encrypt
2980 .rva .LSEH_end_${PREFIX}_cbc_encrypt
2981 .rva .LSEH_info_cbc
2983 .rva ${PREFIX}_set_decrypt_key
2984 .rva .LSEH_end_set_decrypt_key
2985 .rva .LSEH_info_key
2987 .rva ${PREFIX}_set_encrypt_key
2988 .rva .LSEH_end_set_encrypt_key
2989 .rva .LSEH_info_key
2990 .section .xdata
2991 .align 8
2993 $code.=<<___ if ($PREFIX eq "aesni");
2994 .LSEH_info_ecb:
2995 .byte 9,0,0,0
2996 .rva ecb_se_handler
2997 .LSEH_info_ccm64_enc:
2998 .byte 9,0,0,0
2999 .rva ccm64_se_handler
3000 .rva .Lccm64_enc_body,.Lccm64_enc_ret # HandlerData[]
3001 .LSEH_info_ccm64_dec:
3002 .byte 9,0,0,0
3003 .rva ccm64_se_handler
3004 .rva .Lccm64_dec_body,.Lccm64_dec_ret # HandlerData[]
3005 .LSEH_info_ctr32:
3006 .byte 9,0,0,0
3007 .rva ctr32_se_handler
3008 .LSEH_info_xts_enc:
3009 .byte 9,0,0,0
3010 .rva xts_se_handler
3011 .rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[]
3012 .LSEH_info_xts_dec:
3013 .byte 9,0,0,0
3014 .rva xts_se_handler
3015 .rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[]
3017 $code.=<<___;
3018 .LSEH_info_cbc:
3019 .byte 9,0,0,0
3020 .rva cbc_se_handler
3021 .LSEH_info_key:
3022 .byte 0x01,0x04,0x01,0x00
3023 .byte 0x04,0x02,0x00,0x00 # sub rsp,8
3027 sub rex {
3028 local *opcode=shift;
3029 my ($dst,$src)=@_;
3030 my $rex=0;
3032 $rex|=0x04 if($dst>=8);
3033 $rex|=0x01 if($src>=8);
3034 push @opcode,$rex|0x40 if($rex);
3037 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
3039 print $code;
3041 close STDOUT;