4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
29 * DTrace - Dynamic Tracing for Solaris
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
42 * The functions here are ordered roughly as follows:
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
52 * - Predicate functions
55 * - Enabling functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
61 * - Driver cookbook functions
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
67 #include <sys/errno.h>
69 #include <sys/modctl.h>
71 #include <sys/systm.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
98 * DTrace Tunable Variables
100 * The following variables may be tuned by adding a line to /etc/system that
101 * includes both the name of the DTrace module ("dtrace") and the name of the
102 * variable. For example:
104 * set dtrace:dtrace_destructive_disallow = 1
106 * In general, the only variables that one should be tuning this way are those
107 * that affect system-wide DTrace behavior, and for which the default behavior
108 * is undesirable. Most of these variables are tunable on a per-consumer
109 * basis using DTrace options, and need not be tuned on a system-wide basis.
110 * When tuning these variables, avoid pathological values; while some attempt
111 * is made to verify the integrity of these variables, they are not considered
112 * part of the supported interface to DTrace, and they are therefore not
113 * checked comprehensively. Further, these variables should not be tuned
114 * dynamically via "mdb -kw" or other means; they should only be tuned via
117 int dtrace_destructive_disallow
= 0;
118 dtrace_optval_t dtrace_nonroot_maxsize
= (16 * 1024 * 1024);
119 size_t dtrace_difo_maxsize
= (256 * 1024);
120 dtrace_optval_t dtrace_dof_maxsize
= (8 * 1024 * 1024);
121 size_t dtrace_statvar_maxsize
= (16 * 1024);
122 size_t dtrace_actions_max
= (16 * 1024);
123 size_t dtrace_retain_max
= 1024;
124 dtrace_optval_t dtrace_helper_actions_max
= 1024;
125 dtrace_optval_t dtrace_helper_providers_max
= 32;
126 dtrace_optval_t dtrace_dstate_defsize
= (1 * 1024 * 1024);
127 size_t dtrace_strsize_default
= 256;
128 dtrace_optval_t dtrace_cleanrate_default
= 9900990; /* 101 hz */
129 dtrace_optval_t dtrace_cleanrate_min
= 200000; /* 5000 hz */
130 dtrace_optval_t dtrace_cleanrate_max
= (uint64_t)60 * NANOSEC
; /* 1/minute */
131 dtrace_optval_t dtrace_aggrate_default
= NANOSEC
; /* 1 hz */
132 dtrace_optval_t dtrace_statusrate_default
= NANOSEC
; /* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max
= (hrtime_t
)10 * NANOSEC
; /* 6/minute */
134 dtrace_optval_t dtrace_switchrate_default
= NANOSEC
; /* 1 hz */
135 dtrace_optval_t dtrace_nspec_default
= 1;
136 dtrace_optval_t dtrace_specsize_default
= 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default
= 20;
138 dtrace_optval_t dtrace_ustackframes_default
= 20;
139 dtrace_optval_t dtrace_jstackframes_default
= 50;
140 dtrace_optval_t dtrace_jstackstrsize_default
= 512;
141 int dtrace_msgdsize_max
= 128;
142 hrtime_t dtrace_chill_max
= MSEC2NSEC(500); /* 500 ms */
143 hrtime_t dtrace_chill_interval
= NANOSEC
; /* 1000 ms */
144 int dtrace_devdepth_max
= 32;
145 int dtrace_err_verbose
;
146 hrtime_t dtrace_deadman_interval
= NANOSEC
;
147 hrtime_t dtrace_deadman_timeout
= (hrtime_t
)10 * NANOSEC
;
148 hrtime_t dtrace_deadman_user
= (hrtime_t
)30 * NANOSEC
;
149 hrtime_t dtrace_unregister_defunct_reap
= (hrtime_t
)60 * NANOSEC
;
152 * DTrace External Variables
154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155 * available to DTrace consumers via the backtick (`) syntax. One of these,
156 * dtrace_zero, is made deliberately so: it is provided as a source of
157 * well-known, zero-filled memory. While this variable is not documented,
158 * it is used by some translators as an implementation detail.
160 const char dtrace_zero
[256] = { 0 }; /* zero-filled memory */
163 * DTrace Internal Variables
165 static dev_info_t
*dtrace_devi
; /* device info */
166 static vmem_t
*dtrace_arena
; /* probe ID arena */
167 static vmem_t
*dtrace_minor
; /* minor number arena */
168 static taskq_t
*dtrace_taskq
; /* task queue */
169 static dtrace_probe_t
**dtrace_probes
; /* array of all probes */
170 static int dtrace_nprobes
; /* number of probes */
171 static dtrace_provider_t
*dtrace_provider
; /* provider list */
172 static dtrace_meta_t
*dtrace_meta_pid
; /* user-land meta provider */
173 static int dtrace_opens
; /* number of opens */
174 static int dtrace_helpers
; /* number of helpers */
175 static int dtrace_getf
; /* number of unpriv getf()s */
176 static void *dtrace_softstate
; /* softstate pointer */
177 static dtrace_hash_t
*dtrace_bymod
; /* probes hashed by module */
178 static dtrace_hash_t
*dtrace_byfunc
; /* probes hashed by function */
179 static dtrace_hash_t
*dtrace_byname
; /* probes hashed by name */
180 static dtrace_toxrange_t
*dtrace_toxrange
; /* toxic range array */
181 static int dtrace_toxranges
; /* number of toxic ranges */
182 static int dtrace_toxranges_max
; /* size of toxic range array */
183 static dtrace_anon_t dtrace_anon
; /* anonymous enabling */
184 static kmem_cache_t
*dtrace_state_cache
; /* cache for dynamic state */
185 static uint64_t dtrace_vtime_references
; /* number of vtimestamp refs */
186 static kthread_t
*dtrace_panicked
; /* panicking thread */
187 static dtrace_ecb_t
*dtrace_ecb_create_cache
; /* cached created ECB */
188 static dtrace_genid_t dtrace_probegen
; /* current probe generation */
189 static dtrace_helpers_t
*dtrace_deferred_pid
; /* deferred helper list */
190 static dtrace_enabling_t
*dtrace_retained
; /* list of retained enablings */
191 static dtrace_genid_t dtrace_retained_gen
; /* current retained enab gen */
192 static dtrace_dynvar_t dtrace_dynhash_sink
; /* end of dynamic hash chains */
193 static int dtrace_dynvar_failclean
; /* dynvars failed to clean */
197 * DTrace is protected by three (relatively coarse-grained) locks:
199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 * including enabling state, probes, ECBs, consumer state, helper state,
201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 * probe context is lock-free -- synchronization is handled via the
203 * dtrace_sync() cross call mechanism.
205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 * when provider state must be held constant.
208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 * when meta provider state must be held constant.
211 * The lock ordering between these three locks is dtrace_meta_lock before
212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 * several places where dtrace_provider_lock is held by the framework as it
214 * calls into the providers -- which then call back into the framework,
215 * grabbing dtrace_lock.)
217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
225 static kmutex_t dtrace_lock
; /* probe state lock */
226 static kmutex_t dtrace_provider_lock
; /* provider state lock */
227 static kmutex_t dtrace_meta_lock
; /* meta-provider state lock */
230 * DTrace Provider Variables
232 * These are the variables relating to DTrace as a provider (that is, the
233 * provider of the BEGIN, END, and ERROR probes).
235 static dtrace_pattr_t dtrace_provider_attr
= {
236 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
237 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
238 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
239 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
240 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
248 dtrace_enable_nullop(void)
253 static dtrace_pops_t dtrace_provider_ops
= {
254 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
,
255 (void (*)(void *, struct modctl
*))dtrace_nullop
,
256 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
,
257 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
258 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
259 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
263 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
266 static dtrace_id_t dtrace_probeid_begin
; /* special BEGIN probe */
267 static dtrace_id_t dtrace_probeid_end
; /* special END probe */
268 dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
271 * DTrace Helper Tracing Variables
273 * These variables should be set dynamically to enable helper tracing. The
274 * only variables that should be set are dtrace_helptrace_enable (which should
275 * be set to a non-zero value to allocate helper tracing buffers on the next
276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277 * non-zero value to deallocate helper tracing buffers on the next close of
278 * /dev/dtrace). When (and only when) helper tracing is disabled, the
279 * buffer size may also be set via dtrace_helptrace_bufsize.
281 int dtrace_helptrace_enable
= 0;
282 int dtrace_helptrace_disable
= 0;
283 int dtrace_helptrace_bufsize
= 16 * 1024 * 1024;
284 uint32_t dtrace_helptrace_nlocals
;
285 static dtrace_helptrace_t
*dtrace_helptrace_buffer
;
286 static uint32_t dtrace_helptrace_next
= 0;
287 static int dtrace_helptrace_wrapped
= 0;
290 * DTrace Error Hashing
292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293 * table. This is very useful for checking coverage of tests that are
294 * expected to induce DIF or DOF processing errors, and may be useful for
295 * debugging problems in the DIF code generator or in DOF generation . The
296 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
299 static dtrace_errhash_t dtrace_errhash
[DTRACE_ERRHASHSZ
];
300 static const char *dtrace_errlast
;
301 static kthread_t
*dtrace_errthread
;
302 static kmutex_t dtrace_errlock
;
306 * DTrace Macros and Constants
308 * These are various macros that are useful in various spots in the
309 * implementation, along with a few random constants that have no meaning
310 * outside of the implementation. There is no real structure to this cpp
311 * mishmash -- but is there ever?
313 #define DTRACE_HASHSTR(hash, probe) \
314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
316 #define DTRACE_HASHNEXT(hash, probe) \
317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
319 #define DTRACE_HASHPREV(hash, probe) \
320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
322 #define DTRACE_HASHEQ(hash, lhs, rhs) \
323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
326 #define DTRACE_AGGHASHSIZE_SLEW 17
328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
331 * The key for a thread-local variable consists of the lower 61 bits of the
332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334 * equal to a variable identifier. This is necessary (but not sufficient) to
335 * assure that global associative arrays never collide with thread-local
336 * variables. To guarantee that they cannot collide, we must also define the
337 * order for keying dynamic variables. That order is:
339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
341 * Because the variable-key and the tls-key are in orthogonal spaces, there is
342 * no way for a global variable key signature to match a thread-local key
345 #define DTRACE_TLS_THRKEY(where) { \
347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 for (; actv; actv >>= 1) \
350 ASSERT(intr < (1 << 3)); \
351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
355 #define DT_BSWAP_8(x) ((x) & 0xff)
356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
362 #define DTRACE_STORE(type, tomax, offset, what) \
363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
366 #define DTRACE_ALIGNCHECK(addr, size, flags) \
367 if (addr & (size - 1)) { \
368 *flags |= CPU_DTRACE_BADALIGN; \
369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
373 #define DTRACE_ALIGNCHECK(addr, size, flags)
377 * Test whether a range of memory starting at testaddr of size testsz falls
378 * within the range of memory described by addr, sz. We take care to avoid
379 * problems with overflow and underflow of the unsigned quantities, and
380 * disallow all negative sizes. Ranges of size 0 are allowed.
382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 (testaddr) + (testsz) >= (testaddr))
387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
389 if ((remp) != NULL) { \
390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
392 _NOTE(CONSTCOND) } while (0)
396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
397 * alloc_sz on the righthand side of the comparison in order to avoid overflow
398 * or underflow in the comparison with it. This is simpler than the INRANGE
399 * check above, because we know that the dtms_scratch_ptr is valid in the
400 * range. Allocations of size zero are allowed.
402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
404 (mstate)->dtms_scratch_ptr >= (alloc_sz))
406 #define DTRACE_LOADFUNC(bits) \
409 dtrace_load##bits(uintptr_t addr) \
411 size_t size = bits / NBBY; \
413 uint##bits##_t rval; \
415 volatile uint16_t *flags = (volatile uint16_t *) \
416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
418 DTRACE_ALIGNCHECK(addr, size, flags); \
420 for (i = 0; i < dtrace_toxranges; i++) { \
421 if (addr >= dtrace_toxrange[i].dtt_limit) \
424 if (addr + size <= dtrace_toxrange[i].dtt_base) \
428 * This address falls within a toxic region; return 0. \
430 *flags |= CPU_DTRACE_BADADDR; \
431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
435 *flags |= CPU_DTRACE_NOFAULT; \
437 rval = *((volatile uint##bits##_t *)addr); \
438 *flags &= ~CPU_DTRACE_NOFAULT; \
440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
444 #define dtrace_loadptr dtrace_load64
446 #define dtrace_loadptr dtrace_load32
449 #define DTRACE_DYNHASH_FREE 0
450 #define DTRACE_DYNHASH_SINK 1
451 #define DTRACE_DYNHASH_VALID 2
453 #define DTRACE_MATCH_FAIL -1
454 #define DTRACE_MATCH_NEXT 0
455 #define DTRACE_MATCH_DONE 1
456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
457 #define DTRACE_STATE_ALIGN 64
459 #define DTRACE_FLAGS2FLT(flags) \
460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
471 #define DTRACEACT_ISSTRING(act) \
472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
475 static size_t dtrace_strlen(const char *, size_t);
476 static dtrace_probe_t
*dtrace_probe_lookup_id(dtrace_id_t id
);
477 static void dtrace_enabling_provide(dtrace_provider_t
*);
478 static int dtrace_enabling_match(dtrace_enabling_t
*, int *);
479 static void dtrace_enabling_matchall(void);
480 static void dtrace_enabling_reap(void);
481 static dtrace_state_t
*dtrace_anon_grab(void);
482 static uint64_t dtrace_helper(int, dtrace_mstate_t
*,
483 dtrace_state_t
*, uint64_t, uint64_t);
484 static dtrace_helpers_t
*dtrace_helpers_create(proc_t
*);
485 static void dtrace_buffer_drop(dtrace_buffer_t
*);
486 static int dtrace_buffer_consumed(dtrace_buffer_t
*, hrtime_t when
);
487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t
*, size_t, size_t,
488 dtrace_state_t
*, dtrace_mstate_t
*);
489 static int dtrace_state_option(dtrace_state_t
*, dtrace_optid_t
,
491 static int dtrace_ecb_create_enable(dtrace_probe_t
*, void *);
492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t
*);
493 static int dtrace_priv_proc(dtrace_state_t
*, dtrace_mstate_t
*);
494 static void dtrace_getf_barrier(void);
495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
496 dtrace_mstate_t
*, dtrace_vstate_t
*);
497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
498 dtrace_mstate_t
*, dtrace_vstate_t
*);
501 * DTrace Probe Context Functions
503 * These functions are called from probe context. Because probe context is
504 * any context in which C may be called, arbitrarily locks may be held,
505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
506 * As a result, functions called from probe context may only call other DTrace
507 * support functions -- they may not interact at all with the system at large.
508 * (Note that the ASSERT macro is made probe-context safe by redefining it in
509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
510 * loads are to be performed from probe context, they _must_ be in terms of
511 * the safe dtrace_load*() variants.
513 * Some functions in this block are not actually called from probe context;
514 * for these functions, there will be a comment above the function reading
515 * "Note: not called from probe context."
518 dtrace_panic(const char *format
, ...)
522 va_start(alist
, format
);
523 dtrace_vpanic(format
, alist
);
528 dtrace_assfail(const char *a
, const char *f
, int l
)
530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a
, f
, l
);
533 * We just need something here that even the most clever compiler
534 * cannot optimize away.
536 return (a
[(uintptr_t)f
]);
540 * Atomically increment a specified error counter from probe context.
543 dtrace_error(uint32_t *counter
)
546 * Most counters stored to in probe context are per-CPU counters.
547 * However, there are some error conditions that are sufficiently
548 * arcane that they don't merit per-CPU storage. If these counters
549 * are incremented concurrently on different CPUs, scalability will be
550 * adversely affected -- but we don't expect them to be white-hot in a
551 * correctly constructed enabling...
558 if ((nval
= oval
+ 1) == 0) {
560 * If the counter would wrap, set it to 1 -- assuring
561 * that the counter is never zero when we have seen
562 * errors. (The counter must be 32-bits because we
563 * aren't guaranteed a 64-bit compare&swap operation.)
564 * To save this code both the infamy of being fingered
565 * by a priggish news story and the indignity of being
566 * the target of a neo-puritan witch trial, we're
567 * carefully avoiding any colorful description of the
568 * likelihood of this condition -- but suffice it to
569 * say that it is only slightly more likely than the
570 * overflow of predicate cache IDs, as discussed in
571 * dtrace_predicate_create().
575 } while (dtrace_cas32(counter
, oval
, nval
) != oval
);
579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
580 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
590 dtrace_inscratch(uintptr_t dest
, size_t size
, dtrace_mstate_t
*mstate
)
592 if (dest
< mstate
->dtms_scratch_base
)
595 if (dest
+ size
< dest
)
598 if (dest
+ size
> mstate
->dtms_scratch_ptr
)
605 dtrace_canstore_statvar(uint64_t addr
, size_t sz
, size_t *remain
,
606 dtrace_statvar_t
**svars
, int nsvars
)
609 size_t maxglobalsize
, maxlocalsize
;
614 maxglobalsize
= dtrace_statvar_maxsize
+ sizeof (uint64_t);
615 maxlocalsize
= maxglobalsize
* NCPU
;
617 for (i
= 0; i
< nsvars
; i
++) {
618 dtrace_statvar_t
*svar
= svars
[i
];
622 if (svar
== NULL
|| (size
= svar
->dtsv_size
) == 0)
625 scope
= svar
->dtsv_var
.dtdv_scope
;
628 * We verify that our size is valid in the spirit of providing
629 * defense in depth: we want to prevent attackers from using
630 * DTrace to escalate an orthogonal kernel heap corruption bug
631 * into the ability to store to arbitrary locations in memory.
633 VERIFY((scope
== DIFV_SCOPE_GLOBAL
&& size
<= maxglobalsize
) ||
634 (scope
== DIFV_SCOPE_LOCAL
&& size
<= maxlocalsize
));
636 if (DTRACE_INRANGE(addr
, sz
, svar
->dtsv_data
,
638 DTRACE_RANGE_REMAIN(remain
, addr
, svar
->dtsv_data
,
648 * Check to see if the address is within a memory region to which a store may
649 * be issued. This includes the DTrace scratch areas, and any DTrace variable
650 * region. The caller of dtrace_canstore() is responsible for performing any
651 * alignment checks that are needed before stores are actually executed.
654 dtrace_canstore(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
655 dtrace_vstate_t
*vstate
)
657 return (dtrace_canstore_remains(addr
, sz
, NULL
, mstate
, vstate
));
661 * Implementation of dtrace_canstore which communicates the upper bound of the
662 * allowed memory region.
665 dtrace_canstore_remains(uint64_t addr
, size_t sz
, size_t *remain
,
666 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
669 * First, check to see if the address is in scratch space...
671 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_scratch_base
,
672 mstate
->dtms_scratch_size
)) {
673 DTRACE_RANGE_REMAIN(remain
, addr
, mstate
->dtms_scratch_base
,
674 mstate
->dtms_scratch_size
);
679 * Now check to see if it's a dynamic variable. This check will pick
680 * up both thread-local variables and any global dynamically-allocated
683 if (DTRACE_INRANGE(addr
, sz
, vstate
->dtvs_dynvars
.dtds_base
,
684 vstate
->dtvs_dynvars
.dtds_size
)) {
685 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
686 uintptr_t base
= (uintptr_t)dstate
->dtds_base
+
687 (dstate
->dtds_hashsize
* sizeof (dtrace_dynhash_t
));
689 dtrace_dynvar_t
*dvar
;
692 * Before we assume that we can store here, we need to make
693 * sure that it isn't in our metadata -- storing to our
694 * dynamic variable metadata would corrupt our state. For
695 * the range to not include any dynamic variable metadata,
698 * (1) Start above the hash table that is at the base of
699 * the dynamic variable space
701 * (2) Have a starting chunk offset that is beyond the
702 * dtrace_dynvar_t that is at the base of every chunk
704 * (3) Not span a chunk boundary
706 * (4) Not be in the tuple space of a dynamic variable
712 chunkoffs
= (addr
- base
) % dstate
->dtds_chunksize
;
714 if (chunkoffs
< sizeof (dtrace_dynvar_t
))
717 if (chunkoffs
+ sz
> dstate
->dtds_chunksize
)
720 dvar
= (dtrace_dynvar_t
*)((uintptr_t)addr
- chunkoffs
);
722 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
)
725 if (chunkoffs
< sizeof (dtrace_dynvar_t
) +
726 ((dvar
->dtdv_tuple
.dtt_nkeys
- 1) * sizeof (dtrace_key_t
)))
729 DTRACE_RANGE_REMAIN(remain
, addr
, dvar
, dstate
->dtds_chunksize
);
734 * Finally, check the static local and global variables. These checks
735 * take the longest, so we perform them last.
737 if (dtrace_canstore_statvar(addr
, sz
, remain
,
738 vstate
->dtvs_locals
, vstate
->dtvs_nlocals
))
741 if (dtrace_canstore_statvar(addr
, sz
, remain
,
742 vstate
->dtvs_globals
, vstate
->dtvs_nglobals
))
750 * Convenience routine to check to see if the address is within a memory
751 * region in which a load may be issued given the user's privilege level;
752 * if not, it sets the appropriate error flags and loads 'addr' into the
753 * illegal value slot.
755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
756 * appropriate memory access protection.
759 dtrace_canload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
760 dtrace_vstate_t
*vstate
)
762 return (dtrace_canload_remains(addr
, sz
, NULL
, mstate
, vstate
));
766 * Implementation of dtrace_canload which communicates the upper bound of the
767 * allowed memory region.
770 dtrace_canload_remains(uint64_t addr
, size_t sz
, size_t *remain
,
771 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
773 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
777 * If we hold the privilege to read from kernel memory, then
778 * everything is readable.
780 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
781 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
786 * You can obviously read that which you can store.
788 if (dtrace_canstore_remains(addr
, sz
, remain
, mstate
, vstate
))
792 * We're allowed to read from our own string table.
794 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_difo
->dtdo_strtab
,
795 mstate
->dtms_difo
->dtdo_strlen
)) {
796 DTRACE_RANGE_REMAIN(remain
, addr
,
797 mstate
->dtms_difo
->dtdo_strtab
,
798 mstate
->dtms_difo
->dtdo_strlen
);
802 if (vstate
->dtvs_state
!= NULL
&&
803 dtrace_priv_proc(vstate
->dtvs_state
, mstate
)) {
807 * When we have privileges to the current process, there are
808 * several context-related kernel structures that are safe to
809 * read, even absent the privilege to read from kernel memory.
810 * These reads are safe because these structures contain only
811 * state that (1) we're permitted to read, (2) is harmless or
812 * (3) contains pointers to additional kernel state that we're
813 * not permitted to read (and as such, do not present an
814 * opportunity for privilege escalation). Finally (and
815 * critically), because of the nature of their relation with
816 * the current thread context, the memory associated with these
817 * structures cannot change over the duration of probe context,
818 * and it is therefore impossible for this memory to be
819 * deallocated and reallocated as something else while it's
820 * being operated upon.
822 if (DTRACE_INRANGE(addr
, sz
, curthread
, sizeof (kthread_t
))) {
823 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
,
828 if ((p
= curthread
->t_procp
) != NULL
&& DTRACE_INRANGE(addr
,
829 sz
, curthread
->t_procp
, sizeof (proc_t
))) {
830 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_procp
,
835 if (curthread
->t_cred
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
836 curthread
->t_cred
, sizeof (cred_t
))) {
837 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_cred
,
842 if (p
!= NULL
&& p
->p_pidp
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
843 &(p
->p_pidp
->pid_id
), sizeof (pid_t
))) {
844 DTRACE_RANGE_REMAIN(remain
, addr
, &(p
->p_pidp
->pid_id
),
849 if (curthread
->t_cpu
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
850 curthread
->t_cpu
, offsetof(cpu_t
, cpu_pause_thread
))) {
851 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_cpu
,
852 offsetof(cpu_t
, cpu_pause_thread
));
857 if ((fp
= mstate
->dtms_getf
) != NULL
) {
858 uintptr_t psz
= sizeof (void *);
863 * When getf() returns a file_t, the enabling is implicitly
864 * granted the (transient) right to read the returned file_t
865 * as well as the v_path and v_op->vnop_name of the underlying
866 * vnode. These accesses are allowed after a successful
867 * getf() because the members that they refer to cannot change
868 * once set -- and the barrier logic in the kernel's closef()
869 * path assures that the file_t and its referenced vode_t
870 * cannot themselves be stale (that is, it impossible for
871 * either dtms_getf itself or its f_vnode member to reference
874 if (DTRACE_INRANGE(addr
, sz
, fp
, sizeof (file_t
))) {
875 DTRACE_RANGE_REMAIN(remain
, addr
, fp
, sizeof (file_t
));
879 if ((vp
= fp
->f_vnode
) != NULL
) {
882 if (DTRACE_INRANGE(addr
, sz
, &vp
->v_path
, psz
)) {
883 DTRACE_RANGE_REMAIN(remain
, addr
, &vp
->v_path
,
888 slen
= strlen(vp
->v_path
) + 1;
889 if (DTRACE_INRANGE(addr
, sz
, vp
->v_path
, slen
)) {
890 DTRACE_RANGE_REMAIN(remain
, addr
, vp
->v_path
,
895 if (DTRACE_INRANGE(addr
, sz
, &vp
->v_op
, psz
)) {
896 DTRACE_RANGE_REMAIN(remain
, addr
, &vp
->v_op
,
901 if ((op
= vp
->v_op
) != NULL
&&
902 DTRACE_INRANGE(addr
, sz
, &op
->vnop_name
, psz
)) {
903 DTRACE_RANGE_REMAIN(remain
, addr
,
904 &op
->vnop_name
, psz
);
908 if (op
!= NULL
&& op
->vnop_name
!= NULL
&&
909 DTRACE_INRANGE(addr
, sz
, op
->vnop_name
,
910 (slen
= strlen(op
->vnop_name
) + 1))) {
911 DTRACE_RANGE_REMAIN(remain
, addr
,
912 op
->vnop_name
, slen
);
918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
924 * Convenience routine to check to see if a given string is within a memory
925 * region in which a load may be issued given the user's privilege level;
926 * this exists so that we don't need to issue unnecessary dtrace_strlen()
927 * calls in the event that the user has all privileges.
930 dtrace_strcanload(uint64_t addr
, size_t sz
, size_t *remain
,
931 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
936 * If we hold the privilege to read from kernel memory, then
937 * everything is readable.
939 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
940 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
945 * Even if the caller is uninterested in querying the remaining valid
946 * range, it is required to ensure that the access is allowed.
948 if (remain
== NULL
) {
951 if (dtrace_canload_remains(addr
, 0, remain
, mstate
, vstate
)) {
954 * Perform the strlen after determining the length of the
955 * memory region which is accessible. This prevents timing
956 * information from being used to find NULs in memory which is
957 * not accessible to the caller.
959 strsz
= 1 + dtrace_strlen((char *)(uintptr_t)addr
,
961 if (strsz
<= *remain
) {
970 * Convenience routine to check to see if a given variable is within a memory
971 * region in which a load may be issued given the user's privilege level.
974 dtrace_vcanload(void *src
, dtrace_diftype_t
*type
, size_t *remain
,
975 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
978 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
981 * Calculate the max size before performing any checks since even
982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
983 * return the max length via 'remain'.
985 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
986 dtrace_state_t
*state
= vstate
->dtvs_state
;
989 sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
992 * In helper context, we have a NULL state; fall back
993 * to using the system-wide default for the string size
996 sz
= dtrace_strsize_default
;
999 sz
= type
->dtdt_size
;
1003 * If we hold the privilege to read from kernel memory, then
1004 * everything is readable.
1006 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1007 DTRACE_RANGE_REMAIN(remain
, (uintptr_t)src
, src
, sz
);
1011 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1012 return (dtrace_strcanload((uintptr_t)src
, sz
, remain
, mstate
,
1015 return (dtrace_canload_remains((uintptr_t)src
, sz
, remain
, mstate
,
1020 * Convert a string to a signed integer using safe loads.
1022 * NOTE: This function uses various macros from strtolctype.h to manipulate
1023 * digit values, etc -- these have all been checked to ensure they make
1024 * no additional function calls.
1027 dtrace_strtoll(char *input
, int base
, size_t limit
)
1029 uintptr_t pos
= (uintptr_t)input
;
1032 boolean_t neg
= B_FALSE
;
1034 uintptr_t end
= pos
+ limit
;
1037 * Consume any whitespace preceding digits.
1039 while ((c
= dtrace_load8(pos
)) == ' ' || c
== '\t')
1043 * Handle an explicit sign if one is present.
1045 if (c
== '-' || c
== '+') {
1048 c
= dtrace_load8(++pos
);
1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1055 if (base
== 16 && c
== '0' && ((cc
= dtrace_load8(pos
+ 1)) == 'x' ||
1056 cc
== 'X') && isxdigit(ccc
= dtrace_load8(pos
+ 2))) {
1062 * Read in contiguous digits until the first non-digit character.
1064 for (; pos
< end
&& c
!= '\0' && lisalnum(c
) && (x
= DIGIT(c
)) < base
;
1065 c
= dtrace_load8(++pos
))
1066 val
= val
* base
+ x
;
1068 return (neg
? -val
: val
);
1072 * Compare two strings using safe loads.
1075 dtrace_strncmp(char *s1
, char *s2
, size_t limit
)
1078 volatile uint16_t *flags
;
1080 if (s1
== s2
|| limit
== 0)
1083 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1089 c1
= dtrace_load8((uintptr_t)s1
++);
1095 c2
= dtrace_load8((uintptr_t)s2
++);
1100 } while (--limit
&& c1
!= '\0' && !(*flags
& CPU_DTRACE_FAULT
));
1106 * Compute strlen(s) for a string using safe memory accesses. The additional
1107 * len parameter is used to specify a maximum length to ensure completion.
1110 dtrace_strlen(const char *s
, size_t lim
)
1114 for (len
= 0; len
!= lim
; len
++) {
1115 if (dtrace_load8((uintptr_t)s
++) == '\0')
1123 * Check if an address falls within a toxic region.
1126 dtrace_istoxic(uintptr_t kaddr
, size_t size
)
1128 uintptr_t taddr
, tsize
;
1131 for (i
= 0; i
< dtrace_toxranges
; i
++) {
1132 taddr
= dtrace_toxrange
[i
].dtt_base
;
1133 tsize
= dtrace_toxrange
[i
].dtt_limit
- taddr
;
1135 if (kaddr
- taddr
< tsize
) {
1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1137 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= kaddr
;
1141 if (taddr
- kaddr
< size
) {
1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1143 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= taddr
;
1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1153 * memory specified by the DIF program. The dst is assumed to be safe memory
1154 * that we can store to directly because it is managed by DTrace. As with
1155 * standard bcopy, overlapping copies are handled properly.
1158 dtrace_bcopy(const void *src
, void *dst
, size_t len
)
1162 const uint8_t *s2
= src
;
1166 *s1
++ = dtrace_load8((uintptr_t)s2
++);
1167 } while (--len
!= 0);
1173 *--s1
= dtrace_load8((uintptr_t)--s2
);
1174 } while (--len
!= 0);
1180 * Copy src to dst using safe memory accesses, up to either the specified
1181 * length, or the point that a nul byte is encountered. The src is assumed to
1182 * be unsafe memory specified by the DIF program. The dst is assumed to be
1183 * safe memory that we can store to directly because it is managed by DTrace.
1184 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1187 dtrace_strcpy(const void *src
, void *dst
, size_t len
)
1190 uint8_t *s1
= dst
, c
;
1191 const uint8_t *s2
= src
;
1194 *s1
++ = c
= dtrace_load8((uintptr_t)s2
++);
1195 } while (--len
!= 0 && c
!= '\0');
1200 * Copy src to dst, deriving the size and type from the specified (BYREF)
1201 * variable type. The src is assumed to be unsafe memory specified by the DIF
1202 * program. The dst is assumed to be DTrace variable memory that is of the
1203 * specified type; we assume that we can store to directly.
1206 dtrace_vcopy(void *src
, void *dst
, dtrace_diftype_t
*type
, size_t limit
)
1208 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1210 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1211 dtrace_strcpy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1213 dtrace_bcopy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1220 * safe memory that we can access directly because it is managed by DTrace.
1223 dtrace_bcmp(const void *s1
, const void *s2
, size_t len
)
1225 volatile uint16_t *flags
;
1227 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1232 if (s1
== NULL
|| s2
== NULL
)
1235 if (s1
!= s2
&& len
!= 0) {
1236 const uint8_t *ps1
= s1
;
1237 const uint8_t *ps2
= s2
;
1240 if (dtrace_load8((uintptr_t)ps1
++) != *ps2
++)
1242 } while (--len
!= 0 && !(*flags
& CPU_DTRACE_FAULT
));
1248 * Zero the specified region using a simple byte-by-byte loop. Note that this
1249 * is for safe DTrace-managed memory only.
1252 dtrace_bzero(void *dst
, size_t len
)
1256 for (cp
= dst
; len
!= 0; len
--)
1261 dtrace_add_128(uint64_t *addend1
, uint64_t *addend2
, uint64_t *sum
)
1265 result
[0] = addend1
[0] + addend2
[0];
1266 result
[1] = addend1
[1] + addend2
[1] +
1267 (result
[0] < addend1
[0] || result
[0] < addend2
[0] ? 1 : 0);
1274 * Shift the 128-bit value in a by b. If b is positive, shift left.
1275 * If b is negative, shift right.
1278 dtrace_shift_128(uint64_t *a
, int b
)
1288 a
[0] = a
[1] >> (b
- 64);
1292 mask
= 1LL << (64 - b
);
1294 a
[0] |= ((a
[1] & mask
) << (64 - b
));
1299 a
[1] = a
[0] << (b
- 64);
1303 mask
= a
[0] >> (64 - b
);
1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312 * use native multiplication on those, and then re-combine into the
1313 * resulting 128-bit value.
1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1322 dtrace_multiply_128(uint64_t factor1
, uint64_t factor2
, uint64_t *product
)
1324 uint64_t hi1
, hi2
, lo1
, lo2
;
1327 hi1
= factor1
>> 32;
1328 hi2
= factor2
>> 32;
1330 lo1
= factor1
& DT_MASK_LO
;
1331 lo2
= factor2
& DT_MASK_LO
;
1333 product
[0] = lo1
* lo2
;
1334 product
[1] = hi1
* hi2
;
1338 dtrace_shift_128(tmp
, 32);
1339 dtrace_add_128(product
, tmp
, product
);
1343 dtrace_shift_128(tmp
, 32);
1344 dtrace_add_128(product
, tmp
, product
);
1348 * This privilege check should be used by actions and subroutines to
1349 * verify that the user credentials of the process that enabled the
1350 * invoking ECB match the target credentials
1353 dtrace_priv_proc_common_user(dtrace_state_t
*state
)
1355 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1358 * We should always have a non-NULL state cred here, since if cred
1359 * is null (anonymous tracing), we fast-path bypass this routine.
1361 ASSERT(s_cr
!= NULL
);
1363 if ((cr
= CRED()) != NULL
&&
1364 s_cr
->cr_uid
== cr
->cr_uid
&&
1365 s_cr
->cr_uid
== cr
->cr_ruid
&&
1366 s_cr
->cr_uid
== cr
->cr_suid
&&
1367 s_cr
->cr_gid
== cr
->cr_gid
&&
1368 s_cr
->cr_gid
== cr
->cr_rgid
&&
1369 s_cr
->cr_gid
== cr
->cr_sgid
)
1376 * This privilege check should be used by actions and subroutines to
1377 * verify that the zone of the process that enabled the invoking ECB
1378 * matches the target credentials
1381 dtrace_priv_proc_common_zone(dtrace_state_t
*state
)
1383 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1386 * We should always have a non-NULL state cred here, since if cred
1387 * is null (anonymous tracing), we fast-path bypass this routine.
1389 ASSERT(s_cr
!= NULL
);
1391 if ((cr
= CRED()) != NULL
&& s_cr
->cr_zone
== cr
->cr_zone
)
1398 * This privilege check should be used by actions and subroutines to
1399 * verify that the process has not setuid or changed credentials.
1402 dtrace_priv_proc_common_nocd()
1406 if ((proc
= ttoproc(curthread
)) != NULL
&&
1407 !(proc
->p_flag
& SNOCD
))
1414 dtrace_priv_proc_destructive(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1416 int action
= state
->dts_cred
.dcr_action
;
1418 if (!(mstate
->dtms_access
& DTRACE_ACCESS_PROC
))
1421 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
) == 0) &&
1422 dtrace_priv_proc_common_zone(state
) == 0)
1425 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
) == 0) &&
1426 dtrace_priv_proc_common_user(state
) == 0)
1429 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
) == 0) &&
1430 dtrace_priv_proc_common_nocd() == 0)
1436 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1442 dtrace_priv_proc_control(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1444 if (mstate
->dtms_access
& DTRACE_ACCESS_PROC
) {
1445 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC_CONTROL
)
1448 if (dtrace_priv_proc_common_zone(state
) &&
1449 dtrace_priv_proc_common_user(state
) &&
1450 dtrace_priv_proc_common_nocd())
1454 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1460 dtrace_priv_proc(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1462 if ((mstate
->dtms_access
& DTRACE_ACCESS_PROC
) &&
1463 (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
))
1466 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1472 dtrace_priv_kernel(dtrace_state_t
*state
)
1474 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL
)
1477 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1483 dtrace_priv_kernel_destructive(dtrace_state_t
*state
)
1485 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL_DESTRUCTIVE
)
1488 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1494 * Determine if the dte_cond of the specified ECB allows for processing of
1495 * the current probe to continue. Note that this routine may allow continued
1496 * processing, but with access(es) stripped from the mstate's dtms_access
1500 dtrace_priv_probe(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
,
1503 dtrace_probe_t
*probe
= ecb
->dte_probe
;
1504 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
1505 dtrace_pops_t
*pops
= &prov
->dtpv_pops
;
1506 int mode
= DTRACE_MODE_NOPRIV_DROP
;
1508 ASSERT(ecb
->dte_cond
);
1510 if (pops
->dtps_mode
!= NULL
) {
1511 mode
= pops
->dtps_mode(prov
->dtpv_arg
,
1512 probe
->dtpr_id
, probe
->dtpr_arg
);
1514 ASSERT(mode
& (DTRACE_MODE_USER
| DTRACE_MODE_KERNEL
));
1515 ASSERT(mode
& (DTRACE_MODE_NOPRIV_RESTRICT
|
1516 DTRACE_MODE_NOPRIV_DROP
));
1520 * If the dte_cond bits indicate that this consumer is only allowed to
1521 * see user-mode firings of this probe, check that the probe was fired
1522 * while in a user context. If that's not the case, use the policy
1523 * specified by the provider to determine if we drop the probe or
1524 * merely restrict operation.
1526 if (ecb
->dte_cond
& DTRACE_COND_USERMODE
) {
1527 ASSERT(mode
!= DTRACE_MODE_NOPRIV_DROP
);
1529 if (!(mode
& DTRACE_MODE_USER
)) {
1530 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1533 mstate
->dtms_access
&= ~DTRACE_ACCESS_ARGS
;
1538 * This is more subtle than it looks. We have to be absolutely certain
1539 * that CRED() isn't going to change out from under us so it's only
1540 * legit to examine that structure if we're in constrained situations.
1541 * Currently, the only times we'll this check is if a non-super-user
1542 * has enabled the profile or syscall providers -- providers that
1543 * allow visibility of all processes. For the profile case, the check
1544 * above will ensure that we're examining a user context.
1546 if (ecb
->dte_cond
& DTRACE_COND_OWNER
) {
1548 cred_t
*s_cr
= state
->dts_cred
.dcr_cred
;
1551 ASSERT(s_cr
!= NULL
);
1553 if ((cr
= CRED()) == NULL
||
1554 s_cr
->cr_uid
!= cr
->cr_uid
||
1555 s_cr
->cr_uid
!= cr
->cr_ruid
||
1556 s_cr
->cr_uid
!= cr
->cr_suid
||
1557 s_cr
->cr_gid
!= cr
->cr_gid
||
1558 s_cr
->cr_gid
!= cr
->cr_rgid
||
1559 s_cr
->cr_gid
!= cr
->cr_sgid
||
1560 (proc
= ttoproc(curthread
)) == NULL
||
1561 (proc
->p_flag
& SNOCD
)) {
1562 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1565 mstate
->dtms_access
&= ~DTRACE_ACCESS_PROC
;
1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571 * in our zone, check to see if our mode policy is to restrict rather
1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573 * and DTRACE_ACCESS_ARGS
1575 if (ecb
->dte_cond
& DTRACE_COND_ZONEOWNER
) {
1577 cred_t
*s_cr
= state
->dts_cred
.dcr_cred
;
1579 ASSERT(s_cr
!= NULL
);
1581 if ((cr
= CRED()) == NULL
||
1582 s_cr
->cr_zone
->zone_id
!= cr
->cr_zone
->zone_id
) {
1583 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1586 mstate
->dtms_access
&=
1587 ~(DTRACE_ACCESS_PROC
| DTRACE_ACCESS_ARGS
);
1592 * By merits of being in this code path at all, we have limited
1593 * privileges. If the provider has indicated that limited privileges
1594 * are to denote restricted operation, strip off the ability to access
1597 if (mode
& DTRACE_MODE_LIMITEDPRIV_RESTRICT
)
1598 mstate
->dtms_access
&= ~DTRACE_ACCESS_ARGS
;
1604 * Note: not called from probe context. This function is called
1605 * asynchronously (and at a regular interval) from outside of probe context to
1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1607 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1610 dtrace_dynvar_clean(dtrace_dstate_t
*dstate
)
1612 dtrace_dynvar_t
*dirty
;
1613 dtrace_dstate_percpu_t
*dcpu
;
1614 dtrace_dynvar_t
**rinsep
;
1617 for (i
= 0; i
< NCPU
; i
++) {
1618 dcpu
= &dstate
->dtds_percpu
[i
];
1619 rinsep
= &dcpu
->dtdsc_rinsing
;
1622 * If the dirty list is NULL, there is no dirty work to do.
1624 if (dcpu
->dtdsc_dirty
== NULL
)
1627 if (dcpu
->dtdsc_rinsing
!= NULL
) {
1629 * If the rinsing list is non-NULL, then it is because
1630 * this CPU was selected to accept another CPU's
1631 * dirty list -- and since that time, dirty buffers
1632 * have accumulated. This is a highly unlikely
1633 * condition, but we choose to ignore the dirty
1634 * buffers -- they'll be picked up a future cleanse.
1639 if (dcpu
->dtdsc_clean
!= NULL
) {
1641 * If the clean list is non-NULL, then we're in a
1642 * situation where a CPU has done deallocations (we
1643 * have a non-NULL dirty list) but no allocations (we
1644 * also have a non-NULL clean list). We can't simply
1645 * move the dirty list into the clean list on this
1646 * CPU, yet we also don't want to allow this condition
1647 * to persist, lest a short clean list prevent a
1648 * massive dirty list from being cleaned (which in
1649 * turn could lead to otherwise avoidable dynamic
1650 * drops). To deal with this, we look for some CPU
1651 * with a NULL clean list, NULL dirty list, and NULL
1652 * rinsing list -- and then we borrow this CPU to
1653 * rinse our dirty list.
1655 for (j
= 0; j
< NCPU
; j
++) {
1656 dtrace_dstate_percpu_t
*rinser
;
1658 rinser
= &dstate
->dtds_percpu
[j
];
1660 if (rinser
->dtdsc_rinsing
!= NULL
)
1663 if (rinser
->dtdsc_dirty
!= NULL
)
1666 if (rinser
->dtdsc_clean
!= NULL
)
1669 rinsep
= &rinser
->dtdsc_rinsing
;
1675 * We were unable to find another CPU that
1676 * could accept this dirty list -- we are
1677 * therefore unable to clean it now.
1679 dtrace_dynvar_failclean
++;
1687 * Atomically move the dirty list aside.
1690 dirty
= dcpu
->dtdsc_dirty
;
1693 * Before we zap the dirty list, set the rinsing list.
1694 * (This allows for a potential assertion in
1695 * dtrace_dynvar(): if a free dynamic variable appears
1696 * on a hash chain, either the dirty list or the
1697 * rinsing list for some CPU must be non-NULL.)
1700 dtrace_membar_producer();
1701 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
,
1702 dirty
, NULL
) != dirty
);
1707 * We have no work to do; we can simply return.
1714 for (i
= 0; i
< NCPU
; i
++) {
1715 dcpu
= &dstate
->dtds_percpu
[i
];
1717 if (dcpu
->dtdsc_rinsing
== NULL
)
1721 * We are now guaranteed that no hash chain contains a pointer
1722 * into this dirty list; we can make it clean.
1724 ASSERT(dcpu
->dtdsc_clean
== NULL
);
1725 dcpu
->dtdsc_clean
= dcpu
->dtdsc_rinsing
;
1726 dcpu
->dtdsc_rinsing
= NULL
;
1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732 * This prevents a race whereby a CPU incorrectly decides that
1733 * the state should be something other than DTRACE_DSTATE_CLEAN
1734 * after dtrace_dynvar_clean() has completed.
1738 dstate
->dtds_state
= DTRACE_DSTATE_CLEAN
;
1742 * Depending on the value of the op parameter, this function looks-up,
1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1744 * allocation is requested, this function will return a pointer to a
1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746 * variable can be allocated. If NULL is returned, the appropriate counter
1747 * will be incremented.
1750 dtrace_dynvar(dtrace_dstate_t
*dstate
, uint_t nkeys
,
1751 dtrace_key_t
*key
, size_t dsize
, dtrace_dynvar_op_t op
,
1752 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1754 uint64_t hashval
= DTRACE_DYNHASH_VALID
;
1755 dtrace_dynhash_t
*hash
= dstate
->dtds_hash
;
1756 dtrace_dynvar_t
*free
, *new_free
, *next
, *dvar
, *start
, *prev
= NULL
;
1757 processorid_t me
= CPU
->cpu_id
, cpu
= me
;
1758 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[me
];
1759 size_t bucket
, ksize
;
1760 size_t chunksize
= dstate
->dtds_chunksize
;
1761 uintptr_t kdata
, lock
, nstate
;
1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1768 * algorithm. For the by-value portions, we perform the algorithm in
1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1770 * bit, and seems to have only a minute effect on distribution. For
1771 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772 * over each referenced byte. It's painful to do this, but it's much
1773 * better than pathological hash distribution. The efficacy of the
1774 * hashing algorithm (and a comparison with other algorithms) may be
1775 * found by running the ::dtrace_dynstat MDB dcmd.
1777 for (i
= 0; i
< nkeys
; i
++) {
1778 if (key
[i
].dttk_size
== 0) {
1779 uint64_t val
= key
[i
].dttk_value
;
1781 hashval
+= (val
>> 48) & 0xffff;
1782 hashval
+= (hashval
<< 10);
1783 hashval
^= (hashval
>> 6);
1785 hashval
+= (val
>> 32) & 0xffff;
1786 hashval
+= (hashval
<< 10);
1787 hashval
^= (hashval
>> 6);
1789 hashval
+= (val
>> 16) & 0xffff;
1790 hashval
+= (hashval
<< 10);
1791 hashval
^= (hashval
>> 6);
1793 hashval
+= val
& 0xffff;
1794 hashval
+= (hashval
<< 10);
1795 hashval
^= (hashval
>> 6);
1798 * This is incredibly painful, but it beats the hell
1799 * out of the alternative.
1801 uint64_t j
, size
= key
[i
].dttk_size
;
1802 uintptr_t base
= (uintptr_t)key
[i
].dttk_value
;
1804 if (!dtrace_canload(base
, size
, mstate
, vstate
))
1807 for (j
= 0; j
< size
; j
++) {
1808 hashval
+= dtrace_load8(base
+ j
);
1809 hashval
+= (hashval
<< 10);
1810 hashval
^= (hashval
>> 6);
1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
1818 hashval
+= (hashval
<< 3);
1819 hashval
^= (hashval
>> 11);
1820 hashval
+= (hashval
<< 15);
1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824 * comes out to be one of our two sentinel hash values. If this
1825 * actually happens, we set the hashval to be a value known to be a
1826 * non-sentinel value.
1828 if (hashval
== DTRACE_DYNHASH_FREE
|| hashval
== DTRACE_DYNHASH_SINK
)
1829 hashval
= DTRACE_DYNHASH_VALID
;
1832 * Yes, it's painful to do a divide here. If the cycle count becomes
1833 * important here, tricks can be pulled to reduce it. (However, it's
1834 * critical that hash collisions be kept to an absolute minimum;
1835 * they're much more painful than a divide.) It's better to have a
1836 * solution that generates few collisions and still keeps things
1837 * relatively simple.
1839 bucket
= hashval
% dstate
->dtds_hashsize
;
1841 if (op
== DTRACE_DYNVAR_DEALLOC
) {
1842 volatile uintptr_t *lockp
= &hash
[bucket
].dtdh_lock
;
1845 while ((lock
= *lockp
) & 1)
1848 if (dtrace_casptr((void *)lockp
,
1849 (void *)lock
, (void *)(lock
+ 1)) == (void *)lock
)
1853 dtrace_membar_producer();
1858 lock
= hash
[bucket
].dtdh_lock
;
1860 dtrace_membar_consumer();
1862 start
= hash
[bucket
].dtdh_chain
;
1863 ASSERT(start
!= NULL
&& (start
->dtdv_hashval
== DTRACE_DYNHASH_SINK
||
1864 start
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
||
1865 op
!= DTRACE_DYNVAR_DEALLOC
));
1867 for (dvar
= start
; dvar
!= NULL
; dvar
= dvar
->dtdv_next
) {
1868 dtrace_tuple_t
*dtuple
= &dvar
->dtdv_tuple
;
1869 dtrace_key_t
*dkey
= &dtuple
->dtt_key
[0];
1871 if (dvar
->dtdv_hashval
!= hashval
) {
1872 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_SINK
) {
1874 * We've reached the sink, and therefore the
1875 * end of the hash chain; we can kick out of
1876 * the loop knowing that we have seen a valid
1877 * snapshot of state.
1879 ASSERT(dvar
->dtdv_next
== NULL
);
1880 ASSERT(dvar
== &dtrace_dynhash_sink
);
1884 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
) {
1886 * We've gone off the rails: somewhere along
1887 * the line, one of the members of this hash
1888 * chain was deleted. Note that we could also
1889 * detect this by simply letting this loop run
1890 * to completion, as we would eventually hit
1891 * the end of the dirty list. However, we
1892 * want to avoid running the length of the
1893 * dirty list unnecessarily (it might be quite
1894 * long), so we catch this as early as
1895 * possible by detecting the hash marker. In
1896 * this case, we simply set dvar to NULL and
1897 * break; the conditional after the loop will
1898 * send us back to top.
1907 if (dtuple
->dtt_nkeys
!= nkeys
)
1910 for (i
= 0; i
< nkeys
; i
++, dkey
++) {
1911 if (dkey
->dttk_size
!= key
[i
].dttk_size
)
1912 goto next
; /* size or type mismatch */
1914 if (dkey
->dttk_size
!= 0) {
1916 (void *)(uintptr_t)key
[i
].dttk_value
,
1917 (void *)(uintptr_t)dkey
->dttk_value
,
1921 if (dkey
->dttk_value
!= key
[i
].dttk_value
)
1926 if (op
!= DTRACE_DYNVAR_DEALLOC
)
1929 ASSERT(dvar
->dtdv_next
== NULL
||
1930 dvar
->dtdv_next
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
);
1933 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1934 ASSERT(start
!= dvar
);
1935 ASSERT(prev
->dtdv_next
== dvar
);
1936 prev
->dtdv_next
= dvar
->dtdv_next
;
1938 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
,
1939 start
, dvar
->dtdv_next
) != start
) {
1941 * We have failed to atomically swing the
1942 * hash table head pointer, presumably because
1943 * of a conflicting allocation on another CPU.
1944 * We need to reread the hash chain and try
1951 dtrace_membar_producer();
1954 * Now set the hash value to indicate that it's free.
1956 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1957 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
1959 dtrace_membar_producer();
1962 * Set the next pointer to point at the dirty list, and
1963 * atomically swing the dirty pointer to the newly freed dvar.
1966 next
= dcpu
->dtdsc_dirty
;
1967 dvar
->dtdv_next
= next
;
1968 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, next
, dvar
) != next
);
1971 * Finally, unlock this hash bucket.
1973 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
1975 hash
[bucket
].dtdh_lock
++;
1985 * If dvar is NULL, it is because we went off the rails:
1986 * one of the elements that we traversed in the hash chain
1987 * was deleted while we were traversing it. In this case,
1988 * we assert that we aren't doing a dealloc (deallocs lock
1989 * the hash bucket to prevent themselves from racing with
1990 * one another), and retry the hash chain traversal.
1992 ASSERT(op
!= DTRACE_DYNVAR_DEALLOC
);
1996 if (op
!= DTRACE_DYNVAR_ALLOC
) {
1998 * If we are not to allocate a new variable, we want to
1999 * return NULL now. Before we return, check that the value
2000 * of the lock word hasn't changed. If it has, we may have
2001 * seen an inconsistent snapshot.
2003 if (op
== DTRACE_DYNVAR_NOALLOC
) {
2004 if (hash
[bucket
].dtdh_lock
!= lock
)
2007 ASSERT(op
== DTRACE_DYNVAR_DEALLOC
);
2008 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2010 hash
[bucket
].dtdh_lock
++;
2017 * We need to allocate a new dynamic variable. The size we need is the
2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020 * the size of any referred-to data (dsize). We then round the final
2021 * size up to the chunksize for allocation.
2023 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
2024 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
2027 * This should be pretty much impossible, but could happen if, say,
2028 * strange DIF specified the tuple. Ideally, this should be an
2029 * assertion and not an error condition -- but that requires that the
2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031 * bullet-proof. (That is, it must not be able to be fooled by
2032 * malicious DIF.) Given the lack of backwards branches in DIF,
2033 * solving this would presumably not amount to solving the Halting
2034 * Problem -- but it still seems awfully hard.
2036 if (sizeof (dtrace_dynvar_t
) + sizeof (dtrace_key_t
) * (nkeys
- 1) +
2037 ksize
+ dsize
> chunksize
) {
2038 dcpu
->dtdsc_drops
++;
2042 nstate
= DTRACE_DSTATE_EMPTY
;
2046 free
= dcpu
->dtdsc_free
;
2049 dtrace_dynvar_t
*clean
= dcpu
->dtdsc_clean
;
2052 if (clean
== NULL
) {
2054 * We're out of dynamic variable space on
2055 * this CPU. Unless we have tried all CPUs,
2056 * we'll try to allocate from a different
2059 switch (dstate
->dtds_state
) {
2060 case DTRACE_DSTATE_CLEAN
: {
2061 void *sp
= &dstate
->dtds_state
;
2066 if (dcpu
->dtdsc_dirty
!= NULL
&&
2067 nstate
== DTRACE_DSTATE_EMPTY
)
2068 nstate
= DTRACE_DSTATE_DIRTY
;
2070 if (dcpu
->dtdsc_rinsing
!= NULL
)
2071 nstate
= DTRACE_DSTATE_RINSING
;
2073 dcpu
= &dstate
->dtds_percpu
[cpu
];
2078 (void) dtrace_cas32(sp
,
2079 DTRACE_DSTATE_CLEAN
, nstate
);
2082 * To increment the correct bean
2083 * counter, take another lap.
2088 case DTRACE_DSTATE_DIRTY
:
2089 dcpu
->dtdsc_dirty_drops
++;
2092 case DTRACE_DSTATE_RINSING
:
2093 dcpu
->dtdsc_rinsing_drops
++;
2096 case DTRACE_DSTATE_EMPTY
:
2097 dcpu
->dtdsc_drops
++;
2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP
);
2106 * The clean list appears to be non-empty. We want to
2107 * move the clean list to the free list; we start by
2108 * moving the clean pointer aside.
2110 if (dtrace_casptr(&dcpu
->dtdsc_clean
,
2111 clean
, NULL
) != clean
) {
2113 * We are in one of two situations:
2115 * (a) The clean list was switched to the
2116 * free list by another CPU.
2118 * (b) The clean list was added to by the
2121 * In either of these situations, we can
2122 * just reattempt the free list allocation.
2127 ASSERT(clean
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2130 * Now we'll move the clean list to our free list.
2131 * It's impossible for this to fail: the only way
2132 * the free list can be updated is through this
2133 * code path, and only one CPU can own the clean list.
2134 * Thus, it would only be possible for this to fail if
2135 * this code were racing with dtrace_dynvar_clean().
2136 * (That is, if dtrace_dynvar_clean() updated the clean
2137 * list, and we ended up racing to update the free
2138 * list.) This race is prevented by the dtrace_sync()
2139 * in dtrace_dynvar_clean() -- which flushes the
2140 * owners of the clean lists out before resetting
2143 dcpu
= &dstate
->dtds_percpu
[me
];
2144 rval
= dtrace_casptr(&dcpu
->dtdsc_free
, NULL
, clean
);
2145 ASSERT(rval
== NULL
);
2150 new_free
= dvar
->dtdv_next
;
2151 } while (dtrace_casptr(&dcpu
->dtdsc_free
, free
, new_free
) != free
);
2154 * We have now allocated a new chunk. We copy the tuple keys into the
2155 * tuple array and copy any referenced key data into the data space
2156 * following the tuple array. As we do this, we relocate dttk_value
2157 * in the final tuple to point to the key data address in the chunk.
2159 kdata
= (uintptr_t)&dvar
->dtdv_tuple
.dtt_key
[nkeys
];
2160 dvar
->dtdv_data
= (void *)(kdata
+ ksize
);
2161 dvar
->dtdv_tuple
.dtt_nkeys
= nkeys
;
2163 for (i
= 0; i
< nkeys
; i
++) {
2164 dtrace_key_t
*dkey
= &dvar
->dtdv_tuple
.dtt_key
[i
];
2165 size_t kesize
= key
[i
].dttk_size
;
2169 (const void *)(uintptr_t)key
[i
].dttk_value
,
2170 (void *)kdata
, kesize
);
2171 dkey
->dttk_value
= kdata
;
2172 kdata
+= P2ROUNDUP(kesize
, sizeof (uint64_t));
2174 dkey
->dttk_value
= key
[i
].dttk_value
;
2177 dkey
->dttk_size
= kesize
;
2180 ASSERT(dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2181 dvar
->dtdv_hashval
= hashval
;
2182 dvar
->dtdv_next
= start
;
2184 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
, start
, dvar
) == start
)
2188 * The cas has failed. Either another CPU is adding an element to
2189 * this hash chain, or another CPU is deleting an element from this
2190 * hash chain. The simplest way to deal with both of these cases
2191 * (though not necessarily the most efficient) is to free our
2192 * allocated block and re-attempt it all. Note that the free is
2193 * to the dirty list and _not_ to the free list. This is to prevent
2194 * races with allocators, above.
2196 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2198 dtrace_membar_producer();
2201 free
= dcpu
->dtdsc_dirty
;
2202 dvar
->dtdv_next
= free
;
2203 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, free
, dvar
) != free
);
2210 dtrace_aggregate_min(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2212 if ((int64_t)nval
< (int64_t)*oval
)
2218 dtrace_aggregate_max(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2220 if ((int64_t)nval
> (int64_t)*oval
)
2225 dtrace_aggregate_quantize(uint64_t *quanta
, uint64_t nval
, uint64_t incr
)
2227 int i
, zero
= DTRACE_QUANTIZE_ZEROBUCKET
;
2228 int64_t val
= (int64_t)nval
;
2231 for (i
= 0; i
< zero
; i
++) {
2232 if (val
<= DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2238 for (i
= zero
+ 1; i
< DTRACE_QUANTIZE_NBUCKETS
; i
++) {
2239 if (val
< DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2240 quanta
[i
- 1] += incr
;
2245 quanta
[DTRACE_QUANTIZE_NBUCKETS
- 1] += incr
;
2253 dtrace_aggregate_lquantize(uint64_t *lquanta
, uint64_t nval
, uint64_t incr
)
2255 uint64_t arg
= *lquanta
++;
2256 int32_t base
= DTRACE_LQUANTIZE_BASE(arg
);
2257 uint16_t step
= DTRACE_LQUANTIZE_STEP(arg
);
2258 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(arg
);
2259 int32_t val
= (int32_t)nval
, level
;
2262 ASSERT(levels
!= 0);
2266 * This is an underflow.
2272 level
= (val
- base
) / step
;
2274 if (level
< levels
) {
2275 lquanta
[level
+ 1] += incr
;
2280 * This is an overflow.
2282 lquanta
[levels
+ 1] += incr
;
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor
, uint16_t low
,
2287 uint16_t high
, uint16_t nsteps
, int64_t value
)
2289 int64_t this = 1, last
, next
;
2290 int base
= 1, order
;
2292 ASSERT(factor
<= nsteps
);
2293 ASSERT(nsteps
% factor
== 0);
2295 for (order
= 0; order
< low
; order
++)
2299 * If our value is less than our factor taken to the power of the
2300 * low order of magnitude, it goes into the zeroth bucket.
2302 if (value
< (last
= this))
2305 for (this *= factor
; order
<= high
; order
++) {
2306 int nbuckets
= this > nsteps
? nsteps
: this;
2308 if ((next
= this * factor
) < this) {
2310 * We should not generally get log/linear quantizations
2311 * with a high magnitude that allows 64-bits to
2312 * overflow, but we nonetheless protect against this
2313 * by explicitly checking for overflow, and clamping
2314 * our value accordingly.
2321 * If our value lies within this order of magnitude,
2322 * determine its position by taking the offset within
2323 * the order of magnitude, dividing by the bucket
2324 * width, and adding to our (accumulated) base.
2326 return (base
+ (value
- last
) / (this / nbuckets
));
2329 base
+= nbuckets
- (nbuckets
/ factor
);
2335 * Our value is greater than or equal to our factor taken to the
2336 * power of one plus the high magnitude -- return the top bucket.
2342 dtrace_aggregate_llquantize(uint64_t *llquanta
, uint64_t nval
, uint64_t incr
)
2344 uint64_t arg
= *llquanta
++;
2345 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(arg
);
2346 uint16_t low
= DTRACE_LLQUANTIZE_LOW(arg
);
2347 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(arg
);
2348 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(arg
);
2350 llquanta
[dtrace_aggregate_llquantize_bucket(factor
,
2351 low
, high
, nsteps
, nval
)] += incr
;
2356 dtrace_aggregate_avg(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2364 dtrace_aggregate_stddev(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2366 int64_t snval
= (int64_t)nval
;
2373 * What we want to say here is:
2375 * data[2] += nval * nval;
2377 * But given that nval is 64-bit, we could easily overflow, so
2378 * we do this as 128-bit arithmetic.
2383 dtrace_multiply_128((uint64_t)snval
, (uint64_t)snval
, tmp
);
2384 dtrace_add_128(data
+ 2, tmp
, data
+ 2);
2389 dtrace_aggregate_count(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2396 dtrace_aggregate_sum(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2402 * Aggregate given the tuple in the principal data buffer, and the aggregating
2403 * action denoted by the specified dtrace_aggregation_t. The aggregation
2404 * buffer is specified as the buf parameter. This routine does not return
2405 * failure; if there is no space in the aggregation buffer, the data will be
2406 * dropped, and a corresponding counter incremented.
2409 dtrace_aggregate(dtrace_aggregation_t
*agg
, dtrace_buffer_t
*dbuf
,
2410 intptr_t offset
, dtrace_buffer_t
*buf
, uint64_t expr
, uint64_t arg
)
2412 dtrace_recdesc_t
*rec
= &agg
->dtag_action
.dta_rec
;
2413 uint32_t i
, ndx
, size
, fsize
;
2414 uint32_t align
= sizeof (uint64_t) - 1;
2415 dtrace_aggbuffer_t
*agb
;
2416 dtrace_aggkey_t
*key
;
2417 uint32_t hashval
= 0, limit
, isstr
;
2418 caddr_t tomax
, data
, kdata
;
2419 dtrace_actkind_t action
;
2420 dtrace_action_t
*act
;
2426 if (!agg
->dtag_hasarg
) {
2428 * Currently, only quantize() and lquantize() take additional
2429 * arguments, and they have the same semantics: an increment
2430 * value that defaults to 1 when not present. If additional
2431 * aggregating actions take arguments, the setting of the
2432 * default argument value will presumably have to become more
2438 action
= agg
->dtag_action
.dta_kind
- DTRACEACT_AGGREGATION
;
2439 size
= rec
->dtrd_offset
- agg
->dtag_base
;
2440 fsize
= size
+ rec
->dtrd_size
;
2442 ASSERT(dbuf
->dtb_tomax
!= NULL
);
2443 data
= dbuf
->dtb_tomax
+ offset
+ agg
->dtag_base
;
2445 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
2446 dtrace_buffer_drop(buf
);
2451 * The metastructure is always at the bottom of the buffer.
2453 agb
= (dtrace_aggbuffer_t
*)(tomax
+ buf
->dtb_size
-
2454 sizeof (dtrace_aggbuffer_t
));
2456 if (buf
->dtb_offset
== 0) {
2458 * We just kludge up approximately 1/8th of the size to be
2459 * buckets. If this guess ends up being routinely
2460 * off-the-mark, we may need to dynamically readjust this
2461 * based on past performance.
2463 uintptr_t hashsize
= (buf
->dtb_size
>> 3) / sizeof (uintptr_t);
2465 if ((uintptr_t)agb
- hashsize
* sizeof (dtrace_aggkey_t
*) <
2466 (uintptr_t)tomax
|| hashsize
== 0) {
2468 * We've been given a ludicrously small buffer;
2469 * increment our drop count and leave.
2471 dtrace_buffer_drop(buf
);
2476 * And now, a pathetic attempt to try to get a an odd (or
2477 * perchance, a prime) hash size for better hash distribution.
2479 if (hashsize
> (DTRACE_AGGHASHSIZE_SLEW
<< 3))
2480 hashsize
-= DTRACE_AGGHASHSIZE_SLEW
;
2482 agb
->dtagb_hashsize
= hashsize
;
2483 agb
->dtagb_hash
= (dtrace_aggkey_t
**)((uintptr_t)agb
-
2484 agb
->dtagb_hashsize
* sizeof (dtrace_aggkey_t
*));
2485 agb
->dtagb_free
= (uintptr_t)agb
->dtagb_hash
;
2487 for (i
= 0; i
< agb
->dtagb_hashsize
; i
++)
2488 agb
->dtagb_hash
[i
] = NULL
;
2491 ASSERT(agg
->dtag_first
!= NULL
);
2492 ASSERT(agg
->dtag_first
->dta_intuple
);
2495 * Calculate the hash value based on the key. Note that we _don't_
2496 * include the aggid in the hashing (but we will store it as part of
2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498 * algorithm: a simple, quick algorithm that has no known funnels, and
2499 * gets good distribution in practice. The efficacy of the hashing
2500 * algorithm (and a comparison with other algorithms) may be found by
2501 * running the ::dtrace_aggstat MDB dcmd.
2503 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2504 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2505 limit
= i
+ act
->dta_rec
.dtrd_size
;
2506 ASSERT(limit
<= size
);
2507 isstr
= DTRACEACT_ISSTRING(act
);
2509 for (; i
< limit
; i
++) {
2511 hashval
+= (hashval
<< 10);
2512 hashval
^= (hashval
>> 6);
2514 if (isstr
&& data
[i
] == '\0')
2519 hashval
+= (hashval
<< 3);
2520 hashval
^= (hashval
>> 11);
2521 hashval
+= (hashval
<< 15);
2524 * Yes, the divide here is expensive -- but it's generally the least
2525 * of the performance issues given the amount of data that we iterate
2526 * over to compute hash values, compare data, etc.
2528 ndx
= hashval
% agb
->dtagb_hashsize
;
2530 for (key
= agb
->dtagb_hash
[ndx
]; key
!= NULL
; key
= key
->dtak_next
) {
2531 ASSERT((caddr_t
)key
>= tomax
);
2532 ASSERT((caddr_t
)key
< tomax
+ buf
->dtb_size
);
2534 if (hashval
!= key
->dtak_hashval
|| key
->dtak_size
!= size
)
2537 kdata
= key
->dtak_data
;
2538 ASSERT(kdata
>= tomax
&& kdata
< tomax
+ buf
->dtb_size
);
2540 for (act
= agg
->dtag_first
; act
->dta_intuple
;
2541 act
= act
->dta_next
) {
2542 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2543 limit
= i
+ act
->dta_rec
.dtrd_size
;
2544 ASSERT(limit
<= size
);
2545 isstr
= DTRACEACT_ISSTRING(act
);
2547 for (; i
< limit
; i
++) {
2548 if (kdata
[i
] != data
[i
])
2551 if (isstr
&& data
[i
] == '\0')
2556 if (action
!= key
->dtak_action
) {
2558 * We are aggregating on the same value in the same
2559 * aggregation with two different aggregating actions.
2560 * (This should have been picked up in the compiler,
2561 * so we may be dealing with errant or devious DIF.)
2562 * This is an error condition; we indicate as much,
2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
2570 * This is a hit: we need to apply the aggregator to
2571 * the value at this key.
2573 agg
->dtag_aggregate((uint64_t *)(kdata
+ size
), expr
, arg
);
2580 * We didn't find it. We need to allocate some zero-filled space,
2581 * link it into the hash table appropriately, and apply the aggregator
2582 * to the (zero-filled) value.
2584 offs
= buf
->dtb_offset
;
2585 while (offs
& (align
- 1))
2586 offs
+= sizeof (uint32_t);
2589 * If we don't have enough room to both allocate a new key _and_
2590 * its associated data, increment the drop count and return.
2592 if ((uintptr_t)tomax
+ offs
+ fsize
>
2593 agb
->dtagb_free
- sizeof (dtrace_aggkey_t
)) {
2594 dtrace_buffer_drop(buf
);
2599 ASSERT(!(sizeof (dtrace_aggkey_t
) & (sizeof (uintptr_t) - 1)));
2600 key
= (dtrace_aggkey_t
*)(agb
->dtagb_free
- sizeof (dtrace_aggkey_t
));
2601 agb
->dtagb_free
-= sizeof (dtrace_aggkey_t
);
2603 key
->dtak_data
= kdata
= tomax
+ offs
;
2604 buf
->dtb_offset
= offs
+ fsize
;
2607 * Now copy the data across.
2609 *((dtrace_aggid_t
*)kdata
) = agg
->dtag_id
;
2611 for (i
= sizeof (dtrace_aggid_t
); i
< size
; i
++)
2615 * Because strings are not zeroed out by default, we need to iterate
2616 * looking for actions that store strings, and we need to explicitly
2617 * pad these strings out with zeroes.
2619 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2622 if (!DTRACEACT_ISSTRING(act
))
2625 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2626 limit
= i
+ act
->dta_rec
.dtrd_size
;
2627 ASSERT(limit
<= size
);
2629 for (nul
= 0; i
< limit
; i
++) {
2635 if (data
[i
] != '\0')
2642 for (i
= size
; i
< fsize
; i
++)
2645 key
->dtak_hashval
= hashval
;
2646 key
->dtak_size
= size
;
2647 key
->dtak_action
= action
;
2648 key
->dtak_next
= agb
->dtagb_hash
[ndx
];
2649 agb
->dtagb_hash
[ndx
] = key
;
2652 * Finally, apply the aggregator.
2654 *((uint64_t *)(key
->dtak_data
+ size
)) = agg
->dtag_initial
;
2655 agg
->dtag_aggregate((uint64_t *)(key
->dtak_data
+ size
), expr
, arg
);
2659 * Given consumer state, this routine finds a speculation in the INACTIVE
2660 * state and transitions it into the ACTIVE state. If there is no speculation
2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2662 * incremented -- it is up to the caller to take appropriate action.
2665 dtrace_speculation(dtrace_state_t
*state
)
2668 dtrace_speculation_state_t current
;
2669 uint32_t *stat
= &state
->dts_speculations_unavail
, count
;
2671 while (i
< state
->dts_nspeculations
) {
2672 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2674 current
= spec
->dtsp_state
;
2676 if (current
!= DTRACESPEC_INACTIVE
) {
2677 if (current
== DTRACESPEC_COMMITTINGMANY
||
2678 current
== DTRACESPEC_COMMITTING
||
2679 current
== DTRACESPEC_DISCARDING
)
2680 stat
= &state
->dts_speculations_busy
;
2685 if (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2686 current
, DTRACESPEC_ACTIVE
) == current
)
2691 * We couldn't find a speculation. If we found as much as a single
2692 * busy speculation buffer, we'll attribute this failure as "busy"
2693 * instead of "unavail".
2697 } while (dtrace_cas32(stat
, count
, count
+ 1) != count
);
2703 * This routine commits an active speculation. If the specified speculation
2704 * is not in a valid state to perform a commit(), this routine will silently do
2705 * nothing. The state of the specified speculation is transitioned according
2706 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2709 dtrace_speculation_commit(dtrace_state_t
*state
, processorid_t cpu
,
2710 dtrace_specid_t which
)
2712 dtrace_speculation_t
*spec
;
2713 dtrace_buffer_t
*src
, *dest
;
2714 uintptr_t daddr
, saddr
, dlimit
, slimit
;
2715 dtrace_speculation_state_t current
, new;
2722 if (which
> state
->dts_nspeculations
) {
2723 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2727 spec
= &state
->dts_speculations
[which
- 1];
2728 src
= &spec
->dtsp_buffer
[cpu
];
2729 dest
= &state
->dts_buffer
[cpu
];
2732 current
= spec
->dtsp_state
;
2734 if (current
== DTRACESPEC_COMMITTINGMANY
)
2738 case DTRACESPEC_INACTIVE
:
2739 case DTRACESPEC_DISCARDING
:
2742 case DTRACESPEC_COMMITTING
:
2744 * This is only possible if we are (a) commit()'ing
2745 * without having done a prior speculate() on this CPU
2746 * and (b) racing with another commit() on a different
2747 * CPU. There's nothing to do -- we just assert that
2750 ASSERT(src
->dtb_offset
== 0);
2753 case DTRACESPEC_ACTIVE
:
2754 new = DTRACESPEC_COMMITTING
;
2757 case DTRACESPEC_ACTIVEONE
:
2759 * This speculation is active on one CPU. If our
2760 * buffer offset is non-zero, we know that the one CPU
2761 * must be us. Otherwise, we are committing on a
2762 * different CPU from the speculate(), and we must
2763 * rely on being asynchronously cleaned.
2765 if (src
->dtb_offset
!= 0) {
2766 new = DTRACESPEC_COMMITTING
;
2771 case DTRACESPEC_ACTIVEMANY
:
2772 new = DTRACESPEC_COMMITTINGMANY
;
2778 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2779 current
, new) != current
);
2782 * We have set the state to indicate that we are committing this
2783 * speculation. Now reserve the necessary space in the destination
2786 if ((offs
= dtrace_buffer_reserve(dest
, src
->dtb_offset
,
2787 sizeof (uint64_t), state
, NULL
)) < 0) {
2788 dtrace_buffer_drop(dest
);
2793 * We have sufficient space to copy the speculative buffer into the
2794 * primary buffer. First, modify the speculative buffer, filling
2795 * in the timestamp of all entries with the current time. The data
2796 * must have the commit() time rather than the time it was traced,
2797 * so that all entries in the primary buffer are in timestamp order.
2799 timestamp
= dtrace_gethrtime();
2800 saddr
= (uintptr_t)src
->dtb_tomax
;
2801 slimit
= saddr
+ src
->dtb_offset
;
2802 while (saddr
< slimit
) {
2804 dtrace_rechdr_t
*dtrh
= (dtrace_rechdr_t
*)saddr
;
2806 if (dtrh
->dtrh_epid
== DTRACE_EPIDNONE
) {
2807 saddr
+= sizeof (dtrace_epid_t
);
2810 ASSERT3U(dtrh
->dtrh_epid
, <=, state
->dts_necbs
);
2811 size
= state
->dts_ecbs
[dtrh
->dtrh_epid
- 1]->dte_size
;
2813 ASSERT3U(saddr
+ size
, <=, slimit
);
2814 ASSERT3U(size
, >=, sizeof (dtrace_rechdr_t
));
2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh
), ==, UINT64_MAX
);
2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, timestamp
);
2823 * Copy the buffer across. (Note that this is a
2824 * highly subobtimal bcopy(); in the unlikely event that this becomes
2825 * a serious performance issue, a high-performance DTrace-specific
2826 * bcopy() should obviously be invented.)
2828 daddr
= (uintptr_t)dest
->dtb_tomax
+ offs
;
2829 dlimit
= daddr
+ src
->dtb_offset
;
2830 saddr
= (uintptr_t)src
->dtb_tomax
;
2833 * First, the aligned portion.
2835 while (dlimit
- daddr
>= sizeof (uint64_t)) {
2836 *((uint64_t *)daddr
) = *((uint64_t *)saddr
);
2838 daddr
+= sizeof (uint64_t);
2839 saddr
+= sizeof (uint64_t);
2843 * Now any left-over bit...
2845 while (dlimit
- daddr
)
2846 *((uint8_t *)daddr
++) = *((uint8_t *)saddr
++);
2849 * Finally, commit the reserved space in the destination buffer.
2851 dest
->dtb_offset
= offs
+ src
->dtb_offset
;
2855 * If we're lucky enough to be the only active CPU on this speculation
2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2858 if (current
== DTRACESPEC_ACTIVE
||
2859 (current
== DTRACESPEC_ACTIVEONE
&& new == DTRACESPEC_COMMITTING
)) {
2860 uint32_t rval
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2861 DTRACESPEC_COMMITTING
, DTRACESPEC_INACTIVE
);
2863 ASSERT(rval
== DTRACESPEC_COMMITTING
);
2866 src
->dtb_offset
= 0;
2867 src
->dtb_xamot_drops
+= src
->dtb_drops
;
2872 * This routine discards an active speculation. If the specified speculation
2873 * is not in a valid state to perform a discard(), this routine will silently
2874 * do nothing. The state of the specified speculation is transitioned
2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2878 dtrace_speculation_discard(dtrace_state_t
*state
, processorid_t cpu
,
2879 dtrace_specid_t which
)
2881 dtrace_speculation_t
*spec
;
2882 dtrace_speculation_state_t current
, new;
2883 dtrace_buffer_t
*buf
;
2888 if (which
> state
->dts_nspeculations
) {
2889 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2893 spec
= &state
->dts_speculations
[which
- 1];
2894 buf
= &spec
->dtsp_buffer
[cpu
];
2897 current
= spec
->dtsp_state
;
2900 case DTRACESPEC_INACTIVE
:
2901 case DTRACESPEC_COMMITTINGMANY
:
2902 case DTRACESPEC_COMMITTING
:
2903 case DTRACESPEC_DISCARDING
:
2906 case DTRACESPEC_ACTIVE
:
2907 case DTRACESPEC_ACTIVEMANY
:
2908 new = DTRACESPEC_DISCARDING
;
2911 case DTRACESPEC_ACTIVEONE
:
2912 if (buf
->dtb_offset
!= 0) {
2913 new = DTRACESPEC_INACTIVE
;
2915 new = DTRACESPEC_DISCARDING
;
2922 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2923 current
, new) != current
);
2925 buf
->dtb_offset
= 0;
2930 * Note: not called from probe context. This function is called
2931 * asynchronously from cross call context to clean any speculations that are
2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2937 dtrace_speculation_clean_here(dtrace_state_t
*state
)
2939 dtrace_icookie_t cookie
;
2940 processorid_t cpu
= CPU
->cpu_id
;
2941 dtrace_buffer_t
*dest
= &state
->dts_buffer
[cpu
];
2944 cookie
= dtrace_interrupt_disable();
2946 if (dest
->dtb_tomax
== NULL
) {
2947 dtrace_interrupt_enable(cookie
);
2951 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
2952 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2953 dtrace_buffer_t
*src
= &spec
->dtsp_buffer
[cpu
];
2955 if (src
->dtb_tomax
== NULL
)
2958 if (spec
->dtsp_state
== DTRACESPEC_DISCARDING
) {
2959 src
->dtb_offset
= 0;
2963 if (spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2966 if (src
->dtb_offset
== 0)
2969 dtrace_speculation_commit(state
, cpu
, i
+ 1);
2972 dtrace_interrupt_enable(cookie
);
2976 * Note: not called from probe context. This function is called
2977 * asynchronously (and at a regular interval) to clean any speculations that
2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2979 * is work to be done, it cross calls all CPUs to perform that work;
2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981 * INACTIVE state until they have been cleaned by all CPUs.
2984 dtrace_speculation_clean(dtrace_state_t
*state
)
2989 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
2990 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2992 ASSERT(!spec
->dtsp_cleaning
);
2994 if (spec
->dtsp_state
!= DTRACESPEC_DISCARDING
&&
2995 spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2999 spec
->dtsp_cleaning
= 1;
3005 dtrace_xcall(DTRACE_CPUALL
,
3006 (dtrace_xcall_t
)dtrace_speculation_clean_here
, state
);
3009 * We now know that all CPUs have committed or discarded their
3010 * speculation buffers, as appropriate. We can now set the state
3013 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
3014 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3015 dtrace_speculation_state_t current
, new;
3017 if (!spec
->dtsp_cleaning
)
3020 current
= spec
->dtsp_state
;
3021 ASSERT(current
== DTRACESPEC_DISCARDING
||
3022 current
== DTRACESPEC_COMMITTINGMANY
);
3024 new = DTRACESPEC_INACTIVE
;
3026 rv
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
, current
, new);
3027 ASSERT(rv
== current
);
3028 spec
->dtsp_cleaning
= 0;
3033 * Called as part of a speculate() to get the speculative buffer associated
3034 * with a given speculation. Returns NULL if the specified speculation is not
3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3036 * the active CPU is not the specified CPU -- the speculation will be
3037 * atomically transitioned into the ACTIVEMANY state.
3039 static dtrace_buffer_t
*
3040 dtrace_speculation_buffer(dtrace_state_t
*state
, processorid_t cpuid
,
3041 dtrace_specid_t which
)
3043 dtrace_speculation_t
*spec
;
3044 dtrace_speculation_state_t current
, new;
3045 dtrace_buffer_t
*buf
;
3050 if (which
> state
->dts_nspeculations
) {
3051 cpu_core
[cpuid
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
3055 spec
= &state
->dts_speculations
[which
- 1];
3056 buf
= &spec
->dtsp_buffer
[cpuid
];
3059 current
= spec
->dtsp_state
;
3062 case DTRACESPEC_INACTIVE
:
3063 case DTRACESPEC_COMMITTINGMANY
:
3064 case DTRACESPEC_DISCARDING
:
3067 case DTRACESPEC_COMMITTING
:
3068 ASSERT(buf
->dtb_offset
== 0);
3071 case DTRACESPEC_ACTIVEONE
:
3073 * This speculation is currently active on one CPU.
3074 * Check the offset in the buffer; if it's non-zero,
3075 * that CPU must be us (and we leave the state alone).
3076 * If it's zero, assume that we're starting on a new
3077 * CPU -- and change the state to indicate that the
3078 * speculation is active on more than one CPU.
3080 if (buf
->dtb_offset
!= 0)
3083 new = DTRACESPEC_ACTIVEMANY
;
3086 case DTRACESPEC_ACTIVEMANY
:
3089 case DTRACESPEC_ACTIVE
:
3090 new = DTRACESPEC_ACTIVEONE
;
3096 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
3097 current
, new) != current
);
3099 ASSERT(new == DTRACESPEC_ACTIVEONE
|| new == DTRACESPEC_ACTIVEMANY
);
3104 * Return a string. In the event that the user lacks the privilege to access
3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106 * don't fail access checking.
3108 * dtrace_dif_variable() uses this routine as a helper for various
3109 * builtin values such as 'execname' and 'probefunc.'
3112 dtrace_dif_varstr(uintptr_t addr
, dtrace_state_t
*state
,
3113 dtrace_mstate_t
*mstate
)
3115 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3120 * The easy case: this probe is allowed to read all of memory, so
3121 * we can just return this as a vanilla pointer.
3123 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
3127 * This is the tougher case: we copy the string in question from
3128 * kernel memory into scratch memory and return it that way: this
3129 * ensures that we won't trip up when access checking tests the
3130 * BYREF return value.
3132 strsz
= dtrace_strlen((char *)addr
, size
) + 1;
3134 if (mstate
->dtms_scratch_ptr
+ strsz
>
3135 mstate
->dtms_scratch_base
+ mstate
->dtms_scratch_size
) {
3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3140 dtrace_strcpy((const void *)addr
, (void *)mstate
->dtms_scratch_ptr
,
3142 ret
= mstate
->dtms_scratch_ptr
;
3143 mstate
->dtms_scratch_ptr
+= strsz
;
3148 * This function implements the DIF emulator's variable lookups. The emulator
3149 * passes a reserved variable identifier and optional built-in array index.
3152 dtrace_dif_variable(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
, uint64_t v
,
3156 * If we're accessing one of the uncached arguments, we'll turn this
3157 * into a reference in the args array.
3159 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
) {
3160 ndx
= v
- DIF_VAR_ARG0
;
3166 if (!(mstate
->dtms_access
& DTRACE_ACCESS_ARGS
)) {
3167 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|=
3172 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_ARGS
);
3173 if (ndx
>= sizeof (mstate
->dtms_arg
) /
3174 sizeof (mstate
->dtms_arg
[0])) {
3175 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3176 dtrace_provider_t
*pv
;
3179 pv
= mstate
->dtms_probe
->dtpr_provider
;
3180 if (pv
->dtpv_pops
.dtps_getargval
!= NULL
)
3181 val
= pv
->dtpv_pops
.dtps_getargval(pv
->dtpv_arg
,
3182 mstate
->dtms_probe
->dtpr_id
,
3183 mstate
->dtms_probe
->dtpr_arg
, ndx
, aframes
);
3185 val
= dtrace_getarg(ndx
, aframes
);
3188 * This is regrettably required to keep the compiler
3189 * from tail-optimizing the call to dtrace_getarg().
3190 * The condition always evaluates to true, but the
3191 * compiler has no way of figuring that out a priori.
3192 * (None of this would be necessary if the compiler
3193 * could be relied upon to _always_ tail-optimize
3194 * the call to dtrace_getarg() -- but it can't.)
3196 if (mstate
->dtms_probe
!= NULL
)
3202 return (mstate
->dtms_arg
[ndx
]);
3204 case DIF_VAR_UREGS
: {
3207 if (!dtrace_priv_proc(state
, mstate
))
3210 if ((lwp
= curthread
->t_lwp
) == NULL
) {
3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3212 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= NULL
;
3216 return (dtrace_getreg(lwp
->lwp_regs
, ndx
));
3219 case DIF_VAR_VMREGS
: {
3222 if (!dtrace_priv_kernel(state
))
3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3227 rval
= dtrace_getvmreg(ndx
,
3228 &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
);
3230 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3235 case DIF_VAR_CURTHREAD
:
3236 if (!dtrace_priv_proc(state
, mstate
))
3238 return ((uint64_t)(uintptr_t)curthread
);
3240 case DIF_VAR_TIMESTAMP
:
3241 if (!(mstate
->dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
3242 mstate
->dtms_timestamp
= dtrace_gethrtime();
3243 mstate
->dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
3245 return (mstate
->dtms_timestamp
);
3247 case DIF_VAR_VTIMESTAMP
:
3248 ASSERT(dtrace_vtime_references
!= 0);
3249 return (curthread
->t_dtrace_vtime
);
3251 case DIF_VAR_WALLTIMESTAMP
:
3252 if (!(mstate
->dtms_present
& DTRACE_MSTATE_WALLTIMESTAMP
)) {
3253 mstate
->dtms_walltimestamp
= dtrace_gethrestime();
3254 mstate
->dtms_present
|= DTRACE_MSTATE_WALLTIMESTAMP
;
3256 return (mstate
->dtms_walltimestamp
);
3259 if (!dtrace_priv_kernel(state
))
3261 if (!(mstate
->dtms_present
& DTRACE_MSTATE_IPL
)) {
3262 mstate
->dtms_ipl
= dtrace_getipl();
3263 mstate
->dtms_present
|= DTRACE_MSTATE_IPL
;
3265 return (mstate
->dtms_ipl
);
3268 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_EPID
);
3269 return (mstate
->dtms_epid
);
3272 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3273 return (mstate
->dtms_probe
->dtpr_id
);
3275 case DIF_VAR_STACKDEPTH
:
3276 if (!dtrace_priv_kernel(state
))
3278 if (!(mstate
->dtms_present
& DTRACE_MSTATE_STACKDEPTH
)) {
3279 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3281 mstate
->dtms_stackdepth
= dtrace_getstackdepth(aframes
);
3282 mstate
->dtms_present
|= DTRACE_MSTATE_STACKDEPTH
;
3284 return (mstate
->dtms_stackdepth
);
3286 case DIF_VAR_USTACKDEPTH
:
3287 if (!dtrace_priv_proc(state
, mstate
))
3289 if (!(mstate
->dtms_present
& DTRACE_MSTATE_USTACKDEPTH
)) {
3291 * See comment in DIF_VAR_PID.
3293 if (DTRACE_ANCHORED(mstate
->dtms_probe
) &&
3295 mstate
->dtms_ustackdepth
= 0;
3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3298 mstate
->dtms_ustackdepth
=
3299 dtrace_getustackdepth();
3300 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3302 mstate
->dtms_present
|= DTRACE_MSTATE_USTACKDEPTH
;
3304 return (mstate
->dtms_ustackdepth
);
3306 case DIF_VAR_CALLER
:
3307 if (!dtrace_priv_kernel(state
))
3309 if (!(mstate
->dtms_present
& DTRACE_MSTATE_CALLER
)) {
3310 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3312 if (!DTRACE_ANCHORED(mstate
->dtms_probe
)) {
3314 * If this is an unanchored probe, we are
3315 * required to go through the slow path:
3316 * dtrace_caller() only guarantees correct
3317 * results for anchored probes.
3321 dtrace_getpcstack(caller
, 2, aframes
,
3322 (uint32_t *)(uintptr_t)mstate
->dtms_arg
[0]);
3323 mstate
->dtms_caller
= caller
[1];
3324 } else if ((mstate
->dtms_caller
=
3325 dtrace_caller(aframes
)) == -1) {
3327 * We have failed to do this the quick way;
3328 * we must resort to the slower approach of
3329 * calling dtrace_getpcstack().
3333 dtrace_getpcstack(&caller
, 1, aframes
, NULL
);
3334 mstate
->dtms_caller
= caller
;
3337 mstate
->dtms_present
|= DTRACE_MSTATE_CALLER
;
3339 return (mstate
->dtms_caller
);
3341 case DIF_VAR_UCALLER
:
3342 if (!dtrace_priv_proc(state
, mstate
))
3345 if (!(mstate
->dtms_present
& DTRACE_MSTATE_UCALLER
)) {
3349 * dtrace_getupcstack() fills in the first uint64_t
3350 * with the current PID. The second uint64_t will
3351 * be the program counter at user-level. The third
3352 * uint64_t will contain the caller, which is what
3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3357 dtrace_getupcstack(ustack
, 3);
3358 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3359 mstate
->dtms_ucaller
= ustack
[2];
3360 mstate
->dtms_present
|= DTRACE_MSTATE_UCALLER
;
3363 return (mstate
->dtms_ucaller
);
3365 case DIF_VAR_PROBEPROV
:
3366 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3367 return (dtrace_dif_varstr(
3368 (uintptr_t)mstate
->dtms_probe
->dtpr_provider
->dtpv_name
,
3371 case DIF_VAR_PROBEMOD
:
3372 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3373 return (dtrace_dif_varstr(
3374 (uintptr_t)mstate
->dtms_probe
->dtpr_mod
,
3377 case DIF_VAR_PROBEFUNC
:
3378 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3379 return (dtrace_dif_varstr(
3380 (uintptr_t)mstate
->dtms_probe
->dtpr_func
,
3383 case DIF_VAR_PROBENAME
:
3384 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3385 return (dtrace_dif_varstr(
3386 (uintptr_t)mstate
->dtms_probe
->dtpr_name
,
3390 if (!dtrace_priv_proc(state
, mstate
))
3394 * Note that we are assuming that an unanchored probe is
3395 * always due to a high-level interrupt. (And we're assuming
3396 * that there is only a single high level interrupt.)
3398 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3399 return (pid0
.pid_id
);
3402 * It is always safe to dereference one's own t_procp pointer:
3403 * it always points to a valid, allocated proc structure.
3404 * Further, it is always safe to dereference the p_pidp member
3405 * of one's own proc structure. (These are truisms becuase
3406 * threads and processes don't clean up their own state --
3407 * they leave that task to whomever reaps them.)
3409 return ((uint64_t)curthread
->t_procp
->p_pidp
->pid_id
);
3412 if (!dtrace_priv_proc(state
, mstate
))
3416 * See comment in DIF_VAR_PID.
3418 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3419 return (pid0
.pid_id
);
3422 * It is always safe to dereference one's own t_procp pointer:
3423 * it always points to a valid, allocated proc structure.
3424 * (This is true because threads don't clean up their own
3425 * state -- they leave that task to whomever reaps them.)
3427 return ((uint64_t)curthread
->t_procp
->p_ppid
);
3431 * See comment in DIF_VAR_PID.
3433 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3436 return ((uint64_t)curthread
->t_tid
);
3438 case DIF_VAR_EXECNAME
:
3439 if (!dtrace_priv_proc(state
, mstate
))
3443 * See comment in DIF_VAR_PID.
3445 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3446 return ((uint64_t)(uintptr_t)p0
.p_user
.u_comm
);
3449 * It is always safe to dereference one's own t_procp pointer:
3450 * it always points to a valid, allocated proc structure.
3451 * (This is true because threads don't clean up their own
3452 * state -- they leave that task to whomever reaps them.)
3454 return (dtrace_dif_varstr(
3455 (uintptr_t)curthread
->t_procp
->p_user
.u_comm
,
3458 case DIF_VAR_ZONENAME
:
3459 if (!dtrace_priv_proc(state
, mstate
))
3463 * See comment in DIF_VAR_PID.
3465 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3466 return ((uint64_t)(uintptr_t)p0
.p_zone
->zone_name
);
3469 * It is always safe to dereference one's own t_procp pointer:
3470 * it always points to a valid, allocated proc structure.
3471 * (This is true because threads don't clean up their own
3472 * state -- they leave that task to whomever reaps them.)
3474 return (dtrace_dif_varstr(
3475 (uintptr_t)curthread
->t_procp
->p_zone
->zone_name
,
3479 if (!dtrace_priv_proc(state
, mstate
))
3483 * See comment in DIF_VAR_PID.
3485 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3486 return ((uint64_t)p0
.p_cred
->cr_uid
);
3489 * It is always safe to dereference one's own t_procp pointer:
3490 * it always points to a valid, allocated proc structure.
3491 * (This is true because threads don't clean up their own
3492 * state -- they leave that task to whomever reaps them.)
3494 * Additionally, it is safe to dereference one's own process
3495 * credential, since this is never NULL after process birth.
3497 return ((uint64_t)curthread
->t_procp
->p_cred
->cr_uid
);
3500 if (!dtrace_priv_proc(state
, mstate
))
3504 * See comment in DIF_VAR_PID.
3506 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3507 return ((uint64_t)p0
.p_cred
->cr_gid
);
3510 * It is always safe to dereference one's own t_procp pointer:
3511 * it always points to a valid, allocated proc structure.
3512 * (This is true because threads don't clean up their own
3513 * state -- they leave that task to whomever reaps them.)
3515 * Additionally, it is safe to dereference one's own process
3516 * credential, since this is never NULL after process birth.
3518 return ((uint64_t)curthread
->t_procp
->p_cred
->cr_gid
);
3520 case DIF_VAR_ERRNO
: {
3522 if (!dtrace_priv_proc(state
, mstate
))
3526 * See comment in DIF_VAR_PID.
3528 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3532 * It is always safe to dereference one's own t_lwp pointer in
3533 * the event that this pointer is non-NULL. (This is true
3534 * because threads and lwps don't clean up their own state --
3535 * they leave that task to whomever reaps them.)
3537 if ((lwp
= curthread
->t_lwp
) == NULL
)
3540 return ((uint64_t)lwp
->lwp_errno
);
3543 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3549 typedef enum dtrace_json_state
{
3550 DTRACE_JSON_REST
= 1,
3553 DTRACE_JSON_STRING_ESCAPE
,
3554 DTRACE_JSON_STRING_ESCAPE_UNICODE
,
3558 DTRACE_JSON_IDENTIFIER
,
3560 DTRACE_JSON_NUMBER_FRAC
,
3561 DTRACE_JSON_NUMBER_EXP
,
3562 DTRACE_JSON_COLLECT_OBJECT
3563 } dtrace_json_state_t
;
3566 * This function possesses just enough knowledge about JSON to extract a single
3567 * value from a JSON string and store it in the scratch buffer. It is able
3568 * to extract nested object values, and members of arrays by index.
3570 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3571 * be looked up as we descend into the object tree. e.g.
3573 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3576 * The run time of this function must be bounded above by strsize to limit the
3577 * amount of work done in probe context. As such, it is implemented as a
3578 * simple state machine, reading one character at a time using safe loads
3579 * until we find the requested element, hit a parsing error or run off the
3580 * end of the object or string.
3582 * As there is no way for a subroutine to return an error without interrupting
3583 * clause execution, we simply return NULL in the event of a missing key or any
3584 * other error condition. Each NULL return in this function is commented with
3585 * the error condition it represents -- parsing or otherwise.
3587 * The set of states for the state machine closely matches the JSON
3588 * specification (http://json.org/). Briefly:
3591 * Skip whitespace until we find either a top-level Object, moving
3592 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3594 * DTRACE_JSON_OBJECT:
3595 * Locate the next key String in an Object. Sets a flag to denote
3596 * the next String as a key string and moves to DTRACE_JSON_STRING.
3598 * DTRACE_JSON_COLON:
3599 * Skip whitespace until we find the colon that separates key Strings
3600 * from their values. Once found, move to DTRACE_JSON_VALUE.
3602 * DTRACE_JSON_VALUE:
3603 * Detects the type of the next value (String, Number, Identifier, Object
3604 * or Array) and routes to the states that process that type. Here we also
3605 * deal with the element selector list if we are requested to traverse down
3606 * into the object tree.
3608 * DTRACE_JSON_COMMA:
3609 * Skip whitespace until we find the comma that separates key-value pairs
3610 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3611 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3612 * states return to this state at the end of their value, unless otherwise
3615 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3616 * Processes a Number literal from the JSON, including any exponent
3617 * component that may be present. Numbers are returned as strings, which
3618 * may be passed to strtoll() if an integer is required.
3620 * DTRACE_JSON_IDENTIFIER:
3621 * Processes a "true", "false" or "null" literal in the JSON.
3623 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3624 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3625 * Processes a String literal from the JSON, whether the String denotes
3626 * a key, a value or part of a larger Object. Handles all escape sequences
3627 * present in the specification, including four-digit unicode characters,
3628 * but merely includes the escape sequence without converting it to the
3629 * actual escaped character. If the String is flagged as a key, we
3630 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3632 * DTRACE_JSON_COLLECT_OBJECT:
3633 * This state collects an entire Object (or Array), correctly handling
3634 * embedded strings. If the full element selector list matches this nested
3635 * object, we return the Object in full as a string. If not, we use this
3636 * state to skip to the next value at this level and continue processing.
3638 * NOTE: This function uses various macros from strtolctype.h to manipulate
3639 * digit values, etc -- these have all been checked to ensure they make
3640 * no additional function calls.
3643 dtrace_json(uint64_t size
, uintptr_t json
, char *elemlist
, int nelems
,
3646 dtrace_json_state_t state
= DTRACE_JSON_REST
;
3647 int64_t array_elem
= INT64_MIN
;
3648 int64_t array_pos
= 0;
3649 uint8_t escape_unicount
= 0;
3650 boolean_t string_is_key
= B_FALSE
;
3651 boolean_t collect_object
= B_FALSE
;
3652 boolean_t found_key
= B_FALSE
;
3653 boolean_t in_array
= B_FALSE
;
3654 uint32_t braces
= 0, brackets
= 0;
3655 char *elem
= elemlist
;
3659 for (cur
= json
; cur
< json
+ size
; cur
++) {
3660 char cc
= dtrace_load8(cur
);
3665 case DTRACE_JSON_REST
:
3670 state
= DTRACE_JSON_OBJECT
;
3677 array_elem
= dtrace_strtoll(elem
, 10, size
);
3678 found_key
= array_elem
== 0 ? B_TRUE
: B_FALSE
;
3679 state
= DTRACE_JSON_VALUE
;
3684 * ERROR: expected to find a top-level object or array.
3687 case DTRACE_JSON_OBJECT
:
3692 state
= DTRACE_JSON_STRING
;
3693 string_is_key
= B_TRUE
;
3698 * ERROR: either the object did not start with a key
3699 * string, or we've run off the end of the object
3700 * without finding the requested key.
3703 case DTRACE_JSON_STRING
:
3706 state
= DTRACE_JSON_STRING_ESCAPE
;
3711 if (collect_object
) {
3713 * We don't reset the dest here, as
3714 * the string is part of a larger
3715 * object being collected.
3718 collect_object
= B_FALSE
;
3719 state
= DTRACE_JSON_COLLECT_OBJECT
;
3723 dd
= dest
; /* reset string buffer */
3724 if (string_is_key
) {
3725 if (dtrace_strncmp(dest
, elem
,
3728 } else if (found_key
) {
3731 * We expected an object, not
3738 state
= string_is_key
? DTRACE_JSON_COLON
:
3740 string_is_key
= B_FALSE
;
3746 case DTRACE_JSON_STRING_ESCAPE
:
3749 escape_unicount
= 0;
3750 state
= DTRACE_JSON_STRING_ESCAPE_UNICODE
;
3752 state
= DTRACE_JSON_STRING
;
3755 case DTRACE_JSON_STRING_ESCAPE_UNICODE
:
3756 if (!isxdigit(cc
)) {
3758 * ERROR: invalid unicode escape, expected
3759 * four valid hexidecimal digits.
3765 if (++escape_unicount
== 4)
3766 state
= DTRACE_JSON_STRING
;
3768 case DTRACE_JSON_COLON
:
3773 state
= DTRACE_JSON_VALUE
;
3778 * ERROR: expected a colon.
3781 case DTRACE_JSON_COMMA
:
3787 state
= DTRACE_JSON_VALUE
;
3788 if (++array_pos
== array_elem
)
3791 state
= DTRACE_JSON_OBJECT
;
3797 * ERROR: either we hit an unexpected character, or
3798 * we reached the end of the object or array without
3799 * finding the requested key.
3802 case DTRACE_JSON_IDENTIFIER
:
3809 dd
= dest
; /* reset string buffer */
3811 if (dtrace_strncmp(dest
, "true", 5) == 0 ||
3812 dtrace_strncmp(dest
, "false", 6) == 0 ||
3813 dtrace_strncmp(dest
, "null", 5) == 0) {
3817 * ERROR: We expected an object,
3818 * not this identifier.
3825 state
= DTRACE_JSON_COMMA
;
3831 * ERROR: we did not recognise the identifier as one
3832 * of those in the JSON specification.
3835 case DTRACE_JSON_NUMBER
:
3838 state
= DTRACE_JSON_NUMBER_FRAC
;
3842 if (cc
== 'x' || cc
== 'X') {
3844 * ERROR: specification explicitly excludes
3845 * hexidecimal or octal numbers.
3851 case DTRACE_JSON_NUMBER_FRAC
:
3852 if (cc
== 'e' || cc
== 'E') {
3854 state
= DTRACE_JSON_NUMBER_EXP
;
3858 if (cc
== '+' || cc
== '-') {
3860 * ERROR: expect sign as part of exponent only.
3865 case DTRACE_JSON_NUMBER_EXP
:
3866 if (isdigit(cc
) || cc
== '+' || cc
== '-') {
3872 dd
= dest
; /* reset string buffer */
3876 * ERROR: We expected an object, not
3885 state
= DTRACE_JSON_COMMA
;
3887 case DTRACE_JSON_VALUE
:
3891 if (cc
== '{' || cc
== '[') {
3892 if (nelems
> 1 && found_key
) {
3893 in_array
= cc
== '[' ? B_TRUE
: B_FALSE
;
3895 * If our element selector directs us
3896 * to descend into this nested object,
3897 * then move to the next selector
3898 * element in the list and restart the
3901 while (*elem
!= '\0')
3903 elem
++; /* skip the inter-element NUL */
3907 state
= DTRACE_JSON_VALUE
;
3909 array_elem
= dtrace_strtoll(
3911 found_key
= array_elem
== 0 ?
3914 found_key
= B_FALSE
;
3915 state
= DTRACE_JSON_OBJECT
;
3921 * Otherwise, we wish to either skip this
3922 * nested object or return it in full.
3929 state
= DTRACE_JSON_COLLECT_OBJECT
;
3934 state
= DTRACE_JSON_STRING
;
3940 * Here we deal with true, false and null.
3943 state
= DTRACE_JSON_IDENTIFIER
;
3947 if (cc
== '-' || isdigit(cc
)) {
3949 state
= DTRACE_JSON_NUMBER
;
3954 * ERROR: unexpected character at start of value.
3957 case DTRACE_JSON_COLLECT_OBJECT
:
3960 * ERROR: unexpected end of input.
3966 collect_object
= B_TRUE
;
3967 state
= DTRACE_JSON_STRING
;
3972 if (brackets
-- == 0) {
3974 * ERROR: unbalanced brackets.
3978 } else if (cc
== '}') {
3979 if (braces
-- == 0) {
3981 * ERROR: unbalanced braces.
3985 } else if (cc
== '{') {
3987 } else if (cc
== '[') {
3991 if (brackets
== 0 && braces
== 0) {
3996 dd
= dest
; /* reset string buffer */
3997 state
= DTRACE_JSON_COMMA
;
4006 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4007 * Notice that we don't bother validating the proper number of arguments or
4008 * their types in the tuple stack. This isn't needed because all argument
4009 * interpretation is safe because of our load safety -- the worst that can
4010 * happen is that a bogus program can obtain bogus results.
4013 dtrace_dif_subr(uint_t subr
, uint_t rd
, uint64_t *regs
,
4014 dtrace_key_t
*tupregs
, int nargs
,
4015 dtrace_mstate_t
*mstate
, dtrace_state_t
*state
)
4017 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
4018 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
4019 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
4033 regs
[rd
] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4036 case DIF_SUBR_MUTEX_OWNED
:
4037 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4043 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4044 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
))
4045 regs
[rd
] = MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
;
4047 regs
[rd
] = LOCK_HELD(&m
.mi
.m_spin
.m_spinlock
);
4050 case DIF_SUBR_MUTEX_OWNER
:
4051 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4057 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4058 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
) &&
4059 MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
)
4060 regs
[rd
] = (uintptr_t)MUTEX_OWNER(&m
.mi
);
4065 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE
:
4066 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4072 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4073 regs
[rd
] = MUTEX_TYPE_ADAPTIVE(&m
.mi
);
4076 case DIF_SUBR_MUTEX_TYPE_SPIN
:
4077 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4083 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4084 regs
[rd
] = MUTEX_TYPE_SPIN(&m
.mi
);
4087 case DIF_SUBR_RW_READ_HELD
: {
4090 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (uintptr_t),
4096 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4097 regs
[rd
] = _RW_READ_HELD(&r
.ri
, tmp
);
4101 case DIF_SUBR_RW_WRITE_HELD
:
4102 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
4108 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4109 regs
[rd
] = _RW_WRITE_HELD(&r
.ri
);
4112 case DIF_SUBR_RW_ISWRITER
:
4113 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
4119 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4120 regs
[rd
] = _RW_ISWRITER(&r
.ri
);
4123 case DIF_SUBR_BCOPY
: {
4125 * We need to be sure that the destination is in the scratch
4126 * region -- no other region is allowed.
4128 uintptr_t src
= tupregs
[0].dttk_value
;
4129 uintptr_t dest
= tupregs
[1].dttk_value
;
4130 size_t size
= tupregs
[2].dttk_value
;
4132 if (!dtrace_inscratch(dest
, size
, mstate
)) {
4133 *flags
|= CPU_DTRACE_BADADDR
;
4138 if (!dtrace_canload(src
, size
, mstate
, vstate
)) {
4143 dtrace_bcopy((void *)src
, (void *)dest
, size
);
4147 case DIF_SUBR_ALLOCA
:
4148 case DIF_SUBR_COPYIN
: {
4149 uintptr_t dest
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
4151 tupregs
[subr
== DIF_SUBR_ALLOCA
? 0 : 1].dttk_value
;
4152 size_t scratch_size
= (dest
- mstate
->dtms_scratch_ptr
) + size
;
4155 * This action doesn't require any credential checks since
4156 * probes will not activate in user contexts to which the
4157 * enabling user does not have permissions.
4161 * Rounding up the user allocation size could have overflowed
4162 * a large, bogus allocation (like -1ULL) to 0.
4164 if (scratch_size
< size
||
4165 !DTRACE_INSCRATCH(mstate
, scratch_size
)) {
4166 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4171 if (subr
== DIF_SUBR_COPYIN
) {
4172 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4173 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
4174 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4177 mstate
->dtms_scratch_ptr
+= scratch_size
;
4182 case DIF_SUBR_COPYINTO
: {
4183 uint64_t size
= tupregs
[1].dttk_value
;
4184 uintptr_t dest
= tupregs
[2].dttk_value
;
4187 * This action doesn't require any credential checks since
4188 * probes will not activate in user contexts to which the
4189 * enabling user does not have permissions.
4191 if (!dtrace_inscratch(dest
, size
, mstate
)) {
4192 *flags
|= CPU_DTRACE_BADADDR
;
4197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4198 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
4199 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4203 case DIF_SUBR_COPYINSTR
: {
4204 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
4205 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4207 if (nargs
> 1 && tupregs
[1].dttk_value
< size
)
4208 size
= tupregs
[1].dttk_value
+ 1;
4211 * This action doesn't require any credential checks since
4212 * probes will not activate in user contexts to which the
4213 * enabling user does not have permissions.
4215 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4216 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4221 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4222 dtrace_copyinstr(tupregs
[0].dttk_value
, dest
, size
, flags
);
4223 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4225 ((char *)dest
)[size
- 1] = '\0';
4226 mstate
->dtms_scratch_ptr
+= size
;
4231 case DIF_SUBR_MSGSIZE
:
4232 case DIF_SUBR_MSGDSIZE
: {
4233 uintptr_t baddr
= tupregs
[0].dttk_value
, daddr
;
4234 uintptr_t wptr
, rptr
;
4238 while (baddr
!= NULL
&& !(*flags
& CPU_DTRACE_FAULT
)) {
4240 if (!dtrace_canload(baddr
, sizeof (mblk_t
), mstate
,
4246 wptr
= dtrace_loadptr(baddr
+
4247 offsetof(mblk_t
, b_wptr
));
4249 rptr
= dtrace_loadptr(baddr
+
4250 offsetof(mblk_t
, b_rptr
));
4253 *flags
|= CPU_DTRACE_BADADDR
;
4254 *illval
= tupregs
[0].dttk_value
;
4258 daddr
= dtrace_loadptr(baddr
+
4259 offsetof(mblk_t
, b_datap
));
4261 baddr
= dtrace_loadptr(baddr
+
4262 offsetof(mblk_t
, b_cont
));
4265 * We want to prevent against denial-of-service here,
4266 * so we're only going to search the list for
4267 * dtrace_msgdsize_max mblks.
4269 if (cont
++ > dtrace_msgdsize_max
) {
4270 *flags
|= CPU_DTRACE_ILLOP
;
4274 if (subr
== DIF_SUBR_MSGDSIZE
) {
4275 if (dtrace_load8(daddr
+
4276 offsetof(dblk_t
, db_type
)) != M_DATA
)
4280 count
+= wptr
- rptr
;
4283 if (!(*flags
& CPU_DTRACE_FAULT
))
4289 case DIF_SUBR_PROGENYOF
: {
4290 pid_t pid
= tupregs
[0].dttk_value
;
4294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4296 for (p
= curthread
->t_procp
; p
!= NULL
; p
= p
->p_parent
) {
4297 if (p
->p_pidp
->pid_id
== pid
) {
4303 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4309 case DIF_SUBR_SPECULATION
:
4310 regs
[rd
] = dtrace_speculation(state
);
4313 case DIF_SUBR_COPYOUT
: {
4314 uintptr_t kaddr
= tupregs
[0].dttk_value
;
4315 uintptr_t uaddr
= tupregs
[1].dttk_value
;
4316 uint64_t size
= tupregs
[2].dttk_value
;
4318 if (!dtrace_destructive_disallow
&&
4319 dtrace_priv_proc_control(state
, mstate
) &&
4320 !dtrace_istoxic(kaddr
, size
) &&
4321 dtrace_canload(kaddr
, size
, mstate
, vstate
)) {
4322 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4323 dtrace_copyout(kaddr
, uaddr
, size
, flags
);
4324 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4329 case DIF_SUBR_COPYOUTSTR
: {
4330 uintptr_t kaddr
= tupregs
[0].dttk_value
;
4331 uintptr_t uaddr
= tupregs
[1].dttk_value
;
4332 uint64_t size
= tupregs
[2].dttk_value
;
4335 if (!dtrace_destructive_disallow
&&
4336 dtrace_priv_proc_control(state
, mstate
) &&
4337 !dtrace_istoxic(kaddr
, size
) &&
4338 dtrace_strcanload(kaddr
, size
, &lim
, mstate
, vstate
)) {
4339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4340 dtrace_copyoutstr(kaddr
, uaddr
, lim
, flags
);
4341 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4346 case DIF_SUBR_STRLEN
: {
4347 size_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4348 uintptr_t addr
= (uintptr_t)tupregs
[0].dttk_value
;
4351 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
4355 regs
[rd
] = dtrace_strlen((char *)addr
, lim
);
4360 case DIF_SUBR_STRCHR
:
4361 case DIF_SUBR_STRRCHR
: {
4363 * We're going to iterate over the string looking for the
4364 * specified character. We will iterate until we have reached
4365 * the string length or we have found the character. If this
4366 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4367 * of the specified character instead of the first.
4369 uintptr_t addr
= tupregs
[0].dttk_value
;
4370 uintptr_t addr_limit
;
4371 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4373 char c
, target
= (char)tupregs
[1].dttk_value
;
4375 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
4379 addr_limit
= addr
+ lim
;
4381 for (regs
[rd
] = NULL
; addr
< addr_limit
; addr
++) {
4382 if ((c
= dtrace_load8(addr
)) == target
) {
4385 if (subr
== DIF_SUBR_STRCHR
)
4395 case DIF_SUBR_STRSTR
:
4396 case DIF_SUBR_INDEX
:
4397 case DIF_SUBR_RINDEX
: {
4399 * We're going to iterate over the string looking for the
4400 * specified string. We will iterate until we have reached
4401 * the string length or we have found the string. (Yes, this
4402 * is done in the most naive way possible -- but considering
4403 * that the string we're searching for is likely to be
4404 * relatively short, the complexity of Rabin-Karp or similar
4405 * hardly seems merited.)
4407 char *addr
= (char *)(uintptr_t)tupregs
[0].dttk_value
;
4408 char *substr
= (char *)(uintptr_t)tupregs
[1].dttk_value
;
4409 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4410 size_t len
= dtrace_strlen(addr
, size
);
4411 size_t sublen
= dtrace_strlen(substr
, size
);
4412 char *limit
= addr
+ len
, *orig
= addr
;
4413 int notfound
= subr
== DIF_SUBR_STRSTR
? 0 : -1;
4416 regs
[rd
] = notfound
;
4418 if (!dtrace_canload((uintptr_t)addr
, len
+ 1, mstate
, vstate
)) {
4423 if (!dtrace_canload((uintptr_t)substr
, sublen
+ 1, mstate
,
4430 * strstr() and index()/rindex() have similar semantics if
4431 * both strings are the empty string: strstr() returns a
4432 * pointer to the (empty) string, and index() and rindex()
4433 * both return index 0 (regardless of any position argument).
4435 if (sublen
== 0 && len
== 0) {
4436 if (subr
== DIF_SUBR_STRSTR
)
4437 regs
[rd
] = (uintptr_t)addr
;
4443 if (subr
!= DIF_SUBR_STRSTR
) {
4444 if (subr
== DIF_SUBR_RINDEX
) {
4451 * Both index() and rindex() take an optional position
4452 * argument that denotes the starting position.
4455 int64_t pos
= (int64_t)tupregs
[2].dttk_value
;
4458 * If the position argument to index() is
4459 * negative, Perl implicitly clamps it at
4460 * zero. This semantic is a little surprising
4461 * given the special meaning of negative
4462 * positions to similar Perl functions like
4463 * substr(), but it appears to reflect a
4464 * notion that index() can start from a
4465 * negative index and increment its way up to
4466 * the string. Given this notion, Perl's
4467 * rindex() is at least self-consistent in
4468 * that it implicitly clamps positions greater
4469 * than the string length to be the string
4470 * length. Where Perl completely loses
4471 * coherence, however, is when the specified
4472 * substring is the empty string (""). In
4473 * this case, even if the position is
4474 * negative, rindex() returns 0 -- and even if
4475 * the position is greater than the length,
4476 * index() returns the string length. These
4477 * semantics violate the notion that index()
4478 * should never return a value less than the
4479 * specified position and that rindex() should
4480 * never return a value greater than the
4481 * specified position. (One assumes that
4482 * these semantics are artifacts of Perl's
4483 * implementation and not the results of
4484 * deliberate design -- it beggars belief that
4485 * even Larry Wall could desire such oddness.)
4486 * While in the abstract one would wish for
4487 * consistent position semantics across
4488 * substr(), index() and rindex() -- or at the
4489 * very least self-consistent position
4490 * semantics for index() and rindex() -- we
4491 * instead opt to keep with the extant Perl
4492 * semantics, in all their broken glory. (Do
4493 * we have more desire to maintain Perl's
4494 * semantics than Perl does? Probably.)
4496 if (subr
== DIF_SUBR_RINDEX
) {
4520 for (regs
[rd
] = notfound
; addr
!= limit
; addr
+= inc
) {
4521 if (dtrace_strncmp(addr
, substr
, sublen
) == 0) {
4522 if (subr
!= DIF_SUBR_STRSTR
) {
4524 * As D index() and rindex() are
4525 * modeled on Perl (and not on awk),
4526 * we return a zero-based (and not a
4527 * one-based) index. (For you Perl
4528 * weenies: no, we're not going to add
4529 * $[ -- and shouldn't you be at a con
4532 regs
[rd
] = (uintptr_t)(addr
- orig
);
4536 ASSERT(subr
== DIF_SUBR_STRSTR
);
4537 regs
[rd
] = (uintptr_t)addr
;
4545 case DIF_SUBR_STRTOK
: {
4546 uintptr_t addr
= tupregs
[0].dttk_value
;
4547 uintptr_t tokaddr
= tupregs
[1].dttk_value
;
4548 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4549 uintptr_t limit
, toklimit
;
4551 uint8_t c
, tokmap
[32]; /* 256 / 8 */
4552 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4556 * Check both the token buffer and (later) the input buffer,
4557 * since both could be non-scratch addresses.
4559 if (!dtrace_strcanload(tokaddr
, size
, &clim
, mstate
, vstate
)) {
4563 toklimit
= tokaddr
+ clim
;
4565 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4566 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4573 * If the address specified is NULL, we use our saved
4574 * strtok pointer from the mstate. Note that this
4575 * means that the saved strtok pointer is _only_
4576 * valid within multiple enablings of the same probe --
4577 * it behaves like an implicit clause-local variable.
4579 addr
= mstate
->dtms_strtok
;
4580 limit
= mstate
->dtms_strtok_limit
;
4583 * If the user-specified address is non-NULL we must
4584 * access check it. This is the only time we have
4585 * a chance to do so, since this address may reside
4586 * in the string table of this clause-- future calls
4587 * (when we fetch addr from mstate->dtms_strtok)
4588 * would fail this access check.
4590 if (!dtrace_strcanload(addr
, size
, &clim
, mstate
,
4595 limit
= addr
+ clim
;
4599 * First, zero the token map, and then process the token
4600 * string -- setting a bit in the map for every character
4601 * found in the token string.
4603 for (i
= 0; i
< sizeof (tokmap
); i
++)
4606 for (; tokaddr
< toklimit
; tokaddr
++) {
4607 if ((c
= dtrace_load8(tokaddr
)) == '\0')
4610 ASSERT((c
>> 3) < sizeof (tokmap
));
4611 tokmap
[c
>> 3] |= (1 << (c
& 0x7));
4614 for (; addr
< limit
; addr
++) {
4616 * We're looking for a character that is _not_
4617 * contained in the token string.
4619 if ((c
= dtrace_load8(addr
)) == '\0')
4622 if (!(tokmap
[c
>> 3] & (1 << (c
& 0x7))))
4628 * We reached the end of the string without finding
4629 * any character that was not in the token string.
4630 * We return NULL in this case, and we set the saved
4631 * address to NULL as well.
4634 mstate
->dtms_strtok
= NULL
;
4635 mstate
->dtms_strtok_limit
= NULL
;
4640 * From here on, we're copying into the destination string.
4642 for (i
= 0; addr
< limit
&& i
< size
- 1; addr
++) {
4643 if ((c
= dtrace_load8(addr
)) == '\0')
4646 if (tokmap
[c
>> 3] & (1 << (c
& 0x7)))
4655 regs
[rd
] = (uintptr_t)dest
;
4656 mstate
->dtms_scratch_ptr
+= size
;
4657 mstate
->dtms_strtok
= addr
;
4658 mstate
->dtms_strtok_limit
= limit
;
4662 case DIF_SUBR_SUBSTR
: {
4663 uintptr_t s
= tupregs
[0].dttk_value
;
4664 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4665 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4666 int64_t index
= (int64_t)tupregs
[1].dttk_value
;
4667 int64_t remaining
= (int64_t)tupregs
[2].dttk_value
;
4668 size_t len
= dtrace_strlen((char *)s
, size
);
4671 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4676 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4677 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4683 remaining
= (int64_t)size
;
4688 if (index
< 0 && index
+ remaining
> 0) {
4694 if (index
>= len
|| index
< 0) {
4696 } else if (remaining
< 0) {
4697 remaining
+= len
- index
;
4698 } else if (index
+ remaining
> size
) {
4699 remaining
= size
- index
;
4702 for (i
= 0; i
< remaining
; i
++) {
4703 if ((d
[i
] = dtrace_load8(s
+ index
+ i
)) == '\0')
4709 mstate
->dtms_scratch_ptr
+= size
;
4710 regs
[rd
] = (uintptr_t)d
;
4714 case DIF_SUBR_JSON
: {
4715 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4716 uintptr_t json
= tupregs
[0].dttk_value
;
4717 size_t jsonlen
= dtrace_strlen((char *)json
, size
);
4718 uintptr_t elem
= tupregs
[1].dttk_value
;
4719 size_t elemlen
= dtrace_strlen((char *)elem
, size
);
4721 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4722 char *elemlist
= (char *)mstate
->dtms_scratch_ptr
+ jsonlen
+ 1;
4723 char *ee
= elemlist
;
4727 if (!dtrace_canload(json
, jsonlen
+ 1, mstate
, vstate
) ||
4728 !dtrace_canload(elem
, elemlen
+ 1, mstate
, vstate
)) {
4733 if (!DTRACE_INSCRATCH(mstate
, jsonlen
+ 1 + elemlen
+ 1)) {
4734 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4740 * Read the element selector and split it up into a packed list
4743 for (cur
= elem
; cur
< elem
+ elemlen
; cur
++) {
4744 char cc
= dtrace_load8(cur
);
4746 if (cur
== elem
&& cc
== '[') {
4748 * If the first element selector key is
4749 * actually an array index then ignore the
4758 if (cc
== '.' || cc
== '[') {
4767 if ((regs
[rd
] = (uintptr_t)dtrace_json(size
, json
, elemlist
,
4768 nelems
, dest
)) != NULL
)
4769 mstate
->dtms_scratch_ptr
+= jsonlen
+ 1;
4773 case DIF_SUBR_TOUPPER
:
4774 case DIF_SUBR_TOLOWER
: {
4775 uintptr_t s
= tupregs
[0].dttk_value
;
4776 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4777 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
4778 size_t len
= dtrace_strlen((char *)s
, size
);
4779 char lower
, upper
, convert
;
4782 if (subr
== DIF_SUBR_TOUPPER
) {
4792 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4797 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4798 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4803 for (i
= 0; i
< size
- 1; i
++) {
4804 if ((c
= dtrace_load8(s
+ i
)) == '\0')
4807 if (c
>= lower
&& c
<= upper
)
4808 c
= convert
+ (c
- lower
);
4815 regs
[rd
] = (uintptr_t)dest
;
4816 mstate
->dtms_scratch_ptr
+= size
;
4820 case DIF_SUBR_GETMAJOR
:
4822 regs
[rd
] = (tupregs
[0].dttk_value
>> NBITSMINOR64
) & MAXMAJ64
;
4824 regs
[rd
] = (tupregs
[0].dttk_value
>> NBITSMINOR
) & MAXMAJ
;
4828 case DIF_SUBR_GETMINOR
:
4830 regs
[rd
] = tupregs
[0].dttk_value
& MAXMIN64
;
4832 regs
[rd
] = tupregs
[0].dttk_value
& MAXMIN
;
4836 case DIF_SUBR_DDI_PATHNAME
: {
4838 * This one is a galactic mess. We are going to roughly
4839 * emulate ddi_pathname(), but it's made more complicated
4840 * by the fact that we (a) want to include the minor name and
4841 * (b) must proceed iteratively instead of recursively.
4843 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
4844 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4845 char *start
= (char *)dest
, *end
= start
+ size
- 1;
4846 uintptr_t daddr
= tupregs
[0].dttk_value
;
4847 int64_t minor
= (int64_t)tupregs
[1].dttk_value
;
4849 int i
, len
, depth
= 0;
4852 * Due to all the pointer jumping we do and context we must
4853 * rely upon, we just mandate that the user must have kernel
4854 * read privileges to use this routine.
4856 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) == 0) {
4857 *flags
|= CPU_DTRACE_KPRIV
;
4862 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4863 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4871 * We want to have a name for the minor. In order to do this,
4872 * we need to walk the minor list from the devinfo. We want
4873 * to be sure that we don't infinitely walk a circular list,
4874 * so we check for circularity by sending a scout pointer
4875 * ahead two elements for every element that we iterate over;
4876 * if the list is circular, these will ultimately point to the
4877 * same element. You may recognize this little trick as the
4878 * answer to a stupid interview question -- one that always
4879 * seems to be asked by those who had to have it laboriously
4880 * explained to them, and who can't even concisely describe
4881 * the conditions under which one would be forced to resort to
4882 * this technique. Needless to say, those conditions are
4883 * found here -- and probably only here. Is this the only use
4884 * of this infamous trick in shipping, production code? If it
4885 * isn't, it probably should be...
4888 uintptr_t maddr
= dtrace_loadptr(daddr
+
4889 offsetof(struct dev_info
, devi_minor
));
4891 uintptr_t next
= offsetof(struct ddi_minor_data
, next
);
4892 uintptr_t name
= offsetof(struct ddi_minor_data
,
4893 d_minor
) + offsetof(struct ddi_minor
, name
);
4894 uintptr_t dev
= offsetof(struct ddi_minor_data
,
4895 d_minor
) + offsetof(struct ddi_minor
, dev
);
4899 scout
= dtrace_loadptr(maddr
+ next
);
4901 while (maddr
!= NULL
&& !(*flags
& CPU_DTRACE_FAULT
)) {
4904 m
= dtrace_load64(maddr
+ dev
) & MAXMIN64
;
4906 m
= dtrace_load32(maddr
+ dev
) & MAXMIN
;
4909 maddr
= dtrace_loadptr(maddr
+ next
);
4914 scout
= dtrace_loadptr(scout
+ next
);
4919 scout
= dtrace_loadptr(scout
+ next
);
4924 if (scout
== maddr
) {
4925 *flags
|= CPU_DTRACE_ILLOP
;
4933 * We have the minor data. Now we need to
4934 * copy the minor's name into the end of the
4937 s
= (char *)dtrace_loadptr(maddr
+ name
);
4938 len
= dtrace_strlen(s
, size
);
4940 if (*flags
& CPU_DTRACE_FAULT
)
4944 if ((end
-= (len
+ 1)) < start
)
4950 for (i
= 1; i
<= len
; i
++)
4951 end
[i
] = dtrace_load8((uintptr_t)s
++);
4956 while (daddr
!= NULL
&& !(*flags
& CPU_DTRACE_FAULT
)) {
4957 ddi_node_state_t devi_state
;
4959 devi_state
= dtrace_load32(daddr
+
4960 offsetof(struct dev_info
, devi_node_state
));
4962 if (*flags
& CPU_DTRACE_FAULT
)
4965 if (devi_state
>= DS_INITIALIZED
) {
4966 s
= (char *)dtrace_loadptr(daddr
+
4967 offsetof(struct dev_info
, devi_addr
));
4968 len
= dtrace_strlen(s
, size
);
4970 if (*flags
& CPU_DTRACE_FAULT
)
4974 if ((end
-= (len
+ 1)) < start
)
4980 for (i
= 1; i
<= len
; i
++)
4981 end
[i
] = dtrace_load8((uintptr_t)s
++);
4985 * Now for the node name...
4987 s
= (char *)dtrace_loadptr(daddr
+
4988 offsetof(struct dev_info
, devi_node_name
));
4990 daddr
= dtrace_loadptr(daddr
+
4991 offsetof(struct dev_info
, devi_parent
));
4994 * If our parent is NULL (that is, if we're the root
4995 * node), we're going to use the special path
5001 len
= dtrace_strlen(s
, size
);
5002 if (*flags
& CPU_DTRACE_FAULT
)
5005 if ((end
-= (len
+ 1)) < start
)
5008 for (i
= 1; i
<= len
; i
++)
5009 end
[i
] = dtrace_load8((uintptr_t)s
++);
5012 if (depth
++ > dtrace_devdepth_max
) {
5013 *flags
|= CPU_DTRACE_ILLOP
;
5019 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5021 if (daddr
== NULL
) {
5022 regs
[rd
] = (uintptr_t)end
;
5023 mstate
->dtms_scratch_ptr
+= size
;
5029 case DIF_SUBR_STRJOIN
: {
5030 char *d
= (char *)mstate
->dtms_scratch_ptr
;
5031 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5032 uintptr_t s1
= tupregs
[0].dttk_value
;
5033 uintptr_t s2
= tupregs
[1].dttk_value
;
5038 if (!dtrace_strcanload(s1
, size
, &lim1
, mstate
, vstate
) ||
5039 !dtrace_strcanload(s2
, size
, &lim2
, mstate
, vstate
)) {
5044 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5045 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5052 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5056 c
= (i
>= lim1
) ? '\0' : dtrace_load8(s1
++);
5057 if ((d
[i
++] = c
) == '\0') {
5065 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5070 c
= (j
++ >= lim2
) ? '\0' : dtrace_load8(s2
++);
5071 if ((d
[i
++] = c
) == '\0')
5076 mstate
->dtms_scratch_ptr
+= i
;
5077 regs
[rd
] = (uintptr_t)d
;
5083 case DIF_SUBR_STRTOLL
: {
5084 uintptr_t s
= tupregs
[0].dttk_value
;
5085 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5090 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
5091 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5092 *flags
|= CPU_DTRACE_ILLOP
;
5097 if (!dtrace_strcanload(s
, size
, &lim
, mstate
, vstate
)) {
5098 regs
[rd
] = INT64_MIN
;
5102 regs
[rd
] = dtrace_strtoll((char *)s
, base
, lim
);
5106 case DIF_SUBR_LLTOSTR
: {
5107 int64_t i
= (int64_t)tupregs
[0].dttk_value
;
5108 uint64_t val
, digit
;
5109 uint64_t size
= 65; /* enough room for 2^64 in binary */
5110 char *end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5114 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
5115 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5116 *flags
|= CPU_DTRACE_ILLOP
;
5121 val
= (base
== 10 && i
< 0) ? i
* -1 : i
;
5123 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5124 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5129 for (*end
-- = '\0'; val
; val
/= base
) {
5130 if ((digit
= val
% base
) <= '9' - '0') {
5131 *end
-- = '0' + digit
;
5133 *end
-- = 'a' + (digit
- ('9' - '0') - 1);
5137 if (i
== 0 && base
== 16)
5143 if (i
== 0 || base
== 8 || base
== 16)
5146 if (i
< 0 && base
== 10)
5149 regs
[rd
] = (uintptr_t)end
+ 1;
5150 mstate
->dtms_scratch_ptr
+= size
;
5154 case DIF_SUBR_HTONS
:
5155 case DIF_SUBR_NTOHS
:
5157 regs
[rd
] = (uint16_t)tupregs
[0].dttk_value
;
5159 regs
[rd
] = DT_BSWAP_16((uint16_t)tupregs
[0].dttk_value
);
5164 case DIF_SUBR_HTONL
:
5165 case DIF_SUBR_NTOHL
:
5167 regs
[rd
] = (uint32_t)tupregs
[0].dttk_value
;
5169 regs
[rd
] = DT_BSWAP_32((uint32_t)tupregs
[0].dttk_value
);
5174 case DIF_SUBR_HTONLL
:
5175 case DIF_SUBR_NTOHLL
:
5177 regs
[rd
] = (uint64_t)tupregs
[0].dttk_value
;
5179 regs
[rd
] = DT_BSWAP_64((uint64_t)tupregs
[0].dttk_value
);
5184 case DIF_SUBR_DIRNAME
:
5185 case DIF_SUBR_BASENAME
: {
5186 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
5187 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5188 uintptr_t src
= tupregs
[0].dttk_value
;
5189 int i
, j
, len
= dtrace_strlen((char *)src
, size
);
5190 int lastbase
= -1, firstbase
= -1, lastdir
= -1;
5193 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
5198 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5205 * The basename and dirname for a zero-length string is
5210 src
= (uintptr_t)".";
5214 * Start from the back of the string, moving back toward the
5215 * front until we see a character that isn't a slash. That
5216 * character is the last character in the basename.
5218 for (i
= len
- 1; i
>= 0; i
--) {
5219 if (dtrace_load8(src
+ i
) != '/')
5227 * Starting from the last character in the basename, move
5228 * towards the front until we find a slash. The character
5229 * that we processed immediately before that is the first
5230 * character in the basename.
5232 for (; i
>= 0; i
--) {
5233 if (dtrace_load8(src
+ i
) == '/')
5241 * Now keep going until we find a non-slash character. That
5242 * character is the last character in the dirname.
5244 for (; i
>= 0; i
--) {
5245 if (dtrace_load8(src
+ i
) != '/')
5252 ASSERT(!(lastbase
== -1 && firstbase
!= -1));
5253 ASSERT(!(firstbase
== -1 && lastdir
!= -1));
5255 if (lastbase
== -1) {
5257 * We didn't find a non-slash character. We know that
5258 * the length is non-zero, so the whole string must be
5259 * slashes. In either the dirname or the basename
5260 * case, we return '/'.
5262 ASSERT(firstbase
== -1);
5263 firstbase
= lastbase
= lastdir
= 0;
5266 if (firstbase
== -1) {
5268 * The entire string consists only of a basename
5269 * component. If we're looking for dirname, we need
5270 * to change our string to be just "."; if we're
5271 * looking for a basename, we'll just set the first
5272 * character of the basename to be 0.
5274 if (subr
== DIF_SUBR_DIRNAME
) {
5275 ASSERT(lastdir
== -1);
5276 src
= (uintptr_t)".";
5283 if (subr
== DIF_SUBR_DIRNAME
) {
5284 if (lastdir
== -1) {
5286 * We know that we have a slash in the name --
5287 * or lastdir would be set to 0, above. And
5288 * because lastdir is -1, we know that this
5289 * slash must be the first character. (That
5290 * is, the full string must be of the form
5291 * "/basename".) In this case, the last
5292 * character of the directory name is 0.
5300 ASSERT(subr
== DIF_SUBR_BASENAME
);
5301 ASSERT(firstbase
!= -1 && lastbase
!= -1);
5306 for (i
= start
, j
= 0; i
<= end
&& j
< size
- 1; i
++, j
++)
5307 dest
[j
] = dtrace_load8(src
+ i
);
5310 regs
[rd
] = (uintptr_t)dest
;
5311 mstate
->dtms_scratch_ptr
+= size
;
5315 case DIF_SUBR_GETF
: {
5316 uintptr_t fd
= tupregs
[0].dttk_value
;
5317 uf_info_t
*finfo
= &curthread
->t_procp
->p_user
.u_finfo
;
5320 if (!dtrace_priv_proc(state
, mstate
)) {
5326 * This is safe because fi_nfiles only increases, and the
5327 * fi_list array is not freed when the array size doubles.
5328 * (See the comment in flist_grow() for details on the
5329 * management of the u_finfo structure.)
5331 fp
= fd
< finfo
->fi_nfiles
? finfo
->fi_list
[fd
].uf_file
: NULL
;
5333 mstate
->dtms_getf
= fp
;
5334 regs
[rd
] = (uintptr_t)fp
;
5338 case DIF_SUBR_CLEANPATH
: {
5339 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
5340 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5341 uintptr_t src
= tupregs
[0].dttk_value
;
5346 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
5351 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5352 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5358 * Move forward, loading each character.
5361 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5363 if (j
+ 5 >= size
) /* 5 = strlen("/..c\0") */
5371 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5375 * We have two slashes -- we can just advance
5376 * to the next character.
5383 * This is not "." and it's not ".." -- we can
5384 * just store the "/" and this character and
5392 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5396 * This is a "/./" component. We're not going
5397 * to store anything in the destination buffer;
5398 * we're just going to go to the next component.
5405 * This is not ".." -- we can just store the
5406 * "/." and this character and continue
5415 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5417 if (c
!= '/' && c
!= '\0') {
5419 * This is not ".." -- it's "..[mumble]".
5420 * We'll store the "/.." and this character
5421 * and continue processing.
5431 * This is "/../" or "/..\0". We need to back up
5432 * our destination pointer until we find a "/".
5435 while (j
!= 0 && dest
[--j
] != '/')
5440 } while (c
!= '\0');
5444 if (mstate
->dtms_getf
!= NULL
&&
5445 !(mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) &&
5446 (z
= state
->dts_cred
.dcr_cred
->cr_zone
) != kcred
->cr_zone
) {
5448 * If we've done a getf() as a part of this ECB and we
5449 * don't have kernel access (and we're not in the global
5450 * zone), check if the path we cleaned up begins with
5451 * the zone's root path, and trim it off if so. Note
5452 * that this is an output cleanliness issue, not a
5453 * security issue: knowing one's zone root path does
5454 * not enable privilege escalation.
5456 if (strstr(dest
, z
->zone_rootpath
) == dest
)
5457 dest
+= strlen(z
->zone_rootpath
) - 1;
5460 regs
[rd
] = (uintptr_t)dest
;
5461 mstate
->dtms_scratch_ptr
+= size
;
5465 case DIF_SUBR_INET_NTOA
:
5466 case DIF_SUBR_INET_NTOA6
:
5467 case DIF_SUBR_INET_NTOP
: {
5472 if (subr
== DIF_SUBR_INET_NTOP
) {
5473 af
= (int)tupregs
[0].dttk_value
;
5476 af
= subr
== DIF_SUBR_INET_NTOA
? AF_INET
: AF_INET6
;
5480 if (af
== AF_INET
) {
5484 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
5485 sizeof (ipaddr_t
), mstate
, vstate
)) {
5491 * Safely load the IPv4 address.
5493 ip4
= dtrace_load32(tupregs
[argi
].dttk_value
);
5496 * Check an IPv4 string will fit in scratch.
5498 size
= INET_ADDRSTRLEN
;
5499 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5500 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5504 base
= (char *)mstate
->dtms_scratch_ptr
;
5505 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5508 * Stringify as a dotted decimal quad.
5511 ptr8
= (uint8_t *)&ip4
;
5512 for (i
= 3; i
>= 0; i
--) {
5518 for (; val
; val
/= 10) {
5519 *end
-- = '0' + (val
% 10);
5526 ASSERT(end
+ 1 >= base
);
5528 } else if (af
== AF_INET6
) {
5529 struct in6_addr ip6
;
5530 int firstzero
, tryzero
, numzero
, v6end
;
5532 const char digits
[] = "0123456789abcdef";
5535 * Stringify using RFC 1884 convention 2 - 16 bit
5536 * hexadecimal values with a zero-run compression.
5537 * Lower case hexadecimal digits are used.
5538 * eg, fe80::214:4fff:fe0b:76c8.
5539 * The IPv4 embedded form is returned for inet_ntop,
5540 * just the IPv4 string is returned for inet_ntoa6.
5543 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
5544 sizeof (struct in6_addr
), mstate
, vstate
)) {
5550 * Safely load the IPv6 address.
5553 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
5554 (void *)(uintptr_t)&ip6
, sizeof (struct in6_addr
));
5557 * Check an IPv6 string will fit in scratch.
5559 size
= INET6_ADDRSTRLEN
;
5560 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5565 base
= (char *)mstate
->dtms_scratch_ptr
;
5566 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5570 * Find the longest run of 16 bit zero values
5571 * for the single allowed zero compression - "::".
5576 for (i
= 0; i
< sizeof (struct in6_addr
); i
++) {
5577 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
5578 tryzero
== -1 && i
% 2 == 0) {
5583 if (tryzero
!= -1 &&
5584 (ip6
._S6_un
._S6_u8
[i
] != 0 ||
5585 i
== sizeof (struct in6_addr
) - 1)) {
5587 if (i
- tryzero
<= numzero
) {
5592 firstzero
= tryzero
;
5593 numzero
= i
- i
% 2 - tryzero
;
5596 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
5597 i
== sizeof (struct in6_addr
) - 1)
5601 ASSERT(firstzero
+ numzero
<= sizeof (struct in6_addr
));
5604 * Check for an IPv4 embedded address.
5606 v6end
= sizeof (struct in6_addr
) - 2;
5607 if (IN6_IS_ADDR_V4MAPPED(&ip6
) ||
5608 IN6_IS_ADDR_V4COMPAT(&ip6
)) {
5609 for (i
= sizeof (struct in6_addr
) - 1;
5610 i
>= DTRACE_V4MAPPED_OFFSET
; i
--) {
5611 ASSERT(end
>= base
);
5613 val
= ip6
._S6_un
._S6_u8
[i
];
5618 for (; val
; val
/= 10) {
5619 *end
-- = '0' + val
% 10;
5623 if (i
> DTRACE_V4MAPPED_OFFSET
)
5627 if (subr
== DIF_SUBR_INET_NTOA6
)
5631 * Set v6end to skip the IPv4 address that
5632 * we have already stringified.
5638 * Build the IPv6 string by working through the
5639 * address in reverse.
5641 for (i
= v6end
; i
>= 0; i
-= 2) {
5642 ASSERT(end
>= base
);
5644 if (i
== firstzero
+ numzero
- 2) {
5651 if (i
< 14 && i
!= firstzero
- 2)
5654 val
= (ip6
._S6_un
._S6_u8
[i
] << 8) +
5655 ip6
._S6_un
._S6_u8
[i
+ 1];
5660 for (; val
; val
/= 16) {
5661 *end
-- = digits
[val
% 16];
5665 ASSERT(end
+ 1 >= base
);
5669 * The user didn't use AH_INET or AH_INET6.
5671 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5676 inetout
: regs
[rd
] = (uintptr_t)end
+ 1;
5677 mstate
->dtms_scratch_ptr
+= size
;
5685 * Emulate the execution of DTrace IR instructions specified by the given
5686 * DIF object. This function is deliberately void of assertions as all of
5687 * the necessary checks are handled by a call to dtrace_difo_validate().
5690 dtrace_dif_emulate(dtrace_difo_t
*difo
, dtrace_mstate_t
*mstate
,
5691 dtrace_vstate_t
*vstate
, dtrace_state_t
*state
)
5693 const dif_instr_t
*text
= difo
->dtdo_buf
;
5694 const uint_t textlen
= difo
->dtdo_len
;
5695 const char *strtab
= difo
->dtdo_strtab
;
5696 const uint64_t *inttab
= difo
->dtdo_inttab
;
5699 dtrace_statvar_t
*svar
;
5700 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
5702 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5703 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
5705 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
5706 uint64_t regs
[DIF_DIR_NREGS
];
5709 uint8_t cc_n
= 0, cc_z
= 0, cc_v
= 0, cc_c
= 0;
5711 uint_t pc
= 0, id
, opc
;
5717 * We stash the current DIF object into the machine state: we need it
5718 * for subsequent access checking.
5720 mstate
->dtms_difo
= difo
;
5722 regs
[DIF_REG_R0
] = 0; /* %r0 is fixed at zero */
5724 while (pc
< textlen
&& !(*flags
& CPU_DTRACE_FAULT
)) {
5728 r1
= DIF_INSTR_R1(instr
);
5729 r2
= DIF_INSTR_R2(instr
);
5730 rd
= DIF_INSTR_RD(instr
);
5732 switch (DIF_INSTR_OP(instr
)) {
5734 regs
[rd
] = regs
[r1
] | regs
[r2
];
5737 regs
[rd
] = regs
[r1
] ^ regs
[r2
];
5740 regs
[rd
] = regs
[r1
] & regs
[r2
];
5743 regs
[rd
] = regs
[r1
] << regs
[r2
];
5746 regs
[rd
] = regs
[r1
] >> regs
[r2
];
5749 regs
[rd
] = regs
[r1
] - regs
[r2
];
5752 regs
[rd
] = regs
[r1
] + regs
[r2
];
5755 regs
[rd
] = regs
[r1
] * regs
[r2
];
5758 if (regs
[r2
] == 0) {
5760 *flags
|= CPU_DTRACE_DIVZERO
;
5762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5763 regs
[rd
] = (int64_t)regs
[r1
] /
5765 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5770 if (regs
[r2
] == 0) {
5772 *flags
|= CPU_DTRACE_DIVZERO
;
5774 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5775 regs
[rd
] = regs
[r1
] / regs
[r2
];
5776 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5781 if (regs
[r2
] == 0) {
5783 *flags
|= CPU_DTRACE_DIVZERO
;
5785 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5786 regs
[rd
] = (int64_t)regs
[r1
] %
5788 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5793 if (regs
[r2
] == 0) {
5795 *flags
|= CPU_DTRACE_DIVZERO
;
5797 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5798 regs
[rd
] = regs
[r1
] % regs
[r2
];
5799 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5804 regs
[rd
] = ~regs
[r1
];
5807 regs
[rd
] = regs
[r1
];
5810 cc_r
= regs
[r1
] - regs
[r2
];
5814 cc_c
= regs
[r1
] < regs
[r2
];
5817 cc_n
= cc_v
= cc_c
= 0;
5818 cc_z
= regs
[r1
] == 0;
5821 pc
= DIF_INSTR_LABEL(instr
);
5825 pc
= DIF_INSTR_LABEL(instr
);
5829 pc
= DIF_INSTR_LABEL(instr
);
5832 if ((cc_z
| (cc_n
^ cc_v
)) == 0)
5833 pc
= DIF_INSTR_LABEL(instr
);
5836 if ((cc_c
| cc_z
) == 0)
5837 pc
= DIF_INSTR_LABEL(instr
);
5840 if ((cc_n
^ cc_v
) == 0)
5841 pc
= DIF_INSTR_LABEL(instr
);
5845 pc
= DIF_INSTR_LABEL(instr
);
5849 pc
= DIF_INSTR_LABEL(instr
);
5853 pc
= DIF_INSTR_LABEL(instr
);
5856 if (cc_z
| (cc_n
^ cc_v
))
5857 pc
= DIF_INSTR_LABEL(instr
);
5861 pc
= DIF_INSTR_LABEL(instr
);
5864 if (!dtrace_canload(regs
[r1
], 1, mstate
, vstate
))
5868 regs
[rd
] = (int8_t)dtrace_load8(regs
[r1
]);
5871 if (!dtrace_canload(regs
[r1
], 2, mstate
, vstate
))
5875 regs
[rd
] = (int16_t)dtrace_load16(regs
[r1
]);
5878 if (!dtrace_canload(regs
[r1
], 4, mstate
, vstate
))
5882 regs
[rd
] = (int32_t)dtrace_load32(regs
[r1
]);
5885 if (!dtrace_canload(regs
[r1
], 1, mstate
, vstate
))
5889 regs
[rd
] = dtrace_load8(regs
[r1
]);
5892 if (!dtrace_canload(regs
[r1
], 2, mstate
, vstate
))
5896 regs
[rd
] = dtrace_load16(regs
[r1
]);
5899 if (!dtrace_canload(regs
[r1
], 4, mstate
, vstate
))
5903 regs
[rd
] = dtrace_load32(regs
[r1
]);
5906 if (!dtrace_canload(regs
[r1
], 8, mstate
, vstate
))
5910 regs
[rd
] = dtrace_load64(regs
[r1
]);
5913 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5915 dtrace_fuword8((void *)(uintptr_t)regs
[r1
]);
5916 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5919 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5920 regs
[rd
] = (int16_t)
5921 dtrace_fuword16((void *)(uintptr_t)regs
[r1
]);
5922 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5925 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5926 regs
[rd
] = (int32_t)
5927 dtrace_fuword32((void *)(uintptr_t)regs
[r1
]);
5928 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5933 dtrace_fuword8((void *)(uintptr_t)regs
[r1
]);
5934 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5937 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5939 dtrace_fuword16((void *)(uintptr_t)regs
[r1
]);
5940 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5943 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5945 dtrace_fuword32((void *)(uintptr_t)regs
[r1
]);
5946 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5949 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5951 dtrace_fuword64((void *)(uintptr_t)regs
[r1
]);
5952 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5961 regs
[rd
] = inttab
[DIF_INSTR_INTEGER(instr
)];
5964 regs
[rd
] = (uint64_t)(uintptr_t)
5965 (strtab
+ DIF_INSTR_STRING(instr
));
5968 size_t sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5969 uintptr_t s1
= regs
[r1
];
5970 uintptr_t s2
= regs
[r2
];
5974 !dtrace_strcanload(s1
, sz
, &lim1
, mstate
, vstate
))
5977 !dtrace_strcanload(s2
, sz
, &lim2
, mstate
, vstate
))
5980 cc_r
= dtrace_strncmp((char *)s1
, (char *)s2
,
5989 regs
[rd
] = dtrace_dif_variable(mstate
, state
,
5993 id
= DIF_INSTR_VAR(instr
);
5995 if (id
>= DIF_VAR_OTHER_UBASE
) {
5998 id
-= DIF_VAR_OTHER_UBASE
;
5999 svar
= vstate
->dtvs_globals
[id
];
6000 ASSERT(svar
!= NULL
);
6001 v
= &svar
->dtsv_var
;
6003 if (!(v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)) {
6004 regs
[rd
] = svar
->dtsv_data
;
6008 a
= (uintptr_t)svar
->dtsv_data
;
6010 if (*(uint8_t *)a
== UINT8_MAX
) {
6012 * If the 0th byte is set to UINT8_MAX
6013 * then this is to be treated as a
6014 * reference to a NULL variable.
6018 regs
[rd
] = a
+ sizeof (uint64_t);
6024 regs
[rd
] = dtrace_dif_variable(mstate
, state
, id
, 0);
6028 id
= DIF_INSTR_VAR(instr
);
6030 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6031 id
-= DIF_VAR_OTHER_UBASE
;
6033 VERIFY(id
< vstate
->dtvs_nglobals
);
6034 svar
= vstate
->dtvs_globals
[id
];
6035 ASSERT(svar
!= NULL
);
6036 v
= &svar
->dtsv_var
;
6038 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6039 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6043 ASSERT(svar
->dtsv_size
!= 0);
6045 if (regs
[rd
] == NULL
) {
6046 *(uint8_t *)a
= UINT8_MAX
;
6050 a
+= sizeof (uint64_t);
6052 if (!dtrace_vcanload(
6053 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6054 &lim
, mstate
, vstate
))
6057 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6058 (void *)a
, &v
->dtdv_type
, lim
);
6062 svar
->dtsv_data
= regs
[rd
];
6067 * There are no DTrace built-in thread-local arrays at
6068 * present. This opcode is saved for future work.
6070 *flags
|= CPU_DTRACE_ILLOP
;
6075 id
= DIF_INSTR_VAR(instr
);
6077 if (id
< DIF_VAR_OTHER_UBASE
) {
6079 * For now, this has no meaning.
6085 id
-= DIF_VAR_OTHER_UBASE
;
6087 ASSERT(id
< vstate
->dtvs_nlocals
);
6088 ASSERT(vstate
->dtvs_locals
!= NULL
);
6090 svar
= vstate
->dtvs_locals
[id
];
6091 ASSERT(svar
!= NULL
);
6092 v
= &svar
->dtsv_var
;
6094 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6095 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6096 size_t sz
= v
->dtdv_type
.dtdt_size
;
6098 sz
+= sizeof (uint64_t);
6099 ASSERT(svar
->dtsv_size
== NCPU
* sz
);
6100 a
+= CPU
->cpu_id
* sz
;
6102 if (*(uint8_t *)a
== UINT8_MAX
) {
6104 * If the 0th byte is set to UINT8_MAX
6105 * then this is to be treated as a
6106 * reference to a NULL variable.
6110 regs
[rd
] = a
+ sizeof (uint64_t);
6116 ASSERT(svar
->dtsv_size
== NCPU
* sizeof (uint64_t));
6117 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
6118 regs
[rd
] = tmp
[CPU
->cpu_id
];
6122 id
= DIF_INSTR_VAR(instr
);
6124 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6125 id
-= DIF_VAR_OTHER_UBASE
;
6126 VERIFY(id
< vstate
->dtvs_nlocals
);
6128 ASSERT(vstate
->dtvs_locals
!= NULL
);
6129 svar
= vstate
->dtvs_locals
[id
];
6130 ASSERT(svar
!= NULL
);
6131 v
= &svar
->dtsv_var
;
6133 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6134 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6135 size_t sz
= v
->dtdv_type
.dtdt_size
;
6138 sz
+= sizeof (uint64_t);
6139 ASSERT(svar
->dtsv_size
== NCPU
* sz
);
6140 a
+= CPU
->cpu_id
* sz
;
6142 if (regs
[rd
] == NULL
) {
6143 *(uint8_t *)a
= UINT8_MAX
;
6147 a
+= sizeof (uint64_t);
6150 if (!dtrace_vcanload(
6151 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6152 &lim
, mstate
, vstate
))
6155 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6156 (void *)a
, &v
->dtdv_type
, lim
);
6160 ASSERT(svar
->dtsv_size
== NCPU
* sizeof (uint64_t));
6161 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
6162 tmp
[CPU
->cpu_id
] = regs
[rd
];
6166 dtrace_dynvar_t
*dvar
;
6169 id
= DIF_INSTR_VAR(instr
);
6170 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6171 id
-= DIF_VAR_OTHER_UBASE
;
6172 v
= &vstate
->dtvs_tlocals
[id
];
6174 key
= &tupregs
[DIF_DTR_NREGS
];
6175 key
[0].dttk_value
= (uint64_t)id
;
6176 key
[0].dttk_size
= 0;
6177 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
6178 key
[1].dttk_size
= 0;
6180 dvar
= dtrace_dynvar(dstate
, 2, key
,
6181 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC
,
6189 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6190 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
6192 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
6199 dtrace_dynvar_t
*dvar
;
6202 id
= DIF_INSTR_VAR(instr
);
6203 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6204 id
-= DIF_VAR_OTHER_UBASE
;
6205 VERIFY(id
< vstate
->dtvs_ntlocals
);
6207 key
= &tupregs
[DIF_DTR_NREGS
];
6208 key
[0].dttk_value
= (uint64_t)id
;
6209 key
[0].dttk_size
= 0;
6210 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
6211 key
[1].dttk_size
= 0;
6212 v
= &vstate
->dtvs_tlocals
[id
];
6214 dvar
= dtrace_dynvar(dstate
, 2, key
,
6215 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6216 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6217 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
6218 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
6221 * Given that we're storing to thread-local data,
6222 * we need to flush our predicate cache.
6224 curthread
->t_predcache
= NULL
;
6229 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6232 if (!dtrace_vcanload(
6233 (void *)(uintptr_t)regs
[rd
],
6234 &v
->dtdv_type
, &lim
, mstate
, vstate
))
6237 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6238 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
6240 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
6247 regs
[rd
] = (int64_t)regs
[r1
] >> regs
[r2
];
6251 dtrace_dif_subr(DIF_INSTR_SUBR(instr
), rd
,
6252 regs
, tupregs
, ttop
, mstate
, state
);
6256 if (ttop
== DIF_DTR_NREGS
) {
6257 *flags
|= CPU_DTRACE_TUPOFLOW
;
6261 if (r1
== DIF_TYPE_STRING
) {
6263 * If this is a string type and the size is 0,
6264 * we'll use the system-wide default string
6265 * size. Note that we are _not_ looking at
6266 * the value of the DTRACEOPT_STRSIZE option;
6267 * had this been set, we would expect to have
6268 * a non-zero size value in the "pushtr".
6270 tupregs
[ttop
].dttk_size
=
6271 dtrace_strlen((char *)(uintptr_t)regs
[rd
],
6272 regs
[r2
] ? regs
[r2
] :
6273 dtrace_strsize_default
) + 1;
6275 if (regs
[r2
] > LONG_MAX
) {
6276 *flags
|= CPU_DTRACE_ILLOP
;
6280 tupregs
[ttop
].dttk_size
= regs
[r2
];
6283 tupregs
[ttop
++].dttk_value
= regs
[rd
];
6287 if (ttop
== DIF_DTR_NREGS
) {
6288 *flags
|= CPU_DTRACE_TUPOFLOW
;
6292 tupregs
[ttop
].dttk_value
= regs
[rd
];
6293 tupregs
[ttop
++].dttk_size
= 0;
6301 case DIF_OP_FLUSHTS
:
6306 case DIF_OP_LDTAA
: {
6307 dtrace_dynvar_t
*dvar
;
6308 dtrace_key_t
*key
= tupregs
;
6309 uint_t nkeys
= ttop
;
6311 id
= DIF_INSTR_VAR(instr
);
6312 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6313 id
-= DIF_VAR_OTHER_UBASE
;
6315 key
[nkeys
].dttk_value
= (uint64_t)id
;
6316 key
[nkeys
++].dttk_size
= 0;
6318 if (DIF_INSTR_OP(instr
) == DIF_OP_LDTAA
) {
6319 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
6320 key
[nkeys
++].dttk_size
= 0;
6321 VERIFY(id
< vstate
->dtvs_ntlocals
);
6322 v
= &vstate
->dtvs_tlocals
[id
];
6324 VERIFY(id
< vstate
->dtvs_nglobals
);
6325 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
6328 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
6329 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6330 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6331 DTRACE_DYNVAR_NOALLOC
, mstate
, vstate
);
6338 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6339 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
6341 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
6348 case DIF_OP_STTAA
: {
6349 dtrace_dynvar_t
*dvar
;
6350 dtrace_key_t
*key
= tupregs
;
6351 uint_t nkeys
= ttop
;
6353 id
= DIF_INSTR_VAR(instr
);
6354 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6355 id
-= DIF_VAR_OTHER_UBASE
;
6357 key
[nkeys
].dttk_value
= (uint64_t)id
;
6358 key
[nkeys
++].dttk_size
= 0;
6360 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
) {
6361 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
6362 key
[nkeys
++].dttk_size
= 0;
6363 VERIFY(id
< vstate
->dtvs_ntlocals
);
6364 v
= &vstate
->dtvs_tlocals
[id
];
6366 VERIFY(id
< vstate
->dtvs_nglobals
);
6367 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
6370 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
6371 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6372 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6373 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
6374 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
6379 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6382 if (!dtrace_vcanload(
6383 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6384 &lim
, mstate
, vstate
))
6387 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6388 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
6390 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
6396 case DIF_OP_ALLOCS
: {
6397 uintptr_t ptr
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6398 size_t size
= ptr
- mstate
->dtms_scratch_ptr
+ regs
[r1
];
6401 * Rounding up the user allocation size could have
6402 * overflowed large, bogus allocations (like -1ULL) to
6405 if (size
< regs
[r1
] ||
6406 !DTRACE_INSCRATCH(mstate
, size
)) {
6407 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6412 dtrace_bzero((void *) mstate
->dtms_scratch_ptr
, size
);
6413 mstate
->dtms_scratch_ptr
+= size
;
6419 if (!dtrace_canstore(regs
[rd
], regs
[r2
],
6421 *flags
|= CPU_DTRACE_BADADDR
;
6426 if (!dtrace_canload(regs
[r1
], regs
[r2
], mstate
, vstate
))
6429 dtrace_bcopy((void *)(uintptr_t)regs
[r1
],
6430 (void *)(uintptr_t)regs
[rd
], (size_t)regs
[r2
]);
6434 if (!dtrace_canstore(regs
[rd
], 1, mstate
, vstate
)) {
6435 *flags
|= CPU_DTRACE_BADADDR
;
6439 *((uint8_t *)(uintptr_t)regs
[rd
]) = (uint8_t)regs
[r1
];
6443 if (!dtrace_canstore(regs
[rd
], 2, mstate
, vstate
)) {
6444 *flags
|= CPU_DTRACE_BADADDR
;
6449 *flags
|= CPU_DTRACE_BADALIGN
;
6453 *((uint16_t *)(uintptr_t)regs
[rd
]) = (uint16_t)regs
[r1
];
6457 if (!dtrace_canstore(regs
[rd
], 4, mstate
, vstate
)) {
6458 *flags
|= CPU_DTRACE_BADADDR
;
6463 *flags
|= CPU_DTRACE_BADALIGN
;
6467 *((uint32_t *)(uintptr_t)regs
[rd
]) = (uint32_t)regs
[r1
];
6471 if (!dtrace_canstore(regs
[rd
], 8, mstate
, vstate
)) {
6472 *flags
|= CPU_DTRACE_BADADDR
;
6477 *flags
|= CPU_DTRACE_BADALIGN
;
6481 *((uint64_t *)(uintptr_t)regs
[rd
]) = regs
[r1
];
6486 if (!(*flags
& CPU_DTRACE_FAULT
))
6489 mstate
->dtms_fltoffs
= opc
* sizeof (dif_instr_t
);
6490 mstate
->dtms_present
|= DTRACE_MSTATE_FLTOFFS
;
6496 dtrace_action_breakpoint(dtrace_ecb_t
*ecb
)
6498 dtrace_probe_t
*probe
= ecb
->dte_probe
;
6499 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6500 char c
[DTRACE_FULLNAMELEN
+ 80], *str
;
6501 char *msg
= "dtrace: breakpoint action at probe ";
6502 char *ecbmsg
= " (ecb ";
6503 uintptr_t mask
= (0xf << (sizeof (uintptr_t) * NBBY
/ 4));
6504 uintptr_t val
= (uintptr_t)ecb
;
6505 int shift
= (sizeof (uintptr_t) * NBBY
) - 4, i
= 0;
6507 if (dtrace_destructive_disallow
)
6511 * It's impossible to be taking action on the NULL probe.
6513 ASSERT(probe
!= NULL
);
6516 * This is a poor man's (destitute man's?) sprintf(): we want to
6517 * print the provider name, module name, function name and name of
6518 * the probe, along with the hex address of the ECB with the breakpoint
6519 * action -- all of which we must place in the character buffer by
6522 while (*msg
!= '\0')
6525 for (str
= prov
->dtpv_name
; *str
!= '\0'; str
++)
6529 for (str
= probe
->dtpr_mod
; *str
!= '\0'; str
++)
6533 for (str
= probe
->dtpr_func
; *str
!= '\0'; str
++)
6537 for (str
= probe
->dtpr_name
; *str
!= '\0'; str
++)
6540 while (*ecbmsg
!= '\0')
6543 while (shift
>= 0) {
6544 mask
= (uintptr_t)0xf << shift
;
6546 if (val
>= ((uintptr_t)1 << shift
))
6547 c
[i
++] = "0123456789abcdef"[(val
& mask
) >> shift
];
6558 dtrace_action_panic(dtrace_ecb_t
*ecb
)
6560 dtrace_probe_t
*probe
= ecb
->dte_probe
;
6563 * It's impossible to be taking action on the NULL probe.
6565 ASSERT(probe
!= NULL
);
6567 if (dtrace_destructive_disallow
)
6570 if (dtrace_panicked
!= NULL
)
6573 if (dtrace_casptr(&dtrace_panicked
, NULL
, curthread
) != NULL
)
6577 * We won the right to panic. (We want to be sure that only one
6578 * thread calls panic() from dtrace_probe(), and that panic() is
6579 * called exactly once.)
6581 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6582 probe
->dtpr_provider
->dtpv_name
, probe
->dtpr_mod
,
6583 probe
->dtpr_func
, probe
->dtpr_name
, (void *)ecb
);
6587 dtrace_action_raise(uint64_t sig
)
6589 if (dtrace_destructive_disallow
)
6593 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
6598 * raise() has a queue depth of 1 -- we ignore all subsequent
6599 * invocations of the raise() action.
6601 if (curthread
->t_dtrace_sig
== 0)
6602 curthread
->t_dtrace_sig
= (uint8_t)sig
;
6604 curthread
->t_sig_check
= 1;
6609 dtrace_action_stop(void)
6611 if (dtrace_destructive_disallow
)
6614 if (!curthread
->t_dtrace_stop
) {
6615 curthread
->t_dtrace_stop
= 1;
6616 curthread
->t_sig_check
= 1;
6622 dtrace_action_chill(dtrace_mstate_t
*mstate
, hrtime_t val
)
6625 volatile uint16_t *flags
;
6628 if (dtrace_destructive_disallow
)
6631 flags
= (volatile uint16_t *)&cpu_core
[cpu
->cpu_id
].cpuc_dtrace_flags
;
6633 now
= dtrace_gethrtime();
6635 if (now
- cpu
->cpu_dtrace_chillmark
> dtrace_chill_interval
) {
6637 * We need to advance the mark to the current time.
6639 cpu
->cpu_dtrace_chillmark
= now
;
6640 cpu
->cpu_dtrace_chilled
= 0;
6644 * Now check to see if the requested chill time would take us over
6645 * the maximum amount of time allowed in the chill interval. (Or
6646 * worse, if the calculation itself induces overflow.)
6648 if (cpu
->cpu_dtrace_chilled
+ val
> dtrace_chill_max
||
6649 cpu
->cpu_dtrace_chilled
+ val
< cpu
->cpu_dtrace_chilled
) {
6650 *flags
|= CPU_DTRACE_ILLOP
;
6654 while (dtrace_gethrtime() - now
< val
)
6658 * Normally, we assure that the value of the variable "timestamp" does
6659 * not change within an ECB. The presence of chill() represents an
6660 * exception to this rule, however.
6662 mstate
->dtms_present
&= ~DTRACE_MSTATE_TIMESTAMP
;
6663 cpu
->cpu_dtrace_chilled
+= val
;
6667 dtrace_action_ustack(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
6668 uint64_t *buf
, uint64_t arg
)
6670 int nframes
= DTRACE_USTACK_NFRAMES(arg
);
6671 int strsize
= DTRACE_USTACK_STRSIZE(arg
);
6672 uint64_t *pcs
= &buf
[1], *fps
;
6673 char *str
= (char *)&pcs
[nframes
];
6674 int size
, offs
= 0, i
, j
;
6676 uintptr_t old
= mstate
->dtms_scratch_ptr
, saved
;
6677 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6681 * Should be taking a faster path if string space has not been
6684 ASSERT(strsize
!= 0);
6687 * We will first allocate some temporary space for the frame pointers.
6689 fps
= (uint64_t *)P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6690 size
= (uintptr_t)fps
- mstate
->dtms_scratch_ptr
+
6691 (nframes
* sizeof (uint64_t));
6693 if (!DTRACE_INSCRATCH(mstate
, size
)) {
6695 * Not enough room for our frame pointers -- need to indicate
6696 * that we ran out of scratch space.
6698 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6702 mstate
->dtms_scratch_ptr
+= size
;
6703 saved
= mstate
->dtms_scratch_ptr
;
6706 * Now get a stack with both program counters and frame pointers.
6708 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6709 dtrace_getufpstack(buf
, fps
, nframes
+ 1);
6710 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6713 * If that faulted, we're cooked.
6715 if (*flags
& CPU_DTRACE_FAULT
)
6719 * Now we want to walk up the stack, calling the USTACK helper. For
6720 * each iteration, we restore the scratch pointer.
6722 for (i
= 0; i
< nframes
; i
++) {
6723 mstate
->dtms_scratch_ptr
= saved
;
6725 if (offs
>= strsize
)
6728 sym
= (char *)(uintptr_t)dtrace_helper(
6729 DTRACE_HELPER_ACTION_USTACK
,
6730 mstate
, state
, pcs
[i
], fps
[i
]);
6733 * If we faulted while running the helper, we're going to
6734 * clear the fault and null out the corresponding string.
6736 if (*flags
& CPU_DTRACE_FAULT
) {
6737 *flags
&= ~CPU_DTRACE_FAULT
;
6747 if (!dtrace_strcanload((uintptr_t)sym
, strsize
, &rem
, mstate
,
6748 &(state
->dts_vstate
))) {
6753 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6756 * Now copy in the string that the helper returned to us.
6758 for (j
= 0; offs
+ j
< strsize
&& j
< rem
; j
++) {
6759 if ((str
[offs
+ j
] = sym
[j
]) == '\0')
6763 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6768 if (offs
>= strsize
) {
6770 * If we didn't have room for all of the strings, we don't
6771 * abort processing -- this needn't be a fatal error -- but we
6772 * still want to increment a counter (dts_stkstroverflows) to
6773 * allow this condition to be warned about. (If this is from
6774 * a jstack() action, it is easily tuned via jstackstrsize.)
6776 dtrace_error(&state
->dts_stkstroverflows
);
6779 while (offs
< strsize
)
6783 mstate
->dtms_scratch_ptr
= old
;
6787 dtrace_store_by_ref(dtrace_difo_t
*dp
, caddr_t tomax
, size_t size
,
6788 size_t *valoffsp
, uint64_t *valp
, uint64_t end
, int intuple
, int dtkind
)
6790 volatile uint16_t *flags
;
6791 uint64_t val
= *valp
;
6792 size_t valoffs
= *valoffsp
;
6794 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6795 ASSERT(dtkind
== DIF_TF_BYREF
|| dtkind
== DIF_TF_BYUREF
);
6798 * If this is a string, we're going to only load until we find the zero
6799 * byte -- after which we'll store zero bytes.
6801 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
6805 for (s
= 0; s
< size
; s
++) {
6806 if (c
!= '\0' && dtkind
== DIF_TF_BYREF
) {
6807 c
= dtrace_load8(val
++);
6808 } else if (c
!= '\0' && dtkind
== DIF_TF_BYUREF
) {
6809 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6810 c
= dtrace_fuword8((void *)(uintptr_t)val
++);
6811 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6812 if (*flags
& CPU_DTRACE_FAULT
)
6816 DTRACE_STORE(uint8_t, tomax
, valoffs
++, c
);
6818 if (c
== '\0' && intuple
)
6823 while (valoffs
< end
) {
6824 if (dtkind
== DIF_TF_BYREF
) {
6825 c
= dtrace_load8(val
++);
6826 } else if (dtkind
== DIF_TF_BYUREF
) {
6827 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6828 c
= dtrace_fuword8((void *)(uintptr_t)val
++);
6829 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6830 if (*flags
& CPU_DTRACE_FAULT
)
6834 DTRACE_STORE(uint8_t, tomax
,
6840 *valoffsp
= valoffs
;
6844 * If you're looking for the epicenter of DTrace, you just found it. This
6845 * is the function called by the provider to fire a probe -- from which all
6846 * subsequent probe-context DTrace activity emanates.
6849 dtrace_probe(dtrace_id_t id
, uintptr_t arg0
, uintptr_t arg1
,
6850 uintptr_t arg2
, uintptr_t arg3
, uintptr_t arg4
)
6852 processorid_t cpuid
;
6853 dtrace_icookie_t cookie
;
6854 dtrace_probe_t
*probe
;
6855 dtrace_mstate_t mstate
;
6857 dtrace_action_t
*act
;
6861 volatile uint16_t *flags
;
6865 * Kick out immediately if this CPU is still being born (in which case
6866 * curthread will be set to -1) or the current thread can't allow
6867 * probes in its current context.
6869 if (((uintptr_t)curthread
& 1) || (curthread
->t_flag
& T_DONTDTRACE
))
6872 cookie
= dtrace_interrupt_disable();
6873 probe
= dtrace_probes
[id
- 1];
6874 cpuid
= CPU
->cpu_id
;
6875 onintr
= CPU_ON_INTR(CPU
);
6877 CPU
->cpu_dtrace_probes
++;
6879 if (!onintr
&& probe
->dtpr_predcache
!= DTRACE_CACHEIDNONE
&&
6880 probe
->dtpr_predcache
== curthread
->t_predcache
) {
6882 * We have hit in the predicate cache; we know that
6883 * this predicate would evaluate to be false.
6885 dtrace_interrupt_enable(cookie
);
6889 if (panic_quiesce
) {
6891 * We don't trace anything if we're panicking.
6893 dtrace_interrupt_enable(cookie
);
6897 now
= mstate
.dtms_timestamp
= dtrace_gethrtime();
6898 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
6899 vtime
= dtrace_vtime_references
!= 0;
6901 if (vtime
&& curthread
->t_dtrace_start
)
6902 curthread
->t_dtrace_vtime
+= now
- curthread
->t_dtrace_start
;
6904 mstate
.dtms_difo
= NULL
;
6905 mstate
.dtms_probe
= probe
;
6906 mstate
.dtms_strtok
= NULL
;
6907 mstate
.dtms_arg
[0] = arg0
;
6908 mstate
.dtms_arg
[1] = arg1
;
6909 mstate
.dtms_arg
[2] = arg2
;
6910 mstate
.dtms_arg
[3] = arg3
;
6911 mstate
.dtms_arg
[4] = arg4
;
6913 flags
= (volatile uint16_t *)&cpu_core
[cpuid
].cpuc_dtrace_flags
;
6915 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
6916 dtrace_predicate_t
*pred
= ecb
->dte_predicate
;
6917 dtrace_state_t
*state
= ecb
->dte_state
;
6918 dtrace_buffer_t
*buf
= &state
->dts_buffer
[cpuid
];
6919 dtrace_buffer_t
*aggbuf
= &state
->dts_aggbuffer
[cpuid
];
6920 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
6921 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6922 uint64_t tracememsize
= 0;
6927 * A little subtlety with the following (seemingly innocuous)
6928 * declaration of the automatic 'val': by looking at the
6929 * code, you might think that it could be declared in the
6930 * action processing loop, below. (That is, it's only used in
6931 * the action processing loop.) However, it must be declared
6932 * out of that scope because in the case of DIF expression
6933 * arguments to aggregating actions, one iteration of the
6934 * action loop will use the last iteration's value.
6942 mstate
.dtms_present
= DTRACE_MSTATE_ARGS
| DTRACE_MSTATE_PROBE
;
6943 mstate
.dtms_access
= DTRACE_ACCESS_ARGS
| DTRACE_ACCESS_PROC
;
6944 mstate
.dtms_getf
= NULL
;
6946 *flags
&= ~CPU_DTRACE_ERROR
;
6948 if (prov
== dtrace_provider
) {
6950 * If dtrace itself is the provider of this probe,
6951 * we're only going to continue processing the ECB if
6952 * arg0 (the dtrace_state_t) is equal to the ECB's
6953 * creating state. (This prevents disjoint consumers
6954 * from seeing one another's metaprobes.)
6956 if (arg0
!= (uint64_t)(uintptr_t)state
)
6960 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
) {
6962 * We're not currently active. If our provider isn't
6963 * the dtrace pseudo provider, we're not interested.
6965 if (prov
!= dtrace_provider
)
6969 * Now we must further check if we are in the BEGIN
6970 * probe. If we are, we will only continue processing
6971 * if we're still in WARMUP -- if one BEGIN enabling
6972 * has invoked the exit() action, we don't want to
6973 * evaluate subsequent BEGIN enablings.
6975 if (probe
->dtpr_id
== dtrace_probeid_begin
&&
6976 state
->dts_activity
!= DTRACE_ACTIVITY_WARMUP
) {
6977 ASSERT(state
->dts_activity
==
6978 DTRACE_ACTIVITY_DRAINING
);
6983 if (ecb
->dte_cond
&& !dtrace_priv_probe(state
, &mstate
, ecb
))
6986 if (now
- state
->dts_alive
> dtrace_deadman_timeout
) {
6988 * We seem to be dead. Unless we (a) have kernel
6989 * destructive permissions (b) have explicitly enabled
6990 * destructive actions and (c) destructive actions have
6991 * not been disabled, we're going to transition into
6992 * the KILLED state, from which no further processing
6993 * on this state will be performed.
6995 if (!dtrace_priv_kernel_destructive(state
) ||
6996 !state
->dts_cred
.dcr_destructive
||
6997 dtrace_destructive_disallow
) {
6998 void *activity
= &state
->dts_activity
;
6999 dtrace_activity_t current
;
7002 current
= state
->dts_activity
;
7003 } while (dtrace_cas32(activity
, current
,
7004 DTRACE_ACTIVITY_KILLED
) != current
);
7010 if ((offs
= dtrace_buffer_reserve(buf
, ecb
->dte_needed
,
7011 ecb
->dte_alignment
, state
, &mstate
)) < 0)
7014 tomax
= buf
->dtb_tomax
;
7015 ASSERT(tomax
!= NULL
);
7017 if (ecb
->dte_size
!= 0) {
7018 dtrace_rechdr_t dtrh
;
7019 if (!(mstate
.dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
7020 mstate
.dtms_timestamp
= dtrace_gethrtime();
7021 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
7023 ASSERT3U(ecb
->dte_size
, >=, sizeof (dtrace_rechdr_t
));
7024 dtrh
.dtrh_epid
= ecb
->dte_epid
;
7025 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh
,
7026 mstate
.dtms_timestamp
);
7027 *((dtrace_rechdr_t
*)(tomax
+ offs
)) = dtrh
;
7030 mstate
.dtms_epid
= ecb
->dte_epid
;
7031 mstate
.dtms_present
|= DTRACE_MSTATE_EPID
;
7033 if (state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)
7034 mstate
.dtms_access
|= DTRACE_ACCESS_KERNEL
;
7037 dtrace_difo_t
*dp
= pred
->dtp_difo
;
7040 rval
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
7042 if (!(*flags
& CPU_DTRACE_ERROR
) && !rval
) {
7043 dtrace_cacheid_t cid
= probe
->dtpr_predcache
;
7045 if (cid
!= DTRACE_CACHEIDNONE
&& !onintr
) {
7047 * Update the predicate cache...
7049 ASSERT(cid
== pred
->dtp_cacheid
);
7050 curthread
->t_predcache
= cid
;
7057 for (act
= ecb
->dte_action
; !(*flags
& CPU_DTRACE_ERROR
) &&
7058 act
!= NULL
; act
= act
->dta_next
) {
7061 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
7063 size
= rec
->dtrd_size
;
7064 valoffs
= offs
+ rec
->dtrd_offset
;
7066 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
7068 dtrace_aggregation_t
*agg
;
7070 agg
= (dtrace_aggregation_t
*)act
;
7072 if ((dp
= act
->dta_difo
) != NULL
)
7073 v
= dtrace_dif_emulate(dp
,
7074 &mstate
, vstate
, state
);
7076 if (*flags
& CPU_DTRACE_ERROR
)
7080 * Note that we always pass the expression
7081 * value from the previous iteration of the
7082 * action loop. This value will only be used
7083 * if there is an expression argument to the
7084 * aggregating action, denoted by the
7085 * dtag_hasarg field.
7087 dtrace_aggregate(agg
, buf
,
7088 offs
, aggbuf
, v
, val
);
7092 switch (act
->dta_kind
) {
7093 case DTRACEACT_STOP
:
7094 if (dtrace_priv_proc_destructive(state
,
7096 dtrace_action_stop();
7099 case DTRACEACT_BREAKPOINT
:
7100 if (dtrace_priv_kernel_destructive(state
))
7101 dtrace_action_breakpoint(ecb
);
7104 case DTRACEACT_PANIC
:
7105 if (dtrace_priv_kernel_destructive(state
))
7106 dtrace_action_panic(ecb
);
7109 case DTRACEACT_STACK
:
7110 if (!dtrace_priv_kernel(state
))
7113 dtrace_getpcstack((pc_t
*)(tomax
+ valoffs
),
7114 size
/ sizeof (pc_t
), probe
->dtpr_aframes
,
7115 DTRACE_ANCHORED(probe
) ? NULL
:
7120 case DTRACEACT_JSTACK
:
7121 case DTRACEACT_USTACK
:
7122 if (!dtrace_priv_proc(state
, &mstate
))
7126 * See comment in DIF_VAR_PID.
7128 if (DTRACE_ANCHORED(mstate
.dtms_probe
) &&
7130 int depth
= DTRACE_USTACK_NFRAMES(
7133 dtrace_bzero((void *)(tomax
+ valoffs
),
7134 DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
)
7135 + depth
* sizeof (uint64_t));
7140 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0 &&
7141 curproc
->p_dtrace_helpers
!= NULL
) {
7143 * This is the slow path -- we have
7144 * allocated string space, and we're
7145 * getting the stack of a process that
7146 * has helpers. Call into a separate
7147 * routine to perform this processing.
7149 dtrace_action_ustack(&mstate
, state
,
7150 (uint64_t *)(tomax
+ valoffs
),
7156 * Clear the string space, since there's no
7157 * helper to do it for us.
7159 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0) {
7160 int depth
= DTRACE_USTACK_NFRAMES(
7162 size_t strsize
= DTRACE_USTACK_STRSIZE(
7164 uint64_t *buf
= (uint64_t *)(tomax
+
7166 void *strspace
= &buf
[depth
+ 1];
7168 dtrace_bzero(strspace
,
7169 MIN(depth
, strsize
));
7172 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
7173 dtrace_getupcstack((uint64_t *)
7175 DTRACE_USTACK_NFRAMES(rec
->dtrd_arg
) + 1);
7176 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
7186 val
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
7188 if (*flags
& CPU_DTRACE_ERROR
)
7191 switch (act
->dta_kind
) {
7192 case DTRACEACT_SPECULATE
: {
7193 dtrace_rechdr_t
*dtrh
;
7195 ASSERT(buf
== &state
->dts_buffer
[cpuid
]);
7196 buf
= dtrace_speculation_buffer(state
,
7200 *flags
|= CPU_DTRACE_DROP
;
7204 offs
= dtrace_buffer_reserve(buf
,
7205 ecb
->dte_needed
, ecb
->dte_alignment
,
7209 *flags
|= CPU_DTRACE_DROP
;
7213 tomax
= buf
->dtb_tomax
;
7214 ASSERT(tomax
!= NULL
);
7216 if (ecb
->dte_size
== 0)
7219 ASSERT3U(ecb
->dte_size
, >=,
7220 sizeof (dtrace_rechdr_t
));
7221 dtrh
= ((void *)(tomax
+ offs
));
7222 dtrh
->dtrh_epid
= ecb
->dte_epid
;
7224 * When the speculation is committed, all of
7225 * the records in the speculative buffer will
7226 * have their timestamps set to the commit
7227 * time. Until then, it is set to a sentinel
7228 * value, for debugability.
7230 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, UINT64_MAX
);
7234 case DTRACEACT_CHILL
:
7235 if (dtrace_priv_kernel_destructive(state
))
7236 dtrace_action_chill(&mstate
, val
);
7239 case DTRACEACT_RAISE
:
7240 if (dtrace_priv_proc_destructive(state
,
7242 dtrace_action_raise(val
);
7245 case DTRACEACT_COMMIT
:
7249 * We need to commit our buffer state.
7252 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
7253 buf
= &state
->dts_buffer
[cpuid
];
7254 dtrace_speculation_commit(state
, cpuid
, val
);
7258 case DTRACEACT_DISCARD
:
7259 dtrace_speculation_discard(state
, cpuid
, val
);
7262 case DTRACEACT_DIFEXPR
:
7263 case DTRACEACT_LIBACT
:
7264 case DTRACEACT_PRINTF
:
7265 case DTRACEACT_PRINTA
:
7266 case DTRACEACT_SYSTEM
:
7267 case DTRACEACT_FREOPEN
:
7268 case DTRACEACT_TRACEMEM
:
7271 case DTRACEACT_TRACEMEM_DYNSIZE
:
7277 if (!dtrace_priv_kernel(state
))
7281 case DTRACEACT_USYM
:
7282 case DTRACEACT_UMOD
:
7283 case DTRACEACT_UADDR
: {
7284 struct pid
*pid
= curthread
->t_procp
->p_pidp
;
7286 if (!dtrace_priv_proc(state
, &mstate
))
7289 DTRACE_STORE(uint64_t, tomax
,
7290 valoffs
, (uint64_t)pid
->pid_id
);
7291 DTRACE_STORE(uint64_t, tomax
,
7292 valoffs
+ sizeof (uint64_t), val
);
7297 case DTRACEACT_EXIT
: {
7299 * For the exit action, we are going to attempt
7300 * to atomically set our activity to be
7301 * draining. If this fails (either because
7302 * another CPU has beat us to the exit action,
7303 * or because our current activity is something
7304 * other than ACTIVE or WARMUP), we will
7305 * continue. This assures that the exit action
7306 * can be successfully recorded at most once
7307 * when we're in the ACTIVE state. If we're
7308 * encountering the exit() action while in
7309 * COOLDOWN, however, we want to honor the new
7310 * status code. (We know that we're the only
7311 * thread in COOLDOWN, so there is no race.)
7313 void *activity
= &state
->dts_activity
;
7314 dtrace_activity_t current
= state
->dts_activity
;
7316 if (current
== DTRACE_ACTIVITY_COOLDOWN
)
7319 if (current
!= DTRACE_ACTIVITY_WARMUP
)
7320 current
= DTRACE_ACTIVITY_ACTIVE
;
7322 if (dtrace_cas32(activity
, current
,
7323 DTRACE_ACTIVITY_DRAINING
) != current
) {
7324 *flags
|= CPU_DTRACE_DROP
;
7335 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
||
7336 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYUREF
) {
7337 uintptr_t end
= valoffs
+ size
;
7339 if (tracememsize
!= 0 &&
7340 valoffs
+ tracememsize
< end
) {
7341 end
= valoffs
+ tracememsize
;
7345 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
&&
7346 !dtrace_vcanload((void *)(uintptr_t)val
,
7347 &dp
->dtdo_rtype
, NULL
, &mstate
, vstate
))
7350 dtrace_store_by_ref(dp
, tomax
, size
, &valoffs
,
7351 &val
, end
, act
->dta_intuple
,
7352 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
?
7353 DIF_TF_BYREF
: DIF_TF_BYUREF
);
7361 case sizeof (uint8_t):
7362 DTRACE_STORE(uint8_t, tomax
, valoffs
, val
);
7364 case sizeof (uint16_t):
7365 DTRACE_STORE(uint16_t, tomax
, valoffs
, val
);
7367 case sizeof (uint32_t):
7368 DTRACE_STORE(uint32_t, tomax
, valoffs
, val
);
7370 case sizeof (uint64_t):
7371 DTRACE_STORE(uint64_t, tomax
, valoffs
, val
);
7375 * Any other size should have been returned by
7376 * reference, not by value.
7383 if (*flags
& CPU_DTRACE_DROP
)
7386 if (*flags
& CPU_DTRACE_FAULT
) {
7388 dtrace_action_t
*err
;
7392 if (probe
->dtpr_id
== dtrace_probeid_error
) {
7394 * There's nothing we can do -- we had an
7395 * error on the error probe. We bump an
7396 * error counter to at least indicate that
7397 * this condition happened.
7399 dtrace_error(&state
->dts_dblerrors
);
7405 * Before recursing on dtrace_probe(), we
7406 * need to explicitly clear out our start
7407 * time to prevent it from being accumulated
7408 * into t_dtrace_vtime.
7410 curthread
->t_dtrace_start
= 0;
7414 * Iterate over the actions to figure out which action
7415 * we were processing when we experienced the error.
7416 * Note that act points _past_ the faulting action; if
7417 * act is ecb->dte_action, the fault was in the
7418 * predicate, if it's ecb->dte_action->dta_next it's
7419 * in action #1, and so on.
7421 for (err
= ecb
->dte_action
, ndx
= 0;
7422 err
!= act
; err
= err
->dta_next
, ndx
++)
7425 dtrace_probe_error(state
, ecb
->dte_epid
, ndx
,
7426 (mstate
.dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
7427 mstate
.dtms_fltoffs
: -1, DTRACE_FLAGS2FLT(*flags
),
7428 cpu_core
[cpuid
].cpuc_dtrace_illval
);
7434 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
7437 end
= dtrace_gethrtime();
7439 curthread
->t_dtrace_start
= end
;
7441 CPU
->cpu_dtrace_nsec
+= end
- now
;
7443 dtrace_interrupt_enable(cookie
);
7447 * DTrace Probe Hashing Functions
7449 * The functions in this section (and indeed, the functions in remaining
7450 * sections) are not _called_ from probe context. (Any exceptions to this are
7451 * marked with a "Note:".) Rather, they are called from elsewhere in the
7452 * DTrace framework to look-up probes in, add probes to and remove probes from
7453 * the DTrace probe hashes. (Each probe is hashed by each element of the
7454 * probe tuple -- allowing for fast lookups, regardless of what was
7458 dtrace_hash_str(char *p
)
7464 hval
= (hval
<< 4) + *p
++;
7465 if ((g
= (hval
& 0xf0000000)) != 0)
7472 static dtrace_hash_t
*
7473 dtrace_hash_create(uintptr_t stroffs
, uintptr_t nextoffs
, uintptr_t prevoffs
)
7475 dtrace_hash_t
*hash
= kmem_zalloc(sizeof (dtrace_hash_t
), KM_SLEEP
);
7477 hash
->dth_stroffs
= stroffs
;
7478 hash
->dth_nextoffs
= nextoffs
;
7479 hash
->dth_prevoffs
= prevoffs
;
7482 hash
->dth_mask
= hash
->dth_size
- 1;
7484 hash
->dth_tab
= kmem_zalloc(hash
->dth_size
*
7485 sizeof (dtrace_hashbucket_t
*), KM_SLEEP
);
7491 dtrace_hash_destroy(dtrace_hash_t
*hash
)
7496 for (i
= 0; i
< hash
->dth_size
; i
++)
7497 ASSERT(hash
->dth_tab
[i
] == NULL
);
7500 kmem_free(hash
->dth_tab
,
7501 hash
->dth_size
* sizeof (dtrace_hashbucket_t
*));
7502 kmem_free(hash
, sizeof (dtrace_hash_t
));
7506 dtrace_hash_resize(dtrace_hash_t
*hash
)
7508 int size
= hash
->dth_size
, i
, ndx
;
7509 int new_size
= hash
->dth_size
<< 1;
7510 int new_mask
= new_size
- 1;
7511 dtrace_hashbucket_t
**new_tab
, *bucket
, *next
;
7513 ASSERT((new_size
& new_mask
) == 0);
7515 new_tab
= kmem_zalloc(new_size
* sizeof (void *), KM_SLEEP
);
7517 for (i
= 0; i
< size
; i
++) {
7518 for (bucket
= hash
->dth_tab
[i
]; bucket
!= NULL
; bucket
= next
) {
7519 dtrace_probe_t
*probe
= bucket
->dthb_chain
;
7521 ASSERT(probe
!= NULL
);
7522 ndx
= DTRACE_HASHSTR(hash
, probe
) & new_mask
;
7524 next
= bucket
->dthb_next
;
7525 bucket
->dthb_next
= new_tab
[ndx
];
7526 new_tab
[ndx
] = bucket
;
7530 kmem_free(hash
->dth_tab
, hash
->dth_size
* sizeof (void *));
7531 hash
->dth_tab
= new_tab
;
7532 hash
->dth_size
= new_size
;
7533 hash
->dth_mask
= new_mask
;
7537 dtrace_hash_add(dtrace_hash_t
*hash
, dtrace_probe_t
*new)
7539 int hashval
= DTRACE_HASHSTR(hash
, new);
7540 int ndx
= hashval
& hash
->dth_mask
;
7541 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7542 dtrace_probe_t
**nextp
, **prevp
;
7544 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7545 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, new))
7549 if ((hash
->dth_nbuckets
>> 1) > hash
->dth_size
) {
7550 dtrace_hash_resize(hash
);
7551 dtrace_hash_add(hash
, new);
7555 bucket
= kmem_zalloc(sizeof (dtrace_hashbucket_t
), KM_SLEEP
);
7556 bucket
->dthb_next
= hash
->dth_tab
[ndx
];
7557 hash
->dth_tab
[ndx
] = bucket
;
7558 hash
->dth_nbuckets
++;
7561 nextp
= DTRACE_HASHNEXT(hash
, new);
7562 ASSERT(*nextp
== NULL
&& *(DTRACE_HASHPREV(hash
, new)) == NULL
);
7563 *nextp
= bucket
->dthb_chain
;
7565 if (bucket
->dthb_chain
!= NULL
) {
7566 prevp
= DTRACE_HASHPREV(hash
, bucket
->dthb_chain
);
7567 ASSERT(*prevp
== NULL
);
7571 bucket
->dthb_chain
= new;
7575 static dtrace_probe_t
*
7576 dtrace_hash_lookup(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7578 int hashval
= DTRACE_HASHSTR(hash
, template);
7579 int ndx
= hashval
& hash
->dth_mask
;
7580 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7582 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7583 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7584 return (bucket
->dthb_chain
);
7591 dtrace_hash_collisions(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7593 int hashval
= DTRACE_HASHSTR(hash
, template);
7594 int ndx
= hashval
& hash
->dth_mask
;
7595 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7597 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7598 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7599 return (bucket
->dthb_len
);
7606 dtrace_hash_remove(dtrace_hash_t
*hash
, dtrace_probe_t
*probe
)
7608 int ndx
= DTRACE_HASHSTR(hash
, probe
) & hash
->dth_mask
;
7609 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7611 dtrace_probe_t
**prevp
= DTRACE_HASHPREV(hash
, probe
);
7612 dtrace_probe_t
**nextp
= DTRACE_HASHNEXT(hash
, probe
);
7615 * Find the bucket that we're removing this probe from.
7617 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7618 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, probe
))
7622 ASSERT(bucket
!= NULL
);
7624 if (*prevp
== NULL
) {
7625 if (*nextp
== NULL
) {
7627 * The removed probe was the only probe on this
7628 * bucket; we need to remove the bucket.
7630 dtrace_hashbucket_t
*b
= hash
->dth_tab
[ndx
];
7632 ASSERT(bucket
->dthb_chain
== probe
);
7636 hash
->dth_tab
[ndx
] = bucket
->dthb_next
;
7638 while (b
->dthb_next
!= bucket
)
7640 b
->dthb_next
= bucket
->dthb_next
;
7643 ASSERT(hash
->dth_nbuckets
> 0);
7644 hash
->dth_nbuckets
--;
7645 kmem_free(bucket
, sizeof (dtrace_hashbucket_t
));
7649 bucket
->dthb_chain
= *nextp
;
7651 *(DTRACE_HASHNEXT(hash
, *prevp
)) = *nextp
;
7655 *(DTRACE_HASHPREV(hash
, *nextp
)) = *prevp
;
7659 * DTrace Utility Functions
7661 * These are random utility functions that are _not_ called from probe context.
7664 dtrace_badattr(const dtrace_attribute_t
*a
)
7666 return (a
->dtat_name
> DTRACE_STABILITY_MAX
||
7667 a
->dtat_data
> DTRACE_STABILITY_MAX
||
7668 a
->dtat_class
> DTRACE_CLASS_MAX
);
7672 * Return a duplicate copy of a string. If the specified string is NULL,
7673 * this function returns a zero-length string.
7676 dtrace_strdup(const char *str
)
7678 char *new = kmem_zalloc((str
!= NULL
? strlen(str
) : 0) + 1, KM_SLEEP
);
7681 (void) strcpy(new, str
);
7686 #define DTRACE_ISALPHA(c) \
7687 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7690 dtrace_badname(const char *s
)
7694 if (s
== NULL
|| (c
= *s
++) == '\0')
7697 if (!DTRACE_ISALPHA(c
) && c
!= '-' && c
!= '_' && c
!= '.')
7700 while ((c
= *s
++) != '\0') {
7701 if (!DTRACE_ISALPHA(c
) && (c
< '0' || c
> '9') &&
7702 c
!= '-' && c
!= '_' && c
!= '.' && c
!= '`')
7710 dtrace_cred2priv(cred_t
*cr
, uint32_t *privp
, uid_t
*uidp
, zoneid_t
*zoneidp
)
7714 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
7716 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7718 priv
= DTRACE_PRIV_ALL
;
7720 *uidp
= crgetuid(cr
);
7721 *zoneidp
= crgetzoneid(cr
);
7724 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
))
7725 priv
|= DTRACE_PRIV_KERNEL
| DTRACE_PRIV_USER
;
7726 else if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
))
7727 priv
|= DTRACE_PRIV_USER
;
7728 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
))
7729 priv
|= DTRACE_PRIV_PROC
;
7730 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
7731 priv
|= DTRACE_PRIV_OWNER
;
7732 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
7733 priv
|= DTRACE_PRIV_ZONEOWNER
;
7739 #ifdef DTRACE_ERRDEBUG
7741 dtrace_errdebug(const char *str
)
7743 int hval
= dtrace_hash_str((char *)str
) % DTRACE_ERRHASHSZ
;
7746 mutex_enter(&dtrace_errlock
);
7747 dtrace_errlast
= str
;
7748 dtrace_errthread
= curthread
;
7750 while (occupied
++ < DTRACE_ERRHASHSZ
) {
7751 if (dtrace_errhash
[hval
].dter_msg
== str
) {
7752 dtrace_errhash
[hval
].dter_count
++;
7756 if (dtrace_errhash
[hval
].dter_msg
!= NULL
) {
7757 hval
= (hval
+ 1) % DTRACE_ERRHASHSZ
;
7761 dtrace_errhash
[hval
].dter_msg
= str
;
7762 dtrace_errhash
[hval
].dter_count
= 1;
7766 panic("dtrace: undersized error hash");
7768 mutex_exit(&dtrace_errlock
);
7773 * DTrace Matching Functions
7775 * These functions are used to match groups of probes, given some elements of
7776 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7779 dtrace_match_priv(const dtrace_probe_t
*prp
, uint32_t priv
, uid_t uid
,
7782 if (priv
!= DTRACE_PRIV_ALL
) {
7783 uint32_t ppriv
= prp
->dtpr_provider
->dtpv_priv
.dtpp_flags
;
7784 uint32_t match
= priv
& ppriv
;
7787 * No PRIV_DTRACE_* privileges...
7789 if ((priv
& (DTRACE_PRIV_PROC
| DTRACE_PRIV_USER
|
7790 DTRACE_PRIV_KERNEL
)) == 0)
7794 * No matching bits, but there were bits to match...
7796 if (match
== 0 && ppriv
!= 0)
7800 * Need to have permissions to the process, but don't...
7802 if (((ppriv
& ~match
) & DTRACE_PRIV_OWNER
) != 0 &&
7803 uid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_uid
) {
7808 * Need to be in the same zone unless we possess the
7809 * privilege to examine all zones.
7811 if (((ppriv
& ~match
) & DTRACE_PRIV_ZONEOWNER
) != 0 &&
7812 zoneid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_zoneid
) {
7821 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7822 * consists of input pattern strings and an ops-vector to evaluate them.
7823 * This function returns >0 for match, 0 for no match, and <0 for error.
7826 dtrace_match_probe(const dtrace_probe_t
*prp
, const dtrace_probekey_t
*pkp
,
7827 uint32_t priv
, uid_t uid
, zoneid_t zoneid
)
7829 dtrace_provider_t
*pvp
= prp
->dtpr_provider
;
7832 if (pvp
->dtpv_defunct
)
7835 if ((rv
= pkp
->dtpk_pmatch(pvp
->dtpv_name
, pkp
->dtpk_prov
, 0)) <= 0)
7838 if ((rv
= pkp
->dtpk_mmatch(prp
->dtpr_mod
, pkp
->dtpk_mod
, 0)) <= 0)
7841 if ((rv
= pkp
->dtpk_fmatch(prp
->dtpr_func
, pkp
->dtpk_func
, 0)) <= 0)
7844 if ((rv
= pkp
->dtpk_nmatch(prp
->dtpr_name
, pkp
->dtpk_name
, 0)) <= 0)
7847 if (dtrace_match_priv(prp
, priv
, uid
, zoneid
) == 0)
7854 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7855 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7856 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7857 * In addition, all of the recursion cases except for '*' matching have been
7858 * unwound. For '*', we still implement recursive evaluation, but a depth
7859 * counter is maintained and matching is aborted if we recurse too deep.
7860 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7863 dtrace_match_glob(const char *s
, const char *p
, int depth
)
7869 if (depth
> DTRACE_PROBEKEY_MAXDEPTH
)
7873 s
= ""; /* treat NULL as empty string */
7882 if ((c
= *p
++) == '\0')
7883 return (s1
== '\0');
7887 int ok
= 0, notflag
= 0;
7898 if ((c
= *p
++) == '\0')
7902 if (c
== '-' && lc
!= '\0' && *p
!= ']') {
7903 if ((c
= *p
++) == '\0')
7905 if (c
== '\\' && (c
= *p
++) == '\0')
7909 if (s1
< lc
|| s1
> c
)
7913 } else if (lc
<= s1
&& s1
<= c
)
7916 } else if (c
== '\\' && (c
= *p
++) == '\0')
7919 lc
= c
; /* save left-hand 'c' for next iteration */
7929 if ((c
= *p
++) == '\0')
7941 if ((c
= *p
++) == '\0')
7957 p
++; /* consecutive *'s are identical to a single one */
7962 for (s
= olds
; *s
!= '\0'; s
++) {
7963 if ((gs
= dtrace_match_glob(s
, p
, depth
+ 1)) != 0)
7973 dtrace_match_string(const char *s
, const char *p
, int depth
)
7975 return (s
!= NULL
&& strcmp(s
, p
) == 0);
7980 dtrace_match_nul(const char *s
, const char *p
, int depth
)
7982 return (1); /* always match the empty pattern */
7987 dtrace_match_nonzero(const char *s
, const char *p
, int depth
)
7989 return (s
!= NULL
&& s
[0] != '\0');
7993 dtrace_match(const dtrace_probekey_t
*pkp
, uint32_t priv
, uid_t uid
,
7994 zoneid_t zoneid
, int (*matched
)(dtrace_probe_t
*, void *), void *arg
)
7996 dtrace_probe_t
template, *probe
;
7997 dtrace_hash_t
*hash
= NULL
;
7998 int len
, rc
, best
= INT_MAX
, nmatched
= 0;
8001 ASSERT(MUTEX_HELD(&dtrace_lock
));
8004 * If the probe ID is specified in the key, just lookup by ID and
8005 * invoke the match callback once if a matching probe is found.
8007 if (pkp
->dtpk_id
!= DTRACE_IDNONE
) {
8008 if ((probe
= dtrace_probe_lookup_id(pkp
->dtpk_id
)) != NULL
&&
8009 dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) > 0) {
8010 if ((*matched
)(probe
, arg
) == DTRACE_MATCH_FAIL
)
8011 return (DTRACE_MATCH_FAIL
);
8017 template.dtpr_mod
= (char *)pkp
->dtpk_mod
;
8018 template.dtpr_func
= (char *)pkp
->dtpk_func
;
8019 template.dtpr_name
= (char *)pkp
->dtpk_name
;
8022 * We want to find the most distinct of the module name, function
8023 * name, and name. So for each one that is not a glob pattern or
8024 * empty string, we perform a lookup in the corresponding hash and
8025 * use the hash table with the fewest collisions to do our search.
8027 if (pkp
->dtpk_mmatch
== &dtrace_match_string
&&
8028 (len
= dtrace_hash_collisions(dtrace_bymod
, &template)) < best
) {
8030 hash
= dtrace_bymod
;
8033 if (pkp
->dtpk_fmatch
== &dtrace_match_string
&&
8034 (len
= dtrace_hash_collisions(dtrace_byfunc
, &template)) < best
) {
8036 hash
= dtrace_byfunc
;
8039 if (pkp
->dtpk_nmatch
== &dtrace_match_string
&&
8040 (len
= dtrace_hash_collisions(dtrace_byname
, &template)) < best
) {
8042 hash
= dtrace_byname
;
8046 * If we did not select a hash table, iterate over every probe and
8047 * invoke our callback for each one that matches our input probe key.
8050 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8051 if ((probe
= dtrace_probes
[i
]) == NULL
||
8052 dtrace_match_probe(probe
, pkp
, priv
, uid
,
8058 if ((rc
= (*matched
)(probe
, arg
)) !=
8059 DTRACE_MATCH_NEXT
) {
8060 if (rc
== DTRACE_MATCH_FAIL
)
8061 return (DTRACE_MATCH_FAIL
);
8070 * If we selected a hash table, iterate over each probe of the same key
8071 * name and invoke the callback for every probe that matches the other
8072 * attributes of our input probe key.
8074 for (probe
= dtrace_hash_lookup(hash
, &template); probe
!= NULL
;
8075 probe
= *(DTRACE_HASHNEXT(hash
, probe
))) {
8077 if (dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) <= 0)
8082 if ((rc
= (*matched
)(probe
, arg
)) != DTRACE_MATCH_NEXT
) {
8083 if (rc
== DTRACE_MATCH_FAIL
)
8084 return (DTRACE_MATCH_FAIL
);
8093 * Return the function pointer dtrace_probecmp() should use to compare the
8094 * specified pattern with a string. For NULL or empty patterns, we select
8095 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8096 * For non-empty non-glob strings, we use dtrace_match_string().
8098 static dtrace_probekey_f
*
8099 dtrace_probekey_func(const char *p
)
8103 if (p
== NULL
|| *p
== '\0')
8104 return (&dtrace_match_nul
);
8106 while ((c
= *p
++) != '\0') {
8107 if (c
== '[' || c
== '?' || c
== '*' || c
== '\\')
8108 return (&dtrace_match_glob
);
8111 return (&dtrace_match_string
);
8115 * Build a probe comparison key for use with dtrace_match_probe() from the
8116 * given probe description. By convention, a null key only matches anchored
8117 * probes: if each field is the empty string, reset dtpk_fmatch to
8118 * dtrace_match_nonzero().
8121 dtrace_probekey(const dtrace_probedesc_t
*pdp
, dtrace_probekey_t
*pkp
)
8123 pkp
->dtpk_prov
= pdp
->dtpd_provider
;
8124 pkp
->dtpk_pmatch
= dtrace_probekey_func(pdp
->dtpd_provider
);
8126 pkp
->dtpk_mod
= pdp
->dtpd_mod
;
8127 pkp
->dtpk_mmatch
= dtrace_probekey_func(pdp
->dtpd_mod
);
8129 pkp
->dtpk_func
= pdp
->dtpd_func
;
8130 pkp
->dtpk_fmatch
= dtrace_probekey_func(pdp
->dtpd_func
);
8132 pkp
->dtpk_name
= pdp
->dtpd_name
;
8133 pkp
->dtpk_nmatch
= dtrace_probekey_func(pdp
->dtpd_name
);
8135 pkp
->dtpk_id
= pdp
->dtpd_id
;
8137 if (pkp
->dtpk_id
== DTRACE_IDNONE
&&
8138 pkp
->dtpk_pmatch
== &dtrace_match_nul
&&
8139 pkp
->dtpk_mmatch
== &dtrace_match_nul
&&
8140 pkp
->dtpk_fmatch
== &dtrace_match_nul
&&
8141 pkp
->dtpk_nmatch
== &dtrace_match_nul
)
8142 pkp
->dtpk_fmatch
= &dtrace_match_nonzero
;
8146 * DTrace Provider-to-Framework API Functions
8148 * These functions implement much of the Provider-to-Framework API, as
8149 * described in <sys/dtrace.h>. The parts of the API not in this section are
8150 * the functions in the API for probe management (found below), and
8151 * dtrace_probe() itself (found above).
8155 * Register the calling provider with the DTrace framework. This should
8156 * generally be called by DTrace providers in their attach(9E) entry point.
8159 dtrace_register(const char *name
, const dtrace_pattr_t
*pap
, uint32_t priv
,
8160 cred_t
*cr
, const dtrace_pops_t
*pops
, void *arg
, dtrace_provider_id_t
*idp
)
8162 dtrace_provider_t
*provider
;
8164 if (name
== NULL
|| pap
== NULL
|| pops
== NULL
|| idp
== NULL
) {
8165 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8166 "arguments", name
? name
: "<NULL>");
8170 if (name
[0] == '\0' || dtrace_badname(name
)) {
8171 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8172 "provider name", name
);
8176 if ((pops
->dtps_provide
== NULL
&& pops
->dtps_provide_module
== NULL
) ||
8177 pops
->dtps_enable
== NULL
|| pops
->dtps_disable
== NULL
||
8178 pops
->dtps_destroy
== NULL
||
8179 ((pops
->dtps_resume
== NULL
) != (pops
->dtps_suspend
== NULL
))) {
8180 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8181 "provider ops", name
);
8185 if (dtrace_badattr(&pap
->dtpa_provider
) ||
8186 dtrace_badattr(&pap
->dtpa_mod
) ||
8187 dtrace_badattr(&pap
->dtpa_func
) ||
8188 dtrace_badattr(&pap
->dtpa_name
) ||
8189 dtrace_badattr(&pap
->dtpa_args
)) {
8190 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8191 "provider attributes", name
);
8195 if (priv
& ~DTRACE_PRIV_ALL
) {
8196 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8197 "privilege attributes", name
);
8201 if ((priv
& DTRACE_PRIV_KERNEL
) &&
8202 (priv
& (DTRACE_PRIV_USER
| DTRACE_PRIV_OWNER
)) &&
8203 pops
->dtps_mode
== NULL
) {
8204 cmn_err(CE_WARN
, "failed to register provider '%s': need "
8205 "dtps_mode() op for given privilege attributes", name
);
8209 provider
= kmem_zalloc(sizeof (dtrace_provider_t
), KM_SLEEP
);
8210 provider
->dtpv_name
= kmem_alloc(strlen(name
) + 1, KM_SLEEP
);
8211 (void) strcpy(provider
->dtpv_name
, name
);
8213 provider
->dtpv_attr
= *pap
;
8214 provider
->dtpv_priv
.dtpp_flags
= priv
;
8216 provider
->dtpv_priv
.dtpp_uid
= crgetuid(cr
);
8217 provider
->dtpv_priv
.dtpp_zoneid
= crgetzoneid(cr
);
8219 provider
->dtpv_pops
= *pops
;
8221 if (pops
->dtps_provide
== NULL
) {
8222 ASSERT(pops
->dtps_provide_module
!= NULL
);
8223 provider
->dtpv_pops
.dtps_provide
=
8224 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
;
8227 if (pops
->dtps_provide_module
== NULL
) {
8228 ASSERT(pops
->dtps_provide
!= NULL
);
8229 provider
->dtpv_pops
.dtps_provide_module
=
8230 (void (*)(void *, struct modctl
*))dtrace_nullop
;
8233 if (pops
->dtps_suspend
== NULL
) {
8234 ASSERT(pops
->dtps_resume
== NULL
);
8235 provider
->dtpv_pops
.dtps_suspend
=
8236 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
8237 provider
->dtpv_pops
.dtps_resume
=
8238 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
8241 provider
->dtpv_arg
= arg
;
8242 *idp
= (dtrace_provider_id_t
)provider
;
8244 if (pops
== &dtrace_provider_ops
) {
8245 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8246 ASSERT(MUTEX_HELD(&dtrace_lock
));
8247 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
8250 * We make sure that the DTrace provider is at the head of
8251 * the provider chain.
8253 provider
->dtpv_next
= dtrace_provider
;
8254 dtrace_provider
= provider
;
8258 mutex_enter(&dtrace_provider_lock
);
8259 mutex_enter(&dtrace_lock
);
8262 * If there is at least one provider registered, we'll add this
8263 * provider after the first provider.
8265 if (dtrace_provider
!= NULL
) {
8266 provider
->dtpv_next
= dtrace_provider
->dtpv_next
;
8267 dtrace_provider
->dtpv_next
= provider
;
8269 dtrace_provider
= provider
;
8272 if (dtrace_retained
!= NULL
) {
8273 dtrace_enabling_provide(provider
);
8276 * Now we need to call dtrace_enabling_matchall() -- which
8277 * will acquire cpu_lock and dtrace_lock. We therefore need
8278 * to drop all of our locks before calling into it...
8280 mutex_exit(&dtrace_lock
);
8281 mutex_exit(&dtrace_provider_lock
);
8282 dtrace_enabling_matchall();
8287 mutex_exit(&dtrace_lock
);
8288 mutex_exit(&dtrace_provider_lock
);
8294 * Unregister the specified provider from the DTrace framework. This should
8295 * generally be called by DTrace providers in their detach(9E) entry point.
8298 dtrace_unregister(dtrace_provider_id_t id
)
8300 dtrace_provider_t
*old
= (dtrace_provider_t
*)id
;
8301 dtrace_provider_t
*prev
= NULL
;
8302 int i
, self
= 0, noreap
= 0;
8303 dtrace_probe_t
*probe
, *first
= NULL
;
8305 if (old
->dtpv_pops
.dtps_enable
==
8306 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
) {
8308 * If DTrace itself is the provider, we're called with locks
8311 ASSERT(old
== dtrace_provider
);
8312 ASSERT(dtrace_devi
!= NULL
);
8313 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8314 ASSERT(MUTEX_HELD(&dtrace_lock
));
8317 if (dtrace_provider
->dtpv_next
!= NULL
) {
8319 * There's another provider here; return failure.
8324 mutex_enter(&dtrace_provider_lock
);
8325 mutex_enter(&mod_lock
);
8326 mutex_enter(&dtrace_lock
);
8330 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8331 * probes, we refuse to let providers slither away, unless this
8332 * provider has already been explicitly invalidated.
8334 if (!old
->dtpv_defunct
&&
8335 (dtrace_opens
|| (dtrace_anon
.dta_state
!= NULL
&&
8336 dtrace_anon
.dta_state
->dts_necbs
> 0))) {
8338 mutex_exit(&dtrace_lock
);
8339 mutex_exit(&mod_lock
);
8340 mutex_exit(&dtrace_provider_lock
);
8346 * Attempt to destroy the probes associated with this provider.
8348 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8349 if ((probe
= dtrace_probes
[i
]) == NULL
)
8352 if (probe
->dtpr_provider
!= old
)
8355 if (probe
->dtpr_ecb
== NULL
)
8359 * If we are trying to unregister a defunct provider, and the
8360 * provider was made defunct within the interval dictated by
8361 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8362 * attempt to reap our enablings. To denote that the provider
8363 * should reattempt to unregister itself at some point in the
8364 * future, we will return a differentiable error code (EAGAIN
8365 * instead of EBUSY) in this case.
8367 if (dtrace_gethrtime() - old
->dtpv_defunct
>
8368 dtrace_unregister_defunct_reap
)
8372 mutex_exit(&dtrace_lock
);
8373 mutex_exit(&mod_lock
);
8374 mutex_exit(&dtrace_provider_lock
);
8380 (void) taskq_dispatch(dtrace_taskq
,
8381 (task_func_t
*)dtrace_enabling_reap
, NULL
, TQ_SLEEP
);
8387 * All of the probes for this provider are disabled; we can safely
8388 * remove all of them from their hash chains and from the probe array.
8390 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8391 if ((probe
= dtrace_probes
[i
]) == NULL
)
8394 if (probe
->dtpr_provider
!= old
)
8397 dtrace_probes
[i
] = NULL
;
8399 dtrace_hash_remove(dtrace_bymod
, probe
);
8400 dtrace_hash_remove(dtrace_byfunc
, probe
);
8401 dtrace_hash_remove(dtrace_byname
, probe
);
8403 if (first
== NULL
) {
8405 probe
->dtpr_nextmod
= NULL
;
8407 probe
->dtpr_nextmod
= first
;
8413 * The provider's probes have been removed from the hash chains and
8414 * from the probe array. Now issue a dtrace_sync() to be sure that
8415 * everyone has cleared out from any probe array processing.
8419 for (probe
= first
; probe
!= NULL
; probe
= first
) {
8420 first
= probe
->dtpr_nextmod
;
8422 old
->dtpv_pops
.dtps_destroy(old
->dtpv_arg
, probe
->dtpr_id
,
8424 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8425 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8426 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8427 vmem_free(dtrace_arena
, (void *)(uintptr_t)(probe
->dtpr_id
), 1);
8428 kmem_free(probe
, sizeof (dtrace_probe_t
));
8431 if ((prev
= dtrace_provider
) == old
) {
8432 ASSERT(self
|| dtrace_devi
== NULL
);
8433 ASSERT(old
->dtpv_next
== NULL
|| dtrace_devi
== NULL
);
8434 dtrace_provider
= old
->dtpv_next
;
8436 while (prev
!= NULL
&& prev
->dtpv_next
!= old
)
8437 prev
= prev
->dtpv_next
;
8440 panic("attempt to unregister non-existent "
8441 "dtrace provider %p\n", (void *)id
);
8444 prev
->dtpv_next
= old
->dtpv_next
;
8448 mutex_exit(&dtrace_lock
);
8449 mutex_exit(&mod_lock
);
8450 mutex_exit(&dtrace_provider_lock
);
8453 kmem_free(old
->dtpv_name
, strlen(old
->dtpv_name
) + 1);
8454 kmem_free(old
, sizeof (dtrace_provider_t
));
8460 * Invalidate the specified provider. All subsequent probe lookups for the
8461 * specified provider will fail, but its probes will not be removed.
8464 dtrace_invalidate(dtrace_provider_id_t id
)
8466 dtrace_provider_t
*pvp
= (dtrace_provider_t
*)id
;
8468 ASSERT(pvp
->dtpv_pops
.dtps_enable
!=
8469 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8471 mutex_enter(&dtrace_provider_lock
);
8472 mutex_enter(&dtrace_lock
);
8474 pvp
->dtpv_defunct
= dtrace_gethrtime();
8476 mutex_exit(&dtrace_lock
);
8477 mutex_exit(&dtrace_provider_lock
);
8481 * Indicate whether or not DTrace has attached.
8484 dtrace_attached(void)
8487 * dtrace_provider will be non-NULL iff the DTrace driver has
8488 * attached. (It's non-NULL because DTrace is always itself a
8491 return (dtrace_provider
!= NULL
);
8495 * Remove all the unenabled probes for the given provider. This function is
8496 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8497 * -- just as many of its associated probes as it can.
8500 dtrace_condense(dtrace_provider_id_t id
)
8502 dtrace_provider_t
*prov
= (dtrace_provider_t
*)id
;
8504 dtrace_probe_t
*probe
;
8507 * Make sure this isn't the dtrace provider itself.
8509 ASSERT(prov
->dtpv_pops
.dtps_enable
!=
8510 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8512 mutex_enter(&dtrace_provider_lock
);
8513 mutex_enter(&dtrace_lock
);
8516 * Attempt to destroy the probes associated with this provider.
8518 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8519 if ((probe
= dtrace_probes
[i
]) == NULL
)
8522 if (probe
->dtpr_provider
!= prov
)
8525 if (probe
->dtpr_ecb
!= NULL
)
8528 dtrace_probes
[i
] = NULL
;
8530 dtrace_hash_remove(dtrace_bymod
, probe
);
8531 dtrace_hash_remove(dtrace_byfunc
, probe
);
8532 dtrace_hash_remove(dtrace_byname
, probe
);
8534 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, i
+ 1,
8536 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8537 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8538 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8539 kmem_free(probe
, sizeof (dtrace_probe_t
));
8540 vmem_free(dtrace_arena
, (void *)((uintptr_t)i
+ 1), 1);
8543 mutex_exit(&dtrace_lock
);
8544 mutex_exit(&dtrace_provider_lock
);
8550 * DTrace Probe Management Functions
8552 * The functions in this section perform the DTrace probe management,
8553 * including functions to create probes, look-up probes, and call into the
8554 * providers to request that probes be provided. Some of these functions are
8555 * in the Provider-to-Framework API; these functions can be identified by the
8556 * fact that they are not declared "static".
8560 * Create a probe with the specified module name, function name, and name.
8563 dtrace_probe_create(dtrace_provider_id_t prov
, const char *mod
,
8564 const char *func
, const char *name
, int aframes
, void *arg
)
8566 dtrace_probe_t
*probe
, **probes
;
8567 dtrace_provider_t
*provider
= (dtrace_provider_t
*)prov
;
8570 if (provider
== dtrace_provider
) {
8571 ASSERT(MUTEX_HELD(&dtrace_lock
));
8573 mutex_enter(&dtrace_lock
);
8576 id
= (dtrace_id_t
)(uintptr_t)vmem_alloc(dtrace_arena
, 1,
8577 VM_BESTFIT
| VM_SLEEP
);
8578 probe
= kmem_zalloc(sizeof (dtrace_probe_t
), KM_SLEEP
);
8580 probe
->dtpr_id
= id
;
8581 probe
->dtpr_gen
= dtrace_probegen
++;
8582 probe
->dtpr_mod
= dtrace_strdup(mod
);
8583 probe
->dtpr_func
= dtrace_strdup(func
);
8584 probe
->dtpr_name
= dtrace_strdup(name
);
8585 probe
->dtpr_arg
= arg
;
8586 probe
->dtpr_aframes
= aframes
;
8587 probe
->dtpr_provider
= provider
;
8589 dtrace_hash_add(dtrace_bymod
, probe
);
8590 dtrace_hash_add(dtrace_byfunc
, probe
);
8591 dtrace_hash_add(dtrace_byname
, probe
);
8593 if (id
- 1 >= dtrace_nprobes
) {
8594 size_t osize
= dtrace_nprobes
* sizeof (dtrace_probe_t
*);
8595 size_t nsize
= osize
<< 1;
8599 ASSERT(dtrace_probes
== NULL
);
8600 nsize
= sizeof (dtrace_probe_t
*);
8603 probes
= kmem_zalloc(nsize
, KM_SLEEP
);
8605 if (dtrace_probes
== NULL
) {
8607 dtrace_probes
= probes
;
8610 dtrace_probe_t
**oprobes
= dtrace_probes
;
8612 bcopy(oprobes
, probes
, osize
);
8613 dtrace_membar_producer();
8614 dtrace_probes
= probes
;
8619 * All CPUs are now seeing the new probes array; we can
8620 * safely free the old array.
8622 kmem_free(oprobes
, osize
);
8623 dtrace_nprobes
<<= 1;
8626 ASSERT(id
- 1 < dtrace_nprobes
);
8629 ASSERT(dtrace_probes
[id
- 1] == NULL
);
8630 dtrace_probes
[id
- 1] = probe
;
8632 if (provider
!= dtrace_provider
)
8633 mutex_exit(&dtrace_lock
);
8638 static dtrace_probe_t
*
8639 dtrace_probe_lookup_id(dtrace_id_t id
)
8641 ASSERT(MUTEX_HELD(&dtrace_lock
));
8643 if (id
== 0 || id
> dtrace_nprobes
)
8646 return (dtrace_probes
[id
- 1]);
8650 dtrace_probe_lookup_match(dtrace_probe_t
*probe
, void *arg
)
8652 *((dtrace_id_t
*)arg
) = probe
->dtpr_id
;
8654 return (DTRACE_MATCH_DONE
);
8658 * Look up a probe based on provider and one or more of module name, function
8659 * name and probe name.
8662 dtrace_probe_lookup(dtrace_provider_id_t prid
, const char *mod
,
8663 const char *func
, const char *name
)
8665 dtrace_probekey_t pkey
;
8669 pkey
.dtpk_prov
= ((dtrace_provider_t
*)prid
)->dtpv_name
;
8670 pkey
.dtpk_pmatch
= &dtrace_match_string
;
8671 pkey
.dtpk_mod
= mod
;
8672 pkey
.dtpk_mmatch
= mod
? &dtrace_match_string
: &dtrace_match_nul
;
8673 pkey
.dtpk_func
= func
;
8674 pkey
.dtpk_fmatch
= func
? &dtrace_match_string
: &dtrace_match_nul
;
8675 pkey
.dtpk_name
= name
;
8676 pkey
.dtpk_nmatch
= name
? &dtrace_match_string
: &dtrace_match_nul
;
8677 pkey
.dtpk_id
= DTRACE_IDNONE
;
8679 mutex_enter(&dtrace_lock
);
8680 match
= dtrace_match(&pkey
, DTRACE_PRIV_ALL
, 0, 0,
8681 dtrace_probe_lookup_match
, &id
);
8682 mutex_exit(&dtrace_lock
);
8684 ASSERT(match
== 1 || match
== 0);
8685 return (match
? id
: 0);
8689 * Returns the probe argument associated with the specified probe.
8692 dtrace_probe_arg(dtrace_provider_id_t id
, dtrace_id_t pid
)
8694 dtrace_probe_t
*probe
;
8697 mutex_enter(&dtrace_lock
);
8699 if ((probe
= dtrace_probe_lookup_id(pid
)) != NULL
&&
8700 probe
->dtpr_provider
== (dtrace_provider_t
*)id
)
8701 rval
= probe
->dtpr_arg
;
8703 mutex_exit(&dtrace_lock
);
8709 * Copy a probe into a probe description.
8712 dtrace_probe_description(const dtrace_probe_t
*prp
, dtrace_probedesc_t
*pdp
)
8714 bzero(pdp
, sizeof (dtrace_probedesc_t
));
8715 pdp
->dtpd_id
= prp
->dtpr_id
;
8717 (void) strncpy(pdp
->dtpd_provider
,
8718 prp
->dtpr_provider
->dtpv_name
, DTRACE_PROVNAMELEN
- 1);
8720 (void) strncpy(pdp
->dtpd_mod
, prp
->dtpr_mod
, DTRACE_MODNAMELEN
- 1);
8721 (void) strncpy(pdp
->dtpd_func
, prp
->dtpr_func
, DTRACE_FUNCNAMELEN
- 1);
8722 (void) strncpy(pdp
->dtpd_name
, prp
->dtpr_name
, DTRACE_NAMELEN
- 1);
8726 * Called to indicate that a probe -- or probes -- should be provided by a
8727 * specfied provider. If the specified description is NULL, the provider will
8728 * be told to provide all of its probes. (This is done whenever a new
8729 * consumer comes along, or whenever a retained enabling is to be matched.) If
8730 * the specified description is non-NULL, the provider is given the
8731 * opportunity to dynamically provide the specified probe, allowing providers
8732 * to support the creation of probes on-the-fly. (So-called _autocreated_
8733 * probes.) If the provider is NULL, the operations will be applied to all
8734 * providers; if the provider is non-NULL the operations will only be applied
8735 * to the specified provider. The dtrace_provider_lock must be held, and the
8736 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8737 * will need to grab the dtrace_lock when it reenters the framework through
8738 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8741 dtrace_probe_provide(dtrace_probedesc_t
*desc
, dtrace_provider_t
*prv
)
8746 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8750 prv
= dtrace_provider
;
8755 * First, call the blanket provide operation.
8757 prv
->dtpv_pops
.dtps_provide(prv
->dtpv_arg
, desc
);
8760 * Now call the per-module provide operation. We will grab
8761 * mod_lock to prevent the list from being modified. Note
8762 * that this also prevents the mod_busy bits from changing.
8763 * (mod_busy can only be changed with mod_lock held.)
8765 mutex_enter(&mod_lock
);
8769 if (ctl
->mod_busy
|| ctl
->mod_mp
== NULL
)
8772 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
8774 } while ((ctl
= ctl
->mod_next
) != &modules
);
8776 mutex_exit(&mod_lock
);
8777 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
8781 * Iterate over each probe, and call the Framework-to-Provider API function
8785 dtrace_probe_foreach(uintptr_t offs
)
8787 dtrace_provider_t
*prov
;
8788 void (*func
)(void *, dtrace_id_t
, void *);
8789 dtrace_probe_t
*probe
;
8790 dtrace_icookie_t cookie
;
8794 * We disable interrupts to walk through the probe array. This is
8795 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8796 * won't see stale data.
8798 cookie
= dtrace_interrupt_disable();
8800 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8801 if ((probe
= dtrace_probes
[i
]) == NULL
)
8804 if (probe
->dtpr_ecb
== NULL
) {
8806 * This probe isn't enabled -- don't call the function.
8811 prov
= probe
->dtpr_provider
;
8812 func
= *((void(**)(void *, dtrace_id_t
, void *))
8813 ((uintptr_t)&prov
->dtpv_pops
+ offs
));
8815 func(prov
->dtpv_arg
, i
+ 1, probe
->dtpr_arg
);
8818 dtrace_interrupt_enable(cookie
);
8822 dtrace_probe_enable(const dtrace_probedesc_t
*desc
, dtrace_enabling_t
*enab
)
8824 dtrace_probekey_t pkey
;
8829 ASSERT(MUTEX_HELD(&dtrace_lock
));
8830 dtrace_ecb_create_cache
= NULL
;
8834 * If we're passed a NULL description, we're being asked to
8835 * create an ECB with a NULL probe.
8837 (void) dtrace_ecb_create_enable(NULL
, enab
);
8841 dtrace_probekey(desc
, &pkey
);
8842 dtrace_cred2priv(enab
->dten_vstate
->dtvs_state
->dts_cred
.dcr_cred
,
8843 &priv
, &uid
, &zoneid
);
8845 return (dtrace_match(&pkey
, priv
, uid
, zoneid
, dtrace_ecb_create_enable
,
8850 * DTrace Helper Provider Functions
8853 dtrace_dofattr2attr(dtrace_attribute_t
*attr
, const dof_attr_t dofattr
)
8855 attr
->dtat_name
= DOF_ATTR_NAME(dofattr
);
8856 attr
->dtat_data
= DOF_ATTR_DATA(dofattr
);
8857 attr
->dtat_class
= DOF_ATTR_CLASS(dofattr
);
8861 dtrace_dofprov2hprov(dtrace_helper_provdesc_t
*hprov
,
8862 const dof_provider_t
*dofprov
, char *strtab
)
8864 hprov
->dthpv_provname
= strtab
+ dofprov
->dofpv_name
;
8865 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_provider
,
8866 dofprov
->dofpv_provattr
);
8867 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_mod
,
8868 dofprov
->dofpv_modattr
);
8869 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_func
,
8870 dofprov
->dofpv_funcattr
);
8871 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_name
,
8872 dofprov
->dofpv_nameattr
);
8873 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_args
,
8874 dofprov
->dofpv_argsattr
);
8878 dtrace_helper_provide_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
8880 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8881 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8882 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
8883 dof_provider_t
*provider
;
8885 uint32_t *off
, *enoff
;
8889 dtrace_helper_provdesc_t dhpv
;
8890 dtrace_helper_probedesc_t dhpb
;
8891 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8892 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8895 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8896 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8897 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8898 prb_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8899 provider
->dofpv_probes
* dof
->dofh_secsize
);
8900 arg_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8901 provider
->dofpv_prargs
* dof
->dofh_secsize
);
8902 off_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8903 provider
->dofpv_proffs
* dof
->dofh_secsize
);
8905 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8906 off
= (uint32_t *)(uintptr_t)(daddr
+ off_sec
->dofs_offset
);
8907 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
8911 * See dtrace_helper_provider_validate().
8913 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
8914 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
) {
8915 enoff_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8916 provider
->dofpv_prenoffs
* dof
->dofh_secsize
);
8917 enoff
= (uint32_t *)(uintptr_t)(daddr
+ enoff_sec
->dofs_offset
);
8920 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
8923 * Create the provider.
8925 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8927 if ((parg
= mops
->dtms_provide_pid(meta
->dtm_arg
, &dhpv
, pid
)) == NULL
)
8933 * Create the probes.
8935 for (i
= 0; i
< nprobes
; i
++) {
8936 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
8937 prb_sec
->dofs_offset
+ i
* prb_sec
->dofs_entsize
);
8939 dhpb
.dthpb_mod
= dhp
->dofhp_mod
;
8940 dhpb
.dthpb_func
= strtab
+ probe
->dofpr_func
;
8941 dhpb
.dthpb_name
= strtab
+ probe
->dofpr_name
;
8942 dhpb
.dthpb_base
= probe
->dofpr_addr
;
8943 dhpb
.dthpb_offs
= off
+ probe
->dofpr_offidx
;
8944 dhpb
.dthpb_noffs
= probe
->dofpr_noffs
;
8945 if (enoff
!= NULL
) {
8946 dhpb
.dthpb_enoffs
= enoff
+ probe
->dofpr_enoffidx
;
8947 dhpb
.dthpb_nenoffs
= probe
->dofpr_nenoffs
;
8949 dhpb
.dthpb_enoffs
= NULL
;
8950 dhpb
.dthpb_nenoffs
= 0;
8952 dhpb
.dthpb_args
= arg
+ probe
->dofpr_argidx
;
8953 dhpb
.dthpb_nargc
= probe
->dofpr_nargc
;
8954 dhpb
.dthpb_xargc
= probe
->dofpr_xargc
;
8955 dhpb
.dthpb_ntypes
= strtab
+ probe
->dofpr_nargv
;
8956 dhpb
.dthpb_xtypes
= strtab
+ probe
->dofpr_xargv
;
8958 mops
->dtms_create_probe(meta
->dtm_arg
, parg
, &dhpb
);
8963 dtrace_helper_provide(dof_helper_t
*dhp
, pid_t pid
)
8965 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8966 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8969 ASSERT(MUTEX_HELD(&dtrace_meta_lock
));
8971 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8972 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8973 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8975 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8978 dtrace_helper_provide_one(dhp
, sec
, pid
);
8982 * We may have just created probes, so we must now rematch against
8983 * any retained enablings. Note that this call will acquire both
8984 * cpu_lock and dtrace_lock; the fact that we are holding
8985 * dtrace_meta_lock now is what defines the ordering with respect to
8986 * these three locks.
8988 dtrace_enabling_matchall();
8992 dtrace_helper_provider_remove_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
8994 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8995 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8997 dof_provider_t
*provider
;
8999 dtrace_helper_provdesc_t dhpv
;
9000 dtrace_meta_t
*meta
= dtrace_meta_pid
;
9001 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
9003 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
9004 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
9005 provider
->dofpv_strtab
* dof
->dofh_secsize
);
9007 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
9010 * Create the provider.
9012 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
9014 mops
->dtms_remove_pid(meta
->dtm_arg
, &dhpv
, pid
);
9020 dtrace_helper_provider_remove(dof_helper_t
*dhp
, pid_t pid
)
9022 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
9023 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
9026 ASSERT(MUTEX_HELD(&dtrace_meta_lock
));
9028 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
9029 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
9030 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
9032 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
9035 dtrace_helper_provider_remove_one(dhp
, sec
, pid
);
9040 * DTrace Meta Provider-to-Framework API Functions
9042 * These functions implement the Meta Provider-to-Framework API, as described
9043 * in <sys/dtrace.h>.
9046 dtrace_meta_register(const char *name
, const dtrace_mops_t
*mops
, void *arg
,
9047 dtrace_meta_provider_id_t
*idp
)
9049 dtrace_meta_t
*meta
;
9050 dtrace_helpers_t
*help
, *next
;
9053 *idp
= DTRACE_METAPROVNONE
;
9056 * We strictly don't need the name, but we hold onto it for
9057 * debuggability. All hail error queues!
9060 cmn_err(CE_WARN
, "failed to register meta-provider: "
9066 mops
->dtms_create_probe
== NULL
||
9067 mops
->dtms_provide_pid
== NULL
||
9068 mops
->dtms_remove_pid
== NULL
) {
9069 cmn_err(CE_WARN
, "failed to register meta-register %s: "
9070 "invalid ops", name
);
9074 meta
= kmem_zalloc(sizeof (dtrace_meta_t
), KM_SLEEP
);
9075 meta
->dtm_mops
= *mops
;
9076 meta
->dtm_name
= kmem_alloc(strlen(name
) + 1, KM_SLEEP
);
9077 (void) strcpy(meta
->dtm_name
, name
);
9078 meta
->dtm_arg
= arg
;
9080 mutex_enter(&dtrace_meta_lock
);
9081 mutex_enter(&dtrace_lock
);
9083 if (dtrace_meta_pid
!= NULL
) {
9084 mutex_exit(&dtrace_lock
);
9085 mutex_exit(&dtrace_meta_lock
);
9086 cmn_err(CE_WARN
, "failed to register meta-register %s: "
9087 "user-land meta-provider exists", name
);
9088 kmem_free(meta
->dtm_name
, strlen(meta
->dtm_name
) + 1);
9089 kmem_free(meta
, sizeof (dtrace_meta_t
));
9093 dtrace_meta_pid
= meta
;
9094 *idp
= (dtrace_meta_provider_id_t
)meta
;
9097 * If there are providers and probes ready to go, pass them
9098 * off to the new meta provider now.
9101 help
= dtrace_deferred_pid
;
9102 dtrace_deferred_pid
= NULL
;
9104 mutex_exit(&dtrace_lock
);
9106 while (help
!= NULL
) {
9107 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
9108 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
9112 next
= help
->dthps_next
;
9113 help
->dthps_next
= NULL
;
9114 help
->dthps_prev
= NULL
;
9115 help
->dthps_deferred
= 0;
9119 mutex_exit(&dtrace_meta_lock
);
9125 dtrace_meta_unregister(dtrace_meta_provider_id_t id
)
9127 dtrace_meta_t
**pp
, *old
= (dtrace_meta_t
*)id
;
9129 mutex_enter(&dtrace_meta_lock
);
9130 mutex_enter(&dtrace_lock
);
9132 if (old
== dtrace_meta_pid
) {
9133 pp
= &dtrace_meta_pid
;
9135 panic("attempt to unregister non-existent "
9136 "dtrace meta-provider %p\n", (void *)old
);
9139 if (old
->dtm_count
!= 0) {
9140 mutex_exit(&dtrace_lock
);
9141 mutex_exit(&dtrace_meta_lock
);
9147 mutex_exit(&dtrace_lock
);
9148 mutex_exit(&dtrace_meta_lock
);
9150 kmem_free(old
->dtm_name
, strlen(old
->dtm_name
) + 1);
9151 kmem_free(old
, sizeof (dtrace_meta_t
));
9158 * DTrace DIF Object Functions
9161 dtrace_difo_err(uint_t pc
, const char *format
, ...)
9163 if (dtrace_err_verbose
) {
9166 (void) uprintf("dtrace DIF object error: [%u]: ", pc
);
9167 va_start(alist
, format
);
9168 (void) vuprintf(format
, alist
);
9172 #ifdef DTRACE_ERRDEBUG
9173 dtrace_errdebug(format
);
9179 * Validate a DTrace DIF object by checking the IR instructions. The following
9180 * rules are currently enforced by dtrace_difo_validate():
9182 * 1. Each instruction must have a valid opcode
9183 * 2. Each register, string, variable, or subroutine reference must be valid
9184 * 3. No instruction can modify register %r0 (must be zero)
9185 * 4. All instruction reserved bits must be set to zero
9186 * 5. The last instruction must be a "ret" instruction
9187 * 6. All branch targets must reference a valid instruction _after_ the branch
9190 dtrace_difo_validate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
, uint_t nregs
,
9194 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9197 int maxglobal
= -1, maxlocal
= -1, maxtlocal
= -1;
9199 kcheckload
= cr
== NULL
||
9200 (vstate
->dtvs_state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) == 0;
9202 dp
->dtdo_destructive
= 0;
9204 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9205 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9207 uint_t r1
= DIF_INSTR_R1(instr
);
9208 uint_t r2
= DIF_INSTR_R2(instr
);
9209 uint_t rd
= DIF_INSTR_RD(instr
);
9210 uint_t rs
= DIF_INSTR_RS(instr
);
9211 uint_t label
= DIF_INSTR_LABEL(instr
);
9212 uint_t v
= DIF_INSTR_VAR(instr
);
9213 uint_t subr
= DIF_INSTR_SUBR(instr
);
9214 uint_t type
= DIF_INSTR_TYPE(instr
);
9215 uint_t op
= DIF_INSTR_OP(instr
);
9233 err
+= efunc(pc
, "invalid register %u\n", r1
);
9235 err
+= efunc(pc
, "invalid register %u\n", r2
);
9237 err
+= efunc(pc
, "invalid register %u\n", rd
);
9239 err
+= efunc(pc
, "cannot write to %r0\n");
9245 err
+= efunc(pc
, "invalid register %u\n", r1
);
9247 err
+= efunc(pc
, "non-zero reserved bits\n");
9249 err
+= efunc(pc
, "invalid register %u\n", rd
);
9251 err
+= efunc(pc
, "cannot write to %r0\n");
9261 err
+= efunc(pc
, "invalid register %u\n", r1
);
9263 err
+= efunc(pc
, "non-zero reserved bits\n");
9265 err
+= efunc(pc
, "invalid register %u\n", rd
);
9267 err
+= efunc(pc
, "cannot write to %r0\n");
9269 dp
->dtdo_buf
[pc
] = DIF_INSTR_LOAD(op
+
9270 DIF_OP_RLDSB
- DIF_OP_LDSB
, r1
, rd
);
9280 err
+= efunc(pc
, "invalid register %u\n", r1
);
9282 err
+= efunc(pc
, "non-zero reserved bits\n");
9284 err
+= efunc(pc
, "invalid register %u\n", rd
);
9286 err
+= efunc(pc
, "cannot write to %r0\n");
9296 err
+= efunc(pc
, "invalid register %u\n", r1
);
9298 err
+= efunc(pc
, "non-zero reserved bits\n");
9300 err
+= efunc(pc
, "invalid register %u\n", rd
);
9302 err
+= efunc(pc
, "cannot write to %r0\n");
9309 err
+= efunc(pc
, "invalid register %u\n", r1
);
9311 err
+= efunc(pc
, "non-zero reserved bits\n");
9313 err
+= efunc(pc
, "invalid register %u\n", rd
);
9315 err
+= efunc(pc
, "cannot write to 0 address\n");
9320 err
+= efunc(pc
, "invalid register %u\n", r1
);
9322 err
+= efunc(pc
, "invalid register %u\n", r2
);
9324 err
+= efunc(pc
, "non-zero reserved bits\n");
9328 err
+= efunc(pc
, "invalid register %u\n", r1
);
9329 if (r2
!= 0 || rd
!= 0)
9330 err
+= efunc(pc
, "non-zero reserved bits\n");
9343 if (label
>= dp
->dtdo_len
) {
9344 err
+= efunc(pc
, "invalid branch target %u\n",
9348 err
+= efunc(pc
, "backward branch to %u\n",
9353 if (r1
!= 0 || r2
!= 0)
9354 err
+= efunc(pc
, "non-zero reserved bits\n");
9356 err
+= efunc(pc
, "invalid register %u\n", rd
);
9360 case DIF_OP_FLUSHTS
:
9361 if (r1
!= 0 || r2
!= 0 || rd
!= 0)
9362 err
+= efunc(pc
, "non-zero reserved bits\n");
9365 if (DIF_INSTR_INTEGER(instr
) >= dp
->dtdo_intlen
) {
9366 err
+= efunc(pc
, "invalid integer ref %u\n",
9367 DIF_INSTR_INTEGER(instr
));
9370 err
+= efunc(pc
, "invalid register %u\n", rd
);
9372 err
+= efunc(pc
, "cannot write to %r0\n");
9375 if (DIF_INSTR_STRING(instr
) >= dp
->dtdo_strlen
) {
9376 err
+= efunc(pc
, "invalid string ref %u\n",
9377 DIF_INSTR_STRING(instr
));
9380 err
+= efunc(pc
, "invalid register %u\n", rd
);
9382 err
+= efunc(pc
, "cannot write to %r0\n");
9386 if (r1
> DIF_VAR_ARRAY_MAX
)
9387 err
+= efunc(pc
, "invalid array %u\n", r1
);
9389 err
+= efunc(pc
, "invalid register %u\n", r2
);
9391 err
+= efunc(pc
, "invalid register %u\n", rd
);
9393 err
+= efunc(pc
, "cannot write to %r0\n");
9400 if (v
< DIF_VAR_OTHER_MIN
|| v
> DIF_VAR_OTHER_MAX
)
9401 err
+= efunc(pc
, "invalid variable %u\n", v
);
9403 err
+= efunc(pc
, "invalid register %u\n", rd
);
9405 err
+= efunc(pc
, "cannot write to %r0\n");
9412 if (v
< DIF_VAR_OTHER_UBASE
|| v
> DIF_VAR_OTHER_MAX
)
9413 err
+= efunc(pc
, "invalid variable %u\n", v
);
9415 err
+= efunc(pc
, "invalid register %u\n", rd
);
9418 if (subr
> DIF_SUBR_MAX
)
9419 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9421 err
+= efunc(pc
, "invalid register %u\n", rd
);
9423 err
+= efunc(pc
, "cannot write to %r0\n");
9425 if (subr
== DIF_SUBR_COPYOUT
||
9426 subr
== DIF_SUBR_COPYOUTSTR
) {
9427 dp
->dtdo_destructive
= 1;
9430 if (subr
== DIF_SUBR_GETF
) {
9432 * If we have a getf() we need to record that
9433 * in our state. Note that our state can be
9434 * NULL if this is a helper -- but in that
9435 * case, the call to getf() is itself illegal,
9436 * and will be caught (slightly later) when
9437 * the helper is validated.
9439 if (vstate
->dtvs_state
!= NULL
)
9440 vstate
->dtvs_state
->dts_getf
++;
9445 if (type
!= DIF_TYPE_STRING
&& type
!= DIF_TYPE_CTF
)
9446 err
+= efunc(pc
, "invalid ref type %u\n", type
);
9448 err
+= efunc(pc
, "invalid register %u\n", r2
);
9450 err
+= efunc(pc
, "invalid register %u\n", rs
);
9453 if (type
!= DIF_TYPE_CTF
)
9454 err
+= efunc(pc
, "invalid val type %u\n", type
);
9456 err
+= efunc(pc
, "invalid register %u\n", r2
);
9458 err
+= efunc(pc
, "invalid register %u\n", rs
);
9461 err
+= efunc(pc
, "invalid opcode %u\n",
9462 DIF_INSTR_OP(instr
));
9466 if (dp
->dtdo_len
!= 0 &&
9467 DIF_INSTR_OP(dp
->dtdo_buf
[dp
->dtdo_len
- 1]) != DIF_OP_RET
) {
9468 err
+= efunc(dp
->dtdo_len
- 1,
9469 "expected 'ret' as last DIF instruction\n");
9472 if (!(dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
))) {
9474 * If we're not returning by reference, the size must be either
9475 * 0 or the size of one of the base types.
9477 switch (dp
->dtdo_rtype
.dtdt_size
) {
9479 case sizeof (uint8_t):
9480 case sizeof (uint16_t):
9481 case sizeof (uint32_t):
9482 case sizeof (uint64_t):
9486 err
+= efunc(dp
->dtdo_len
- 1, "bad return size\n");
9490 for (i
= 0; i
< dp
->dtdo_varlen
&& err
== 0; i
++) {
9491 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
], *existing
= NULL
;
9492 dtrace_diftype_t
*vt
, *et
;
9495 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
&&
9496 v
->dtdv_scope
!= DIFV_SCOPE_THREAD
&&
9497 v
->dtdv_scope
!= DIFV_SCOPE_LOCAL
) {
9498 err
+= efunc(i
, "unrecognized variable scope %d\n",
9503 if (v
->dtdv_kind
!= DIFV_KIND_ARRAY
&&
9504 v
->dtdv_kind
!= DIFV_KIND_SCALAR
) {
9505 err
+= efunc(i
, "unrecognized variable type %d\n",
9510 if ((id
= v
->dtdv_id
) > DIF_VARIABLE_MAX
) {
9511 err
+= efunc(i
, "%d exceeds variable id limit\n", id
);
9515 if (id
< DIF_VAR_OTHER_UBASE
)
9519 * For user-defined variables, we need to check that this
9520 * definition is identical to any previous definition that we
9523 ndx
= id
- DIF_VAR_OTHER_UBASE
;
9525 switch (v
->dtdv_scope
) {
9526 case DIFV_SCOPE_GLOBAL
:
9527 if (maxglobal
== -1 || ndx
> maxglobal
)
9530 if (ndx
< vstate
->dtvs_nglobals
) {
9531 dtrace_statvar_t
*svar
;
9533 if ((svar
= vstate
->dtvs_globals
[ndx
]) != NULL
)
9534 existing
= &svar
->dtsv_var
;
9539 case DIFV_SCOPE_THREAD
:
9540 if (maxtlocal
== -1 || ndx
> maxtlocal
)
9543 if (ndx
< vstate
->dtvs_ntlocals
)
9544 existing
= &vstate
->dtvs_tlocals
[ndx
];
9547 case DIFV_SCOPE_LOCAL
:
9548 if (maxlocal
== -1 || ndx
> maxlocal
)
9551 if (ndx
< vstate
->dtvs_nlocals
) {
9552 dtrace_statvar_t
*svar
;
9554 if ((svar
= vstate
->dtvs_locals
[ndx
]) != NULL
)
9555 existing
= &svar
->dtsv_var
;
9563 if (vt
->dtdt_flags
& DIF_TF_BYREF
) {
9564 if (vt
->dtdt_size
== 0) {
9565 err
+= efunc(i
, "zero-sized variable\n");
9569 if ((v
->dtdv_scope
== DIFV_SCOPE_GLOBAL
||
9570 v
->dtdv_scope
== DIFV_SCOPE_LOCAL
) &&
9571 vt
->dtdt_size
> dtrace_statvar_maxsize
) {
9572 err
+= efunc(i
, "oversized by-ref static\n");
9577 if (existing
== NULL
|| existing
->dtdv_id
== 0)
9580 ASSERT(existing
->dtdv_id
== v
->dtdv_id
);
9581 ASSERT(existing
->dtdv_scope
== v
->dtdv_scope
);
9583 if (existing
->dtdv_kind
!= v
->dtdv_kind
)
9584 err
+= efunc(i
, "%d changed variable kind\n", id
);
9586 et
= &existing
->dtdv_type
;
9588 if (vt
->dtdt_flags
!= et
->dtdt_flags
) {
9589 err
+= efunc(i
, "%d changed variable type flags\n", id
);
9593 if (vt
->dtdt_size
!= 0 && vt
->dtdt_size
!= et
->dtdt_size
) {
9594 err
+= efunc(i
, "%d changed variable type size\n", id
);
9599 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9600 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9602 uint_t v
= DIF_INSTR_VAR(instr
);
9603 uint_t op
= DIF_INSTR_OP(instr
);
9610 if (v
> DIF_VAR_OTHER_UBASE
+ maxglobal
)
9611 err
+= efunc(pc
, "invalid variable %u\n", v
);
9617 if (v
> DIF_VAR_OTHER_UBASE
+ maxtlocal
)
9618 err
+= efunc(pc
, "invalid variable %u\n", v
);
9622 if (v
> DIF_VAR_OTHER_UBASE
+ maxlocal
)
9623 err
+= efunc(pc
, "invalid variable %u\n", v
);
9634 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9635 * are much more constrained than normal DIFOs. Specifically, they may
9638 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9639 * miscellaneous string routines
9640 * 2. Access DTrace variables other than the args[] array, and the
9641 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9642 * 3. Have thread-local variables.
9643 * 4. Have dynamic variables.
9646 dtrace_difo_validate_helper(dtrace_difo_t
*dp
)
9648 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9652 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9653 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9655 uint_t v
= DIF_INSTR_VAR(instr
);
9656 uint_t subr
= DIF_INSTR_SUBR(instr
);
9657 uint_t op
= DIF_INSTR_OP(instr
);
9712 case DIF_OP_FLUSHTS
:
9724 if (v
>= DIF_VAR_OTHER_UBASE
)
9727 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
)
9730 if (v
== DIF_VAR_CURTHREAD
|| v
== DIF_VAR_PID
||
9731 v
== DIF_VAR_PPID
|| v
== DIF_VAR_TID
||
9732 v
== DIF_VAR_EXECNAME
|| v
== DIF_VAR_ZONENAME
||
9733 v
== DIF_VAR_UID
|| v
== DIF_VAR_GID
)
9736 err
+= efunc(pc
, "illegal variable %u\n", v
);
9743 err
+= efunc(pc
, "illegal dynamic variable load\n");
9749 err
+= efunc(pc
, "illegal dynamic variable store\n");
9753 if (subr
== DIF_SUBR_ALLOCA
||
9754 subr
== DIF_SUBR_BCOPY
||
9755 subr
== DIF_SUBR_COPYIN
||
9756 subr
== DIF_SUBR_COPYINTO
||
9757 subr
== DIF_SUBR_COPYINSTR
||
9758 subr
== DIF_SUBR_INDEX
||
9759 subr
== DIF_SUBR_INET_NTOA
||
9760 subr
== DIF_SUBR_INET_NTOA6
||
9761 subr
== DIF_SUBR_INET_NTOP
||
9762 subr
== DIF_SUBR_JSON
||
9763 subr
== DIF_SUBR_LLTOSTR
||
9764 subr
== DIF_SUBR_STRTOLL
||
9765 subr
== DIF_SUBR_RINDEX
||
9766 subr
== DIF_SUBR_STRCHR
||
9767 subr
== DIF_SUBR_STRJOIN
||
9768 subr
== DIF_SUBR_STRRCHR
||
9769 subr
== DIF_SUBR_STRSTR
||
9770 subr
== DIF_SUBR_HTONS
||
9771 subr
== DIF_SUBR_HTONL
||
9772 subr
== DIF_SUBR_HTONLL
||
9773 subr
== DIF_SUBR_NTOHS
||
9774 subr
== DIF_SUBR_NTOHL
||
9775 subr
== DIF_SUBR_NTOHLL
)
9778 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9782 err
+= efunc(pc
, "invalid opcode %u\n",
9783 DIF_INSTR_OP(instr
));
9791 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9795 dtrace_difo_cacheable(dtrace_difo_t
*dp
)
9802 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9803 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9805 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
)
9808 switch (v
->dtdv_id
) {
9809 case DIF_VAR_CURTHREAD
:
9812 case DIF_VAR_EXECNAME
:
9813 case DIF_VAR_ZONENAME
:
9822 * This DIF object may be cacheable. Now we need to look for any
9823 * array loading instructions, any memory loading instructions, or
9824 * any stores to thread-local variables.
9826 for (i
= 0; i
< dp
->dtdo_len
; i
++) {
9827 uint_t op
= DIF_INSTR_OP(dp
->dtdo_buf
[i
]);
9829 if ((op
>= DIF_OP_LDSB
&& op
<= DIF_OP_LDX
) ||
9830 (op
>= DIF_OP_ULDSB
&& op
<= DIF_OP_ULDX
) ||
9831 (op
>= DIF_OP_RLDSB
&& op
<= DIF_OP_RLDX
) ||
9832 op
== DIF_OP_LDGA
|| op
== DIF_OP_STTS
)
9840 dtrace_difo_hold(dtrace_difo_t
*dp
)
9844 ASSERT(MUTEX_HELD(&dtrace_lock
));
9847 ASSERT(dp
->dtdo_refcnt
!= 0);
9850 * We need to check this DIF object for references to the variable
9851 * DIF_VAR_VTIMESTAMP.
9853 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9854 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9856 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9859 if (dtrace_vtime_references
++ == 0)
9860 dtrace_vtime_enable();
9865 * This routine calculates the dynamic variable chunksize for a given DIF
9866 * object. The calculation is not fool-proof, and can probably be tricked by
9867 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9868 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9869 * if a dynamic variable size exceeds the chunksize.
9872 dtrace_difo_chunksize(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9875 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
9876 const dif_instr_t
*text
= dp
->dtdo_buf
;
9882 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9883 dif_instr_t instr
= text
[pc
];
9884 uint_t op
= DIF_INSTR_OP(instr
);
9885 uint_t rd
= DIF_INSTR_RD(instr
);
9886 uint_t r1
= DIF_INSTR_R1(instr
);
9890 dtrace_key_t
*key
= tupregs
;
9894 sval
= dp
->dtdo_inttab
[DIF_INSTR_INTEGER(instr
)];
9899 key
= &tupregs
[DIF_DTR_NREGS
];
9900 key
[0].dttk_size
= 0;
9901 key
[1].dttk_size
= 0;
9903 scope
= DIFV_SCOPE_THREAD
;
9910 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
)
9911 key
[nkeys
++].dttk_size
= 0;
9913 key
[nkeys
++].dttk_size
= 0;
9915 if (op
== DIF_OP_STTAA
) {
9916 scope
= DIFV_SCOPE_THREAD
;
9918 scope
= DIFV_SCOPE_GLOBAL
;
9924 if (ttop
== DIF_DTR_NREGS
)
9927 if ((srd
== 0 || sval
== 0) && r1
== DIF_TYPE_STRING
) {
9929 * If the register for the size of the "pushtr"
9930 * is %r0 (or the value is 0) and the type is
9931 * a string, we'll use the system-wide default
9934 tupregs
[ttop
++].dttk_size
=
9935 dtrace_strsize_default
;
9940 if (sval
> LONG_MAX
)
9943 tupregs
[ttop
++].dttk_size
= sval
;
9949 if (ttop
== DIF_DTR_NREGS
)
9952 tupregs
[ttop
++].dttk_size
= 0;
9955 case DIF_OP_FLUSHTS
:
9972 * We have a dynamic variable allocation; calculate its size.
9974 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
9975 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
9977 size
= sizeof (dtrace_dynvar_t
);
9978 size
+= sizeof (dtrace_key_t
) * (nkeys
- 1);
9982 * Now we need to determine the size of the stored data.
9984 id
= DIF_INSTR_VAR(instr
);
9986 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9987 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9989 if (v
->dtdv_id
== id
&& v
->dtdv_scope
== scope
) {
9990 size
+= v
->dtdv_type
.dtdt_size
;
9995 if (i
== dp
->dtdo_varlen
)
9999 * We have the size. If this is larger than the chunk size
10000 * for our dynamic variable state, reset the chunk size.
10002 size
= P2ROUNDUP(size
, sizeof (uint64_t));
10005 * Before setting the chunk size, check that we're not going
10006 * to set it to a negative value...
10008 if (size
> LONG_MAX
)
10012 * ...and make certain that we didn't badly overflow.
10014 if (size
< ksize
|| size
< sizeof (dtrace_dynvar_t
))
10017 if (size
> vstate
->dtvs_dynvars
.dtds_chunksize
)
10018 vstate
->dtvs_dynvars
.dtds_chunksize
= size
;
10023 dtrace_difo_init(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10025 int i
, oldsvars
, osz
, nsz
, otlocals
, ntlocals
;
10028 ASSERT(MUTEX_HELD(&dtrace_lock
));
10029 ASSERT(dp
->dtdo_buf
!= NULL
&& dp
->dtdo_len
!= 0);
10031 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10032 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10033 dtrace_statvar_t
*svar
, ***svarp
;
10035 uint8_t scope
= v
->dtdv_scope
;
10038 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
10041 id
-= DIF_VAR_OTHER_UBASE
;
10044 case DIFV_SCOPE_THREAD
:
10045 while (id
>= (otlocals
= vstate
->dtvs_ntlocals
)) {
10046 dtrace_difv_t
*tlocals
;
10048 if ((ntlocals
= (otlocals
<< 1)) == 0)
10051 osz
= otlocals
* sizeof (dtrace_difv_t
);
10052 nsz
= ntlocals
* sizeof (dtrace_difv_t
);
10054 tlocals
= kmem_zalloc(nsz
, KM_SLEEP
);
10057 bcopy(vstate
->dtvs_tlocals
,
10059 kmem_free(vstate
->dtvs_tlocals
, osz
);
10062 vstate
->dtvs_tlocals
= tlocals
;
10063 vstate
->dtvs_ntlocals
= ntlocals
;
10066 vstate
->dtvs_tlocals
[id
] = *v
;
10069 case DIFV_SCOPE_LOCAL
:
10070 np
= &vstate
->dtvs_nlocals
;
10071 svarp
= &vstate
->dtvs_locals
;
10073 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
10074 dsize
= NCPU
* (v
->dtdv_type
.dtdt_size
+
10075 sizeof (uint64_t));
10077 dsize
= NCPU
* sizeof (uint64_t);
10081 case DIFV_SCOPE_GLOBAL
:
10082 np
= &vstate
->dtvs_nglobals
;
10083 svarp
= &vstate
->dtvs_globals
;
10085 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
10086 dsize
= v
->dtdv_type
.dtdt_size
+
10095 while (id
>= (oldsvars
= *np
)) {
10096 dtrace_statvar_t
**statics
;
10097 int newsvars
, oldsize
, newsize
;
10099 if ((newsvars
= (oldsvars
<< 1)) == 0)
10102 oldsize
= oldsvars
* sizeof (dtrace_statvar_t
*);
10103 newsize
= newsvars
* sizeof (dtrace_statvar_t
*);
10105 statics
= kmem_zalloc(newsize
, KM_SLEEP
);
10107 if (oldsize
!= 0) {
10108 bcopy(*svarp
, statics
, oldsize
);
10109 kmem_free(*svarp
, oldsize
);
10116 if ((svar
= (*svarp
)[id
]) == NULL
) {
10117 svar
= kmem_zalloc(sizeof (dtrace_statvar_t
), KM_SLEEP
);
10118 svar
->dtsv_var
= *v
;
10120 if ((svar
->dtsv_size
= dsize
) != 0) {
10121 svar
->dtsv_data
= (uint64_t)(uintptr_t)
10122 kmem_zalloc(dsize
, KM_SLEEP
);
10125 (*svarp
)[id
] = svar
;
10128 svar
->dtsv_refcnt
++;
10131 dtrace_difo_chunksize(dp
, vstate
);
10132 dtrace_difo_hold(dp
);
10135 static dtrace_difo_t
*
10136 dtrace_difo_duplicate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10138 dtrace_difo_t
*new;
10141 ASSERT(dp
->dtdo_buf
!= NULL
);
10142 ASSERT(dp
->dtdo_refcnt
!= 0);
10144 new = kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
10146 ASSERT(dp
->dtdo_buf
!= NULL
);
10147 sz
= dp
->dtdo_len
* sizeof (dif_instr_t
);
10148 new->dtdo_buf
= kmem_alloc(sz
, KM_SLEEP
);
10149 bcopy(dp
->dtdo_buf
, new->dtdo_buf
, sz
);
10150 new->dtdo_len
= dp
->dtdo_len
;
10152 if (dp
->dtdo_strtab
!= NULL
) {
10153 ASSERT(dp
->dtdo_strlen
!= 0);
10154 new->dtdo_strtab
= kmem_alloc(dp
->dtdo_strlen
, KM_SLEEP
);
10155 bcopy(dp
->dtdo_strtab
, new->dtdo_strtab
, dp
->dtdo_strlen
);
10156 new->dtdo_strlen
= dp
->dtdo_strlen
;
10159 if (dp
->dtdo_inttab
!= NULL
) {
10160 ASSERT(dp
->dtdo_intlen
!= 0);
10161 sz
= dp
->dtdo_intlen
* sizeof (uint64_t);
10162 new->dtdo_inttab
= kmem_alloc(sz
, KM_SLEEP
);
10163 bcopy(dp
->dtdo_inttab
, new->dtdo_inttab
, sz
);
10164 new->dtdo_intlen
= dp
->dtdo_intlen
;
10167 if (dp
->dtdo_vartab
!= NULL
) {
10168 ASSERT(dp
->dtdo_varlen
!= 0);
10169 sz
= dp
->dtdo_varlen
* sizeof (dtrace_difv_t
);
10170 new->dtdo_vartab
= kmem_alloc(sz
, KM_SLEEP
);
10171 bcopy(dp
->dtdo_vartab
, new->dtdo_vartab
, sz
);
10172 new->dtdo_varlen
= dp
->dtdo_varlen
;
10175 dtrace_difo_init(new, vstate
);
10180 dtrace_difo_destroy(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10184 ASSERT(dp
->dtdo_refcnt
== 0);
10186 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10187 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10188 dtrace_statvar_t
*svar
, **svarp
;
10190 uint8_t scope
= v
->dtdv_scope
;
10194 case DIFV_SCOPE_THREAD
:
10197 case DIFV_SCOPE_LOCAL
:
10198 np
= &vstate
->dtvs_nlocals
;
10199 svarp
= vstate
->dtvs_locals
;
10202 case DIFV_SCOPE_GLOBAL
:
10203 np
= &vstate
->dtvs_nglobals
;
10204 svarp
= vstate
->dtvs_globals
;
10211 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
10214 id
-= DIF_VAR_OTHER_UBASE
;
10218 ASSERT(svar
!= NULL
);
10219 ASSERT(svar
->dtsv_refcnt
> 0);
10221 if (--svar
->dtsv_refcnt
> 0)
10224 if (svar
->dtsv_size
!= 0) {
10225 ASSERT(svar
->dtsv_data
!= NULL
);
10226 kmem_free((void *)(uintptr_t)svar
->dtsv_data
,
10230 kmem_free(svar
, sizeof (dtrace_statvar_t
));
10234 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
10235 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
10236 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
10237 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
10239 kmem_free(dp
, sizeof (dtrace_difo_t
));
10243 dtrace_difo_release(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10247 ASSERT(MUTEX_HELD(&dtrace_lock
));
10248 ASSERT(dp
->dtdo_refcnt
!= 0);
10250 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10251 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10253 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
10256 ASSERT(dtrace_vtime_references
> 0);
10257 if (--dtrace_vtime_references
== 0)
10258 dtrace_vtime_disable();
10261 if (--dp
->dtdo_refcnt
== 0)
10262 dtrace_difo_destroy(dp
, vstate
);
10266 * DTrace Format Functions
10269 dtrace_format_add(dtrace_state_t
*state
, char *str
)
10272 uint16_t ndx
, len
= strlen(str
) + 1;
10274 fmt
= kmem_zalloc(len
, KM_SLEEP
);
10275 bcopy(str
, fmt
, len
);
10277 for (ndx
= 0; ndx
< state
->dts_nformats
; ndx
++) {
10278 if (state
->dts_formats
[ndx
] == NULL
) {
10279 state
->dts_formats
[ndx
] = fmt
;
10284 if (state
->dts_nformats
== USHRT_MAX
) {
10286 * This is only likely if a denial-of-service attack is being
10287 * attempted. As such, it's okay to fail silently here.
10289 kmem_free(fmt
, len
);
10294 * For simplicity, we always resize the formats array to be exactly the
10295 * number of formats.
10297 ndx
= state
->dts_nformats
++;
10298 new = kmem_alloc((ndx
+ 1) * sizeof (char *), KM_SLEEP
);
10300 if (state
->dts_formats
!= NULL
) {
10302 bcopy(state
->dts_formats
, new, ndx
* sizeof (char *));
10303 kmem_free(state
->dts_formats
, ndx
* sizeof (char *));
10306 state
->dts_formats
= new;
10307 state
->dts_formats
[ndx
] = fmt
;
10313 dtrace_format_remove(dtrace_state_t
*state
, uint16_t format
)
10317 ASSERT(state
->dts_formats
!= NULL
);
10318 ASSERT(format
<= state
->dts_nformats
);
10319 ASSERT(state
->dts_formats
[format
- 1] != NULL
);
10321 fmt
= state
->dts_formats
[format
- 1];
10322 kmem_free(fmt
, strlen(fmt
) + 1);
10323 state
->dts_formats
[format
- 1] = NULL
;
10327 dtrace_format_destroy(dtrace_state_t
*state
)
10331 if (state
->dts_nformats
== 0) {
10332 ASSERT(state
->dts_formats
== NULL
);
10336 ASSERT(state
->dts_formats
!= NULL
);
10338 for (i
= 0; i
< state
->dts_nformats
; i
++) {
10339 char *fmt
= state
->dts_formats
[i
];
10344 kmem_free(fmt
, strlen(fmt
) + 1);
10347 kmem_free(state
->dts_formats
, state
->dts_nformats
* sizeof (char *));
10348 state
->dts_nformats
= 0;
10349 state
->dts_formats
= NULL
;
10353 * DTrace Predicate Functions
10355 static dtrace_predicate_t
*
10356 dtrace_predicate_create(dtrace_difo_t
*dp
)
10358 dtrace_predicate_t
*pred
;
10360 ASSERT(MUTEX_HELD(&dtrace_lock
));
10361 ASSERT(dp
->dtdo_refcnt
!= 0);
10363 pred
= kmem_zalloc(sizeof (dtrace_predicate_t
), KM_SLEEP
);
10364 pred
->dtp_difo
= dp
;
10365 pred
->dtp_refcnt
= 1;
10367 if (!dtrace_difo_cacheable(dp
))
10370 if (dtrace_predcache_id
== DTRACE_CACHEIDNONE
) {
10372 * This is only theoretically possible -- we have had 2^32
10373 * cacheable predicates on this machine. We cannot allow any
10374 * more predicates to become cacheable: as unlikely as it is,
10375 * there may be a thread caching a (now stale) predicate cache
10376 * ID. (N.B.: the temptation is being successfully resisted to
10377 * have this cmn_err() "Holy shit -- we executed this code!")
10382 pred
->dtp_cacheid
= dtrace_predcache_id
++;
10388 dtrace_predicate_hold(dtrace_predicate_t
*pred
)
10390 ASSERT(MUTEX_HELD(&dtrace_lock
));
10391 ASSERT(pred
->dtp_difo
!= NULL
&& pred
->dtp_difo
->dtdo_refcnt
!= 0);
10392 ASSERT(pred
->dtp_refcnt
> 0);
10394 pred
->dtp_refcnt
++;
10398 dtrace_predicate_release(dtrace_predicate_t
*pred
, dtrace_vstate_t
*vstate
)
10400 dtrace_difo_t
*dp
= pred
->dtp_difo
;
10402 ASSERT(MUTEX_HELD(&dtrace_lock
));
10403 ASSERT(dp
!= NULL
&& dp
->dtdo_refcnt
!= 0);
10404 ASSERT(pred
->dtp_refcnt
> 0);
10406 if (--pred
->dtp_refcnt
== 0) {
10407 dtrace_difo_release(pred
->dtp_difo
, vstate
);
10408 kmem_free(pred
, sizeof (dtrace_predicate_t
));
10413 * DTrace Action Description Functions
10415 static dtrace_actdesc_t
*
10416 dtrace_actdesc_create(dtrace_actkind_t kind
, uint32_t ntuple
,
10417 uint64_t uarg
, uint64_t arg
)
10419 dtrace_actdesc_t
*act
;
10421 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind
) || (arg
!= NULL
&&
10422 arg
>= KERNELBASE
) || (arg
== NULL
&& kind
== DTRACEACT_PRINTA
));
10424 act
= kmem_zalloc(sizeof (dtrace_actdesc_t
), KM_SLEEP
);
10425 act
->dtad_kind
= kind
;
10426 act
->dtad_ntuple
= ntuple
;
10427 act
->dtad_uarg
= uarg
;
10428 act
->dtad_arg
= arg
;
10429 act
->dtad_refcnt
= 1;
10435 dtrace_actdesc_hold(dtrace_actdesc_t
*act
)
10437 ASSERT(act
->dtad_refcnt
>= 1);
10438 act
->dtad_refcnt
++;
10442 dtrace_actdesc_release(dtrace_actdesc_t
*act
, dtrace_vstate_t
*vstate
)
10444 dtrace_actkind_t kind
= act
->dtad_kind
;
10447 ASSERT(act
->dtad_refcnt
>= 1);
10449 if (--act
->dtad_refcnt
!= 0)
10452 if ((dp
= act
->dtad_difo
) != NULL
)
10453 dtrace_difo_release(dp
, vstate
);
10455 if (DTRACEACT_ISPRINTFLIKE(kind
)) {
10456 char *str
= (char *)(uintptr_t)act
->dtad_arg
;
10458 ASSERT((str
!= NULL
&& (uintptr_t)str
>= KERNELBASE
) ||
10459 (str
== NULL
&& act
->dtad_kind
== DTRACEACT_PRINTA
));
10462 kmem_free(str
, strlen(str
) + 1);
10465 kmem_free(act
, sizeof (dtrace_actdesc_t
));
10469 * DTrace ECB Functions
10471 static dtrace_ecb_t
*
10472 dtrace_ecb_add(dtrace_state_t
*state
, dtrace_probe_t
*probe
)
10475 dtrace_epid_t epid
;
10477 ASSERT(MUTEX_HELD(&dtrace_lock
));
10479 ecb
= kmem_zalloc(sizeof (dtrace_ecb_t
), KM_SLEEP
);
10480 ecb
->dte_predicate
= NULL
;
10481 ecb
->dte_probe
= probe
;
10484 * The default size is the size of the default action: recording
10487 ecb
->dte_size
= ecb
->dte_needed
= sizeof (dtrace_rechdr_t
);
10488 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10490 epid
= state
->dts_epid
++;
10492 if (epid
- 1 >= state
->dts_necbs
) {
10493 dtrace_ecb_t
**oecbs
= state
->dts_ecbs
, **ecbs
;
10494 int necbs
= state
->dts_necbs
<< 1;
10496 ASSERT(epid
== state
->dts_necbs
+ 1);
10499 ASSERT(oecbs
== NULL
);
10503 ecbs
= kmem_zalloc(necbs
* sizeof (*ecbs
), KM_SLEEP
);
10506 bcopy(oecbs
, ecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10508 dtrace_membar_producer();
10509 state
->dts_ecbs
= ecbs
;
10511 if (oecbs
!= NULL
) {
10513 * If this state is active, we must dtrace_sync()
10514 * before we can free the old dts_ecbs array: we're
10515 * coming in hot, and there may be active ring
10516 * buffer processing (which indexes into the dts_ecbs
10517 * array) on another CPU.
10519 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
10522 kmem_free(oecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10525 dtrace_membar_producer();
10526 state
->dts_necbs
= necbs
;
10529 ecb
->dte_state
= state
;
10531 ASSERT(state
->dts_ecbs
[epid
- 1] == NULL
);
10532 dtrace_membar_producer();
10533 state
->dts_ecbs
[(ecb
->dte_epid
= epid
) - 1] = ecb
;
10539 dtrace_ecb_enable(dtrace_ecb_t
*ecb
)
10541 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10543 ASSERT(MUTEX_HELD(&cpu_lock
));
10544 ASSERT(MUTEX_HELD(&dtrace_lock
));
10545 ASSERT(ecb
->dte_next
== NULL
);
10547 if (probe
== NULL
) {
10549 * This is the NULL probe -- there's nothing to do.
10554 if (probe
->dtpr_ecb
== NULL
) {
10555 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10558 * We're the first ECB on this probe.
10560 probe
->dtpr_ecb
= probe
->dtpr_ecb_last
= ecb
;
10562 if (ecb
->dte_predicate
!= NULL
)
10563 probe
->dtpr_predcache
= ecb
->dte_predicate
->dtp_cacheid
;
10565 return (prov
->dtpv_pops
.dtps_enable(prov
->dtpv_arg
,
10566 probe
->dtpr_id
, probe
->dtpr_arg
));
10569 * This probe is already active. Swing the last pointer to
10570 * point to the new ECB, and issue a dtrace_sync() to assure
10571 * that all CPUs have seen the change.
10573 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10574 probe
->dtpr_ecb_last
->dte_next
= ecb
;
10575 probe
->dtpr_ecb_last
= ecb
;
10576 probe
->dtpr_predcache
= 0;
10584 dtrace_ecb_resize(dtrace_ecb_t
*ecb
)
10586 dtrace_action_t
*act
;
10587 uint32_t curneeded
= UINT32_MAX
;
10588 uint32_t aggbase
= UINT32_MAX
;
10591 * If we record anything, we always record the dtrace_rechdr_t. (And
10592 * we always record it first.)
10594 ecb
->dte_size
= sizeof (dtrace_rechdr_t
);
10595 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10597 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10598 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
10599 ASSERT(rec
->dtrd_size
> 0 || rec
->dtrd_alignment
== 1);
10601 ecb
->dte_alignment
= MAX(ecb
->dte_alignment
,
10602 rec
->dtrd_alignment
);
10604 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10605 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10607 ASSERT(rec
->dtrd_size
!= 0);
10608 ASSERT(agg
->dtag_first
!= NULL
);
10609 ASSERT(act
->dta_prev
->dta_intuple
);
10610 ASSERT(aggbase
!= UINT32_MAX
);
10611 ASSERT(curneeded
!= UINT32_MAX
);
10613 agg
->dtag_base
= aggbase
;
10615 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10616 rec
->dtrd_offset
= curneeded
;
10617 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10619 curneeded
+= rec
->dtrd_size
;
10620 ecb
->dte_needed
= MAX(ecb
->dte_needed
, curneeded
);
10622 aggbase
= UINT32_MAX
;
10623 curneeded
= UINT32_MAX
;
10624 } else if (act
->dta_intuple
) {
10625 if (curneeded
== UINT32_MAX
) {
10627 * This is the first record in a tuple. Align
10628 * curneeded to be at offset 4 in an 8-byte
10631 ASSERT(act
->dta_prev
== NULL
||
10632 !act
->dta_prev
->dta_intuple
);
10633 ASSERT3U(aggbase
, ==, UINT32_MAX
);
10634 curneeded
= P2PHASEUP(ecb
->dte_size
,
10635 sizeof (uint64_t), sizeof (dtrace_aggid_t
));
10637 aggbase
= curneeded
- sizeof (dtrace_aggid_t
);
10638 ASSERT(IS_P2ALIGNED(aggbase
,
10639 sizeof (uint64_t)));
10641 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10642 rec
->dtrd_offset
= curneeded
;
10643 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10645 curneeded
+= rec
->dtrd_size
;
10647 /* tuples must be followed by an aggregation */
10648 ASSERT(act
->dta_prev
== NULL
||
10649 !act
->dta_prev
->dta_intuple
);
10651 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
,
10652 rec
->dtrd_alignment
);
10653 rec
->dtrd_offset
= ecb
->dte_size
;
10654 if (ecb
->dte_size
+ rec
->dtrd_size
< ecb
->dte_size
)
10656 ecb
->dte_size
+= rec
->dtrd_size
;
10657 ecb
->dte_needed
= MAX(ecb
->dte_needed
, ecb
->dte_size
);
10661 if ((act
= ecb
->dte_action
) != NULL
&&
10662 !(act
->dta_kind
== DTRACEACT_SPECULATE
&& act
->dta_next
== NULL
) &&
10663 ecb
->dte_size
== sizeof (dtrace_rechdr_t
)) {
10665 * If the size is still sizeof (dtrace_rechdr_t), then all
10666 * actions store no data; set the size to 0.
10671 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, sizeof (dtrace_epid_t
));
10672 ecb
->dte_needed
= P2ROUNDUP(ecb
->dte_needed
, (sizeof (dtrace_epid_t
)));
10673 ecb
->dte_state
->dts_needed
= MAX(ecb
->dte_state
->dts_needed
,
10678 static dtrace_action_t
*
10679 dtrace_ecb_aggregation_create(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10681 dtrace_aggregation_t
*agg
;
10682 size_t size
= sizeof (uint64_t);
10683 int ntuple
= desc
->dtad_ntuple
;
10684 dtrace_action_t
*act
;
10685 dtrace_recdesc_t
*frec
;
10686 dtrace_aggid_t aggid
;
10687 dtrace_state_t
*state
= ecb
->dte_state
;
10689 agg
= kmem_zalloc(sizeof (dtrace_aggregation_t
), KM_SLEEP
);
10690 agg
->dtag_ecb
= ecb
;
10692 ASSERT(DTRACEACT_ISAGG(desc
->dtad_kind
));
10694 switch (desc
->dtad_kind
) {
10695 case DTRACEAGG_MIN
:
10696 agg
->dtag_initial
= INT64_MAX
;
10697 agg
->dtag_aggregate
= dtrace_aggregate_min
;
10700 case DTRACEAGG_MAX
:
10701 agg
->dtag_initial
= INT64_MIN
;
10702 agg
->dtag_aggregate
= dtrace_aggregate_max
;
10705 case DTRACEAGG_COUNT
:
10706 agg
->dtag_aggregate
= dtrace_aggregate_count
;
10709 case DTRACEAGG_QUANTIZE
:
10710 agg
->dtag_aggregate
= dtrace_aggregate_quantize
;
10711 size
= (((sizeof (uint64_t) * NBBY
) - 1) * 2 + 1) *
10715 case DTRACEAGG_LQUANTIZE
: {
10716 uint16_t step
= DTRACE_LQUANTIZE_STEP(desc
->dtad_arg
);
10717 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(desc
->dtad_arg
);
10719 agg
->dtag_initial
= desc
->dtad_arg
;
10720 agg
->dtag_aggregate
= dtrace_aggregate_lquantize
;
10722 if (step
== 0 || levels
== 0)
10725 size
= levels
* sizeof (uint64_t) + 3 * sizeof (uint64_t);
10729 case DTRACEAGG_LLQUANTIZE
: {
10730 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(desc
->dtad_arg
);
10731 uint16_t low
= DTRACE_LLQUANTIZE_LOW(desc
->dtad_arg
);
10732 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(desc
->dtad_arg
);
10733 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(desc
->dtad_arg
);
10736 agg
->dtag_initial
= desc
->dtad_arg
;
10737 agg
->dtag_aggregate
= dtrace_aggregate_llquantize
;
10739 if (factor
< 2 || low
>= high
|| nsteps
< factor
)
10743 * Now check that the number of steps evenly divides a power
10744 * of the factor. (This assures both integer bucket size and
10745 * linearity within each magnitude.)
10747 for (v
= factor
; v
< nsteps
; v
*= factor
)
10750 if ((v
% nsteps
) || (nsteps
% factor
))
10753 size
= (dtrace_aggregate_llquantize_bucket(factor
,
10754 low
, high
, nsteps
, INT64_MAX
) + 2) * sizeof (uint64_t);
10758 case DTRACEAGG_AVG
:
10759 agg
->dtag_aggregate
= dtrace_aggregate_avg
;
10760 size
= sizeof (uint64_t) * 2;
10763 case DTRACEAGG_STDDEV
:
10764 agg
->dtag_aggregate
= dtrace_aggregate_stddev
;
10765 size
= sizeof (uint64_t) * 4;
10768 case DTRACEAGG_SUM
:
10769 agg
->dtag_aggregate
= dtrace_aggregate_sum
;
10776 agg
->dtag_action
.dta_rec
.dtrd_size
= size
;
10782 * We must make sure that we have enough actions for the n-tuple.
10784 for (act
= ecb
->dte_action_last
; act
!= NULL
; act
= act
->dta_prev
) {
10785 if (DTRACEACT_ISAGG(act
->dta_kind
))
10788 if (--ntuple
== 0) {
10790 * This is the action with which our n-tuple begins.
10792 agg
->dtag_first
= act
;
10798 * This n-tuple is short by ntuple elements. Return failure.
10800 ASSERT(ntuple
!= 0);
10802 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10807 * If the last action in the tuple has a size of zero, it's actually
10808 * an expression argument for the aggregating action.
10810 ASSERT(ecb
->dte_action_last
!= NULL
);
10811 act
= ecb
->dte_action_last
;
10813 if (act
->dta_kind
== DTRACEACT_DIFEXPR
) {
10814 ASSERT(act
->dta_difo
!= NULL
);
10816 if (act
->dta_difo
->dtdo_rtype
.dtdt_size
== 0)
10817 agg
->dtag_hasarg
= 1;
10821 * We need to allocate an id for this aggregation.
10823 aggid
= (dtrace_aggid_t
)(uintptr_t)vmem_alloc(state
->dts_aggid_arena
, 1,
10824 VM_BESTFIT
| VM_SLEEP
);
10826 if (aggid
- 1 >= state
->dts_naggregations
) {
10827 dtrace_aggregation_t
**oaggs
= state
->dts_aggregations
;
10828 dtrace_aggregation_t
**aggs
;
10829 int naggs
= state
->dts_naggregations
<< 1;
10830 int onaggs
= state
->dts_naggregations
;
10832 ASSERT(aggid
== state
->dts_naggregations
+ 1);
10835 ASSERT(oaggs
== NULL
);
10839 aggs
= kmem_zalloc(naggs
* sizeof (*aggs
), KM_SLEEP
);
10841 if (oaggs
!= NULL
) {
10842 bcopy(oaggs
, aggs
, onaggs
* sizeof (*aggs
));
10843 kmem_free(oaggs
, onaggs
* sizeof (*aggs
));
10846 state
->dts_aggregations
= aggs
;
10847 state
->dts_naggregations
= naggs
;
10850 ASSERT(state
->dts_aggregations
[aggid
- 1] == NULL
);
10851 state
->dts_aggregations
[(agg
->dtag_id
= aggid
) - 1] = agg
;
10853 frec
= &agg
->dtag_first
->dta_rec
;
10854 if (frec
->dtrd_alignment
< sizeof (dtrace_aggid_t
))
10855 frec
->dtrd_alignment
= sizeof (dtrace_aggid_t
);
10857 for (act
= agg
->dtag_first
; act
!= NULL
; act
= act
->dta_next
) {
10858 ASSERT(!act
->dta_intuple
);
10859 act
->dta_intuple
= 1;
10862 return (&agg
->dtag_action
);
10866 dtrace_ecb_aggregation_destroy(dtrace_ecb_t
*ecb
, dtrace_action_t
*act
)
10868 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10869 dtrace_state_t
*state
= ecb
->dte_state
;
10870 dtrace_aggid_t aggid
= agg
->dtag_id
;
10872 ASSERT(DTRACEACT_ISAGG(act
->dta_kind
));
10873 vmem_free(state
->dts_aggid_arena
, (void *)(uintptr_t)aggid
, 1);
10875 ASSERT(state
->dts_aggregations
[aggid
- 1] == agg
);
10876 state
->dts_aggregations
[aggid
- 1] = NULL
;
10878 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10882 dtrace_ecb_action_add(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10884 dtrace_action_t
*action
, *last
;
10885 dtrace_difo_t
*dp
= desc
->dtad_difo
;
10886 uint32_t size
= 0, align
= sizeof (uint8_t), mask
;
10887 uint16_t format
= 0;
10888 dtrace_recdesc_t
*rec
;
10889 dtrace_state_t
*state
= ecb
->dte_state
;
10890 dtrace_optval_t
*opt
= state
->dts_options
, nframes
, strsize
;
10891 uint64_t arg
= desc
->dtad_arg
;
10893 ASSERT(MUTEX_HELD(&dtrace_lock
));
10894 ASSERT(ecb
->dte_action
== NULL
|| ecb
->dte_action
->dta_refcnt
== 1);
10896 if (DTRACEACT_ISAGG(desc
->dtad_kind
)) {
10898 * If this is an aggregating action, there must be neither
10899 * a speculate nor a commit on the action chain.
10901 dtrace_action_t
*act
;
10903 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10904 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10907 if (act
->dta_kind
== DTRACEACT_SPECULATE
)
10911 action
= dtrace_ecb_aggregation_create(ecb
, desc
);
10913 if (action
== NULL
)
10916 if (DTRACEACT_ISDESTRUCTIVE(desc
->dtad_kind
) ||
10917 (desc
->dtad_kind
== DTRACEACT_DIFEXPR
&&
10918 dp
!= NULL
&& dp
->dtdo_destructive
)) {
10919 state
->dts_destructive
= 1;
10922 switch (desc
->dtad_kind
) {
10923 case DTRACEACT_PRINTF
:
10924 case DTRACEACT_PRINTA
:
10925 case DTRACEACT_SYSTEM
:
10926 case DTRACEACT_FREOPEN
:
10927 case DTRACEACT_DIFEXPR
:
10929 * We know that our arg is a string -- turn it into a
10933 ASSERT(desc
->dtad_kind
== DTRACEACT_PRINTA
||
10934 desc
->dtad_kind
== DTRACEACT_DIFEXPR
);
10937 ASSERT(arg
!= NULL
);
10938 ASSERT(arg
> KERNELBASE
);
10939 format
= dtrace_format_add(state
,
10940 (char *)(uintptr_t)arg
);
10944 case DTRACEACT_LIBACT
:
10945 case DTRACEACT_TRACEMEM
:
10946 case DTRACEACT_TRACEMEM_DYNSIZE
:
10950 if ((size
= dp
->dtdo_rtype
.dtdt_size
) != 0)
10953 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
10954 if (!(dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10957 size
= opt
[DTRACEOPT_STRSIZE
];
10962 case DTRACEACT_STACK
:
10963 if ((nframes
= arg
) == 0) {
10964 nframes
= opt
[DTRACEOPT_STACKFRAMES
];
10965 ASSERT(nframes
> 0);
10969 size
= nframes
* sizeof (pc_t
);
10972 case DTRACEACT_JSTACK
:
10973 if ((strsize
= DTRACE_USTACK_STRSIZE(arg
)) == 0)
10974 strsize
= opt
[DTRACEOPT_JSTACKSTRSIZE
];
10976 if ((nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0)
10977 nframes
= opt
[DTRACEOPT_JSTACKFRAMES
];
10979 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10982 case DTRACEACT_USTACK
:
10983 if (desc
->dtad_kind
!= DTRACEACT_JSTACK
&&
10984 (nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0) {
10985 strsize
= DTRACE_USTACK_STRSIZE(arg
);
10986 nframes
= opt
[DTRACEOPT_USTACKFRAMES
];
10987 ASSERT(nframes
> 0);
10988 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10992 * Save a slot for the pid.
10994 size
= (nframes
+ 1) * sizeof (uint64_t);
10995 size
+= DTRACE_USTACK_STRSIZE(arg
);
10996 size
= P2ROUNDUP(size
, (uint32_t)(sizeof (uintptr_t)));
11000 case DTRACEACT_SYM
:
11001 case DTRACEACT_MOD
:
11002 if (dp
== NULL
|| ((size
= dp
->dtdo_rtype
.dtdt_size
) !=
11003 sizeof (uint64_t)) ||
11004 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11008 case DTRACEACT_USYM
:
11009 case DTRACEACT_UMOD
:
11010 case DTRACEACT_UADDR
:
11012 (dp
->dtdo_rtype
.dtdt_size
!= sizeof (uint64_t)) ||
11013 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11017 * We have a slot for the pid, plus a slot for the
11018 * argument. To keep things simple (aligned with
11019 * bitness-neutral sizing), we store each as a 64-bit
11022 size
= 2 * sizeof (uint64_t);
11025 case DTRACEACT_STOP
:
11026 case DTRACEACT_BREAKPOINT
:
11027 case DTRACEACT_PANIC
:
11030 case DTRACEACT_CHILL
:
11031 case DTRACEACT_DISCARD
:
11032 case DTRACEACT_RAISE
:
11037 case DTRACEACT_EXIT
:
11039 (size
= dp
->dtdo_rtype
.dtdt_size
) != sizeof (int) ||
11040 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11044 case DTRACEACT_SPECULATE
:
11045 if (ecb
->dte_size
> sizeof (dtrace_rechdr_t
))
11051 state
->dts_speculates
= 1;
11054 case DTRACEACT_COMMIT
: {
11055 dtrace_action_t
*act
= ecb
->dte_action
;
11057 for (; act
!= NULL
; act
= act
->dta_next
) {
11058 if (act
->dta_kind
== DTRACEACT_COMMIT
)
11071 if (size
!= 0 || desc
->dtad_kind
== DTRACEACT_SPECULATE
) {
11073 * If this is a data-storing action or a speculate,
11074 * we must be sure that there isn't a commit on the
11077 dtrace_action_t
*act
= ecb
->dte_action
;
11079 for (; act
!= NULL
; act
= act
->dta_next
) {
11080 if (act
->dta_kind
== DTRACEACT_COMMIT
)
11085 action
= kmem_zalloc(sizeof (dtrace_action_t
), KM_SLEEP
);
11086 action
->dta_rec
.dtrd_size
= size
;
11089 action
->dta_refcnt
= 1;
11090 rec
= &action
->dta_rec
;
11091 size
= rec
->dtrd_size
;
11093 for (mask
= sizeof (uint64_t) - 1; size
!= 0 && mask
> 0; mask
>>= 1) {
11094 if (!(size
& mask
)) {
11100 action
->dta_kind
= desc
->dtad_kind
;
11102 if ((action
->dta_difo
= dp
) != NULL
)
11103 dtrace_difo_hold(dp
);
11105 rec
->dtrd_action
= action
->dta_kind
;
11106 rec
->dtrd_arg
= arg
;
11107 rec
->dtrd_uarg
= desc
->dtad_uarg
;
11108 rec
->dtrd_alignment
= (uint16_t)align
;
11109 rec
->dtrd_format
= format
;
11111 if ((last
= ecb
->dte_action_last
) != NULL
) {
11112 ASSERT(ecb
->dte_action
!= NULL
);
11113 action
->dta_prev
= last
;
11114 last
->dta_next
= action
;
11116 ASSERT(ecb
->dte_action
== NULL
);
11117 ecb
->dte_action
= action
;
11120 ecb
->dte_action_last
= action
;
11126 dtrace_ecb_action_remove(dtrace_ecb_t
*ecb
)
11128 dtrace_action_t
*act
= ecb
->dte_action
, *next
;
11129 dtrace_vstate_t
*vstate
= &ecb
->dte_state
->dts_vstate
;
11133 if (act
!= NULL
&& act
->dta_refcnt
> 1) {
11134 ASSERT(act
->dta_next
== NULL
|| act
->dta_next
->dta_refcnt
== 1);
11137 for (; act
!= NULL
; act
= next
) {
11138 next
= act
->dta_next
;
11139 ASSERT(next
!= NULL
|| act
== ecb
->dte_action_last
);
11140 ASSERT(act
->dta_refcnt
== 1);
11142 if ((format
= act
->dta_rec
.dtrd_format
) != 0)
11143 dtrace_format_remove(ecb
->dte_state
, format
);
11145 if ((dp
= act
->dta_difo
) != NULL
)
11146 dtrace_difo_release(dp
, vstate
);
11148 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
11149 dtrace_ecb_aggregation_destroy(ecb
, act
);
11151 kmem_free(act
, sizeof (dtrace_action_t
));
11156 ecb
->dte_action
= NULL
;
11157 ecb
->dte_action_last
= NULL
;
11162 dtrace_ecb_disable(dtrace_ecb_t
*ecb
)
11165 * We disable the ECB by removing it from its probe.
11167 dtrace_ecb_t
*pecb
, *prev
= NULL
;
11168 dtrace_probe_t
*probe
= ecb
->dte_probe
;
11170 ASSERT(MUTEX_HELD(&dtrace_lock
));
11172 if (probe
== NULL
) {
11174 * This is the NULL probe; there is nothing to disable.
11179 for (pecb
= probe
->dtpr_ecb
; pecb
!= NULL
; pecb
= pecb
->dte_next
) {
11185 ASSERT(pecb
!= NULL
);
11187 if (prev
== NULL
) {
11188 probe
->dtpr_ecb
= ecb
->dte_next
;
11190 prev
->dte_next
= ecb
->dte_next
;
11193 if (ecb
== probe
->dtpr_ecb_last
) {
11194 ASSERT(ecb
->dte_next
== NULL
);
11195 probe
->dtpr_ecb_last
= prev
;
11199 * The ECB has been disconnected from the probe; now sync to assure
11200 * that all CPUs have seen the change before returning.
11204 if (probe
->dtpr_ecb
== NULL
) {
11206 * That was the last ECB on the probe; clear the predicate
11207 * cache ID for the probe, disable it and sync one more time
11208 * to assure that we'll never hit it again.
11210 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
11212 ASSERT(ecb
->dte_next
== NULL
);
11213 ASSERT(probe
->dtpr_ecb_last
== NULL
);
11214 probe
->dtpr_predcache
= DTRACE_CACHEIDNONE
;
11215 prov
->dtpv_pops
.dtps_disable(prov
->dtpv_arg
,
11216 probe
->dtpr_id
, probe
->dtpr_arg
);
11220 * There is at least one ECB remaining on the probe. If there
11221 * is _exactly_ one, set the probe's predicate cache ID to be
11222 * the predicate cache ID of the remaining ECB.
11224 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
11225 ASSERT(probe
->dtpr_predcache
== DTRACE_CACHEIDNONE
);
11227 if (probe
->dtpr_ecb
== probe
->dtpr_ecb_last
) {
11228 dtrace_predicate_t
*p
= probe
->dtpr_ecb
->dte_predicate
;
11230 ASSERT(probe
->dtpr_ecb
->dte_next
== NULL
);
11233 probe
->dtpr_predcache
= p
->dtp_cacheid
;
11236 ecb
->dte_next
= NULL
;
11241 dtrace_ecb_destroy(dtrace_ecb_t
*ecb
)
11243 dtrace_state_t
*state
= ecb
->dte_state
;
11244 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
11245 dtrace_predicate_t
*pred
;
11246 dtrace_epid_t epid
= ecb
->dte_epid
;
11248 ASSERT(MUTEX_HELD(&dtrace_lock
));
11249 ASSERT(ecb
->dte_next
== NULL
);
11250 ASSERT(ecb
->dte_probe
== NULL
|| ecb
->dte_probe
->dtpr_ecb
!= ecb
);
11252 if ((pred
= ecb
->dte_predicate
) != NULL
)
11253 dtrace_predicate_release(pred
, vstate
);
11255 dtrace_ecb_action_remove(ecb
);
11257 ASSERT(state
->dts_ecbs
[epid
- 1] == ecb
);
11258 state
->dts_ecbs
[epid
- 1] = NULL
;
11260 kmem_free(ecb
, sizeof (dtrace_ecb_t
));
11263 static dtrace_ecb_t
*
11264 dtrace_ecb_create(dtrace_state_t
*state
, dtrace_probe_t
*probe
,
11265 dtrace_enabling_t
*enab
)
11268 dtrace_predicate_t
*pred
;
11269 dtrace_actdesc_t
*act
;
11270 dtrace_provider_t
*prov
;
11271 dtrace_ecbdesc_t
*desc
= enab
->dten_current
;
11273 ASSERT(MUTEX_HELD(&dtrace_lock
));
11274 ASSERT(state
!= NULL
);
11276 ecb
= dtrace_ecb_add(state
, probe
);
11277 ecb
->dte_uarg
= desc
->dted_uarg
;
11279 if ((pred
= desc
->dted_pred
.dtpdd_predicate
) != NULL
) {
11280 dtrace_predicate_hold(pred
);
11281 ecb
->dte_predicate
= pred
;
11284 if (probe
!= NULL
) {
11286 * If the provider shows more leg than the consumer is old
11287 * enough to see, we need to enable the appropriate implicit
11288 * predicate bits to prevent the ecb from activating at
11291 * Providers specifying DTRACE_PRIV_USER at register time
11292 * are stating that they need the /proc-style privilege
11293 * model to be enforced, and this is what DTRACE_COND_OWNER
11294 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11296 prov
= probe
->dtpr_provider
;
11297 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLPROC
) &&
11298 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
11299 ecb
->dte_cond
|= DTRACE_COND_OWNER
;
11301 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLZONE
) &&
11302 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
11303 ecb
->dte_cond
|= DTRACE_COND_ZONEOWNER
;
11306 * If the provider shows us kernel innards and the user
11307 * is lacking sufficient privilege, enable the
11308 * DTRACE_COND_USERMODE implicit predicate.
11310 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) &&
11311 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_KERNEL
))
11312 ecb
->dte_cond
|= DTRACE_COND_USERMODE
;
11315 if (dtrace_ecb_create_cache
!= NULL
) {
11317 * If we have a cached ecb, we'll use its action list instead
11318 * of creating our own (saving both time and space).
11320 dtrace_ecb_t
*cached
= dtrace_ecb_create_cache
;
11321 dtrace_action_t
*act
= cached
->dte_action
;
11324 ASSERT(act
->dta_refcnt
> 0);
11326 ecb
->dte_action
= act
;
11327 ecb
->dte_action_last
= cached
->dte_action_last
;
11328 ecb
->dte_needed
= cached
->dte_needed
;
11329 ecb
->dte_size
= cached
->dte_size
;
11330 ecb
->dte_alignment
= cached
->dte_alignment
;
11336 for (act
= desc
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
11337 if ((enab
->dten_error
= dtrace_ecb_action_add(ecb
, act
)) != 0) {
11338 dtrace_ecb_destroy(ecb
);
11343 if ((enab
->dten_error
= dtrace_ecb_resize(ecb
)) != 0) {
11344 dtrace_ecb_destroy(ecb
);
11348 return (dtrace_ecb_create_cache
= ecb
);
11352 dtrace_ecb_create_enable(dtrace_probe_t
*probe
, void *arg
)
11355 dtrace_enabling_t
*enab
= arg
;
11356 dtrace_state_t
*state
= enab
->dten_vstate
->dtvs_state
;
11358 ASSERT(state
!= NULL
);
11360 if (probe
!= NULL
&& probe
->dtpr_gen
< enab
->dten_probegen
) {
11362 * This probe was created in a generation for which this
11363 * enabling has previously created ECBs; we don't want to
11364 * enable it again, so just kick out.
11366 return (DTRACE_MATCH_NEXT
);
11369 if ((ecb
= dtrace_ecb_create(state
, probe
, enab
)) == NULL
)
11370 return (DTRACE_MATCH_DONE
);
11372 if (dtrace_ecb_enable(ecb
) < 0)
11373 return (DTRACE_MATCH_FAIL
);
11375 return (DTRACE_MATCH_NEXT
);
11378 static dtrace_ecb_t
*
11379 dtrace_epid2ecb(dtrace_state_t
*state
, dtrace_epid_t id
)
11383 ASSERT(MUTEX_HELD(&dtrace_lock
));
11385 if (id
== 0 || id
> state
->dts_necbs
)
11388 ASSERT(state
->dts_necbs
> 0 && state
->dts_ecbs
!= NULL
);
11389 ASSERT((ecb
= state
->dts_ecbs
[id
- 1]) == NULL
|| ecb
->dte_epid
== id
);
11391 return (state
->dts_ecbs
[id
- 1]);
11394 static dtrace_aggregation_t
*
11395 dtrace_aggid2agg(dtrace_state_t
*state
, dtrace_aggid_t id
)
11397 dtrace_aggregation_t
*agg
;
11399 ASSERT(MUTEX_HELD(&dtrace_lock
));
11401 if (id
== 0 || id
> state
->dts_naggregations
)
11404 ASSERT(state
->dts_naggregations
> 0 && state
->dts_aggregations
!= NULL
);
11405 ASSERT((agg
= state
->dts_aggregations
[id
- 1]) == NULL
||
11406 agg
->dtag_id
== id
);
11408 return (state
->dts_aggregations
[id
- 1]);
11412 * DTrace Buffer Functions
11414 * The following functions manipulate DTrace buffers. Most of these functions
11415 * are called in the context of establishing or processing consumer state;
11416 * exceptions are explicitly noted.
11420 * Note: called from cross call context. This function switches the two
11421 * buffers on a given CPU. The atomicity of this operation is assured by
11422 * disabling interrupts while the actual switch takes place; the disabling of
11423 * interrupts serializes the execution with any execution of dtrace_probe() on
11427 dtrace_buffer_switch(dtrace_buffer_t
*buf
)
11429 caddr_t tomax
= buf
->dtb_tomax
;
11430 caddr_t xamot
= buf
->dtb_xamot
;
11431 dtrace_icookie_t cookie
;
11434 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11435 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_RING
));
11437 cookie
= dtrace_interrupt_disable();
11438 now
= dtrace_gethrtime();
11439 buf
->dtb_tomax
= xamot
;
11440 buf
->dtb_xamot
= tomax
;
11441 buf
->dtb_xamot_drops
= buf
->dtb_drops
;
11442 buf
->dtb_xamot_offset
= buf
->dtb_offset
;
11443 buf
->dtb_xamot_errors
= buf
->dtb_errors
;
11444 buf
->dtb_xamot_flags
= buf
->dtb_flags
;
11445 buf
->dtb_offset
= 0;
11446 buf
->dtb_drops
= 0;
11447 buf
->dtb_errors
= 0;
11448 buf
->dtb_flags
&= ~(DTRACEBUF_ERROR
| DTRACEBUF_DROPPED
);
11449 buf
->dtb_interval
= now
- buf
->dtb_switched
;
11450 buf
->dtb_switched
= now
;
11451 dtrace_interrupt_enable(cookie
);
11455 * Note: called from cross call context. This function activates a buffer
11456 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11457 * is guaranteed by the disabling of interrupts.
11460 dtrace_buffer_activate(dtrace_state_t
*state
)
11462 dtrace_buffer_t
*buf
;
11463 dtrace_icookie_t cookie
= dtrace_interrupt_disable();
11465 buf
= &state
->dts_buffer
[CPU
->cpu_id
];
11467 if (buf
->dtb_tomax
!= NULL
) {
11469 * We might like to assert that the buffer is marked inactive,
11470 * but this isn't necessarily true: the buffer for the CPU
11471 * that processes the BEGIN probe has its buffer activated
11472 * manually. In this case, we take the (harmless) action
11473 * re-clearing the bit INACTIVE bit.
11475 buf
->dtb_flags
&= ~DTRACEBUF_INACTIVE
;
11478 dtrace_interrupt_enable(cookie
);
11482 dtrace_buffer_alloc(dtrace_buffer_t
*bufs
, size_t size
, int flags
,
11483 processorid_t cpu
, int *factor
)
11486 dtrace_buffer_t
*buf
;
11487 int allocated
= 0, desired
= 0;
11489 ASSERT(MUTEX_HELD(&cpu_lock
));
11490 ASSERT(MUTEX_HELD(&dtrace_lock
));
11494 if (size
> dtrace_nonroot_maxsize
&&
11495 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL
, B_FALSE
))
11501 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11504 buf
= &bufs
[cp
->cpu_id
];
11507 * If there is already a buffer allocated for this CPU, it
11508 * is only possible that this is a DR event. In this case,
11509 * the buffer size must match our specified size.
11511 if (buf
->dtb_tomax
!= NULL
) {
11512 ASSERT(buf
->dtb_size
== size
);
11516 ASSERT(buf
->dtb_xamot
== NULL
);
11518 if ((buf
->dtb_tomax
= kmem_zalloc(size
,
11519 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
11522 buf
->dtb_size
= size
;
11523 buf
->dtb_flags
= flags
;
11524 buf
->dtb_offset
= 0;
11525 buf
->dtb_drops
= 0;
11527 if (flags
& DTRACEBUF_NOSWITCH
)
11530 if ((buf
->dtb_xamot
= kmem_zalloc(size
,
11531 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
11533 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11541 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11544 buf
= &bufs
[cp
->cpu_id
];
11547 if (buf
->dtb_xamot
!= NULL
) {
11548 ASSERT(buf
->dtb_tomax
!= NULL
);
11549 ASSERT(buf
->dtb_size
== size
);
11550 kmem_free(buf
->dtb_xamot
, size
);
11554 if (buf
->dtb_tomax
!= NULL
) {
11555 ASSERT(buf
->dtb_size
== size
);
11556 kmem_free(buf
->dtb_tomax
, size
);
11560 buf
->dtb_tomax
= NULL
;
11561 buf
->dtb_xamot
= NULL
;
11563 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11565 *factor
= desired
/ (allocated
> 0 ? allocated
: 1);
11571 * Note: called from probe context. This function just increments the drop
11572 * count on a buffer. It has been made a function to allow for the
11573 * possibility of understanding the source of mysterious drop counts. (A
11574 * problem for which one may be particularly disappointed that DTrace cannot
11575 * be used to understand DTrace.)
11578 dtrace_buffer_drop(dtrace_buffer_t
*buf
)
11584 * Note: called from probe context. This function is called to reserve space
11585 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11586 * mstate. Returns the new offset in the buffer, or a negative value if an
11587 * error has occurred.
11590 dtrace_buffer_reserve(dtrace_buffer_t
*buf
, size_t needed
, size_t align
,
11591 dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
11593 intptr_t offs
= buf
->dtb_offset
, soffs
;
11598 if (buf
->dtb_flags
& DTRACEBUF_INACTIVE
)
11601 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
11602 dtrace_buffer_drop(buf
);
11606 if (!(buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
))) {
11607 while (offs
& (align
- 1)) {
11609 * Assert that our alignment is off by a number which
11610 * is itself sizeof (uint32_t) aligned.
11612 ASSERT(!((align
- (offs
& (align
- 1))) &
11613 (sizeof (uint32_t) - 1)));
11614 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11615 offs
+= sizeof (uint32_t);
11618 if ((soffs
= offs
+ needed
) > buf
->dtb_size
) {
11619 dtrace_buffer_drop(buf
);
11623 if (mstate
== NULL
)
11626 mstate
->dtms_scratch_base
= (uintptr_t)tomax
+ soffs
;
11627 mstate
->dtms_scratch_size
= buf
->dtb_size
- soffs
;
11628 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11633 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11634 if (state
->dts_activity
!= DTRACE_ACTIVITY_COOLDOWN
&&
11635 (buf
->dtb_flags
& DTRACEBUF_FULL
))
11640 total
= needed
+ (offs
& (align
- 1));
11643 * For a ring buffer, life is quite a bit more complicated. Before
11644 * we can store any padding, we need to adjust our wrapping offset.
11645 * (If we've never before wrapped or we're not about to, no adjustment
11648 if ((buf
->dtb_flags
& DTRACEBUF_WRAPPED
) ||
11649 offs
+ total
> buf
->dtb_size
) {
11650 woffs
= buf
->dtb_xamot_offset
;
11652 if (offs
+ total
> buf
->dtb_size
) {
11654 * We can't fit in the end of the buffer. First, a
11655 * sanity check that we can fit in the buffer at all.
11657 if (total
> buf
->dtb_size
) {
11658 dtrace_buffer_drop(buf
);
11663 * We're going to be storing at the top of the buffer,
11664 * so now we need to deal with the wrapped offset. We
11665 * only reset our wrapped offset to 0 if it is
11666 * currently greater than the current offset. If it
11667 * is less than the current offset, it is because a
11668 * previous allocation induced a wrap -- but the
11669 * allocation didn't subsequently take the space due
11670 * to an error or false predicate evaluation. In this
11671 * case, we'll just leave the wrapped offset alone: if
11672 * the wrapped offset hasn't been advanced far enough
11673 * for this allocation, it will be adjusted in the
11676 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
11684 * Now we know that we're going to be storing to the
11685 * top of the buffer and that there is room for us
11686 * there. We need to clear the buffer from the current
11687 * offset to the end (there may be old gunk there).
11689 while (offs
< buf
->dtb_size
)
11693 * We need to set our offset to zero. And because we
11694 * are wrapping, we need to set the bit indicating as
11695 * much. We can also adjust our needed space back
11696 * down to the space required by the ECB -- we know
11697 * that the top of the buffer is aligned.
11701 buf
->dtb_flags
|= DTRACEBUF_WRAPPED
;
11704 * There is room for us in the buffer, so we simply
11705 * need to check the wrapped offset.
11707 if (woffs
< offs
) {
11709 * The wrapped offset is less than the offset.
11710 * This can happen if we allocated buffer space
11711 * that induced a wrap, but then we didn't
11712 * subsequently take the space due to an error
11713 * or false predicate evaluation. This is
11714 * okay; we know that _this_ allocation isn't
11715 * going to induce a wrap. We still can't
11716 * reset the wrapped offset to be zero,
11717 * however: the space may have been trashed in
11718 * the previous failed probe attempt. But at
11719 * least the wrapped offset doesn't need to
11720 * be adjusted at all...
11726 while (offs
+ total
> woffs
) {
11727 dtrace_epid_t epid
= *(uint32_t *)(tomax
+ woffs
);
11730 if (epid
== DTRACE_EPIDNONE
) {
11731 size
= sizeof (uint32_t);
11733 ASSERT3U(epid
, <=, state
->dts_necbs
);
11734 ASSERT(state
->dts_ecbs
[epid
- 1] != NULL
);
11736 size
= state
->dts_ecbs
[epid
- 1]->dte_size
;
11739 ASSERT(woffs
+ size
<= buf
->dtb_size
);
11742 if (woffs
+ size
== buf
->dtb_size
) {
11744 * We've reached the end of the buffer; we want
11745 * to set the wrapped offset to 0 and break
11746 * out. However, if the offs is 0, then we're
11747 * in a strange edge-condition: the amount of
11748 * space that we want to reserve plus the size
11749 * of the record that we're overwriting is
11750 * greater than the size of the buffer. This
11751 * is problematic because if we reserve the
11752 * space but subsequently don't consume it (due
11753 * to a failed predicate or error) the wrapped
11754 * offset will be 0 -- yet the EPID at offset 0
11755 * will not be committed. This situation is
11756 * relatively easy to deal with: if we're in
11757 * this case, the buffer is indistinguishable
11758 * from one that hasn't wrapped; we need only
11759 * finish the job by clearing the wrapped bit,
11760 * explicitly setting the offset to be 0, and
11761 * zero'ing out the old data in the buffer.
11764 buf
->dtb_flags
&= ~DTRACEBUF_WRAPPED
;
11765 buf
->dtb_offset
= 0;
11768 while (woffs
< buf
->dtb_size
)
11769 tomax
[woffs
++] = 0;
11780 * We have a wrapped offset. It may be that the wrapped offset
11781 * has become zero -- that's okay.
11783 buf
->dtb_xamot_offset
= woffs
;
11788 * Now we can plow the buffer with any necessary padding.
11790 while (offs
& (align
- 1)) {
11792 * Assert that our alignment is off by a number which
11793 * is itself sizeof (uint32_t) aligned.
11795 ASSERT(!((align
- (offs
& (align
- 1))) &
11796 (sizeof (uint32_t) - 1)));
11797 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11798 offs
+= sizeof (uint32_t);
11801 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11802 if (offs
+ needed
> buf
->dtb_size
- state
->dts_reserve
) {
11803 buf
->dtb_flags
|= DTRACEBUF_FULL
;
11808 if (mstate
== NULL
)
11812 * For ring buffers and fill buffers, the scratch space is always
11813 * the inactive buffer.
11815 mstate
->dtms_scratch_base
= (uintptr_t)buf
->dtb_xamot
;
11816 mstate
->dtms_scratch_size
= buf
->dtb_size
;
11817 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11823 dtrace_buffer_polish(dtrace_buffer_t
*buf
)
11825 ASSERT(buf
->dtb_flags
& DTRACEBUF_RING
);
11826 ASSERT(MUTEX_HELD(&dtrace_lock
));
11828 if (!(buf
->dtb_flags
& DTRACEBUF_WRAPPED
))
11832 * We need to polish the ring buffer. There are three cases:
11834 * - The first (and presumably most common) is that there is no gap
11835 * between the buffer offset and the wrapped offset. In this case,
11836 * there is nothing in the buffer that isn't valid data; we can
11837 * mark the buffer as polished and return.
11839 * - The second (less common than the first but still more common
11840 * than the third) is that there is a gap between the buffer offset
11841 * and the wrapped offset, and the wrapped offset is larger than the
11842 * buffer offset. This can happen because of an alignment issue, or
11843 * can happen because of a call to dtrace_buffer_reserve() that
11844 * didn't subsequently consume the buffer space. In this case,
11845 * we need to zero the data from the buffer offset to the wrapped
11848 * - The third (and least common) is that there is a gap between the
11849 * buffer offset and the wrapped offset, but the wrapped offset is
11850 * _less_ than the buffer offset. This can only happen because a
11851 * call to dtrace_buffer_reserve() induced a wrap, but the space
11852 * was not subsequently consumed. In this case, we need to zero the
11853 * space from the offset to the end of the buffer _and_ from the
11854 * top of the buffer to the wrapped offset.
11856 if (buf
->dtb_offset
< buf
->dtb_xamot_offset
) {
11857 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11858 buf
->dtb_xamot_offset
- buf
->dtb_offset
);
11861 if (buf
->dtb_offset
> buf
->dtb_xamot_offset
) {
11862 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11863 buf
->dtb_size
- buf
->dtb_offset
);
11864 bzero(buf
->dtb_tomax
, buf
->dtb_xamot_offset
);
11869 * This routine determines if data generated at the specified time has likely
11870 * been entirely consumed at user-level. This routine is called to determine
11871 * if an ECB on a defunct probe (but for an active enabling) can be safely
11872 * disabled and destroyed.
11875 dtrace_buffer_consumed(dtrace_buffer_t
*bufs
, hrtime_t when
)
11879 for (i
= 0; i
< NCPU
; i
++) {
11880 dtrace_buffer_t
*buf
= &bufs
[i
];
11882 if (buf
->dtb_size
== 0)
11885 if (buf
->dtb_flags
& DTRACEBUF_RING
)
11888 if (!buf
->dtb_switched
&& buf
->dtb_offset
!= 0)
11891 if (buf
->dtb_switched
- buf
->dtb_interval
< when
)
11899 dtrace_buffer_free(dtrace_buffer_t
*bufs
)
11903 for (i
= 0; i
< NCPU
; i
++) {
11904 dtrace_buffer_t
*buf
= &bufs
[i
];
11906 if (buf
->dtb_tomax
== NULL
) {
11907 ASSERT(buf
->dtb_xamot
== NULL
);
11908 ASSERT(buf
->dtb_size
== 0);
11912 if (buf
->dtb_xamot
!= NULL
) {
11913 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11914 kmem_free(buf
->dtb_xamot
, buf
->dtb_size
);
11917 kmem_free(buf
->dtb_tomax
, buf
->dtb_size
);
11919 buf
->dtb_tomax
= NULL
;
11920 buf
->dtb_xamot
= NULL
;
11925 * DTrace Enabling Functions
11927 static dtrace_enabling_t
*
11928 dtrace_enabling_create(dtrace_vstate_t
*vstate
)
11930 dtrace_enabling_t
*enab
;
11932 enab
= kmem_zalloc(sizeof (dtrace_enabling_t
), KM_SLEEP
);
11933 enab
->dten_vstate
= vstate
;
11939 dtrace_enabling_add(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
)
11941 dtrace_ecbdesc_t
**ndesc
;
11942 size_t osize
, nsize
;
11945 * We can't add to enablings after we've enabled them, or after we've
11948 ASSERT(enab
->dten_probegen
== 0);
11949 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11951 if (enab
->dten_ndesc
< enab
->dten_maxdesc
) {
11952 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11956 osize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11958 if (enab
->dten_maxdesc
== 0) {
11959 enab
->dten_maxdesc
= 1;
11961 enab
->dten_maxdesc
<<= 1;
11964 ASSERT(enab
->dten_ndesc
< enab
->dten_maxdesc
);
11966 nsize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11967 ndesc
= kmem_zalloc(nsize
, KM_SLEEP
);
11968 bcopy(enab
->dten_desc
, ndesc
, osize
);
11969 kmem_free(enab
->dten_desc
, osize
);
11971 enab
->dten_desc
= ndesc
;
11972 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11976 dtrace_enabling_addlike(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
,
11977 dtrace_probedesc_t
*pd
)
11979 dtrace_ecbdesc_t
*new;
11980 dtrace_predicate_t
*pred
;
11981 dtrace_actdesc_t
*act
;
11984 * We're going to create a new ECB description that matches the
11985 * specified ECB in every way, but has the specified probe description.
11987 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
11989 if ((pred
= ecb
->dted_pred
.dtpdd_predicate
) != NULL
)
11990 dtrace_predicate_hold(pred
);
11992 for (act
= ecb
->dted_action
; act
!= NULL
; act
= act
->dtad_next
)
11993 dtrace_actdesc_hold(act
);
11995 new->dted_action
= ecb
->dted_action
;
11996 new->dted_pred
= ecb
->dted_pred
;
11997 new->dted_probe
= *pd
;
11998 new->dted_uarg
= ecb
->dted_uarg
;
12000 dtrace_enabling_add(enab
, new);
12004 dtrace_enabling_dump(dtrace_enabling_t
*enab
)
12008 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12009 dtrace_probedesc_t
*desc
= &enab
->dten_desc
[i
]->dted_probe
;
12011 cmn_err(CE_NOTE
, "enabling probe %d (%s:%s:%s:%s)", i
,
12012 desc
->dtpd_provider
, desc
->dtpd_mod
,
12013 desc
->dtpd_func
, desc
->dtpd_name
);
12018 dtrace_enabling_destroy(dtrace_enabling_t
*enab
)
12021 dtrace_ecbdesc_t
*ep
;
12022 dtrace_vstate_t
*vstate
= enab
->dten_vstate
;
12024 ASSERT(MUTEX_HELD(&dtrace_lock
));
12026 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12027 dtrace_actdesc_t
*act
, *next
;
12028 dtrace_predicate_t
*pred
;
12030 ep
= enab
->dten_desc
[i
];
12032 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
)
12033 dtrace_predicate_release(pred
, vstate
);
12035 for (act
= ep
->dted_action
; act
!= NULL
; act
= next
) {
12036 next
= act
->dtad_next
;
12037 dtrace_actdesc_release(act
, vstate
);
12040 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
12043 kmem_free(enab
->dten_desc
,
12044 enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*));
12047 * If this was a retained enabling, decrement the dts_nretained count
12048 * and take it off of the dtrace_retained list.
12050 if (enab
->dten_prev
!= NULL
|| enab
->dten_next
!= NULL
||
12051 dtrace_retained
== enab
) {
12052 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12053 ASSERT(enab
->dten_vstate
->dtvs_state
->dts_nretained
> 0);
12054 enab
->dten_vstate
->dtvs_state
->dts_nretained
--;
12055 dtrace_retained_gen
++;
12058 if (enab
->dten_prev
== NULL
) {
12059 if (dtrace_retained
== enab
) {
12060 dtrace_retained
= enab
->dten_next
;
12062 if (dtrace_retained
!= NULL
)
12063 dtrace_retained
->dten_prev
= NULL
;
12066 ASSERT(enab
!= dtrace_retained
);
12067 ASSERT(dtrace_retained
!= NULL
);
12068 enab
->dten_prev
->dten_next
= enab
->dten_next
;
12071 if (enab
->dten_next
!= NULL
) {
12072 ASSERT(dtrace_retained
!= NULL
);
12073 enab
->dten_next
->dten_prev
= enab
->dten_prev
;
12076 kmem_free(enab
, sizeof (dtrace_enabling_t
));
12080 dtrace_enabling_retain(dtrace_enabling_t
*enab
)
12082 dtrace_state_t
*state
;
12084 ASSERT(MUTEX_HELD(&dtrace_lock
));
12085 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
12086 ASSERT(enab
->dten_vstate
!= NULL
);
12088 state
= enab
->dten_vstate
->dtvs_state
;
12089 ASSERT(state
!= NULL
);
12092 * We only allow each state to retain dtrace_retain_max enablings.
12094 if (state
->dts_nretained
>= dtrace_retain_max
)
12097 state
->dts_nretained
++;
12098 dtrace_retained_gen
++;
12100 if (dtrace_retained
== NULL
) {
12101 dtrace_retained
= enab
;
12105 enab
->dten_next
= dtrace_retained
;
12106 dtrace_retained
->dten_prev
= enab
;
12107 dtrace_retained
= enab
;
12113 dtrace_enabling_replicate(dtrace_state_t
*state
, dtrace_probedesc_t
*match
,
12114 dtrace_probedesc_t
*create
)
12116 dtrace_enabling_t
*new, *enab
;
12117 int found
= 0, err
= ENOENT
;
12119 ASSERT(MUTEX_HELD(&dtrace_lock
));
12120 ASSERT(strlen(match
->dtpd_provider
) < DTRACE_PROVNAMELEN
);
12121 ASSERT(strlen(match
->dtpd_mod
) < DTRACE_MODNAMELEN
);
12122 ASSERT(strlen(match
->dtpd_func
) < DTRACE_FUNCNAMELEN
);
12123 ASSERT(strlen(match
->dtpd_name
) < DTRACE_NAMELEN
);
12125 new = dtrace_enabling_create(&state
->dts_vstate
);
12128 * Iterate over all retained enablings, looking for enablings that
12129 * match the specified state.
12131 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12135 * dtvs_state can only be NULL for helper enablings -- and
12136 * helper enablings can't be retained.
12138 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12140 if (enab
->dten_vstate
->dtvs_state
!= state
)
12144 * Now iterate over each probe description; we're looking for
12145 * an exact match to the specified probe description.
12147 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12148 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
12149 dtrace_probedesc_t
*pd
= &ep
->dted_probe
;
12151 if (strcmp(pd
->dtpd_provider
, match
->dtpd_provider
))
12154 if (strcmp(pd
->dtpd_mod
, match
->dtpd_mod
))
12157 if (strcmp(pd
->dtpd_func
, match
->dtpd_func
))
12160 if (strcmp(pd
->dtpd_name
, match
->dtpd_name
))
12164 * We have a winning probe! Add it to our growing
12168 dtrace_enabling_addlike(new, ep
, create
);
12172 if (!found
|| (err
= dtrace_enabling_retain(new)) != 0) {
12173 dtrace_enabling_destroy(new);
12181 dtrace_enabling_retract(dtrace_state_t
*state
)
12183 dtrace_enabling_t
*enab
, *next
;
12185 ASSERT(MUTEX_HELD(&dtrace_lock
));
12188 * Iterate over all retained enablings, destroy the enablings retained
12189 * for the specified state.
12191 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= next
) {
12192 next
= enab
->dten_next
;
12195 * dtvs_state can only be NULL for helper enablings -- and
12196 * helper enablings can't be retained.
12198 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12200 if (enab
->dten_vstate
->dtvs_state
== state
) {
12201 ASSERT(state
->dts_nretained
> 0);
12202 dtrace_enabling_destroy(enab
);
12206 ASSERT(state
->dts_nretained
== 0);
12210 dtrace_enabling_match(dtrace_enabling_t
*enab
, int *nmatched
)
12213 int total_matched
= 0, matched
= 0;
12215 ASSERT(MUTEX_HELD(&cpu_lock
));
12216 ASSERT(MUTEX_HELD(&dtrace_lock
));
12218 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12219 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
12221 enab
->dten_current
= ep
;
12222 enab
->dten_error
= 0;
12225 * If a provider failed to enable a probe then get out and
12226 * let the consumer know we failed.
12228 if ((matched
= dtrace_probe_enable(&ep
->dted_probe
, enab
)) < 0)
12231 total_matched
+= matched
;
12233 if (enab
->dten_error
!= 0) {
12235 * If we get an error half-way through enabling the
12236 * probes, we kick out -- perhaps with some number of
12237 * them enabled. Leaving enabled probes enabled may
12238 * be slightly confusing for user-level, but we expect
12239 * that no one will attempt to actually drive on in
12240 * the face of such errors. If this is an anonymous
12241 * enabling (indicated with a NULL nmatched pointer),
12242 * we cmn_err() a message. We aren't expecting to
12243 * get such an error -- such as it can exist at all,
12244 * it would be a result of corrupted DOF in the driver
12247 if (nmatched
== NULL
) {
12248 cmn_err(CE_WARN
, "dtrace_enabling_match() "
12249 "error on %p: %d", (void *)ep
,
12253 return (enab
->dten_error
);
12257 enab
->dten_probegen
= dtrace_probegen
;
12258 if (nmatched
!= NULL
)
12259 *nmatched
= total_matched
;
12265 dtrace_enabling_matchall(void)
12267 dtrace_enabling_t
*enab
;
12269 mutex_enter(&cpu_lock
);
12270 mutex_enter(&dtrace_lock
);
12273 * Iterate over all retained enablings to see if any probes match
12274 * against them. We only perform this operation on enablings for which
12275 * we have sufficient permissions by virtue of being in the global zone
12276 * or in the same zone as the DTrace client. Because we can be called
12277 * after dtrace_detach() has been called, we cannot assert that there
12278 * are retained enablings. We can safely load from dtrace_retained,
12279 * however: the taskq_destroy() at the end of dtrace_detach() will
12280 * block pending our completion.
12282 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12283 dtrace_cred_t
*dcr
= &enab
->dten_vstate
->dtvs_state
->dts_cred
;
12284 cred_t
*cr
= dcr
->dcr_cred
;
12285 zoneid_t zone
= cr
!= NULL
? crgetzoneid(cr
) : 0;
12287 if ((dcr
->dcr_visible
& DTRACE_CRV_ALLZONE
) || (cr
!= NULL
&&
12288 (zone
== GLOBAL_ZONEID
|| getzoneid() == zone
)))
12289 (void) dtrace_enabling_match(enab
, NULL
);
12292 mutex_exit(&dtrace_lock
);
12293 mutex_exit(&cpu_lock
);
12297 * If an enabling is to be enabled without having matched probes (that is, if
12298 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12299 * enabling must be _primed_ by creating an ECB for every ECB description.
12300 * This must be done to assure that we know the number of speculations, the
12301 * number of aggregations, the minimum buffer size needed, etc. before we
12302 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12303 * enabling any probes, we create ECBs for every ECB decription, but with a
12304 * NULL probe -- which is exactly what this function does.
12307 dtrace_enabling_prime(dtrace_state_t
*state
)
12309 dtrace_enabling_t
*enab
;
12312 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12313 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12315 if (enab
->dten_vstate
->dtvs_state
!= state
)
12319 * We don't want to prime an enabling more than once, lest
12320 * we allow a malicious user to induce resource exhaustion.
12321 * (The ECBs that result from priming an enabling aren't
12322 * leaked -- but they also aren't deallocated until the
12323 * consumer state is destroyed.)
12325 if (enab
->dten_primed
)
12328 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12329 enab
->dten_current
= enab
->dten_desc
[i
];
12330 (void) dtrace_probe_enable(NULL
, enab
);
12333 enab
->dten_primed
= 1;
12338 * Called to indicate that probes should be provided due to retained
12339 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12340 * must take an initial lap through the enabling calling the dtps_provide()
12341 * entry point explicitly to allow for autocreated probes.
12344 dtrace_enabling_provide(dtrace_provider_t
*prv
)
12347 dtrace_probedesc_t desc
;
12348 dtrace_genid_t gen
;
12350 ASSERT(MUTEX_HELD(&dtrace_lock
));
12351 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
12355 prv
= dtrace_provider
;
12359 dtrace_enabling_t
*enab
;
12360 void *parg
= prv
->dtpv_arg
;
12363 gen
= dtrace_retained_gen
;
12364 for (enab
= dtrace_retained
; enab
!= NULL
;
12365 enab
= enab
->dten_next
) {
12366 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12367 desc
= enab
->dten_desc
[i
]->dted_probe
;
12368 mutex_exit(&dtrace_lock
);
12369 prv
->dtpv_pops
.dtps_provide(parg
, &desc
);
12370 mutex_enter(&dtrace_lock
);
12372 * Process the retained enablings again if
12373 * they have changed while we weren't holding
12376 if (gen
!= dtrace_retained_gen
)
12380 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
12382 mutex_exit(&dtrace_lock
);
12383 dtrace_probe_provide(NULL
, all
? NULL
: prv
);
12384 mutex_enter(&dtrace_lock
);
12388 * Called to reap ECBs that are attached to probes from defunct providers.
12391 dtrace_enabling_reap(void)
12393 dtrace_provider_t
*prov
;
12394 dtrace_probe_t
*probe
;
12399 mutex_enter(&cpu_lock
);
12400 mutex_enter(&dtrace_lock
);
12402 for (i
= 0; i
< dtrace_nprobes
; i
++) {
12403 if ((probe
= dtrace_probes
[i
]) == NULL
)
12406 if (probe
->dtpr_ecb
== NULL
)
12409 prov
= probe
->dtpr_provider
;
12411 if ((when
= prov
->dtpv_defunct
) == 0)
12415 * We have ECBs on a defunct provider: we want to reap these
12416 * ECBs to allow the provider to unregister. The destruction
12417 * of these ECBs must be done carefully: if we destroy the ECB
12418 * and the consumer later wishes to consume an EPID that
12419 * corresponds to the destroyed ECB (and if the EPID metadata
12420 * has not been previously consumed), the consumer will abort
12421 * processing on the unknown EPID. To reduce (but not, sadly,
12422 * eliminate) the possibility of this, we will only destroy an
12423 * ECB for a defunct provider if, for the state that
12424 * corresponds to the ECB:
12426 * (a) There is no speculative tracing (which can effectively
12427 * cache an EPID for an arbitrary amount of time).
12429 * (b) The principal buffers have been switched twice since the
12430 * provider became defunct.
12432 * (c) The aggregation buffers are of zero size or have been
12433 * switched twice since the provider became defunct.
12435 * We use dts_speculates to determine (a) and call a function
12436 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12437 * that as soon as we've been unable to destroy one of the ECBs
12438 * associated with the probe, we quit trying -- reaping is only
12439 * fruitful in as much as we can destroy all ECBs associated
12440 * with the defunct provider's probes.
12442 while ((ecb
= probe
->dtpr_ecb
) != NULL
) {
12443 dtrace_state_t
*state
= ecb
->dte_state
;
12444 dtrace_buffer_t
*buf
= state
->dts_buffer
;
12445 dtrace_buffer_t
*aggbuf
= state
->dts_aggbuffer
;
12447 if (state
->dts_speculates
)
12450 if (!dtrace_buffer_consumed(buf
, when
))
12453 if (!dtrace_buffer_consumed(aggbuf
, when
))
12456 dtrace_ecb_disable(ecb
);
12457 ASSERT(probe
->dtpr_ecb
!= ecb
);
12458 dtrace_ecb_destroy(ecb
);
12462 mutex_exit(&dtrace_lock
);
12463 mutex_exit(&cpu_lock
);
12467 * DTrace DOF Functions
12471 dtrace_dof_error(dof_hdr_t
*dof
, const char *str
)
12473 if (dtrace_err_verbose
)
12474 cmn_err(CE_WARN
, "failed to process DOF: %s", str
);
12476 #ifdef DTRACE_ERRDEBUG
12477 dtrace_errdebug(str
);
12482 * Create DOF out of a currently enabled state. Right now, we only create
12483 * DOF containing the run-time options -- but this could be expanded to create
12484 * complete DOF representing the enabled state.
12487 dtrace_dof_create(dtrace_state_t
*state
)
12491 dof_optdesc_t
*opt
;
12492 int i
, len
= sizeof (dof_hdr_t
) +
12493 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)) +
12494 sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12496 ASSERT(MUTEX_HELD(&dtrace_lock
));
12498 dof
= kmem_zalloc(len
, KM_SLEEP
);
12499 dof
->dofh_ident
[DOF_ID_MAG0
] = DOF_MAG_MAG0
;
12500 dof
->dofh_ident
[DOF_ID_MAG1
] = DOF_MAG_MAG1
;
12501 dof
->dofh_ident
[DOF_ID_MAG2
] = DOF_MAG_MAG2
;
12502 dof
->dofh_ident
[DOF_ID_MAG3
] = DOF_MAG_MAG3
;
12504 dof
->dofh_ident
[DOF_ID_MODEL
] = DOF_MODEL_NATIVE
;
12505 dof
->dofh_ident
[DOF_ID_ENCODING
] = DOF_ENCODE_NATIVE
;
12506 dof
->dofh_ident
[DOF_ID_VERSION
] = DOF_VERSION
;
12507 dof
->dofh_ident
[DOF_ID_DIFVERS
] = DIF_VERSION
;
12508 dof
->dofh_ident
[DOF_ID_DIFIREG
] = DIF_DIR_NREGS
;
12509 dof
->dofh_ident
[DOF_ID_DIFTREG
] = DIF_DTR_NREGS
;
12511 dof
->dofh_flags
= 0;
12512 dof
->dofh_hdrsize
= sizeof (dof_hdr_t
);
12513 dof
->dofh_secsize
= sizeof (dof_sec_t
);
12514 dof
->dofh_secnum
= 1; /* only DOF_SECT_OPTDESC */
12515 dof
->dofh_secoff
= sizeof (dof_hdr_t
);
12516 dof
->dofh_loadsz
= len
;
12517 dof
->dofh_filesz
= len
;
12521 * Fill in the option section header...
12523 sec
= (dof_sec_t
*)((uintptr_t)dof
+ sizeof (dof_hdr_t
));
12524 sec
->dofs_type
= DOF_SECT_OPTDESC
;
12525 sec
->dofs_align
= sizeof (uint64_t);
12526 sec
->dofs_flags
= DOF_SECF_LOAD
;
12527 sec
->dofs_entsize
= sizeof (dof_optdesc_t
);
12529 opt
= (dof_optdesc_t
*)((uintptr_t)sec
+
12530 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)));
12532 sec
->dofs_offset
= (uintptr_t)opt
- (uintptr_t)dof
;
12533 sec
->dofs_size
= sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12535 for (i
= 0; i
< DTRACEOPT_MAX
; i
++) {
12536 opt
[i
].dofo_option
= i
;
12537 opt
[i
].dofo_strtab
= DOF_SECIDX_NONE
;
12538 opt
[i
].dofo_value
= state
->dts_options
[i
];
12545 dtrace_dof_copyin(uintptr_t uarg
, int *errp
)
12547 dof_hdr_t hdr
, *dof
;
12549 ASSERT(!MUTEX_HELD(&dtrace_lock
));
12552 * First, we're going to copyin() the sizeof (dof_hdr_t).
12554 if (copyin((void *)uarg
, &hdr
, sizeof (hdr
)) != 0) {
12555 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12561 * Now we'll allocate the entire DOF and copy it in -- provided
12562 * that the length isn't outrageous.
12564 if (hdr
.dofh_loadsz
>= dtrace_dof_maxsize
) {
12565 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12570 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12571 dtrace_dof_error(&hdr
, "invalid load size");
12576 dof
= kmem_alloc(hdr
.dofh_loadsz
, KM_SLEEP
);
12578 if (copyin((void *)uarg
, dof
, hdr
.dofh_loadsz
) != 0 ||
12579 dof
->dofh_loadsz
!= hdr
.dofh_loadsz
) {
12580 kmem_free(dof
, hdr
.dofh_loadsz
);
12589 dtrace_dof_property(const char *name
)
12593 unsigned int len
, i
;
12597 * Unfortunately, array of values in .conf files are always (and
12598 * only) interpreted to be integer arrays. We must read our DOF
12599 * as an integer array, and then squeeze it into a byte array.
12601 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY
, dtrace_devi
, 0,
12602 (char *)name
, (int **)&buf
, &len
) != DDI_PROP_SUCCESS
)
12605 for (i
= 0; i
< len
; i
++)
12606 buf
[i
] = (uchar_t
)(((int *)buf
)[i
]);
12608 if (len
< sizeof (dof_hdr_t
)) {
12609 ddi_prop_free(buf
);
12610 dtrace_dof_error(NULL
, "truncated header");
12614 if (len
< (loadsz
= ((dof_hdr_t
*)buf
)->dofh_loadsz
)) {
12615 ddi_prop_free(buf
);
12616 dtrace_dof_error(NULL
, "truncated DOF");
12620 if (loadsz
>= dtrace_dof_maxsize
) {
12621 ddi_prop_free(buf
);
12622 dtrace_dof_error(NULL
, "oversized DOF");
12626 dof
= kmem_alloc(loadsz
, KM_SLEEP
);
12627 bcopy(buf
, dof
, loadsz
);
12628 ddi_prop_free(buf
);
12634 dtrace_dof_destroy(dof_hdr_t
*dof
)
12636 kmem_free(dof
, dof
->dofh_loadsz
);
12640 * Return the dof_sec_t pointer corresponding to a given section index. If the
12641 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12642 * a type other than DOF_SECT_NONE is specified, the header is checked against
12643 * this type and NULL is returned if the types do not match.
12646 dtrace_dof_sect(dof_hdr_t
*dof
, uint32_t type
, dof_secidx_t i
)
12648 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)
12649 ((uintptr_t)dof
+ dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12651 if (i
>= dof
->dofh_secnum
) {
12652 dtrace_dof_error(dof
, "referenced section index is invalid");
12656 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
12657 dtrace_dof_error(dof
, "referenced section is not loadable");
12661 if (type
!= DOF_SECT_NONE
&& type
!= sec
->dofs_type
) {
12662 dtrace_dof_error(dof
, "referenced section is the wrong type");
12669 static dtrace_probedesc_t
*
12670 dtrace_dof_probedesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_probedesc_t
*desc
)
12672 dof_probedesc_t
*probe
;
12674 uintptr_t daddr
= (uintptr_t)dof
;
12678 if (sec
->dofs_type
!= DOF_SECT_PROBEDESC
) {
12679 dtrace_dof_error(dof
, "invalid probe section");
12683 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12684 dtrace_dof_error(dof
, "bad alignment in probe description");
12688 if (sec
->dofs_offset
+ sizeof (dof_probedesc_t
) > dof
->dofh_loadsz
) {
12689 dtrace_dof_error(dof
, "truncated probe description");
12693 probe
= (dof_probedesc_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12694 strtab
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, probe
->dofp_strtab
);
12696 if (strtab
== NULL
)
12699 str
= daddr
+ strtab
->dofs_offset
;
12700 size
= strtab
->dofs_size
;
12702 if (probe
->dofp_provider
>= strtab
->dofs_size
) {
12703 dtrace_dof_error(dof
, "corrupt probe provider");
12707 (void) strncpy(desc
->dtpd_provider
,
12708 (char *)(str
+ probe
->dofp_provider
),
12709 MIN(DTRACE_PROVNAMELEN
- 1, size
- probe
->dofp_provider
));
12711 if (probe
->dofp_mod
>= strtab
->dofs_size
) {
12712 dtrace_dof_error(dof
, "corrupt probe module");
12716 (void) strncpy(desc
->dtpd_mod
, (char *)(str
+ probe
->dofp_mod
),
12717 MIN(DTRACE_MODNAMELEN
- 1, size
- probe
->dofp_mod
));
12719 if (probe
->dofp_func
>= strtab
->dofs_size
) {
12720 dtrace_dof_error(dof
, "corrupt probe function");
12724 (void) strncpy(desc
->dtpd_func
, (char *)(str
+ probe
->dofp_func
),
12725 MIN(DTRACE_FUNCNAMELEN
- 1, size
- probe
->dofp_func
));
12727 if (probe
->dofp_name
>= strtab
->dofs_size
) {
12728 dtrace_dof_error(dof
, "corrupt probe name");
12732 (void) strncpy(desc
->dtpd_name
, (char *)(str
+ probe
->dofp_name
),
12733 MIN(DTRACE_NAMELEN
- 1, size
- probe
->dofp_name
));
12738 static dtrace_difo_t
*
12739 dtrace_dof_difo(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12744 dof_difohdr_t
*dofd
;
12745 uintptr_t daddr
= (uintptr_t)dof
;
12746 size_t max
= dtrace_difo_maxsize
;
12749 static const struct {
12757 { DOF_SECT_DIF
, offsetof(dtrace_difo_t
, dtdo_buf
),
12758 offsetof(dtrace_difo_t
, dtdo_len
), sizeof (dif_instr_t
),
12759 sizeof (dif_instr_t
), "multiple DIF sections" },
12761 { DOF_SECT_INTTAB
, offsetof(dtrace_difo_t
, dtdo_inttab
),
12762 offsetof(dtrace_difo_t
, dtdo_intlen
), sizeof (uint64_t),
12763 sizeof (uint64_t), "multiple integer tables" },
12765 { DOF_SECT_STRTAB
, offsetof(dtrace_difo_t
, dtdo_strtab
),
12766 offsetof(dtrace_difo_t
, dtdo_strlen
), 0,
12767 sizeof (char), "multiple string tables" },
12769 { DOF_SECT_VARTAB
, offsetof(dtrace_difo_t
, dtdo_vartab
),
12770 offsetof(dtrace_difo_t
, dtdo_varlen
), sizeof (dtrace_difv_t
),
12771 sizeof (uint_t
), "multiple variable tables" },
12773 { DOF_SECT_NONE
, 0, 0, 0, NULL
}
12776 if (sec
->dofs_type
!= DOF_SECT_DIFOHDR
) {
12777 dtrace_dof_error(dof
, "invalid DIFO header section");
12781 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12782 dtrace_dof_error(dof
, "bad alignment in DIFO header");
12786 if (sec
->dofs_size
< sizeof (dof_difohdr_t
) ||
12787 sec
->dofs_size
% sizeof (dof_secidx_t
)) {
12788 dtrace_dof_error(dof
, "bad size in DIFO header");
12792 dofd
= (dof_difohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12793 n
= (sec
->dofs_size
- sizeof (*dofd
)) / sizeof (dof_secidx_t
) + 1;
12795 dp
= kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
12796 dp
->dtdo_rtype
= dofd
->dofd_rtype
;
12798 for (l
= 0; l
< n
; l
++) {
12803 if ((subsec
= dtrace_dof_sect(dof
, DOF_SECT_NONE
,
12804 dofd
->dofd_links
[l
])) == NULL
)
12805 goto err
; /* invalid section link */
12807 if (ttl
+ subsec
->dofs_size
> max
) {
12808 dtrace_dof_error(dof
, "exceeds maximum size");
12812 ttl
+= subsec
->dofs_size
;
12814 for (i
= 0; difo
[i
].section
!= DOF_SECT_NONE
; i
++) {
12815 if (subsec
->dofs_type
!= difo
[i
].section
)
12818 if (!(subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12819 dtrace_dof_error(dof
, "section not loaded");
12823 if (subsec
->dofs_align
!= difo
[i
].align
) {
12824 dtrace_dof_error(dof
, "bad alignment");
12828 bufp
= (void **)((uintptr_t)dp
+ difo
[i
].bufoffs
);
12829 lenp
= (uint32_t *)((uintptr_t)dp
+ difo
[i
].lenoffs
);
12831 if (*bufp
!= NULL
) {
12832 dtrace_dof_error(dof
, difo
[i
].msg
);
12836 if (difo
[i
].entsize
!= subsec
->dofs_entsize
) {
12837 dtrace_dof_error(dof
, "entry size mismatch");
12841 if (subsec
->dofs_entsize
!= 0 &&
12842 (subsec
->dofs_size
% subsec
->dofs_entsize
) != 0) {
12843 dtrace_dof_error(dof
, "corrupt entry size");
12847 *lenp
= subsec
->dofs_size
;
12848 *bufp
= kmem_alloc(subsec
->dofs_size
, KM_SLEEP
);
12849 bcopy((char *)(uintptr_t)(daddr
+ subsec
->dofs_offset
),
12850 *bufp
, subsec
->dofs_size
);
12852 if (subsec
->dofs_entsize
!= 0)
12853 *lenp
/= subsec
->dofs_entsize
;
12859 * If we encounter a loadable DIFO sub-section that is not
12860 * known to us, assume this is a broken program and fail.
12862 if (difo
[i
].section
== DOF_SECT_NONE
&&
12863 (subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12864 dtrace_dof_error(dof
, "unrecognized DIFO subsection");
12869 if (dp
->dtdo_buf
== NULL
) {
12871 * We can't have a DIF object without DIF text.
12873 dtrace_dof_error(dof
, "missing DIF text");
12878 * Before we validate the DIF object, run through the variable table
12879 * looking for the strings -- if any of their size are under, we'll set
12880 * their size to be the system-wide default string size. Note that
12881 * this should _not_ happen if the "strsize" option has been set --
12882 * in this case, the compiler should have set the size to reflect the
12883 * setting of the option.
12885 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
12886 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
12887 dtrace_diftype_t
*t
= &v
->dtdv_type
;
12889 if (v
->dtdv_id
< DIF_VAR_OTHER_UBASE
)
12892 if (t
->dtdt_kind
== DIF_TYPE_STRING
&& t
->dtdt_size
== 0)
12893 t
->dtdt_size
= dtrace_strsize_default
;
12896 if (dtrace_difo_validate(dp
, vstate
, DIF_DIR_NREGS
, cr
) != 0)
12899 dtrace_difo_init(dp
, vstate
);
12903 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
12904 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
12905 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
12906 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
12908 kmem_free(dp
, sizeof (dtrace_difo_t
));
12912 static dtrace_predicate_t
*
12913 dtrace_dof_predicate(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12918 if ((dp
= dtrace_dof_difo(dof
, sec
, vstate
, cr
)) == NULL
)
12921 return (dtrace_predicate_create(dp
));
12924 static dtrace_actdesc_t
*
12925 dtrace_dof_actdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12928 dtrace_actdesc_t
*act
, *first
= NULL
, *last
= NULL
, *next
;
12929 dof_actdesc_t
*desc
;
12930 dof_sec_t
*difosec
;
12932 uintptr_t daddr
= (uintptr_t)dof
;
12934 dtrace_actkind_t kind
;
12936 if (sec
->dofs_type
!= DOF_SECT_ACTDESC
) {
12937 dtrace_dof_error(dof
, "invalid action section");
12941 if (sec
->dofs_offset
+ sizeof (dof_actdesc_t
) > dof
->dofh_loadsz
) {
12942 dtrace_dof_error(dof
, "truncated action description");
12946 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12947 dtrace_dof_error(dof
, "bad alignment in action description");
12951 if (sec
->dofs_size
< sec
->dofs_entsize
) {
12952 dtrace_dof_error(dof
, "section entry size exceeds total size");
12956 if (sec
->dofs_entsize
!= sizeof (dof_actdesc_t
)) {
12957 dtrace_dof_error(dof
, "bad entry size in action description");
12961 if (sec
->dofs_size
/ sec
->dofs_entsize
> dtrace_actions_max
) {
12962 dtrace_dof_error(dof
, "actions exceed dtrace_actions_max");
12966 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= sec
->dofs_entsize
) {
12967 desc
= (dof_actdesc_t
*)(daddr
+
12968 (uintptr_t)sec
->dofs_offset
+ offs
);
12969 kind
= (dtrace_actkind_t
)desc
->dofa_kind
;
12971 if ((DTRACEACT_ISPRINTFLIKE(kind
) &&
12972 (kind
!= DTRACEACT_PRINTA
||
12973 desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) ||
12974 (kind
== DTRACEACT_DIFEXPR
&&
12975 desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) {
12981 * The argument to these actions is an index into the
12982 * DOF string table. For printf()-like actions, this
12983 * is the format string. For print(), this is the
12984 * CTF type of the expression result.
12986 if ((strtab
= dtrace_dof_sect(dof
,
12987 DOF_SECT_STRTAB
, desc
->dofa_strtab
)) == NULL
)
12990 str
= (char *)((uintptr_t)dof
+
12991 (uintptr_t)strtab
->dofs_offset
);
12993 for (i
= desc
->dofa_arg
; i
< strtab
->dofs_size
; i
++) {
12994 if (str
[i
] == '\0')
12998 if (i
>= strtab
->dofs_size
) {
12999 dtrace_dof_error(dof
, "bogus format string");
13003 if (i
== desc
->dofa_arg
) {
13004 dtrace_dof_error(dof
, "empty format string");
13008 i
-= desc
->dofa_arg
;
13009 fmt
= kmem_alloc(i
+ 1, KM_SLEEP
);
13010 bcopy(&str
[desc
->dofa_arg
], fmt
, i
+ 1);
13011 arg
= (uint64_t)(uintptr_t)fmt
;
13013 if (kind
== DTRACEACT_PRINTA
) {
13014 ASSERT(desc
->dofa_strtab
== DOF_SECIDX_NONE
);
13017 arg
= desc
->dofa_arg
;
13021 act
= dtrace_actdesc_create(kind
, desc
->dofa_ntuple
,
13022 desc
->dofa_uarg
, arg
);
13024 if (last
!= NULL
) {
13025 last
->dtad_next
= act
;
13032 if (desc
->dofa_difo
== DOF_SECIDX_NONE
)
13035 if ((difosec
= dtrace_dof_sect(dof
,
13036 DOF_SECT_DIFOHDR
, desc
->dofa_difo
)) == NULL
)
13039 act
->dtad_difo
= dtrace_dof_difo(dof
, difosec
, vstate
, cr
);
13041 if (act
->dtad_difo
== NULL
)
13045 ASSERT(first
!= NULL
);
13049 for (act
= first
; act
!= NULL
; act
= next
) {
13050 next
= act
->dtad_next
;
13051 dtrace_actdesc_release(act
, vstate
);
13057 static dtrace_ecbdesc_t
*
13058 dtrace_dof_ecbdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
13061 dtrace_ecbdesc_t
*ep
;
13062 dof_ecbdesc_t
*ecb
;
13063 dtrace_probedesc_t
*desc
;
13064 dtrace_predicate_t
*pred
= NULL
;
13066 if (sec
->dofs_size
< sizeof (dof_ecbdesc_t
)) {
13067 dtrace_dof_error(dof
, "truncated ECB description");
13071 if (sec
->dofs_align
!= sizeof (uint64_t)) {
13072 dtrace_dof_error(dof
, "bad alignment in ECB description");
13076 ecb
= (dof_ecbdesc_t
*)((uintptr_t)dof
+ (uintptr_t)sec
->dofs_offset
);
13077 sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBEDESC
, ecb
->dofe_probes
);
13082 ep
= kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
13083 ep
->dted_uarg
= ecb
->dofe_uarg
;
13084 desc
= &ep
->dted_probe
;
13086 if (dtrace_dof_probedesc(dof
, sec
, desc
) == NULL
)
13089 if (ecb
->dofe_pred
!= DOF_SECIDX_NONE
) {
13090 if ((sec
= dtrace_dof_sect(dof
,
13091 DOF_SECT_DIFOHDR
, ecb
->dofe_pred
)) == NULL
)
13094 if ((pred
= dtrace_dof_predicate(dof
, sec
, vstate
, cr
)) == NULL
)
13097 ep
->dted_pred
.dtpdd_predicate
= pred
;
13100 if (ecb
->dofe_actions
!= DOF_SECIDX_NONE
) {
13101 if ((sec
= dtrace_dof_sect(dof
,
13102 DOF_SECT_ACTDESC
, ecb
->dofe_actions
)) == NULL
)
13105 ep
->dted_action
= dtrace_dof_actdesc(dof
, sec
, vstate
, cr
);
13107 if (ep
->dted_action
== NULL
)
13115 dtrace_predicate_release(pred
, vstate
);
13116 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
13121 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13122 * specified DOF. At present, this amounts to simply adding 'ubase' to the
13123 * site of any user SETX relocations to account for load object base address.
13124 * In the future, if we need other relocations, this function can be extended.
13127 dtrace_dof_relocate(dof_hdr_t
*dof
, dof_sec_t
*sec
, uint64_t ubase
)
13129 uintptr_t daddr
= (uintptr_t)dof
;
13130 dof_relohdr_t
*dofr
=
13131 (dof_relohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
13132 dof_sec_t
*ss
, *rs
, *ts
;
13136 if (sec
->dofs_size
< sizeof (dof_relohdr_t
) ||
13137 sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
13138 dtrace_dof_error(dof
, "invalid relocation header");
13142 ss
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, dofr
->dofr_strtab
);
13143 rs
= dtrace_dof_sect(dof
, DOF_SECT_RELTAB
, dofr
->dofr_relsec
);
13144 ts
= dtrace_dof_sect(dof
, DOF_SECT_NONE
, dofr
->dofr_tgtsec
);
13146 if (ss
== NULL
|| rs
== NULL
|| ts
== NULL
)
13147 return (-1); /* dtrace_dof_error() has been called already */
13149 if (rs
->dofs_entsize
< sizeof (dof_relodesc_t
) ||
13150 rs
->dofs_align
!= sizeof (uint64_t)) {
13151 dtrace_dof_error(dof
, "invalid relocation section");
13155 r
= (dof_relodesc_t
*)(uintptr_t)(daddr
+ rs
->dofs_offset
);
13156 n
= rs
->dofs_size
/ rs
->dofs_entsize
;
13158 for (i
= 0; i
< n
; i
++) {
13159 uintptr_t taddr
= daddr
+ ts
->dofs_offset
+ r
->dofr_offset
;
13161 switch (r
->dofr_type
) {
13162 case DOF_RELO_NONE
:
13164 case DOF_RELO_SETX
:
13165 if (r
->dofr_offset
>= ts
->dofs_size
|| r
->dofr_offset
+
13166 sizeof (uint64_t) > ts
->dofs_size
) {
13167 dtrace_dof_error(dof
, "bad relocation offset");
13171 if (!IS_P2ALIGNED(taddr
, sizeof (uint64_t))) {
13172 dtrace_dof_error(dof
, "misaligned setx relo");
13176 *(uint64_t *)taddr
+= ubase
;
13179 dtrace_dof_error(dof
, "invalid relocation type");
13183 r
= (dof_relodesc_t
*)((uintptr_t)r
+ rs
->dofs_entsize
);
13190 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13191 * header: it should be at the front of a memory region that is at least
13192 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13193 * size. It need not be validated in any other way.
13196 dtrace_dof_slurp(dof_hdr_t
*dof
, dtrace_vstate_t
*vstate
, cred_t
*cr
,
13197 dtrace_enabling_t
**enabp
, uint64_t ubase
, int noprobes
)
13199 uint64_t len
= dof
->dofh_loadsz
, seclen
;
13200 uintptr_t daddr
= (uintptr_t)dof
;
13201 dtrace_ecbdesc_t
*ep
;
13202 dtrace_enabling_t
*enab
;
13205 ASSERT(MUTEX_HELD(&dtrace_lock
));
13206 ASSERT(dof
->dofh_loadsz
>= sizeof (dof_hdr_t
));
13209 * Check the DOF header identification bytes. In addition to checking
13210 * valid settings, we also verify that unused bits/bytes are zeroed so
13211 * we can use them later without fear of regressing existing binaries.
13213 if (bcmp(&dof
->dofh_ident
[DOF_ID_MAG0
],
13214 DOF_MAG_STRING
, DOF_MAG_STRLEN
) != 0) {
13215 dtrace_dof_error(dof
, "DOF magic string mismatch");
13219 if (dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_ILP32
&&
13220 dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_LP64
) {
13221 dtrace_dof_error(dof
, "DOF has invalid data model");
13225 if (dof
->dofh_ident
[DOF_ID_ENCODING
] != DOF_ENCODE_NATIVE
) {
13226 dtrace_dof_error(dof
, "DOF encoding mismatch");
13230 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
13231 dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_2
) {
13232 dtrace_dof_error(dof
, "DOF version mismatch");
13236 if (dof
->dofh_ident
[DOF_ID_DIFVERS
] != DIF_VERSION_2
) {
13237 dtrace_dof_error(dof
, "DOF uses unsupported instruction set");
13241 if (dof
->dofh_ident
[DOF_ID_DIFIREG
] > DIF_DIR_NREGS
) {
13242 dtrace_dof_error(dof
, "DOF uses too many integer registers");
13246 if (dof
->dofh_ident
[DOF_ID_DIFTREG
] > DIF_DTR_NREGS
) {
13247 dtrace_dof_error(dof
, "DOF uses too many tuple registers");
13251 for (i
= DOF_ID_PAD
; i
< DOF_ID_SIZE
; i
++) {
13252 if (dof
->dofh_ident
[i
] != 0) {
13253 dtrace_dof_error(dof
, "DOF has invalid ident byte set");
13258 if (dof
->dofh_flags
& ~DOF_FL_VALID
) {
13259 dtrace_dof_error(dof
, "DOF has invalid flag bits set");
13263 if (dof
->dofh_secsize
== 0) {
13264 dtrace_dof_error(dof
, "zero section header size");
13269 * Check that the section headers don't exceed the amount of DOF
13270 * data. Note that we cast the section size and number of sections
13271 * to uint64_t's to prevent possible overflow in the multiplication.
13273 seclen
= (uint64_t)dof
->dofh_secnum
* (uint64_t)dof
->dofh_secsize
;
13275 if (dof
->dofh_secoff
> len
|| seclen
> len
||
13276 dof
->dofh_secoff
+ seclen
> len
) {
13277 dtrace_dof_error(dof
, "truncated section headers");
13281 if (!IS_P2ALIGNED(dof
->dofh_secoff
, sizeof (uint64_t))) {
13282 dtrace_dof_error(dof
, "misaligned section headers");
13286 if (!IS_P2ALIGNED(dof
->dofh_secsize
, sizeof (uint64_t))) {
13287 dtrace_dof_error(dof
, "misaligned section size");
13292 * Take an initial pass through the section headers to be sure that
13293 * the headers don't have stray offsets. If the 'noprobes' flag is
13294 * set, do not permit sections relating to providers, probes, or args.
13296 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13297 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13298 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13301 switch (sec
->dofs_type
) {
13302 case DOF_SECT_PROVIDER
:
13303 case DOF_SECT_PROBES
:
13304 case DOF_SECT_PRARGS
:
13305 case DOF_SECT_PROFFS
:
13306 dtrace_dof_error(dof
, "illegal sections "
13312 if (DOF_SEC_ISLOADABLE(sec
->dofs_type
) &&
13313 !(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
13314 dtrace_dof_error(dof
, "loadable section with load "
13319 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
13320 continue; /* just ignore non-loadable sections */
13322 if (!ISP2(sec
->dofs_align
)) {
13323 dtrace_dof_error(dof
, "bad section alignment");
13327 if (sec
->dofs_offset
& (sec
->dofs_align
- 1)) {
13328 dtrace_dof_error(dof
, "misaligned section");
13332 if (sec
->dofs_offset
> len
|| sec
->dofs_size
> len
||
13333 sec
->dofs_offset
+ sec
->dofs_size
> len
) {
13334 dtrace_dof_error(dof
, "corrupt section header");
13338 if (sec
->dofs_type
== DOF_SECT_STRTAB
&& *((char *)daddr
+
13339 sec
->dofs_offset
+ sec
->dofs_size
- 1) != '\0') {
13340 dtrace_dof_error(dof
, "non-terminating string table");
13346 * Take a second pass through the sections and locate and perform any
13347 * relocations that are present. We do this after the first pass to
13348 * be sure that all sections have had their headers validated.
13350 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13351 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13352 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13354 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
13355 continue; /* skip sections that are not loadable */
13357 switch (sec
->dofs_type
) {
13358 case DOF_SECT_URELHDR
:
13359 if (dtrace_dof_relocate(dof
, sec
, ubase
) != 0)
13365 if ((enab
= *enabp
) == NULL
)
13366 enab
= *enabp
= dtrace_enabling_create(vstate
);
13368 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13369 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13370 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13372 if (sec
->dofs_type
!= DOF_SECT_ECBDESC
)
13375 if ((ep
= dtrace_dof_ecbdesc(dof
, sec
, vstate
, cr
)) == NULL
) {
13376 dtrace_enabling_destroy(enab
);
13381 dtrace_enabling_add(enab
, ep
);
13388 * Process DOF for any options. This routine assumes that the DOF has been
13389 * at least processed by dtrace_dof_slurp().
13392 dtrace_dof_options(dof_hdr_t
*dof
, dtrace_state_t
*state
)
13397 dof_optdesc_t
*desc
;
13399 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13400 dof_sec_t
*sec
= (dof_sec_t
*)((uintptr_t)dof
+
13401 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13403 if (sec
->dofs_type
!= DOF_SECT_OPTDESC
)
13406 if (sec
->dofs_align
!= sizeof (uint64_t)) {
13407 dtrace_dof_error(dof
, "bad alignment in "
13408 "option description");
13412 if ((entsize
= sec
->dofs_entsize
) == 0) {
13413 dtrace_dof_error(dof
, "zeroed option entry size");
13417 if (entsize
< sizeof (dof_optdesc_t
)) {
13418 dtrace_dof_error(dof
, "bad option entry size");
13422 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= entsize
) {
13423 desc
= (dof_optdesc_t
*)((uintptr_t)dof
+
13424 (uintptr_t)sec
->dofs_offset
+ offs
);
13426 if (desc
->dofo_strtab
!= DOF_SECIDX_NONE
) {
13427 dtrace_dof_error(dof
, "non-zero option string");
13431 if (desc
->dofo_value
== DTRACEOPT_UNSET
) {
13432 dtrace_dof_error(dof
, "unset option");
13436 if ((rval
= dtrace_state_option(state
,
13437 desc
->dofo_option
, desc
->dofo_value
)) != 0) {
13438 dtrace_dof_error(dof
, "rejected option");
13448 * DTrace Consumer State Functions
13451 dtrace_dstate_init(dtrace_dstate_t
*dstate
, size_t size
)
13453 size_t hashsize
, maxper
, min
, chunksize
= dstate
->dtds_chunksize
;
13456 dtrace_dynvar_t
*dvar
, *next
, *start
;
13459 ASSERT(MUTEX_HELD(&dtrace_lock
));
13460 ASSERT(dstate
->dtds_base
== NULL
&& dstate
->dtds_percpu
== NULL
);
13462 bzero(dstate
, sizeof (dtrace_dstate_t
));
13464 if ((dstate
->dtds_chunksize
= chunksize
) == 0)
13465 dstate
->dtds_chunksize
= DTRACE_DYNVAR_CHUNKSIZE
;
13467 VERIFY(dstate
->dtds_chunksize
< LONG_MAX
);
13469 if (size
< (min
= dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
)))
13472 if ((base
= kmem_zalloc(size
, KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
13475 dstate
->dtds_size
= size
;
13476 dstate
->dtds_base
= base
;
13477 dstate
->dtds_percpu
= kmem_cache_alloc(dtrace_state_cache
, KM_SLEEP
);
13478 bzero(dstate
->dtds_percpu
, NCPU
* sizeof (dtrace_dstate_percpu_t
));
13480 hashsize
= size
/ (dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
));
13482 if (hashsize
!= 1 && (hashsize
& 1))
13485 dstate
->dtds_hashsize
= hashsize
;
13486 dstate
->dtds_hash
= dstate
->dtds_base
;
13489 * Set all of our hash buckets to point to the single sink, and (if
13490 * it hasn't already been set), set the sink's hash value to be the
13491 * sink sentinel value. The sink is needed for dynamic variable
13492 * lookups to know that they have iterated over an entire, valid hash
13495 for (i
= 0; i
< hashsize
; i
++)
13496 dstate
->dtds_hash
[i
].dtdh_chain
= &dtrace_dynhash_sink
;
13498 if (dtrace_dynhash_sink
.dtdv_hashval
!= DTRACE_DYNHASH_SINK
)
13499 dtrace_dynhash_sink
.dtdv_hashval
= DTRACE_DYNHASH_SINK
;
13502 * Determine number of active CPUs. Divide free list evenly among
13505 start
= (dtrace_dynvar_t
*)
13506 ((uintptr_t)base
+ hashsize
* sizeof (dtrace_dynhash_t
));
13507 limit
= (uintptr_t)base
+ size
;
13509 VERIFY((uintptr_t)start
< limit
);
13510 VERIFY((uintptr_t)start
>= (uintptr_t)base
);
13512 maxper
= (limit
- (uintptr_t)start
) / NCPU
;
13513 maxper
= (maxper
/ dstate
->dtds_chunksize
) * dstate
->dtds_chunksize
;
13515 for (i
= 0; i
< NCPU
; i
++) {
13516 dstate
->dtds_percpu
[i
].dtdsc_free
= dvar
= start
;
13519 * If we don't even have enough chunks to make it once through
13520 * NCPUs, we're just going to allocate everything to the first
13521 * CPU. And if we're on the last CPU, we're going to allocate
13522 * whatever is left over. In either case, we set the limit to
13523 * be the limit of the dynamic variable space.
13525 if (maxper
== 0 || i
== NCPU
- 1) {
13526 limit
= (uintptr_t)base
+ size
;
13529 limit
= (uintptr_t)start
+ maxper
;
13530 start
= (dtrace_dynvar_t
*)limit
;
13533 VERIFY(limit
<= (uintptr_t)base
+ size
);
13536 next
= (dtrace_dynvar_t
*)((uintptr_t)dvar
+
13537 dstate
->dtds_chunksize
);
13539 if ((uintptr_t)next
+ dstate
->dtds_chunksize
>= limit
)
13542 VERIFY((uintptr_t)dvar
>= (uintptr_t)base
&&
13543 (uintptr_t)dvar
<= (uintptr_t)base
+ size
);
13544 dvar
->dtdv_next
= next
;
13556 dtrace_dstate_fini(dtrace_dstate_t
*dstate
)
13558 ASSERT(MUTEX_HELD(&cpu_lock
));
13560 if (dstate
->dtds_base
== NULL
)
13563 kmem_free(dstate
->dtds_base
, dstate
->dtds_size
);
13564 kmem_cache_free(dtrace_state_cache
, dstate
->dtds_percpu
);
13568 dtrace_vstate_fini(dtrace_vstate_t
*vstate
)
13571 * Logical XOR, where are you?
13573 ASSERT((vstate
->dtvs_nglobals
== 0) ^ (vstate
->dtvs_globals
!= NULL
));
13575 if (vstate
->dtvs_nglobals
> 0) {
13576 kmem_free(vstate
->dtvs_globals
, vstate
->dtvs_nglobals
*
13577 sizeof (dtrace_statvar_t
*));
13580 if (vstate
->dtvs_ntlocals
> 0) {
13581 kmem_free(vstate
->dtvs_tlocals
, vstate
->dtvs_ntlocals
*
13582 sizeof (dtrace_difv_t
));
13585 ASSERT((vstate
->dtvs_nlocals
== 0) ^ (vstate
->dtvs_locals
!= NULL
));
13587 if (vstate
->dtvs_nlocals
> 0) {
13588 kmem_free(vstate
->dtvs_locals
, vstate
->dtvs_nlocals
*
13589 sizeof (dtrace_statvar_t
*));
13594 dtrace_state_clean(dtrace_state_t
*state
)
13596 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
)
13599 dtrace_dynvar_clean(&state
->dts_vstate
.dtvs_dynvars
);
13600 dtrace_speculation_clean(state
);
13604 dtrace_state_deadman(dtrace_state_t
*state
)
13610 now
= dtrace_gethrtime();
13612 if (state
!= dtrace_anon
.dta_state
&&
13613 now
- state
->dts_laststatus
>= dtrace_deadman_user
)
13617 * We must be sure that dts_alive never appears to be less than the
13618 * value upon entry to dtrace_state_deadman(), and because we lack a
13619 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13620 * store INT64_MAX to it, followed by a memory barrier, followed by
13621 * the new value. This assures that dts_alive never appears to be
13622 * less than its true value, regardless of the order in which the
13623 * stores to the underlying storage are issued.
13625 state
->dts_alive
= INT64_MAX
;
13626 dtrace_membar_producer();
13627 state
->dts_alive
= now
;
13631 dtrace_state_create(dev_t
*devp
, cred_t
*cr
)
13636 dtrace_state_t
*state
;
13637 dtrace_optval_t
*opt
;
13638 int bufsize
= NCPU
* sizeof (dtrace_buffer_t
), i
;
13640 ASSERT(MUTEX_HELD(&dtrace_lock
));
13641 ASSERT(MUTEX_HELD(&cpu_lock
));
13643 minor
= (minor_t
)(uintptr_t)vmem_alloc(dtrace_minor
, 1,
13644 VM_BESTFIT
| VM_SLEEP
);
13646 if (ddi_soft_state_zalloc(dtrace_softstate
, minor
) != DDI_SUCCESS
) {
13647 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
13651 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
13652 state
->dts_epid
= DTRACE_EPIDNONE
+ 1;
13654 (void) snprintf(c
, sizeof (c
), "dtrace_aggid_%d", minor
);
13655 state
->dts_aggid_arena
= vmem_create(c
, (void *)1, UINT32_MAX
, 1,
13656 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
13658 if (devp
!= NULL
) {
13659 major
= getemajor(*devp
);
13661 major
= ddi_driver_major(dtrace_devi
);
13664 state
->dts_dev
= makedevice(major
, minor
);
13667 *devp
= state
->dts_dev
;
13670 * We allocate NCPU buffers. On the one hand, this can be quite
13671 * a bit of memory per instance (nearly 36K on a Starcat). On the
13672 * other hand, it saves an additional memory reference in the probe
13675 state
->dts_buffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13676 state
->dts_aggbuffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13677 state
->dts_cleaner
= CYCLIC_NONE
;
13678 state
->dts_deadman
= CYCLIC_NONE
;
13679 state
->dts_vstate
.dtvs_state
= state
;
13681 for (i
= 0; i
< DTRACEOPT_MAX
; i
++)
13682 state
->dts_options
[i
] = DTRACEOPT_UNSET
;
13685 * Set the default options.
13687 opt
= state
->dts_options
;
13688 opt
[DTRACEOPT_BUFPOLICY
] = DTRACEOPT_BUFPOLICY_SWITCH
;
13689 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_AUTO
;
13690 opt
[DTRACEOPT_NSPEC
] = dtrace_nspec_default
;
13691 opt
[DTRACEOPT_SPECSIZE
] = dtrace_specsize_default
;
13692 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)DTRACE_CPUALL
;
13693 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_default
;
13694 opt
[DTRACEOPT_STACKFRAMES
] = dtrace_stackframes_default
;
13695 opt
[DTRACEOPT_USTACKFRAMES
] = dtrace_ustackframes_default
;
13696 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_default
;
13697 opt
[DTRACEOPT_AGGRATE
] = dtrace_aggrate_default
;
13698 opt
[DTRACEOPT_SWITCHRATE
] = dtrace_switchrate_default
;
13699 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_default
;
13700 opt
[DTRACEOPT_JSTACKFRAMES
] = dtrace_jstackframes_default
;
13701 opt
[DTRACEOPT_JSTACKSTRSIZE
] = dtrace_jstackstrsize_default
;
13703 state
->dts_activity
= DTRACE_ACTIVITY_INACTIVE
;
13706 * Depending on the user credentials, we set flag bits which alter probe
13707 * visibility or the amount of destructiveness allowed. In the case of
13708 * actual anonymous tracing, or the possession of all privileges, all of
13709 * the normal checks are bypassed.
13711 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13712 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13713 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13716 * Set up the credentials for this instantiation. We take a
13717 * hold on the credential to prevent it from disappearing on
13718 * us; this in turn prevents the zone_t referenced by this
13719 * credential from disappearing. This means that we can
13720 * examine the credential and the zone from probe context.
13723 state
->dts_cred
.dcr_cred
= cr
;
13726 * CRA_PROC means "we have *some* privilege for dtrace" and
13727 * unlocks the use of variables like pid, zonename, etc.
13729 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
) ||
13730 PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13731 state
->dts_cred
.dcr_action
|= DTRACE_CRA_PROC
;
13735 * dtrace_user allows use of syscall and profile providers.
13736 * If the user also has proc_owner and/or proc_zone, we
13737 * extend the scope to include additional visibility and
13738 * destructive power.
13740 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
)) {
13741 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
)) {
13742 state
->dts_cred
.dcr_visible
|=
13743 DTRACE_CRV_ALLPROC
;
13745 state
->dts_cred
.dcr_action
|=
13746 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13749 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
)) {
13750 state
->dts_cred
.dcr_visible
|=
13751 DTRACE_CRV_ALLZONE
;
13753 state
->dts_cred
.dcr_action
|=
13754 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13758 * If we have all privs in whatever zone this is,
13759 * we can do destructive things to processes which
13760 * have altered credentials.
13762 if (priv_isequalset(priv_getset(cr
, PRIV_EFFECTIVE
),
13763 cr
->cr_zone
->zone_privset
)) {
13764 state
->dts_cred
.dcr_action
|=
13765 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13770 * Holding the dtrace_kernel privilege also implies that
13771 * the user has the dtrace_user privilege from a visibility
13772 * perspective. But without further privileges, some
13773 * destructive actions are not available.
13775 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
)) {
13777 * Make all probes in all zones visible. However,
13778 * this doesn't mean that all actions become available
13781 state
->dts_cred
.dcr_visible
|= DTRACE_CRV_KERNEL
|
13782 DTRACE_CRV_ALLPROC
| DTRACE_CRV_ALLZONE
;
13784 state
->dts_cred
.dcr_action
|= DTRACE_CRA_KERNEL
|
13787 * Holding proc_owner means that destructive actions
13788 * for *this* zone are allowed.
13790 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13791 state
->dts_cred
.dcr_action
|=
13792 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13795 * Holding proc_zone means that destructive actions
13796 * for this user/group ID in all zones is allowed.
13798 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13799 state
->dts_cred
.dcr_action
|=
13800 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13803 * If we have all privs in whatever zone this is,
13804 * we can do destructive things to processes which
13805 * have altered credentials.
13807 if (priv_isequalset(priv_getset(cr
, PRIV_EFFECTIVE
),
13808 cr
->cr_zone
->zone_privset
)) {
13809 state
->dts_cred
.dcr_action
|=
13810 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13815 * Holding the dtrace_proc privilege gives control over fasttrap
13816 * and pid providers. We need to grant wider destructive
13817 * privileges in the event that the user has proc_owner and/or
13820 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13821 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13822 state
->dts_cred
.dcr_action
|=
13823 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13825 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13826 state
->dts_cred
.dcr_action
|=
13827 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13835 dtrace_state_buffer(dtrace_state_t
*state
, dtrace_buffer_t
*buf
, int which
)
13837 dtrace_optval_t
*opt
= state
->dts_options
, size
;
13839 int flags
= 0, rval
, factor
, divisor
= 1;
13841 ASSERT(MUTEX_HELD(&dtrace_lock
));
13842 ASSERT(MUTEX_HELD(&cpu_lock
));
13843 ASSERT(which
< DTRACEOPT_MAX
);
13844 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
||
13845 (state
== dtrace_anon
.dta_state
&&
13846 state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
));
13848 if (opt
[which
] == DTRACEOPT_UNSET
|| opt
[which
] == 0)
13851 if (opt
[DTRACEOPT_CPU
] != DTRACEOPT_UNSET
)
13852 cpu
= opt
[DTRACEOPT_CPU
];
13854 if (which
== DTRACEOPT_SPECSIZE
)
13855 flags
|= DTRACEBUF_NOSWITCH
;
13857 if (which
== DTRACEOPT_BUFSIZE
) {
13858 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_RING
)
13859 flags
|= DTRACEBUF_RING
;
13861 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_FILL
)
13862 flags
|= DTRACEBUF_FILL
;
13864 if (state
!= dtrace_anon
.dta_state
||
13865 state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
13866 flags
|= DTRACEBUF_INACTIVE
;
13869 for (size
= opt
[which
]; size
>= sizeof (uint64_t); size
/= divisor
) {
13871 * The size must be 8-byte aligned. If the size is not 8-byte
13872 * aligned, drop it down by the difference.
13874 if (size
& (sizeof (uint64_t) - 1))
13875 size
-= size
& (sizeof (uint64_t) - 1);
13877 if (size
< state
->dts_reserve
) {
13879 * Buffers always must be large enough to accommodate
13880 * their prereserved space. We return E2BIG instead
13881 * of ENOMEM in this case to allow for user-level
13882 * software to differentiate the cases.
13887 rval
= dtrace_buffer_alloc(buf
, size
, flags
, cpu
, &factor
);
13889 if (rval
!= ENOMEM
) {
13894 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13897 for (divisor
= 2; divisor
< factor
; divisor
<<= 1)
13905 dtrace_state_buffers(dtrace_state_t
*state
)
13907 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13910 if ((rval
= dtrace_state_buffer(state
, state
->dts_buffer
,
13911 DTRACEOPT_BUFSIZE
)) != 0)
13914 if ((rval
= dtrace_state_buffer(state
, state
->dts_aggbuffer
,
13915 DTRACEOPT_AGGSIZE
)) != 0)
13918 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13919 if ((rval
= dtrace_state_buffer(state
,
13920 spec
[i
].dtsp_buffer
, DTRACEOPT_SPECSIZE
)) != 0)
13928 dtrace_state_prereserve(dtrace_state_t
*state
)
13931 dtrace_probe_t
*probe
;
13933 state
->dts_reserve
= 0;
13935 if (state
->dts_options
[DTRACEOPT_BUFPOLICY
] != DTRACEOPT_BUFPOLICY_FILL
)
13939 * If our buffer policy is a "fill" buffer policy, we need to set the
13940 * prereserved space to be the space required by the END probes.
13942 probe
= dtrace_probes
[dtrace_probeid_end
- 1];
13943 ASSERT(probe
!= NULL
);
13945 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
13946 if (ecb
->dte_state
!= state
)
13949 state
->dts_reserve
+= ecb
->dte_needed
+ ecb
->dte_alignment
;
13954 dtrace_state_go(dtrace_state_t
*state
, processorid_t
*cpu
)
13956 dtrace_optval_t
*opt
= state
->dts_options
, sz
, nspec
;
13957 dtrace_speculation_t
*spec
;
13958 dtrace_buffer_t
*buf
;
13959 cyc_handler_t hdlr
;
13961 int rval
= 0, i
, bufsize
= NCPU
* sizeof (dtrace_buffer_t
);
13962 dtrace_icookie_t cookie
;
13964 mutex_enter(&cpu_lock
);
13965 mutex_enter(&dtrace_lock
);
13967 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
13973 * Before we can perform any checks, we must prime all of the
13974 * retained enablings that correspond to this state.
13976 dtrace_enabling_prime(state
);
13978 if (state
->dts_destructive
&& !state
->dts_cred
.dcr_destructive
) {
13983 dtrace_state_prereserve(state
);
13986 * Now we want to do is try to allocate our speculations.
13987 * We do not automatically resize the number of speculations; if
13988 * this fails, we will fail the operation.
13990 nspec
= opt
[DTRACEOPT_NSPEC
];
13991 ASSERT(nspec
!= DTRACEOPT_UNSET
);
13993 if (nspec
> INT_MAX
) {
13998 spec
= kmem_zalloc(nspec
* sizeof (dtrace_speculation_t
),
13999 KM_NOSLEEP
| KM_NORMALPRI
);
14001 if (spec
== NULL
) {
14006 state
->dts_speculations
= spec
;
14007 state
->dts_nspeculations
= (int)nspec
;
14009 for (i
= 0; i
< nspec
; i
++) {
14010 if ((buf
= kmem_zalloc(bufsize
,
14011 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
) {
14016 spec
[i
].dtsp_buffer
= buf
;
14019 if (opt
[DTRACEOPT_GRABANON
] != DTRACEOPT_UNSET
) {
14020 if (dtrace_anon
.dta_state
== NULL
) {
14025 if (state
->dts_necbs
!= 0) {
14030 state
->dts_anon
= dtrace_anon_grab();
14031 ASSERT(state
->dts_anon
!= NULL
);
14032 state
= state
->dts_anon
;
14035 * We want "grabanon" to be set in the grabbed state, so we'll
14036 * copy that option value from the grabbing state into the
14039 state
->dts_options
[DTRACEOPT_GRABANON
] =
14040 opt
[DTRACEOPT_GRABANON
];
14042 *cpu
= dtrace_anon
.dta_beganon
;
14045 * If the anonymous state is active (as it almost certainly
14046 * is if the anonymous enabling ultimately matched anything),
14047 * we don't allow any further option processing -- but we
14048 * don't return failure.
14050 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
14054 if (opt
[DTRACEOPT_AGGSIZE
] != DTRACEOPT_UNSET
&&
14055 opt
[DTRACEOPT_AGGSIZE
] != 0) {
14056 if (state
->dts_aggregations
== NULL
) {
14058 * We're not going to create an aggregation buffer
14059 * because we don't have any ECBs that contain
14060 * aggregations -- set this option to 0.
14062 opt
[DTRACEOPT_AGGSIZE
] = 0;
14065 * If we have an aggregation buffer, we must also have
14066 * a buffer to use as scratch.
14068 if (opt
[DTRACEOPT_BUFSIZE
] == DTRACEOPT_UNSET
||
14069 opt
[DTRACEOPT_BUFSIZE
] < state
->dts_needed
) {
14070 opt
[DTRACEOPT_BUFSIZE
] = state
->dts_needed
;
14075 if (opt
[DTRACEOPT_SPECSIZE
] != DTRACEOPT_UNSET
&&
14076 opt
[DTRACEOPT_SPECSIZE
] != 0) {
14077 if (!state
->dts_speculates
) {
14079 * We're not going to create speculation buffers
14080 * because we don't have any ECBs that actually
14081 * speculate -- set the speculation size to 0.
14083 opt
[DTRACEOPT_SPECSIZE
] = 0;
14088 * The bare minimum size for any buffer that we're actually going to
14089 * do anything to is sizeof (uint64_t).
14091 sz
= sizeof (uint64_t);
14093 if ((state
->dts_needed
!= 0 && opt
[DTRACEOPT_BUFSIZE
] < sz
) ||
14094 (state
->dts_speculates
&& opt
[DTRACEOPT_SPECSIZE
] < sz
) ||
14095 (state
->dts_aggregations
!= NULL
&& opt
[DTRACEOPT_AGGSIZE
] < sz
)) {
14097 * A buffer size has been explicitly set to 0 (or to a size
14098 * that will be adjusted to 0) and we need the space -- we
14099 * need to return failure. We return ENOSPC to differentiate
14100 * it from failing to allocate a buffer due to failure to meet
14101 * the reserve (for which we return E2BIG).
14107 if ((rval
= dtrace_state_buffers(state
)) != 0)
14110 if ((sz
= opt
[DTRACEOPT_DYNVARSIZE
]) == DTRACEOPT_UNSET
)
14111 sz
= dtrace_dstate_defsize
;
14114 rval
= dtrace_dstate_init(&state
->dts_vstate
.dtvs_dynvars
, sz
);
14119 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
14121 } while (sz
>>= 1);
14123 opt
[DTRACEOPT_DYNVARSIZE
] = sz
;
14128 if (opt
[DTRACEOPT_STATUSRATE
] > dtrace_statusrate_max
)
14129 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_max
;
14131 if (opt
[DTRACEOPT_CLEANRATE
] == 0)
14132 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
14134 if (opt
[DTRACEOPT_CLEANRATE
] < dtrace_cleanrate_min
)
14135 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_min
;
14137 if (opt
[DTRACEOPT_CLEANRATE
] > dtrace_cleanrate_max
)
14138 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
14140 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_clean
;
14141 hdlr
.cyh_arg
= state
;
14142 hdlr
.cyh_level
= CY_LOW_LEVEL
;
14145 when
.cyt_interval
= opt
[DTRACEOPT_CLEANRATE
];
14147 state
->dts_cleaner
= cyclic_add(&hdlr
, &when
);
14149 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_deadman
;
14150 hdlr
.cyh_arg
= state
;
14151 hdlr
.cyh_level
= CY_LOW_LEVEL
;
14154 when
.cyt_interval
= dtrace_deadman_interval
;
14156 state
->dts_alive
= state
->dts_laststatus
= dtrace_gethrtime();
14157 state
->dts_deadman
= cyclic_add(&hdlr
, &when
);
14159 state
->dts_activity
= DTRACE_ACTIVITY_WARMUP
;
14161 if (state
->dts_getf
!= 0 &&
14162 !(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)) {
14164 * We don't have kernel privs but we have at least one call
14165 * to getf(); we need to bump our zone's count, and (if
14166 * this is the first enabling to have an unprivileged call
14167 * to getf()) we need to hook into closef().
14169 state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
++;
14171 if (dtrace_getf
++ == 0) {
14172 ASSERT(dtrace_closef
== NULL
);
14173 dtrace_closef
= dtrace_getf_barrier
;
14178 * Now it's time to actually fire the BEGIN probe. We need to disable
14179 * interrupts here both to record the CPU on which we fired the BEGIN
14180 * probe (the data from this CPU will be processed first at user
14181 * level) and to manually activate the buffer for this CPU.
14183 cookie
= dtrace_interrupt_disable();
14184 *cpu
= CPU
->cpu_id
;
14185 ASSERT(state
->dts_buffer
[*cpu
].dtb_flags
& DTRACEBUF_INACTIVE
);
14186 state
->dts_buffer
[*cpu
].dtb_flags
&= ~DTRACEBUF_INACTIVE
;
14188 dtrace_probe(dtrace_probeid_begin
,
14189 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
14190 dtrace_interrupt_enable(cookie
);
14192 * We may have had an exit action from a BEGIN probe; only change our
14193 * state to ACTIVE if we're still in WARMUP.
14195 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
||
14196 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
);
14198 if (state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
)
14199 state
->dts_activity
= DTRACE_ACTIVITY_ACTIVE
;
14202 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14203 * want each CPU to transition its principal buffer out of the
14204 * INACTIVE state. Doing this assures that no CPU will suddenly begin
14205 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14206 * atomically transition from processing none of a state's ECBs to
14207 * processing all of them.
14209 dtrace_xcall(DTRACE_CPUALL
,
14210 (dtrace_xcall_t
)dtrace_buffer_activate
, state
);
14214 dtrace_buffer_free(state
->dts_buffer
);
14215 dtrace_buffer_free(state
->dts_aggbuffer
);
14217 if ((nspec
= state
->dts_nspeculations
) == 0) {
14218 ASSERT(state
->dts_speculations
== NULL
);
14222 spec
= state
->dts_speculations
;
14223 ASSERT(spec
!= NULL
);
14225 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
14226 if ((buf
= spec
[i
].dtsp_buffer
) == NULL
)
14229 dtrace_buffer_free(buf
);
14230 kmem_free(buf
, bufsize
);
14233 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
14234 state
->dts_nspeculations
= 0;
14235 state
->dts_speculations
= NULL
;
14238 mutex_exit(&dtrace_lock
);
14239 mutex_exit(&cpu_lock
);
14245 dtrace_state_stop(dtrace_state_t
*state
, processorid_t
*cpu
)
14247 dtrace_icookie_t cookie
;
14249 ASSERT(MUTEX_HELD(&dtrace_lock
));
14251 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
&&
14252 state
->dts_activity
!= DTRACE_ACTIVITY_DRAINING
)
14256 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14257 * to be sure that every CPU has seen it. See below for the details
14258 * on why this is done.
14260 state
->dts_activity
= DTRACE_ACTIVITY_DRAINING
;
14264 * By this point, it is impossible for any CPU to be still processing
14265 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
14266 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14267 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
14268 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14269 * iff we're in the END probe.
14271 state
->dts_activity
= DTRACE_ACTIVITY_COOLDOWN
;
14273 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_COOLDOWN
);
14276 * Finally, we can release the reserve and call the END probe. We
14277 * disable interrupts across calling the END probe to allow us to
14278 * return the CPU on which we actually called the END probe. This
14279 * allows user-land to be sure that this CPU's principal buffer is
14282 state
->dts_reserve
= 0;
14284 cookie
= dtrace_interrupt_disable();
14285 *cpu
= CPU
->cpu_id
;
14286 dtrace_probe(dtrace_probeid_end
,
14287 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
14288 dtrace_interrupt_enable(cookie
);
14290 state
->dts_activity
= DTRACE_ACTIVITY_STOPPED
;
14293 if (state
->dts_getf
!= 0 &&
14294 !(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)) {
14296 * We don't have kernel privs but we have at least one call
14297 * to getf(); we need to lower our zone's count, and (if
14298 * this is the last enabling to have an unprivileged call
14299 * to getf()) we need to clear the closef() hook.
14301 ASSERT(state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
> 0);
14302 ASSERT(dtrace_closef
== dtrace_getf_barrier
);
14303 ASSERT(dtrace_getf
> 0);
14305 state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
--;
14307 if (--dtrace_getf
== 0)
14308 dtrace_closef
= NULL
;
14315 dtrace_state_option(dtrace_state_t
*state
, dtrace_optid_t option
,
14316 dtrace_optval_t val
)
14318 ASSERT(MUTEX_HELD(&dtrace_lock
));
14320 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
14323 if (option
>= DTRACEOPT_MAX
)
14326 if (option
!= DTRACEOPT_CPU
&& val
< 0)
14330 case DTRACEOPT_DESTRUCTIVE
:
14331 if (dtrace_destructive_disallow
)
14334 state
->dts_cred
.dcr_destructive
= 1;
14337 case DTRACEOPT_BUFSIZE
:
14338 case DTRACEOPT_DYNVARSIZE
:
14339 case DTRACEOPT_AGGSIZE
:
14340 case DTRACEOPT_SPECSIZE
:
14341 case DTRACEOPT_STRSIZE
:
14345 if (val
>= LONG_MAX
) {
14347 * If this is an otherwise negative value, set it to
14348 * the highest multiple of 128m less than LONG_MAX.
14349 * Technically, we're adjusting the size without
14350 * regard to the buffer resizing policy, but in fact,
14351 * this has no effect -- if we set the buffer size to
14352 * ~LONG_MAX and the buffer policy is ultimately set to
14353 * be "manual", the buffer allocation is guaranteed to
14354 * fail, if only because the allocation requires two
14355 * buffers. (We set the the size to the highest
14356 * multiple of 128m because it ensures that the size
14357 * will remain a multiple of a megabyte when
14358 * repeatedly halved -- all the way down to 15m.)
14360 val
= LONG_MAX
- (1 << 27) + 1;
14364 state
->dts_options
[option
] = val
;
14370 dtrace_state_destroy(dtrace_state_t
*state
)
14373 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
14374 minor_t minor
= getminor(state
->dts_dev
);
14375 int i
, bufsize
= NCPU
* sizeof (dtrace_buffer_t
);
14376 dtrace_speculation_t
*spec
= state
->dts_speculations
;
14377 int nspec
= state
->dts_nspeculations
;
14380 ASSERT(MUTEX_HELD(&dtrace_lock
));
14381 ASSERT(MUTEX_HELD(&cpu_lock
));
14384 * First, retract any retained enablings for this state.
14386 dtrace_enabling_retract(state
);
14387 ASSERT(state
->dts_nretained
== 0);
14389 if (state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
||
14390 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
) {
14392 * We have managed to come into dtrace_state_destroy() on a
14393 * hot enabling -- almost certainly because of a disorderly
14394 * shutdown of a consumer. (That is, a consumer that is
14395 * exiting without having called dtrace_stop().) In this case,
14396 * we're going to set our activity to be KILLED, and then
14397 * issue a sync to be sure that everyone is out of probe
14398 * context before we start blowing away ECBs.
14400 state
->dts_activity
= DTRACE_ACTIVITY_KILLED
;
14405 * Release the credential hold we took in dtrace_state_create().
14407 if (state
->dts_cred
.dcr_cred
!= NULL
)
14408 crfree(state
->dts_cred
.dcr_cred
);
14411 * Now we can safely disable and destroy any enabled probes. Because
14412 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14413 * (especially if they're all enabled), we take two passes through the
14414 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14415 * in the second we disable whatever is left over.
14417 for (match
= DTRACE_PRIV_KERNEL
; ; match
= 0) {
14418 for (i
= 0; i
< state
->dts_necbs
; i
++) {
14419 if ((ecb
= state
->dts_ecbs
[i
]) == NULL
)
14422 if (match
&& ecb
->dte_probe
!= NULL
) {
14423 dtrace_probe_t
*probe
= ecb
->dte_probe
;
14424 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
14426 if (!(prov
->dtpv_priv
.dtpp_flags
& match
))
14430 dtrace_ecb_disable(ecb
);
14431 dtrace_ecb_destroy(ecb
);
14439 * Before we free the buffers, perform one more sync to assure that
14440 * every CPU is out of probe context.
14444 dtrace_buffer_free(state
->dts_buffer
);
14445 dtrace_buffer_free(state
->dts_aggbuffer
);
14447 for (i
= 0; i
< nspec
; i
++)
14448 dtrace_buffer_free(spec
[i
].dtsp_buffer
);
14450 if (state
->dts_cleaner
!= CYCLIC_NONE
)
14451 cyclic_remove(state
->dts_cleaner
);
14453 if (state
->dts_deadman
!= CYCLIC_NONE
)
14454 cyclic_remove(state
->dts_deadman
);
14456 dtrace_dstate_fini(&vstate
->dtvs_dynvars
);
14457 dtrace_vstate_fini(vstate
);
14458 kmem_free(state
->dts_ecbs
, state
->dts_necbs
* sizeof (dtrace_ecb_t
*));
14460 if (state
->dts_aggregations
!= NULL
) {
14462 for (i
= 0; i
< state
->dts_naggregations
; i
++)
14463 ASSERT(state
->dts_aggregations
[i
] == NULL
);
14465 ASSERT(state
->dts_naggregations
> 0);
14466 kmem_free(state
->dts_aggregations
,
14467 state
->dts_naggregations
* sizeof (dtrace_aggregation_t
*));
14470 kmem_free(state
->dts_buffer
, bufsize
);
14471 kmem_free(state
->dts_aggbuffer
, bufsize
);
14473 for (i
= 0; i
< nspec
; i
++)
14474 kmem_free(spec
[i
].dtsp_buffer
, bufsize
);
14476 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
14478 dtrace_format_destroy(state
);
14480 vmem_destroy(state
->dts_aggid_arena
);
14481 ddi_soft_state_free(dtrace_softstate
, minor
);
14482 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
14486 * DTrace Anonymous Enabling Functions
14488 static dtrace_state_t
*
14489 dtrace_anon_grab(void)
14491 dtrace_state_t
*state
;
14493 ASSERT(MUTEX_HELD(&dtrace_lock
));
14495 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14496 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14500 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14501 ASSERT(dtrace_retained
!= NULL
);
14503 dtrace_enabling_destroy(dtrace_anon
.dta_enabling
);
14504 dtrace_anon
.dta_enabling
= NULL
;
14505 dtrace_anon
.dta_state
= NULL
;
14511 dtrace_anon_property(void)
14514 dtrace_state_t
*state
;
14516 char c
[32]; /* enough for "dof-data-" + digits */
14518 ASSERT(MUTEX_HELD(&dtrace_lock
));
14519 ASSERT(MUTEX_HELD(&cpu_lock
));
14521 for (i
= 0; ; i
++) {
14522 (void) snprintf(c
, sizeof (c
), "dof-data-%d", i
);
14524 dtrace_err_verbose
= 1;
14526 if ((dof
= dtrace_dof_property(c
)) == NULL
) {
14527 dtrace_err_verbose
= 0;
14532 * We want to create anonymous state, so we need to transition
14533 * the kernel debugger to indicate that DTrace is active. If
14534 * this fails (e.g. because the debugger has modified text in
14535 * some way), we won't continue with the processing.
14537 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
14538 cmn_err(CE_NOTE
, "kernel debugger active; anonymous "
14539 "enabling ignored.");
14540 dtrace_dof_destroy(dof
);
14545 * If we haven't allocated an anonymous state, we'll do so now.
14547 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14548 state
= dtrace_state_create(NULL
, NULL
);
14549 dtrace_anon
.dta_state
= state
;
14551 if (state
== NULL
) {
14553 * This basically shouldn't happen: the only
14554 * failure mode from dtrace_state_create() is a
14555 * failure of ddi_soft_state_zalloc() that
14556 * itself should never happen. Still, the
14557 * interface allows for a failure mode, and
14558 * we want to fail as gracefully as possible:
14559 * we'll emit an error message and cease
14560 * processing anonymous state in this case.
14562 cmn_err(CE_WARN
, "failed to create "
14563 "anonymous state");
14564 dtrace_dof_destroy(dof
);
14569 rv
= dtrace_dof_slurp(dof
, &state
->dts_vstate
, CRED(),
14570 &dtrace_anon
.dta_enabling
, 0, B_TRUE
);
14573 rv
= dtrace_dof_options(dof
, state
);
14575 dtrace_err_verbose
= 0;
14576 dtrace_dof_destroy(dof
);
14580 * This is malformed DOF; chuck any anonymous state
14583 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14584 dtrace_state_destroy(state
);
14585 dtrace_anon
.dta_state
= NULL
;
14589 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14592 if (dtrace_anon
.dta_enabling
!= NULL
) {
14596 * dtrace_enabling_retain() can only fail because we are
14597 * trying to retain more enablings than are allowed -- but
14598 * we only have one anonymous enabling, and we are guaranteed
14599 * to be allowed at least one retained enabling; we assert
14600 * that dtrace_enabling_retain() returns success.
14602 rval
= dtrace_enabling_retain(dtrace_anon
.dta_enabling
);
14605 dtrace_enabling_dump(dtrace_anon
.dta_enabling
);
14610 * DTrace Helper Functions
14613 dtrace_helper_trace(dtrace_helper_action_t
*helper
,
14614 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
, int where
)
14616 uint32_t size
, next
, nnext
, i
;
14617 dtrace_helptrace_t
*ent
, *buffer
;
14618 uint16_t flags
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14620 if ((buffer
= dtrace_helptrace_buffer
) == NULL
)
14623 ASSERT(vstate
->dtvs_nlocals
<= dtrace_helptrace_nlocals
);
14626 * What would a tracing framework be without its own tracing
14627 * framework? (Well, a hell of a lot simpler, for starters...)
14629 size
= sizeof (dtrace_helptrace_t
) + dtrace_helptrace_nlocals
*
14630 sizeof (uint64_t) - sizeof (uint64_t);
14633 * Iterate until we can allocate a slot in the trace buffer.
14636 next
= dtrace_helptrace_next
;
14638 if (next
+ size
< dtrace_helptrace_bufsize
) {
14639 nnext
= next
+ size
;
14643 } while (dtrace_cas32(&dtrace_helptrace_next
, next
, nnext
) != next
);
14646 * We have our slot; fill it in.
14648 if (nnext
== size
) {
14649 dtrace_helptrace_wrapped
++;
14653 ent
= (dtrace_helptrace_t
*)((uintptr_t)buffer
+ next
);
14654 ent
->dtht_helper
= helper
;
14655 ent
->dtht_where
= where
;
14656 ent
->dtht_nlocals
= vstate
->dtvs_nlocals
;
14658 ent
->dtht_fltoffs
= (mstate
->dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
14659 mstate
->dtms_fltoffs
: -1;
14660 ent
->dtht_fault
= DTRACE_FLAGS2FLT(flags
);
14661 ent
->dtht_illval
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
14663 for (i
= 0; i
< vstate
->dtvs_nlocals
; i
++) {
14664 dtrace_statvar_t
*svar
;
14666 if ((svar
= vstate
->dtvs_locals
[i
]) == NULL
)
14669 ASSERT(svar
->dtsv_size
>= NCPU
* sizeof (uint64_t));
14670 ent
->dtht_locals
[i
] =
14671 ((uint64_t *)(uintptr_t)svar
->dtsv_data
)[CPU
->cpu_id
];
14676 dtrace_helper(int which
, dtrace_mstate_t
*mstate
,
14677 dtrace_state_t
*state
, uint64_t arg0
, uint64_t arg1
)
14679 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14680 uint64_t sarg0
= mstate
->dtms_arg
[0];
14681 uint64_t sarg1
= mstate
->dtms_arg
[1];
14683 dtrace_helpers_t
*helpers
= curproc
->p_dtrace_helpers
;
14684 dtrace_helper_action_t
*helper
;
14685 dtrace_vstate_t
*vstate
;
14686 dtrace_difo_t
*pred
;
14687 int i
, trace
= dtrace_helptrace_buffer
!= NULL
;
14689 ASSERT(which
>= 0 && which
< DTRACE_NHELPER_ACTIONS
);
14691 if (helpers
== NULL
)
14694 if ((helper
= helpers
->dthps_actions
[which
]) == NULL
)
14697 vstate
= &helpers
->dthps_vstate
;
14698 mstate
->dtms_arg
[0] = arg0
;
14699 mstate
->dtms_arg
[1] = arg1
;
14702 * Now iterate over each helper. If its predicate evaluates to 'true',
14703 * we'll call the corresponding actions. Note that the below calls
14704 * to dtrace_dif_emulate() may set faults in machine state. This is
14705 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14706 * the stored DIF offset with its own (which is the desired behavior).
14707 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14708 * from machine state; this is okay, too.
14710 for (; helper
!= NULL
; helper
= helper
->dtha_next
) {
14711 if ((pred
= helper
->dtha_predicate
) != NULL
) {
14713 dtrace_helper_trace(helper
, mstate
, vstate
, 0);
14715 if (!dtrace_dif_emulate(pred
, mstate
, vstate
, state
))
14718 if (*flags
& CPU_DTRACE_FAULT
)
14722 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14724 dtrace_helper_trace(helper
,
14725 mstate
, vstate
, i
+ 1);
14727 rval
= dtrace_dif_emulate(helper
->dtha_actions
[i
],
14728 mstate
, vstate
, state
);
14730 if (*flags
& CPU_DTRACE_FAULT
)
14736 dtrace_helper_trace(helper
, mstate
, vstate
,
14737 DTRACE_HELPTRACE_NEXT
);
14741 dtrace_helper_trace(helper
, mstate
, vstate
,
14742 DTRACE_HELPTRACE_DONE
);
14745 * Restore the arg0 that we saved upon entry.
14747 mstate
->dtms_arg
[0] = sarg0
;
14748 mstate
->dtms_arg
[1] = sarg1
;
14754 dtrace_helper_trace(helper
, mstate
, vstate
,
14755 DTRACE_HELPTRACE_ERR
);
14758 * Restore the arg0 that we saved upon entry.
14760 mstate
->dtms_arg
[0] = sarg0
;
14761 mstate
->dtms_arg
[1] = sarg1
;
14767 dtrace_helper_action_destroy(dtrace_helper_action_t
*helper
,
14768 dtrace_vstate_t
*vstate
)
14772 if (helper
->dtha_predicate
!= NULL
)
14773 dtrace_difo_release(helper
->dtha_predicate
, vstate
);
14775 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14776 ASSERT(helper
->dtha_actions
[i
] != NULL
);
14777 dtrace_difo_release(helper
->dtha_actions
[i
], vstate
);
14780 kmem_free(helper
->dtha_actions
,
14781 helper
->dtha_nactions
* sizeof (dtrace_difo_t
*));
14782 kmem_free(helper
, sizeof (dtrace_helper_action_t
));
14786 dtrace_helper_destroygen(int gen
)
14788 proc_t
*p
= curproc
;
14789 dtrace_helpers_t
*help
= p
->p_dtrace_helpers
;
14790 dtrace_vstate_t
*vstate
;
14793 ASSERT(MUTEX_HELD(&dtrace_lock
));
14795 if (help
== NULL
|| gen
> help
->dthps_generation
)
14798 vstate
= &help
->dthps_vstate
;
14800 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
14801 dtrace_helper_action_t
*last
= NULL
, *h
, *next
;
14803 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
14804 next
= h
->dtha_next
;
14806 if (h
->dtha_generation
== gen
) {
14807 if (last
!= NULL
) {
14808 last
->dtha_next
= next
;
14810 help
->dthps_actions
[i
] = next
;
14813 dtrace_helper_action_destroy(h
, vstate
);
14821 * Interate until we've cleared out all helper providers with the
14822 * given generation number.
14825 dtrace_helper_provider_t
*prov
;
14828 * Look for a helper provider with the right generation. We
14829 * have to start back at the beginning of the list each time
14830 * because we drop dtrace_lock. It's unlikely that we'll make
14831 * more than two passes.
14833 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14834 prov
= help
->dthps_provs
[i
];
14836 if (prov
->dthp_generation
== gen
)
14841 * If there were no matches, we're done.
14843 if (i
== help
->dthps_nprovs
)
14847 * Move the last helper provider into this slot.
14849 help
->dthps_nprovs
--;
14850 help
->dthps_provs
[i
] = help
->dthps_provs
[help
->dthps_nprovs
];
14851 help
->dthps_provs
[help
->dthps_nprovs
] = NULL
;
14853 mutex_exit(&dtrace_lock
);
14856 * If we have a meta provider, remove this helper provider.
14858 mutex_enter(&dtrace_meta_lock
);
14859 if (dtrace_meta_pid
!= NULL
) {
14860 ASSERT(dtrace_deferred_pid
== NULL
);
14861 dtrace_helper_provider_remove(&prov
->dthp_prov
,
14864 mutex_exit(&dtrace_meta_lock
);
14866 dtrace_helper_provider_destroy(prov
);
14868 mutex_enter(&dtrace_lock
);
14875 dtrace_helper_validate(dtrace_helper_action_t
*helper
)
14880 if ((dp
= helper
->dtha_predicate
) != NULL
)
14881 err
+= dtrace_difo_validate_helper(dp
);
14883 for (i
= 0; i
< helper
->dtha_nactions
; i
++)
14884 err
+= dtrace_difo_validate_helper(helper
->dtha_actions
[i
]);
14890 dtrace_helper_action_add(int which
, dtrace_ecbdesc_t
*ep
)
14892 dtrace_helpers_t
*help
;
14893 dtrace_helper_action_t
*helper
, *last
;
14894 dtrace_actdesc_t
*act
;
14895 dtrace_vstate_t
*vstate
;
14896 dtrace_predicate_t
*pred
;
14897 int count
= 0, nactions
= 0, i
;
14899 if (which
< 0 || which
>= DTRACE_NHELPER_ACTIONS
)
14902 help
= curproc
->p_dtrace_helpers
;
14903 last
= help
->dthps_actions
[which
];
14904 vstate
= &help
->dthps_vstate
;
14906 for (count
= 0; last
!= NULL
; last
= last
->dtha_next
) {
14908 if (last
->dtha_next
== NULL
)
14913 * If we already have dtrace_helper_actions_max helper actions for this
14914 * helper action type, we'll refuse to add a new one.
14916 if (count
>= dtrace_helper_actions_max
)
14919 helper
= kmem_zalloc(sizeof (dtrace_helper_action_t
), KM_SLEEP
);
14920 helper
->dtha_generation
= help
->dthps_generation
;
14922 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
) {
14923 ASSERT(pred
->dtp_difo
!= NULL
);
14924 dtrace_difo_hold(pred
->dtp_difo
);
14925 helper
->dtha_predicate
= pred
->dtp_difo
;
14928 for (act
= ep
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
14929 if (act
->dtad_kind
!= DTRACEACT_DIFEXPR
)
14932 if (act
->dtad_difo
== NULL
)
14938 helper
->dtha_actions
= kmem_zalloc(sizeof (dtrace_difo_t
*) *
14939 (helper
->dtha_nactions
= nactions
), KM_SLEEP
);
14941 for (act
= ep
->dted_action
, i
= 0; act
!= NULL
; act
= act
->dtad_next
) {
14942 dtrace_difo_hold(act
->dtad_difo
);
14943 helper
->dtha_actions
[i
++] = act
->dtad_difo
;
14946 if (!dtrace_helper_validate(helper
))
14949 if (last
== NULL
) {
14950 help
->dthps_actions
[which
] = helper
;
14952 last
->dtha_next
= helper
;
14955 if (vstate
->dtvs_nlocals
> dtrace_helptrace_nlocals
) {
14956 dtrace_helptrace_nlocals
= vstate
->dtvs_nlocals
;
14957 dtrace_helptrace_next
= 0;
14962 dtrace_helper_action_destroy(helper
, vstate
);
14967 dtrace_helper_provider_register(proc_t
*p
, dtrace_helpers_t
*help
,
14968 dof_helper_t
*dofhp
)
14970 ASSERT(MUTEX_NOT_HELD(&dtrace_lock
));
14972 mutex_enter(&dtrace_meta_lock
);
14973 mutex_enter(&dtrace_lock
);
14975 if (!dtrace_attached() || dtrace_meta_pid
== NULL
) {
14977 * If the dtrace module is loaded but not attached, or if
14978 * there aren't isn't a meta provider registered to deal with
14979 * these provider descriptions, we need to postpone creating
14980 * the actual providers until later.
14983 if (help
->dthps_next
== NULL
&& help
->dthps_prev
== NULL
&&
14984 dtrace_deferred_pid
!= help
) {
14985 help
->dthps_deferred
= 1;
14986 help
->dthps_pid
= p
->p_pid
;
14987 help
->dthps_next
= dtrace_deferred_pid
;
14988 help
->dthps_prev
= NULL
;
14989 if (dtrace_deferred_pid
!= NULL
)
14990 dtrace_deferred_pid
->dthps_prev
= help
;
14991 dtrace_deferred_pid
= help
;
14994 mutex_exit(&dtrace_lock
);
14996 } else if (dofhp
!= NULL
) {
14998 * If the dtrace module is loaded and we have a particular
14999 * helper provider description, pass that off to the
15003 mutex_exit(&dtrace_lock
);
15005 dtrace_helper_provide(dofhp
, p
->p_pid
);
15009 * Otherwise, just pass all the helper provider descriptions
15010 * off to the meta provider.
15014 mutex_exit(&dtrace_lock
);
15016 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15017 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
15022 mutex_exit(&dtrace_meta_lock
);
15026 dtrace_helper_provider_add(dof_helper_t
*dofhp
, int gen
)
15028 dtrace_helpers_t
*help
;
15029 dtrace_helper_provider_t
*hprov
, **tmp_provs
;
15030 uint_t tmp_maxprovs
, i
;
15032 ASSERT(MUTEX_HELD(&dtrace_lock
));
15034 help
= curproc
->p_dtrace_helpers
;
15035 ASSERT(help
!= NULL
);
15038 * If we already have dtrace_helper_providers_max helper providers,
15039 * we're refuse to add a new one.
15041 if (help
->dthps_nprovs
>= dtrace_helper_providers_max
)
15045 * Check to make sure this isn't a duplicate.
15047 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15048 if (dofhp
->dofhp_addr
==
15049 help
->dthps_provs
[i
]->dthp_prov
.dofhp_addr
)
15053 hprov
= kmem_zalloc(sizeof (dtrace_helper_provider_t
), KM_SLEEP
);
15054 hprov
->dthp_prov
= *dofhp
;
15055 hprov
->dthp_ref
= 1;
15056 hprov
->dthp_generation
= gen
;
15059 * Allocate a bigger table for helper providers if it's already full.
15061 if (help
->dthps_maxprovs
== help
->dthps_nprovs
) {
15062 tmp_maxprovs
= help
->dthps_maxprovs
;
15063 tmp_provs
= help
->dthps_provs
;
15065 if (help
->dthps_maxprovs
== 0)
15066 help
->dthps_maxprovs
= 2;
15068 help
->dthps_maxprovs
*= 2;
15069 if (help
->dthps_maxprovs
> dtrace_helper_providers_max
)
15070 help
->dthps_maxprovs
= dtrace_helper_providers_max
;
15072 ASSERT(tmp_maxprovs
< help
->dthps_maxprovs
);
15074 help
->dthps_provs
= kmem_zalloc(help
->dthps_maxprovs
*
15075 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15077 if (tmp_provs
!= NULL
) {
15078 bcopy(tmp_provs
, help
->dthps_provs
, tmp_maxprovs
*
15079 sizeof (dtrace_helper_provider_t
*));
15080 kmem_free(tmp_provs
, tmp_maxprovs
*
15081 sizeof (dtrace_helper_provider_t
*));
15085 help
->dthps_provs
[help
->dthps_nprovs
] = hprov
;
15086 help
->dthps_nprovs
++;
15092 dtrace_helper_provider_destroy(dtrace_helper_provider_t
*hprov
)
15094 mutex_enter(&dtrace_lock
);
15096 if (--hprov
->dthp_ref
== 0) {
15098 mutex_exit(&dtrace_lock
);
15099 dof
= (dof_hdr_t
*)(uintptr_t)hprov
->dthp_prov
.dofhp_dof
;
15100 dtrace_dof_destroy(dof
);
15101 kmem_free(hprov
, sizeof (dtrace_helper_provider_t
));
15103 mutex_exit(&dtrace_lock
);
15108 dtrace_helper_provider_validate(dof_hdr_t
*dof
, dof_sec_t
*sec
)
15110 uintptr_t daddr
= (uintptr_t)dof
;
15111 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
15112 dof_provider_t
*provider
;
15113 dof_probe_t
*probe
;
15115 char *strtab
, *typestr
;
15116 dof_stridx_t typeidx
;
15118 uint_t nprobes
, j
, k
;
15120 ASSERT(sec
->dofs_type
== DOF_SECT_PROVIDER
);
15122 if (sec
->dofs_offset
& (sizeof (uint_t
) - 1)) {
15123 dtrace_dof_error(dof
, "misaligned section offset");
15128 * The section needs to be large enough to contain the DOF provider
15129 * structure appropriate for the given version.
15131 if (sec
->dofs_size
<
15132 ((dof
->dofh_ident
[DOF_ID_VERSION
] == DOF_VERSION_1
) ?
15133 offsetof(dof_provider_t
, dofpv_prenoffs
) :
15134 sizeof (dof_provider_t
))) {
15135 dtrace_dof_error(dof
, "provider section too small");
15139 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
15140 str_sec
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, provider
->dofpv_strtab
);
15141 prb_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBES
, provider
->dofpv_probes
);
15142 arg_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRARGS
, provider
->dofpv_prargs
);
15143 off_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROFFS
, provider
->dofpv_proffs
);
15145 if (str_sec
== NULL
|| prb_sec
== NULL
||
15146 arg_sec
== NULL
|| off_sec
== NULL
)
15151 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
15152 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
&&
15153 (enoff_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRENOFFS
,
15154 provider
->dofpv_prenoffs
)) == NULL
)
15157 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
15159 if (provider
->dofpv_name
>= str_sec
->dofs_size
||
15160 strlen(strtab
+ provider
->dofpv_name
) >= DTRACE_PROVNAMELEN
) {
15161 dtrace_dof_error(dof
, "invalid provider name");
15165 if (prb_sec
->dofs_entsize
== 0 ||
15166 prb_sec
->dofs_entsize
> prb_sec
->dofs_size
) {
15167 dtrace_dof_error(dof
, "invalid entry size");
15171 if (prb_sec
->dofs_entsize
& (sizeof (uintptr_t) - 1)) {
15172 dtrace_dof_error(dof
, "misaligned entry size");
15176 if (off_sec
->dofs_entsize
!= sizeof (uint32_t)) {
15177 dtrace_dof_error(dof
, "invalid entry size");
15181 if (off_sec
->dofs_offset
& (sizeof (uint32_t) - 1)) {
15182 dtrace_dof_error(dof
, "misaligned section offset");
15186 if (arg_sec
->dofs_entsize
!= sizeof (uint8_t)) {
15187 dtrace_dof_error(dof
, "invalid entry size");
15191 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
15193 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
15196 * Take a pass through the probes to check for errors.
15198 for (j
= 0; j
< nprobes
; j
++) {
15199 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
15200 prb_sec
->dofs_offset
+ j
* prb_sec
->dofs_entsize
);
15202 if (probe
->dofpr_func
>= str_sec
->dofs_size
) {
15203 dtrace_dof_error(dof
, "invalid function name");
15207 if (strlen(strtab
+ probe
->dofpr_func
) >= DTRACE_FUNCNAMELEN
) {
15208 dtrace_dof_error(dof
, "function name too long");
15212 if (probe
->dofpr_name
>= str_sec
->dofs_size
||
15213 strlen(strtab
+ probe
->dofpr_name
) >= DTRACE_NAMELEN
) {
15214 dtrace_dof_error(dof
, "invalid probe name");
15219 * The offset count must not wrap the index, and the offsets
15220 * must also not overflow the section's data.
15222 if (probe
->dofpr_offidx
+ probe
->dofpr_noffs
<
15223 probe
->dofpr_offidx
||
15224 (probe
->dofpr_offidx
+ probe
->dofpr_noffs
) *
15225 off_sec
->dofs_entsize
> off_sec
->dofs_size
) {
15226 dtrace_dof_error(dof
, "invalid probe offset");
15230 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
) {
15232 * If there's no is-enabled offset section, make sure
15233 * there aren't any is-enabled offsets. Otherwise
15234 * perform the same checks as for probe offsets
15235 * (immediately above).
15237 if (enoff_sec
== NULL
) {
15238 if (probe
->dofpr_enoffidx
!= 0 ||
15239 probe
->dofpr_nenoffs
!= 0) {
15240 dtrace_dof_error(dof
, "is-enabled "
15241 "offsets with null section");
15244 } else if (probe
->dofpr_enoffidx
+
15245 probe
->dofpr_nenoffs
< probe
->dofpr_enoffidx
||
15246 (probe
->dofpr_enoffidx
+ probe
->dofpr_nenoffs
) *
15247 enoff_sec
->dofs_entsize
> enoff_sec
->dofs_size
) {
15248 dtrace_dof_error(dof
, "invalid is-enabled "
15253 if (probe
->dofpr_noffs
+ probe
->dofpr_nenoffs
== 0) {
15254 dtrace_dof_error(dof
, "zero probe and "
15255 "is-enabled offsets");
15258 } else if (probe
->dofpr_noffs
== 0) {
15259 dtrace_dof_error(dof
, "zero probe offsets");
15263 if (probe
->dofpr_argidx
+ probe
->dofpr_xargc
<
15264 probe
->dofpr_argidx
||
15265 (probe
->dofpr_argidx
+ probe
->dofpr_xargc
) *
15266 arg_sec
->dofs_entsize
> arg_sec
->dofs_size
) {
15267 dtrace_dof_error(dof
, "invalid args");
15271 typeidx
= probe
->dofpr_nargv
;
15272 typestr
= strtab
+ probe
->dofpr_nargv
;
15273 for (k
= 0; k
< probe
->dofpr_nargc
; k
++) {
15274 if (typeidx
>= str_sec
->dofs_size
) {
15275 dtrace_dof_error(dof
, "bad "
15276 "native argument type");
15280 typesz
= strlen(typestr
) + 1;
15281 if (typesz
> DTRACE_ARGTYPELEN
) {
15282 dtrace_dof_error(dof
, "native "
15283 "argument type too long");
15290 typeidx
= probe
->dofpr_xargv
;
15291 typestr
= strtab
+ probe
->dofpr_xargv
;
15292 for (k
= 0; k
< probe
->dofpr_xargc
; k
++) {
15293 if (arg
[probe
->dofpr_argidx
+ k
] > probe
->dofpr_nargc
) {
15294 dtrace_dof_error(dof
, "bad "
15295 "native argument index");
15299 if (typeidx
>= str_sec
->dofs_size
) {
15300 dtrace_dof_error(dof
, "bad "
15301 "translated argument type");
15305 typesz
= strlen(typestr
) + 1;
15306 if (typesz
> DTRACE_ARGTYPELEN
) {
15307 dtrace_dof_error(dof
, "translated argument "
15321 dtrace_helper_slurp(dof_hdr_t
*dof
, dof_helper_t
*dhp
)
15323 dtrace_helpers_t
*help
;
15324 dtrace_vstate_t
*vstate
;
15325 dtrace_enabling_t
*enab
= NULL
;
15326 int i
, gen
, rv
, nhelpers
= 0, nprovs
= 0, destroy
= 1;
15327 uintptr_t daddr
= (uintptr_t)dof
;
15329 ASSERT(MUTEX_HELD(&dtrace_lock
));
15331 if ((help
= curproc
->p_dtrace_helpers
) == NULL
)
15332 help
= dtrace_helpers_create(curproc
);
15334 vstate
= &help
->dthps_vstate
;
15336 if ((rv
= dtrace_dof_slurp(dof
, vstate
, NULL
, &enab
,
15337 dhp
!= NULL
? dhp
->dofhp_addr
: 0, B_FALSE
)) != 0) {
15338 dtrace_dof_destroy(dof
);
15343 * Look for helper providers and validate their descriptions.
15346 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
15347 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
15348 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
15350 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
15353 if (dtrace_helper_provider_validate(dof
, sec
) != 0) {
15354 dtrace_enabling_destroy(enab
);
15355 dtrace_dof_destroy(dof
);
15364 * Now we need to walk through the ECB descriptions in the enabling.
15366 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
15367 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
15368 dtrace_probedesc_t
*desc
= &ep
->dted_probe
;
15370 if (strcmp(desc
->dtpd_provider
, "dtrace") != 0)
15373 if (strcmp(desc
->dtpd_mod
, "helper") != 0)
15376 if (strcmp(desc
->dtpd_func
, "ustack") != 0)
15379 if ((rv
= dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK
,
15382 * Adding this helper action failed -- we are now going
15383 * to rip out the entire generation and return failure.
15385 (void) dtrace_helper_destroygen(help
->dthps_generation
);
15386 dtrace_enabling_destroy(enab
);
15387 dtrace_dof_destroy(dof
);
15394 if (nhelpers
< enab
->dten_ndesc
)
15395 dtrace_dof_error(dof
, "unmatched helpers");
15397 gen
= help
->dthps_generation
++;
15398 dtrace_enabling_destroy(enab
);
15400 if (dhp
!= NULL
&& nprovs
> 0) {
15402 * Now that this is in-kernel, we change the sense of the
15403 * members: dofhp_dof denotes the in-kernel copy of the DOF
15404 * and dofhp_addr denotes the address at user-level.
15406 dhp
->dofhp_addr
= dhp
->dofhp_dof
;
15407 dhp
->dofhp_dof
= (uint64_t)(uintptr_t)dof
;
15409 if (dtrace_helper_provider_add(dhp
, gen
) == 0) {
15410 mutex_exit(&dtrace_lock
);
15411 dtrace_helper_provider_register(curproc
, help
, dhp
);
15412 mutex_enter(&dtrace_lock
);
15419 dtrace_dof_destroy(dof
);
15424 static dtrace_helpers_t
*
15425 dtrace_helpers_create(proc_t
*p
)
15427 dtrace_helpers_t
*help
;
15429 ASSERT(MUTEX_HELD(&dtrace_lock
));
15430 ASSERT(p
->p_dtrace_helpers
== NULL
);
15432 help
= kmem_zalloc(sizeof (dtrace_helpers_t
), KM_SLEEP
);
15433 help
->dthps_actions
= kmem_zalloc(sizeof (dtrace_helper_action_t
*) *
15434 DTRACE_NHELPER_ACTIONS
, KM_SLEEP
);
15436 p
->p_dtrace_helpers
= help
;
15443 dtrace_helpers_destroy(proc_t
*p
)
15445 dtrace_helpers_t
*help
;
15446 dtrace_vstate_t
*vstate
;
15449 mutex_enter(&dtrace_lock
);
15451 ASSERT(p
->p_dtrace_helpers
!= NULL
);
15452 ASSERT(dtrace_helpers
> 0);
15454 help
= p
->p_dtrace_helpers
;
15455 vstate
= &help
->dthps_vstate
;
15458 * We're now going to lose the help from this process.
15460 p
->p_dtrace_helpers
= NULL
;
15461 if (p
== curproc
) {
15465 * It is sometimes necessary to clean up dtrace helpers from a
15466 * an incomplete child process as part of a failed fork
15467 * operation. In such situations, a dtrace_sync() call should
15468 * be unnecessary as the process should be devoid of threads,
15469 * much less any in probe context.
15471 VERIFY(p
->p_stat
== SIDL
);
15475 * Destroy the helper actions.
15477 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15478 dtrace_helper_action_t
*h
, *next
;
15480 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
15481 next
= h
->dtha_next
;
15482 dtrace_helper_action_destroy(h
, vstate
);
15487 mutex_exit(&dtrace_lock
);
15490 * Destroy the helper providers.
15492 if (help
->dthps_maxprovs
> 0) {
15493 mutex_enter(&dtrace_meta_lock
);
15494 if (dtrace_meta_pid
!= NULL
) {
15495 ASSERT(dtrace_deferred_pid
== NULL
);
15497 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15498 dtrace_helper_provider_remove(
15499 &help
->dthps_provs
[i
]->dthp_prov
, p
->p_pid
);
15502 mutex_enter(&dtrace_lock
);
15503 ASSERT(help
->dthps_deferred
== 0 ||
15504 help
->dthps_next
!= NULL
||
15505 help
->dthps_prev
!= NULL
||
15506 help
== dtrace_deferred_pid
);
15509 * Remove the helper from the deferred list.
15511 if (help
->dthps_next
!= NULL
)
15512 help
->dthps_next
->dthps_prev
= help
->dthps_prev
;
15513 if (help
->dthps_prev
!= NULL
)
15514 help
->dthps_prev
->dthps_next
= help
->dthps_next
;
15515 if (dtrace_deferred_pid
== help
) {
15516 dtrace_deferred_pid
= help
->dthps_next
;
15517 ASSERT(help
->dthps_prev
== NULL
);
15520 mutex_exit(&dtrace_lock
);
15523 mutex_exit(&dtrace_meta_lock
);
15525 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15526 dtrace_helper_provider_destroy(help
->dthps_provs
[i
]);
15529 kmem_free(help
->dthps_provs
, help
->dthps_maxprovs
*
15530 sizeof (dtrace_helper_provider_t
*));
15533 mutex_enter(&dtrace_lock
);
15535 dtrace_vstate_fini(&help
->dthps_vstate
);
15536 kmem_free(help
->dthps_actions
,
15537 sizeof (dtrace_helper_action_t
*) * DTRACE_NHELPER_ACTIONS
);
15538 kmem_free(help
, sizeof (dtrace_helpers_t
));
15541 mutex_exit(&dtrace_lock
);
15545 dtrace_helpers_duplicate(proc_t
*from
, proc_t
*to
)
15547 dtrace_helpers_t
*help
, *newhelp
;
15548 dtrace_helper_action_t
*helper
, *new, *last
;
15550 dtrace_vstate_t
*vstate
;
15551 int i
, j
, sz
, hasprovs
= 0;
15553 mutex_enter(&dtrace_lock
);
15554 ASSERT(from
->p_dtrace_helpers
!= NULL
);
15555 ASSERT(dtrace_helpers
> 0);
15557 help
= from
->p_dtrace_helpers
;
15558 newhelp
= dtrace_helpers_create(to
);
15559 ASSERT(to
->p_dtrace_helpers
!= NULL
);
15561 newhelp
->dthps_generation
= help
->dthps_generation
;
15562 vstate
= &newhelp
->dthps_vstate
;
15565 * Duplicate the helper actions.
15567 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15568 if ((helper
= help
->dthps_actions
[i
]) == NULL
)
15571 for (last
= NULL
; helper
!= NULL
; helper
= helper
->dtha_next
) {
15572 new = kmem_zalloc(sizeof (dtrace_helper_action_t
),
15574 new->dtha_generation
= helper
->dtha_generation
;
15576 if ((dp
= helper
->dtha_predicate
) != NULL
) {
15577 dp
= dtrace_difo_duplicate(dp
, vstate
);
15578 new->dtha_predicate
= dp
;
15581 new->dtha_nactions
= helper
->dtha_nactions
;
15582 sz
= sizeof (dtrace_difo_t
*) * new->dtha_nactions
;
15583 new->dtha_actions
= kmem_alloc(sz
, KM_SLEEP
);
15585 for (j
= 0; j
< new->dtha_nactions
; j
++) {
15586 dtrace_difo_t
*dp
= helper
->dtha_actions
[j
];
15588 ASSERT(dp
!= NULL
);
15589 dp
= dtrace_difo_duplicate(dp
, vstate
);
15590 new->dtha_actions
[j
] = dp
;
15593 if (last
!= NULL
) {
15594 last
->dtha_next
= new;
15596 newhelp
->dthps_actions
[i
] = new;
15604 * Duplicate the helper providers and register them with the
15605 * DTrace framework.
15607 if (help
->dthps_nprovs
> 0) {
15608 newhelp
->dthps_nprovs
= help
->dthps_nprovs
;
15609 newhelp
->dthps_maxprovs
= help
->dthps_nprovs
;
15610 newhelp
->dthps_provs
= kmem_alloc(newhelp
->dthps_nprovs
*
15611 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15612 for (i
= 0; i
< newhelp
->dthps_nprovs
; i
++) {
15613 newhelp
->dthps_provs
[i
] = help
->dthps_provs
[i
];
15614 newhelp
->dthps_provs
[i
]->dthp_ref
++;
15620 mutex_exit(&dtrace_lock
);
15623 dtrace_helper_provider_register(to
, newhelp
, NULL
);
15627 * DTrace Hook Functions
15630 dtrace_module_loaded(struct modctl
*ctl
)
15632 dtrace_provider_t
*prv
;
15634 mutex_enter(&dtrace_provider_lock
);
15635 mutex_enter(&mod_lock
);
15637 ASSERT(ctl
->mod_busy
);
15640 * We're going to call each providers per-module provide operation
15641 * specifying only this module.
15643 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
15644 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
15646 mutex_exit(&mod_lock
);
15647 mutex_exit(&dtrace_provider_lock
);
15650 * If we have any retained enablings, we need to match against them.
15651 * Enabling probes requires that cpu_lock be held, and we cannot hold
15652 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15653 * module. (In particular, this happens when loading scheduling
15654 * classes.) So if we have any retained enablings, we need to dispatch
15655 * our task queue to do the match for us.
15657 mutex_enter(&dtrace_lock
);
15659 if (dtrace_retained
== NULL
) {
15660 mutex_exit(&dtrace_lock
);
15664 (void) taskq_dispatch(dtrace_taskq
,
15665 (task_func_t
*)dtrace_enabling_matchall
, NULL
, TQ_SLEEP
);
15667 mutex_exit(&dtrace_lock
);
15670 * And now, for a little heuristic sleaze: in general, we want to
15671 * match modules as soon as they load. However, we cannot guarantee
15672 * this, because it would lead us to the lock ordering violation
15673 * outlined above. The common case, of course, is that cpu_lock is
15674 * _not_ held -- so we delay here for a clock tick, hoping that that's
15675 * long enough for the task queue to do its work. If it's not, it's
15676 * not a serious problem -- it just means that the module that we
15677 * just loaded may not be immediately instrumentable.
15683 dtrace_module_unloaded(struct modctl
*ctl
)
15685 dtrace_probe_t
template, *probe
, *first
, *next
;
15686 dtrace_provider_t
*prov
;
15688 template.dtpr_mod
= ctl
->mod_modname
;
15690 mutex_enter(&dtrace_provider_lock
);
15691 mutex_enter(&mod_lock
);
15692 mutex_enter(&dtrace_lock
);
15694 if (dtrace_bymod
== NULL
) {
15696 * The DTrace module is loaded (obviously) but not attached;
15697 * we don't have any work to do.
15699 mutex_exit(&dtrace_provider_lock
);
15700 mutex_exit(&mod_lock
);
15701 mutex_exit(&dtrace_lock
);
15705 for (probe
= first
= dtrace_hash_lookup(dtrace_bymod
, &template);
15706 probe
!= NULL
; probe
= probe
->dtpr_nextmod
) {
15707 if (probe
->dtpr_ecb
!= NULL
) {
15708 mutex_exit(&dtrace_provider_lock
);
15709 mutex_exit(&mod_lock
);
15710 mutex_exit(&dtrace_lock
);
15713 * This shouldn't _actually_ be possible -- we're
15714 * unloading a module that has an enabled probe in it.
15715 * (It's normally up to the provider to make sure that
15716 * this can't happen.) However, because dtps_enable()
15717 * doesn't have a failure mode, there can be an
15718 * enable/unload race. Upshot: we don't want to
15719 * assert, but we're not going to disable the
15722 if (dtrace_err_verbose
) {
15723 cmn_err(CE_WARN
, "unloaded module '%s' had "
15724 "enabled probes", ctl
->mod_modname
);
15733 for (first
= NULL
; probe
!= NULL
; probe
= next
) {
15734 ASSERT(dtrace_probes
[probe
->dtpr_id
- 1] == probe
);
15736 dtrace_probes
[probe
->dtpr_id
- 1] = NULL
;
15738 next
= probe
->dtpr_nextmod
;
15739 dtrace_hash_remove(dtrace_bymod
, probe
);
15740 dtrace_hash_remove(dtrace_byfunc
, probe
);
15741 dtrace_hash_remove(dtrace_byname
, probe
);
15743 if (first
== NULL
) {
15745 probe
->dtpr_nextmod
= NULL
;
15747 probe
->dtpr_nextmod
= first
;
15753 * We've removed all of the module's probes from the hash chains and
15754 * from the probe array. Now issue a dtrace_sync() to be sure that
15755 * everyone has cleared out from any probe array processing.
15759 for (probe
= first
; probe
!= NULL
; probe
= first
) {
15760 first
= probe
->dtpr_nextmod
;
15761 prov
= probe
->dtpr_provider
;
15762 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, probe
->dtpr_id
,
15764 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
15765 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
15766 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
15767 vmem_free(dtrace_arena
, (void *)(uintptr_t)probe
->dtpr_id
, 1);
15768 kmem_free(probe
, sizeof (dtrace_probe_t
));
15771 mutex_exit(&dtrace_lock
);
15772 mutex_exit(&mod_lock
);
15773 mutex_exit(&dtrace_provider_lock
);
15777 dtrace_suspend(void)
15779 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_suspend
));
15783 dtrace_resume(void)
15785 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_resume
));
15789 dtrace_cpu_setup(cpu_setup_t what
, processorid_t cpu
)
15791 ASSERT(MUTEX_HELD(&cpu_lock
));
15792 mutex_enter(&dtrace_lock
);
15796 dtrace_state_t
*state
;
15797 dtrace_optval_t
*opt
, rs
, c
;
15800 * For now, we only allocate a new buffer for anonymous state.
15802 if ((state
= dtrace_anon
.dta_state
) == NULL
)
15805 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
15808 opt
= state
->dts_options
;
15809 c
= opt
[DTRACEOPT_CPU
];
15811 if (c
!= DTRACE_CPUALL
&& c
!= DTRACEOPT_UNSET
&& c
!= cpu
)
15815 * Regardless of what the actual policy is, we're going to
15816 * temporarily set our resize policy to be manual. We're
15817 * also going to temporarily set our CPU option to denote
15818 * the newly configured CPU.
15820 rs
= opt
[DTRACEOPT_BUFRESIZE
];
15821 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_MANUAL
;
15822 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)cpu
;
15824 (void) dtrace_state_buffers(state
);
15826 opt
[DTRACEOPT_BUFRESIZE
] = rs
;
15827 opt
[DTRACEOPT_CPU
] = c
;
15834 * We don't free the buffer in the CPU_UNCONFIG case. (The
15835 * buffer will be freed when the consumer exits.)
15843 mutex_exit(&dtrace_lock
);
15848 dtrace_cpu_setup_initial(processorid_t cpu
)
15850 (void) dtrace_cpu_setup(CPU_CONFIG
, cpu
);
15854 dtrace_toxrange_add(uintptr_t base
, uintptr_t limit
)
15856 if (dtrace_toxranges
>= dtrace_toxranges_max
) {
15858 dtrace_toxrange_t
*range
;
15860 osize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15863 ASSERT(dtrace_toxrange
== NULL
);
15864 ASSERT(dtrace_toxranges_max
== 0);
15865 dtrace_toxranges_max
= 1;
15867 dtrace_toxranges_max
<<= 1;
15870 nsize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15871 range
= kmem_zalloc(nsize
, KM_SLEEP
);
15873 if (dtrace_toxrange
!= NULL
) {
15874 ASSERT(osize
!= 0);
15875 bcopy(dtrace_toxrange
, range
, osize
);
15876 kmem_free(dtrace_toxrange
, osize
);
15879 dtrace_toxrange
= range
;
15882 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_base
== NULL
);
15883 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_limit
== NULL
);
15885 dtrace_toxrange
[dtrace_toxranges
].dtt_base
= base
;
15886 dtrace_toxrange
[dtrace_toxranges
].dtt_limit
= limit
;
15887 dtrace_toxranges
++;
15891 dtrace_getf_barrier()
15894 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15895 * that contain calls to getf(), this routine will be called on every
15896 * closef() before either the underlying vnode is released or the
15897 * file_t itself is freed. By the time we are here, it is essential
15898 * that the file_t can no longer be accessed from a call to getf()
15899 * in probe context -- that assures that a dtrace_sync() can be used
15900 * to clear out any enablings referring to the old structures.
15902 if (curthread
->t_procp
->p_zone
->zone_dtrace_getf
!= 0 ||
15903 kcred
->cr_zone
->zone_dtrace_getf
!= 0)
15908 * DTrace Driver Cookbook Functions
15912 dtrace_attach(dev_info_t
*devi
, ddi_attach_cmd_t cmd
)
15914 dtrace_provider_id_t id
;
15915 dtrace_state_t
*state
= NULL
;
15916 dtrace_enabling_t
*enab
;
15918 mutex_enter(&cpu_lock
);
15919 mutex_enter(&dtrace_provider_lock
);
15920 mutex_enter(&dtrace_lock
);
15922 if (ddi_soft_state_init(&dtrace_softstate
,
15923 sizeof (dtrace_state_t
), 0) != 0) {
15924 cmn_err(CE_NOTE
, "/dev/dtrace failed to initialize soft state");
15925 mutex_exit(&cpu_lock
);
15926 mutex_exit(&dtrace_provider_lock
);
15927 mutex_exit(&dtrace_lock
);
15928 return (DDI_FAILURE
);
15931 if (ddi_create_minor_node(devi
, DTRACEMNR_DTRACE
, S_IFCHR
,
15932 DTRACEMNRN_DTRACE
, DDI_PSEUDO
, NULL
) == DDI_FAILURE
||
15933 ddi_create_minor_node(devi
, DTRACEMNR_HELPER
, S_IFCHR
,
15934 DTRACEMNRN_HELPER
, DDI_PSEUDO
, NULL
) == DDI_FAILURE
) {
15935 cmn_err(CE_NOTE
, "/dev/dtrace couldn't create minor nodes");
15936 ddi_remove_minor_node(devi
, NULL
);
15937 ddi_soft_state_fini(&dtrace_softstate
);
15938 mutex_exit(&cpu_lock
);
15939 mutex_exit(&dtrace_provider_lock
);
15940 mutex_exit(&dtrace_lock
);
15941 return (DDI_FAILURE
);
15944 ddi_report_dev(devi
);
15945 dtrace_devi
= devi
;
15947 dtrace_modload
= dtrace_module_loaded
;
15948 dtrace_modunload
= dtrace_module_unloaded
;
15949 dtrace_cpu_init
= dtrace_cpu_setup_initial
;
15950 dtrace_helpers_cleanup
= dtrace_helpers_destroy
;
15951 dtrace_helpers_fork
= dtrace_helpers_duplicate
;
15952 dtrace_cpustart_init
= dtrace_suspend
;
15953 dtrace_cpustart_fini
= dtrace_resume
;
15954 dtrace_debugger_init
= dtrace_suspend
;
15955 dtrace_debugger_fini
= dtrace_resume
;
15957 register_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
15959 ASSERT(MUTEX_HELD(&cpu_lock
));
15961 dtrace_arena
= vmem_create("dtrace", (void *)1, UINT32_MAX
, 1,
15962 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
15963 dtrace_minor
= vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE
,
15964 UINT32_MAX
- DTRACEMNRN_CLONE
, 1, NULL
, NULL
, NULL
, 0,
15965 VM_SLEEP
| VMC_IDENTIFIER
);
15966 dtrace_taskq
= taskq_create("dtrace_taskq", 1, maxclsyspri
,
15969 dtrace_state_cache
= kmem_cache_create("dtrace_state_cache",
15970 sizeof (dtrace_dstate_percpu_t
) * NCPU
, DTRACE_STATE_ALIGN
,
15971 NULL
, NULL
, NULL
, NULL
, NULL
, 0);
15973 ASSERT(MUTEX_HELD(&cpu_lock
));
15974 dtrace_bymod
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_mod
),
15975 offsetof(dtrace_probe_t
, dtpr_nextmod
),
15976 offsetof(dtrace_probe_t
, dtpr_prevmod
));
15978 dtrace_byfunc
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_func
),
15979 offsetof(dtrace_probe_t
, dtpr_nextfunc
),
15980 offsetof(dtrace_probe_t
, dtpr_prevfunc
));
15982 dtrace_byname
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_name
),
15983 offsetof(dtrace_probe_t
, dtpr_nextname
),
15984 offsetof(dtrace_probe_t
, dtpr_prevname
));
15986 if (dtrace_retain_max
< 1) {
15987 cmn_err(CE_WARN
, "illegal value (%lu) for dtrace_retain_max; "
15988 "setting to 1", dtrace_retain_max
);
15989 dtrace_retain_max
= 1;
15993 * Now discover our toxic ranges.
15995 dtrace_toxic_ranges(dtrace_toxrange_add
);
15998 * Before we register ourselves as a provider to our own framework,
15999 * we would like to assert that dtrace_provider is NULL -- but that's
16000 * not true if we were loaded as a dependency of a DTrace provider.
16001 * Once we've registered, we can assert that dtrace_provider is our
16004 (void) dtrace_register("dtrace", &dtrace_provider_attr
,
16005 DTRACE_PRIV_NONE
, 0, &dtrace_provider_ops
, NULL
, &id
);
16007 ASSERT(dtrace_provider
!= NULL
);
16008 ASSERT((dtrace_provider_id_t
)dtrace_provider
== id
);
16010 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16011 dtrace_provider
, NULL
, NULL
, "BEGIN", 0, NULL
);
16012 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16013 dtrace_provider
, NULL
, NULL
, "END", 0, NULL
);
16014 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16015 dtrace_provider
, NULL
, NULL
, "ERROR", 1, NULL
);
16017 dtrace_anon_property();
16018 mutex_exit(&cpu_lock
);
16021 * If there are already providers, we must ask them to provide their
16022 * probes, and then match any anonymous enabling against them. Note
16023 * that there should be no other retained enablings at this time:
16024 * the only retained enablings at this time should be the anonymous
16027 if (dtrace_anon
.dta_enabling
!= NULL
) {
16028 ASSERT(dtrace_retained
== dtrace_anon
.dta_enabling
);
16030 dtrace_enabling_provide(NULL
);
16031 state
= dtrace_anon
.dta_state
;
16034 * We couldn't hold cpu_lock across the above call to
16035 * dtrace_enabling_provide(), but we must hold it to actually
16036 * enable the probes. We have to drop all of our locks, pick
16037 * up cpu_lock, and regain our locks before matching the
16038 * retained anonymous enabling.
16040 mutex_exit(&dtrace_lock
);
16041 mutex_exit(&dtrace_provider_lock
);
16043 mutex_enter(&cpu_lock
);
16044 mutex_enter(&dtrace_provider_lock
);
16045 mutex_enter(&dtrace_lock
);
16047 if ((enab
= dtrace_anon
.dta_enabling
) != NULL
)
16048 (void) dtrace_enabling_match(enab
, NULL
);
16050 mutex_exit(&cpu_lock
);
16053 mutex_exit(&dtrace_lock
);
16054 mutex_exit(&dtrace_provider_lock
);
16056 if (state
!= NULL
) {
16058 * If we created any anonymous state, set it going now.
16060 (void) dtrace_state_go(state
, &dtrace_anon
.dta_beganon
);
16063 return (DDI_SUCCESS
);
16068 dtrace_open(dev_t
*devp
, int flag
, int otyp
, cred_t
*cred_p
)
16070 dtrace_state_t
*state
;
16075 if (getminor(*devp
) == DTRACEMNRN_HELPER
)
16079 * If this wasn't an open with the "helper" minor, then it must be
16080 * the "dtrace" minor.
16082 if (getminor(*devp
) != DTRACEMNRN_DTRACE
)
16086 * If no DTRACE_PRIV_* bits are set in the credential, then the
16087 * caller lacks sufficient permission to do anything with DTrace.
16089 dtrace_cred2priv(cred_p
, &priv
, &uid
, &zoneid
);
16090 if (priv
== DTRACE_PRIV_NONE
)
16094 * Ask all providers to provide all their probes.
16096 mutex_enter(&dtrace_provider_lock
);
16097 dtrace_probe_provide(NULL
, NULL
);
16098 mutex_exit(&dtrace_provider_lock
);
16100 mutex_enter(&cpu_lock
);
16101 mutex_enter(&dtrace_lock
);
16103 dtrace_membar_producer();
16106 * If the kernel debugger is active (that is, if the kernel debugger
16107 * modified text in some way), we won't allow the open.
16109 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
16111 mutex_exit(&cpu_lock
);
16112 mutex_exit(&dtrace_lock
);
16116 if (dtrace_helptrace_enable
&& dtrace_helptrace_buffer
== NULL
) {
16118 * If DTrace helper tracing is enabled, we need to allocate the
16119 * trace buffer and initialize the values.
16121 dtrace_helptrace_buffer
=
16122 kmem_zalloc(dtrace_helptrace_bufsize
, KM_SLEEP
);
16123 dtrace_helptrace_next
= 0;
16124 dtrace_helptrace_wrapped
= 0;
16125 dtrace_helptrace_enable
= 0;
16128 state
= dtrace_state_create(devp
, cred_p
);
16129 mutex_exit(&cpu_lock
);
16131 if (state
== NULL
) {
16132 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16133 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16134 mutex_exit(&dtrace_lock
);
16138 mutex_exit(&dtrace_lock
);
16145 dtrace_close(dev_t dev
, int flag
, int otyp
, cred_t
*cred_p
)
16147 minor_t minor
= getminor(dev
);
16148 dtrace_state_t
*state
;
16149 dtrace_helptrace_t
*buf
= NULL
;
16151 if (minor
== DTRACEMNRN_HELPER
)
16154 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
16156 mutex_enter(&cpu_lock
);
16157 mutex_enter(&dtrace_lock
);
16159 if (state
->dts_anon
) {
16161 * There is anonymous state. Destroy that first.
16163 ASSERT(dtrace_anon
.dta_state
== NULL
);
16164 dtrace_state_destroy(state
->dts_anon
);
16167 if (dtrace_helptrace_disable
) {
16169 * If we have been told to disable helper tracing, set the
16170 * buffer to NULL before calling into dtrace_state_destroy();
16171 * we take advantage of its dtrace_sync() to know that no
16172 * CPU is in probe context with enabled helper tracing
16173 * after it returns.
16175 buf
= dtrace_helptrace_buffer
;
16176 dtrace_helptrace_buffer
= NULL
;
16179 dtrace_state_destroy(state
);
16180 ASSERT(dtrace_opens
> 0);
16183 * Only relinquish control of the kernel debugger interface when there
16184 * are no consumers and no anonymous enablings.
16186 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16187 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16190 kmem_free(buf
, dtrace_helptrace_bufsize
);
16191 dtrace_helptrace_disable
= 0;
16194 mutex_exit(&dtrace_lock
);
16195 mutex_exit(&cpu_lock
);
16202 dtrace_ioctl_helper(int cmd
, intptr_t arg
, int *rv
)
16205 dof_helper_t help
, *dhp
= NULL
;
16208 case DTRACEHIOC_ADDDOF
:
16209 if (copyin((void *)arg
, &help
, sizeof (help
)) != 0) {
16210 dtrace_dof_error(NULL
, "failed to copyin DOF helper");
16215 arg
= (intptr_t)help
.dofhp_dof
;
16218 case DTRACEHIOC_ADD
: {
16219 dof_hdr_t
*dof
= dtrace_dof_copyin(arg
, &rval
);
16224 mutex_enter(&dtrace_lock
);
16227 * dtrace_helper_slurp() takes responsibility for the dof --
16228 * it may free it now or it may save it and free it later.
16230 if ((rval
= dtrace_helper_slurp(dof
, dhp
)) != -1) {
16237 mutex_exit(&dtrace_lock
);
16241 case DTRACEHIOC_REMOVE
: {
16242 mutex_enter(&dtrace_lock
);
16243 rval
= dtrace_helper_destroygen(arg
);
16244 mutex_exit(&dtrace_lock
);
16258 dtrace_ioctl(dev_t dev
, int cmd
, intptr_t arg
, int md
, cred_t
*cr
, int *rv
)
16260 minor_t minor
= getminor(dev
);
16261 dtrace_state_t
*state
;
16264 if (minor
== DTRACEMNRN_HELPER
)
16265 return (dtrace_ioctl_helper(cmd
, arg
, rv
));
16267 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
16269 if (state
->dts_anon
) {
16270 ASSERT(dtrace_anon
.dta_state
== NULL
);
16271 state
= state
->dts_anon
;
16275 case DTRACEIOC_PROVIDER
: {
16276 dtrace_providerdesc_t pvd
;
16277 dtrace_provider_t
*pvp
;
16279 if (copyin((void *)arg
, &pvd
, sizeof (pvd
)) != 0)
16282 pvd
.dtvd_name
[DTRACE_PROVNAMELEN
- 1] = '\0';
16283 mutex_enter(&dtrace_provider_lock
);
16285 for (pvp
= dtrace_provider
; pvp
!= NULL
; pvp
= pvp
->dtpv_next
) {
16286 if (strcmp(pvp
->dtpv_name
, pvd
.dtvd_name
) == 0)
16290 mutex_exit(&dtrace_provider_lock
);
16295 bcopy(&pvp
->dtpv_priv
, &pvd
.dtvd_priv
, sizeof (dtrace_ppriv_t
));
16296 bcopy(&pvp
->dtpv_attr
, &pvd
.dtvd_attr
, sizeof (dtrace_pattr_t
));
16297 if (copyout(&pvd
, (void *)arg
, sizeof (pvd
)) != 0)
16303 case DTRACEIOC_EPROBE
: {
16304 dtrace_eprobedesc_t epdesc
;
16306 dtrace_action_t
*act
;
16312 if (copyin((void *)arg
, &epdesc
, sizeof (epdesc
)) != 0)
16315 mutex_enter(&dtrace_lock
);
16317 if ((ecb
= dtrace_epid2ecb(state
, epdesc
.dtepd_epid
)) == NULL
) {
16318 mutex_exit(&dtrace_lock
);
16322 if (ecb
->dte_probe
== NULL
) {
16323 mutex_exit(&dtrace_lock
);
16327 epdesc
.dtepd_probeid
= ecb
->dte_probe
->dtpr_id
;
16328 epdesc
.dtepd_uarg
= ecb
->dte_uarg
;
16329 epdesc
.dtepd_size
= ecb
->dte_size
;
16331 nrecs
= epdesc
.dtepd_nrecs
;
16332 epdesc
.dtepd_nrecs
= 0;
16333 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16334 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16337 epdesc
.dtepd_nrecs
++;
16341 * Now that we have the size, we need to allocate a temporary
16342 * buffer in which to store the complete description. We need
16343 * the temporary buffer to be able to drop dtrace_lock()
16344 * across the copyout(), below.
16346 size
= sizeof (dtrace_eprobedesc_t
) +
16347 (epdesc
.dtepd_nrecs
* sizeof (dtrace_recdesc_t
));
16349 buf
= kmem_alloc(size
, KM_SLEEP
);
16350 dest
= (uintptr_t)buf
;
16352 bcopy(&epdesc
, (void *)dest
, sizeof (epdesc
));
16353 dest
+= offsetof(dtrace_eprobedesc_t
, dtepd_rec
[0]);
16355 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16356 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16362 bcopy(&act
->dta_rec
, (void *)dest
,
16363 sizeof (dtrace_recdesc_t
));
16364 dest
+= sizeof (dtrace_recdesc_t
);
16367 mutex_exit(&dtrace_lock
);
16369 if (copyout(buf
, (void *)arg
, dest
- (uintptr_t)buf
) != 0) {
16370 kmem_free(buf
, size
);
16374 kmem_free(buf
, size
);
16378 case DTRACEIOC_AGGDESC
: {
16379 dtrace_aggdesc_t aggdesc
;
16380 dtrace_action_t
*act
;
16381 dtrace_aggregation_t
*agg
;
16384 dtrace_recdesc_t
*lrec
;
16389 if (copyin((void *)arg
, &aggdesc
, sizeof (aggdesc
)) != 0)
16392 mutex_enter(&dtrace_lock
);
16394 if ((agg
= dtrace_aggid2agg(state
, aggdesc
.dtagd_id
)) == NULL
) {
16395 mutex_exit(&dtrace_lock
);
16399 aggdesc
.dtagd_epid
= agg
->dtag_ecb
->dte_epid
;
16401 nrecs
= aggdesc
.dtagd_nrecs
;
16402 aggdesc
.dtagd_nrecs
= 0;
16404 offs
= agg
->dtag_base
;
16405 lrec
= &agg
->dtag_action
.dta_rec
;
16406 aggdesc
.dtagd_size
= lrec
->dtrd_offset
+ lrec
->dtrd_size
- offs
;
16408 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16409 ASSERT(act
->dta_intuple
||
16410 DTRACEACT_ISAGG(act
->dta_kind
));
16413 * If this action has a record size of zero, it
16414 * denotes an argument to the aggregating action.
16415 * Because the presence of this record doesn't (or
16416 * shouldn't) affect the way the data is interpreted,
16417 * we don't copy it out to save user-level the
16418 * confusion of dealing with a zero-length record.
16420 if (act
->dta_rec
.dtrd_size
== 0) {
16421 ASSERT(agg
->dtag_hasarg
);
16425 aggdesc
.dtagd_nrecs
++;
16427 if (act
== &agg
->dtag_action
)
16432 * Now that we have the size, we need to allocate a temporary
16433 * buffer in which to store the complete description. We need
16434 * the temporary buffer to be able to drop dtrace_lock()
16435 * across the copyout(), below.
16437 size
= sizeof (dtrace_aggdesc_t
) +
16438 (aggdesc
.dtagd_nrecs
* sizeof (dtrace_recdesc_t
));
16440 buf
= kmem_alloc(size
, KM_SLEEP
);
16441 dest
= (uintptr_t)buf
;
16443 bcopy(&aggdesc
, (void *)dest
, sizeof (aggdesc
));
16444 dest
+= offsetof(dtrace_aggdesc_t
, dtagd_rec
[0]);
16446 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16447 dtrace_recdesc_t rec
= act
->dta_rec
;
16450 * See the comment in the above loop for why we pass
16451 * over zero-length records.
16453 if (rec
.dtrd_size
== 0) {
16454 ASSERT(agg
->dtag_hasarg
);
16461 rec
.dtrd_offset
-= offs
;
16462 bcopy(&rec
, (void *)dest
, sizeof (rec
));
16463 dest
+= sizeof (dtrace_recdesc_t
);
16465 if (act
== &agg
->dtag_action
)
16469 mutex_exit(&dtrace_lock
);
16471 if (copyout(buf
, (void *)arg
, dest
- (uintptr_t)buf
) != 0) {
16472 kmem_free(buf
, size
);
16476 kmem_free(buf
, size
);
16480 case DTRACEIOC_ENABLE
: {
16482 dtrace_enabling_t
*enab
= NULL
;
16483 dtrace_vstate_t
*vstate
;
16489 * If a NULL argument has been passed, we take this as our
16490 * cue to reevaluate our enablings.
16493 dtrace_enabling_matchall();
16498 if ((dof
= dtrace_dof_copyin(arg
, &rval
)) == NULL
)
16501 mutex_enter(&cpu_lock
);
16502 mutex_enter(&dtrace_lock
);
16503 vstate
= &state
->dts_vstate
;
16505 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
16506 mutex_exit(&dtrace_lock
);
16507 mutex_exit(&cpu_lock
);
16508 dtrace_dof_destroy(dof
);
16512 if (dtrace_dof_slurp(dof
, vstate
, cr
, &enab
, 0, B_TRUE
) != 0) {
16513 mutex_exit(&dtrace_lock
);
16514 mutex_exit(&cpu_lock
);
16515 dtrace_dof_destroy(dof
);
16519 if ((rval
= dtrace_dof_options(dof
, state
)) != 0) {
16520 dtrace_enabling_destroy(enab
);
16521 mutex_exit(&dtrace_lock
);
16522 mutex_exit(&cpu_lock
);
16523 dtrace_dof_destroy(dof
);
16527 if ((err
= dtrace_enabling_match(enab
, rv
)) == 0) {
16528 err
= dtrace_enabling_retain(enab
);
16530 dtrace_enabling_destroy(enab
);
16533 mutex_exit(&cpu_lock
);
16534 mutex_exit(&dtrace_lock
);
16535 dtrace_dof_destroy(dof
);
16540 case DTRACEIOC_REPLICATE
: {
16541 dtrace_repldesc_t desc
;
16542 dtrace_probedesc_t
*match
= &desc
.dtrpd_match
;
16543 dtrace_probedesc_t
*create
= &desc
.dtrpd_create
;
16546 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16549 match
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16550 match
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16551 match
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16552 match
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16554 create
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16555 create
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16556 create
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16557 create
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16559 mutex_enter(&dtrace_lock
);
16560 err
= dtrace_enabling_replicate(state
, match
, create
);
16561 mutex_exit(&dtrace_lock
);
16566 case DTRACEIOC_PROBEMATCH
:
16567 case DTRACEIOC_PROBES
: {
16568 dtrace_probe_t
*probe
= NULL
;
16569 dtrace_probedesc_t desc
;
16570 dtrace_probekey_t pkey
;
16577 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16580 desc
.dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16581 desc
.dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16582 desc
.dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16583 desc
.dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16586 * Before we attempt to match this probe, we want to give
16587 * all providers the opportunity to provide it.
16589 if (desc
.dtpd_id
== DTRACE_IDNONE
) {
16590 mutex_enter(&dtrace_provider_lock
);
16591 dtrace_probe_provide(&desc
, NULL
);
16592 mutex_exit(&dtrace_provider_lock
);
16596 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16597 dtrace_probekey(&desc
, &pkey
);
16598 pkey
.dtpk_id
= DTRACE_IDNONE
;
16601 dtrace_cred2priv(cr
, &priv
, &uid
, &zoneid
);
16603 mutex_enter(&dtrace_lock
);
16605 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16606 for (i
= desc
.dtpd_id
; i
<= dtrace_nprobes
; i
++) {
16607 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16608 (m
= dtrace_match_probe(probe
, &pkey
,
16609 priv
, uid
, zoneid
)) != 0)
16614 mutex_exit(&dtrace_lock
);
16619 for (i
= desc
.dtpd_id
; i
<= dtrace_nprobes
; i
++) {
16620 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16621 dtrace_match_priv(probe
, priv
, uid
, zoneid
))
16626 if (probe
== NULL
) {
16627 mutex_exit(&dtrace_lock
);
16631 dtrace_probe_description(probe
, &desc
);
16632 mutex_exit(&dtrace_lock
);
16634 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16640 case DTRACEIOC_PROBEARG
: {
16641 dtrace_argdesc_t desc
;
16642 dtrace_probe_t
*probe
;
16643 dtrace_provider_t
*prov
;
16645 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16648 if (desc
.dtargd_id
== DTRACE_IDNONE
)
16651 if (desc
.dtargd_ndx
== DTRACE_ARGNONE
)
16654 mutex_enter(&dtrace_provider_lock
);
16655 mutex_enter(&mod_lock
);
16656 mutex_enter(&dtrace_lock
);
16658 if (desc
.dtargd_id
> dtrace_nprobes
) {
16659 mutex_exit(&dtrace_lock
);
16660 mutex_exit(&mod_lock
);
16661 mutex_exit(&dtrace_provider_lock
);
16665 if ((probe
= dtrace_probes
[desc
.dtargd_id
- 1]) == NULL
) {
16666 mutex_exit(&dtrace_lock
);
16667 mutex_exit(&mod_lock
);
16668 mutex_exit(&dtrace_provider_lock
);
16672 mutex_exit(&dtrace_lock
);
16674 prov
= probe
->dtpr_provider
;
16676 if (prov
->dtpv_pops
.dtps_getargdesc
== NULL
) {
16678 * There isn't any typed information for this probe.
16679 * Set the argument number to DTRACE_ARGNONE.
16681 desc
.dtargd_ndx
= DTRACE_ARGNONE
;
16683 desc
.dtargd_native
[0] = '\0';
16684 desc
.dtargd_xlate
[0] = '\0';
16685 desc
.dtargd_mapping
= desc
.dtargd_ndx
;
16687 prov
->dtpv_pops
.dtps_getargdesc(prov
->dtpv_arg
,
16688 probe
->dtpr_id
, probe
->dtpr_arg
, &desc
);
16691 mutex_exit(&mod_lock
);
16692 mutex_exit(&dtrace_provider_lock
);
16694 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16700 case DTRACEIOC_GO
: {
16701 processorid_t cpuid
;
16702 rval
= dtrace_state_go(state
, &cpuid
);
16707 if (copyout(&cpuid
, (void *)arg
, sizeof (cpuid
)) != 0)
16713 case DTRACEIOC_STOP
: {
16714 processorid_t cpuid
;
16716 mutex_enter(&dtrace_lock
);
16717 rval
= dtrace_state_stop(state
, &cpuid
);
16718 mutex_exit(&dtrace_lock
);
16723 if (copyout(&cpuid
, (void *)arg
, sizeof (cpuid
)) != 0)
16729 case DTRACEIOC_DOFGET
: {
16730 dof_hdr_t hdr
, *dof
;
16733 if (copyin((void *)arg
, &hdr
, sizeof (hdr
)) != 0)
16736 mutex_enter(&dtrace_lock
);
16737 dof
= dtrace_dof_create(state
);
16738 mutex_exit(&dtrace_lock
);
16740 len
= MIN(hdr
.dofh_loadsz
, dof
->dofh_loadsz
);
16741 rval
= copyout(dof
, (void *)arg
, len
);
16742 dtrace_dof_destroy(dof
);
16744 return (rval
== 0 ? 0 : EFAULT
);
16747 case DTRACEIOC_AGGSNAP
:
16748 case DTRACEIOC_BUFSNAP
: {
16749 dtrace_bufdesc_t desc
;
16751 dtrace_buffer_t
*buf
;
16753 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16756 if (desc
.dtbd_cpu
< 0 || desc
.dtbd_cpu
>= NCPU
)
16759 mutex_enter(&dtrace_lock
);
16761 if (cmd
== DTRACEIOC_BUFSNAP
) {
16762 buf
= &state
->dts_buffer
[desc
.dtbd_cpu
];
16764 buf
= &state
->dts_aggbuffer
[desc
.dtbd_cpu
];
16767 if (buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
)) {
16768 size_t sz
= buf
->dtb_offset
;
16770 if (state
->dts_activity
!= DTRACE_ACTIVITY_STOPPED
) {
16771 mutex_exit(&dtrace_lock
);
16776 * If this buffer has already been consumed, we're
16777 * going to indicate that there's nothing left here
16780 if (buf
->dtb_flags
& DTRACEBUF_CONSUMED
) {
16781 mutex_exit(&dtrace_lock
);
16783 desc
.dtbd_size
= 0;
16784 desc
.dtbd_drops
= 0;
16785 desc
.dtbd_errors
= 0;
16786 desc
.dtbd_oldest
= 0;
16787 sz
= sizeof (desc
);
16789 if (copyout(&desc
, (void *)arg
, sz
) != 0)
16796 * If this is a ring buffer that has wrapped, we want
16797 * to copy the whole thing out.
16799 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
16800 dtrace_buffer_polish(buf
);
16801 sz
= buf
->dtb_size
;
16804 if (copyout(buf
->dtb_tomax
, desc
.dtbd_data
, sz
) != 0) {
16805 mutex_exit(&dtrace_lock
);
16809 desc
.dtbd_size
= sz
;
16810 desc
.dtbd_drops
= buf
->dtb_drops
;
16811 desc
.dtbd_errors
= buf
->dtb_errors
;
16812 desc
.dtbd_oldest
= buf
->dtb_xamot_offset
;
16813 desc
.dtbd_timestamp
= dtrace_gethrtime();
16815 mutex_exit(&dtrace_lock
);
16817 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16820 buf
->dtb_flags
|= DTRACEBUF_CONSUMED
;
16825 if (buf
->dtb_tomax
== NULL
) {
16826 ASSERT(buf
->dtb_xamot
== NULL
);
16827 mutex_exit(&dtrace_lock
);
16831 cached
= buf
->dtb_tomax
;
16832 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
16834 dtrace_xcall(desc
.dtbd_cpu
,
16835 (dtrace_xcall_t
)dtrace_buffer_switch
, buf
);
16837 state
->dts_errors
+= buf
->dtb_xamot_errors
;
16840 * If the buffers did not actually switch, then the cross call
16841 * did not take place -- presumably because the given CPU is
16842 * not in the ready set. If this is the case, we'll return
16845 if (buf
->dtb_tomax
== cached
) {
16846 ASSERT(buf
->dtb_xamot
!= cached
);
16847 mutex_exit(&dtrace_lock
);
16851 ASSERT(cached
== buf
->dtb_xamot
);
16854 * We have our snapshot; now copy it out.
16856 if (copyout(buf
->dtb_xamot
, desc
.dtbd_data
,
16857 buf
->dtb_xamot_offset
) != 0) {
16858 mutex_exit(&dtrace_lock
);
16862 desc
.dtbd_size
= buf
->dtb_xamot_offset
;
16863 desc
.dtbd_drops
= buf
->dtb_xamot_drops
;
16864 desc
.dtbd_errors
= buf
->dtb_xamot_errors
;
16865 desc
.dtbd_oldest
= 0;
16866 desc
.dtbd_timestamp
= buf
->dtb_switched
;
16868 mutex_exit(&dtrace_lock
);
16871 * Finally, copy out the buffer description.
16873 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16879 case DTRACEIOC_CONF
: {
16880 dtrace_conf_t conf
;
16882 bzero(&conf
, sizeof (conf
));
16883 conf
.dtc_difversion
= DIF_VERSION
;
16884 conf
.dtc_difintregs
= DIF_DIR_NREGS
;
16885 conf
.dtc_diftupregs
= DIF_DTR_NREGS
;
16886 conf
.dtc_ctfmodel
= CTF_MODEL_NATIVE
;
16888 if (copyout(&conf
, (void *)arg
, sizeof (conf
)) != 0)
16894 case DTRACEIOC_STATUS
: {
16895 dtrace_status_t stat
;
16896 dtrace_dstate_t
*dstate
;
16901 * See the comment in dtrace_state_deadman() for the reason
16902 * for setting dts_laststatus to INT64_MAX before setting
16903 * it to the correct value.
16905 state
->dts_laststatus
= INT64_MAX
;
16906 dtrace_membar_producer();
16907 state
->dts_laststatus
= dtrace_gethrtime();
16909 bzero(&stat
, sizeof (stat
));
16911 mutex_enter(&dtrace_lock
);
16913 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
) {
16914 mutex_exit(&dtrace_lock
);
16918 if (state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
)
16919 stat
.dtst_exiting
= 1;
16921 nerrs
= state
->dts_errors
;
16922 dstate
= &state
->dts_vstate
.dtvs_dynvars
;
16924 for (i
= 0; i
< NCPU
; i
++) {
16925 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[i
];
16927 stat
.dtst_dyndrops
+= dcpu
->dtdsc_drops
;
16928 stat
.dtst_dyndrops_dirty
+= dcpu
->dtdsc_dirty_drops
;
16929 stat
.dtst_dyndrops_rinsing
+= dcpu
->dtdsc_rinsing_drops
;
16931 if (state
->dts_buffer
[i
].dtb_flags
& DTRACEBUF_FULL
)
16932 stat
.dtst_filled
++;
16934 nerrs
+= state
->dts_buffer
[i
].dtb_errors
;
16936 for (j
= 0; j
< state
->dts_nspeculations
; j
++) {
16937 dtrace_speculation_t
*spec
;
16938 dtrace_buffer_t
*buf
;
16940 spec
= &state
->dts_speculations
[j
];
16941 buf
= &spec
->dtsp_buffer
[i
];
16942 stat
.dtst_specdrops
+= buf
->dtb_xamot_drops
;
16946 stat
.dtst_specdrops_busy
= state
->dts_speculations_busy
;
16947 stat
.dtst_specdrops_unavail
= state
->dts_speculations_unavail
;
16948 stat
.dtst_stkstroverflows
= state
->dts_stkstroverflows
;
16949 stat
.dtst_dblerrors
= state
->dts_dblerrors
;
16951 (state
->dts_activity
== DTRACE_ACTIVITY_KILLED
);
16952 stat
.dtst_errors
= nerrs
;
16954 mutex_exit(&dtrace_lock
);
16956 if (copyout(&stat
, (void *)arg
, sizeof (stat
)) != 0)
16962 case DTRACEIOC_FORMAT
: {
16963 dtrace_fmtdesc_t fmt
;
16967 if (copyin((void *)arg
, &fmt
, sizeof (fmt
)) != 0)
16970 mutex_enter(&dtrace_lock
);
16972 if (fmt
.dtfd_format
== 0 ||
16973 fmt
.dtfd_format
> state
->dts_nformats
) {
16974 mutex_exit(&dtrace_lock
);
16979 * Format strings are allocated contiguously and they are
16980 * never freed; if a format index is less than the number
16981 * of formats, we can assert that the format map is non-NULL
16982 * and that the format for the specified index is non-NULL.
16984 ASSERT(state
->dts_formats
!= NULL
);
16985 str
= state
->dts_formats
[fmt
.dtfd_format
- 1];
16986 ASSERT(str
!= NULL
);
16988 len
= strlen(str
) + 1;
16990 if (len
> fmt
.dtfd_length
) {
16991 fmt
.dtfd_length
= len
;
16993 if (copyout(&fmt
, (void *)arg
, sizeof (fmt
)) != 0) {
16994 mutex_exit(&dtrace_lock
);
16998 if (copyout(str
, fmt
.dtfd_string
, len
) != 0) {
16999 mutex_exit(&dtrace_lock
);
17004 mutex_exit(&dtrace_lock
);
17017 dtrace_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
17019 dtrace_state_t
*state
;
17026 return (DDI_SUCCESS
);
17029 return (DDI_FAILURE
);
17032 mutex_enter(&cpu_lock
);
17033 mutex_enter(&dtrace_provider_lock
);
17034 mutex_enter(&dtrace_lock
);
17036 ASSERT(dtrace_opens
== 0);
17038 if (dtrace_helpers
> 0) {
17039 mutex_exit(&dtrace_provider_lock
);
17040 mutex_exit(&dtrace_lock
);
17041 mutex_exit(&cpu_lock
);
17042 return (DDI_FAILURE
);
17045 if (dtrace_unregister((dtrace_provider_id_t
)dtrace_provider
) != 0) {
17046 mutex_exit(&dtrace_provider_lock
);
17047 mutex_exit(&dtrace_lock
);
17048 mutex_exit(&cpu_lock
);
17049 return (DDI_FAILURE
);
17052 dtrace_provider
= NULL
;
17054 if ((state
= dtrace_anon_grab()) != NULL
) {
17056 * If there were ECBs on this state, the provider should
17057 * have not been allowed to detach; assert that there is
17060 ASSERT(state
->dts_necbs
== 0);
17061 dtrace_state_destroy(state
);
17064 * If we're being detached with anonymous state, we need to
17065 * indicate to the kernel debugger that DTrace is now inactive.
17067 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
17070 bzero(&dtrace_anon
, sizeof (dtrace_anon_t
));
17071 unregister_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
17072 dtrace_cpu_init
= NULL
;
17073 dtrace_helpers_cleanup
= NULL
;
17074 dtrace_helpers_fork
= NULL
;
17075 dtrace_cpustart_init
= NULL
;
17076 dtrace_cpustart_fini
= NULL
;
17077 dtrace_debugger_init
= NULL
;
17078 dtrace_debugger_fini
= NULL
;
17079 dtrace_modload
= NULL
;
17080 dtrace_modunload
= NULL
;
17082 ASSERT(dtrace_getf
== 0);
17083 ASSERT(dtrace_closef
== NULL
);
17085 mutex_exit(&cpu_lock
);
17087 kmem_free(dtrace_probes
, dtrace_nprobes
* sizeof (dtrace_probe_t
*));
17088 dtrace_probes
= NULL
;
17089 dtrace_nprobes
= 0;
17091 dtrace_hash_destroy(dtrace_bymod
);
17092 dtrace_hash_destroy(dtrace_byfunc
);
17093 dtrace_hash_destroy(dtrace_byname
);
17094 dtrace_bymod
= NULL
;
17095 dtrace_byfunc
= NULL
;
17096 dtrace_byname
= NULL
;
17098 kmem_cache_destroy(dtrace_state_cache
);
17099 vmem_destroy(dtrace_minor
);
17100 vmem_destroy(dtrace_arena
);
17102 if (dtrace_toxrange
!= NULL
) {
17103 kmem_free(dtrace_toxrange
,
17104 dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
));
17105 dtrace_toxrange
= NULL
;
17106 dtrace_toxranges
= 0;
17107 dtrace_toxranges_max
= 0;
17110 ddi_remove_minor_node(dtrace_devi
, NULL
);
17111 dtrace_devi
= NULL
;
17113 ddi_soft_state_fini(&dtrace_softstate
);
17115 ASSERT(dtrace_vtime_references
== 0);
17116 ASSERT(dtrace_opens
== 0);
17117 ASSERT(dtrace_retained
== NULL
);
17119 mutex_exit(&dtrace_lock
);
17120 mutex_exit(&dtrace_provider_lock
);
17123 * We don't destroy the task queue until after we have dropped our
17124 * locks (taskq_destroy() may block on running tasks). To prevent
17125 * attempting to do work after we have effectively detached but before
17126 * the task queue has been destroyed, all tasks dispatched via the
17127 * task queue must check that DTrace is still attached before
17128 * performing any operation.
17130 taskq_destroy(dtrace_taskq
);
17131 dtrace_taskq
= NULL
;
17133 return (DDI_SUCCESS
);
17138 dtrace_info(dev_info_t
*dip
, ddi_info_cmd_t infocmd
, void *arg
, void **result
)
17143 case DDI_INFO_DEVT2DEVINFO
:
17144 *result
= (void *)dtrace_devi
;
17145 error
= DDI_SUCCESS
;
17147 case DDI_INFO_DEVT2INSTANCE
:
17148 *result
= (void *)0;
17149 error
= DDI_SUCCESS
;
17152 error
= DDI_FAILURE
;
17157 static struct cb_ops dtrace_cb_ops
= {
17158 dtrace_open
, /* open */
17159 dtrace_close
, /* close */
17160 nulldev
, /* strategy */
17161 nulldev
, /* print */
17165 dtrace_ioctl
, /* ioctl */
17166 nodev
, /* devmap */
17168 nodev
, /* segmap */
17169 nochpoll
, /* poll */
17170 ddi_prop_op
, /* cb_prop_op */
17172 D_NEW
| D_MP
/* Driver compatibility flag */
17175 static struct dev_ops dtrace_ops
= {
17176 DEVO_REV
, /* devo_rev */
17178 dtrace_info
, /* get_dev_info */
17179 nulldev
, /* identify */
17180 nulldev
, /* probe */
17181 dtrace_attach
, /* attach */
17182 dtrace_detach
, /* detach */
17184 &dtrace_cb_ops
, /* driver operations */
17185 NULL
, /* bus operations */
17186 nodev
, /* dev power */
17187 ddi_quiesce_not_needed
, /* quiesce */
17190 static struct modldrv modldrv
= {
17191 &mod_driverops
, /* module type (this is a pseudo driver) */
17192 "Dynamic Tracing", /* name of module */
17193 &dtrace_ops
, /* driver ops */
17196 static struct modlinkage modlinkage
= {
17205 return (mod_install(&modlinkage
));
17209 _info(struct modinfo
*modinfop
)
17211 return (mod_info(&modlinkage
, modinfop
));
17217 return (mod_remove(&modlinkage
));