nightly: install bmake libs before dmake
[unleashed.git] / kernel / os / fork.c
blobb2e8030d65ed2d9a4f7e5189a9906b87a64f7c03
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent, Inc. All rights reserved.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/cred.h>
35 #include <sys/policy.h>
36 #include <sys/user.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/proc.h>
45 #include <sys/cmn_err.h>
46 #include <sys/acct.h>
47 #include <sys/tuneable.h>
48 #include <sys/class.h>
49 #include <sys/kmem.h>
50 #include <sys/session.h>
51 #include <sys/ucontext.h>
52 #include <sys/stack.h>
53 #include <sys/procfs.h>
54 #include <sys/prsystm.h>
55 #include <sys/vmsystm.h>
56 #include <sys/vtrace.h>
57 #include <sys/debug.h>
58 #include <sys/shm_impl.h>
59 #include <sys/door_data.h>
60 #include <vm/as.h>
61 #include <vm/rm.h>
62 #include <c2/audit.h>
63 #include <sys/var.h>
64 #include <sys/schedctl.h>
65 #include <sys/utrap.h>
66 #include <sys/task.h>
67 #include <sys/resource.h>
68 #include <sys/cyclic.h>
69 #include <sys/lgrp.h>
70 #include <sys/rctl.h>
71 #include <sys/contract_impl.h>
72 #include <sys/contract/process_impl.h>
73 #include <sys/list.h>
74 #include <sys/dtrace.h>
75 #include <sys/pool.h>
76 #include <sys/zone.h>
77 #include <sys/sdt.h>
78 #include <sys/class.h>
79 #include <sys/corectl.h>
80 #include <sys/brand.h>
81 #include <sys/fork.h>
83 static int64_t cfork(int, int, int);
84 static int getproc(proc_t **, pid_t, uint_t);
85 #define GETPROC_USER 0x0
86 #define GETPROC_KERNEL 0x1
88 static void fork_fail(proc_t *);
89 static void forklwp_fail(proc_t *);
91 int fork_fail_pending;
93 extern struct kmem_cache *process_cache;
96 * The vfork() system call trap is no longer invoked by libc.
97 * It is retained only for the benefit of applications running
98 * within a solaris10 branded zone. It should be eliminated
99 * when we no longer support solaris10 branded zones.
101 int64_t
102 vfork(void)
104 curthread->t_post_sys = 1; /* so vfwait() will be called */
105 return (cfork(1, 1, 0));
109 * forksys system call - forkx, forkallx, vforkx. This is the
110 * interface invoked by libc for fork1(), forkall(), and vfork()
112 int64_t
113 forksys(int subcode, int flags)
115 switch (subcode) {
116 case 0:
117 return (cfork(0, 1, flags)); /* forkx(flags) */
118 case 1:
119 return (cfork(0, 0, flags)); /* forkallx(flags) */
120 case 2:
121 curthread->t_post_sys = 1; /* so vfwait() will be called */
122 return (cfork(1, 1, flags)); /* vforkx(flags) */
123 default:
124 return ((int64_t)set_errno(EINVAL));
129 * Remove the associations of a child process from its parent and siblings.
131 static void
132 disown_proc(proc_t *pp, proc_t *cp)
134 proc_t **orphpp;
136 ASSERT(MUTEX_HELD(&pidlock));
138 orphpp = &pp->p_orphan;
139 while (*orphpp != cp)
140 orphpp = &(*orphpp)->p_nextorph;
141 *orphpp = cp->p_nextorph;
143 if (pp->p_child == cp)
144 pp->p_child = cp->p_sibling;
145 if (cp->p_sibling)
146 cp->p_sibling->p_psibling = cp->p_psibling;
147 if (cp->p_psibling)
148 cp->p_psibling->p_sibling = cp->p_sibling;
151 /* ARGSUSED */
152 static int64_t
153 cfork(int isvfork, int isfork1, int flags)
155 proc_t *p = ttoproc(curthread);
156 struct as *as;
157 proc_t *cp;
158 klwp_t *clone;
159 kthread_t *t;
160 task_t *tk;
161 rval_t r;
162 int error;
163 int i;
164 rctl_set_t *dup_set;
165 rctl_alloc_gp_t *dup_gp;
166 rctl_entity_p_t e;
167 lwpdir_t *ldp;
168 lwpent_t *lep;
169 lwpent_t *clep;
172 * Allow only these two flags.
174 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) {
175 error = EINVAL;
176 atomic_inc_32(&curproc->p_zone->zone_ffmisc);
177 goto forkerr;
181 * fork is not supported for the /proc agent lwp.
183 if (curthread == p->p_agenttp) {
184 error = ENOTSUP;
185 atomic_inc_32(&curproc->p_zone->zone_ffmisc);
186 goto forkerr;
189 if ((error = secpolicy_basic_fork(CRED())) != 0) {
190 atomic_inc_32(&p->p_zone->zone_ffmisc);
191 goto forkerr;
195 * If the calling lwp is doing a fork1() then the
196 * other lwps in this process are not duplicated and
197 * don't need to be held where their kernel stacks can be
198 * cloned. If doing forkall(), the process is held with
199 * SHOLDFORK, so that the lwps are at a point where their
200 * stacks can be copied which is on entry or exit from
201 * the kernel.
203 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
204 aston(curthread);
205 error = EINTR;
206 atomic_inc_32(&p->p_zone->zone_ffmisc);
207 goto forkerr;
211 mutex_enter(&p->p_lock);
213 * If this is vfork(), cancel any suspend request we might
214 * have gotten from some other thread via lwp_suspend().
215 * Otherwise we could end up with a deadlock on return
216 * from the vfork() in both the parent and the child.
218 if (isvfork)
219 curthread->t_proc_flag &= ~TP_HOLDLWP;
221 * Prevent our resource set associations from being changed during fork.
223 pool_barrier_enter();
224 mutex_exit(&p->p_lock);
227 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
229 if (getproc(&cp, 0, GETPROC_USER) < 0) {
230 mutex_enter(&p->p_lock);
231 pool_barrier_exit();
232 continuelwps(p);
233 mutex_exit(&p->p_lock);
234 error = EAGAIN;
235 goto forkerr;
238 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
241 * Assign an address space to child
243 if (isvfork) {
245 * Clear any watched areas and remember the
246 * watched pages for restoring in vfwait().
248 as = p->p_as;
249 if (avl_numnodes(&as->a_wpage) != 0) {
250 AS_LOCK_ENTER(as, RW_WRITER);
251 as_clearwatch(as);
252 p->p_wpage = as->a_wpage;
253 avl_create(&as->a_wpage, wp_compare,
254 sizeof (struct watched_page),
255 offsetof(struct watched_page, wp_link));
256 AS_LOCK_EXIT(as);
258 cp->p_as = as;
259 cp->p_flag |= SVFORK;
262 * Use the parent's shm segment list information for
263 * the child as it uses its address space till it execs.
265 cp->p_segacct = p->p_segacct;
266 } else {
268 * We need to hold P_PR_LOCK until the address space has
269 * been duplicated and we've had a chance to remove from the
270 * child any DTrace probes that were in the parent. Holding
271 * P_PR_LOCK prevents any new probes from being added and any
272 * extant probes from being removed.
274 mutex_enter(&p->p_lock);
275 sprlock_proc(p);
276 p->p_flag |= SFORKING;
277 mutex_exit(&p->p_lock);
279 error = as_dup(p->p_as, cp);
280 if (error != 0) {
281 mutex_enter(&p->p_lock);
282 sprunlock(p);
283 fork_fail(cp);
284 mutex_enter(&pidlock);
285 disown_proc(p, cp);
286 mutex_enter(&cp->p_lock);
287 tk = cp->p_task;
288 task_detach(cp);
289 ASSERT(cp->p_pool->pool_ref > 0);
290 atomic_dec_32(&cp->p_pool->pool_ref);
291 mutex_exit(&cp->p_lock);
292 pid_exit(cp, tk);
293 mutex_exit(&pidlock);
294 task_rele(tk);
296 mutex_enter(&p->p_lock);
297 p->p_flag &= ~SFORKING;
298 pool_barrier_exit();
299 continuelwps(p);
300 mutex_exit(&p->p_lock);
302 * Preserve ENOMEM error condition but
303 * map all others to EAGAIN.
305 error = (error == ENOMEM) ? ENOMEM : EAGAIN;
306 atomic_inc_32(&p->p_zone->zone_ffnomem);
307 goto forkerr;
311 * Remove all DTrace tracepoints from the child process. We
312 * need to do this _before_ duplicating USDT providers since
313 * any associated probes may be immediately enabled.
315 if (p->p_dtrace_count > 0)
316 dtrace_fasttrap_fork(p, cp);
318 mutex_enter(&p->p_lock);
319 sprunlock(p);
321 /* Duplicate parent's shared memory */
322 if (p->p_segacct)
323 shmfork(p, cp);
326 * Duplicate any helper actions and providers. The SFORKING
327 * we set above informs the code to enable USDT probes that
328 * sprlock() may fail because the child is being forked.
330 if (p->p_dtrace_helpers != NULL) {
331 ASSERT(dtrace_helpers_fork != NULL);
332 (*dtrace_helpers_fork)(p, cp);
335 mutex_enter(&p->p_lock);
336 p->p_flag &= ~SFORKING;
337 mutex_exit(&p->p_lock);
341 * Duplicate parent's resource controls.
343 dup_set = rctl_set_create();
344 for (;;) {
345 dup_gp = rctl_set_dup_prealloc(p->p_rctls);
346 mutex_enter(&p->p_rctls->rcs_lock);
347 if (rctl_set_dup_ready(p->p_rctls, dup_gp))
348 break;
349 mutex_exit(&p->p_rctls->rcs_lock);
350 rctl_prealloc_destroy(dup_gp);
352 e.rcep_p.proc = cp;
353 e.rcep_t = RCENTITY_PROCESS;
354 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
355 RCD_DUP | RCD_CALLBACK);
356 mutex_exit(&p->p_rctls->rcs_lock);
358 rctl_prealloc_destroy(dup_gp);
361 * Allocate the child's lwp directory and lwpid hash table.
363 if (isfork1)
364 cp->p_lwpdir_sz = 2;
365 else
366 cp->p_lwpdir_sz = p->p_lwpdir_sz;
367 cp->p_lwpdir = cp->p_lwpfree = ldp =
368 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
369 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
370 ldp->ld_next = ldp + 1;
371 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
372 cp->p_tidhash =
373 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP);
376 * Duplicate parent's lwps.
377 * Mutual exclusion is not needed because the process is
378 * in the hold state and only the current lwp is running.
380 klgrpset_clear(cp->p_lgrpset);
381 if (isfork1) {
382 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
383 if (clone == NULL)
384 goto forklwperr;
386 * Inherit only the lwp_wait()able flag,
387 * Daemon threads should not call fork1(), but oh well...
389 lwptot(clone)->t_proc_flag |=
390 (curthread->t_proc_flag & TP_TWAIT);
391 } else {
392 /* this is forkall(), no one can be in lwp_wait() */
393 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
394 /* for each entry in the parent's lwp directory... */
395 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
396 klwp_t *clwp;
397 kthread_t *ct;
399 if ((lep = ldp->ld_entry) == NULL)
400 continue;
402 if ((t = lep->le_thread) != NULL) {
403 clwp = forklwp(ttolwp(t), cp, t->t_tid);
404 if (clwp == NULL)
405 goto forklwperr;
406 ct = lwptot(clwp);
408 * Inherit lwp_wait()able and daemon flags.
410 ct->t_proc_flag |=
411 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
413 * Keep track of the clone of curthread to
414 * post return values through lwp_setrval().
415 * Mark other threads for special treatment
416 * by lwp_rtt() / post_syscall().
418 if (t == curthread)
419 clone = clwp;
420 else
421 ct->t_flag |= T_FORKALL;
422 } else {
424 * Replicate zombie lwps in the child.
426 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
427 clep->le_lwpid = lep->le_lwpid;
428 clep->le_start = lep->le_start;
429 lwp_hash_in(cp, clep,
430 cp->p_tidhash, cp->p_tidhash_sz, 0);
436 * Put new process in the parent's process contract, or put it
437 * in a new one if there is an active process template. Send a
438 * fork event (if requested) to whatever contract the child is
439 * a member of. Fails if the parent has been SIGKILLed.
441 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) {
442 atomic_inc_32(&p->p_zone->zone_ffmisc);
443 goto forklwperr;
447 * No fork failures occur beyond this point.
450 cp->p_lwpid = p->p_lwpid;
451 if (!isfork1) {
452 cp->p_lwpdaemon = p->p_lwpdaemon;
453 cp->p_zombcnt = p->p_zombcnt;
455 * If the parent's lwp ids have wrapped around, so have the
456 * child's.
458 cp->p_flag |= p->p_flag & SLWPWRAP;
461 mutex_enter(&p->p_lock);
462 corectl_path_hold(cp->p_corefile = p->p_corefile);
463 corectl_content_hold(cp->p_content = p->p_content);
464 mutex_exit(&p->p_lock);
467 * Duplicate process context ops, if any.
469 if (p->p_pctx)
470 forkpctx(p, cp);
473 * If the child process has been marked to stop on exit
474 * from this fork, arrange for all other lwps to stop in
475 * sympathy with the active lwp.
477 if (PTOU(cp)->u_systrap &&
478 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
479 mutex_enter(&cp->p_lock);
480 t = cp->p_tlist;
481 do {
482 t->t_proc_flag |= TP_PRSTOP;
483 aston(t); /* so TP_PRSTOP will be seen */
484 } while ((t = t->t_forw) != cp->p_tlist);
485 mutex_exit(&cp->p_lock);
488 * If the parent process has been marked to stop on exit
489 * from this fork, and its asynchronous-stop flag has not
490 * been set, arrange for all other lwps to stop before
491 * they return back to user level.
493 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
494 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
495 mutex_enter(&p->p_lock);
496 t = p->p_tlist;
497 do {
498 t->t_proc_flag |= TP_PRSTOP;
499 aston(t); /* so TP_PRSTOP will be seen */
500 } while ((t = t->t_forw) != p->p_tlist);
501 mutex_exit(&p->p_lock);
504 if (PROC_IS_BRANDED(p))
505 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
506 else
507 lwp_setrval(clone, p->p_pid, 1);
509 /* set return values for parent */
510 r.r_val1 = (int)cp->p_pid;
511 r.r_val2 = 0;
514 * pool_barrier_exit() can now be called because the child process has:
515 * - all identifying features cloned or set (p_pid, p_task, p_pool)
516 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
517 * - any other fields set which are used in resource set binding.
519 mutex_enter(&p->p_lock);
520 pool_barrier_exit();
521 mutex_exit(&p->p_lock);
523 mutex_enter(&pidlock);
524 mutex_enter(&cp->p_lock);
527 * Set flags telling the child what (not) to do on exit.
529 if (flags & FORK_NOSIGCHLD)
530 cp->p_pidflag |= CLDNOSIGCHLD;
531 if (flags & FORK_WAITPID)
532 cp->p_pidflag |= CLDWAITPID;
535 * Now that there are lwps and threads attached, add the new
536 * process to the process group.
538 pgjoin(cp, p->p_pgidp);
539 cp->p_stat = SRUN;
541 * We are now done with all the lwps in the child process.
543 t = cp->p_tlist;
544 do {
546 * Set the lwp_suspend()ed lwps running.
547 * They will suspend properly at syscall exit.
549 if (t->t_proc_flag & TP_HOLDLWP)
550 lwp_create_done(t);
551 else {
552 /* set TS_CREATE to allow continuelwps() to work */
553 thread_lock(t);
554 ASSERT(t->t_state == TS_STOPPED &&
555 !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
556 t->t_schedflag |= TS_CREATE;
557 thread_unlock(t);
559 } while ((t = t->t_forw) != cp->p_tlist);
560 mutex_exit(&cp->p_lock);
562 if (isvfork) {
563 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
564 mutex_enter(&p->p_lock);
565 p->p_flag |= SVFWAIT;
566 curthread->t_flag |= T_VFPARENT;
567 DTRACE_PROC1(create, proc_t *, cp);
568 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */
569 mutex_exit(&p->p_lock);
571 * Grab child's p_lock before dropping pidlock to ensure
572 * the process will not disappear before we set it running.
574 mutex_enter(&cp->p_lock);
575 mutex_exit(&pidlock);
576 sigdefault(cp);
577 continuelwps(cp);
578 mutex_exit(&cp->p_lock);
579 } else {
580 CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
581 DTRACE_PROC1(create, proc_t *, cp);
583 * It is CL_FORKRET's job to drop pidlock.
584 * If we do it here, the process could be set running
585 * and disappear before CL_FORKRET() is called.
587 CL_FORKRET(curthread, cp->p_tlist);
588 schedctl_set_cidpri(curthread);
589 ASSERT(MUTEX_NOT_HELD(&pidlock));
592 return (r.r_vals);
594 forklwperr:
595 if (isvfork) {
596 if (avl_numnodes(&p->p_wpage) != 0) {
597 /* restore watchpoints to parent */
598 as = p->p_as;
599 AS_LOCK_ENTER(as, RW_WRITER);
600 as->a_wpage = p->p_wpage;
601 avl_create(&p->p_wpage, wp_compare,
602 sizeof (struct watched_page),
603 offsetof(struct watched_page, wp_link));
604 as_setwatch(as);
605 AS_LOCK_EXIT(as);
607 } else {
608 if (cp->p_segacct)
609 shmexit(cp);
610 as = cp->p_as;
611 cp->p_as = &kas;
612 as_free(as);
615 if (cp->p_lwpdir) {
616 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
617 if ((lep = ldp->ld_entry) != NULL)
618 kmem_free(lep, sizeof (*lep));
619 kmem_free(cp->p_lwpdir,
620 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
622 cp->p_lwpdir = NULL;
623 cp->p_lwpfree = NULL;
624 cp->p_lwpdir_sz = 0;
626 if (cp->p_tidhash)
627 kmem_free(cp->p_tidhash,
628 cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
629 cp->p_tidhash = NULL;
630 cp->p_tidhash_sz = 0;
632 forklwp_fail(cp);
633 fork_fail(cp);
634 if (cp->p_dtrace_helpers != NULL) {
635 ASSERT(dtrace_helpers_cleanup != NULL);
636 (*dtrace_helpers_cleanup)(cp);
638 rctl_set_free(cp->p_rctls);
639 mutex_enter(&pidlock);
642 * Detach failed child from task.
644 mutex_enter(&cp->p_lock);
645 tk = cp->p_task;
646 task_detach(cp);
647 ASSERT(cp->p_pool->pool_ref > 0);
648 atomic_dec_32(&cp->p_pool->pool_ref);
649 mutex_exit(&cp->p_lock);
651 disown_proc(p, cp);
652 pid_exit(cp, tk);
653 mutex_exit(&pidlock);
655 task_rele(tk);
657 mutex_enter(&p->p_lock);
658 pool_barrier_exit();
659 continuelwps(p);
660 mutex_exit(&p->p_lock);
661 error = EAGAIN;
662 forkerr:
663 return ((int64_t)set_errno(error));
667 * Free allocated resources from getproc() if a fork failed.
669 static void
670 fork_fail(proc_t *cp)
672 uf_info_t *fip = P_FINFO(cp);
674 fcnt_add(fip, -1);
675 sigdelq(cp, NULL, 0);
677 mutex_enter(&pidlock);
678 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
679 mutex_exit(&pidlock);
682 * single threaded, so no locking needed here
684 crfree(cp->p_cred);
686 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
688 VN_RELE(PTOU(curproc)->u_cdir);
689 if (PTOU(curproc)->u_rdir)
690 VN_RELE(PTOU(curproc)->u_rdir);
691 if (cp->p_exec)
692 VN_RELE(cp->p_exec);
693 if (cp->p_execdir)
694 VN_RELE(cp->p_execdir);
695 if (PTOU(curproc)->u_cwd)
696 refstr_rele(PTOU(curproc)->u_cwd);
697 if (PROC_IS_BRANDED(cp)) {
698 brand_clearbrand(cp, B_TRUE);
703 * Clean up the lwps already created for this child process.
704 * The fork failed while duplicating all the lwps of the parent
705 * and those lwps already created must be freed.
706 * This process is invisible to the rest of the system,
707 * so we don't need to hold p->p_lock to protect the list.
709 static void
710 forklwp_fail(proc_t *p)
712 kthread_t *t;
713 task_t *tk;
714 int branded = 0;
716 if (PROC_IS_BRANDED(p))
717 branded = 1;
719 while ((t = p->p_tlist) != NULL) {
721 * First remove the lwp from the process's p_tlist.
723 if (t != t->t_forw)
724 p->p_tlist = t->t_forw;
725 else
726 p->p_tlist = NULL;
727 p->p_lwpcnt--;
728 t->t_forw->t_back = t->t_back;
729 t->t_back->t_forw = t->t_forw;
731 tk = p->p_task;
732 mutex_enter(&p->p_zone->zone_nlwps_lock);
733 tk->tk_nlwps--;
734 tk->tk_proj->kpj_nlwps--;
735 p->p_zone->zone_nlwps--;
736 mutex_exit(&p->p_zone->zone_nlwps_lock);
738 ASSERT(t->t_schedctl == NULL);
740 if (branded)
741 BROP(p)->b_freelwp(ttolwp(t));
743 if (t->t_door != NULL) {
744 kmem_free(t->t_door, sizeof (door_data_t));
745 t->t_door = NULL;
747 lwp_ctmpl_clear(ttolwp(t));
750 * Remove the thread from the all threads list.
751 * We need to hold pidlock for this.
753 mutex_enter(&pidlock);
754 t->t_next->t_prev = t->t_prev;
755 t->t_prev->t_next = t->t_next;
756 CL_EXIT(t); /* tell the scheduler that we're exiting */
757 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */
758 mutex_exit(&pidlock);
761 * Let the lgroup load averages know that this thread isn't
762 * going to show up (i.e. un-do what was done on behalf of
763 * this thread by the earlier lgrp_move_thread()).
765 kpreempt_disable();
766 lgrp_move_thread(t, NULL, 1);
767 kpreempt_enable();
770 * The thread was created TS_STOPPED.
771 * We change it to TS_FREE to avoid an
772 * ASSERT() panic in thread_free().
774 t->t_state = TS_FREE;
775 thread_rele(t);
776 thread_free(t);
780 extern struct as kas;
783 * fork a kernel process.
786 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct,
787 pid_t pid)
789 proc_t *p;
790 struct user *up;
791 kthread_t *t;
792 cont_process_t *ctp = NULL;
793 rctl_entity_p_t e;
795 ASSERT(cid != sysdccid);
796 ASSERT(cid != syscid || ct == NULL);
797 if (CLASS_KERNEL(cid)) {
798 rctl_alloc_gp_t *init_gp;
799 rctl_set_t *init_set;
801 ASSERT(pid != 1);
803 if (getproc(&p, pid, GETPROC_KERNEL) < 0)
804 return (EAGAIN);
807 * Release the hold on the p_exec and p_execdir, these
808 * were acquired in getproc()
810 if (p->p_execdir != NULL)
811 VN_RELE(p->p_execdir);
812 if (p->p_exec != NULL)
813 VN_RELE(p->p_exec);
814 p->p_flag |= SNOWAIT;
815 p->p_exec = NULL;
816 p->p_execdir = NULL;
818 init_set = rctl_set_create();
819 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
822 * kernel processes do not inherit /proc tracing flags.
824 sigemptyset(&p->p_sigmask);
825 premptyset(&p->p_fltmask);
826 up = PTOU(p);
827 up->u_systrap = 0;
828 premptyset(&(up->u_entrymask));
829 premptyset(&(up->u_exitmask));
830 mutex_enter(&p->p_lock);
831 e.rcep_p.proc = p;
832 e.rcep_t = RCENTITY_PROCESS;
833 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
834 init_gp);
835 mutex_exit(&p->p_lock);
837 rctl_prealloc_destroy(init_gp);
839 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri);
840 } else {
841 rctl_alloc_gp_t *init_gp, *default_gp;
842 rctl_set_t *init_set;
843 task_t *tk, *tk_old;
844 klwp_t *lwp;
846 if (getproc(&p, pid, GETPROC_USER) < 0)
847 return (EAGAIN);
849 * init creates a new task, distinct from the task
850 * containing kernel "processes".
852 tk = task_create(0, p->p_zone);
853 mutex_enter(&tk->tk_zone->zone_nlwps_lock);
854 tk->tk_proj->kpj_ntasks++;
855 tk->tk_nprocs++;
856 mutex_exit(&tk->tk_zone->zone_nlwps_lock);
858 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
859 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
860 init_set = rctl_set_create();
862 mutex_enter(&pidlock);
863 mutex_enter(&p->p_lock);
864 tk_old = p->p_task; /* switch to new task */
866 task_detach(p);
867 task_begin(tk, p);
868 mutex_exit(&pidlock);
870 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock);
871 tk_old->tk_nprocs--;
872 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock);
874 e.rcep_p.proc = p;
875 e.rcep_t = RCENTITY_PROCESS;
876 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
877 init_gp);
878 rctlproc_default_init(p, default_gp);
879 mutex_exit(&p->p_lock);
881 task_rele(tk_old);
882 rctl_prealloc_destroy(default_gp);
883 rctl_prealloc_destroy(init_gp);
885 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
886 &curthread->t_hold, cid, 1)) == NULL) {
887 task_t *tk;
889 fork_fail(p);
890 mutex_enter(&pidlock);
891 disown_proc(p->p_parent, p);
893 mutex_enter(&p->p_lock);
894 tk = p->p_task;
895 task_detach(p);
896 ASSERT(p->p_pool->pool_ref > 0);
897 atomic_add_32(&p->p_pool->pool_ref, -1);
898 mutex_exit(&p->p_lock);
900 pid_exit(p, tk);
901 mutex_exit(&pidlock);
902 task_rele(tk);
903 return (EAGAIN);
905 t = lwptot(lwp);
907 ctp = contract_process_fork(sys_process_tmpl, p, curproc,
908 B_FALSE);
909 ASSERT(ctp != NULL);
910 if (ct != NULL)
911 *ct = &ctp->conp_contract;
914 ASSERT3U(t->t_tid, ==, 1);
915 p->p_lwpid = 1;
916 mutex_enter(&pidlock);
917 pgjoin(p, p->p_parent->p_pgidp);
918 p->p_stat = SRUN;
919 mutex_enter(&p->p_lock);
920 t->t_proc_flag &= ~TP_HOLDLWP;
921 lwp_create_done(t);
922 mutex_exit(&p->p_lock);
923 mutex_exit(&pidlock);
924 return (0);
928 * create a child proc struct.
930 static int
931 getproc(proc_t **cpp, pid_t pid, uint_t flags)
933 proc_t *pp, *cp;
934 pid_t newpid;
935 struct user *uarea;
936 extern uint_t nproc;
937 struct cred *cr;
938 uid_t ruid;
939 zoneid_t zoneid;
940 task_t *task;
941 kproject_t *proj;
942 zone_t *zone;
943 int rctlfail = 0;
945 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
946 return (-1); /* no point in starting new processes */
948 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc;
949 task = pp->p_task;
950 proj = task->tk_proj;
951 zone = pp->p_zone;
953 mutex_enter(&pp->p_lock);
954 mutex_enter(&zone->zone_nlwps_lock);
955 if (proj != proj0p) {
956 if (task->tk_nprocs >= task->tk_nprocs_ctl)
957 if (rctl_test(rc_task_nprocs, task->tk_rctls,
958 pp, 1, 0) & RCT_DENY)
959 rctlfail = 1;
961 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl)
962 if (rctl_test(rc_project_nprocs, proj->kpj_rctls,
963 pp, 1, 0) & RCT_DENY)
964 rctlfail = 1;
966 if (zone->zone_nprocs >= zone->zone_nprocs_ctl)
967 if (rctl_test(rc_zone_nprocs, zone->zone_rctls,
968 pp, 1, 0) & RCT_DENY)
969 rctlfail = 1;
971 if (rctlfail) {
972 mutex_exit(&zone->zone_nlwps_lock);
973 mutex_exit(&pp->p_lock);
974 atomic_inc_32(&zone->zone_ffcap);
975 goto punish;
978 task->tk_nprocs++;
979 proj->kpj_nprocs++;
980 zone->zone_nprocs++;
981 mutex_exit(&zone->zone_nlwps_lock);
982 mutex_exit(&pp->p_lock);
984 cp = kmem_cache_alloc(process_cache, KM_SLEEP);
985 bzero(cp, sizeof (proc_t));
988 * Make proc entry for child process
990 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
991 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
992 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
993 #if defined(__x86)
994 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
995 #endif
996 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
997 cp->p_stat = SIDL;
998 cp->p_mstart = gethrtime();
999 cp->p_as = &kas;
1001 * p_zone must be set before we call pid_allocate since the process
1002 * will be visible after that and code such as prfind_zone will
1003 * look at the p_zone field.
1005 cp->p_zone = pp->p_zone;
1006 cp->p_t1_lgrpid = LGRP_NONE;
1007 cp->p_tr_lgrpid = LGRP_NONE;
1009 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) {
1010 if (nproc == v.v_proc) {
1011 CPU_STATS_ADDQ(CPU, sys, procovf, 1);
1012 cmn_err(CE_WARN, "out of processes");
1014 goto bad;
1017 mutex_enter(&pp->p_lock);
1018 cp->p_exec = pp->p_exec;
1019 cp->p_execdir = pp->p_execdir;
1020 mutex_exit(&pp->p_lock);
1022 if (cp->p_exec) {
1023 VN_HOLD(cp->p_exec);
1025 * Each fop_open() must be paired with a corresponding
1026 * fop_close(). In this case, the executable will be
1027 * closed for the child in either proc_exit() or gexec().
1029 if (fop_open(&cp->p_exec, FREAD, CRED(), NULL) != 0) {
1030 VN_RELE(cp->p_exec);
1031 cp->p_exec = NULLVP;
1032 cp->p_execdir = NULLVP;
1033 goto bad;
1036 if (cp->p_execdir)
1037 VN_HOLD(cp->p_execdir);
1040 * If not privileged make sure that this user hasn't exceeded
1041 * v.v_maxup processes, and that users collectively haven't
1042 * exceeded v.v_maxupttl processes.
1044 mutex_enter(&pidlock);
1045 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */
1046 cr = CRED();
1047 ruid = crgetruid(cr);
1048 zoneid = crgetzoneid(cr);
1049 if (nproc >= v.v_maxup && /* short-circuit; usually false */
1050 (nproc >= v.v_maxupttl ||
1051 upcount_get(ruid, zoneid) >= v.v_maxup) &&
1052 secpolicy_newproc(cr) != 0) {
1053 mutex_exit(&pidlock);
1054 zcmn_err(zoneid, CE_NOTE,
1055 "out of per-user processes for uid %d", ruid);
1056 goto bad;
1060 * Everything is cool, put the new proc on the active process list.
1061 * It is already on the pid list and in /proc.
1062 * Increment the per uid process count (upcount).
1064 nproc++;
1065 upcount_inc(ruid, zoneid);
1067 cp->p_next = practive;
1068 practive->p_prev = cp;
1069 practive = cp;
1071 cp->p_ignore = pp->p_ignore;
1072 cp->p_siginfo = pp->p_siginfo;
1073 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
1074 cp->p_sessp = pp->p_sessp;
1075 sess_hold(pp);
1076 cp->p_brand = pp->p_brand;
1077 if (PROC_IS_BRANDED(pp))
1078 BROP(pp)->b_copy_procdata(cp, pp);
1079 cp->p_bssbase = pp->p_bssbase;
1080 cp->p_brkbase = pp->p_brkbase;
1081 cp->p_brksize = pp->p_brksize;
1082 cp->p_brkpageszc = pp->p_brkpageszc;
1083 cp->p_stksize = pp->p_stksize;
1084 cp->p_stkpageszc = pp->p_stkpageszc;
1085 cp->p_stkprot = pp->p_stkprot;
1086 cp->p_datprot = pp->p_datprot;
1087 cp->p_usrstack = pp->p_usrstack;
1088 cp->p_model = pp->p_model;
1089 cp->p_ppid = pp->p_pid;
1090 cp->p_ancpid = pp->p_pid;
1091 cp->p_portcnt = pp->p_portcnt;
1093 * Security flags are preserved on fork, the inherited copy come into
1094 * effect on exec
1096 cp->p_secflags = pp->p_secflags;
1099 * Initialize watchpoint structures
1101 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
1102 offsetof(struct watched_area, wa_link));
1105 * Initialize immediate resource control values.
1107 cp->p_stk_ctl = pp->p_stk_ctl;
1108 cp->p_fsz_ctl = pp->p_fsz_ctl;
1109 cp->p_vmem_ctl = pp->p_vmem_ctl;
1110 cp->p_fno_ctl = pp->p_fno_ctl;
1113 * Link up to parent-child-sibling chain. No need to lock
1114 * in general since only a call to freeproc() (done by the
1115 * same parent as newproc()) diddles with the child chain.
1117 cp->p_sibling = pp->p_child;
1118 if (pp->p_child)
1119 pp->p_child->p_psibling = cp;
1121 cp->p_parent = pp;
1122 pp->p_child = cp;
1124 cp->p_child_ns = NULL;
1125 cp->p_sibling_ns = NULL;
1127 cp->p_nextorph = pp->p_orphan;
1128 cp->p_nextofkin = pp;
1129 pp->p_orphan = cp;
1132 * Inherit profiling state; do not inherit REALPROF profiling state.
1134 cp->p_prof = pp->p_prof;
1135 cp->p_rprof_cyclic = CYCLIC_NONE;
1138 * Inherit pool pointer from the parent. Kernel processes are
1139 * always bound to the default pool.
1141 mutex_enter(&pp->p_lock);
1142 if (flags & GETPROC_KERNEL) {
1143 cp->p_pool = pool_default;
1144 cp->p_flag |= SSYS;
1145 } else {
1146 cp->p_pool = pp->p_pool;
1148 atomic_inc_32(&cp->p_pool->pool_ref);
1149 mutex_exit(&pp->p_lock);
1152 * Add the child process to the current task. Kernel processes
1153 * are always attached to task0.
1155 mutex_enter(&cp->p_lock);
1156 if (flags & GETPROC_KERNEL)
1157 task_attach(task0p, cp);
1158 else
1159 task_attach(pp->p_task, cp);
1160 mutex_exit(&cp->p_lock);
1161 mutex_exit(&pidlock);
1163 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1164 offsetof(contract_t, ct_ctlist));
1167 * Duplicate any audit information kept in the process table
1169 if (audit_active) /* copy audit data to cp */
1170 audit_newproc(cp);
1172 crhold(cp->p_cred = cr);
1175 * Bump up the counts on the file structures pointed at by the
1176 * parent's file table since the child will point at them too.
1178 fcnt_add(P_FINFO(pp), 1);
1180 if (PTOU(pp)->u_cdir) {
1181 VN_HOLD(PTOU(pp)->u_cdir);
1182 } else {
1183 ASSERT(pp == &p0);
1185 * We must be at or before vfs_mountroot(); it will take care of
1186 * assigning our current directory.
1189 if (PTOU(pp)->u_rdir)
1190 VN_HOLD(PTOU(pp)->u_rdir);
1191 if (PTOU(pp)->u_cwd)
1192 refstr_hold(PTOU(pp)->u_cwd);
1195 * copy the parent's uarea.
1197 uarea = PTOU(cp);
1198 bcopy(PTOU(pp), uarea, sizeof (*uarea));
1199 flist_fork(P_FINFO(pp), P_FINFO(cp));
1201 gethrestime(&uarea->u_start);
1202 uarea->u_ticks = ddi_get_lbolt();
1203 uarea->u_mem = rm_asrss(pp->p_as);
1204 uarea->u_acflag = AFORK;
1207 * If inherit-on-fork, copy /proc tracing flags to child.
1209 if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1210 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1211 cp->p_sigmask = pp->p_sigmask;
1212 cp->p_fltmask = pp->p_fltmask;
1213 } else {
1214 sigemptyset(&cp->p_sigmask);
1215 premptyset(&cp->p_fltmask);
1216 uarea->u_systrap = 0;
1217 premptyset(&uarea->u_entrymask);
1218 premptyset(&uarea->u_exitmask);
1221 * If microstate accounting is being inherited, mark child
1223 if ((pp->p_flag & SMSFORK) != 0)
1224 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1227 * Inherit fixalignment flag from the parent
1229 cp->p_fixalignment = pp->p_fixalignment;
1231 *cpp = cp;
1232 return (0);
1234 bad:
1235 ASSERT(MUTEX_NOT_HELD(&pidlock));
1237 mutex_destroy(&cp->p_crlock);
1238 mutex_destroy(&cp->p_pflock);
1239 #if defined(__x86)
1240 mutex_destroy(&cp->p_ldtlock);
1241 #endif
1242 if (newpid != -1) {
1243 proc_entry_free(cp->p_pidp);
1244 (void) pid_rele(cp->p_pidp);
1246 kmem_cache_free(process_cache, cp);
1248 mutex_enter(&zone->zone_nlwps_lock);
1249 task->tk_nprocs--;
1250 proj->kpj_nprocs--;
1251 zone->zone_nprocs--;
1252 mutex_exit(&zone->zone_nlwps_lock);
1253 atomic_inc_32(&zone->zone_ffnoproc);
1255 punish:
1257 * We most likely got into this situation because some process is
1258 * forking out of control. As punishment, put it to sleep for a
1259 * bit so it can't eat the machine alive. Sleep interval is chosen
1260 * to allow no more than one fork failure per cpu per clock tick
1261 * on average (yes, I just made this up). This has two desirable
1262 * properties: (1) it sets a constant limit on the fork failure
1263 * rate, and (2) the busier the system is, the harsher the penalty
1264 * for abusing it becomes.
1266 INCR_COUNT(&fork_fail_pending, &pidlock);
1267 delay(fork_fail_pending / ncpus + 1);
1268 DECR_COUNT(&fork_fail_pending, &pidlock);
1270 return (-1); /* out of memory or proc slots */
1274 * Release virtual memory.
1275 * In the case of vfork(), the child was given exclusive access to its
1276 * parent's address space. The parent is waiting in vfwait() for the
1277 * child to release its exclusive claim via relvm().
1279 void
1280 relvm()
1282 proc_t *p = curproc;
1284 ASSERT((unsigned)p->p_lwpcnt <= 1);
1286 prrelvm(); /* inform /proc */
1288 if (p->p_flag & SVFORK) {
1289 proc_t *pp = p->p_parent;
1291 * The child process is either exec'ing or exit'ing.
1292 * The child is now separated from the parent's address
1293 * space. The parent process is made dispatchable.
1295 * This is a delicate locking maneuver, involving
1296 * both the parent's p_lock and the child's p_lock.
1297 * As soon as the SVFORK flag is turned off, the
1298 * parent is free to run, but it must not run until
1299 * we wake it up using its p_cv because it might
1300 * exit and we would be referencing invalid memory.
1301 * Therefore, we hold the parent with its p_lock
1302 * while protecting our p_flags with our own p_lock.
1304 try_again:
1305 mutex_enter(&p->p_lock); /* grab child's lock first */
1306 prbarrier(p); /* make sure /proc is blocked out */
1307 mutex_enter(&pp->p_lock);
1310 * Check if parent is locked by /proc.
1312 if (pp->p_proc_flag & P_PR_LOCK) {
1314 * Delay until /proc is done with the parent.
1315 * We must drop our (the child's) p->p_lock, wait
1316 * via prbarrier() on the parent, then start over.
1318 mutex_exit(&p->p_lock);
1319 prbarrier(pp);
1320 mutex_exit(&pp->p_lock);
1321 goto try_again;
1323 p->p_flag &= ~SVFORK;
1324 kpreempt_disable();
1325 p->p_as = &kas;
1328 * notify hat of change in thread's address space
1330 hat_thread_exit(curthread);
1331 kpreempt_enable();
1334 * child sizes are copied back to parent because
1335 * child may have grown.
1337 pp->p_brkbase = p->p_brkbase;
1338 pp->p_brksize = p->p_brksize;
1339 pp->p_stksize = p->p_stksize;
1342 * Copy back the shm accounting information
1343 * to the parent process.
1345 pp->p_segacct = p->p_segacct;
1346 p->p_segacct = NULL;
1349 * The parent is no longer waiting for the vfork()d child.
1350 * Restore the parent's watched pages, if any. This is
1351 * safe because we know the parent is not locked by /proc
1353 pp->p_flag &= ~SVFWAIT;
1354 if (avl_numnodes(&pp->p_wpage) != 0) {
1355 pp->p_as->a_wpage = pp->p_wpage;
1356 avl_create(&pp->p_wpage, wp_compare,
1357 sizeof (struct watched_page),
1358 offsetof(struct watched_page, wp_link));
1360 cv_signal(&pp->p_cv);
1361 mutex_exit(&pp->p_lock);
1362 mutex_exit(&p->p_lock);
1363 } else {
1364 if (p->p_as != &kas) {
1365 struct as *as;
1367 if (p->p_segacct)
1368 shmexit(p);
1371 * We grab p_lock for the benefit of /proc
1373 kpreempt_disable();
1374 mutex_enter(&p->p_lock);
1375 prbarrier(p); /* make sure /proc is blocked out */
1376 as = p->p_as;
1377 p->p_as = &kas;
1378 mutex_exit(&p->p_lock);
1381 * notify hat of change in thread's address space
1383 hat_thread_exit(curthread);
1384 kpreempt_enable();
1386 as_free(as);
1387 p->p_tr_lgrpid = LGRP_NONE;
1393 * Wait for child to exec or exit.
1394 * Called by parent of vfork'ed process.
1395 * See important comments in relvm(), above.
1397 void
1398 vfwait(pid_t pid)
1400 int signalled = 0;
1401 proc_t *pp = ttoproc(curthread);
1402 proc_t *cp;
1405 * Wait for child to exec or exit.
1407 for (;;) {
1408 mutex_enter(&pidlock);
1409 cp = prfind(pid);
1410 if (cp == NULL || cp->p_parent != pp) {
1412 * Child has exit()ed.
1414 mutex_exit(&pidlock);
1415 break;
1418 * Grab the child's p_lock before releasing pidlock.
1419 * Otherwise, the child could exit and we would be
1420 * referencing invalid memory.
1422 mutex_enter(&cp->p_lock);
1423 mutex_exit(&pidlock);
1424 if (!(cp->p_flag & SVFORK)) {
1426 * Child has exec()ed or is exit()ing.
1428 mutex_exit(&cp->p_lock);
1429 break;
1431 mutex_enter(&pp->p_lock);
1432 mutex_exit(&cp->p_lock);
1434 * We might be waked up spuriously from the cv_wait().
1435 * We have to do the whole operation over again to be
1436 * sure the child's SVFORK flag really is turned off.
1437 * We cannot make reference to the child because it can
1438 * exit before we return and we would be referencing
1439 * invalid memory.
1441 * Because this is potentially a very long-term wait,
1442 * we call cv_wait_sig() (for its jobcontrol and /proc
1443 * side-effects) unless there is a current signal, in
1444 * which case we use cv_wait() because we cannot return
1445 * from this function until the child has released the
1446 * address space. Calling cv_wait_sig() with a current
1447 * signal would lead to an indefinite loop here because
1448 * cv_wait_sig() returns immediately in this case.
1450 if (signalled)
1451 cv_wait(&pp->p_cv, &pp->p_lock);
1452 else
1453 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1454 mutex_exit(&pp->p_lock);
1457 /* restore watchpoints to parent */
1458 if (pr_watch_active(pp)) {
1459 struct as *as = pp->p_as;
1460 AS_LOCK_ENTER(as, RW_WRITER);
1461 as_setwatch(as);
1462 AS_LOCK_EXIT(as);
1465 mutex_enter(&pp->p_lock);
1466 prbarrier(pp); /* barrier against /proc locking */
1467 continuelwps(pp);
1468 mutex_exit(&pp->p_lock);