9439 ZFS double-free due to failure to dirty indirect block
[unleashed.git] / usr / src / uts / common / fs / zfs / dnode_sync.c
blob2ee75c90c2fcd1424485daea3732cc572955c0fa
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/range_tree.h>
37 #include <sys/zfeature.h>
39 static void
40 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
42 dmu_buf_impl_t *db;
43 int txgoff = tx->tx_txg & TXG_MASK;
44 int nblkptr = dn->dn_phys->dn_nblkptr;
45 int old_toplvl = dn->dn_phys->dn_nlevels - 1;
46 int new_level = dn->dn_next_nlevels[txgoff];
47 int i;
49 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
51 /* this dnode can't be paged out because it's dirty */
52 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
53 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
54 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
57 ASSERT(db != NULL);
59 dn->dn_phys->dn_nlevels = new_level;
60 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
61 dn->dn_object, dn->dn_phys->dn_nlevels);
63 /* transfer dnode's block pointers to new indirect block */
64 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
65 ASSERT(db->db.db_data);
66 ASSERT(arc_released(db->db_buf));
67 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
68 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
69 sizeof (blkptr_t) * nblkptr);
70 arc_buf_freeze(db->db_buf);
72 /* set dbuf's parent pointers to new indirect buf */
73 for (i = 0; i < nblkptr; i++) {
74 dmu_buf_impl_t *child =
75 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
77 if (child == NULL)
78 continue;
79 #ifdef DEBUG
80 DB_DNODE_ENTER(child);
81 ASSERT3P(DB_DNODE(child), ==, dn);
82 DB_DNODE_EXIT(child);
83 #endif /* DEBUG */
84 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
85 ASSERT(child->db_parent->db_level == db->db_level);
86 ASSERT(child->db_blkptr !=
87 &dn->dn_phys->dn_blkptr[child->db_blkid]);
88 mutex_exit(&child->db_mtx);
89 continue;
91 ASSERT(child->db_parent == NULL ||
92 child->db_parent == dn->dn_dbuf);
94 child->db_parent = db;
95 dbuf_add_ref(db, child);
96 if (db->db.db_data)
97 child->db_blkptr = (blkptr_t *)db->db.db_data + i;
98 else
99 child->db_blkptr = NULL;
100 dprintf_dbuf_bp(child, child->db_blkptr,
101 "changed db_blkptr to new indirect %s", "");
103 mutex_exit(&child->db_mtx);
106 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
108 dbuf_rele(db, FTAG);
110 rw_exit(&dn->dn_struct_rwlock);
113 static void
114 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
116 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
117 uint64_t bytesfreed = 0;
119 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
121 for (int i = 0; i < num; i++, bp++) {
122 if (BP_IS_HOLE(bp))
123 continue;
125 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
126 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
129 * Save some useful information on the holes being
130 * punched, including logical size, type, and indirection
131 * level. Retaining birth time enables detection of when
132 * holes are punched for reducing the number of free
133 * records transmitted during a zfs send.
136 uint64_t lsize = BP_GET_LSIZE(bp);
137 dmu_object_type_t type = BP_GET_TYPE(bp);
138 uint64_t lvl = BP_GET_LEVEL(bp);
140 bzero(bp, sizeof (blkptr_t));
142 if (spa_feature_is_active(dn->dn_objset->os_spa,
143 SPA_FEATURE_HOLE_BIRTH)) {
144 BP_SET_LSIZE(bp, lsize);
145 BP_SET_TYPE(bp, type);
146 BP_SET_LEVEL(bp, lvl);
147 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
150 dnode_diduse_space(dn, -bytesfreed);
153 #ifdef ZFS_DEBUG
154 static void
155 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
157 int off, num;
158 int i, err, epbs;
159 uint64_t txg = tx->tx_txg;
160 dnode_t *dn;
162 DB_DNODE_ENTER(db);
163 dn = DB_DNODE(db);
164 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
165 off = start - (db->db_blkid * 1<<epbs);
166 num = end - start + 1;
168 ASSERT3U(off, >=, 0);
169 ASSERT3U(num, >=, 0);
170 ASSERT3U(db->db_level, >, 0);
171 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
172 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
173 ASSERT(db->db_blkptr != NULL);
175 for (i = off; i < off+num; i++) {
176 uint64_t *buf;
177 dmu_buf_impl_t *child;
178 dbuf_dirty_record_t *dr;
179 int j;
181 ASSERT(db->db_level == 1);
183 rw_enter(&dn->dn_struct_rwlock, RW_READER);
184 err = dbuf_hold_impl(dn, db->db_level-1,
185 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
186 rw_exit(&dn->dn_struct_rwlock);
187 if (err == ENOENT)
188 continue;
189 ASSERT(err == 0);
190 ASSERT(child->db_level == 0);
191 dr = child->db_last_dirty;
192 while (dr && dr->dr_txg > txg)
193 dr = dr->dr_next;
194 ASSERT(dr == NULL || dr->dr_txg == txg);
196 /* data_old better be zeroed */
197 if (dr) {
198 buf = dr->dt.dl.dr_data->b_data;
199 for (j = 0; j < child->db.db_size >> 3; j++) {
200 if (buf[j] != 0) {
201 panic("freed data not zero: "
202 "child=%p i=%d off=%d num=%d\n",
203 (void *)child, i, off, num);
209 * db_data better be zeroed unless it's dirty in a
210 * future txg.
212 mutex_enter(&child->db_mtx);
213 buf = child->db.db_data;
214 if (buf != NULL && child->db_state != DB_FILL &&
215 child->db_last_dirty == NULL) {
216 for (j = 0; j < child->db.db_size >> 3; j++) {
217 if (buf[j] != 0) {
218 panic("freed data not zero: "
219 "child=%p i=%d off=%d num=%d\n",
220 (void *)child, i, off, num);
224 mutex_exit(&child->db_mtx);
226 dbuf_rele(child, FTAG);
228 DB_DNODE_EXIT(db);
230 #endif
233 * We don't usually free the indirect blocks here. If in one txg we have a
234 * free_range and a write to the same indirect block, it's important that we
235 * preserve the hole's birth times. Therefore, we don't free any any indirect
236 * blocks in free_children(). If an indirect block happens to turn into all
237 * holes, it will be freed by dbuf_write_children_ready, which happens at a
238 * point in the syncing process where we know for certain the contents of the
239 * indirect block.
241 * However, if we're freeing a dnode, its space accounting must go to zero
242 * before we actually try to free the dnode, or we will trip an assertion. In
243 * addition, we know the case described above cannot occur, because the dnode is
244 * being freed. Therefore, we free the indirect blocks immediately in that
245 * case.
247 static void
248 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
249 boolean_t free_indirects, dmu_tx_t *tx)
251 dnode_t *dn;
252 blkptr_t *bp;
253 dmu_buf_impl_t *subdb;
254 uint64_t start, end, dbstart, dbend;
255 unsigned int epbs, shift, i;
258 * There is a small possibility that this block will not be cached:
259 * 1 - if level > 1 and there are no children with level <= 1
260 * 2 - if this block was evicted since we read it from
261 * dmu_tx_hold_free().
263 if (db->db_state != DB_CACHED)
264 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
267 * If we modify this indirect block, and we are not freeing the
268 * dnode (!free_indirects), then this indirect block needs to get
269 * written to disk by dbuf_write(). If it is dirty, we know it will
270 * be written (otherwise, we would have incorrect on-disk state
271 * because the space would be freed but still referenced by the BP
272 * in this indirect block). Therefore we VERIFY that it is
273 * dirty.
275 * Our VERIFY covers some cases that do not actually have to be
276 * dirty, but the open-context code happens to dirty. E.g. if the
277 * blocks we are freeing are all holes, because in that case, we
278 * are only freeing part of this indirect block, so it is an
279 * ancestor of the first or last block to be freed. The first and
280 * last L1 indirect blocks are always dirtied by dnode_free_range().
282 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
284 dbuf_release_bp(db);
285 bp = db->db.db_data;
287 DB_DNODE_ENTER(db);
288 dn = DB_DNODE(db);
289 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
290 ASSERT3U(epbs, <, 31);
291 shift = (db->db_level - 1) * epbs;
292 dbstart = db->db_blkid << epbs;
293 start = blkid >> shift;
294 if (dbstart < start) {
295 bp += start - dbstart;
296 } else {
297 start = dbstart;
299 dbend = ((db->db_blkid + 1) << epbs) - 1;
300 end = (blkid + nblks - 1) >> shift;
301 if (dbend <= end)
302 end = dbend;
304 ASSERT3U(start, <=, end);
306 if (db->db_level == 1) {
307 FREE_VERIFY(db, start, end, tx);
308 free_blocks(dn, bp, end-start+1, tx);
309 } else {
310 for (uint64_t id = start; id <= end; id++, bp++) {
311 if (BP_IS_HOLE(bp))
312 continue;
313 rw_enter(&dn->dn_struct_rwlock, RW_READER);
314 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
315 id, TRUE, FALSE, FTAG, &subdb));
316 rw_exit(&dn->dn_struct_rwlock);
317 ASSERT3P(bp, ==, subdb->db_blkptr);
319 free_children(subdb, blkid, nblks, free_indirects, tx);
320 dbuf_rele(subdb, FTAG);
324 if (free_indirects) {
325 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
326 ASSERT(BP_IS_HOLE(bp));
327 bzero(db->db.db_data, db->db.db_size);
328 free_blocks(dn, db->db_blkptr, 1, tx);
331 DB_DNODE_EXIT(db);
332 arc_buf_freeze(db->db_buf);
336 * Traverse the indicated range of the provided file
337 * and "free" all the blocks contained there.
339 static void
340 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
341 boolean_t free_indirects, dmu_tx_t *tx)
343 blkptr_t *bp = dn->dn_phys->dn_blkptr;
344 int dnlevel = dn->dn_phys->dn_nlevels;
345 boolean_t trunc = B_FALSE;
347 if (blkid > dn->dn_phys->dn_maxblkid)
348 return;
350 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
351 if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
352 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
353 trunc = B_TRUE;
356 /* There are no indirect blocks in the object */
357 if (dnlevel == 1) {
358 if (blkid >= dn->dn_phys->dn_nblkptr) {
359 /* this range was never made persistent */
360 return;
362 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
363 free_blocks(dn, bp + blkid, nblks, tx);
364 } else {
365 int shift = (dnlevel - 1) *
366 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
367 int start = blkid >> shift;
368 int end = (blkid + nblks - 1) >> shift;
369 dmu_buf_impl_t *db;
371 ASSERT(start < dn->dn_phys->dn_nblkptr);
372 bp += start;
373 for (int i = start; i <= end; i++, bp++) {
374 if (BP_IS_HOLE(bp))
375 continue;
376 rw_enter(&dn->dn_struct_rwlock, RW_READER);
377 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
378 TRUE, FALSE, FTAG, &db));
379 rw_exit(&dn->dn_struct_rwlock);
381 free_children(db, blkid, nblks, free_indirects, tx);
382 dbuf_rele(db, FTAG);
386 if (trunc) {
387 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
389 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
390 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
391 ASSERT(off < dn->dn_phys->dn_maxblkid ||
392 dn->dn_phys->dn_maxblkid == 0 ||
393 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
397 typedef struct dnode_sync_free_range_arg {
398 dnode_t *dsfra_dnode;
399 dmu_tx_t *dsfra_tx;
400 boolean_t dsfra_free_indirects;
401 } dnode_sync_free_range_arg_t;
403 static void
404 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
406 dnode_sync_free_range_arg_t *dsfra = arg;
407 dnode_t *dn = dsfra->dsfra_dnode;
409 mutex_exit(&dn->dn_mtx);
410 dnode_sync_free_range_impl(dn, blkid, nblks,
411 dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
412 mutex_enter(&dn->dn_mtx);
416 * Try to kick all the dnode's dbufs out of the cache...
418 void
419 dnode_evict_dbufs(dnode_t *dn)
421 dmu_buf_impl_t db_marker;
422 dmu_buf_impl_t *db, *db_next;
424 mutex_enter(&dn->dn_dbufs_mtx);
425 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
427 #ifdef DEBUG
428 DB_DNODE_ENTER(db);
429 ASSERT3P(DB_DNODE(db), ==, dn);
430 DB_DNODE_EXIT(db);
431 #endif /* DEBUG */
433 mutex_enter(&db->db_mtx);
434 if (db->db_state != DB_EVICTING &&
435 refcount_is_zero(&db->db_holds)) {
436 db_marker.db_level = db->db_level;
437 db_marker.db_blkid = db->db_blkid;
438 db_marker.db_state = DB_SEARCH;
439 avl_insert_here(&dn->dn_dbufs, &db_marker, db,
440 AVL_BEFORE);
442 dbuf_destroy(db);
444 db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker);
445 avl_remove(&dn->dn_dbufs, &db_marker);
446 } else {
447 db->db_pending_evict = TRUE;
448 mutex_exit(&db->db_mtx);
449 db_next = AVL_NEXT(&dn->dn_dbufs, db);
452 mutex_exit(&dn->dn_dbufs_mtx);
454 dnode_evict_bonus(dn);
457 void
458 dnode_evict_bonus(dnode_t *dn)
460 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
461 if (dn->dn_bonus != NULL) {
462 if (refcount_is_zero(&dn->dn_bonus->db_holds)) {
463 mutex_enter(&dn->dn_bonus->db_mtx);
464 dbuf_destroy(dn->dn_bonus);
465 dn->dn_bonus = NULL;
466 } else {
467 dn->dn_bonus->db_pending_evict = TRUE;
470 rw_exit(&dn->dn_struct_rwlock);
473 static void
474 dnode_undirty_dbufs(list_t *list)
476 dbuf_dirty_record_t *dr;
478 while (dr = list_head(list)) {
479 dmu_buf_impl_t *db = dr->dr_dbuf;
480 uint64_t txg = dr->dr_txg;
482 if (db->db_level != 0)
483 dnode_undirty_dbufs(&dr->dt.di.dr_children);
485 mutex_enter(&db->db_mtx);
486 /* XXX - use dbuf_undirty()? */
487 list_remove(list, dr);
488 ASSERT(db->db_last_dirty == dr);
489 db->db_last_dirty = NULL;
490 db->db_dirtycnt -= 1;
491 if (db->db_level == 0) {
492 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
493 dr->dt.dl.dr_data == db->db_buf);
494 dbuf_unoverride(dr);
495 } else {
496 mutex_destroy(&dr->dt.di.dr_mtx);
497 list_destroy(&dr->dt.di.dr_children);
499 kmem_free(dr, sizeof (dbuf_dirty_record_t));
500 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
504 static void
505 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
507 int txgoff = tx->tx_txg & TXG_MASK;
509 ASSERT(dmu_tx_is_syncing(tx));
512 * Our contents should have been freed in dnode_sync() by the
513 * free range record inserted by the caller of dnode_free().
515 ASSERT0(DN_USED_BYTES(dn->dn_phys));
516 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
518 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
519 dnode_evict_dbufs(dn);
522 * XXX - It would be nice to assert this, but we may still
523 * have residual holds from async evictions from the arc...
525 * zfs_obj_to_path() also depends on this being
526 * commented out.
528 * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1);
531 /* Undirty next bits */
532 dn->dn_next_nlevels[txgoff] = 0;
533 dn->dn_next_indblkshift[txgoff] = 0;
534 dn->dn_next_blksz[txgoff] = 0;
536 /* ASSERT(blkptrs are zero); */
537 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
538 ASSERT(dn->dn_type != DMU_OT_NONE);
540 ASSERT(dn->dn_free_txg > 0);
541 if (dn->dn_allocated_txg != dn->dn_free_txg)
542 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
543 bzero(dn->dn_phys, sizeof (dnode_phys_t));
545 mutex_enter(&dn->dn_mtx);
546 dn->dn_type = DMU_OT_NONE;
547 dn->dn_maxblkid = 0;
548 dn->dn_allocated_txg = 0;
549 dn->dn_free_txg = 0;
550 dn->dn_have_spill = B_FALSE;
551 mutex_exit(&dn->dn_mtx);
553 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
555 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
557 * Now that we've released our hold, the dnode may
558 * be evicted, so we musn't access it.
563 * Write out the dnode's dirty buffers.
565 void
566 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
568 dnode_phys_t *dnp = dn->dn_phys;
569 int txgoff = tx->tx_txg & TXG_MASK;
570 list_t *list = &dn->dn_dirty_records[txgoff];
571 static const dnode_phys_t zerodn = { 0 };
572 boolean_t kill_spill = B_FALSE;
574 ASSERT(dmu_tx_is_syncing(tx));
575 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
576 ASSERT(dnp->dn_type != DMU_OT_NONE ||
577 bcmp(dnp, &zerodn, DNODE_SIZE) == 0);
578 DNODE_VERIFY(dn);
580 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
582 if (dmu_objset_userused_enabled(dn->dn_objset) &&
583 !DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
584 mutex_enter(&dn->dn_mtx);
585 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
586 dn->dn_oldflags = dn->dn_phys->dn_flags;
587 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
588 mutex_exit(&dn->dn_mtx);
589 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
590 } else {
591 /* Once we account for it, we should always account for it. */
592 ASSERT(!(dn->dn_phys->dn_flags &
593 DNODE_FLAG_USERUSED_ACCOUNTED));
596 mutex_enter(&dn->dn_mtx);
597 if (dn->dn_allocated_txg == tx->tx_txg) {
598 /* The dnode is newly allocated or reallocated */
599 if (dnp->dn_type == DMU_OT_NONE) {
600 /* this is a first alloc, not a realloc */
601 dnp->dn_nlevels = 1;
602 dnp->dn_nblkptr = dn->dn_nblkptr;
605 dnp->dn_type = dn->dn_type;
606 dnp->dn_bonustype = dn->dn_bonustype;
607 dnp->dn_bonuslen = dn->dn_bonuslen;
609 ASSERT(dnp->dn_nlevels > 1 ||
610 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
611 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
612 BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
613 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
614 ASSERT(dnp->dn_nlevels < 2 ||
615 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
616 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
618 if (dn->dn_next_type[txgoff] != 0) {
619 dnp->dn_type = dn->dn_type;
620 dn->dn_next_type[txgoff] = 0;
623 if (dn->dn_next_blksz[txgoff] != 0) {
624 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
625 SPA_MINBLOCKSIZE) == 0);
626 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
627 dn->dn_maxblkid == 0 || list_head(list) != NULL ||
628 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
629 dnp->dn_datablkszsec ||
630 !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
631 dnp->dn_datablkszsec =
632 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
633 dn->dn_next_blksz[txgoff] = 0;
636 if (dn->dn_next_bonuslen[txgoff] != 0) {
637 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
638 dnp->dn_bonuslen = 0;
639 else
640 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
641 ASSERT(dnp->dn_bonuslen <= DN_MAX_BONUSLEN);
642 dn->dn_next_bonuslen[txgoff] = 0;
645 if (dn->dn_next_bonustype[txgoff] != 0) {
646 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
647 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
648 dn->dn_next_bonustype[txgoff] = 0;
651 boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
652 dn->dn_free_txg <= tx->tx_txg;
655 * Remove the spill block if we have been explicitly asked to
656 * remove it, or if the object is being removed.
658 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
659 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
660 kill_spill = B_TRUE;
661 dn->dn_rm_spillblk[txgoff] = 0;
664 if (dn->dn_next_indblkshift[txgoff] != 0) {
665 ASSERT(dnp->dn_nlevels == 1);
666 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
667 dn->dn_next_indblkshift[txgoff] = 0;
671 * Just take the live (open-context) values for checksum and compress.
672 * Strictly speaking it's a future leak, but nothing bad happens if we
673 * start using the new checksum or compress algorithm a little early.
675 dnp->dn_checksum = dn->dn_checksum;
676 dnp->dn_compress = dn->dn_compress;
678 mutex_exit(&dn->dn_mtx);
680 if (kill_spill) {
681 free_blocks(dn, &dn->dn_phys->dn_spill, 1, tx);
682 mutex_enter(&dn->dn_mtx);
683 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
684 mutex_exit(&dn->dn_mtx);
687 /* process all the "freed" ranges in the file */
688 if (dn->dn_free_ranges[txgoff] != NULL) {
689 dnode_sync_free_range_arg_t dsfra;
690 dsfra.dsfra_dnode = dn;
691 dsfra.dsfra_tx = tx;
692 dsfra.dsfra_free_indirects = freeing_dnode;
693 if (freeing_dnode) {
694 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
695 0, dn->dn_maxblkid + 1));
697 mutex_enter(&dn->dn_mtx);
698 range_tree_vacate(dn->dn_free_ranges[txgoff],
699 dnode_sync_free_range, &dsfra);
700 range_tree_destroy(dn->dn_free_ranges[txgoff]);
701 dn->dn_free_ranges[txgoff] = NULL;
702 mutex_exit(&dn->dn_mtx);
705 if (freeing_dnode) {
706 dn->dn_objset->os_freed_dnodes++;
707 dnode_sync_free(dn, tx);
708 return;
711 if (dn->dn_next_nlevels[txgoff]) {
712 dnode_increase_indirection(dn, tx);
713 dn->dn_next_nlevels[txgoff] = 0;
716 if (dn->dn_next_nblkptr[txgoff]) {
717 /* this should only happen on a realloc */
718 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
719 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
720 /* zero the new blkptrs we are gaining */
721 bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
722 sizeof (blkptr_t) *
723 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
724 #ifdef ZFS_DEBUG
725 } else {
726 int i;
727 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
728 /* the blkptrs we are losing better be unallocated */
729 for (i = dn->dn_next_nblkptr[txgoff];
730 i < dnp->dn_nblkptr; i++)
731 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
732 #endif
734 mutex_enter(&dn->dn_mtx);
735 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
736 dn->dn_next_nblkptr[txgoff] = 0;
737 mutex_exit(&dn->dn_mtx);
740 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
742 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
743 ASSERT3P(list_head(list), ==, NULL);
744 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
748 * Although we have dropped our reference to the dnode, it
749 * can't be evicted until its written, and we haven't yet
750 * initiated the IO for the dnode's dbuf.