9194 mechanism to override ashift at pool creation time
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob6fee8109e05fefb2fca395dd6ea2960c16fc8a61
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 #include <sys/vdev_initialize.h>
55 * Virtual device management.
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 &vdev_indirect_ops,
69 NULL
72 /* maximum scrub/resilver I/O queue per leaf vdev */
73 int zfs_scrub_limit = 10;
75 /* maximum number of metaslabs per top-level vdev */
76 int vdev_max_ms_count = 200;
78 /* minimum amount of metaslabs per top-level vdev */
79 int vdev_min_ms_count = 16;
81 /* see comment in vdev_metaslab_set_size() */
82 int vdev_default_ms_shift = 29;
84 boolean_t vdev_validate_skip = B_FALSE;
87 * Since the DTL space map of a vdev is not expected to have a lot of
88 * entries, we default its block size to 4K.
90 int vdev_dtl_sm_blksz = (1 << 12);
93 * vdev-wide space maps that have lots of entries written to them at
94 * the end of each transaction can benefit from a higher I/O bandwidth
95 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
97 int vdev_standard_sm_blksz = (1 << 17);
99 int zfs_ashift_min;
101 /*PRINTFLIKE2*/
102 void
103 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
105 va_list adx;
106 char buf[256];
108 va_start(adx, fmt);
109 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
110 va_end(adx);
112 if (vd->vdev_path != NULL) {
113 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
114 vd->vdev_path, buf);
115 } else {
116 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
117 vd->vdev_ops->vdev_op_type,
118 (u_longlong_t)vd->vdev_id,
119 (u_longlong_t)vd->vdev_guid, buf);
123 void
124 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
126 char state[20];
128 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
129 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
130 vd->vdev_ops->vdev_op_type);
131 return;
134 switch (vd->vdev_state) {
135 case VDEV_STATE_UNKNOWN:
136 (void) snprintf(state, sizeof (state), "unknown");
137 break;
138 case VDEV_STATE_CLOSED:
139 (void) snprintf(state, sizeof (state), "closed");
140 break;
141 case VDEV_STATE_OFFLINE:
142 (void) snprintf(state, sizeof (state), "offline");
143 break;
144 case VDEV_STATE_REMOVED:
145 (void) snprintf(state, sizeof (state), "removed");
146 break;
147 case VDEV_STATE_CANT_OPEN:
148 (void) snprintf(state, sizeof (state), "can't open");
149 break;
150 case VDEV_STATE_FAULTED:
151 (void) snprintf(state, sizeof (state), "faulted");
152 break;
153 case VDEV_STATE_DEGRADED:
154 (void) snprintf(state, sizeof (state), "degraded");
155 break;
156 case VDEV_STATE_HEALTHY:
157 (void) snprintf(state, sizeof (state), "healthy");
158 break;
159 default:
160 (void) snprintf(state, sizeof (state), "<state %u>",
161 (uint_t)vd->vdev_state);
164 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
165 "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
166 vd->vdev_islog ? " (log)" : "",
167 (u_longlong_t)vd->vdev_guid,
168 vd->vdev_path ? vd->vdev_path : "N/A", state);
170 for (uint64_t i = 0; i < vd->vdev_children; i++)
171 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
175 * Given a vdev type, return the appropriate ops vector.
177 static vdev_ops_t *
178 vdev_getops(const char *type)
180 vdev_ops_t *ops, **opspp;
182 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
183 if (strcmp(ops->vdev_op_type, type) == 0)
184 break;
186 return (ops);
189 /* ARGSUSED */
190 void
191 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
193 res->rs_start = in->rs_start;
194 res->rs_end = in->rs_end;
198 * Default asize function: return the MAX of psize with the asize of
199 * all children. This is what's used by anything other than RAID-Z.
201 uint64_t
202 vdev_default_asize(vdev_t *vd, uint64_t psize)
204 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
205 uint64_t csize;
207 for (int c = 0; c < vd->vdev_children; c++) {
208 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
209 asize = MAX(asize, csize);
212 return (asize);
216 * Get the minimum allocatable size. We define the allocatable size as
217 * the vdev's asize rounded to the nearest metaslab. This allows us to
218 * replace or attach devices which don't have the same physical size but
219 * can still satisfy the same number of allocations.
221 uint64_t
222 vdev_get_min_asize(vdev_t *vd)
224 vdev_t *pvd = vd->vdev_parent;
227 * If our parent is NULL (inactive spare or cache) or is the root,
228 * just return our own asize.
230 if (pvd == NULL)
231 return (vd->vdev_asize);
234 * The top-level vdev just returns the allocatable size rounded
235 * to the nearest metaslab.
237 if (vd == vd->vdev_top)
238 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
241 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
242 * so each child must provide at least 1/Nth of its asize.
244 if (pvd->vdev_ops == &vdev_raidz_ops)
245 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
246 pvd->vdev_children);
248 return (pvd->vdev_min_asize);
251 void
252 vdev_set_min_asize(vdev_t *vd)
254 vd->vdev_min_asize = vdev_get_min_asize(vd);
256 for (int c = 0; c < vd->vdev_children; c++)
257 vdev_set_min_asize(vd->vdev_child[c]);
260 vdev_t *
261 vdev_lookup_top(spa_t *spa, uint64_t vdev)
263 vdev_t *rvd = spa->spa_root_vdev;
265 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
267 if (vdev < rvd->vdev_children) {
268 ASSERT(rvd->vdev_child[vdev] != NULL);
269 return (rvd->vdev_child[vdev]);
272 return (NULL);
275 vdev_t *
276 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
278 vdev_t *mvd;
280 if (vd->vdev_guid == guid)
281 return (vd);
283 for (int c = 0; c < vd->vdev_children; c++)
284 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
285 NULL)
286 return (mvd);
288 return (NULL);
291 static int
292 vdev_count_leaves_impl(vdev_t *vd)
294 int n = 0;
296 if (vd->vdev_ops->vdev_op_leaf)
297 return (1);
299 for (int c = 0; c < vd->vdev_children; c++)
300 n += vdev_count_leaves_impl(vd->vdev_child[c]);
302 return (n);
306 vdev_count_leaves(spa_t *spa)
308 return (vdev_count_leaves_impl(spa->spa_root_vdev));
311 void
312 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
314 size_t oldsize, newsize;
315 uint64_t id = cvd->vdev_id;
316 vdev_t **newchild;
317 spa_t *spa = cvd->vdev_spa;
319 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
320 ASSERT(cvd->vdev_parent == NULL);
322 cvd->vdev_parent = pvd;
324 if (pvd == NULL)
325 return;
327 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
329 oldsize = pvd->vdev_children * sizeof (vdev_t *);
330 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
331 newsize = pvd->vdev_children * sizeof (vdev_t *);
333 newchild = kmem_zalloc(newsize, KM_SLEEP);
334 if (pvd->vdev_child != NULL) {
335 bcopy(pvd->vdev_child, newchild, oldsize);
336 kmem_free(pvd->vdev_child, oldsize);
339 pvd->vdev_child = newchild;
340 pvd->vdev_child[id] = cvd;
342 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
343 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
346 * Walk up all ancestors to update guid sum.
348 for (; pvd != NULL; pvd = pvd->vdev_parent)
349 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
352 void
353 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
355 int c;
356 uint_t id = cvd->vdev_id;
358 ASSERT(cvd->vdev_parent == pvd);
360 if (pvd == NULL)
361 return;
363 ASSERT(id < pvd->vdev_children);
364 ASSERT(pvd->vdev_child[id] == cvd);
366 pvd->vdev_child[id] = NULL;
367 cvd->vdev_parent = NULL;
369 for (c = 0; c < pvd->vdev_children; c++)
370 if (pvd->vdev_child[c])
371 break;
373 if (c == pvd->vdev_children) {
374 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
375 pvd->vdev_child = NULL;
376 pvd->vdev_children = 0;
380 * Walk up all ancestors to update guid sum.
382 for (; pvd != NULL; pvd = pvd->vdev_parent)
383 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
387 * Remove any holes in the child array.
389 void
390 vdev_compact_children(vdev_t *pvd)
392 vdev_t **newchild, *cvd;
393 int oldc = pvd->vdev_children;
394 int newc;
396 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
398 for (int c = newc = 0; c < oldc; c++)
399 if (pvd->vdev_child[c])
400 newc++;
402 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
404 for (int c = newc = 0; c < oldc; c++) {
405 if ((cvd = pvd->vdev_child[c]) != NULL) {
406 newchild[newc] = cvd;
407 cvd->vdev_id = newc++;
411 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
412 pvd->vdev_child = newchild;
413 pvd->vdev_children = newc;
417 * Allocate and minimally initialize a vdev_t.
419 vdev_t *
420 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
422 vdev_t *vd;
423 vdev_indirect_config_t *vic;
425 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
426 vic = &vd->vdev_indirect_config;
428 if (spa->spa_root_vdev == NULL) {
429 ASSERT(ops == &vdev_root_ops);
430 spa->spa_root_vdev = vd;
431 spa->spa_load_guid = spa_generate_guid(NULL);
434 if (guid == 0 && ops != &vdev_hole_ops) {
435 if (spa->spa_root_vdev == vd) {
437 * The root vdev's guid will also be the pool guid,
438 * which must be unique among all pools.
440 guid = spa_generate_guid(NULL);
441 } else {
443 * Any other vdev's guid must be unique within the pool.
445 guid = spa_generate_guid(spa);
447 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
450 vd->vdev_spa = spa;
451 vd->vdev_id = id;
452 vd->vdev_guid = guid;
453 vd->vdev_guid_sum = guid;
454 vd->vdev_ops = ops;
455 vd->vdev_state = VDEV_STATE_CLOSED;
456 vd->vdev_ishole = (ops == &vdev_hole_ops);
457 vic->vic_prev_indirect_vdev = UINT64_MAX;
459 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
460 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
461 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
463 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
464 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
465 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
466 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
467 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
468 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
469 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
470 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
472 for (int t = 0; t < DTL_TYPES; t++) {
473 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
475 txg_list_create(&vd->vdev_ms_list, spa,
476 offsetof(struct metaslab, ms_txg_node));
477 txg_list_create(&vd->vdev_dtl_list, spa,
478 offsetof(struct vdev, vdev_dtl_node));
479 vd->vdev_stat.vs_timestamp = gethrtime();
480 vdev_queue_init(vd);
481 vdev_cache_init(vd);
483 return (vd);
487 * Allocate a new vdev. The 'alloctype' is used to control whether we are
488 * creating a new vdev or loading an existing one - the behavior is slightly
489 * different for each case.
492 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
493 int alloctype)
495 vdev_ops_t *ops;
496 char *type;
497 uint64_t guid = 0, islog, nparity;
498 vdev_t *vd;
499 vdev_indirect_config_t *vic;
501 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
503 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
504 return (SET_ERROR(EINVAL));
506 if ((ops = vdev_getops(type)) == NULL)
507 return (SET_ERROR(EINVAL));
510 * If this is a load, get the vdev guid from the nvlist.
511 * Otherwise, vdev_alloc_common() will generate one for us.
513 if (alloctype == VDEV_ALLOC_LOAD) {
514 uint64_t label_id;
516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
517 label_id != id)
518 return (SET_ERROR(EINVAL));
520 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
521 return (SET_ERROR(EINVAL));
522 } else if (alloctype == VDEV_ALLOC_SPARE) {
523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
524 return (SET_ERROR(EINVAL));
525 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
526 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
527 return (SET_ERROR(EINVAL));
528 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
529 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
530 return (SET_ERROR(EINVAL));
534 * The first allocated vdev must be of type 'root'.
536 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
537 return (SET_ERROR(EINVAL));
540 * Determine whether we're a log vdev.
542 islog = 0;
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
544 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
545 return (SET_ERROR(ENOTSUP));
547 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
548 return (SET_ERROR(ENOTSUP));
551 * Set the nparity property for RAID-Z vdevs.
553 nparity = -1ULL;
554 if (ops == &vdev_raidz_ops) {
555 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
556 &nparity) == 0) {
557 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
558 return (SET_ERROR(EINVAL));
560 * Previous versions could only support 1 or 2 parity
561 * device.
563 if (nparity > 1 &&
564 spa_version(spa) < SPA_VERSION_RAIDZ2)
565 return (SET_ERROR(ENOTSUP));
566 if (nparity > 2 &&
567 spa_version(spa) < SPA_VERSION_RAIDZ3)
568 return (SET_ERROR(ENOTSUP));
569 } else {
571 * We require the parity to be specified for SPAs that
572 * support multiple parity levels.
574 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
575 return (SET_ERROR(EINVAL));
577 * Otherwise, we default to 1 parity device for RAID-Z.
579 nparity = 1;
581 } else {
582 nparity = 0;
584 ASSERT(nparity != -1ULL);
586 vd = vdev_alloc_common(spa, id, guid, ops);
587 vic = &vd->vdev_indirect_config;
589 vd->vdev_islog = islog;
590 vd->vdev_nparity = nparity;
592 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
593 vd->vdev_path = spa_strdup(vd->vdev_path);
594 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
595 vd->vdev_devid = spa_strdup(vd->vdev_devid);
596 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
597 &vd->vdev_physpath) == 0)
598 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
599 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
600 vd->vdev_fru = spa_strdup(vd->vdev_fru);
603 * Set the whole_disk property. If it's not specified, leave the value
604 * as -1.
606 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
607 &vd->vdev_wholedisk) != 0)
608 vd->vdev_wholedisk = -1ULL;
610 ASSERT0(vic->vic_mapping_object);
611 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
612 &vic->vic_mapping_object);
613 ASSERT0(vic->vic_births_object);
614 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
615 &vic->vic_births_object);
616 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
617 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
618 &vic->vic_prev_indirect_vdev);
621 * Look for the 'not present' flag. This will only be set if the device
622 * was not present at the time of import.
624 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
625 &vd->vdev_not_present);
628 * Get the alignment requirement.
630 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
633 * Retrieve the vdev creation time.
635 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
636 &vd->vdev_crtxg);
639 * If we're a top-level vdev, try to load the allocation parameters.
641 if (parent && !parent->vdev_parent &&
642 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
643 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
644 &vd->vdev_ms_array);
645 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
646 &vd->vdev_ms_shift);
647 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
648 &vd->vdev_asize);
649 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
650 &vd->vdev_removing);
651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
652 &vd->vdev_top_zap);
653 } else {
654 ASSERT0(vd->vdev_top_zap);
657 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
658 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
659 alloctype == VDEV_ALLOC_ADD ||
660 alloctype == VDEV_ALLOC_SPLIT ||
661 alloctype == VDEV_ALLOC_ROOTPOOL);
662 vd->vdev_mg = metaslab_group_create(islog ?
663 spa_log_class(spa) : spa_normal_class(spa), vd,
664 spa->spa_alloc_count);
667 if (vd->vdev_ops->vdev_op_leaf &&
668 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
669 (void) nvlist_lookup_uint64(nv,
670 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
671 } else {
672 ASSERT0(vd->vdev_leaf_zap);
676 * If we're a leaf vdev, try to load the DTL object and other state.
679 if (vd->vdev_ops->vdev_op_leaf &&
680 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
681 alloctype == VDEV_ALLOC_ROOTPOOL)) {
682 if (alloctype == VDEV_ALLOC_LOAD) {
683 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
684 &vd->vdev_dtl_object);
685 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
686 &vd->vdev_unspare);
689 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
690 uint64_t spare = 0;
692 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
693 &spare) == 0 && spare)
694 spa_spare_add(vd);
697 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
698 &vd->vdev_offline);
700 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
701 &vd->vdev_resilver_txg);
704 * When importing a pool, we want to ignore the persistent fault
705 * state, as the diagnosis made on another system may not be
706 * valid in the current context. Local vdevs will
707 * remain in the faulted state.
709 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
710 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
711 &vd->vdev_faulted);
712 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
713 &vd->vdev_degraded);
714 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
715 &vd->vdev_removed);
717 if (vd->vdev_faulted || vd->vdev_degraded) {
718 char *aux;
720 vd->vdev_label_aux =
721 VDEV_AUX_ERR_EXCEEDED;
722 if (nvlist_lookup_string(nv,
723 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
724 strcmp(aux, "external") == 0)
725 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
731 * Add ourselves to the parent's list of children.
733 vdev_add_child(parent, vd);
735 *vdp = vd;
737 return (0);
740 void
741 vdev_free(vdev_t *vd)
743 spa_t *spa = vd->vdev_spa;
744 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
747 * vdev_free() implies closing the vdev first. This is simpler than
748 * trying to ensure complicated semantics for all callers.
750 vdev_close(vd);
752 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
753 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
756 * Free all children.
758 for (int c = 0; c < vd->vdev_children; c++)
759 vdev_free(vd->vdev_child[c]);
761 ASSERT(vd->vdev_child == NULL);
762 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
763 ASSERT(vd->vdev_initialize_thread == NULL);
766 * Discard allocation state.
768 if (vd->vdev_mg != NULL) {
769 vdev_metaslab_fini(vd);
770 metaslab_group_destroy(vd->vdev_mg);
773 ASSERT0(vd->vdev_stat.vs_space);
774 ASSERT0(vd->vdev_stat.vs_dspace);
775 ASSERT0(vd->vdev_stat.vs_alloc);
778 * Remove this vdev from its parent's child list.
780 vdev_remove_child(vd->vdev_parent, vd);
782 ASSERT(vd->vdev_parent == NULL);
785 * Clean up vdev structure.
787 vdev_queue_fini(vd);
788 vdev_cache_fini(vd);
790 if (vd->vdev_path)
791 spa_strfree(vd->vdev_path);
792 if (vd->vdev_devid)
793 spa_strfree(vd->vdev_devid);
794 if (vd->vdev_physpath)
795 spa_strfree(vd->vdev_physpath);
796 if (vd->vdev_fru)
797 spa_strfree(vd->vdev_fru);
799 if (vd->vdev_isspare)
800 spa_spare_remove(vd);
801 if (vd->vdev_isl2cache)
802 spa_l2cache_remove(vd);
804 txg_list_destroy(&vd->vdev_ms_list);
805 txg_list_destroy(&vd->vdev_dtl_list);
807 mutex_enter(&vd->vdev_dtl_lock);
808 space_map_close(vd->vdev_dtl_sm);
809 for (int t = 0; t < DTL_TYPES; t++) {
810 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
811 range_tree_destroy(vd->vdev_dtl[t]);
813 mutex_exit(&vd->vdev_dtl_lock);
815 EQUIV(vd->vdev_indirect_births != NULL,
816 vd->vdev_indirect_mapping != NULL);
817 if (vd->vdev_indirect_births != NULL) {
818 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
819 vdev_indirect_births_close(vd->vdev_indirect_births);
822 if (vd->vdev_obsolete_sm != NULL) {
823 ASSERT(vd->vdev_removing ||
824 vd->vdev_ops == &vdev_indirect_ops);
825 space_map_close(vd->vdev_obsolete_sm);
826 vd->vdev_obsolete_sm = NULL;
828 range_tree_destroy(vd->vdev_obsolete_segments);
829 rw_destroy(&vd->vdev_indirect_rwlock);
830 mutex_destroy(&vd->vdev_obsolete_lock);
832 mutex_destroy(&vd->vdev_queue_lock);
833 mutex_destroy(&vd->vdev_dtl_lock);
834 mutex_destroy(&vd->vdev_stat_lock);
835 mutex_destroy(&vd->vdev_probe_lock);
836 mutex_destroy(&vd->vdev_initialize_lock);
837 mutex_destroy(&vd->vdev_initialize_io_lock);
838 cv_destroy(&vd->vdev_initialize_io_cv);
839 cv_destroy(&vd->vdev_initialize_cv);
841 if (vd == spa->spa_root_vdev)
842 spa->spa_root_vdev = NULL;
844 kmem_free(vd, sizeof (vdev_t));
848 * Transfer top-level vdev state from svd to tvd.
850 static void
851 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
853 spa_t *spa = svd->vdev_spa;
854 metaslab_t *msp;
855 vdev_t *vd;
856 int t;
858 ASSERT(tvd == tvd->vdev_top);
860 tvd->vdev_ms_array = svd->vdev_ms_array;
861 tvd->vdev_ms_shift = svd->vdev_ms_shift;
862 tvd->vdev_ms_count = svd->vdev_ms_count;
863 tvd->vdev_top_zap = svd->vdev_top_zap;
865 svd->vdev_ms_array = 0;
866 svd->vdev_ms_shift = 0;
867 svd->vdev_ms_count = 0;
868 svd->vdev_top_zap = 0;
870 if (tvd->vdev_mg)
871 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
872 tvd->vdev_mg = svd->vdev_mg;
873 tvd->vdev_ms = svd->vdev_ms;
875 svd->vdev_mg = NULL;
876 svd->vdev_ms = NULL;
878 if (tvd->vdev_mg != NULL)
879 tvd->vdev_mg->mg_vd = tvd;
881 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
882 svd->vdev_checkpoint_sm = NULL;
884 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
885 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
886 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
888 svd->vdev_stat.vs_alloc = 0;
889 svd->vdev_stat.vs_space = 0;
890 svd->vdev_stat.vs_dspace = 0;
893 * State which may be set on a top-level vdev that's in the
894 * process of being removed.
896 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
897 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
898 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
899 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
900 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
901 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
902 ASSERT0(tvd->vdev_removing);
903 tvd->vdev_removing = svd->vdev_removing;
904 tvd->vdev_indirect_config = svd->vdev_indirect_config;
905 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
906 tvd->vdev_indirect_births = svd->vdev_indirect_births;
907 range_tree_swap(&svd->vdev_obsolete_segments,
908 &tvd->vdev_obsolete_segments);
909 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
910 svd->vdev_indirect_config.vic_mapping_object = 0;
911 svd->vdev_indirect_config.vic_births_object = 0;
912 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
913 svd->vdev_indirect_mapping = NULL;
914 svd->vdev_indirect_births = NULL;
915 svd->vdev_obsolete_sm = NULL;
916 svd->vdev_removing = 0;
918 for (t = 0; t < TXG_SIZE; t++) {
919 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
920 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
921 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
922 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
923 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
924 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
927 if (list_link_active(&svd->vdev_config_dirty_node)) {
928 vdev_config_clean(svd);
929 vdev_config_dirty(tvd);
932 if (list_link_active(&svd->vdev_state_dirty_node)) {
933 vdev_state_clean(svd);
934 vdev_state_dirty(tvd);
937 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
938 svd->vdev_deflate_ratio = 0;
940 tvd->vdev_islog = svd->vdev_islog;
941 svd->vdev_islog = 0;
944 static void
945 vdev_top_update(vdev_t *tvd, vdev_t *vd)
947 if (vd == NULL)
948 return;
950 vd->vdev_top = tvd;
952 for (int c = 0; c < vd->vdev_children; c++)
953 vdev_top_update(tvd, vd->vdev_child[c]);
957 * Add a mirror/replacing vdev above an existing vdev.
959 vdev_t *
960 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
962 spa_t *spa = cvd->vdev_spa;
963 vdev_t *pvd = cvd->vdev_parent;
964 vdev_t *mvd;
966 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
968 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
970 mvd->vdev_asize = cvd->vdev_asize;
971 mvd->vdev_min_asize = cvd->vdev_min_asize;
972 mvd->vdev_max_asize = cvd->vdev_max_asize;
973 mvd->vdev_psize = cvd->vdev_psize;
974 mvd->vdev_ashift = cvd->vdev_ashift;
975 mvd->vdev_state = cvd->vdev_state;
976 mvd->vdev_crtxg = cvd->vdev_crtxg;
978 vdev_remove_child(pvd, cvd);
979 vdev_add_child(pvd, mvd);
980 cvd->vdev_id = mvd->vdev_children;
981 vdev_add_child(mvd, cvd);
982 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
984 if (mvd == mvd->vdev_top)
985 vdev_top_transfer(cvd, mvd);
987 return (mvd);
991 * Remove a 1-way mirror/replacing vdev from the tree.
993 void
994 vdev_remove_parent(vdev_t *cvd)
996 vdev_t *mvd = cvd->vdev_parent;
997 vdev_t *pvd = mvd->vdev_parent;
999 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1001 ASSERT(mvd->vdev_children == 1);
1002 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1003 mvd->vdev_ops == &vdev_replacing_ops ||
1004 mvd->vdev_ops == &vdev_spare_ops);
1005 cvd->vdev_ashift = mvd->vdev_ashift;
1007 vdev_remove_child(mvd, cvd);
1008 vdev_remove_child(pvd, mvd);
1011 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1012 * Otherwise, we could have detached an offline device, and when we
1013 * go to import the pool we'll think we have two top-level vdevs,
1014 * instead of a different version of the same top-level vdev.
1016 if (mvd->vdev_top == mvd) {
1017 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1018 cvd->vdev_orig_guid = cvd->vdev_guid;
1019 cvd->vdev_guid += guid_delta;
1020 cvd->vdev_guid_sum += guid_delta;
1022 cvd->vdev_id = mvd->vdev_id;
1023 vdev_add_child(pvd, cvd);
1024 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1026 if (cvd == cvd->vdev_top)
1027 vdev_top_transfer(mvd, cvd);
1029 ASSERT(mvd->vdev_children == 0);
1030 vdev_free(mvd);
1034 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1036 spa_t *spa = vd->vdev_spa;
1037 objset_t *mos = spa->spa_meta_objset;
1038 uint64_t m;
1039 uint64_t oldc = vd->vdev_ms_count;
1040 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1041 metaslab_t **mspp;
1042 int error;
1044 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1047 * This vdev is not being allocated from yet or is a hole.
1049 if (vd->vdev_ms_shift == 0)
1050 return (0);
1052 ASSERT(!vd->vdev_ishole);
1054 ASSERT(oldc <= newc);
1056 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1058 if (oldc != 0) {
1059 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1060 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1063 vd->vdev_ms = mspp;
1064 vd->vdev_ms_count = newc;
1065 for (m = oldc; m < newc; m++) {
1066 uint64_t object = 0;
1069 * vdev_ms_array may be 0 if we are creating the "fake"
1070 * metaslabs for an indirect vdev for zdb's leak detection.
1071 * See zdb_leak_init().
1073 if (txg == 0 && vd->vdev_ms_array != 0) {
1074 error = dmu_read(mos, vd->vdev_ms_array,
1075 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1076 DMU_READ_PREFETCH);
1077 if (error != 0) {
1078 vdev_dbgmsg(vd, "unable to read the metaslab "
1079 "array [error=%d]", error);
1080 return (error);
1084 error = metaslab_init(vd->vdev_mg, m, object, txg,
1085 &(vd->vdev_ms[m]));
1086 if (error != 0) {
1087 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1088 error);
1089 return (error);
1093 if (txg == 0)
1094 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1097 * If the vdev is being removed we don't activate
1098 * the metaslabs since we want to ensure that no new
1099 * allocations are performed on this device.
1101 if (oldc == 0 && !vd->vdev_removing)
1102 metaslab_group_activate(vd->vdev_mg);
1104 if (txg == 0)
1105 spa_config_exit(spa, SCL_ALLOC, FTAG);
1107 return (0);
1110 void
1111 vdev_metaslab_fini(vdev_t *vd)
1113 if (vd->vdev_checkpoint_sm != NULL) {
1114 ASSERT(spa_feature_is_active(vd->vdev_spa,
1115 SPA_FEATURE_POOL_CHECKPOINT));
1116 space_map_close(vd->vdev_checkpoint_sm);
1118 * Even though we close the space map, we need to set its
1119 * pointer to NULL. The reason is that vdev_metaslab_fini()
1120 * may be called multiple times for certain operations
1121 * (i.e. when destroying a pool) so we need to ensure that
1122 * this clause never executes twice. This logic is similar
1123 * to the one used for the vdev_ms clause below.
1125 vd->vdev_checkpoint_sm = NULL;
1128 if (vd->vdev_ms != NULL) {
1129 uint64_t count = vd->vdev_ms_count;
1131 metaslab_group_passivate(vd->vdev_mg);
1132 for (uint64_t m = 0; m < count; m++) {
1133 metaslab_t *msp = vd->vdev_ms[m];
1135 if (msp != NULL)
1136 metaslab_fini(msp);
1138 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1139 vd->vdev_ms = NULL;
1141 vd->vdev_ms_count = 0;
1143 ASSERT0(vd->vdev_ms_count);
1146 typedef struct vdev_probe_stats {
1147 boolean_t vps_readable;
1148 boolean_t vps_writeable;
1149 int vps_flags;
1150 } vdev_probe_stats_t;
1152 static void
1153 vdev_probe_done(zio_t *zio)
1155 spa_t *spa = zio->io_spa;
1156 vdev_t *vd = zio->io_vd;
1157 vdev_probe_stats_t *vps = zio->io_private;
1159 ASSERT(vd->vdev_probe_zio != NULL);
1161 if (zio->io_type == ZIO_TYPE_READ) {
1162 if (zio->io_error == 0)
1163 vps->vps_readable = 1;
1164 if (zio->io_error == 0 && spa_writeable(spa)) {
1165 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1166 zio->io_offset, zio->io_size, zio->io_abd,
1167 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1168 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1169 } else {
1170 abd_free(zio->io_abd);
1172 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1173 if (zio->io_error == 0)
1174 vps->vps_writeable = 1;
1175 abd_free(zio->io_abd);
1176 } else if (zio->io_type == ZIO_TYPE_NULL) {
1177 zio_t *pio;
1179 vd->vdev_cant_read |= !vps->vps_readable;
1180 vd->vdev_cant_write |= !vps->vps_writeable;
1182 if (vdev_readable(vd) &&
1183 (vdev_writeable(vd) || !spa_writeable(spa))) {
1184 zio->io_error = 0;
1185 } else {
1186 ASSERT(zio->io_error != 0);
1187 vdev_dbgmsg(vd, "failed probe");
1188 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1189 spa, vd, NULL, 0, 0);
1190 zio->io_error = SET_ERROR(ENXIO);
1193 mutex_enter(&vd->vdev_probe_lock);
1194 ASSERT(vd->vdev_probe_zio == zio);
1195 vd->vdev_probe_zio = NULL;
1196 mutex_exit(&vd->vdev_probe_lock);
1198 zio_link_t *zl = NULL;
1199 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1200 if (!vdev_accessible(vd, pio))
1201 pio->io_error = SET_ERROR(ENXIO);
1203 kmem_free(vps, sizeof (*vps));
1208 * Determine whether this device is accessible.
1210 * Read and write to several known locations: the pad regions of each
1211 * vdev label but the first, which we leave alone in case it contains
1212 * a VTOC.
1214 zio_t *
1215 vdev_probe(vdev_t *vd, zio_t *zio)
1217 spa_t *spa = vd->vdev_spa;
1218 vdev_probe_stats_t *vps = NULL;
1219 zio_t *pio;
1221 ASSERT(vd->vdev_ops->vdev_op_leaf);
1224 * Don't probe the probe.
1226 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1227 return (NULL);
1230 * To prevent 'probe storms' when a device fails, we create
1231 * just one probe i/o at a time. All zios that want to probe
1232 * this vdev will become parents of the probe io.
1234 mutex_enter(&vd->vdev_probe_lock);
1236 if ((pio = vd->vdev_probe_zio) == NULL) {
1237 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1239 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1240 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1241 ZIO_FLAG_TRYHARD;
1243 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1245 * vdev_cant_read and vdev_cant_write can only
1246 * transition from TRUE to FALSE when we have the
1247 * SCL_ZIO lock as writer; otherwise they can only
1248 * transition from FALSE to TRUE. This ensures that
1249 * any zio looking at these values can assume that
1250 * failures persist for the life of the I/O. That's
1251 * important because when a device has intermittent
1252 * connectivity problems, we want to ensure that
1253 * they're ascribed to the device (ENXIO) and not
1254 * the zio (EIO).
1256 * Since we hold SCL_ZIO as writer here, clear both
1257 * values so the probe can reevaluate from first
1258 * principles.
1260 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1261 vd->vdev_cant_read = B_FALSE;
1262 vd->vdev_cant_write = B_FALSE;
1265 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1266 vdev_probe_done, vps,
1267 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1270 * We can't change the vdev state in this context, so we
1271 * kick off an async task to do it on our behalf.
1273 if (zio != NULL) {
1274 vd->vdev_probe_wanted = B_TRUE;
1275 spa_async_request(spa, SPA_ASYNC_PROBE);
1279 if (zio != NULL)
1280 zio_add_child(zio, pio);
1282 mutex_exit(&vd->vdev_probe_lock);
1284 if (vps == NULL) {
1285 ASSERT(zio != NULL);
1286 return (NULL);
1289 for (int l = 1; l < VDEV_LABELS; l++) {
1290 zio_nowait(zio_read_phys(pio, vd,
1291 vdev_label_offset(vd->vdev_psize, l,
1292 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1293 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1294 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1295 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1298 if (zio == NULL)
1299 return (pio);
1301 zio_nowait(pio);
1302 return (NULL);
1305 static void
1306 vdev_open_child(void *arg)
1308 vdev_t *vd = arg;
1310 vd->vdev_open_thread = curthread;
1311 vd->vdev_open_error = vdev_open(vd);
1312 vd->vdev_open_thread = NULL;
1315 boolean_t
1316 vdev_uses_zvols(vdev_t *vd)
1318 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1319 strlen(ZVOL_DIR)) == 0)
1320 return (B_TRUE);
1321 for (int c = 0; c < vd->vdev_children; c++)
1322 if (vdev_uses_zvols(vd->vdev_child[c]))
1323 return (B_TRUE);
1324 return (B_FALSE);
1327 void
1328 vdev_open_children(vdev_t *vd)
1330 taskq_t *tq;
1331 int children = vd->vdev_children;
1334 * in order to handle pools on top of zvols, do the opens
1335 * in a single thread so that the same thread holds the
1336 * spa_namespace_lock
1338 if (vdev_uses_zvols(vd)) {
1339 for (int c = 0; c < children; c++)
1340 vd->vdev_child[c]->vdev_open_error =
1341 vdev_open(vd->vdev_child[c]);
1342 return;
1344 tq = taskq_create("vdev_open", children, minclsyspri,
1345 children, children, TASKQ_PREPOPULATE);
1347 for (int c = 0; c < children; c++)
1348 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1349 TQ_SLEEP) != NULL);
1351 taskq_destroy(tq);
1355 * Compute the raidz-deflation ratio. Note, we hard-code
1356 * in 128k (1 << 17) because it is the "typical" blocksize.
1357 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1358 * otherwise it would inconsistently account for existing bp's.
1360 static void
1361 vdev_set_deflate_ratio(vdev_t *vd)
1363 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1364 vd->vdev_deflate_ratio = (1 << 17) /
1365 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1370 * Prepare a virtual device for access.
1373 vdev_open(vdev_t *vd)
1375 spa_t *spa = vd->vdev_spa;
1376 int error;
1377 uint64_t osize = 0;
1378 uint64_t max_osize = 0;
1379 uint64_t asize, max_asize, psize;
1380 uint64_t ashift = 0;
1382 ASSERT(vd->vdev_open_thread == curthread ||
1383 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1384 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1385 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1386 vd->vdev_state == VDEV_STATE_OFFLINE);
1388 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1389 vd->vdev_cant_read = B_FALSE;
1390 vd->vdev_cant_write = B_FALSE;
1391 vd->vdev_min_asize = vdev_get_min_asize(vd);
1394 * If this vdev is not removed, check its fault status. If it's
1395 * faulted, bail out of the open.
1397 if (!vd->vdev_removed && vd->vdev_faulted) {
1398 ASSERT(vd->vdev_children == 0);
1399 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1400 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1401 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1402 vd->vdev_label_aux);
1403 return (SET_ERROR(ENXIO));
1404 } else if (vd->vdev_offline) {
1405 ASSERT(vd->vdev_children == 0);
1406 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1407 return (SET_ERROR(ENXIO));
1410 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1413 * Reset the vdev_reopening flag so that we actually close
1414 * the vdev on error.
1416 vd->vdev_reopening = B_FALSE;
1417 if (zio_injection_enabled && error == 0)
1418 error = zio_handle_device_injection(vd, NULL, ENXIO);
1420 if (error) {
1421 if (vd->vdev_removed &&
1422 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1423 vd->vdev_removed = B_FALSE;
1425 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1426 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1427 vd->vdev_stat.vs_aux);
1428 } else {
1429 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1430 vd->vdev_stat.vs_aux);
1432 return (error);
1435 vd->vdev_removed = B_FALSE;
1438 * Recheck the faulted flag now that we have confirmed that
1439 * the vdev is accessible. If we're faulted, bail.
1441 if (vd->vdev_faulted) {
1442 ASSERT(vd->vdev_children == 0);
1443 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1444 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1445 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1446 vd->vdev_label_aux);
1447 return (SET_ERROR(ENXIO));
1450 if (vd->vdev_degraded) {
1451 ASSERT(vd->vdev_children == 0);
1452 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1453 VDEV_AUX_ERR_EXCEEDED);
1454 } else {
1455 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1459 * For hole or missing vdevs we just return success.
1461 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1462 return (0);
1464 for (int c = 0; c < vd->vdev_children; c++) {
1465 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1466 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1467 VDEV_AUX_NONE);
1468 break;
1472 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1473 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1475 if (vd->vdev_children == 0) {
1476 if (osize < SPA_MINDEVSIZE) {
1477 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1478 VDEV_AUX_TOO_SMALL);
1479 return (SET_ERROR(EOVERFLOW));
1481 psize = osize;
1482 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1483 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1484 VDEV_LABEL_END_SIZE);
1485 } else {
1486 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1487 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1488 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1489 VDEV_AUX_TOO_SMALL);
1490 return (SET_ERROR(EOVERFLOW));
1492 psize = 0;
1493 asize = osize;
1494 max_asize = max_osize;
1497 vd->vdev_psize = psize;
1500 * Make sure the allocatable size hasn't shrunk too much.
1502 if (asize < vd->vdev_min_asize) {
1503 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1504 VDEV_AUX_BAD_LABEL);
1505 return (SET_ERROR(EINVAL));
1508 if (vd->vdev_asize == 0) {
1510 * This is the first-ever open, so use the computed values.
1511 * For testing purposes, a higher ashift can be requested.
1513 vd->vdev_asize = asize;
1514 vd->vdev_max_asize = max_asize;
1515 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1516 vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift);
1517 } else {
1519 * Detect if the alignment requirement has increased.
1520 * We don't want to make the pool unavailable, just
1521 * issue a warning instead.
1523 if (ashift > vd->vdev_top->vdev_ashift &&
1524 vd->vdev_ops->vdev_op_leaf) {
1525 cmn_err(CE_WARN,
1526 "Disk, '%s', has a block alignment that is "
1527 "larger than the pool's alignment\n",
1528 vd->vdev_path);
1530 vd->vdev_max_asize = max_asize;
1534 * If all children are healthy we update asize if either:
1535 * The asize has increased, due to a device expansion caused by dynamic
1536 * LUN growth or vdev replacement, and automatic expansion is enabled;
1537 * making the additional space available.
1539 * The asize has decreased, due to a device shrink usually caused by a
1540 * vdev replace with a smaller device. This ensures that calculations
1541 * based of max_asize and asize e.g. esize are always valid. It's safe
1542 * to do this as we've already validated that asize is greater than
1543 * vdev_min_asize.
1545 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1546 ((asize > vd->vdev_asize &&
1547 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1548 (asize < vd->vdev_asize)))
1549 vd->vdev_asize = asize;
1551 vdev_set_min_asize(vd);
1554 * Ensure we can issue some IO before declaring the
1555 * vdev open for business.
1557 if (vd->vdev_ops->vdev_op_leaf &&
1558 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1559 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1560 VDEV_AUX_ERR_EXCEEDED);
1561 return (error);
1565 * Track the min and max ashift values for normal data devices.
1567 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1568 !vd->vdev_islog && vd->vdev_aux == NULL) {
1569 if (vd->vdev_ashift > spa->spa_max_ashift)
1570 spa->spa_max_ashift = vd->vdev_ashift;
1571 if (vd->vdev_ashift < spa->spa_min_ashift)
1572 spa->spa_min_ashift = vd->vdev_ashift;
1576 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1577 * resilver. But don't do this if we are doing a reopen for a scrub,
1578 * since this would just restart the scrub we are already doing.
1580 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1581 vdev_resilver_needed(vd, NULL, NULL))
1582 spa_async_request(spa, SPA_ASYNC_RESILVER);
1584 return (0);
1588 * Called once the vdevs are all opened, this routine validates the label
1589 * contents. This needs to be done before vdev_load() so that we don't
1590 * inadvertently do repair I/Os to the wrong device.
1592 * This function will only return failure if one of the vdevs indicates that it
1593 * has since been destroyed or exported. This is only possible if
1594 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1595 * will be updated but the function will return 0.
1598 vdev_validate(vdev_t *vd)
1600 spa_t *spa = vd->vdev_spa;
1601 nvlist_t *label;
1602 uint64_t guid = 0, aux_guid = 0, top_guid;
1603 uint64_t state;
1604 nvlist_t *nvl;
1605 uint64_t txg;
1607 if (vdev_validate_skip)
1608 return (0);
1610 for (uint64_t c = 0; c < vd->vdev_children; c++)
1611 if (vdev_validate(vd->vdev_child[c]) != 0)
1612 return (SET_ERROR(EBADF));
1615 * If the device has already failed, or was marked offline, don't do
1616 * any further validation. Otherwise, label I/O will fail and we will
1617 * overwrite the previous state.
1619 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1620 return (0);
1623 * If we are performing an extreme rewind, we allow for a label that
1624 * was modified at a point after the current txg.
1625 * If config lock is not held do not check for the txg. spa_sync could
1626 * be updating the vdev's label before updating spa_last_synced_txg.
1628 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1629 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1630 txg = UINT64_MAX;
1631 else
1632 txg = spa_last_synced_txg(spa);
1634 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1635 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1636 VDEV_AUX_BAD_LABEL);
1637 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1638 "txg %llu", (u_longlong_t)txg);
1639 return (0);
1643 * Determine if this vdev has been split off into another
1644 * pool. If so, then refuse to open it.
1646 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1647 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1648 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1649 VDEV_AUX_SPLIT_POOL);
1650 nvlist_free(label);
1651 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1652 return (0);
1655 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1656 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1657 VDEV_AUX_CORRUPT_DATA);
1658 nvlist_free(label);
1659 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1660 ZPOOL_CONFIG_POOL_GUID);
1661 return (0);
1665 * If config is not trusted then ignore the spa guid check. This is
1666 * necessary because if the machine crashed during a re-guid the new
1667 * guid might have been written to all of the vdev labels, but not the
1668 * cached config. The check will be performed again once we have the
1669 * trusted config from the MOS.
1671 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1672 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1673 VDEV_AUX_CORRUPT_DATA);
1674 nvlist_free(label);
1675 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1676 "match config (%llu != %llu)", (u_longlong_t)guid,
1677 (u_longlong_t)spa_guid(spa));
1678 return (0);
1681 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1682 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1683 &aux_guid) != 0)
1684 aux_guid = 0;
1686 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1687 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1688 VDEV_AUX_CORRUPT_DATA);
1689 nvlist_free(label);
1690 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1691 ZPOOL_CONFIG_GUID);
1692 return (0);
1695 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1696 != 0) {
1697 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1698 VDEV_AUX_CORRUPT_DATA);
1699 nvlist_free(label);
1700 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1701 ZPOOL_CONFIG_TOP_GUID);
1702 return (0);
1706 * If this vdev just became a top-level vdev because its sibling was
1707 * detached, it will have adopted the parent's vdev guid -- but the
1708 * label may or may not be on disk yet. Fortunately, either version
1709 * of the label will have the same top guid, so if we're a top-level
1710 * vdev, we can safely compare to that instead.
1711 * However, if the config comes from a cachefile that failed to update
1712 * after the detach, a top-level vdev will appear as a non top-level
1713 * vdev in the config. Also relax the constraints if we perform an
1714 * extreme rewind.
1716 * If we split this vdev off instead, then we also check the
1717 * original pool's guid. We don't want to consider the vdev
1718 * corrupt if it is partway through a split operation.
1720 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1721 boolean_t mismatch = B_FALSE;
1722 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1723 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1724 mismatch = B_TRUE;
1725 } else {
1726 if (vd->vdev_guid != top_guid &&
1727 vd->vdev_top->vdev_guid != guid)
1728 mismatch = B_TRUE;
1731 if (mismatch) {
1732 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1733 VDEV_AUX_CORRUPT_DATA);
1734 nvlist_free(label);
1735 vdev_dbgmsg(vd, "vdev_validate: config guid "
1736 "doesn't match label guid");
1737 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1738 (u_longlong_t)vd->vdev_guid,
1739 (u_longlong_t)vd->vdev_top->vdev_guid);
1740 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1741 "aux_guid %llu", (u_longlong_t)guid,
1742 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1743 return (0);
1747 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1748 &state) != 0) {
1749 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1750 VDEV_AUX_CORRUPT_DATA);
1751 nvlist_free(label);
1752 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1753 ZPOOL_CONFIG_POOL_STATE);
1754 return (0);
1757 nvlist_free(label);
1760 * If this is a verbatim import, no need to check the
1761 * state of the pool.
1763 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1764 spa_load_state(spa) == SPA_LOAD_OPEN &&
1765 state != POOL_STATE_ACTIVE) {
1766 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1767 "for spa %s", (u_longlong_t)state, spa->spa_name);
1768 return (SET_ERROR(EBADF));
1772 * If we were able to open and validate a vdev that was
1773 * previously marked permanently unavailable, clear that state
1774 * now.
1776 if (vd->vdev_not_present)
1777 vd->vdev_not_present = 0;
1779 return (0);
1782 static void
1783 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1785 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1786 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1787 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1788 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1789 dvd->vdev_path, svd->vdev_path);
1790 spa_strfree(dvd->vdev_path);
1791 dvd->vdev_path = spa_strdup(svd->vdev_path);
1793 } else if (svd->vdev_path != NULL) {
1794 dvd->vdev_path = spa_strdup(svd->vdev_path);
1795 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1796 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1801 * Recursively copy vdev paths from one vdev to another. Source and destination
1802 * vdev trees must have same geometry otherwise return error. Intended to copy
1803 * paths from userland config into MOS config.
1806 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1808 if ((svd->vdev_ops == &vdev_missing_ops) ||
1809 (svd->vdev_ishole && dvd->vdev_ishole) ||
1810 (dvd->vdev_ops == &vdev_indirect_ops))
1811 return (0);
1813 if (svd->vdev_ops != dvd->vdev_ops) {
1814 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1815 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1816 return (SET_ERROR(EINVAL));
1819 if (svd->vdev_guid != dvd->vdev_guid) {
1820 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1821 "%llu)", (u_longlong_t)svd->vdev_guid,
1822 (u_longlong_t)dvd->vdev_guid);
1823 return (SET_ERROR(EINVAL));
1826 if (svd->vdev_children != dvd->vdev_children) {
1827 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1828 "%llu != %llu", (u_longlong_t)svd->vdev_children,
1829 (u_longlong_t)dvd->vdev_children);
1830 return (SET_ERROR(EINVAL));
1833 for (uint64_t i = 0; i < svd->vdev_children; i++) {
1834 int error = vdev_copy_path_strict(svd->vdev_child[i],
1835 dvd->vdev_child[i]);
1836 if (error != 0)
1837 return (error);
1840 if (svd->vdev_ops->vdev_op_leaf)
1841 vdev_copy_path_impl(svd, dvd);
1843 return (0);
1846 static void
1847 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1849 ASSERT(stvd->vdev_top == stvd);
1850 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1852 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1853 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1856 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1857 return;
1860 * The idea here is that while a vdev can shift positions within
1861 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1862 * step outside of it.
1864 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1866 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1867 return;
1869 ASSERT(vd->vdev_ops->vdev_op_leaf);
1871 vdev_copy_path_impl(vd, dvd);
1875 * Recursively copy vdev paths from one root vdev to another. Source and
1876 * destination vdev trees may differ in geometry. For each destination leaf
1877 * vdev, search a vdev with the same guid and top vdev id in the source.
1878 * Intended to copy paths from userland config into MOS config.
1880 void
1881 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1883 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1884 ASSERT(srvd->vdev_ops == &vdev_root_ops);
1885 ASSERT(drvd->vdev_ops == &vdev_root_ops);
1887 for (uint64_t i = 0; i < children; i++) {
1888 vdev_copy_path_search(srvd->vdev_child[i],
1889 drvd->vdev_child[i]);
1894 * Close a virtual device.
1896 void
1897 vdev_close(vdev_t *vd)
1899 spa_t *spa = vd->vdev_spa;
1900 vdev_t *pvd = vd->vdev_parent;
1902 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1905 * If our parent is reopening, then we are as well, unless we are
1906 * going offline.
1908 if (pvd != NULL && pvd->vdev_reopening)
1909 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1911 vd->vdev_ops->vdev_op_close(vd);
1913 vdev_cache_purge(vd);
1916 * We record the previous state before we close it, so that if we are
1917 * doing a reopen(), we don't generate FMA ereports if we notice that
1918 * it's still faulted.
1920 vd->vdev_prevstate = vd->vdev_state;
1922 if (vd->vdev_offline)
1923 vd->vdev_state = VDEV_STATE_OFFLINE;
1924 else
1925 vd->vdev_state = VDEV_STATE_CLOSED;
1926 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1929 void
1930 vdev_hold(vdev_t *vd)
1932 spa_t *spa = vd->vdev_spa;
1934 ASSERT(spa_is_root(spa));
1935 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1936 return;
1938 for (int c = 0; c < vd->vdev_children; c++)
1939 vdev_hold(vd->vdev_child[c]);
1941 if (vd->vdev_ops->vdev_op_leaf)
1942 vd->vdev_ops->vdev_op_hold(vd);
1945 void
1946 vdev_rele(vdev_t *vd)
1948 spa_t *spa = vd->vdev_spa;
1950 ASSERT(spa_is_root(spa));
1951 for (int c = 0; c < vd->vdev_children; c++)
1952 vdev_rele(vd->vdev_child[c]);
1954 if (vd->vdev_ops->vdev_op_leaf)
1955 vd->vdev_ops->vdev_op_rele(vd);
1959 * Reopen all interior vdevs and any unopened leaves. We don't actually
1960 * reopen leaf vdevs which had previously been opened as they might deadlock
1961 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1962 * If the leaf has never been opened then open it, as usual.
1964 void
1965 vdev_reopen(vdev_t *vd)
1967 spa_t *spa = vd->vdev_spa;
1969 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1971 /* set the reopening flag unless we're taking the vdev offline */
1972 vd->vdev_reopening = !vd->vdev_offline;
1973 vdev_close(vd);
1974 (void) vdev_open(vd);
1977 * Call vdev_validate() here to make sure we have the same device.
1978 * Otherwise, a device with an invalid label could be successfully
1979 * opened in response to vdev_reopen().
1981 if (vd->vdev_aux) {
1982 (void) vdev_validate_aux(vd);
1983 if (vdev_readable(vd) && vdev_writeable(vd) &&
1984 vd->vdev_aux == &spa->spa_l2cache &&
1985 !l2arc_vdev_present(vd))
1986 l2arc_add_vdev(spa, vd);
1987 } else {
1988 (void) vdev_validate(vd);
1992 * Reassess parent vdev's health.
1994 vdev_propagate_state(vd);
1998 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2000 int error;
2003 * Normally, partial opens (e.g. of a mirror) are allowed.
2004 * For a create, however, we want to fail the request if
2005 * there are any components we can't open.
2007 error = vdev_open(vd);
2009 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2010 vdev_close(vd);
2011 return (error ? error : ENXIO);
2015 * Recursively load DTLs and initialize all labels.
2017 if ((error = vdev_dtl_load(vd)) != 0 ||
2018 (error = vdev_label_init(vd, txg, isreplacing ?
2019 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2020 vdev_close(vd);
2021 return (error);
2024 return (0);
2027 void
2028 vdev_metaslab_set_size(vdev_t *vd)
2030 uint64_t asize = vd->vdev_asize;
2031 uint64_t ms_shift = 0;
2034 * For vdevs that are bigger than 8G the metaslab size varies in
2035 * a way that the number of metaslabs increases in powers of two,
2036 * linearly in terms of vdev_asize, starting from 16 metaslabs.
2037 * So for vdev_asize of 8G we get 16 metaslabs, for 16G, we get 32,
2038 * and so on, until we hit the maximum metaslab count limit
2039 * [vdev_max_ms_count] from which point the metaslab count stays
2040 * the same.
2042 ms_shift = vdev_default_ms_shift;
2044 if ((asize >> ms_shift) < vdev_min_ms_count) {
2046 * For devices that are less than 8G we want to have
2047 * exactly 16 metaslabs. We don't want less as integer
2048 * division rounds down, so less metaslabs mean more
2049 * wasted space. We don't want more as these vdevs are
2050 * small and in the likely event that we are running
2051 * out of space, the SPA will have a hard time finding
2052 * space due to fragmentation.
2054 ms_shift = highbit64(asize / vdev_min_ms_count);
2055 ms_shift = MAX(ms_shift, SPA_MAXBLOCKSHIFT);
2057 } else if ((asize >> ms_shift) > vdev_max_ms_count) {
2058 ms_shift = highbit64(asize / vdev_max_ms_count);
2061 vd->vdev_ms_shift = ms_shift;
2062 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2065 void
2066 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2068 ASSERT(vd == vd->vdev_top);
2069 /* indirect vdevs don't have metaslabs or dtls */
2070 ASSERT(vdev_is_concrete(vd) || flags == 0);
2071 ASSERT(ISP2(flags));
2072 ASSERT(spa_writeable(vd->vdev_spa));
2074 if (flags & VDD_METASLAB)
2075 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2077 if (flags & VDD_DTL)
2078 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2080 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2083 void
2084 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2086 for (int c = 0; c < vd->vdev_children; c++)
2087 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2089 if (vd->vdev_ops->vdev_op_leaf)
2090 vdev_dirty(vd->vdev_top, flags, vd, txg);
2094 * DTLs.
2096 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2097 * the vdev has less than perfect replication. There are four kinds of DTL:
2099 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2101 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2103 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2104 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2105 * txgs that was scrubbed.
2107 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2108 * persistent errors or just some device being offline.
2109 * Unlike the other three, the DTL_OUTAGE map is not generally
2110 * maintained; it's only computed when needed, typically to
2111 * determine whether a device can be detached.
2113 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2114 * either has the data or it doesn't.
2116 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2117 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2118 * if any child is less than fully replicated, then so is its parent.
2119 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2120 * comprising only those txgs which appear in 'maxfaults' or more children;
2121 * those are the txgs we don't have enough replication to read. For example,
2122 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2123 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2124 * two child DTL_MISSING maps.
2126 * It should be clear from the above that to compute the DTLs and outage maps
2127 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2128 * Therefore, that is all we keep on disk. When loading the pool, or after
2129 * a configuration change, we generate all other DTLs from first principles.
2131 void
2132 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2134 range_tree_t *rt = vd->vdev_dtl[t];
2136 ASSERT(t < DTL_TYPES);
2137 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2138 ASSERT(spa_writeable(vd->vdev_spa));
2140 mutex_enter(&vd->vdev_dtl_lock);
2141 if (!range_tree_contains(rt, txg, size))
2142 range_tree_add(rt, txg, size);
2143 mutex_exit(&vd->vdev_dtl_lock);
2146 boolean_t
2147 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2149 range_tree_t *rt = vd->vdev_dtl[t];
2150 boolean_t dirty = B_FALSE;
2152 ASSERT(t < DTL_TYPES);
2153 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2156 * While we are loading the pool, the DTLs have not been loaded yet.
2157 * Ignore the DTLs and try all devices. This avoids a recursive
2158 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2159 * when loading the pool (relying on the checksum to ensure that
2160 * we get the right data -- note that we while loading, we are
2161 * only reading the MOS, which is always checksummed).
2163 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2164 return (B_FALSE);
2166 mutex_enter(&vd->vdev_dtl_lock);
2167 if (!range_tree_is_empty(rt))
2168 dirty = range_tree_contains(rt, txg, size);
2169 mutex_exit(&vd->vdev_dtl_lock);
2171 return (dirty);
2174 boolean_t
2175 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2177 range_tree_t *rt = vd->vdev_dtl[t];
2178 boolean_t empty;
2180 mutex_enter(&vd->vdev_dtl_lock);
2181 empty = range_tree_is_empty(rt);
2182 mutex_exit(&vd->vdev_dtl_lock);
2184 return (empty);
2188 * Returns the lowest txg in the DTL range.
2190 static uint64_t
2191 vdev_dtl_min(vdev_t *vd)
2193 range_seg_t *rs;
2195 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2196 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2197 ASSERT0(vd->vdev_children);
2199 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2200 return (rs->rs_start - 1);
2204 * Returns the highest txg in the DTL.
2206 static uint64_t
2207 vdev_dtl_max(vdev_t *vd)
2209 range_seg_t *rs;
2211 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2212 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2213 ASSERT0(vd->vdev_children);
2215 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2216 return (rs->rs_end);
2220 * Determine if a resilvering vdev should remove any DTL entries from
2221 * its range. If the vdev was resilvering for the entire duration of the
2222 * scan then it should excise that range from its DTLs. Otherwise, this
2223 * vdev is considered partially resilvered and should leave its DTL
2224 * entries intact. The comment in vdev_dtl_reassess() describes how we
2225 * excise the DTLs.
2227 static boolean_t
2228 vdev_dtl_should_excise(vdev_t *vd)
2230 spa_t *spa = vd->vdev_spa;
2231 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2233 ASSERT0(scn->scn_phys.scn_errors);
2234 ASSERT0(vd->vdev_children);
2236 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2237 return (B_FALSE);
2239 if (vd->vdev_resilver_txg == 0 ||
2240 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2241 return (B_TRUE);
2244 * When a resilver is initiated the scan will assign the scn_max_txg
2245 * value to the highest txg value that exists in all DTLs. If this
2246 * device's max DTL is not part of this scan (i.e. it is not in
2247 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2248 * for excision.
2250 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2251 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2252 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2253 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2254 return (B_TRUE);
2256 return (B_FALSE);
2260 * Reassess DTLs after a config change or scrub completion.
2262 void
2263 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2265 spa_t *spa = vd->vdev_spa;
2266 avl_tree_t reftree;
2267 int minref;
2269 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2271 for (int c = 0; c < vd->vdev_children; c++)
2272 vdev_dtl_reassess(vd->vdev_child[c], txg,
2273 scrub_txg, scrub_done);
2275 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2276 return;
2278 if (vd->vdev_ops->vdev_op_leaf) {
2279 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2281 mutex_enter(&vd->vdev_dtl_lock);
2284 * If we've completed a scan cleanly then determine
2285 * if this vdev should remove any DTLs. We only want to
2286 * excise regions on vdevs that were available during
2287 * the entire duration of this scan.
2289 if (scrub_txg != 0 &&
2290 (spa->spa_scrub_started ||
2291 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2292 vdev_dtl_should_excise(vd)) {
2294 * We completed a scrub up to scrub_txg. If we
2295 * did it without rebooting, then the scrub dtl
2296 * will be valid, so excise the old region and
2297 * fold in the scrub dtl. Otherwise, leave the
2298 * dtl as-is if there was an error.
2300 * There's little trick here: to excise the beginning
2301 * of the DTL_MISSING map, we put it into a reference
2302 * tree and then add a segment with refcnt -1 that
2303 * covers the range [0, scrub_txg). This means
2304 * that each txg in that range has refcnt -1 or 0.
2305 * We then add DTL_SCRUB with a refcnt of 2, so that
2306 * entries in the range [0, scrub_txg) will have a
2307 * positive refcnt -- either 1 or 2. We then convert
2308 * the reference tree into the new DTL_MISSING map.
2310 space_reftree_create(&reftree);
2311 space_reftree_add_map(&reftree,
2312 vd->vdev_dtl[DTL_MISSING], 1);
2313 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2314 space_reftree_add_map(&reftree,
2315 vd->vdev_dtl[DTL_SCRUB], 2);
2316 space_reftree_generate_map(&reftree,
2317 vd->vdev_dtl[DTL_MISSING], 1);
2318 space_reftree_destroy(&reftree);
2320 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2321 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2322 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2323 if (scrub_done)
2324 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2325 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2326 if (!vdev_readable(vd))
2327 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2328 else
2329 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2330 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2333 * If the vdev was resilvering and no longer has any
2334 * DTLs then reset its resilvering flag.
2336 if (vd->vdev_resilver_txg != 0 &&
2337 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2338 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2339 vd->vdev_resilver_txg = 0;
2341 mutex_exit(&vd->vdev_dtl_lock);
2343 if (txg != 0)
2344 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2345 return;
2348 mutex_enter(&vd->vdev_dtl_lock);
2349 for (int t = 0; t < DTL_TYPES; t++) {
2350 /* account for child's outage in parent's missing map */
2351 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2352 if (t == DTL_SCRUB)
2353 continue; /* leaf vdevs only */
2354 if (t == DTL_PARTIAL)
2355 minref = 1; /* i.e. non-zero */
2356 else if (vd->vdev_nparity != 0)
2357 minref = vd->vdev_nparity + 1; /* RAID-Z */
2358 else
2359 minref = vd->vdev_children; /* any kind of mirror */
2360 space_reftree_create(&reftree);
2361 for (int c = 0; c < vd->vdev_children; c++) {
2362 vdev_t *cvd = vd->vdev_child[c];
2363 mutex_enter(&cvd->vdev_dtl_lock);
2364 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2365 mutex_exit(&cvd->vdev_dtl_lock);
2367 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2368 space_reftree_destroy(&reftree);
2370 mutex_exit(&vd->vdev_dtl_lock);
2374 vdev_dtl_load(vdev_t *vd)
2376 spa_t *spa = vd->vdev_spa;
2377 objset_t *mos = spa->spa_meta_objset;
2378 int error = 0;
2380 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2381 ASSERT(vdev_is_concrete(vd));
2383 error = space_map_open(&vd->vdev_dtl_sm, mos,
2384 vd->vdev_dtl_object, 0, -1ULL, 0);
2385 if (error)
2386 return (error);
2387 ASSERT(vd->vdev_dtl_sm != NULL);
2389 mutex_enter(&vd->vdev_dtl_lock);
2392 * Now that we've opened the space_map we need to update
2393 * the in-core DTL.
2395 space_map_update(vd->vdev_dtl_sm);
2397 error = space_map_load(vd->vdev_dtl_sm,
2398 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2399 mutex_exit(&vd->vdev_dtl_lock);
2401 return (error);
2404 for (int c = 0; c < vd->vdev_children; c++) {
2405 error = vdev_dtl_load(vd->vdev_child[c]);
2406 if (error != 0)
2407 break;
2410 return (error);
2413 void
2414 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2416 spa_t *spa = vd->vdev_spa;
2418 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2419 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2420 zapobj, tx));
2423 uint64_t
2424 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2426 spa_t *spa = vd->vdev_spa;
2427 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2428 DMU_OT_NONE, 0, tx);
2430 ASSERT(zap != 0);
2431 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2432 zap, tx));
2434 return (zap);
2437 void
2438 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2440 if (vd->vdev_ops != &vdev_hole_ops &&
2441 vd->vdev_ops != &vdev_missing_ops &&
2442 vd->vdev_ops != &vdev_root_ops &&
2443 !vd->vdev_top->vdev_removing) {
2444 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2445 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2447 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2448 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2451 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2452 vdev_construct_zaps(vd->vdev_child[i], tx);
2456 void
2457 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2459 spa_t *spa = vd->vdev_spa;
2460 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2461 objset_t *mos = spa->spa_meta_objset;
2462 range_tree_t *rtsync;
2463 dmu_tx_t *tx;
2464 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2466 ASSERT(vdev_is_concrete(vd));
2467 ASSERT(vd->vdev_ops->vdev_op_leaf);
2469 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2471 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2472 mutex_enter(&vd->vdev_dtl_lock);
2473 space_map_free(vd->vdev_dtl_sm, tx);
2474 space_map_close(vd->vdev_dtl_sm);
2475 vd->vdev_dtl_sm = NULL;
2476 mutex_exit(&vd->vdev_dtl_lock);
2479 * We only destroy the leaf ZAP for detached leaves or for
2480 * removed log devices. Removed data devices handle leaf ZAP
2481 * cleanup later, once cancellation is no longer possible.
2483 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2484 vd->vdev_top->vdev_islog)) {
2485 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2486 vd->vdev_leaf_zap = 0;
2489 dmu_tx_commit(tx);
2490 return;
2493 if (vd->vdev_dtl_sm == NULL) {
2494 uint64_t new_object;
2496 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2497 VERIFY3U(new_object, !=, 0);
2499 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2500 0, -1ULL, 0));
2501 ASSERT(vd->vdev_dtl_sm != NULL);
2504 rtsync = range_tree_create(NULL, NULL);
2506 mutex_enter(&vd->vdev_dtl_lock);
2507 range_tree_walk(rt, range_tree_add, rtsync);
2508 mutex_exit(&vd->vdev_dtl_lock);
2510 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2511 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2512 range_tree_vacate(rtsync, NULL, NULL);
2514 range_tree_destroy(rtsync);
2517 * If the object for the space map has changed then dirty
2518 * the top level so that we update the config.
2520 if (object != space_map_object(vd->vdev_dtl_sm)) {
2521 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2522 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2523 (u_longlong_t)object,
2524 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2525 vdev_config_dirty(vd->vdev_top);
2528 dmu_tx_commit(tx);
2530 mutex_enter(&vd->vdev_dtl_lock);
2531 space_map_update(vd->vdev_dtl_sm);
2532 mutex_exit(&vd->vdev_dtl_lock);
2536 * Determine whether the specified vdev can be offlined/detached/removed
2537 * without losing data.
2539 boolean_t
2540 vdev_dtl_required(vdev_t *vd)
2542 spa_t *spa = vd->vdev_spa;
2543 vdev_t *tvd = vd->vdev_top;
2544 uint8_t cant_read = vd->vdev_cant_read;
2545 boolean_t required;
2547 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2549 if (vd == spa->spa_root_vdev || vd == tvd)
2550 return (B_TRUE);
2553 * Temporarily mark the device as unreadable, and then determine
2554 * whether this results in any DTL outages in the top-level vdev.
2555 * If not, we can safely offline/detach/remove the device.
2557 vd->vdev_cant_read = B_TRUE;
2558 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2559 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2560 vd->vdev_cant_read = cant_read;
2561 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2563 if (!required && zio_injection_enabled)
2564 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2566 return (required);
2570 * Determine if resilver is needed, and if so the txg range.
2572 boolean_t
2573 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2575 boolean_t needed = B_FALSE;
2576 uint64_t thismin = UINT64_MAX;
2577 uint64_t thismax = 0;
2579 if (vd->vdev_children == 0) {
2580 mutex_enter(&vd->vdev_dtl_lock);
2581 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2582 vdev_writeable(vd)) {
2584 thismin = vdev_dtl_min(vd);
2585 thismax = vdev_dtl_max(vd);
2586 needed = B_TRUE;
2588 mutex_exit(&vd->vdev_dtl_lock);
2589 } else {
2590 for (int c = 0; c < vd->vdev_children; c++) {
2591 vdev_t *cvd = vd->vdev_child[c];
2592 uint64_t cmin, cmax;
2594 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2595 thismin = MIN(thismin, cmin);
2596 thismax = MAX(thismax, cmax);
2597 needed = B_TRUE;
2602 if (needed && minp) {
2603 *minp = thismin;
2604 *maxp = thismax;
2606 return (needed);
2610 * Gets the checkpoint space map object from the vdev's ZAP.
2611 * Returns the spacemap object, or 0 if it wasn't in the ZAP
2612 * or the ZAP doesn't exist yet.
2615 vdev_checkpoint_sm_object(vdev_t *vd)
2617 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2618 if (vd->vdev_top_zap == 0) {
2619 return (0);
2622 uint64_t sm_obj = 0;
2623 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2624 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2626 ASSERT(err == 0 || err == ENOENT);
2628 return (sm_obj);
2632 vdev_load(vdev_t *vd)
2634 int error = 0;
2636 * Recursively load all children.
2638 for (int c = 0; c < vd->vdev_children; c++) {
2639 error = vdev_load(vd->vdev_child[c]);
2640 if (error != 0) {
2641 return (error);
2645 vdev_set_deflate_ratio(vd);
2648 * If this is a top-level vdev, initialize its metaslabs.
2650 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2651 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2652 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2653 VDEV_AUX_CORRUPT_DATA);
2654 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2655 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2656 (u_longlong_t)vd->vdev_asize);
2657 return (SET_ERROR(ENXIO));
2658 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2659 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2660 "[error=%d]", error);
2661 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2662 VDEV_AUX_CORRUPT_DATA);
2663 return (error);
2666 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2667 if (checkpoint_sm_obj != 0) {
2668 objset_t *mos = spa_meta_objset(vd->vdev_spa);
2669 ASSERT(vd->vdev_asize != 0);
2670 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2672 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2673 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2674 vd->vdev_ashift))) {
2675 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2676 "failed for checkpoint spacemap (obj %llu) "
2677 "[error=%d]",
2678 (u_longlong_t)checkpoint_sm_obj, error);
2679 return (error);
2681 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2682 space_map_update(vd->vdev_checkpoint_sm);
2685 * Since the checkpoint_sm contains free entries
2686 * exclusively we can use sm_alloc to indicate the
2687 * culmulative checkpointed space that has been freed.
2689 vd->vdev_stat.vs_checkpoint_space =
2690 -vd->vdev_checkpoint_sm->sm_alloc;
2691 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2692 vd->vdev_stat.vs_checkpoint_space;
2697 * If this is a leaf vdev, load its DTL.
2699 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2700 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2701 VDEV_AUX_CORRUPT_DATA);
2702 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2703 "[error=%d]", error);
2704 return (error);
2707 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2708 if (obsolete_sm_object != 0) {
2709 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2710 ASSERT(vd->vdev_asize != 0);
2711 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2713 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2714 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2715 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2716 VDEV_AUX_CORRUPT_DATA);
2717 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2718 "obsolete spacemap (obj %llu) [error=%d]",
2719 (u_longlong_t)obsolete_sm_object, error);
2720 return (error);
2722 space_map_update(vd->vdev_obsolete_sm);
2725 return (0);
2729 * The special vdev case is used for hot spares and l2cache devices. Its
2730 * sole purpose it to set the vdev state for the associated vdev. To do this,
2731 * we make sure that we can open the underlying device, then try to read the
2732 * label, and make sure that the label is sane and that it hasn't been
2733 * repurposed to another pool.
2736 vdev_validate_aux(vdev_t *vd)
2738 nvlist_t *label;
2739 uint64_t guid, version;
2740 uint64_t state;
2742 if (!vdev_readable(vd))
2743 return (0);
2745 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2746 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2747 VDEV_AUX_CORRUPT_DATA);
2748 return (-1);
2751 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2752 !SPA_VERSION_IS_SUPPORTED(version) ||
2753 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2754 guid != vd->vdev_guid ||
2755 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2756 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2757 VDEV_AUX_CORRUPT_DATA);
2758 nvlist_free(label);
2759 return (-1);
2763 * We don't actually check the pool state here. If it's in fact in
2764 * use by another pool, we update this fact on the fly when requested.
2766 nvlist_free(label);
2767 return (0);
2771 * Free the objects used to store this vdev's spacemaps, and the array
2772 * that points to them.
2774 void
2775 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2777 if (vd->vdev_ms_array == 0)
2778 return;
2780 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2781 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2782 size_t array_bytes = array_count * sizeof (uint64_t);
2783 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2784 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2785 array_bytes, smobj_array, 0));
2787 for (uint64_t i = 0; i < array_count; i++) {
2788 uint64_t smobj = smobj_array[i];
2789 if (smobj == 0)
2790 continue;
2792 space_map_free_obj(mos, smobj, tx);
2795 kmem_free(smobj_array, array_bytes);
2796 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2797 vd->vdev_ms_array = 0;
2800 static void
2801 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2803 spa_t *spa = vd->vdev_spa;
2804 dmu_tx_t *tx;
2806 ASSERT(vd == vd->vdev_top);
2807 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2809 if (vd->vdev_ms != NULL) {
2810 metaslab_group_t *mg = vd->vdev_mg;
2812 metaslab_group_histogram_verify(mg);
2813 metaslab_class_histogram_verify(mg->mg_class);
2815 for (int m = 0; m < vd->vdev_ms_count; m++) {
2816 metaslab_t *msp = vd->vdev_ms[m];
2818 if (msp == NULL || msp->ms_sm == NULL)
2819 continue;
2821 mutex_enter(&msp->ms_lock);
2823 * If the metaslab was not loaded when the vdev
2824 * was removed then the histogram accounting may
2825 * not be accurate. Update the histogram information
2826 * here so that we ensure that the metaslab group
2827 * and metaslab class are up-to-date.
2829 metaslab_group_histogram_remove(mg, msp);
2831 VERIFY0(space_map_allocated(msp->ms_sm));
2832 space_map_close(msp->ms_sm);
2833 msp->ms_sm = NULL;
2834 mutex_exit(&msp->ms_lock);
2837 if (vd->vdev_checkpoint_sm != NULL) {
2838 ASSERT(spa_has_checkpoint(spa));
2839 space_map_close(vd->vdev_checkpoint_sm);
2840 vd->vdev_checkpoint_sm = NULL;
2843 metaslab_group_histogram_verify(mg);
2844 metaslab_class_histogram_verify(mg->mg_class);
2845 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2846 ASSERT0(mg->mg_histogram[i]);
2849 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2850 vdev_destroy_spacemaps(vd, tx);
2852 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2853 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2854 vd->vdev_top_zap = 0;
2856 dmu_tx_commit(tx);
2859 void
2860 vdev_sync_done(vdev_t *vd, uint64_t txg)
2862 metaslab_t *msp;
2863 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2865 ASSERT(vdev_is_concrete(vd));
2867 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2868 != NULL)
2869 metaslab_sync_done(msp, txg);
2871 if (reassess)
2872 metaslab_sync_reassess(vd->vdev_mg);
2875 void
2876 vdev_sync(vdev_t *vd, uint64_t txg)
2878 spa_t *spa = vd->vdev_spa;
2879 vdev_t *lvd;
2880 metaslab_t *msp;
2881 dmu_tx_t *tx;
2883 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2884 dmu_tx_t *tx;
2886 ASSERT(vd->vdev_removing ||
2887 vd->vdev_ops == &vdev_indirect_ops);
2889 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2890 vdev_indirect_sync_obsolete(vd, tx);
2891 dmu_tx_commit(tx);
2894 * If the vdev is indirect, it can't have dirty
2895 * metaslabs or DTLs.
2897 if (vd->vdev_ops == &vdev_indirect_ops) {
2898 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2899 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2900 return;
2904 ASSERT(vdev_is_concrete(vd));
2906 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2907 !vd->vdev_removing) {
2908 ASSERT(vd == vd->vdev_top);
2909 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2910 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2911 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2912 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2913 ASSERT(vd->vdev_ms_array != 0);
2914 vdev_config_dirty(vd);
2915 dmu_tx_commit(tx);
2918 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2919 metaslab_sync(msp, txg);
2920 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2923 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2924 vdev_dtl_sync(lvd, txg);
2927 * Remove the metadata associated with this vdev once it's empty.
2928 * Note that this is typically used for log/cache device removal;
2929 * we don't empty toplevel vdevs when removing them. But if
2930 * a toplevel happens to be emptied, this is not harmful.
2932 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2933 vdev_remove_empty(vd, txg);
2936 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2939 uint64_t
2940 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2942 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2946 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2947 * not be opened, and no I/O is attempted.
2950 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2952 vdev_t *vd, *tvd;
2954 spa_vdev_state_enter(spa, SCL_NONE);
2956 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2957 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2959 if (!vd->vdev_ops->vdev_op_leaf)
2960 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2962 tvd = vd->vdev_top;
2965 * We don't directly use the aux state here, but if we do a
2966 * vdev_reopen(), we need this value to be present to remember why we
2967 * were faulted.
2969 vd->vdev_label_aux = aux;
2972 * Faulted state takes precedence over degraded.
2974 vd->vdev_delayed_close = B_FALSE;
2975 vd->vdev_faulted = 1ULL;
2976 vd->vdev_degraded = 0ULL;
2977 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2980 * If this device has the only valid copy of the data, then
2981 * back off and simply mark the vdev as degraded instead.
2983 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2984 vd->vdev_degraded = 1ULL;
2985 vd->vdev_faulted = 0ULL;
2988 * If we reopen the device and it's not dead, only then do we
2989 * mark it degraded.
2991 vdev_reopen(tvd);
2993 if (vdev_readable(vd))
2994 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2997 return (spa_vdev_state_exit(spa, vd, 0));
3001 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3002 * user that something is wrong. The vdev continues to operate as normal as far
3003 * as I/O is concerned.
3006 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3008 vdev_t *vd;
3010 spa_vdev_state_enter(spa, SCL_NONE);
3012 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3013 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3015 if (!vd->vdev_ops->vdev_op_leaf)
3016 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3019 * If the vdev is already faulted, then don't do anything.
3021 if (vd->vdev_faulted || vd->vdev_degraded)
3022 return (spa_vdev_state_exit(spa, NULL, 0));
3024 vd->vdev_degraded = 1ULL;
3025 if (!vdev_is_dead(vd))
3026 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3027 aux);
3029 return (spa_vdev_state_exit(spa, vd, 0));
3033 * Online the given vdev.
3035 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3036 * spare device should be detached when the device finishes resilvering.
3037 * Second, the online should be treated like a 'test' online case, so no FMA
3038 * events are generated if the device fails to open.
3041 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3043 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3044 boolean_t wasoffline;
3045 vdev_state_t oldstate;
3047 spa_vdev_state_enter(spa, SCL_NONE);
3049 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3050 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3052 if (!vd->vdev_ops->vdev_op_leaf)
3053 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3055 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3056 oldstate = vd->vdev_state;
3058 tvd = vd->vdev_top;
3059 vd->vdev_offline = B_FALSE;
3060 vd->vdev_tmpoffline = B_FALSE;
3061 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3062 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3064 /* XXX - L2ARC 1.0 does not support expansion */
3065 if (!vd->vdev_aux) {
3066 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3067 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3070 vdev_reopen(tvd);
3071 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3073 if (!vd->vdev_aux) {
3074 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3075 pvd->vdev_expanding = B_FALSE;
3078 if (newstate)
3079 *newstate = vd->vdev_state;
3080 if ((flags & ZFS_ONLINE_UNSPARE) &&
3081 !vdev_is_dead(vd) && vd->vdev_parent &&
3082 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3083 vd->vdev_parent->vdev_child[0] == vd)
3084 vd->vdev_unspare = B_TRUE;
3086 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3088 /* XXX - L2ARC 1.0 does not support expansion */
3089 if (vd->vdev_aux)
3090 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3091 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3094 /* Restart initializing if necessary */
3095 mutex_enter(&vd->vdev_initialize_lock);
3096 if (vdev_writeable(vd) &&
3097 vd->vdev_initialize_thread == NULL &&
3098 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3099 (void) vdev_initialize(vd);
3101 mutex_exit(&vd->vdev_initialize_lock);
3103 if (wasoffline ||
3104 (oldstate < VDEV_STATE_DEGRADED &&
3105 vd->vdev_state >= VDEV_STATE_DEGRADED))
3106 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3108 return (spa_vdev_state_exit(spa, vd, 0));
3111 static int
3112 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3114 vdev_t *vd, *tvd;
3115 int error = 0;
3116 uint64_t generation;
3117 metaslab_group_t *mg;
3119 top:
3120 spa_vdev_state_enter(spa, SCL_ALLOC);
3122 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3123 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3125 if (!vd->vdev_ops->vdev_op_leaf)
3126 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3128 tvd = vd->vdev_top;
3129 mg = tvd->vdev_mg;
3130 generation = spa->spa_config_generation + 1;
3133 * If the device isn't already offline, try to offline it.
3135 if (!vd->vdev_offline) {
3137 * If this device has the only valid copy of some data,
3138 * don't allow it to be offlined. Log devices are always
3139 * expendable.
3141 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3142 vdev_dtl_required(vd))
3143 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3146 * If the top-level is a slog and it has had allocations
3147 * then proceed. We check that the vdev's metaslab group
3148 * is not NULL since it's possible that we may have just
3149 * added this vdev but not yet initialized its metaslabs.
3151 if (tvd->vdev_islog && mg != NULL) {
3153 * Prevent any future allocations.
3155 metaslab_group_passivate(mg);
3156 (void) spa_vdev_state_exit(spa, vd, 0);
3158 error = spa_reset_logs(spa);
3161 * If the log device was successfully reset but has
3162 * checkpointed data, do not offline it.
3164 if (error == 0 &&
3165 tvd->vdev_checkpoint_sm != NULL) {
3166 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3167 !=, 0);
3168 error = ZFS_ERR_CHECKPOINT_EXISTS;
3171 spa_vdev_state_enter(spa, SCL_ALLOC);
3174 * Check to see if the config has changed.
3176 if (error || generation != spa->spa_config_generation) {
3177 metaslab_group_activate(mg);
3178 if (error)
3179 return (spa_vdev_state_exit(spa,
3180 vd, error));
3181 (void) spa_vdev_state_exit(spa, vd, 0);
3182 goto top;
3184 ASSERT0(tvd->vdev_stat.vs_alloc);
3188 * Offline this device and reopen its top-level vdev.
3189 * If the top-level vdev is a log device then just offline
3190 * it. Otherwise, if this action results in the top-level
3191 * vdev becoming unusable, undo it and fail the request.
3193 vd->vdev_offline = B_TRUE;
3194 vdev_reopen(tvd);
3196 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3197 vdev_is_dead(tvd)) {
3198 vd->vdev_offline = B_FALSE;
3199 vdev_reopen(tvd);
3200 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3204 * Add the device back into the metaslab rotor so that
3205 * once we online the device it's open for business.
3207 if (tvd->vdev_islog && mg != NULL)
3208 metaslab_group_activate(mg);
3211 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3213 return (spa_vdev_state_exit(spa, vd, 0));
3217 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3219 int error;
3221 mutex_enter(&spa->spa_vdev_top_lock);
3222 error = vdev_offline_locked(spa, guid, flags);
3223 mutex_exit(&spa->spa_vdev_top_lock);
3225 return (error);
3229 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3230 * vdev_offline(), we assume the spa config is locked. We also clear all
3231 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3233 void
3234 vdev_clear(spa_t *spa, vdev_t *vd)
3236 vdev_t *rvd = spa->spa_root_vdev;
3238 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3240 if (vd == NULL)
3241 vd = rvd;
3243 vd->vdev_stat.vs_read_errors = 0;
3244 vd->vdev_stat.vs_write_errors = 0;
3245 vd->vdev_stat.vs_checksum_errors = 0;
3247 for (int c = 0; c < vd->vdev_children; c++)
3248 vdev_clear(spa, vd->vdev_child[c]);
3251 * It makes no sense to "clear" an indirect vdev.
3253 if (!vdev_is_concrete(vd))
3254 return;
3257 * If we're in the FAULTED state or have experienced failed I/O, then
3258 * clear the persistent state and attempt to reopen the device. We
3259 * also mark the vdev config dirty, so that the new faulted state is
3260 * written out to disk.
3262 if (vd->vdev_faulted || vd->vdev_degraded ||
3263 !vdev_readable(vd) || !vdev_writeable(vd)) {
3266 * When reopening in reponse to a clear event, it may be due to
3267 * a fmadm repair request. In this case, if the device is
3268 * still broken, we want to still post the ereport again.
3270 vd->vdev_forcefault = B_TRUE;
3272 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3273 vd->vdev_cant_read = B_FALSE;
3274 vd->vdev_cant_write = B_FALSE;
3276 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3278 vd->vdev_forcefault = B_FALSE;
3280 if (vd != rvd && vdev_writeable(vd->vdev_top))
3281 vdev_state_dirty(vd->vdev_top);
3283 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3284 spa_async_request(spa, SPA_ASYNC_RESILVER);
3286 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3290 * When clearing a FMA-diagnosed fault, we always want to
3291 * unspare the device, as we assume that the original spare was
3292 * done in response to the FMA fault.
3294 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3295 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3296 vd->vdev_parent->vdev_child[0] == vd)
3297 vd->vdev_unspare = B_TRUE;
3300 boolean_t
3301 vdev_is_dead(vdev_t *vd)
3304 * Holes and missing devices are always considered "dead".
3305 * This simplifies the code since we don't have to check for
3306 * these types of devices in the various code paths.
3307 * Instead we rely on the fact that we skip over dead devices
3308 * before issuing I/O to them.
3310 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3311 vd->vdev_ops == &vdev_hole_ops ||
3312 vd->vdev_ops == &vdev_missing_ops);
3315 boolean_t
3316 vdev_readable(vdev_t *vd)
3318 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3321 boolean_t
3322 vdev_writeable(vdev_t *vd)
3324 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3325 vdev_is_concrete(vd));
3328 boolean_t
3329 vdev_allocatable(vdev_t *vd)
3331 uint64_t state = vd->vdev_state;
3334 * We currently allow allocations from vdevs which may be in the
3335 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3336 * fails to reopen then we'll catch it later when we're holding
3337 * the proper locks. Note that we have to get the vdev state
3338 * in a local variable because although it changes atomically,
3339 * we're asking two separate questions about it.
3341 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3342 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3343 vd->vdev_mg->mg_initialized);
3346 boolean_t
3347 vdev_accessible(vdev_t *vd, zio_t *zio)
3349 ASSERT(zio->io_vd == vd);
3351 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3352 return (B_FALSE);
3354 if (zio->io_type == ZIO_TYPE_READ)
3355 return (!vd->vdev_cant_read);
3357 if (zio->io_type == ZIO_TYPE_WRITE)
3358 return (!vd->vdev_cant_write);
3360 return (B_TRUE);
3363 boolean_t
3364 vdev_is_spacemap_addressable(vdev_t *vd)
3367 * Assuming 47 bits of the space map entry dedicated for the entry's
3368 * offset (see description in space_map.h), we calculate the maximum
3369 * address that can be described by a space map entry for the given
3370 * device.
3372 uint64_t shift = vd->vdev_ashift + 47;
3374 if (shift >= 63) /* detect potential overflow */
3375 return (B_TRUE);
3377 return (vd->vdev_asize < (1ULL << shift));
3381 * Get statistics for the given vdev.
3383 void
3384 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3386 spa_t *spa = vd->vdev_spa;
3387 vdev_t *rvd = spa->spa_root_vdev;
3388 vdev_t *tvd = vd->vdev_top;
3390 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3392 mutex_enter(&vd->vdev_stat_lock);
3393 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3394 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3395 vs->vs_state = vd->vdev_state;
3396 vs->vs_rsize = vdev_get_min_asize(vd);
3397 if (vd->vdev_ops->vdev_op_leaf) {
3398 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3400 * Report intializing progress. Since we don't have the
3401 * initializing locks held, this is only an estimate (although a
3402 * fairly accurate one).
3404 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3405 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3406 vs->vs_initialize_state = vd->vdev_initialize_state;
3407 vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3410 * Report expandable space on top-level, non-auxillary devices only.
3411 * The expandable space is reported in terms of metaslab sized units
3412 * since that determines how much space the pool can expand.
3414 if (vd->vdev_aux == NULL && tvd != NULL) {
3415 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3416 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3418 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3419 vdev_is_concrete(vd)) {
3420 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3424 * If we're getting stats on the root vdev, aggregate the I/O counts
3425 * over all top-level vdevs (i.e. the direct children of the root).
3427 if (vd == rvd) {
3428 for (int c = 0; c < rvd->vdev_children; c++) {
3429 vdev_t *cvd = rvd->vdev_child[c];
3430 vdev_stat_t *cvs = &cvd->vdev_stat;
3432 for (int t = 0; t < ZIO_TYPES; t++) {
3433 vs->vs_ops[t] += cvs->vs_ops[t];
3434 vs->vs_bytes[t] += cvs->vs_bytes[t];
3436 cvs->vs_scan_removing = cvd->vdev_removing;
3439 mutex_exit(&vd->vdev_stat_lock);
3442 void
3443 vdev_clear_stats(vdev_t *vd)
3445 mutex_enter(&vd->vdev_stat_lock);
3446 vd->vdev_stat.vs_space = 0;
3447 vd->vdev_stat.vs_dspace = 0;
3448 vd->vdev_stat.vs_alloc = 0;
3449 mutex_exit(&vd->vdev_stat_lock);
3452 void
3453 vdev_scan_stat_init(vdev_t *vd)
3455 vdev_stat_t *vs = &vd->vdev_stat;
3457 for (int c = 0; c < vd->vdev_children; c++)
3458 vdev_scan_stat_init(vd->vdev_child[c]);
3460 mutex_enter(&vd->vdev_stat_lock);
3461 vs->vs_scan_processed = 0;
3462 mutex_exit(&vd->vdev_stat_lock);
3465 void
3466 vdev_stat_update(zio_t *zio, uint64_t psize)
3468 spa_t *spa = zio->io_spa;
3469 vdev_t *rvd = spa->spa_root_vdev;
3470 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3471 vdev_t *pvd;
3472 uint64_t txg = zio->io_txg;
3473 vdev_stat_t *vs = &vd->vdev_stat;
3474 zio_type_t type = zio->io_type;
3475 int flags = zio->io_flags;
3478 * If this i/o is a gang leader, it didn't do any actual work.
3480 if (zio->io_gang_tree)
3481 return;
3483 if (zio->io_error == 0) {
3485 * If this is a root i/o, don't count it -- we've already
3486 * counted the top-level vdevs, and vdev_get_stats() will
3487 * aggregate them when asked. This reduces contention on
3488 * the root vdev_stat_lock and implicitly handles blocks
3489 * that compress away to holes, for which there is no i/o.
3490 * (Holes never create vdev children, so all the counters
3491 * remain zero, which is what we want.)
3493 * Note: this only applies to successful i/o (io_error == 0)
3494 * because unlike i/o counts, errors are not additive.
3495 * When reading a ditto block, for example, failure of
3496 * one top-level vdev does not imply a root-level error.
3498 if (vd == rvd)
3499 return;
3501 ASSERT(vd == zio->io_vd);
3503 if (flags & ZIO_FLAG_IO_BYPASS)
3504 return;
3506 mutex_enter(&vd->vdev_stat_lock);
3508 if (flags & ZIO_FLAG_IO_REPAIR) {
3509 if (flags & ZIO_FLAG_SCAN_THREAD) {
3510 dsl_scan_phys_t *scn_phys =
3511 &spa->spa_dsl_pool->dp_scan->scn_phys;
3512 uint64_t *processed = &scn_phys->scn_processed;
3514 /* XXX cleanup? */
3515 if (vd->vdev_ops->vdev_op_leaf)
3516 atomic_add_64(processed, psize);
3517 vs->vs_scan_processed += psize;
3520 if (flags & ZIO_FLAG_SELF_HEAL)
3521 vs->vs_self_healed += psize;
3524 vs->vs_ops[type]++;
3525 vs->vs_bytes[type] += psize;
3527 mutex_exit(&vd->vdev_stat_lock);
3528 return;
3531 if (flags & ZIO_FLAG_SPECULATIVE)
3532 return;
3535 * If this is an I/O error that is going to be retried, then ignore the
3536 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3537 * hard errors, when in reality they can happen for any number of
3538 * innocuous reasons (bus resets, MPxIO link failure, etc).
3540 if (zio->io_error == EIO &&
3541 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3542 return;
3545 * Intent logs writes won't propagate their error to the root
3546 * I/O so don't mark these types of failures as pool-level
3547 * errors.
3549 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3550 return;
3552 mutex_enter(&vd->vdev_stat_lock);
3553 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3554 if (zio->io_error == ECKSUM)
3555 vs->vs_checksum_errors++;
3556 else
3557 vs->vs_read_errors++;
3559 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3560 vs->vs_write_errors++;
3561 mutex_exit(&vd->vdev_stat_lock);
3563 if (spa->spa_load_state == SPA_LOAD_NONE &&
3564 type == ZIO_TYPE_WRITE && txg != 0 &&
3565 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3566 (flags & ZIO_FLAG_SCAN_THREAD) ||
3567 spa->spa_claiming)) {
3569 * This is either a normal write (not a repair), or it's
3570 * a repair induced by the scrub thread, or it's a repair
3571 * made by zil_claim() during spa_load() in the first txg.
3572 * In the normal case, we commit the DTL change in the same
3573 * txg as the block was born. In the scrub-induced repair
3574 * case, we know that scrubs run in first-pass syncing context,
3575 * so we commit the DTL change in spa_syncing_txg(spa).
3576 * In the zil_claim() case, we commit in spa_first_txg(spa).
3578 * We currently do not make DTL entries for failed spontaneous
3579 * self-healing writes triggered by normal (non-scrubbing)
3580 * reads, because we have no transactional context in which to
3581 * do so -- and it's not clear that it'd be desirable anyway.
3583 if (vd->vdev_ops->vdev_op_leaf) {
3584 uint64_t commit_txg = txg;
3585 if (flags & ZIO_FLAG_SCAN_THREAD) {
3586 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3587 ASSERT(spa_sync_pass(spa) == 1);
3588 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3589 commit_txg = spa_syncing_txg(spa);
3590 } else if (spa->spa_claiming) {
3591 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3592 commit_txg = spa_first_txg(spa);
3594 ASSERT(commit_txg >= spa_syncing_txg(spa));
3595 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3596 return;
3597 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3598 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3599 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3601 if (vd != rvd)
3602 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3607 * Update the in-core space usage stats for this vdev, its metaslab class,
3608 * and the root vdev.
3610 void
3611 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3612 int64_t space_delta)
3614 int64_t dspace_delta = space_delta;
3615 spa_t *spa = vd->vdev_spa;
3616 vdev_t *rvd = spa->spa_root_vdev;
3617 metaslab_group_t *mg = vd->vdev_mg;
3618 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3620 ASSERT(vd == vd->vdev_top);
3623 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3624 * factor. We must calculate this here and not at the root vdev
3625 * because the root vdev's psize-to-asize is simply the max of its
3626 * childrens', thus not accurate enough for us.
3628 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3629 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3630 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3631 vd->vdev_deflate_ratio;
3633 mutex_enter(&vd->vdev_stat_lock);
3634 vd->vdev_stat.vs_alloc += alloc_delta;
3635 vd->vdev_stat.vs_space += space_delta;
3636 vd->vdev_stat.vs_dspace += dspace_delta;
3637 mutex_exit(&vd->vdev_stat_lock);
3639 if (mc == spa_normal_class(spa)) {
3640 mutex_enter(&rvd->vdev_stat_lock);
3641 rvd->vdev_stat.vs_alloc += alloc_delta;
3642 rvd->vdev_stat.vs_space += space_delta;
3643 rvd->vdev_stat.vs_dspace += dspace_delta;
3644 mutex_exit(&rvd->vdev_stat_lock);
3647 if (mc != NULL) {
3648 ASSERT(rvd == vd->vdev_parent);
3649 ASSERT(vd->vdev_ms_count != 0);
3651 metaslab_class_space_update(mc,
3652 alloc_delta, defer_delta, space_delta, dspace_delta);
3657 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3658 * so that it will be written out next time the vdev configuration is synced.
3659 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3661 void
3662 vdev_config_dirty(vdev_t *vd)
3664 spa_t *spa = vd->vdev_spa;
3665 vdev_t *rvd = spa->spa_root_vdev;
3666 int c;
3668 ASSERT(spa_writeable(spa));
3671 * If this is an aux vdev (as with l2cache and spare devices), then we
3672 * update the vdev config manually and set the sync flag.
3674 if (vd->vdev_aux != NULL) {
3675 spa_aux_vdev_t *sav = vd->vdev_aux;
3676 nvlist_t **aux;
3677 uint_t naux;
3679 for (c = 0; c < sav->sav_count; c++) {
3680 if (sav->sav_vdevs[c] == vd)
3681 break;
3684 if (c == sav->sav_count) {
3686 * We're being removed. There's nothing more to do.
3688 ASSERT(sav->sav_sync == B_TRUE);
3689 return;
3692 sav->sav_sync = B_TRUE;
3694 if (nvlist_lookup_nvlist_array(sav->sav_config,
3695 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3696 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3697 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3700 ASSERT(c < naux);
3703 * Setting the nvlist in the middle if the array is a little
3704 * sketchy, but it will work.
3706 nvlist_free(aux[c]);
3707 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3709 return;
3713 * The dirty list is protected by the SCL_CONFIG lock. The caller
3714 * must either hold SCL_CONFIG as writer, or must be the sync thread
3715 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3716 * so this is sufficient to ensure mutual exclusion.
3718 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3719 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3720 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3722 if (vd == rvd) {
3723 for (c = 0; c < rvd->vdev_children; c++)
3724 vdev_config_dirty(rvd->vdev_child[c]);
3725 } else {
3726 ASSERT(vd == vd->vdev_top);
3728 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3729 vdev_is_concrete(vd)) {
3730 list_insert_head(&spa->spa_config_dirty_list, vd);
3735 void
3736 vdev_config_clean(vdev_t *vd)
3738 spa_t *spa = vd->vdev_spa;
3740 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3741 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3742 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3744 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3745 list_remove(&spa->spa_config_dirty_list, vd);
3749 * Mark a top-level vdev's state as dirty, so that the next pass of
3750 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3751 * the state changes from larger config changes because they require
3752 * much less locking, and are often needed for administrative actions.
3754 void
3755 vdev_state_dirty(vdev_t *vd)
3757 spa_t *spa = vd->vdev_spa;
3759 ASSERT(spa_writeable(spa));
3760 ASSERT(vd == vd->vdev_top);
3763 * The state list is protected by the SCL_STATE lock. The caller
3764 * must either hold SCL_STATE as writer, or must be the sync thread
3765 * (which holds SCL_STATE as reader). There's only one sync thread,
3766 * so this is sufficient to ensure mutual exclusion.
3768 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3769 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3770 spa_config_held(spa, SCL_STATE, RW_READER)));
3772 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3773 vdev_is_concrete(vd))
3774 list_insert_head(&spa->spa_state_dirty_list, vd);
3777 void
3778 vdev_state_clean(vdev_t *vd)
3780 spa_t *spa = vd->vdev_spa;
3782 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3783 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3784 spa_config_held(spa, SCL_STATE, RW_READER)));
3786 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3787 list_remove(&spa->spa_state_dirty_list, vd);
3791 * Propagate vdev state up from children to parent.
3793 void
3794 vdev_propagate_state(vdev_t *vd)
3796 spa_t *spa = vd->vdev_spa;
3797 vdev_t *rvd = spa->spa_root_vdev;
3798 int degraded = 0, faulted = 0;
3799 int corrupted = 0;
3800 vdev_t *child;
3802 if (vd->vdev_children > 0) {
3803 for (int c = 0; c < vd->vdev_children; c++) {
3804 child = vd->vdev_child[c];
3807 * Don't factor holes or indirect vdevs into the
3808 * decision.
3810 if (!vdev_is_concrete(child))
3811 continue;
3813 if (!vdev_readable(child) ||
3814 (!vdev_writeable(child) && spa_writeable(spa))) {
3816 * Root special: if there is a top-level log
3817 * device, treat the root vdev as if it were
3818 * degraded.
3820 if (child->vdev_islog && vd == rvd)
3821 degraded++;
3822 else
3823 faulted++;
3824 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3825 degraded++;
3828 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3829 corrupted++;
3832 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3835 * Root special: if there is a top-level vdev that cannot be
3836 * opened due to corrupted metadata, then propagate the root
3837 * vdev's aux state as 'corrupt' rather than 'insufficient
3838 * replicas'.
3840 if (corrupted && vd == rvd &&
3841 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3842 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3843 VDEV_AUX_CORRUPT_DATA);
3846 if (vd->vdev_parent)
3847 vdev_propagate_state(vd->vdev_parent);
3851 * Set a vdev's state. If this is during an open, we don't update the parent
3852 * state, because we're in the process of opening children depth-first.
3853 * Otherwise, we propagate the change to the parent.
3855 * If this routine places a device in a faulted state, an appropriate ereport is
3856 * generated.
3858 void
3859 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3861 uint64_t save_state;
3862 spa_t *spa = vd->vdev_spa;
3864 if (state == vd->vdev_state) {
3865 vd->vdev_stat.vs_aux = aux;
3866 return;
3869 save_state = vd->vdev_state;
3871 vd->vdev_state = state;
3872 vd->vdev_stat.vs_aux = aux;
3875 * If we are setting the vdev state to anything but an open state, then
3876 * always close the underlying device unless the device has requested
3877 * a delayed close (i.e. we're about to remove or fault the device).
3878 * Otherwise, we keep accessible but invalid devices open forever.
3879 * We don't call vdev_close() itself, because that implies some extra
3880 * checks (offline, etc) that we don't want here. This is limited to
3881 * leaf devices, because otherwise closing the device will affect other
3882 * children.
3884 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3885 vd->vdev_ops->vdev_op_leaf)
3886 vd->vdev_ops->vdev_op_close(vd);
3889 * If we have brought this vdev back into service, we need
3890 * to notify fmd so that it can gracefully repair any outstanding
3891 * cases due to a missing device. We do this in all cases, even those
3892 * that probably don't correlate to a repaired fault. This is sure to
3893 * catch all cases, and we let the zfs-retire agent sort it out. If
3894 * this is a transient state it's OK, as the retire agent will
3895 * double-check the state of the vdev before repairing it.
3897 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3898 vd->vdev_prevstate != state)
3899 zfs_post_state_change(spa, vd);
3901 if (vd->vdev_removed &&
3902 state == VDEV_STATE_CANT_OPEN &&
3903 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3905 * If the previous state is set to VDEV_STATE_REMOVED, then this
3906 * device was previously marked removed and someone attempted to
3907 * reopen it. If this failed due to a nonexistent device, then
3908 * keep the device in the REMOVED state. We also let this be if
3909 * it is one of our special test online cases, which is only
3910 * attempting to online the device and shouldn't generate an FMA
3911 * fault.
3913 vd->vdev_state = VDEV_STATE_REMOVED;
3914 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3915 } else if (state == VDEV_STATE_REMOVED) {
3916 vd->vdev_removed = B_TRUE;
3917 } else if (state == VDEV_STATE_CANT_OPEN) {
3919 * If we fail to open a vdev during an import or recovery, we
3920 * mark it as "not available", which signifies that it was
3921 * never there to begin with. Failure to open such a device
3922 * is not considered an error.
3924 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3925 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3926 vd->vdev_ops->vdev_op_leaf)
3927 vd->vdev_not_present = 1;
3930 * Post the appropriate ereport. If the 'prevstate' field is
3931 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3932 * that this is part of a vdev_reopen(). In this case, we don't
3933 * want to post the ereport if the device was already in the
3934 * CANT_OPEN state beforehand.
3936 * If the 'checkremove' flag is set, then this is an attempt to
3937 * online the device in response to an insertion event. If we
3938 * hit this case, then we have detected an insertion event for a
3939 * faulted or offline device that wasn't in the removed state.
3940 * In this scenario, we don't post an ereport because we are
3941 * about to replace the device, or attempt an online with
3942 * vdev_forcefault, which will generate the fault for us.
3944 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3945 !vd->vdev_not_present && !vd->vdev_checkremove &&
3946 vd != spa->spa_root_vdev) {
3947 const char *class;
3949 switch (aux) {
3950 case VDEV_AUX_OPEN_FAILED:
3951 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3952 break;
3953 case VDEV_AUX_CORRUPT_DATA:
3954 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3955 break;
3956 case VDEV_AUX_NO_REPLICAS:
3957 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3958 break;
3959 case VDEV_AUX_BAD_GUID_SUM:
3960 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3961 break;
3962 case VDEV_AUX_TOO_SMALL:
3963 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3964 break;
3965 case VDEV_AUX_BAD_LABEL:
3966 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3967 break;
3968 default:
3969 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3972 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3975 /* Erase any notion of persistent removed state */
3976 vd->vdev_removed = B_FALSE;
3977 } else {
3978 vd->vdev_removed = B_FALSE;
3981 if (!isopen && vd->vdev_parent)
3982 vdev_propagate_state(vd->vdev_parent);
3985 boolean_t
3986 vdev_children_are_offline(vdev_t *vd)
3988 ASSERT(!vd->vdev_ops->vdev_op_leaf);
3990 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3991 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3992 return (B_FALSE);
3995 return (B_TRUE);
3999 * Check the vdev configuration to ensure that it's capable of supporting
4000 * a root pool. We do not support partial configuration.
4001 * In addition, only a single top-level vdev is allowed.
4003 boolean_t
4004 vdev_is_bootable(vdev_t *vd)
4006 if (!vd->vdev_ops->vdev_op_leaf) {
4007 char *vdev_type = vd->vdev_ops->vdev_op_type;
4009 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4010 vd->vdev_children > 1) {
4011 return (B_FALSE);
4012 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4013 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4014 return (B_FALSE);
4018 for (int c = 0; c < vd->vdev_children; c++) {
4019 if (!vdev_is_bootable(vd->vdev_child[c]))
4020 return (B_FALSE);
4022 return (B_TRUE);
4025 boolean_t
4026 vdev_is_concrete(vdev_t *vd)
4028 vdev_ops_t *ops = vd->vdev_ops;
4029 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4030 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4031 return (B_FALSE);
4032 } else {
4033 return (B_TRUE);
4038 * Determine if a log device has valid content. If the vdev was
4039 * removed or faulted in the MOS config then we know that
4040 * the content on the log device has already been written to the pool.
4042 boolean_t
4043 vdev_log_state_valid(vdev_t *vd)
4045 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4046 !vd->vdev_removed)
4047 return (B_TRUE);
4049 for (int c = 0; c < vd->vdev_children; c++)
4050 if (vdev_log_state_valid(vd->vdev_child[c]))
4051 return (B_TRUE);
4053 return (B_FALSE);
4057 * Expand a vdev if possible.
4059 void
4060 vdev_expand(vdev_t *vd, uint64_t txg)
4062 ASSERT(vd->vdev_top == vd);
4063 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4065 vdev_set_deflate_ratio(vd);
4067 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4068 vdev_is_concrete(vd)) {
4069 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4070 vdev_config_dirty(vd);
4075 * Split a vdev.
4077 void
4078 vdev_split(vdev_t *vd)
4080 vdev_t *cvd, *pvd = vd->vdev_parent;
4082 vdev_remove_child(pvd, vd);
4083 vdev_compact_children(pvd);
4085 cvd = pvd->vdev_child[0];
4086 if (pvd->vdev_children == 1) {
4087 vdev_remove_parent(cvd);
4088 cvd->vdev_splitting = B_TRUE;
4090 vdev_propagate_state(cvd);
4093 void
4094 vdev_deadman(vdev_t *vd)
4096 for (int c = 0; c < vd->vdev_children; c++) {
4097 vdev_t *cvd = vd->vdev_child[c];
4099 vdev_deadman(cvd);
4102 if (vd->vdev_ops->vdev_op_leaf) {
4103 vdev_queue_t *vq = &vd->vdev_queue;
4105 mutex_enter(&vq->vq_lock);
4106 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4107 spa_t *spa = vd->vdev_spa;
4108 zio_t *fio;
4109 uint64_t delta;
4112 * Look at the head of all the pending queues,
4113 * if any I/O has been outstanding for longer than
4114 * the spa_deadman_synctime we panic the system.
4116 fio = avl_first(&vq->vq_active_tree);
4117 delta = gethrtime() - fio->io_timestamp;
4118 if (delta > spa_deadman_synctime(spa)) {
4119 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4120 "%lluns, delta %lluns, last io %lluns",
4121 fio->io_timestamp, (u_longlong_t)delta,
4122 vq->vq_io_complete_ts);
4123 fm_panic("I/O to pool '%s' appears to be "
4124 "hung.", spa_name(spa));
4127 mutex_exit(&vq->vq_lock);