7672 x86 trap trace is annoyingly unreadable in system log/mdb
[unleashed.git] / usr / src / uts / i86pc / os / trap.c
blobb7bb1e6fa61cbbc4d97e391da170796fe0a32b88
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
26 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
28 /* All Rights Reserved */
29 /* */
30 /* Copyright (c) 1987, 1988 Microsoft Corporation */
31 /* All Rights Reserved */
32 /* */
35 * Copyright 2012 Joyent, Inc. All rights reserved.
38 #include <sys/types.h>
39 #include <sys/sysmacros.h>
40 #include <sys/param.h>
41 #include <sys/signal.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <sys/core.h>
48 #include <sys/syscall.h>
49 #include <sys/cpuvar.h>
50 #include <sys/vm.h>
51 #include <sys/sysinfo.h>
52 #include <sys/fault.h>
53 #include <sys/stack.h>
54 #include <sys/psw.h>
55 #include <sys/regset.h>
56 #include <sys/fp.h>
57 #include <sys/trap.h>
58 #include <sys/kmem.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/prsystm.h>
62 #include <sys/mutex_impl.h>
63 #include <sys/machsystm.h>
64 #include <sys/archsystm.h>
65 #include <sys/sdt.h>
66 #include <sys/avintr.h>
67 #include <sys/kobj.h>
69 #include <vm/hat.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/as.h>
73 #include <vm/seg.h>
74 #include <vm/hat_pte.h>
75 #include <vm/hat_i86.h>
77 #include <sys/procfs.h>
79 #include <sys/reboot.h>
80 #include <sys/debug.h>
81 #include <sys/debugreg.h>
82 #include <sys/modctl.h>
83 #include <sys/aio_impl.h>
84 #include <sys/tnf.h>
85 #include <sys/tnf_probe.h>
86 #include <sys/cred.h>
87 #include <sys/mman.h>
88 #include <sys/x86_archext.h>
89 #include <sys/copyops.h>
90 #include <c2/audit.h>
91 #include <sys/ftrace.h>
92 #include <sys/panic.h>
93 #include <sys/traptrace.h>
94 #include <sys/ontrap.h>
95 #include <sys/cpc_impl.h>
96 #include <sys/bootconf.h>
97 #include <sys/bootinfo.h>
98 #include <sys/promif.h>
99 #include <sys/mach_mmu.h>
100 #if defined(__xpv)
101 #include <sys/hypervisor.h>
102 #endif
103 #include <sys/contract/process_impl.h>
105 #define USER 0x10000 /* user-mode flag added to trap type */
107 static const char *trap_type_mnemonic[] = {
108 "de", "db", "2", "bp",
109 "of", "br", "ud", "nm",
110 "df", "9", "ts", "np",
111 "ss", "gp", "pf", "15",
112 "mf", "ac", "mc", "xf"
115 static const char *trap_type[] = {
116 "Divide error", /* trap id 0 */
117 "Debug", /* trap id 1 */
118 "NMI interrupt", /* trap id 2 */
119 "Breakpoint", /* trap id 3 */
120 "Overflow", /* trap id 4 */
121 "BOUND range exceeded", /* trap id 5 */
122 "Invalid opcode", /* trap id 6 */
123 "Device not available", /* trap id 7 */
124 "Double fault", /* trap id 8 */
125 "Coprocessor segment overrun", /* trap id 9 */
126 "Invalid TSS", /* trap id 10 */
127 "Segment not present", /* trap id 11 */
128 "Stack segment fault", /* trap id 12 */
129 "General protection", /* trap id 13 */
130 "Page fault", /* trap id 14 */
131 "Reserved", /* trap id 15 */
132 "x87 floating point error", /* trap id 16 */
133 "Alignment check", /* trap id 17 */
134 "Machine check", /* trap id 18 */
135 "SIMD floating point exception", /* trap id 19 */
138 #define TRAP_TYPES (sizeof (trap_type) / sizeof (trap_type[0]))
140 #define SLOW_SCALL_SIZE 2
141 #define FAST_SCALL_SIZE 2
143 int tudebug = 0;
144 int tudebugbpt = 0;
145 int tudebugfpe = 0;
146 int tudebugsse = 0;
148 #if defined(TRAPDEBUG) || defined(lint)
149 int tdebug = 0;
150 int lodebug = 0;
151 int faultdebug = 0;
152 #else
153 #define tdebug 0
154 #define lodebug 0
155 #define faultdebug 0
156 #endif /* defined(TRAPDEBUG) || defined(lint) */
158 #if defined(TRAPTRACE)
160 * trap trace record for cpu0 is allocated here.
161 * trap trace records for non-boot cpus are allocated in mp_startup_init().
163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
166 (uintptr_t)trap_tr0, /* next record */
167 (uintptr_t)trap_tr0, /* first record */
168 (uintptr_t)(trap_tr0 + TRAPTR_NENT), /* limit */
169 (uintptr_t)0 /* current */
174 * default trap buffer size
176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
177 int trap_trace_freeze = 0;
178 int trap_trace_off = 0;
181 * A dummy TRAPTRACE entry to use after death.
183 trap_trace_rec_t trap_trace_postmort;
185 static void dump_ttrace(void);
186 #endif /* TRAPTRACE */
187 static void dumpregs(struct regs *);
188 static void showregs(uint_t, struct regs *, caddr_t);
189 static int kern_gpfault(struct regs *);
191 /*ARGSUSED*/
192 static int
193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
195 struct panic_trap_info ti;
196 const char *trap_name, *trap_mnemonic;
198 if (type < TRAP_TYPES) {
199 trap_name = trap_type[type];
200 trap_mnemonic = trap_type_mnemonic[type];
201 } else {
202 trap_name = "trap";
203 trap_mnemonic = "-";
206 #ifdef TRAPTRACE
207 TRAPTRACE_FREEZE;
208 #endif
210 ti.trap_regs = rp;
211 ti.trap_type = type & ~USER;
212 ti.trap_addr = addr;
214 curthread->t_panic_trap = &ti;
216 if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
217 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
218 "occurred in module \"%s\" due to %s",
219 type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
220 mod_containing_pc((caddr_t)rp->r_pc),
221 addr < (caddr_t)PAGESIZE ?
222 "a NULL pointer dereference" :
223 "an illegal access to a user address");
224 } else
225 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
226 type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
227 return (0);
231 * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
233 * int <vector> is two bytes: 0xCD <vector>
236 static int
237 rewrite_syscall(caddr_t pc)
239 uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
241 if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
242 (uintptr_t)pc) != 0)
243 return (1);
245 return (0);
249 * Test to see if the instruction at pc is sysenter or syscall. The second
250 * argument should be the x86 feature flag corresponding to the expected
251 * instruction.
253 * sysenter is two bytes: 0x0F 0x34
254 * syscall is two bytes: 0x0F 0x05
255 * int $T_SYSCALLINT is two bytes: 0xCD 0x91
258 static int
259 instr_is_other_syscall(caddr_t pc, int which)
261 uchar_t instr[FAST_SCALL_SIZE];
263 ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
265 if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
266 return (0);
268 switch (which) {
269 case X86FSET_SEP:
270 if (instr[0] == 0x0F && instr[1] == 0x34)
271 return (1);
272 break;
273 case X86FSET_ASYSC:
274 if (instr[0] == 0x0F && instr[1] == 0x05)
275 return (1);
276 break;
277 case 0xCD:
278 if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
279 return (1);
280 break;
283 return (0);
286 static const char *
287 syscall_insn_string(int syscall_insn)
289 switch (syscall_insn) {
290 case X86FSET_SEP:
291 return ("sysenter");
292 case X86FSET_ASYSC:
293 return ("syscall");
294 case 0xCD:
295 return ("int");
296 default:
297 return ("Unknown");
301 static int
302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
304 caddr_t linearpc;
305 int return_code = 0;
307 mutex_enter(&p->p_ldtlock); /* Must be held across linear_pc() */
309 if (linear_pc(rp, p, &linearpc) == 0) {
312 * If another thread beat us here, it already changed
313 * this site to the slower (int) syscall instruction.
315 if (instr_is_other_syscall(linearpc, 0xCD)) {
316 return_code = 1;
317 } else if (instr_is_other_syscall(linearpc, syscall_insn)) {
319 if (rewrite_syscall(linearpc) == 0) {
320 return_code = 1;
322 #ifdef DEBUG
323 else
324 cmn_err(CE_WARN, "failed to rewrite %s "
325 "instruction in process %d",
326 syscall_insn_string(syscall_insn),
327 p->p_pid);
328 #endif /* DEBUG */
332 mutex_exit(&p->p_ldtlock); /* Must be held across linear_pc() */
334 return (return_code);
338 * Test to see if the instruction at pc is a system call instruction.
340 * The bytes of an lcall instruction used for the syscall trap.
341 * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
342 * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
345 #define LCALLSIZE 7
347 static int
348 instr_is_lcall_syscall(caddr_t pc)
350 uchar_t instr[LCALLSIZE];
352 if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
353 instr[0] == 0x9a &&
354 instr[1] == 0 &&
355 instr[2] == 0 &&
356 instr[3] == 0 &&
357 instr[4] == 0 &&
358 (instr[5] == 0x7 || instr[5] == 0x27) &&
359 instr[6] == 0)
360 return (1);
362 return (0);
365 #ifdef __amd64
368 * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
369 * SAHF instructions were not implemented in 64-bit mode. Later revisions
370 * did implement these instructions. An extension to the cpuid instruction
371 * was added to check for the capability of executing these instructions
372 * in 64-bit mode.
374 * Intel originally did not implement these instructions in EM64T either,
375 * but added them in later revisions.
377 * So, there are different chip revisions by both vendors out there that
378 * may or may not implement these instructions. The easy solution is to
379 * just always emulate these instructions on demand.
381 * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
382 * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
385 #define LSAHFSIZE 1
387 static int
388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
390 if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
391 (*instr == 0x9e || *instr == 0x9f))
392 return (1);
393 return (0);
397 * Emulate the LAHF and SAHF instructions. The reference manuals define
398 * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
399 * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
401 * Note that %ah is bits 8-15 of %rax.
403 static void
404 emulate_lsahf(struct regs *rp, uchar_t instr)
406 if (instr == 0x9e) {
407 /* sahf. Copy bits from %ah to flags. */
408 rp->r_ps = (rp->r_ps & ~0xff) |
409 ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
410 } else {
411 /* lahf. Copy bits from flags to %ah. */
412 rp->r_rax = (rp->r_rax & ~0xff00) |
413 (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
415 rp->r_pc += LSAHFSIZE;
417 #endif /* __amd64 */
419 #ifdef OPTERON_ERRATUM_91
422 * Test to see if the instruction at pc is a prefetch instruction.
424 * The first byte of prefetch instructions is always 0x0F.
425 * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
426 * The third byte (ModRM) contains the register field bits (bits 3-5).
427 * These bits must be between 0 and 3 inclusive for regular prefetch and
428 * 0 and 1 inclusive for AMD 3dnow prefetch.
430 * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
433 static int
434 cmp_to_prefetch(uchar_t *p)
436 #ifdef _LP64
437 if ((p[0] & 0xF0) == 0x40) /* 64-bit REX prefix */
438 p++;
439 #endif
440 return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
441 (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
444 static int
445 instr_is_prefetch(caddr_t pc)
447 uchar_t instr[4]; /* optional REX prefix plus 3-byte opcode */
449 return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
450 cmp_to_prefetch(instr));
453 #endif /* OPTERON_ERRATUM_91 */
456 * Called from the trap handler when a processor trap occurs.
458 * Note: All user-level traps that might call stop() must exit
459 * trap() by 'goto out' or by falling through.
460 * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
461 * however, there are paths that arrive here with PS_IE == 0 so special care
462 * must be taken in those cases.
464 void
465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
467 kthread_t *ct = curthread;
468 enum seg_rw rw;
469 unsigned type;
470 proc_t *p = ttoproc(ct);
471 klwp_t *lwp = ttolwp(ct);
472 uintptr_t lofault;
473 label_t *onfault;
474 faultcode_t pagefault(), res, errcode;
475 enum fault_type fault_type;
476 k_siginfo_t siginfo;
477 uint_t fault = 0;
478 int mstate;
479 int sicode = 0;
480 int watchcode;
481 int watchpage;
482 caddr_t vaddr;
483 int singlestep_twiddle;
484 size_t sz;
485 int ta;
486 #ifdef __amd64
487 uchar_t instr;
488 #endif
490 ASSERT_STACK_ALIGNED();
492 type = rp->r_trapno;
493 CPU_STATS_ADDQ(CPU, sys, trap, 1);
494 ASSERT(ct->t_schedflag & TS_DONT_SWAP);
496 if (type == T_PGFLT) {
498 errcode = rp->r_err;
499 if (errcode & PF_ERR_WRITE)
500 rw = S_WRITE;
501 else if ((caddr_t)rp->r_pc == addr ||
502 (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
503 rw = S_EXEC;
504 else
505 rw = S_READ;
507 #if defined(__i386)
509 * Pentium Pro work-around
511 if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
512 uint_t attr;
513 uint_t priv_violation;
514 uint_t access_violation;
516 if (hat_getattr(addr < (caddr_t)kernelbase ?
517 curproc->p_as->a_hat : kas.a_hat, addr, &attr)
518 == -1) {
519 errcode &= ~PF_ERR_PROT;
520 } else {
521 priv_violation = (errcode & PF_ERR_USER) &&
522 !(attr & PROT_USER);
523 access_violation = (errcode & PF_ERR_WRITE) &&
524 !(attr & PROT_WRITE);
525 if (!priv_violation && !access_violation)
526 goto cleanup;
529 #endif /* __i386 */
531 } else if (type == T_SGLSTP && lwp != NULL)
532 lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
534 if (tdebug)
535 showregs(type, rp, addr);
537 if (USERMODE(rp->r_cs)) {
539 * Set up the current cred to use during this trap. u_cred
540 * no longer exists. t_cred is used instead.
541 * The current process credential applies to the thread for
542 * the entire trap. If trapping from the kernel, this
543 * should already be set up.
545 if (ct->t_cred != p->p_cred) {
546 cred_t *oldcred = ct->t_cred;
548 * DTrace accesses t_cred in probe context. t_cred
549 * must always be either NULL, or point to a valid,
550 * allocated cred structure.
552 ct->t_cred = crgetcred();
553 crfree(oldcred);
555 ASSERT(lwp != NULL);
556 type |= USER;
557 ASSERT(lwptoregs(lwp) == rp);
558 lwp->lwp_state = LWP_SYS;
560 switch (type) {
561 case T_PGFLT + USER:
562 if ((caddr_t)rp->r_pc == addr)
563 mstate = LMS_TFAULT;
564 else
565 mstate = LMS_DFAULT;
566 break;
567 default:
568 mstate = LMS_TRAP;
569 break;
571 /* Kernel probe */
572 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
573 tnf_microstate, state, mstate);
574 mstate = new_mstate(ct, mstate);
576 bzero(&siginfo, sizeof (siginfo));
579 switch (type) {
580 case T_PGFLT + USER:
581 case T_SGLSTP:
582 case T_SGLSTP + USER:
583 case T_BPTFLT + USER:
584 break;
586 default:
587 FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
588 (ulong_t)type, (ulong_t)rp);
589 break;
592 switch (type) {
593 case T_SIMDFPE:
594 /* Make sure we enable interrupts before die()ing */
595 sti(); /* The SIMD exception comes in via cmninttrap */
596 /*FALLTHROUGH*/
597 default:
598 if (type & USER) {
599 if (tudebug)
600 showregs(type, rp, (caddr_t)0);
601 printf("trap: Unknown trap type %d in user mode\n",
602 type & ~USER);
603 siginfo.si_signo = SIGILL;
604 siginfo.si_code = ILL_ILLTRP;
605 siginfo.si_addr = (caddr_t)rp->r_pc;
606 siginfo.si_trapno = type & ~USER;
607 fault = FLTILL;
608 break;
609 } else {
610 (void) die(type, rp, addr, cpuid);
611 /*NOTREACHED*/
614 case T_PGFLT: /* system page fault */
616 * If we're under on_trap() protection (see <sys/ontrap.h>),
617 * set ot_trap and bounce back to the on_trap() call site
618 * via the installed trampoline.
620 if ((ct->t_ontrap != NULL) &&
621 (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
622 ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
623 rp->r_pc = ct->t_ontrap->ot_trampoline;
624 goto cleanup;
628 * If we have an Instruction fault in kernel mode, then that
629 * means we've tried to execute a user page (SMEP) or both of
630 * PAE and NXE are enabled. In either case, given that it's a
631 * kernel fault, we should panic immediately and not try to make
632 * any more forward progress. This indicates a bug in the
633 * kernel, which if execution continued, could be exploited to
634 * wreak havoc on the system.
636 if (errcode & PF_ERR_EXEC) {
637 (void) die(type, rp, addr, cpuid);
641 * We need to check if SMAP is in play. If SMAP is in play, then
642 * any access to a user page will show up as a protection
643 * violation. To see if SMAP is enabled we first check if it's a
644 * user address and whether we have the feature flag set. If we
645 * do and the interrupted registers do not allow for user
646 * accesses (PS_ACHK is not enabled), then we need to die
647 * immediately.
649 if (addr < (caddr_t)kernelbase &&
650 is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE &&
651 (rp->r_ps & PS_ACHK) == 0) {
652 (void) die(type, rp, addr, cpuid);
656 * See if we can handle as pagefault. Save lofault and onfault
657 * across this. Here we assume that an address less than
658 * KERNELBASE is a user fault. We can do this as copy.s
659 * routines verify that the starting address is less than
660 * KERNELBASE before starting and because we know that we
661 * always have KERNELBASE mapped as invalid to serve as a
662 * "barrier".
664 lofault = ct->t_lofault;
665 onfault = ct->t_onfault;
666 ct->t_lofault = 0;
668 mstate = new_mstate(ct, LMS_KFAULT);
670 if (addr < (caddr_t)kernelbase) {
671 res = pagefault(addr,
672 (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
673 if (res == FC_NOMAP &&
674 addr < p->p_usrstack &&
675 grow(addr))
676 res = 0;
677 } else {
678 res = pagefault(addr,
679 (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
681 (void) new_mstate(ct, mstate);
684 * Restore lofault and onfault. If we resolved the fault, exit.
685 * If we didn't and lofault wasn't set, die.
687 ct->t_lofault = lofault;
688 ct->t_onfault = onfault;
689 if (res == 0)
690 goto cleanup;
692 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
693 if (lofault == 0 && opteron_erratum_93) {
695 * Workaround for Opteron Erratum 93. On return from
696 * a System Managment Interrupt at a HLT instruction
697 * the %rip might be truncated to a 32 bit value.
698 * BIOS is supposed to fix this, but some don't.
699 * If this occurs we simply restore the high order bits.
700 * The HLT instruction is 1 byte of 0xf4.
702 uintptr_t rip = rp->r_pc;
704 if ((rip & 0xfffffffful) == rip) {
705 rip |= 0xfffffffful << 32;
706 if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
707 PFN_INVALID &&
708 (*(uchar_t *)rip == 0xf4 ||
709 *(uchar_t *)(rip - 1) == 0xf4)) {
710 rp->r_pc = rip;
711 goto cleanup;
715 #endif /* OPTERON_ERRATUM_93 && _LP64 */
717 #ifdef OPTERON_ERRATUM_91
718 if (lofault == 0 && opteron_erratum_91) {
720 * Workaround for Opteron Erratum 91. Prefetches may
721 * generate a page fault (they're not supposed to do
722 * that!). If this occurs we simply return back to the
723 * instruction.
725 caddr_t pc = (caddr_t)rp->r_pc;
728 * If the faulting PC is not mapped, this is a
729 * legitimate kernel page fault that must result in a
730 * panic. If the faulting PC is mapped, it could contain
731 * a prefetch instruction. Check for that here.
733 if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
734 if (cmp_to_prefetch((uchar_t *)pc)) {
735 #ifdef DEBUG
736 cmn_err(CE_WARN, "Opteron erratum 91 "
737 "occurred: kernel prefetch"
738 " at %p generated a page fault!",
739 (void *)rp->r_pc);
740 #endif /* DEBUG */
741 goto cleanup;
744 (void) die(type, rp, addr, cpuid);
746 #endif /* OPTERON_ERRATUM_91 */
748 if (lofault == 0)
749 (void) die(type, rp, addr, cpuid);
752 * Cannot resolve fault. Return to lofault.
754 if (lodebug) {
755 showregs(type, rp, addr);
756 traceregs(rp);
758 if (FC_CODE(res) == FC_OBJERR)
759 res = FC_ERRNO(res);
760 else
761 res = EFAULT;
762 rp->r_r0 = res;
763 rp->r_pc = ct->t_lofault;
764 goto cleanup;
766 case T_PGFLT + USER: /* user page fault */
767 if (faultdebug) {
768 char *fault_str;
770 switch (rw) {
771 case S_READ:
772 fault_str = "read";
773 break;
774 case S_WRITE:
775 fault_str = "write";
776 break;
777 case S_EXEC:
778 fault_str = "exec";
779 break;
780 default:
781 fault_str = "";
782 break;
784 printf("user %s fault: addr=0x%lx errcode=0x%x\n",
785 fault_str, (uintptr_t)addr, errcode);
788 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
790 * Workaround for AMD erratum 100
792 * A 32-bit process may receive a page fault on a non
793 * 32-bit address by mistake. The range of the faulting
794 * address will be
796 * 0xffffffff80000000 .. 0xffffffffffffffff or
797 * 0x0000000100000000 .. 0x000000017fffffff
799 * The fault is always due to an instruction fetch, however
800 * the value of r_pc should be correct (in 32 bit range),
801 * so we ignore the page fault on the bogus address.
803 if (p->p_model == DATAMODEL_ILP32 &&
804 (0xffffffff80000000 <= (uintptr_t)addr ||
805 (0x100000000 <= (uintptr_t)addr &&
806 (uintptr_t)addr <= 0x17fffffff))) {
807 if (!opteron_erratum_100)
808 panic("unexpected erratum #100");
809 if (rp->r_pc <= 0xffffffff)
810 goto out;
812 #endif /* OPTERON_ERRATUM_100 && _LP64 */
814 ASSERT(!(curthread->t_flag & T_WATCHPT));
815 watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
816 #ifdef __i386
818 * In 32-bit mode, the lcall (system call) instruction fetches
819 * one word from the stack, at the stack pointer, because of the
820 * way the call gate is constructed. This is a bogus
821 * read and should not be counted as a read watchpoint.
822 * We work around the problem here by testing to see if
823 * this situation applies and, if so, simply jumping to
824 * the code in locore.s that fields the system call trap.
825 * The registers on the stack are already set up properly
826 * due to the match between the call gate sequence and the
827 * trap gate sequence. We just have to adjust the pc.
829 if (watchpage && addr == (caddr_t)rp->r_sp &&
830 rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
831 extern void watch_syscall(void);
833 rp->r_pc += LCALLSIZE;
834 watch_syscall(); /* never returns */
835 /* NOTREACHED */
837 #endif /* __i386 */
838 vaddr = addr;
839 if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
840 fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
841 else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
842 sz, NULL, rw)) != 0) {
843 if (ta) {
844 do_watch_step(vaddr, sz, rw,
845 watchcode, rp->r_pc);
846 fault_type = F_INVAL;
847 } else {
848 bzero(&siginfo, sizeof (siginfo));
849 siginfo.si_signo = SIGTRAP;
850 siginfo.si_code = watchcode;
851 siginfo.si_addr = vaddr;
852 siginfo.si_trapafter = 0;
853 siginfo.si_pc = (caddr_t)rp->r_pc;
854 fault = FLTWATCH;
855 break;
857 } else {
858 /* XXX pr_watch_emul() never succeeds (for now) */
859 if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
860 goto out;
861 do_watch_step(vaddr, sz, rw, 0, 0);
862 fault_type = F_INVAL;
865 res = pagefault(addr, fault_type, rw, 0);
868 * If pagefault() succeeded, ok.
869 * Otherwise attempt to grow the stack.
871 if (res == 0 ||
872 (res == FC_NOMAP &&
873 addr < p->p_usrstack &&
874 grow(addr))) {
875 lwp->lwp_lastfault = FLTPAGE;
876 lwp->lwp_lastfaddr = addr;
877 if (prismember(&p->p_fltmask, FLTPAGE)) {
878 bzero(&siginfo, sizeof (siginfo));
879 siginfo.si_addr = addr;
880 (void) stop_on_fault(FLTPAGE, &siginfo);
882 goto out;
883 } else if (res == FC_PROT && addr < p->p_usrstack &&
884 (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
885 report_stack_exec(p, addr);
888 #ifdef OPTERON_ERRATUM_91
890 * Workaround for Opteron Erratum 91. Prefetches may generate a
891 * page fault (they're not supposed to do that!). If this
892 * occurs we simply return back to the instruction.
894 * We rely on copyin to properly fault in the page with r_pc.
896 if (opteron_erratum_91 &&
897 addr != (caddr_t)rp->r_pc &&
898 instr_is_prefetch((caddr_t)rp->r_pc)) {
899 #ifdef DEBUG
900 cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
901 "prefetch at %p in pid %d generated a trap!",
902 (void *)rp->r_pc, p->p_pid);
903 #endif /* DEBUG */
904 goto out;
906 #endif /* OPTERON_ERRATUM_91 */
908 if (tudebug)
909 showregs(type, rp, addr);
911 * In the case where both pagefault and grow fail,
912 * set the code to the value provided by pagefault.
913 * We map all errors returned from pagefault() to SIGSEGV.
915 bzero(&siginfo, sizeof (siginfo));
916 siginfo.si_addr = addr;
917 switch (FC_CODE(res)) {
918 case FC_HWERR:
919 case FC_NOSUPPORT:
920 siginfo.si_signo = SIGBUS;
921 siginfo.si_code = BUS_ADRERR;
922 fault = FLTACCESS;
923 break;
924 case FC_ALIGN:
925 siginfo.si_signo = SIGBUS;
926 siginfo.si_code = BUS_ADRALN;
927 fault = FLTACCESS;
928 break;
929 case FC_OBJERR:
930 if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
931 siginfo.si_signo = SIGBUS;
932 siginfo.si_code = BUS_OBJERR;
933 fault = FLTACCESS;
935 break;
936 default: /* FC_NOMAP or FC_PROT */
937 siginfo.si_signo = SIGSEGV;
938 siginfo.si_code =
939 (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
940 fault = FLTBOUNDS;
941 break;
943 break;
945 case T_ILLINST + USER: /* invalid opcode fault */
947 * If the syscall instruction is disabled due to LDT usage, a
948 * user program that attempts to execute it will trigger a #ud
949 * trap. Check for that case here. If this occurs on a CPU which
950 * doesn't even support syscall, the result of all of this will
951 * be to emulate that particular instruction.
953 if (p->p_ldt != NULL &&
954 ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
955 goto out;
957 #ifdef __amd64
959 * Emulate the LAHF and SAHF instructions if needed.
960 * See the instr_is_lsahf function for details.
962 if (p->p_model == DATAMODEL_LP64 &&
963 instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
964 emulate_lsahf(rp, instr);
965 goto out;
967 #endif
969 /*FALLTHROUGH*/
971 if (tudebug)
972 showregs(type, rp, (caddr_t)0);
973 siginfo.si_signo = SIGILL;
974 siginfo.si_code = ILL_ILLOPC;
975 siginfo.si_addr = (caddr_t)rp->r_pc;
976 fault = FLTILL;
977 break;
979 case T_ZERODIV + USER: /* integer divide by zero */
980 if (tudebug && tudebugfpe)
981 showregs(type, rp, (caddr_t)0);
982 siginfo.si_signo = SIGFPE;
983 siginfo.si_code = FPE_INTDIV;
984 siginfo.si_addr = (caddr_t)rp->r_pc;
985 fault = FLTIZDIV;
986 break;
988 case T_OVFLW + USER: /* integer overflow */
989 if (tudebug && tudebugfpe)
990 showregs(type, rp, (caddr_t)0);
991 siginfo.si_signo = SIGFPE;
992 siginfo.si_code = FPE_INTOVF;
993 siginfo.si_addr = (caddr_t)rp->r_pc;
994 fault = FLTIOVF;
995 break;
997 case T_NOEXTFLT + USER: /* math coprocessor not available */
998 if (tudebug && tudebugfpe)
999 showregs(type, rp, addr);
1000 if (fpnoextflt(rp)) {
1001 siginfo.si_signo = SIGILL;
1002 siginfo.si_code = ILL_ILLOPC;
1003 siginfo.si_addr = (caddr_t)rp->r_pc;
1004 fault = FLTILL;
1006 break;
1008 case T_EXTOVRFLT: /* extension overrun fault */
1009 /* check if we took a kernel trap on behalf of user */
1011 extern void ndptrap_frstor(void);
1012 if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1013 sti(); /* T_EXTOVRFLT comes in via cmninttrap */
1014 (void) die(type, rp, addr, cpuid);
1016 type |= USER;
1018 /*FALLTHROUGH*/
1019 case T_EXTOVRFLT + USER: /* extension overrun fault */
1020 if (tudebug && tudebugfpe)
1021 showregs(type, rp, addr);
1022 if (fpextovrflt(rp)) {
1023 siginfo.si_signo = SIGSEGV;
1024 siginfo.si_code = SEGV_MAPERR;
1025 siginfo.si_addr = (caddr_t)rp->r_pc;
1026 fault = FLTBOUNDS;
1028 break;
1030 case T_EXTERRFLT: /* x87 floating point exception pending */
1031 /* check if we took a kernel trap on behalf of user */
1033 extern void ndptrap_frstor(void);
1034 if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1035 sti(); /* T_EXTERRFLT comes in via cmninttrap */
1036 (void) die(type, rp, addr, cpuid);
1038 type |= USER;
1040 /*FALLTHROUGH*/
1042 case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1043 if (tudebug && tudebugfpe)
1044 showregs(type, rp, addr);
1045 if (sicode = fpexterrflt(rp)) {
1046 siginfo.si_signo = SIGFPE;
1047 siginfo.si_code = sicode;
1048 siginfo.si_addr = (caddr_t)rp->r_pc;
1049 fault = FLTFPE;
1051 break;
1053 case T_SIMDFPE + USER: /* SSE and SSE2 exceptions */
1054 if (tudebug && tudebugsse)
1055 showregs(type, rp, addr);
1056 if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1057 !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1059 * There are rumours that some user instructions
1060 * on older CPUs can cause this trap to occur; in
1061 * which case send a SIGILL instead of a SIGFPE.
1063 siginfo.si_signo = SIGILL;
1064 siginfo.si_code = ILL_ILLTRP;
1065 siginfo.si_addr = (caddr_t)rp->r_pc;
1066 siginfo.si_trapno = type & ~USER;
1067 fault = FLTILL;
1068 } else if ((sicode = fpsimderrflt(rp)) != 0) {
1069 siginfo.si_signo = SIGFPE;
1070 siginfo.si_code = sicode;
1071 siginfo.si_addr = (caddr_t)rp->r_pc;
1072 fault = FLTFPE;
1075 sti(); /* The SIMD exception comes in via cmninttrap */
1076 break;
1078 case T_BPTFLT: /* breakpoint trap */
1080 * Kernel breakpoint traps should only happen when kmdb is
1081 * active, and even then, it'll have interposed on the IDT, so
1082 * control won't get here. If it does, we've hit a breakpoint
1083 * without the debugger, which is very strange, and very
1084 * fatal.
1086 if (tudebug && tudebugbpt)
1087 showregs(type, rp, (caddr_t)0);
1089 (void) die(type, rp, addr, cpuid);
1090 break;
1092 case T_SGLSTP: /* single step/hw breakpoint exception */
1094 /* Now evaluate how we got here */
1095 if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1097 * i386 single-steps even through lcalls which
1098 * change the privilege level. So we take a trap at
1099 * the first instruction in privileged mode.
1101 * Set a flag to indicate that upon completion of
1102 * the system call, deal with the single-step trap.
1104 * The same thing happens for sysenter, too.
1106 singlestep_twiddle = 0;
1107 if (rp->r_pc == (uintptr_t)sys_sysenter ||
1108 rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1109 singlestep_twiddle = 1;
1110 #if defined(__amd64)
1112 * Since we are already on the kernel's
1113 * %gs, on 64-bit systems the sysenter case
1114 * needs to adjust the pc to avoid
1115 * executing the swapgs instruction at the
1116 * top of the handler.
1118 if (rp->r_pc == (uintptr_t)sys_sysenter)
1119 rp->r_pc = (uintptr_t)
1120 _sys_sysenter_post_swapgs;
1121 else
1122 rp->r_pc = (uintptr_t)
1123 _brand_sys_sysenter_post_swapgs;
1124 #endif
1126 #if defined(__i386)
1127 else if (rp->r_pc == (uintptr_t)sys_call ||
1128 rp->r_pc == (uintptr_t)brand_sys_call) {
1129 singlestep_twiddle = 1;
1131 #endif
1132 else {
1133 /* not on sysenter/syscall; uregs available */
1134 if (tudebug && tudebugbpt)
1135 showregs(type, rp, (caddr_t)0);
1137 if (singlestep_twiddle) {
1138 rp->r_ps &= ~PS_T; /* turn off trace */
1139 lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1140 ct->t_post_sys = 1;
1141 aston(curthread);
1142 goto cleanup;
1145 /* XXX - needs review on debugger interface? */
1146 if (boothowto & RB_DEBUG)
1147 debug_enter((char *)NULL);
1148 else
1149 (void) die(type, rp, addr, cpuid);
1150 break;
1152 case T_NMIFLT: /* NMI interrupt */
1153 printf("Unexpected NMI in system mode\n");
1154 goto cleanup;
1156 case T_NMIFLT + USER: /* NMI interrupt */
1157 printf("Unexpected NMI in user mode\n");
1158 break;
1160 case T_GPFLT: /* general protection violation */
1162 * Any #GP that occurs during an on_trap .. no_trap bracket
1163 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1164 * or in a on_fault .. no_fault bracket, is forgiven
1165 * and we trampoline. This protection is given regardless
1166 * of whether we are 32/64 bit etc - if a distinction is
1167 * required then define new on_trap protection types.
1169 * On amd64, we can get a #gp from referencing addresses
1170 * in the virtual address hole e.g. from a copyin or in
1171 * update_sregs while updating user segment registers.
1173 * On the 32-bit hypervisor we could also generate one in
1174 * mfn_to_pfn by reaching around or into where the hypervisor
1175 * lives which is protected by segmentation.
1179 * If we're under on_trap() protection (see <sys/ontrap.h>),
1180 * set ot_trap and trampoline back to the on_trap() call site
1181 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1183 if (ct->t_ontrap != NULL) {
1184 int ttype = ct->t_ontrap->ot_prot &
1185 (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1187 if (ttype != 0) {
1188 ct->t_ontrap->ot_trap |= ttype;
1189 if (tudebug)
1190 showregs(type, rp, (caddr_t)0);
1191 rp->r_pc = ct->t_ontrap->ot_trampoline;
1192 goto cleanup;
1197 * If we're under lofault protection (copyin etc.),
1198 * longjmp back to lofault with an EFAULT.
1200 if (ct->t_lofault) {
1202 * Fault is not resolvable, so just return to lofault
1204 if (lodebug) {
1205 showregs(type, rp, addr);
1206 traceregs(rp);
1208 rp->r_r0 = EFAULT;
1209 rp->r_pc = ct->t_lofault;
1210 goto cleanup;
1214 * We fall through to the next case, which repeats
1215 * the OT_SEGMENT_ACCESS check which we've already
1216 * done, so we'll always fall through to the
1217 * T_STKFLT case.
1219 /*FALLTHROUGH*/
1220 case T_SEGFLT: /* segment not present fault */
1222 * One example of this is #NP in update_sregs while
1223 * attempting to update a user segment register
1224 * that points to a descriptor that is marked not
1225 * present.
1227 if (ct->t_ontrap != NULL &&
1228 ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1229 ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1230 if (tudebug)
1231 showregs(type, rp, (caddr_t)0);
1232 rp->r_pc = ct->t_ontrap->ot_trampoline;
1233 goto cleanup;
1235 /*FALLTHROUGH*/
1236 case T_STKFLT: /* stack fault */
1237 case T_TSSFLT: /* invalid TSS fault */
1238 if (tudebug)
1239 showregs(type, rp, (caddr_t)0);
1240 if (kern_gpfault(rp))
1241 (void) die(type, rp, addr, cpuid);
1242 goto cleanup;
1245 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1246 * should have no need for them, so we put a stop to it here.
1248 * So: not-present fault is ONLY valid for 32-bit processes with
1249 * a private LDT trying to do a system call. Emulate it.
1251 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1252 * have a private LDT, and are trying to do a system call. Emulate it.
1255 case T_SEGFLT + USER: /* segment not present fault */
1256 case T_GPFLT + USER: /* general protection violation */
1257 #ifdef _SYSCALL32_IMPL
1258 if (p->p_model != DATAMODEL_NATIVE) {
1259 #endif /* _SYSCALL32_IMPL */
1260 if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1261 if (type == T_SEGFLT + USER)
1262 ASSERT(p->p_ldt != NULL);
1264 if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1265 type == T_SEGFLT + USER) {
1268 * The user attempted a system call via the obsolete
1269 * call gate mechanism. Because the process doesn't have
1270 * an LDT (i.e. the ldtr contains 0), a #gp results.
1271 * Emulate the syscall here, just as we do above for a
1272 * #np trap.
1276 * Since this is a not-present trap, rp->r_pc points to
1277 * the trapping lcall instruction. We need to bump it
1278 * to the next insn so the app can continue on.
1280 rp->r_pc += LCALLSIZE;
1281 lwp->lwp_regs = rp;
1284 * Normally the microstate of the LWP is forced back to
1285 * LMS_USER by the syscall handlers. Emulate that
1286 * behavior here.
1288 mstate = LMS_USER;
1290 dosyscall();
1291 goto out;
1294 #ifdef _SYSCALL32_IMPL
1296 #endif /* _SYSCALL32_IMPL */
1298 * If the current process is using a private LDT and the
1299 * trapping instruction is sysenter, the sysenter instruction
1300 * has been disabled on the CPU because it destroys segment
1301 * registers. If this is the case, rewrite the instruction to
1302 * be a safe system call and retry it. If this occurs on a CPU
1303 * which doesn't even support sysenter, the result of all of
1304 * this will be to emulate that particular instruction.
1306 if (p->p_ldt != NULL &&
1307 ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1308 goto out;
1310 /*FALLTHROUGH*/
1312 case T_BOUNDFLT + USER: /* bound fault */
1313 case T_STKFLT + USER: /* stack fault */
1314 case T_TSSFLT + USER: /* invalid TSS fault */
1315 if (tudebug)
1316 showregs(type, rp, (caddr_t)0);
1317 siginfo.si_signo = SIGSEGV;
1318 siginfo.si_code = SEGV_MAPERR;
1319 siginfo.si_addr = (caddr_t)rp->r_pc;
1320 fault = FLTBOUNDS;
1321 break;
1323 case T_ALIGNMENT + USER: /* user alignment error (486) */
1324 if (tudebug)
1325 showregs(type, rp, (caddr_t)0);
1326 bzero(&siginfo, sizeof (siginfo));
1327 siginfo.si_signo = SIGBUS;
1328 siginfo.si_code = BUS_ADRALN;
1329 siginfo.si_addr = (caddr_t)rp->r_pc;
1330 fault = FLTACCESS;
1331 break;
1333 case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1334 if (tudebug && tudebugbpt)
1335 showregs(type, rp, (caddr_t)0);
1337 /* Was it single-stepping? */
1338 if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1339 pcb_t *pcb = &lwp->lwp_pcb;
1341 rp->r_ps &= ~PS_T;
1343 * If both NORMAL_STEP and WATCH_STEP are in effect,
1344 * give precedence to WATCH_STEP. If neither is set,
1345 * user must have set the PS_T bit in %efl; treat this
1346 * as NORMAL_STEP.
1348 if ((fault = undo_watch_step(&siginfo)) == 0 &&
1349 ((pcb->pcb_flags & NORMAL_STEP) ||
1350 !(pcb->pcb_flags & WATCH_STEP))) {
1351 siginfo.si_signo = SIGTRAP;
1352 siginfo.si_code = TRAP_TRACE;
1353 siginfo.si_addr = (caddr_t)rp->r_pc;
1354 fault = FLTTRACE;
1356 pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1358 break;
1360 case T_BPTFLT + USER: /* breakpoint trap */
1361 if (tudebug && tudebugbpt)
1362 showregs(type, rp, (caddr_t)0);
1364 * int 3 (the breakpoint instruction) leaves the pc referring
1365 * to the address one byte after the breakpointed address.
1366 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1367 * it back so it refers to the breakpointed address.
1369 if (p->p_proc_flag & P_PR_BPTADJ)
1370 rp->r_pc--;
1371 siginfo.si_signo = SIGTRAP;
1372 siginfo.si_code = TRAP_BRKPT;
1373 siginfo.si_addr = (caddr_t)rp->r_pc;
1374 fault = FLTBPT;
1375 break;
1377 case T_AST:
1379 * This occurs only after the cs register has been made to
1380 * look like a kernel selector, either through debugging or
1381 * possibly by functions like setcontext(). The thread is
1382 * about to cause a general protection fault at common_iret()
1383 * in locore. We let that happen immediately instead of
1384 * doing the T_AST processing.
1386 goto cleanup;
1388 case T_AST + USER: /* profiling, resched, h/w error pseudo trap */
1389 if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1390 proc_t *p = ttoproc(curthread);
1391 extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1393 lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1394 print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1396 contract_process_hwerr(p->p_ct_process, p);
1397 siginfo.si_signo = SIGKILL;
1398 siginfo.si_code = SI_NOINFO;
1399 } else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1400 lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1401 if (kcpc_overflow_ast()) {
1403 * Signal performance counter overflow
1405 if (tudebug)
1406 showregs(type, rp, (caddr_t)0);
1407 bzero(&siginfo, sizeof (siginfo));
1408 siginfo.si_signo = SIGEMT;
1409 siginfo.si_code = EMT_CPCOVF;
1410 siginfo.si_addr = (caddr_t)rp->r_pc;
1411 fault = FLTCPCOVF;
1415 break;
1419 * We can't get here from a system trap
1421 ASSERT(type & USER);
1423 if (fault) {
1424 /* We took a fault so abort single step. */
1425 lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1427 * Remember the fault and fault adddress
1428 * for real-time (SIGPROF) profiling.
1430 lwp->lwp_lastfault = fault;
1431 lwp->lwp_lastfaddr = siginfo.si_addr;
1433 DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1436 * If a debugger has declared this fault to be an
1437 * event of interest, stop the lwp. Otherwise just
1438 * deliver the associated signal.
1440 if (siginfo.si_signo != SIGKILL &&
1441 prismember(&p->p_fltmask, fault) &&
1442 stop_on_fault(fault, &siginfo) == 0)
1443 siginfo.si_signo = 0;
1446 if (siginfo.si_signo)
1447 trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1449 if (lwp->lwp_oweupc)
1450 profil_tick(rp->r_pc);
1452 if (ct->t_astflag | ct->t_sig_check) {
1454 * Turn off the AST flag before checking all the conditions that
1455 * may have caused an AST. This flag is on whenever a signal or
1456 * unusual condition should be handled after the next trap or
1457 * syscall.
1459 astoff(ct);
1461 * If a single-step trap occurred on a syscall (see above)
1462 * recognize it now. Do this before checking for signals
1463 * because deferred_singlestep_trap() may generate a SIGTRAP to
1464 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1466 if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1467 deferred_singlestep_trap((caddr_t)rp->r_pc);
1469 ct->t_sig_check = 0;
1472 * As in other code paths that check against TP_CHANGEBIND,
1473 * we perform the check first without p_lock held -- only
1474 * acquiring p_lock in the unlikely event that it is indeed
1475 * set. This is safe because we are doing this after the
1476 * astoff(); if we are racing another thread setting
1477 * TP_CHANGEBIND on us, we will pick it up on a subsequent
1478 * lap through.
1480 if (curthread->t_proc_flag & TP_CHANGEBIND) {
1481 mutex_enter(&p->p_lock);
1482 if (curthread->t_proc_flag & TP_CHANGEBIND) {
1483 timer_lwpbind();
1484 curthread->t_proc_flag &= ~TP_CHANGEBIND;
1486 mutex_exit(&p->p_lock);
1490 * for kaio requests that are on the per-process poll queue,
1491 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1492 * should copyout their result_t to user memory. by copying
1493 * out the result_t, the user can poll on memory waiting
1494 * for the kaio request to complete.
1496 if (p->p_aio)
1497 aio_cleanup(0);
1499 * If this LWP was asked to hold, call holdlwp(), which will
1500 * stop. holdlwps() sets this up and calls pokelwps() which
1501 * sets the AST flag.
1503 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1504 * through lwp_rtt(). That flag is set if the lwp_create(2)
1505 * syscall failed after creating the LWP.
1507 if (ISHOLD(p))
1508 holdlwp();
1511 * All code that sets signals and makes ISSIG evaluate true must
1512 * set t_astflag afterwards.
1514 if (ISSIG_PENDING(ct, lwp, p)) {
1515 if (issig(FORREAL))
1516 psig();
1517 ct->t_sig_check = 1;
1520 if (ct->t_rprof != NULL) {
1521 realsigprof(0, 0, 0);
1522 ct->t_sig_check = 1;
1526 * /proc can't enable/disable the trace bit itself
1527 * because that could race with the call gate used by
1528 * system calls via "lcall". If that happened, an
1529 * invalid EFLAGS would result. prstep()/prnostep()
1530 * therefore schedule an AST for the purpose.
1532 if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1533 lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1534 rp->r_ps |= PS_T;
1536 if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1537 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1538 rp->r_ps &= ~PS_T;
1542 out: /* We can't get here from a system trap */
1543 ASSERT(type & USER);
1545 if (ISHOLD(p))
1546 holdlwp();
1549 * Set state to LWP_USER here so preempt won't give us a kernel
1550 * priority if it occurs after this point. Call CL_TRAPRET() to
1551 * restore the user-level priority.
1553 * It is important that no locks (other than spinlocks) be entered
1554 * after this point before returning to user mode (unless lwp_state
1555 * is set back to LWP_SYS).
1557 lwp->lwp_state = LWP_USER;
1559 if (ct->t_trapret) {
1560 ct->t_trapret = 0;
1561 thread_lock(ct);
1562 CL_TRAPRET(ct);
1563 thread_unlock(ct);
1565 if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1566 preempt();
1567 prunstop();
1568 (void) new_mstate(ct, mstate);
1570 /* Kernel probe */
1571 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1572 tnf_microstate, state, LMS_USER);
1574 return;
1576 cleanup: /* system traps end up here */
1577 ASSERT(!(type & USER));
1581 * Patch non-zero to disable preemption of threads in the kernel.
1583 int IGNORE_KERNEL_PREEMPTION = 0; /* XXX - delete this someday */
1585 struct kpreempt_cnts { /* kernel preemption statistics */
1586 int kpc_idle; /* executing idle thread */
1587 int kpc_intr; /* executing interrupt thread */
1588 int kpc_clock; /* executing clock thread */
1589 int kpc_blocked; /* thread has blocked preemption (t_preempt) */
1590 int kpc_notonproc; /* thread is surrendering processor */
1591 int kpc_inswtch; /* thread has ratified scheduling decision */
1592 int kpc_prilevel; /* processor interrupt level is too high */
1593 int kpc_apreempt; /* asynchronous preemption */
1594 int kpc_spreempt; /* synchronous preemption */
1595 } kpreempt_cnts;
1598 * kernel preemption: forced rescheduling, preempt the running kernel thread.
1599 * the argument is old PIL for an interrupt,
1600 * or the distingished value KPREEMPT_SYNC.
1602 void
1603 kpreempt(int asyncspl)
1605 kthread_t *ct = curthread;
1607 if (IGNORE_KERNEL_PREEMPTION) {
1608 aston(CPU->cpu_dispthread);
1609 return;
1613 * Check that conditions are right for kernel preemption
1615 do {
1616 if (ct->t_preempt) {
1618 * either a privileged thread (idle, panic, interrupt)
1619 * or will check when t_preempt is lowered
1620 * We need to specifically handle the case where
1621 * the thread is in the middle of swtch (resume has
1622 * been called) and has its t_preempt set
1623 * [idle thread and a thread which is in kpreempt
1624 * already] and then a high priority thread is
1625 * available in the local dispatch queue.
1626 * In this case the resumed thread needs to take a
1627 * trap so that it can call kpreempt. We achieve
1628 * this by using siron().
1629 * How do we detect this condition:
1630 * idle thread is running and is in the midst of
1631 * resume: curthread->t_pri == -1 && CPU->dispthread
1632 * != CPU->thread
1633 * Need to ensure that this happens only at high pil
1634 * resume is called at high pil
1635 * Only in resume_from_idle is the pil changed.
1637 if (ct->t_pri < 0) {
1638 kpreempt_cnts.kpc_idle++;
1639 if (CPU->cpu_dispthread != CPU->cpu_thread)
1640 siron();
1641 } else if (ct->t_flag & T_INTR_THREAD) {
1642 kpreempt_cnts.kpc_intr++;
1643 if (ct->t_pil == CLOCK_LEVEL)
1644 kpreempt_cnts.kpc_clock++;
1645 } else {
1646 kpreempt_cnts.kpc_blocked++;
1647 if (CPU->cpu_dispthread != CPU->cpu_thread)
1648 siron();
1650 aston(CPU->cpu_dispthread);
1651 return;
1653 if (ct->t_state != TS_ONPROC ||
1654 ct->t_disp_queue != CPU->cpu_disp) {
1655 /* this thread will be calling swtch() shortly */
1656 kpreempt_cnts.kpc_notonproc++;
1657 if (CPU->cpu_thread != CPU->cpu_dispthread) {
1658 /* already in swtch(), force another */
1659 kpreempt_cnts.kpc_inswtch++;
1660 siron();
1662 return;
1664 if (getpil() >= DISP_LEVEL) {
1666 * We can't preempt this thread if it is at
1667 * a PIL >= DISP_LEVEL since it may be holding
1668 * a spin lock (like sched_lock).
1670 siron(); /* check back later */
1671 kpreempt_cnts.kpc_prilevel++;
1672 return;
1674 if (!interrupts_enabled()) {
1676 * Can't preempt while running with ints disabled
1678 kpreempt_cnts.kpc_prilevel++;
1679 return;
1681 if (asyncspl != KPREEMPT_SYNC)
1682 kpreempt_cnts.kpc_apreempt++;
1683 else
1684 kpreempt_cnts.kpc_spreempt++;
1686 ct->t_preempt++;
1687 preempt();
1688 ct->t_preempt--;
1689 } while (CPU->cpu_kprunrun);
1693 * Print out debugging info.
1695 static void
1696 showregs(uint_t type, struct regs *rp, caddr_t addr)
1698 int s;
1700 s = spl7();
1701 type &= ~USER;
1702 if (PTOU(curproc)->u_comm[0])
1703 printf("%s: ", PTOU(curproc)->u_comm);
1704 if (type < TRAP_TYPES)
1705 printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1706 else
1707 switch (type) {
1708 case T_SYSCALL:
1709 printf("Syscall Trap:\n");
1710 break;
1711 case T_AST:
1712 printf("AST\n");
1713 break;
1714 default:
1715 printf("Bad Trap = %d\n", type);
1716 break;
1718 if (type == T_PGFLT) {
1719 printf("Bad %s fault at addr=0x%lx\n",
1720 USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1721 } else if (addr) {
1722 printf("addr=0x%lx\n", (uintptr_t)addr);
1725 printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1726 (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1727 ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1729 #if defined(__lint)
1731 * this clause can be deleted when lint bug 4870403 is fixed
1732 * (lint thinks that bit 32 is illegal in a %b format string)
1734 printf("cr0: %x cr4: %b\n",
1735 (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1736 #else
1737 printf("cr0: %b cr4: %b\n",
1738 (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1739 #endif /* __lint */
1741 printf("cr2: %lx", getcr2());
1742 #if !defined(__xpv)
1743 printf("cr3: %lx", getcr3());
1744 #if defined(__amd64)
1745 printf("cr8: %lx\n", getcr8());
1746 #endif
1747 #endif
1748 printf("\n");
1750 dumpregs(rp);
1751 splx(s);
1754 static void
1755 dumpregs(struct regs *rp)
1757 #if defined(__amd64)
1758 const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1760 printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1761 printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1762 printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1763 printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1764 printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1766 printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1767 " ds", rp->r_ds);
1768 printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1770 printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1771 printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1773 printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1775 #elif defined(__i386)
1776 const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1778 printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1779 " es", rp->r_es, " ds", rp->r_ds);
1780 printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1781 "ebp", rp->r_ebp, "esp", rp->r_esp);
1782 printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1783 "ecx", rp->r_ecx, "eax", rp->r_eax);
1784 printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1785 "eip", rp->r_eip, " cs", rp->r_cs);
1786 printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1787 "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1789 #endif /* __i386 */
1793 * Test to see if the instruction is iret on i386 or iretq on amd64.
1795 * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1796 * then we are in the context of hypervisor's failsafe handler because it
1797 * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1799 static int
1800 instr_is_iret(caddr_t pc)
1803 #if defined(__xpv)
1804 extern void nopop_sys_rtt_syscall(void);
1805 return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1807 #else
1809 #if defined(__amd64)
1810 static const uint8_t iret_insn[2] = { 0x48, 0xcf }; /* iretq */
1812 #elif defined(__i386)
1813 static const uint8_t iret_insn[1] = { 0xcf }; /* iret */
1814 #endif /* __i386 */
1815 return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1817 #endif /* __xpv */
1820 #if defined(__i386)
1823 * Test to see if the instruction is part of __SEGREGS_POP
1825 * Note carefully the appallingly awful dependency between
1826 * the instruction sequence used in __SEGREGS_POP and these
1827 * instructions encoded here.
1829 static int
1830 instr_is_segregs_pop(caddr_t pc)
1832 static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1833 static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1834 static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1835 static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1837 if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1838 bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1839 bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1840 bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1841 return (1);
1843 return (0);
1846 #endif /* __i386 */
1849 * Test to see if the instruction is part of _sys_rtt.
1851 * Again on the hypervisor if we try to IRET to user land with a bad code
1852 * or stack selector we will get vectored through xen_failsafe_callback.
1853 * In which case we assume we got here via _sys_rtt since we only allow
1854 * IRET to user land to take place in _sys_rtt.
1856 static int
1857 instr_is_sys_rtt(caddr_t pc)
1859 extern void _sys_rtt(), _sys_rtt_end();
1861 if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1862 (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1863 return (0);
1865 return (1);
1869 * Handle #gp faults in kernel mode.
1871 * One legitimate way this can happen is if we attempt to update segment
1872 * registers to naughty values on the way out of the kernel.
1874 * This can happen in a couple of ways: someone - either accidentally or
1875 * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1876 * (signal(2)) a ucontext that contains silly segment register values.
1877 * Or someone - either accidentally or on purpose - modifies the prgregset_t
1878 * of a subject process via /proc to contain silly segment register values.
1880 * (The unfortunate part is that we can end up discovering the bad segment
1881 * register value in the middle of an 'iret' after we've popped most of the
1882 * stack. So it becomes quite difficult to associate an accurate ucontext
1883 * with the lwp, because the act of taking the #gp trap overwrites most of
1884 * what we were going to send the lwp.)
1886 * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1887 * trying to return to user mode and we get a #gp fault, then we need
1888 * to die() -- which will happen if we return non-zero from this routine.
1890 static int
1891 kern_gpfault(struct regs *rp)
1893 kthread_t *t = curthread;
1894 proc_t *p = ttoproc(t);
1895 klwp_t *lwp = ttolwp(t);
1896 struct regs tmpregs, *trp = NULL;
1897 caddr_t pc = (caddr_t)rp->r_pc;
1898 int v;
1899 uint32_t auditing = AU_AUDITING();
1902 * if we're not an lwp, or in the case of running native the
1903 * pc range is outside _sys_rtt, then we should immediately
1904 * be die()ing horribly.
1906 if (lwp == NULL || !instr_is_sys_rtt(pc))
1907 return (1);
1910 * So at least we're in the right part of the kernel.
1912 * Disassemble the instruction at the faulting pc.
1913 * Once we know what it is, we carefully reconstruct the stack
1914 * based on the order in which the stack is deconstructed in
1915 * _sys_rtt. Ew.
1917 if (instr_is_iret(pc)) {
1919 * We took the #gp while trying to perform the IRET.
1920 * This means that either %cs or %ss are bad.
1921 * All we know for sure is that most of the general
1922 * registers have been restored, including the
1923 * segment registers, and all we have left on the
1924 * topmost part of the lwp's stack are the
1925 * registers that the iretq was unable to consume.
1927 * All the rest of the state was crushed by the #gp
1928 * which pushed -its- registers atop our old save area
1929 * (because we had to decrement the stack pointer, sigh) so
1930 * all that we can try and do is to reconstruct the
1931 * crushed frame from the #gp trap frame itself.
1933 trp = &tmpregs;
1934 trp->r_ss = lwptoregs(lwp)->r_ss;
1935 trp->r_sp = lwptoregs(lwp)->r_sp;
1936 trp->r_ps = lwptoregs(lwp)->r_ps;
1937 trp->r_cs = lwptoregs(lwp)->r_cs;
1938 trp->r_pc = lwptoregs(lwp)->r_pc;
1939 bcopy(rp, trp, offsetof(struct regs, r_pc));
1942 * Validate simple math
1944 ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1945 ASSERT(trp->r_err == rp->r_err);
1951 #if defined(__amd64)
1952 if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1955 * This is the common case -- we're trying to load
1956 * a bad segment register value in the only section
1957 * of kernel code that ever loads segment registers.
1959 * We don't need to do anything at this point because
1960 * the pcb contains all the pending segment register
1961 * state, and the regs are still intact because we
1962 * didn't adjust the stack pointer yet. Given the fidelity
1963 * of all this, we could conceivably send a signal
1964 * to the lwp, rather than core-ing.
1966 trp = lwptoregs(lwp);
1967 ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1970 #elif defined(__i386)
1972 if (trp == NULL && instr_is_segregs_pop(pc))
1973 trp = lwptoregs(lwp);
1975 #endif /* __i386 */
1977 if (trp == NULL)
1978 return (1);
1981 * If we get to here, we're reasonably confident that we've
1982 * correctly decoded what happened on the way out of the kernel.
1983 * Rewrite the lwp's registers so that we can create a core dump
1984 * the (at least vaguely) represents the mcontext we were
1985 * being asked to restore when things went so terribly wrong.
1989 * Make sure that we have a meaningful %trapno and %err.
1991 trp->r_trapno = rp->r_trapno;
1992 trp->r_err = rp->r_err;
1994 if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1995 bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1998 mutex_enter(&p->p_lock);
1999 lwp->lwp_cursig = SIGSEGV;
2000 mutex_exit(&p->p_lock);
2003 * Terminate all LWPs but don't discard them. If another lwp beat
2004 * us to the punch by calling exit(), evaporate now.
2006 proc_is_exiting(p);
2007 if (exitlwps(1) != 0) {
2008 mutex_enter(&p->p_lock);
2009 lwp_exit();
2012 if (auditing) /* audit core dump */
2013 audit_core_start(SIGSEGV);
2014 v = core(SIGSEGV, B_FALSE);
2015 if (auditing) /* audit core dump */
2016 audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
2017 exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
2018 return (0);
2022 * dump_tss() - Display the TSS structure
2025 #if !defined(__xpv)
2026 #if defined(__amd64)
2028 static void
2029 dump_tss(void)
2031 const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */
2032 tss_t *tss = CPU->cpu_tss;
2034 printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
2035 printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
2036 printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
2038 printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
2039 printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
2040 printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
2041 printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2042 printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2043 printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2044 printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2047 #elif defined(__i386)
2049 static void
2050 dump_tss(void)
2052 const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */
2053 tss_t *tss = CPU->cpu_tss;
2055 printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2056 printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2057 printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2058 printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2059 printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2060 printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2061 printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2062 printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2063 printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2064 printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2065 printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2066 printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2067 printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2068 printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2069 printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2072 #endif /* __amd64 */
2073 #endif /* !__xpv */
2075 #if defined(TRAPTRACE)
2077 int ttrace_nrec = 10; /* number of records to dump out */
2078 int ttrace_dump_nregs = 0; /* dump out this many records with regs too */
2081 * Dump out the last ttrace_nrec traptrace records on each CPU
2083 static void
2084 dump_ttrace(void)
2086 trap_trace_ctl_t *ttc;
2087 trap_trace_rec_t *rec;
2088 uintptr_t current;
2089 int i, j, k;
2090 int n = NCPU;
2091 #if defined(__amd64)
2092 const char banner[] =
2093 "CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n";
2094 /* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2095 const char fmt1[] = "%3d %016lx %12llx";
2096 char data1[34]; /* length of string formatted by fmt1 + 1 */
2097 #elif defined(__i386)
2098 const char banner[] =
2099 "CPU ADDRESS TIMESTAMP TYPE VC HANDLER PC\n";
2100 /* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2101 const char fmt1[] = "%3d %08lx %12llx";
2102 char data1[26]; /* length of string formatted by fmt1 + 1 */
2103 #endif
2104 /* Define format for the TYPE and VC fields */
2105 const char fmt2[] = "%4s %3x";
2106 char data2[9]; /* length of string formatted by fmt2 + 1 */
2108 * Define format for the HANDLER field. Width is arbitrary, but should
2109 * be enough for common handler's names, and leave enough space for
2110 * the PC field, especially when we are in kmdb.
2112 const char fmt3h[] = "#%-15s";
2113 const char fmt3p[] = "%-16p";
2114 const char fmt3s[] = "%-16s";
2115 char data3[17]; /* length of string formatted by fmt3* + 1 */
2117 if (ttrace_nrec == 0)
2118 return;
2120 printf("\n");
2121 printf(banner);
2123 for (i = 0; i < n; i++) {
2124 ttc = &trap_trace_ctl[i];
2125 if (ttc->ttc_first == NULL)
2126 continue;
2128 current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2129 for (j = 0; j < ttrace_nrec; j++) {
2130 struct sysent *sys;
2131 struct autovec *vec;
2132 extern struct av_head autovect[];
2133 int type;
2134 ulong_t off;
2135 char *sym, *stype;
2137 if (current < ttc->ttc_first)
2138 current =
2139 ttc->ttc_limit - sizeof (trap_trace_rec_t);
2141 if (current == NULL)
2142 continue;
2144 rec = (trap_trace_rec_t *)current;
2146 if (rec->ttr_stamp == 0)
2147 break;
2149 (void) snprintf(data1, sizeof (data1), fmt1, i,
2150 (uintptr_t)rec, rec->ttr_stamp);
2152 switch (rec->ttr_marker) {
2153 case TT_SYSCALL:
2154 case TT_SYSENTER:
2155 case TT_SYSC:
2156 case TT_SYSC64:
2157 #if defined(__amd64)
2158 sys = &sysent32[rec->ttr_sysnum];
2159 switch (rec->ttr_marker) {
2160 case TT_SYSC64:
2161 sys = &sysent[rec->ttr_sysnum];
2162 /*FALLTHROUGH*/
2163 #elif defined(__i386)
2164 sys = &sysent[rec->ttr_sysnum];
2165 switch (rec->ttr_marker) {
2166 case TT_SYSC64:
2167 #endif
2168 case TT_SYSC:
2169 stype = "sysc"; /* syscall */
2170 break;
2171 case TT_SYSCALL:
2172 stype = "lcal"; /* lcall */
2173 break;
2174 case TT_SYSENTER:
2175 stype = "syse"; /* sysenter */
2176 break;
2177 default:
2178 break;
2180 (void) snprintf(data2, sizeof (data2), fmt2,
2181 stype, rec->ttr_sysnum);
2182 if (sys != NULL) {
2183 sym = kobj_getsymname(
2184 (uintptr_t)sys->sy_callc,
2185 &off);
2186 if (sym != NULL) {
2187 (void) snprintf(data3,
2188 sizeof (data3), fmt3s, sym);
2189 } else {
2190 (void) snprintf(data3,
2191 sizeof (data3), fmt3p,
2192 sys->sy_callc);
2194 } else {
2195 (void) snprintf(data3, sizeof (data3),
2196 fmt3s, "unknown");
2198 break;
2200 case TT_INTERRUPT:
2201 (void) snprintf(data2, sizeof (data2), fmt2,
2202 "intr", rec->ttr_vector);
2203 if (get_intr_handler != NULL)
2204 vec = (struct autovec *)
2205 (*get_intr_handler)
2206 (rec->ttr_cpuid, rec->ttr_vector);
2207 else
2208 vec =
2209 autovect[rec->ttr_vector].avh_link;
2211 if (vec != NULL) {
2212 sym = kobj_getsymname(
2213 (uintptr_t)vec->av_vector, &off);
2214 if (sym != NULL) {
2215 (void) snprintf(data3,
2216 sizeof (data3), fmt3s, sym);
2217 } else {
2218 (void) snprintf(data3,
2219 sizeof (data3), fmt3p,
2220 vec->av_vector);
2222 } else {
2223 (void) snprintf(data3, sizeof (data3),
2224 fmt3s, "unknown");
2226 break;
2228 case TT_TRAP:
2229 case TT_EVENT:
2230 type = rec->ttr_regs.r_trapno;
2231 (void) snprintf(data2, sizeof (data2), fmt2,
2232 "trap", type);
2233 if (type < TRAP_TYPES) {
2234 (void) snprintf(data3, sizeof (data3),
2235 fmt3h, trap_type_mnemonic[type]);
2236 } else {
2237 switch (type) {
2238 case T_AST:
2239 (void) snprintf(data3,
2240 sizeof (data3), fmt3s,
2241 "ast");
2242 break;
2243 default:
2244 (void) snprintf(data3,
2245 sizeof (data3), fmt3s, "");
2246 break;
2249 break;
2251 default:
2252 break;
2255 sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2256 if (sym != NULL) {
2257 printf("%s %s %s %s+%lx\n", data1, data2, data3,
2258 sym, off);
2259 } else {
2260 printf("%s %s %s %lx\n", data1, data2, data3,
2261 rec->ttr_regs.r_pc);
2264 if (ttrace_dump_nregs-- > 0) {
2265 int s;
2267 if (rec->ttr_marker == TT_INTERRUPT)
2268 printf(
2269 "\t\tipl %x spl %x pri %x\n",
2270 rec->ttr_ipl,
2271 rec->ttr_spl,
2272 rec->ttr_pri);
2274 dumpregs(&rec->ttr_regs);
2276 printf("\t%3s: %p\n\n", " ct",
2277 (void *)rec->ttr_curthread);
2280 * print out the pc stack that we recorded
2281 * at trap time (if any)
2283 for (s = 0; s < rec->ttr_sdepth; s++) {
2284 uintptr_t fullpc;
2286 if (s >= TTR_STACK_DEPTH) {
2287 printf("ttr_sdepth corrupt\n");
2288 break;
2291 fullpc = (uintptr_t)rec->ttr_stack[s];
2293 sym = kobj_getsymname(fullpc, &off);
2294 if (sym != NULL)
2295 printf("-> %s+0x%lx()\n",
2296 sym, off);
2297 else
2298 printf("-> 0x%lx()\n", fullpc);
2300 printf("\n");
2302 current -= sizeof (trap_trace_rec_t);
2307 #endif /* TRAPTRACE */
2309 void
2310 panic_showtrap(struct panic_trap_info *tip)
2312 showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2314 #if defined(TRAPTRACE)
2315 dump_ttrace();
2316 #endif
2318 #if !defined(__xpv)
2319 if (tip->trap_type == T_DBLFLT)
2320 dump_tss();
2321 #endif
2324 void
2325 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2327 panic_saveregs(pdp, tip->trap_regs);