7392 remove event channel support from lofi and implement lofi_devlink_cache.
[unleashed.git] / usr / src / uts / common / os / zone.c
blob1028f9ce3fc6ab5763fd265b6769ce3679dfdb06
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc. All rights reserved.
28 * Zones
30 * A zone is a named collection of processes, namespace constraints,
31 * and other system resources which comprise a secure and manageable
32 * application containment facility.
34 * Zones (represented by the reference counted zone_t) are tracked in
35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
36 * (zoneid_t) are used to track zone association. Zone IDs are
37 * dynamically generated when the zone is created; if a persistent
38 * identifier is needed (core files, accounting logs, audit trail,
39 * etc.), the zone name should be used.
42 * Global Zone:
44 * The global zone (zoneid 0) is automatically associated with all
45 * system resources that have not been bound to a user-created zone.
46 * This means that even systems where zones are not in active use
47 * have a global zone, and all processes, mounts, etc. are
48 * associated with that zone. The global zone is generally
49 * unconstrained in terms of privileges and access, though the usual
50 * credential and privilege based restrictions apply.
53 * Zone States:
55 * The states in which a zone may be in and the transitions are as
56 * follows:
58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59 * initialized zone is added to the list of active zones on the system but
60 * isn't accessible.
62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63 * not yet completed. Not possible to enter the zone, but attributes can
64 * be retrieved.
66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67 * ready. The zone is made visible after the ZSD constructor callbacks are
68 * executed. A zone remains in this state until it transitions into
69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73 * state.
75 * ZONE_IS_RUNNING: The zone is open for business: zsched has
76 * successfully started init. A zone remains in this state until
77 * zone_shutdown() is called.
79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80 * killing all processes running in the zone. The zone remains
81 * in this state until there are no more user processes running in the zone.
82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83 * Since zone_shutdown() is restartable, it may be called successfully
84 * multiple times for the same zone_t. Setting of the zone's state to
85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86 * the zone's status without worrying about it being a moving target.
88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89 * are no more user processes in the zone. The zone remains in this
90 * state until there are no more kernel threads associated with the
91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
92 * fail.
94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95 * have exited. zone_shutdown() returns. Henceforth it is not possible to
96 * join the zone or create kernel threads therein.
98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99 * remains in this state until zsched exits. Calls to zone_find_by_*()
100 * return NULL from now on.
102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
103 * processes or threads doing work on behalf of the zone. The zone is
104 * removed from the list of active zones. zone_destroy() returns, and
105 * the zone can be recreated.
107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108 * callbacks are executed, and all memory associated with the zone is
109 * freed.
111 * Threads can wait for the zone to enter a requested state by using
112 * zone_status_wait() or zone_status_timedwait() with the desired
113 * state passed in as an argument. Zone state transitions are
114 * uni-directional; it is not possible to move back to an earlier state.
117 * Zone-Specific Data:
119 * Subsystems needing to maintain zone-specific data can store that
120 * data using the ZSD mechanism. This provides a zone-specific data
121 * store, similar to thread-specific data (see pthread_getspecific(3C)
122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
123 * to register callbacks to be invoked when a zone is created, shut
124 * down, or destroyed. This can be used to initialize zone-specific
125 * data for new zones and to clean up when zones go away.
128 * Data Structures:
130 * The per-zone structure (zone_t) is reference counted, and freed
131 * when all references are released. zone_hold and zone_rele can be
132 * used to adjust the reference count. In addition, reference counts
133 * associated with the cred_t structure are tracked separately using
134 * zone_cred_hold and zone_cred_rele.
136 * Pointers to active zone_t's are stored in two hash tables; one
137 * for searching by id, the other for searching by name. Lookups
138 * can be performed on either basis, using zone_find_by_id and
139 * zone_find_by_name. Both return zone_t pointers with the zone
140 * held, so zone_rele should be called when the pointer is no longer
141 * needed. Zones can also be searched by path; zone_find_by_path
142 * returns the zone with which a path name is associated (global
143 * zone if the path is not within some other zone's file system
144 * hierarchy). This currently requires iterating through each zone,
145 * so it is slower than an id or name search via a hash table.
148 * Locking:
150 * zonehash_lock: This is a top-level global lock used to protect the
151 * zone hash tables and lists. Zones cannot be created or destroyed
152 * while this lock is held.
153 * zone_status_lock: This is a global lock protecting zone state.
154 * Zones cannot change state while this lock is held. It also
155 * protects the list of kernel threads associated with a zone.
156 * zone_lock: This is a per-zone lock used to protect several fields of
157 * the zone_t (see <sys/zone.h> for details). In addition, holding
158 * this lock means that the zone cannot go away.
159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
160 * related to the zone.max-lwps rctl.
161 * zone_mem_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-locked-memory and zone.max-swap rctls.
163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164 * currently just max_lofi
165 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
166 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
167 * list (a list of zones in the ZONE_IS_DEAD state).
169 * Ordering requirements:
170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
177 * Blocking memory allocations are permitted while holding any of the
178 * zone locks.
181 * System Call Interface:
183 * The zone subsystem can be managed and queried from user level with
184 * the following system calls (all subcodes of the primary "zone"
185 * system call):
186 * - zone_create: creates a zone with selected attributes (name,
187 * root path, privileges, resource controls, ZFS datasets)
188 * - zone_enter: allows the current process to enter a zone
189 * - zone_getattr: reports attributes of a zone
190 * - zone_setattr: set attributes of a zone
191 * - zone_boot: set 'init' running for the zone
192 * - zone_list: lists all zones active in the system
193 * - zone_lookup: looks up zone id based on name
194 * - zone_shutdown: initiates shutdown process (see states above)
195 * - zone_destroy: completes shutdown process (see states above)
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
255 * This constant specifies the number of seconds that threads waiting for
256 * subsystems to release a zone's general-purpose references will wait before
257 * they log the zone's reference counts. The constant's value shouldn't
258 * be so small that reference counts are unnecessarily reported for zones
259 * whose references are slowly released. On the other hand, it shouldn't be so
260 * large that users reboot their systems out of frustration over hung zones
261 * before the system logs the zones' reference counts.
263 #define ZONE_DESTROY_TIMEOUT_SECS 60
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 datalink_id_t zdl_id;
268 nvlist_t *zdl_net;
269 list_node_t zdl_linkage;
270 } zone_dl_t;
273 * cv used to signal that all references to the zone have been released. This
274 * needs to be global since there may be multiple waiters, and the first to
275 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
277 static kcondvar_t zone_destroy_cv;
279 * Lock used to serialize access to zone_cv. This could have been per-zone,
280 * but then we'd need another lock for zone_destroy_cv, and why bother?
282 static kmutex_t zone_status_lock;
285 * ZSD-related global variables.
287 static kmutex_t zsd_key_lock; /* protects the following two */
289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
291 static zone_key_t zsd_keyval = 0;
293 * Global list of registered keys. We use this when a new zone is created.
295 static list_t zsd_registered_keys;
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305 * kernel proper runs, and which manages all other zones.
307 * Although not declared as static, the variable "zone0" should not be used
308 * except for by code that needs to reference the global zone early on in boot,
309 * before it is fully initialized. All other consumers should use
310 * 'global_zone'.
312 zone_t zone0;
313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
316 * List of active zones, protected by zonehash_lock.
318 static list_t zone_active;
321 * List of destroyed zones that still have outstanding cred references.
322 * Used for debugging. Uses a separate lock to avoid lock ordering
323 * problems in zone_free.
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
335 * This table holds the mapping from kernel zone states to
336 * states visible in the state notification API.
337 * The idea is that we only expose "obvious" states and
338 * do not expose states which are just implementation details.
340 const char *zone_status_table[] = {
341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
342 ZONE_EVENT_INITIALIZED, /* initialized */
343 ZONE_EVENT_READY, /* ready */
344 ZONE_EVENT_READY, /* booting */
345 ZONE_EVENT_RUNNING, /* running */
346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
347 ZONE_EVENT_SHUTTING_DOWN, /* empty */
348 ZONE_EVENT_SHUTTING_DOWN, /* down */
349 ZONE_EVENT_SHUTTING_DOWN, /* dying */
350 ZONE_EVENT_UNINITIALIZED, /* dead */
354 * This array contains the names of the subsystems listed in zone_ref_subsys_t
355 * (see sys/zone.h).
357 static char *zone_ref_subsys_names[] = {
358 "NFS", /* ZONE_REF_NFS */
359 "NFSv4", /* ZONE_REF_NFSV4 */
360 "SMBFS", /* ZONE_REF_SMBFS */
361 "MNTFS", /* ZONE_REF_MNTFS */
362 "LOFI", /* ZONE_REF_LOFI */
363 "VFS", /* ZONE_REF_VFS */
364 "IPC" /* ZONE_REF_IPC */
368 * This isn't static so lint doesn't complain.
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397 zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400 kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402 kmutex_t *);
405 * Bump this number when you alter the zone syscall interfaces; this is
406 * because we need to have support for previous API versions in libc
407 * to support patching; libc calls into the kernel to determine this number.
409 * Version 1 of the API is the version originally shipped with Solaris 10
410 * Version 2 alters the zone_create system call in order to support more
411 * arguments by moving the args into a structure; and to do better
412 * error reporting when zone_create() fails.
413 * Version 3 alters the zone_create system call in order to support the
414 * import of ZFS datasets to zones.
415 * Version 4 alters the zone_create system call in order to support
416 * Trusted Extensions.
417 * Version 5 alters the zone_boot system call, and converts its old
418 * bootargs parameter to be set by the zone_setattr API instead.
419 * Version 6 adds the flag argument to zone_create.
421 static const int ZONE_SYSCALL_API_VERSION = 6;
424 * Certain filesystems (such as NFS and autofs) need to know which zone
425 * the mount is being placed in. Because of this, we need to be able to
426 * ensure that a zone isn't in the process of being created/destroyed such
427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428 * it gets added the list of mounted zones, it ends up on the wrong zone's
429 * mount list. Since a zone can't reside on an NFS file system, we don't
430 * have to worry about the zonepath itself.
432 * The following functions: block_mounts()/resume_mounts() and
433 * mount_in_progress()/mount_completed() are used by zones and the VFS
434 * layer (respectively) to synchronize zone state transitions and new
435 * mounts within a zone. This syncronization is on a per-zone basis, so
436 * activity for one zone will not interfere with activity for another zone.
438 * The semantics are like a reader-reader lock such that there may
439 * either be multiple mounts (or zone state transitions, if that weren't
440 * serialized by zonehash_lock) in progress at the same time, but not
441 * both.
443 * We use cv's so the user can ctrl-C out of the operation if it's
444 * taking too long.
446 * The semantics are such that there is unfair bias towards the
447 * "current" operation. This means that zone halt may starve if
448 * there is a rapid succession of new mounts coming in to the zone.
451 * Prevent new mounts from progressing to the point of calling
452 * VFS_MOUNT(). If there are already mounts in this "region", wait for
453 * them to complete.
455 static int
456 block_mounts(zone_t *zp)
458 int retval = 0;
461 * Since it may block for a long time, block_mounts() shouldn't be
462 * called with zonehash_lock held.
464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 mutex_enter(&zp->zone_mount_lock);
466 while (zp->zone_mounts_in_progress > 0) {
467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 goto signaled;
471 * A negative value of mounts_in_progress indicates that mounts
472 * have been blocked by (-mounts_in_progress) different callers
473 * (remotely possible if two threads enter zone_shutdown at the same
474 * time).
476 zp->zone_mounts_in_progress--;
477 retval = 1;
478 signaled:
479 mutex_exit(&zp->zone_mount_lock);
480 return (retval);
484 * The VFS layer may progress with new mounts as far as we're concerned.
485 * Allow them to progress if we were the last obstacle.
487 static void
488 resume_mounts(zone_t *zp)
490 mutex_enter(&zp->zone_mount_lock);
491 if (++zp->zone_mounts_in_progress == 0)
492 cv_broadcast(&zp->zone_mount_cv);
493 mutex_exit(&zp->zone_mount_lock);
497 * The VFS layer is busy with a mount; this zone should wait until all
498 * of its mounts are completed to progress.
500 void
501 mount_in_progress(zone_t *zp)
503 mutex_enter(&zp->zone_mount_lock);
504 while (zp->zone_mounts_in_progress < 0)
505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 zp->zone_mounts_in_progress++;
507 mutex_exit(&zp->zone_mount_lock);
511 * VFS is done with one mount; wake up any waiting block_mounts()
512 * callers if this is the last mount.
514 void
515 mount_completed(zone_t *zp)
517 mutex_enter(&zp->zone_mount_lock);
518 if (--zp->zone_mounts_in_progress == 0)
519 cv_broadcast(&zp->zone_mount_cv);
520 mutex_exit(&zp->zone_mount_lock);
524 * ZSD routines.
526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527 * defined by the pthread_key_create() and related interfaces.
529 * Kernel subsystems may register one or more data items and/or
530 * callbacks to be executed when a zone is created, shutdown, or
531 * destroyed.
533 * Unlike the thread counterpart, destructor callbacks will be executed
534 * even if the data pointer is NULL and/or there are no constructor
535 * callbacks, so it is the responsibility of such callbacks to check for
536 * NULL data values if necessary.
538 * The locking strategy and overall picture is as follows:
540 * When someone calls zone_key_create(), a template ZSD entry is added to the
541 * global list "zsd_registered_keys", protected by zsd_key_lock. While
542 * holding that lock all the existing zones are marked as
543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544 * zone_zsd list (protected by zone_lock). The global list is updated first
545 * (under zone_key_lock) to make sure that newly created zones use the
546 * most recent list of keys. Then under zonehash_lock we walk the zones
547 * and mark them. Similar locking is used in zone_key_delete().
549 * The actual create, shutdown, and destroy callbacks are done without
550 * holding any lock. And zsd_flags are used to ensure that the operations
551 * completed so that when zone_key_create (and zone_create) is done, as well as
552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553 * are completed.
555 * When new zones are created constructor callbacks for all registered ZSD
556 * entries will be called. That also uses the above two phases of marking
557 * what needs to be done, and then running the callbacks without holding
558 * any locks.
560 * The framework does not provide any locking around zone_getspecific() and
561 * zone_setspecific() apart from that needed for internal consistency, so
562 * callers interested in atomic "test-and-set" semantics will need to provide
563 * their own locking.
567 * Helper function to find the zsd_entry associated with the key in the
568 * given list.
570 static struct zsd_entry *
571 zsd_find(list_t *l, zone_key_t key)
573 struct zsd_entry *zsd;
575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 if (zsd->zsd_key == key) {
577 return (zsd);
580 return (NULL);
584 * Helper function to find the zsd_entry associated with the key in the
585 * given list. Move it to the front of the list.
587 static struct zsd_entry *
588 zsd_find_mru(list_t *l, zone_key_t key)
590 struct zsd_entry *zsd;
592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 if (zsd->zsd_key == key) {
595 * Move to head of list to keep list in MRU order.
597 if (zsd != list_head(l)) {
598 list_remove(l, zsd);
599 list_insert_head(l, zsd);
601 return (zsd);
604 return (NULL);
607 void
608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
611 struct zsd_entry *zsdp;
612 struct zsd_entry *t;
613 struct zone *zone;
614 zone_key_t key;
616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 zsdp->zsd_data = NULL;
618 zsdp->zsd_create = create;
619 zsdp->zsd_shutdown = shutdown;
620 zsdp->zsd_destroy = destroy;
623 * Insert in global list of callbacks. Makes future zone creations
624 * see it.
626 mutex_enter(&zsd_key_lock);
627 key = zsdp->zsd_key = ++zsd_keyval;
628 ASSERT(zsd_keyval != 0);
629 list_insert_tail(&zsd_registered_keys, zsdp);
630 mutex_exit(&zsd_key_lock);
633 * Insert for all existing zones and mark them as needing
634 * a create callback.
636 mutex_enter(&zonehash_lock); /* stop the world */
637 for (zone = list_head(&zone_active); zone != NULL;
638 zone = list_next(&zone_active, zone)) {
639 zone_status_t status;
641 mutex_enter(&zone->zone_lock);
643 /* Skip zones that are on the way down or not yet up */
644 status = zone_status_get(zone);
645 if (status >= ZONE_IS_DOWN ||
646 status == ZONE_IS_UNINITIALIZED) {
647 mutex_exit(&zone->zone_lock);
648 continue;
651 t = zsd_find_mru(&zone->zone_zsd, key);
652 if (t != NULL) {
654 * A zsd_configure already inserted it after
655 * we dropped zsd_key_lock above.
657 mutex_exit(&zone->zone_lock);
658 continue;
660 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 t->zsd_key = key;
662 t->zsd_create = create;
663 t->zsd_shutdown = shutdown;
664 t->zsd_destroy = destroy;
665 if (create != NULL) {
666 t->zsd_flags = ZSD_CREATE_NEEDED;
667 DTRACE_PROBE2(zsd__create__needed,
668 zone_t *, zone, zone_key_t, key);
670 list_insert_tail(&zone->zone_zsd, t);
671 mutex_exit(&zone->zone_lock);
673 mutex_exit(&zonehash_lock);
675 if (create != NULL) {
676 /* Now call the create callback for this key */
677 zsd_apply_all_zones(zsd_apply_create, key);
680 * It is safe for consumers to use the key now, make it
681 * globally visible. Specifically zone_getspecific() will
682 * always successfully return the zone specific data associated
683 * with the key.
685 *keyp = key;
690 * Function called when a module is being unloaded, or otherwise wishes
691 * to unregister its ZSD key and callbacks.
693 * Remove from the global list and determine the functions that need to
694 * be called under a global lock. Then call the functions without
695 * holding any locks. Finally free up the zone_zsd entries. (The apply
696 * functions need to access the zone_zsd entries to find zsd_data etc.)
699 zone_key_delete(zone_key_t key)
701 struct zsd_entry *zsdp = NULL;
702 zone_t *zone;
704 mutex_enter(&zsd_key_lock);
705 zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 if (zsdp == NULL) {
707 mutex_exit(&zsd_key_lock);
708 return (-1);
710 list_remove(&zsd_registered_keys, zsdp);
711 mutex_exit(&zsd_key_lock);
713 mutex_enter(&zonehash_lock);
714 for (zone = list_head(&zone_active); zone != NULL;
715 zone = list_next(&zone_active, zone)) {
716 struct zsd_entry *del;
718 mutex_enter(&zone->zone_lock);
719 del = zsd_find_mru(&zone->zone_zsd, key);
720 if (del == NULL) {
722 * Somebody else got here first e.g the zone going
723 * away.
725 mutex_exit(&zone->zone_lock);
726 continue;
728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 if (del->zsd_shutdown != NULL &&
731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 DTRACE_PROBE2(zsd__shutdown__needed,
734 zone_t *, zone, zone_key_t, key);
736 if (del->zsd_destroy != NULL &&
737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 DTRACE_PROBE2(zsd__destroy__needed,
740 zone_t *, zone, zone_key_t, key);
742 mutex_exit(&zone->zone_lock);
744 mutex_exit(&zonehash_lock);
745 kmem_free(zsdp, sizeof (*zsdp));
747 /* Now call the shutdown and destroy callback for this key */
748 zsd_apply_all_zones(zsd_apply_shutdown, key);
749 zsd_apply_all_zones(zsd_apply_destroy, key);
751 /* Now we can free up the zsdp structures in each zone */
752 mutex_enter(&zonehash_lock);
753 for (zone = list_head(&zone_active); zone != NULL;
754 zone = list_next(&zone_active, zone)) {
755 struct zsd_entry *del;
757 mutex_enter(&zone->zone_lock);
758 del = zsd_find(&zone->zone_zsd, key);
759 if (del != NULL) {
760 list_remove(&zone->zone_zsd, del);
761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 kmem_free(del, sizeof (*del));
764 mutex_exit(&zone->zone_lock);
766 mutex_exit(&zonehash_lock);
768 return (0);
772 * ZSD counterpart of pthread_setspecific().
774 * Since all zsd callbacks, including those with no create function,
775 * have an entry in zone_zsd, if the key is registered it is part of
776 * the zone_zsd list.
777 * Return an error if the key wasn't registerd.
780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
782 struct zsd_entry *t;
784 mutex_enter(&zone->zone_lock);
785 t = zsd_find_mru(&zone->zone_zsd, key);
786 if (t != NULL) {
788 * Replace old value with new
790 t->zsd_data = (void *)data;
791 mutex_exit(&zone->zone_lock);
792 return (0);
794 mutex_exit(&zone->zone_lock);
795 return (-1);
799 * ZSD counterpart of pthread_getspecific().
801 void *
802 zone_getspecific(zone_key_t key, zone_t *zone)
804 struct zsd_entry *t;
805 void *data;
807 mutex_enter(&zone->zone_lock);
808 t = zsd_find_mru(&zone->zone_zsd, key);
809 data = (t == NULL ? NULL : t->zsd_data);
810 mutex_exit(&zone->zone_lock);
811 return (data);
815 * Function used to initialize a zone's list of ZSD callbacks and data
816 * when the zone is being created. The callbacks are initialized from
817 * the template list (zsd_registered_keys). The constructor callback is
818 * executed later (once the zone exists and with locks dropped).
820 static void
821 zone_zsd_configure(zone_t *zone)
823 struct zsd_entry *zsdp;
824 struct zsd_entry *t;
826 ASSERT(MUTEX_HELD(&zonehash_lock));
827 ASSERT(list_head(&zone->zone_zsd) == NULL);
828 mutex_enter(&zone->zone_lock);
829 mutex_enter(&zsd_key_lock);
830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 zsdp = list_next(&zsd_registered_keys, zsdp)) {
833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 * should not have added anything to it.
836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
838 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 t->zsd_key = zsdp->zsd_key;
840 t->zsd_create = zsdp->zsd_create;
841 t->zsd_shutdown = zsdp->zsd_shutdown;
842 t->zsd_destroy = zsdp->zsd_destroy;
843 if (zsdp->zsd_create != NULL) {
844 t->zsd_flags = ZSD_CREATE_NEEDED;
845 DTRACE_PROBE2(zsd__create__needed,
846 zone_t *, zone, zone_key_t, zsdp->zsd_key);
848 list_insert_tail(&zone->zone_zsd, t);
850 mutex_exit(&zsd_key_lock);
851 mutex_exit(&zone->zone_lock);
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857 * Helper function to execute shutdown or destructor callbacks.
859 static void
860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
862 struct zsd_entry *t;
864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869 * Run the callback solely based on what is registered for the zone
870 * in zone_zsd. The global list can change independently of this
871 * as keys are registered and unregistered and we don't register new
872 * callbacks for a zone that is in the process of going away.
874 mutex_enter(&zone->zone_lock);
875 for (t = list_head(&zone->zone_zsd); t != NULL;
876 t = list_next(&zone->zone_zsd, t)) {
877 zone_key_t key = t->zsd_key;
879 /* Skip if no callbacks registered */
881 if (ct == ZSD_SHUTDOWN) {
882 if (t->zsd_shutdown != NULL &&
883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 DTRACE_PROBE2(zsd__shutdown__needed,
886 zone_t *, zone, zone_key_t, key);
888 } else {
889 if (t->zsd_destroy != NULL &&
890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 DTRACE_PROBE2(zsd__destroy__needed,
893 zone_t *, zone, zone_key_t, key);
897 mutex_exit(&zone->zone_lock);
899 /* Now call the shutdown and destroy callback for this key */
900 zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 zsd_apply_all_keys(zsd_apply_destroy, zone);
906 * Called when the zone is going away; free ZSD-related memory, and
907 * destroy the zone_zsd list.
909 static void
910 zone_free_zsd(zone_t *zone)
912 struct zsd_entry *t, *next;
915 * Free all the zsd_entry's we had on this zone.
917 mutex_enter(&zone->zone_lock);
918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 next = list_next(&zone->zone_zsd, t);
920 list_remove(&zone->zone_zsd, t);
921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 kmem_free(t, sizeof (*t));
924 list_destroy(&zone->zone_zsd);
925 mutex_exit(&zone->zone_lock);
930 * Apply a function to all zones for particular key value.
932 * The applyfn has to drop zonehash_lock if it does some work, and
933 * then reacquire it before it returns.
934 * When the lock is dropped we don't follow list_next even
935 * if it is possible to do so without any hazards. This is
936 * because we want the design to allow for the list of zones
937 * to change in any arbitrary way during the time the
938 * lock was dropped.
940 * It is safe to restart the loop at list_head since the applyfn
941 * changes the zsd_flags as it does work, so a subsequent
942 * pass through will have no effect in applyfn, hence the loop will terminate
943 * in at worst O(N^2).
945 static void
946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
948 zone_t *zone;
950 mutex_enter(&zonehash_lock);
951 zone = list_head(&zone_active);
952 while (zone != NULL) {
953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 /* Lock dropped - restart at head */
955 zone = list_head(&zone_active);
956 } else {
957 zone = list_next(&zone_active, zone);
960 mutex_exit(&zonehash_lock);
964 * Apply a function to all keys for a particular zone.
966 * The applyfn has to drop zonehash_lock if it does some work, and
967 * then reacquire it before it returns.
968 * When the lock is dropped we don't follow list_next even
969 * if it is possible to do so without any hazards. This is
970 * because we want the design to allow for the list of zsd callbacks
971 * to change in any arbitrary way during the time the
972 * lock was dropped.
974 * It is safe to restart the loop at list_head since the applyfn
975 * changes the zsd_flags as it does work, so a subsequent
976 * pass through will have no effect in applyfn, hence the loop will terminate
977 * in at worst O(N^2).
979 static void
980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
982 struct zsd_entry *t;
984 mutex_enter(&zone->zone_lock);
985 t = list_head(&zone->zone_zsd);
986 while (t != NULL) {
987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 /* Lock dropped - restart at head */
989 t = list_head(&zone->zone_zsd);
990 } else {
991 t = list_next(&zone->zone_zsd, t);
994 mutex_exit(&zone->zone_lock);
998 * Call the create function for the zone and key if CREATE_NEEDED
999 * is set.
1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001 * we wait for that thread to complete so that we can ensure that
1002 * all the callbacks are done when we've looped over all zones/keys.
1004 * When we call the create function, we drop the global held by the
1005 * caller, and return true to tell the caller it needs to re-evalute the
1006 * state.
1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008 * remains held on exit.
1010 static boolean_t
1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012 zone_t *zone, zone_key_t key)
1014 void *result;
1015 struct zsd_entry *t;
1016 boolean_t dropped;
1018 if (lockp != NULL) {
1019 ASSERT(MUTEX_HELD(lockp));
1021 if (zone_lock_held) {
1022 ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 } else {
1024 mutex_enter(&zone->zone_lock);
1027 t = zsd_find(&zone->zone_zsd, key);
1028 if (t == NULL) {
1030 * Somebody else got here first e.g the zone going
1031 * away.
1033 if (!zone_lock_held)
1034 mutex_exit(&zone->zone_lock);
1035 return (B_FALSE);
1037 dropped = B_FALSE;
1038 if (zsd_wait_for_inprogress(zone, t, lockp))
1039 dropped = B_TRUE;
1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 DTRACE_PROBE2(zsd__create__inprogress,
1045 zone_t *, zone, zone_key_t, key);
1046 mutex_exit(&zone->zone_lock);
1047 if (lockp != NULL)
1048 mutex_exit(lockp);
1050 dropped = B_TRUE;
1051 ASSERT(t->zsd_create != NULL);
1052 DTRACE_PROBE2(zsd__create__start,
1053 zone_t *, zone, zone_key_t, key);
1055 result = (*t->zsd_create)(zone->zone_id);
1057 DTRACE_PROBE2(zsd__create__end,
1058 zone_t *, zone, voidn *, result);
1060 ASSERT(result != NULL);
1061 if (lockp != NULL)
1062 mutex_enter(lockp);
1063 mutex_enter(&zone->zone_lock);
1064 t->zsd_data = result;
1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 cv_broadcast(&t->zsd_cv);
1068 DTRACE_PROBE2(zsd__create__completed,
1069 zone_t *, zone, zone_key_t, key);
1071 if (!zone_lock_held)
1072 mutex_exit(&zone->zone_lock);
1073 return (dropped);
1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078 * is set.
1079 * If some other thread gets here first and sets *_INPROGRESS, then
1080 * we wait for that thread to complete so that we can ensure that
1081 * all the callbacks are done when we've looped over all zones/keys.
1083 * When we call the shutdown function, we drop the global held by the
1084 * caller, and return true to tell the caller it needs to re-evalute the
1085 * state.
1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087 * remains held on exit.
1089 static boolean_t
1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091 zone_t *zone, zone_key_t key)
1093 struct zsd_entry *t;
1094 void *data;
1095 boolean_t dropped;
1097 if (lockp != NULL) {
1098 ASSERT(MUTEX_HELD(lockp));
1100 if (zone_lock_held) {
1101 ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 } else {
1103 mutex_enter(&zone->zone_lock);
1106 t = zsd_find(&zone->zone_zsd, key);
1107 if (t == NULL) {
1109 * Somebody else got here first e.g the zone going
1110 * away.
1112 if (!zone_lock_held)
1113 mutex_exit(&zone->zone_lock);
1114 return (B_FALSE);
1116 dropped = B_FALSE;
1117 if (zsd_wait_for_creator(zone, t, lockp))
1118 dropped = B_TRUE;
1120 if (zsd_wait_for_inprogress(zone, t, lockp))
1121 dropped = B_TRUE;
1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 zone_t *, zone, zone_key_t, key);
1128 mutex_exit(&zone->zone_lock);
1129 if (lockp != NULL)
1130 mutex_exit(lockp);
1131 dropped = B_TRUE;
1133 ASSERT(t->zsd_shutdown != NULL);
1134 data = t->zsd_data;
1136 DTRACE_PROBE2(zsd__shutdown__start,
1137 zone_t *, zone, zone_key_t, key);
1139 (t->zsd_shutdown)(zone->zone_id, data);
1140 DTRACE_PROBE2(zsd__shutdown__end,
1141 zone_t *, zone, zone_key_t, key);
1143 if (lockp != NULL)
1144 mutex_enter(lockp);
1145 mutex_enter(&zone->zone_lock);
1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 cv_broadcast(&t->zsd_cv);
1149 DTRACE_PROBE2(zsd__shutdown__completed,
1150 zone_t *, zone, zone_key_t, key);
1152 if (!zone_lock_held)
1153 mutex_exit(&zone->zone_lock);
1154 return (dropped);
1158 * Call the destroy function for the zone and key if DESTROY_NEEDED
1159 * is set.
1160 * If some other thread gets here first and sets *_INPROGRESS, then
1161 * we wait for that thread to complete so that we can ensure that
1162 * all the callbacks are done when we've looped over all zones/keys.
1164 * When we call the destroy function, we drop the global held by the
1165 * caller, and return true to tell the caller it needs to re-evalute the
1166 * state.
1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168 * remains held on exit.
1170 static boolean_t
1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172 zone_t *zone, zone_key_t key)
1174 struct zsd_entry *t;
1175 void *data;
1176 boolean_t dropped;
1178 if (lockp != NULL) {
1179 ASSERT(MUTEX_HELD(lockp));
1181 if (zone_lock_held) {
1182 ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 } else {
1184 mutex_enter(&zone->zone_lock);
1187 t = zsd_find(&zone->zone_zsd, key);
1188 if (t == NULL) {
1190 * Somebody else got here first e.g the zone going
1191 * away.
1193 if (!zone_lock_held)
1194 mutex_exit(&zone->zone_lock);
1195 return (B_FALSE);
1197 dropped = B_FALSE;
1198 if (zsd_wait_for_creator(zone, t, lockp))
1199 dropped = B_TRUE;
1201 if (zsd_wait_for_inprogress(zone, t, lockp))
1202 dropped = B_TRUE;
1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 DTRACE_PROBE2(zsd__destroy__inprogress,
1208 zone_t *, zone, zone_key_t, key);
1209 mutex_exit(&zone->zone_lock);
1210 if (lockp != NULL)
1211 mutex_exit(lockp);
1212 dropped = B_TRUE;
1214 ASSERT(t->zsd_destroy != NULL);
1215 data = t->zsd_data;
1216 DTRACE_PROBE2(zsd__destroy__start,
1217 zone_t *, zone, zone_key_t, key);
1219 (t->zsd_destroy)(zone->zone_id, data);
1220 DTRACE_PROBE2(zsd__destroy__end,
1221 zone_t *, zone, zone_key_t, key);
1223 if (lockp != NULL)
1224 mutex_enter(lockp);
1225 mutex_enter(&zone->zone_lock);
1226 t->zsd_data = NULL;
1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 cv_broadcast(&t->zsd_cv);
1230 DTRACE_PROBE2(zsd__destroy__completed,
1231 zone_t *, zone, zone_key_t, key);
1233 if (!zone_lock_held)
1234 mutex_exit(&zone->zone_lock);
1235 return (dropped);
1239 * Wait for any CREATE_NEEDED flag to be cleared.
1240 * Returns true if lockp was temporarily dropped while waiting.
1242 static boolean_t
1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1245 boolean_t dropped = B_FALSE;
1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 DTRACE_PROBE2(zsd__wait__for__creator,
1249 zone_t *, zone, struct zsd_entry *, t);
1250 if (lockp != NULL) {
1251 dropped = B_TRUE;
1252 mutex_exit(lockp);
1254 cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 if (lockp != NULL) {
1256 /* First drop zone_lock to preserve order */
1257 mutex_exit(&zone->zone_lock);
1258 mutex_enter(lockp);
1259 mutex_enter(&zone->zone_lock);
1262 return (dropped);
1266 * Wait for any INPROGRESS flag to be cleared.
1267 * Returns true if lockp was temporarily dropped while waiting.
1269 static boolean_t
1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1272 boolean_t dropped = B_FALSE;
1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 zone_t *, zone, struct zsd_entry *, t);
1277 if (lockp != NULL) {
1278 dropped = B_TRUE;
1279 mutex_exit(lockp);
1281 cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 if (lockp != NULL) {
1283 /* First drop zone_lock to preserve order */
1284 mutex_exit(&zone->zone_lock);
1285 mutex_enter(lockp);
1286 mutex_enter(&zone->zone_lock);
1289 return (dropped);
1293 * Frees memory associated with the zone dataset list.
1295 static void
1296 zone_free_datasets(zone_t *zone)
1298 zone_dataset_t *t, *next;
1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 next = list_next(&zone->zone_datasets, t);
1302 list_remove(&zone->zone_datasets, t);
1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 kmem_free(t, sizeof (*t));
1306 list_destroy(&zone->zone_datasets);
1310 * zone.cpu-shares resource control support.
1312 /*ARGSUSED*/
1313 static rctl_qty_t
1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1316 ASSERT(MUTEX_HELD(&p->p_lock));
1317 return (p->p_zone->zone_shares);
1320 /*ARGSUSED*/
1321 static int
1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323 rctl_qty_t nv)
1325 ASSERT(MUTEX_HELD(&p->p_lock));
1326 ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 if (e->rcep_p.zone == NULL)
1328 return (0);
1330 e->rcep_p.zone->zone_shares = nv;
1331 return (0);
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 rcop_no_action,
1336 zone_cpu_shares_usage,
1337 zone_cpu_shares_set,
1338 rcop_no_test
1342 * zone.cpu-cap resource control support.
1344 /*ARGSUSED*/
1345 static rctl_qty_t
1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1348 ASSERT(MUTEX_HELD(&p->p_lock));
1349 return (cpucaps_zone_get(p->p_zone));
1352 /*ARGSUSED*/
1353 static int
1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355 rctl_qty_t nv)
1357 zone_t *zone = e->rcep_p.zone;
1359 ASSERT(MUTEX_HELD(&p->p_lock));
1360 ASSERT(e->rcep_t == RCENTITY_ZONE);
1362 if (zone == NULL)
1363 return (0);
1366 * set cap to the new value.
1368 return (cpucaps_zone_set(zone, nv));
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 rcop_no_action,
1373 zone_cpu_cap_get,
1374 zone_cpu_cap_set,
1375 rcop_no_test
1378 /*ARGSUSED*/
1379 static rctl_qty_t
1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1382 rctl_qty_t nlwps;
1383 zone_t *zone = p->p_zone;
1385 ASSERT(MUTEX_HELD(&p->p_lock));
1387 mutex_enter(&zone->zone_nlwps_lock);
1388 nlwps = zone->zone_nlwps;
1389 mutex_exit(&zone->zone_nlwps_lock);
1391 return (nlwps);
1394 /*ARGSUSED*/
1395 static int
1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397 rctl_qty_t incr, uint_t flags)
1399 rctl_qty_t nlwps;
1401 ASSERT(MUTEX_HELD(&p->p_lock));
1402 ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 if (e->rcep_p.zone == NULL)
1404 return (0);
1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 nlwps = e->rcep_p.zone->zone_nlwps;
1408 if (nlwps + incr > rcntl->rcv_value)
1409 return (1);
1411 return (0);
1414 /*ARGSUSED*/
1415 static int
1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1418 ASSERT(MUTEX_HELD(&p->p_lock));
1419 ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 if (e->rcep_p.zone == NULL)
1421 return (0);
1422 e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 return (0);
1426 static rctl_ops_t zone_lwps_ops = {
1427 rcop_no_action,
1428 zone_lwps_usage,
1429 zone_lwps_set,
1430 zone_lwps_test,
1433 /*ARGSUSED*/
1434 static rctl_qty_t
1435 zone_procs_usage(rctl_t *r, proc_t *p)
1437 rctl_qty_t nprocs;
1438 zone_t *zone = p->p_zone;
1440 ASSERT(MUTEX_HELD(&p->p_lock));
1442 mutex_enter(&zone->zone_nlwps_lock);
1443 nprocs = zone->zone_nprocs;
1444 mutex_exit(&zone->zone_nlwps_lock);
1446 return (nprocs);
1449 /*ARGSUSED*/
1450 static int
1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452 rctl_qty_t incr, uint_t flags)
1454 rctl_qty_t nprocs;
1456 ASSERT(MUTEX_HELD(&p->p_lock));
1457 ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 if (e->rcep_p.zone == NULL)
1459 return (0);
1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 nprocs = e->rcep_p.zone->zone_nprocs;
1463 if (nprocs + incr > rcntl->rcv_value)
1464 return (1);
1466 return (0);
1469 /*ARGSUSED*/
1470 static int
1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1473 ASSERT(MUTEX_HELD(&p->p_lock));
1474 ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 if (e->rcep_p.zone == NULL)
1476 return (0);
1477 e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 return (0);
1481 static rctl_ops_t zone_procs_ops = {
1482 rcop_no_action,
1483 zone_procs_usage,
1484 zone_procs_set,
1485 zone_procs_test,
1488 /*ARGSUSED*/
1489 static rctl_qty_t
1490 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1492 ASSERT(MUTEX_HELD(&p->p_lock));
1493 return (p->p_zone->zone_shmmax);
1496 /*ARGSUSED*/
1497 static int
1498 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1499 rctl_qty_t incr, uint_t flags)
1501 rctl_qty_t v;
1502 ASSERT(MUTEX_HELD(&p->p_lock));
1503 ASSERT(e->rcep_t == RCENTITY_ZONE);
1504 v = e->rcep_p.zone->zone_shmmax + incr;
1505 if (v > rval->rcv_value)
1506 return (1);
1507 return (0);
1510 static rctl_ops_t zone_shmmax_ops = {
1511 rcop_no_action,
1512 zone_shmmax_usage,
1513 rcop_no_set,
1514 zone_shmmax_test
1517 /*ARGSUSED*/
1518 static rctl_qty_t
1519 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1521 ASSERT(MUTEX_HELD(&p->p_lock));
1522 return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 /*ARGSUSED*/
1526 static int
1527 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1528 rctl_qty_t incr, uint_t flags)
1530 rctl_qty_t v;
1531 ASSERT(MUTEX_HELD(&p->p_lock));
1532 ASSERT(e->rcep_t == RCENTITY_ZONE);
1533 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1534 if (v > rval->rcv_value)
1535 return (1);
1536 return (0);
1539 static rctl_ops_t zone_shmmni_ops = {
1540 rcop_no_action,
1541 zone_shmmni_usage,
1542 rcop_no_set,
1543 zone_shmmni_test
1546 /*ARGSUSED*/
1547 static rctl_qty_t
1548 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1550 ASSERT(MUTEX_HELD(&p->p_lock));
1551 return (p->p_zone->zone_ipc.ipcq_semmni);
1554 /*ARGSUSED*/
1555 static int
1556 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1557 rctl_qty_t incr, uint_t flags)
1559 rctl_qty_t v;
1560 ASSERT(MUTEX_HELD(&p->p_lock));
1561 ASSERT(e->rcep_t == RCENTITY_ZONE);
1562 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1563 if (v > rval->rcv_value)
1564 return (1);
1565 return (0);
1568 static rctl_ops_t zone_semmni_ops = {
1569 rcop_no_action,
1570 zone_semmni_usage,
1571 rcop_no_set,
1572 zone_semmni_test
1575 /*ARGSUSED*/
1576 static rctl_qty_t
1577 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1579 ASSERT(MUTEX_HELD(&p->p_lock));
1580 return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 /*ARGSUSED*/
1584 static int
1585 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1586 rctl_qty_t incr, uint_t flags)
1588 rctl_qty_t v;
1589 ASSERT(MUTEX_HELD(&p->p_lock));
1590 ASSERT(e->rcep_t == RCENTITY_ZONE);
1591 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1592 if (v > rval->rcv_value)
1593 return (1);
1594 return (0);
1597 static rctl_ops_t zone_msgmni_ops = {
1598 rcop_no_action,
1599 zone_msgmni_usage,
1600 rcop_no_set,
1601 zone_msgmni_test
1604 /*ARGSUSED*/
1605 static rctl_qty_t
1606 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1608 rctl_qty_t q;
1609 ASSERT(MUTEX_HELD(&p->p_lock));
1610 mutex_enter(&p->p_zone->zone_mem_lock);
1611 q = p->p_zone->zone_locked_mem;
1612 mutex_exit(&p->p_zone->zone_mem_lock);
1613 return (q);
1616 /*ARGSUSED*/
1617 static int
1618 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1619 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1621 rctl_qty_t q;
1622 zone_t *z;
1624 z = e->rcep_p.zone;
1625 ASSERT(MUTEX_HELD(&p->p_lock));
1626 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1627 q = z->zone_locked_mem;
1628 if (q + incr > rcntl->rcv_value)
1629 return (1);
1630 return (0);
1633 /*ARGSUSED*/
1634 static int
1635 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1636 rctl_qty_t nv)
1638 ASSERT(MUTEX_HELD(&p->p_lock));
1639 ASSERT(e->rcep_t == RCENTITY_ZONE);
1640 if (e->rcep_p.zone == NULL)
1641 return (0);
1642 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1643 return (0);
1646 static rctl_ops_t zone_locked_mem_ops = {
1647 rcop_no_action,
1648 zone_locked_mem_usage,
1649 zone_locked_mem_set,
1650 zone_locked_mem_test
1653 /*ARGSUSED*/
1654 static rctl_qty_t
1655 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1657 rctl_qty_t q;
1658 zone_t *z = p->p_zone;
1660 ASSERT(MUTEX_HELD(&p->p_lock));
1661 mutex_enter(&z->zone_mem_lock);
1662 q = z->zone_max_swap;
1663 mutex_exit(&z->zone_mem_lock);
1664 return (q);
1667 /*ARGSUSED*/
1668 static int
1669 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1670 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1672 rctl_qty_t q;
1673 zone_t *z;
1675 z = e->rcep_p.zone;
1676 ASSERT(MUTEX_HELD(&p->p_lock));
1677 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1678 q = z->zone_max_swap;
1679 if (q + incr > rcntl->rcv_value)
1680 return (1);
1681 return (0);
1684 /*ARGSUSED*/
1685 static int
1686 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1687 rctl_qty_t nv)
1689 ASSERT(MUTEX_HELD(&p->p_lock));
1690 ASSERT(e->rcep_t == RCENTITY_ZONE);
1691 if (e->rcep_p.zone == NULL)
1692 return (0);
1693 e->rcep_p.zone->zone_max_swap_ctl = nv;
1694 return (0);
1697 static rctl_ops_t zone_max_swap_ops = {
1698 rcop_no_action,
1699 zone_max_swap_usage,
1700 zone_max_swap_set,
1701 zone_max_swap_test
1704 /*ARGSUSED*/
1705 static rctl_qty_t
1706 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1708 rctl_qty_t q;
1709 zone_t *z = p->p_zone;
1711 ASSERT(MUTEX_HELD(&p->p_lock));
1712 mutex_enter(&z->zone_rctl_lock);
1713 q = z->zone_max_lofi;
1714 mutex_exit(&z->zone_rctl_lock);
1715 return (q);
1718 /*ARGSUSED*/
1719 static int
1720 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1721 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1723 rctl_qty_t q;
1724 zone_t *z;
1726 z = e->rcep_p.zone;
1727 ASSERT(MUTEX_HELD(&p->p_lock));
1728 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1729 q = z->zone_max_lofi;
1730 if (q + incr > rcntl->rcv_value)
1731 return (1);
1732 return (0);
1735 /*ARGSUSED*/
1736 static int
1737 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1738 rctl_qty_t nv)
1740 ASSERT(MUTEX_HELD(&p->p_lock));
1741 ASSERT(e->rcep_t == RCENTITY_ZONE);
1742 if (e->rcep_p.zone == NULL)
1743 return (0);
1744 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1745 return (0);
1748 static rctl_ops_t zone_max_lofi_ops = {
1749 rcop_no_action,
1750 zone_max_lofi_usage,
1751 zone_max_lofi_set,
1752 zone_max_lofi_test
1756 * Helper function to brand the zone with a unique ID.
1758 static void
1759 zone_uniqid(zone_t *zone)
1761 static uint64_t uniqid = 0;
1763 ASSERT(MUTEX_HELD(&zonehash_lock));
1764 zone->zone_uniqid = uniqid++;
1768 * Returns a held pointer to the "kcred" for the specified zone.
1770 struct cred *
1771 zone_get_kcred(zoneid_t zoneid)
1773 zone_t *zone;
1774 cred_t *cr;
1776 if ((zone = zone_find_by_id(zoneid)) == NULL)
1777 return (NULL);
1778 cr = zone->zone_kcred;
1779 crhold(cr);
1780 zone_rele(zone);
1781 return (cr);
1784 static int
1785 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1787 zone_t *zone = ksp->ks_private;
1788 zone_kstat_t *zk = ksp->ks_data;
1790 if (rw == KSTAT_WRITE)
1791 return (EACCES);
1793 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1794 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1795 return (0);
1798 static int
1799 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1801 zone_t *zone = ksp->ks_private;
1802 zone_kstat_t *zk = ksp->ks_data;
1804 if (rw == KSTAT_WRITE)
1805 return (EACCES);
1807 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1808 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1809 return (0);
1812 static int
1813 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1815 zone_t *zone = ksp->ks_private;
1816 zone_kstat_t *zk = ksp->ks_data;
1818 if (rw == KSTAT_WRITE)
1819 return (EACCES);
1821 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1822 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1823 return (0);
1826 static kstat_t *
1827 zone_kstat_create_common(zone_t *zone, char *name,
1828 int (*updatefunc) (kstat_t *, int))
1830 kstat_t *ksp;
1831 zone_kstat_t *zk;
1833 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1834 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1835 KSTAT_FLAG_VIRTUAL);
1837 if (ksp == NULL)
1838 return (NULL);
1840 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1841 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1842 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1843 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1844 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1845 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1846 ksp->ks_update = updatefunc;
1847 ksp->ks_private = zone;
1848 kstat_install(ksp);
1849 return (ksp);
1853 static int
1854 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1856 zone_t *zone = ksp->ks_private;
1857 zone_mcap_kstat_t *zmp = ksp->ks_data;
1859 if (rw == KSTAT_WRITE)
1860 return (EACCES);
1862 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1863 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1864 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1865 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1866 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1868 return (0);
1871 static kstat_t *
1872 zone_mcap_kstat_create(zone_t *zone)
1874 kstat_t *ksp;
1875 zone_mcap_kstat_t *zmp;
1877 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1878 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1879 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1880 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1881 return (NULL);
1883 if (zone->zone_id != GLOBAL_ZONEID)
1884 kstat_zone_add(ksp, GLOBAL_ZONEID);
1886 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1887 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1888 ksp->ks_lock = &zone->zone_mcap_lock;
1889 zone->zone_mcap_stats = zmp;
1891 /* The kstat "name" field is not large enough for a full zonename */
1892 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1893 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1894 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1895 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1896 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1897 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1898 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1899 KSTAT_DATA_UINT64);
1901 ksp->ks_update = zone_mcap_kstat_update;
1902 ksp->ks_private = zone;
1904 kstat_install(ksp);
1905 return (ksp);
1908 static int
1909 zone_misc_kstat_update(kstat_t *ksp, int rw)
1911 zone_t *zone = ksp->ks_private;
1912 zone_misc_kstat_t *zmp = ksp->ks_data;
1913 hrtime_t tmp;
1915 if (rw == KSTAT_WRITE)
1916 return (EACCES);
1918 tmp = zone->zone_utime;
1919 scalehrtime(&tmp);
1920 zmp->zm_utime.value.ui64 = tmp;
1921 tmp = zone->zone_stime;
1922 scalehrtime(&tmp);
1923 zmp->zm_stime.value.ui64 = tmp;
1924 tmp = zone->zone_wtime;
1925 scalehrtime(&tmp);
1926 zmp->zm_wtime.value.ui64 = tmp;
1928 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1929 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1930 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1932 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1933 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1934 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1935 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1937 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1939 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1940 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1942 return (0);
1945 static kstat_t *
1946 zone_misc_kstat_create(zone_t *zone)
1948 kstat_t *ksp;
1949 zone_misc_kstat_t *zmp;
1951 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1952 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1953 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1954 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1955 return (NULL);
1957 if (zone->zone_id != GLOBAL_ZONEID)
1958 kstat_zone_add(ksp, GLOBAL_ZONEID);
1960 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1961 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1962 ksp->ks_lock = &zone->zone_misc_lock;
1963 zone->zone_misc_stats = zmp;
1965 /* The kstat "name" field is not large enough for a full zonename */
1966 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1967 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1968 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1969 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1970 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1971 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1972 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1973 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1974 KSTAT_DATA_UINT32);
1975 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1976 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1977 KSTAT_DATA_UINT32);
1978 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1979 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1980 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1981 KSTAT_DATA_UINT32);
1982 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1983 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1985 ksp->ks_update = zone_misc_kstat_update;
1986 ksp->ks_private = zone;
1988 kstat_install(ksp);
1989 return (ksp);
1992 static void
1993 zone_kstat_create(zone_t *zone)
1995 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1996 "lockedmem", zone_lockedmem_kstat_update);
1997 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1998 "swapresv", zone_swapresv_kstat_update);
1999 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2000 "nprocs", zone_nprocs_kstat_update);
2002 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2003 zone->zone_mcap_stats = kmem_zalloc(
2004 sizeof (zone_mcap_kstat_t), KM_SLEEP);
2007 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2008 zone->zone_misc_stats = kmem_zalloc(
2009 sizeof (zone_misc_kstat_t), KM_SLEEP);
2013 static void
2014 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2016 void *data;
2018 if (*pkstat != NULL) {
2019 data = (*pkstat)->ks_data;
2020 kstat_delete(*pkstat);
2021 kmem_free(data, datasz);
2022 *pkstat = NULL;
2026 static void
2027 zone_kstat_delete(zone_t *zone)
2029 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2030 sizeof (zone_kstat_t));
2031 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2032 sizeof (zone_kstat_t));
2033 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2034 sizeof (zone_kstat_t));
2035 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2036 sizeof (zone_mcap_kstat_t));
2037 zone_kstat_delete_common(&zone->zone_misc_ksp,
2038 sizeof (zone_misc_kstat_t));
2042 * Called very early on in boot to initialize the ZSD list so that
2043 * zone_key_create() can be called before zone_init(). It also initializes
2044 * portions of zone0 which may be used before zone_init() is called. The
2045 * variable "global_zone" will be set when zone0 is fully initialized by
2046 * zone_init().
2048 void
2049 zone_zsd_init(void)
2051 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2052 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2053 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2054 offsetof(struct zsd_entry, zsd_linkage));
2055 list_create(&zone_active, sizeof (zone_t),
2056 offsetof(zone_t, zone_linkage));
2057 list_create(&zone_deathrow, sizeof (zone_t),
2058 offsetof(zone_t, zone_linkage));
2060 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2061 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2062 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2063 zone0.zone_shares = 1;
2064 zone0.zone_nlwps = 0;
2065 zone0.zone_nlwps_ctl = INT_MAX;
2066 zone0.zone_nprocs = 0;
2067 zone0.zone_nprocs_ctl = INT_MAX;
2068 zone0.zone_locked_mem = 0;
2069 zone0.zone_locked_mem_ctl = UINT64_MAX;
2070 ASSERT(zone0.zone_max_swap == 0);
2071 zone0.zone_max_swap_ctl = UINT64_MAX;
2072 zone0.zone_max_lofi = 0;
2073 zone0.zone_max_lofi_ctl = UINT64_MAX;
2074 zone0.zone_shmmax = 0;
2075 zone0.zone_ipc.ipcq_shmmni = 0;
2076 zone0.zone_ipc.ipcq_semmni = 0;
2077 zone0.zone_ipc.ipcq_msgmni = 0;
2078 zone0.zone_name = GLOBAL_ZONENAME;
2079 zone0.zone_nodename = utsname.nodename;
2080 zone0.zone_domain = srpc_domain;
2081 zone0.zone_hostid = HW_INVALID_HOSTID;
2082 zone0.zone_fs_allowed = NULL;
2083 zone0.zone_ref = 1;
2084 zone0.zone_id = GLOBAL_ZONEID;
2085 zone0.zone_status = ZONE_IS_RUNNING;
2086 zone0.zone_rootpath = "/";
2087 zone0.zone_rootpathlen = 2;
2088 zone0.zone_psetid = ZONE_PS_INVAL;
2089 zone0.zone_ncpus = 0;
2090 zone0.zone_ncpus_online = 0;
2091 zone0.zone_proc_initpid = 1;
2092 zone0.zone_initname = initname;
2093 zone0.zone_lockedmem_kstat = NULL;
2094 zone0.zone_swapresv_kstat = NULL;
2095 zone0.zone_nprocs_kstat = NULL;
2097 zone0.zone_stime = 0;
2098 zone0.zone_utime = 0;
2099 zone0.zone_wtime = 0;
2101 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2102 offsetof(zone_ref_t, zref_linkage));
2103 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2104 offsetof(struct zsd_entry, zsd_linkage));
2105 list_insert_head(&zone_active, &zone0);
2108 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2109 * to anything meaningful. It is assigned to be 'rootdir' in
2110 * vfs_mountroot().
2112 zone0.zone_rootvp = NULL;
2113 zone0.zone_vfslist = NULL;
2114 zone0.zone_bootargs = initargs;
2115 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2117 * The global zone has all privileges
2119 priv_fillset(zone0.zone_privset);
2121 * Add p0 to the global zone
2123 zone0.zone_zsched = &p0;
2124 p0.p_zone = &zone0;
2128 * Compute a hash value based on the contents of the label and the DOI. The
2129 * hash algorithm is somewhat arbitrary, but is based on the observation that
2130 * humans will likely pick labels that differ by amounts that work out to be
2131 * multiples of the number of hash chains, and thus stirring in some primes
2132 * should help.
2134 static uint_t
2135 hash_bylabel(void *hdata, mod_hash_key_t key)
2137 const ts_label_t *lab = (ts_label_t *)key;
2138 const uint32_t *up, *ue;
2139 uint_t hash;
2140 int i;
2142 _NOTE(ARGUNUSED(hdata));
2144 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2145 /* we depend on alignment of label, but not representation */
2146 up = (const uint32_t *)&lab->tsl_label;
2147 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2148 i = 1;
2149 while (up < ue) {
2150 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2151 hash += *up + (*up << ((i % 16) + 1));
2152 up++;
2153 i++;
2155 return (hash);
2159 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2160 * equal). This may need to be changed if less than / greater than is ever
2161 * needed.
2163 static int
2164 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2166 ts_label_t *lab1 = (ts_label_t *)key1;
2167 ts_label_t *lab2 = (ts_label_t *)key2;
2169 return (label_equal(lab1, lab2) ? 0 : 1);
2173 * Called by main() to initialize the zones framework.
2175 void
2176 zone_init(void)
2178 rctl_dict_entry_t *rde;
2179 rctl_val_t *dval;
2180 rctl_set_t *set;
2181 rctl_alloc_gp_t *gp;
2182 rctl_entity_p_t e;
2183 int res;
2185 ASSERT(curproc == &p0);
2188 * Create ID space for zone IDs. ID 0 is reserved for the
2189 * global zone.
2191 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2194 * Initialize generic zone resource controls, if any.
2196 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2197 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2198 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2199 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2201 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2204 RCTL_GLOBAL_INFINITE,
2205 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2207 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2208 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2209 INT_MAX, INT_MAX, &zone_lwps_ops);
2211 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2212 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2213 INT_MAX, INT_MAX, &zone_procs_ops);
2216 * System V IPC resource controls
2218 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2219 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2220 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2222 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2223 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2224 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2226 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2227 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2228 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2230 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2231 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2232 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2235 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2236 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2238 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2239 bzero(dval, sizeof (rctl_val_t));
2240 dval->rcv_value = 1;
2241 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2242 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2243 dval->rcv_action_recip_pid = -1;
2245 rde = rctl_dict_lookup("zone.cpu-shares");
2246 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2248 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2249 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2250 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2251 &zone_locked_mem_ops);
2253 rc_zone_max_swap = rctl_register("zone.max-swap",
2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 &zone_max_swap_ops);
2258 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 &zone_max_lofi_ops);
2264 * Initialize the ``global zone''.
2266 set = rctl_set_create();
2267 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2268 mutex_enter(&p0.p_lock);
2269 e.rcep_p.zone = &zone0;
2270 e.rcep_t = RCENTITY_ZONE;
2271 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2272 gp);
2274 zone0.zone_nlwps = p0.p_lwpcnt;
2275 zone0.zone_nprocs = 1;
2276 zone0.zone_ntasks = 1;
2277 mutex_exit(&p0.p_lock);
2278 zone0.zone_restart_init = B_TRUE;
2279 zone0.zone_brand = &native_brand;
2280 rctl_prealloc_destroy(gp);
2282 * pool_default hasn't been initialized yet, so we let pool_init()
2283 * take care of making sure the global zone is in the default pool.
2287 * Initialize global zone kstats
2289 zone_kstat_create(&zone0);
2292 * Initialize zone label.
2293 * mlp are initialized when tnzonecfg is loaded.
2295 zone0.zone_slabel = l_admin_low;
2296 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2297 label_hold(l_admin_low);
2300 * Initialise the lock for the database structure used by mntfs.
2302 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2304 mutex_enter(&zonehash_lock);
2305 zone_uniqid(&zone0);
2306 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2308 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2309 mod_hash_null_valdtor);
2310 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2311 zone_hash_size, mod_hash_null_valdtor);
2313 * maintain zonehashbylabel only for labeled systems
2315 if (is_system_labeled())
2316 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2317 zone_hash_size, mod_hash_null_keydtor,
2318 mod_hash_null_valdtor, hash_bylabel, NULL,
2319 hash_labelkey_cmp, KM_SLEEP);
2320 zonecount = 1;
2322 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2323 (mod_hash_val_t)&zone0);
2324 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2325 (mod_hash_val_t)&zone0);
2326 if (is_system_labeled()) {
2327 zone0.zone_flags |= ZF_HASHED_LABEL;
2328 (void) mod_hash_insert(zonehashbylabel,
2329 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2331 mutex_exit(&zonehash_lock);
2334 * We avoid setting zone_kcred until now, since kcred is initialized
2335 * sometime after zone_zsd_init() and before zone_init().
2337 zone0.zone_kcred = kcred;
2339 * The global zone is fully initialized (except for zone_rootvp which
2340 * will be set when the root filesystem is mounted).
2342 global_zone = &zone0;
2345 * Setup an event channel to send zone status change notifications on
2347 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2348 EVCH_CREAT);
2350 if (res)
2351 panic("Sysevent_evc_bind failed during zone setup.\n");
2355 static void
2356 zone_free(zone_t *zone)
2358 ASSERT(zone != global_zone);
2359 ASSERT(zone->zone_ntasks == 0);
2360 ASSERT(zone->zone_nlwps == 0);
2361 ASSERT(zone->zone_nprocs == 0);
2362 ASSERT(zone->zone_cred_ref == 0);
2363 ASSERT(zone->zone_kcred == NULL);
2364 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2365 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2366 ASSERT(list_is_empty(&zone->zone_ref_list));
2369 * Remove any zone caps.
2371 cpucaps_zone_remove(zone);
2373 ASSERT(zone->zone_cpucap == NULL);
2375 /* remove from deathrow list */
2376 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2377 ASSERT(zone->zone_ref == 0);
2378 mutex_enter(&zone_deathrow_lock);
2379 list_remove(&zone_deathrow, zone);
2380 mutex_exit(&zone_deathrow_lock);
2383 list_destroy(&zone->zone_ref_list);
2384 zone_free_zsd(zone);
2385 zone_free_datasets(zone);
2386 list_destroy(&zone->zone_dl_list);
2388 if (zone->zone_rootvp != NULL)
2389 VN_RELE(zone->zone_rootvp);
2390 if (zone->zone_rootpath)
2391 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2392 if (zone->zone_name != NULL)
2393 kmem_free(zone->zone_name, ZONENAME_MAX);
2394 if (zone->zone_slabel != NULL)
2395 label_rele(zone->zone_slabel);
2396 if (zone->zone_nodename != NULL)
2397 kmem_free(zone->zone_nodename, _SYS_NMLN);
2398 if (zone->zone_domain != NULL)
2399 kmem_free(zone->zone_domain, _SYS_NMLN);
2400 if (zone->zone_privset != NULL)
2401 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2402 if (zone->zone_rctls != NULL)
2403 rctl_set_free(zone->zone_rctls);
2404 if (zone->zone_bootargs != NULL)
2405 strfree(zone->zone_bootargs);
2406 if (zone->zone_initname != NULL)
2407 strfree(zone->zone_initname);
2408 if (zone->zone_fs_allowed != NULL)
2409 strfree(zone->zone_fs_allowed);
2410 if (zone->zone_pfexecd != NULL)
2411 klpd_freelist(&zone->zone_pfexecd);
2412 id_free(zoneid_space, zone->zone_id);
2413 mutex_destroy(&zone->zone_lock);
2414 cv_destroy(&zone->zone_cv);
2415 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2416 rw_destroy(&zone->zone_mntfs_db_lock);
2417 kmem_free(zone, sizeof (zone_t));
2421 * See block comment at the top of this file for information about zone
2422 * status values.
2425 * Convenience function for setting zone status.
2427 static void
2428 zone_status_set(zone_t *zone, zone_status_t status)
2431 nvlist_t *nvl = NULL;
2432 ASSERT(MUTEX_HELD(&zone_status_lock));
2433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2434 status >= zone_status_get(zone));
2436 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2437 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2438 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2439 zone_status_table[status]) ||
2440 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2441 zone_status_table[zone->zone_status]) ||
2442 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2443 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2444 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2445 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2446 #ifdef DEBUG
2447 (void) printf(
2448 "Failed to allocate and send zone state change event.\n");
2449 #endif
2451 nvlist_free(nvl);
2453 zone->zone_status = status;
2455 cv_broadcast(&zone->zone_cv);
2459 * Public function to retrieve the zone status. The zone status may
2460 * change after it is retrieved.
2462 zone_status_t
2463 zone_status_get(zone_t *zone)
2465 return (zone->zone_status);
2468 static int
2469 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2471 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2472 int err = 0;
2474 ASSERT(zone != global_zone);
2475 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2476 goto done; /* EFAULT or ENAMETOOLONG */
2478 if (zone->zone_bootargs != NULL)
2479 strfree(zone->zone_bootargs);
2481 zone->zone_bootargs = strdup(buf);
2483 done:
2484 kmem_free(buf, BOOTARGS_MAX);
2485 return (err);
2488 static int
2489 zone_set_brand(zone_t *zone, const char *brand)
2491 struct brand_attr *attrp;
2492 brand_t *bp;
2494 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2495 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2496 kmem_free(attrp, sizeof (struct brand_attr));
2497 return (EFAULT);
2500 bp = brand_register_zone(attrp);
2501 kmem_free(attrp, sizeof (struct brand_attr));
2502 if (bp == NULL)
2503 return (EINVAL);
2506 * This is the only place where a zone can change it's brand.
2507 * We already need to hold zone_status_lock to check the zone
2508 * status, so we'll just use that lock to serialize zone
2509 * branding requests as well.
2511 mutex_enter(&zone_status_lock);
2513 /* Re-Branding is not allowed and the zone can't be booted yet */
2514 if ((ZONE_IS_BRANDED(zone)) ||
2515 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2516 mutex_exit(&zone_status_lock);
2517 brand_unregister_zone(bp);
2518 return (EINVAL);
2521 /* set up the brand specific data */
2522 zone->zone_brand = bp;
2523 ZBROP(zone)->b_init_brand_data(zone);
2525 mutex_exit(&zone_status_lock);
2526 return (0);
2529 static int
2530 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2532 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2533 int err = 0;
2535 ASSERT(zone != global_zone);
2536 if ((err = copyinstr(zone_fs_allowed, buf,
2537 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2538 goto done;
2540 if (zone->zone_fs_allowed != NULL)
2541 strfree(zone->zone_fs_allowed);
2543 zone->zone_fs_allowed = strdup(buf);
2545 done:
2546 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2547 return (err);
2550 static int
2551 zone_set_initname(zone_t *zone, const char *zone_initname)
2553 char initname[INITNAME_SZ];
2554 size_t len;
2555 int err = 0;
2557 ASSERT(zone != global_zone);
2558 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2559 return (err); /* EFAULT or ENAMETOOLONG */
2561 if (zone->zone_initname != NULL)
2562 strfree(zone->zone_initname);
2564 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2565 (void) strcpy(zone->zone_initname, initname);
2566 return (0);
2569 static int
2570 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2572 uint64_t mcap;
2573 int err = 0;
2575 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2576 zone->zone_phys_mcap = mcap;
2578 return (err);
2581 static int
2582 zone_set_sched_class(zone_t *zone, const char *new_class)
2584 char sched_class[PC_CLNMSZ];
2585 id_t classid;
2586 int err;
2588 ASSERT(zone != global_zone);
2589 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2590 return (err); /* EFAULT or ENAMETOOLONG */
2592 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2593 return (set_errno(EINVAL));
2594 zone->zone_defaultcid = classid;
2595 ASSERT(zone->zone_defaultcid > 0 &&
2596 zone->zone_defaultcid < loaded_classes);
2598 return (0);
2602 * Block indefinitely waiting for (zone_status >= status)
2604 void
2605 zone_status_wait(zone_t *zone, zone_status_t status)
2607 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2609 mutex_enter(&zone_status_lock);
2610 while (zone->zone_status < status) {
2611 cv_wait(&zone->zone_cv, &zone_status_lock);
2613 mutex_exit(&zone_status_lock);
2617 * Private CPR-safe version of zone_status_wait().
2619 static void
2620 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2622 callb_cpr_t cprinfo;
2624 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2626 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2627 str);
2628 mutex_enter(&zone_status_lock);
2629 while (zone->zone_status < status) {
2630 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2631 cv_wait(&zone->zone_cv, &zone_status_lock);
2632 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2635 * zone_status_lock is implicitly released by the following.
2637 CALLB_CPR_EXIT(&cprinfo);
2641 * Block until zone enters requested state or signal is received. Return (0)
2642 * if signaled, non-zero otherwise.
2645 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2647 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2649 mutex_enter(&zone_status_lock);
2650 while (zone->zone_status < status) {
2651 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2652 mutex_exit(&zone_status_lock);
2653 return (0);
2656 mutex_exit(&zone_status_lock);
2657 return (1);
2661 * Block until the zone enters the requested state or the timeout expires,
2662 * whichever happens first. Return (-1) if operation timed out, time remaining
2663 * otherwise.
2665 clock_t
2666 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2668 clock_t timeleft = 0;
2670 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2672 mutex_enter(&zone_status_lock);
2673 while (zone->zone_status < status && timeleft != -1) {
2674 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2676 mutex_exit(&zone_status_lock);
2677 return (timeleft);
2681 * Block until the zone enters the requested state, the current process is
2682 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2683 * operation timed out, 0 if signaled, time remaining otherwise.
2685 clock_t
2686 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2688 clock_t timeleft = tim - ddi_get_lbolt();
2690 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2692 mutex_enter(&zone_status_lock);
2693 while (zone->zone_status < status) {
2694 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2695 tim);
2696 if (timeleft <= 0)
2697 break;
2699 mutex_exit(&zone_status_lock);
2700 return (timeleft);
2704 * Zones have two reference counts: one for references from credential
2705 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2706 * This is so we can allow a zone to be rebooted while there are still
2707 * outstanding cred references, since certain drivers cache dblks (which
2708 * implicitly results in cached creds). We wait for zone_ref to drop to
2709 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2710 * later freed when the zone_cred_ref drops to 0, though nothing other
2711 * than the zone id and privilege set should be accessed once the zone
2712 * is "dead".
2714 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2715 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2716 * to 0. This can be useful to flush out other sources of cached creds
2717 * that may be less innocuous than the driver case.
2719 * Zones also provide a tracked reference counting mechanism in which zone
2720 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2721 * debuggers determine the sources of leaked zone references. See
2722 * zone_hold_ref() and zone_rele_ref() below for more information.
2725 int zone_wait_for_cred = 0;
2727 static void
2728 zone_hold_locked(zone_t *z)
2730 ASSERT(MUTEX_HELD(&z->zone_lock));
2731 z->zone_ref++;
2732 ASSERT(z->zone_ref != 0);
2736 * Increment the specified zone's reference count. The zone's zone_t structure
2737 * will not be freed as long as the zone's reference count is nonzero.
2738 * Decrement the zone's reference count via zone_rele().
2740 * NOTE: This function should only be used to hold zones for short periods of
2741 * time. Use zone_hold_ref() if the zone must be held for a long time.
2743 void
2744 zone_hold(zone_t *z)
2746 mutex_enter(&z->zone_lock);
2747 zone_hold_locked(z);
2748 mutex_exit(&z->zone_lock);
2752 * If the non-cred ref count drops to 1 and either the cred ref count
2753 * is 0 or we aren't waiting for cred references, the zone is ready to
2754 * be destroyed.
2756 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2757 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2760 * Common zone reference release function invoked by zone_rele() and
2761 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2762 * zone's subsystem-specific reference counters are not affected by the
2763 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2764 * removed from the specified zone's reference list. ref must be non-NULL iff
2765 * subsys is not ZONE_REF_NUM_SUBSYS.
2767 static void
2768 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2770 boolean_t wakeup;
2772 mutex_enter(&z->zone_lock);
2773 ASSERT(z->zone_ref != 0);
2774 z->zone_ref--;
2775 if (subsys != ZONE_REF_NUM_SUBSYS) {
2776 ASSERT(z->zone_subsys_ref[subsys] != 0);
2777 z->zone_subsys_ref[subsys]--;
2778 list_remove(&z->zone_ref_list, ref);
2780 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2781 /* no more refs, free the structure */
2782 mutex_exit(&z->zone_lock);
2783 zone_free(z);
2784 return;
2786 /* signal zone_destroy so the zone can finish halting */
2787 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2788 mutex_exit(&z->zone_lock);
2790 if (wakeup) {
2792 * Grabbing zonehash_lock here effectively synchronizes with
2793 * zone_destroy() to avoid missed signals.
2795 mutex_enter(&zonehash_lock);
2796 cv_broadcast(&zone_destroy_cv);
2797 mutex_exit(&zonehash_lock);
2802 * Decrement the specified zone's reference count. The specified zone will
2803 * cease to exist after this function returns if the reference count drops to
2804 * zero. This function should be paired with zone_hold().
2806 void
2807 zone_rele(zone_t *z)
2809 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2813 * Initialize a zone reference structure. This function must be invoked for
2814 * a reference structure before the structure is passed to zone_hold_ref().
2816 void
2817 zone_init_ref(zone_ref_t *ref)
2819 ref->zref_zone = NULL;
2820 list_link_init(&ref->zref_linkage);
2824 * Acquire a reference to zone z. The caller must specify the
2825 * zone_ref_subsys_t constant associated with its subsystem. The specified
2826 * zone_ref_t structure will represent a reference to the specified zone. Use
2827 * zone_rele_ref() to release the reference.
2829 * The referenced zone_t structure will not be freed as long as the zone_t's
2830 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2831 * references.
2833 * NOTE: The zone_ref_t structure must be initialized before it is used.
2834 * See zone_init_ref() above.
2836 void
2837 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2839 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2842 * Prevent consumers from reusing a reference structure before
2843 * releasing it.
2845 VERIFY(ref->zref_zone == NULL);
2847 ref->zref_zone = z;
2848 mutex_enter(&z->zone_lock);
2849 zone_hold_locked(z);
2850 z->zone_subsys_ref[subsys]++;
2851 ASSERT(z->zone_subsys_ref[subsys] != 0);
2852 list_insert_head(&z->zone_ref_list, ref);
2853 mutex_exit(&z->zone_lock);
2857 * Release the zone reference represented by the specified zone_ref_t.
2858 * The reference is invalid after it's released; however, the zone_ref_t
2859 * structure can be reused without having to invoke zone_init_ref().
2860 * subsys should be the same value that was passed to zone_hold_ref()
2861 * when the reference was acquired.
2863 void
2864 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2866 zone_rele_common(ref->zref_zone, ref, subsys);
2869 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2870 * when consumers dereference the reference. This helps us catch
2871 * consumers who use released references. Furthermore, this lets
2872 * consumers reuse the zone_ref_t structure without having to
2873 * invoke zone_init_ref().
2875 ref->zref_zone = NULL;
2878 void
2879 zone_cred_hold(zone_t *z)
2881 mutex_enter(&z->zone_lock);
2882 z->zone_cred_ref++;
2883 ASSERT(z->zone_cred_ref != 0);
2884 mutex_exit(&z->zone_lock);
2887 void
2888 zone_cred_rele(zone_t *z)
2890 boolean_t wakeup;
2892 mutex_enter(&z->zone_lock);
2893 ASSERT(z->zone_cred_ref != 0);
2894 z->zone_cred_ref--;
2895 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2896 /* no more refs, free the structure */
2897 mutex_exit(&z->zone_lock);
2898 zone_free(z);
2899 return;
2902 * If zone_destroy is waiting for the cred references to drain
2903 * out, and they have, signal it.
2905 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2906 zone_status_get(z) >= ZONE_IS_DEAD);
2907 mutex_exit(&z->zone_lock);
2909 if (wakeup) {
2911 * Grabbing zonehash_lock here effectively synchronizes with
2912 * zone_destroy() to avoid missed signals.
2914 mutex_enter(&zonehash_lock);
2915 cv_broadcast(&zone_destroy_cv);
2916 mutex_exit(&zonehash_lock);
2920 void
2921 zone_task_hold(zone_t *z)
2923 mutex_enter(&z->zone_lock);
2924 z->zone_ntasks++;
2925 ASSERT(z->zone_ntasks != 0);
2926 mutex_exit(&z->zone_lock);
2929 void
2930 zone_task_rele(zone_t *zone)
2932 uint_t refcnt;
2934 mutex_enter(&zone->zone_lock);
2935 ASSERT(zone->zone_ntasks != 0);
2936 refcnt = --zone->zone_ntasks;
2937 if (refcnt > 1) { /* Common case */
2938 mutex_exit(&zone->zone_lock);
2939 return;
2941 zone_hold_locked(zone); /* so we can use the zone_t later */
2942 mutex_exit(&zone->zone_lock);
2943 if (refcnt == 1) {
2945 * See if the zone is shutting down.
2947 mutex_enter(&zone_status_lock);
2948 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2949 goto out;
2953 * Make sure the ntasks didn't change since we
2954 * dropped zone_lock.
2956 mutex_enter(&zone->zone_lock);
2957 if (refcnt != zone->zone_ntasks) {
2958 mutex_exit(&zone->zone_lock);
2959 goto out;
2961 mutex_exit(&zone->zone_lock);
2964 * No more user processes in the zone. The zone is empty.
2966 zone_status_set(zone, ZONE_IS_EMPTY);
2967 goto out;
2970 ASSERT(refcnt == 0);
2972 * zsched has exited; the zone is dead.
2974 zone->zone_zsched = NULL; /* paranoia */
2975 mutex_enter(&zone_status_lock);
2976 zone_status_set(zone, ZONE_IS_DEAD);
2977 out:
2978 mutex_exit(&zone_status_lock);
2979 zone_rele(zone);
2982 zoneid_t
2983 getzoneid(void)
2985 return (curproc->p_zone->zone_id);
2989 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2990 * check the validity of a zone's state.
2992 static zone_t *
2993 zone_find_all_by_id(zoneid_t zoneid)
2995 mod_hash_val_t hv;
2996 zone_t *zone = NULL;
2998 ASSERT(MUTEX_HELD(&zonehash_lock));
3000 if (mod_hash_find(zonehashbyid,
3001 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3002 zone = (zone_t *)hv;
3003 return (zone);
3006 static zone_t *
3007 zone_find_all_by_label(const ts_label_t *label)
3009 mod_hash_val_t hv;
3010 zone_t *zone = NULL;
3012 ASSERT(MUTEX_HELD(&zonehash_lock));
3015 * zonehashbylabel is not maintained for unlabeled systems
3017 if (!is_system_labeled())
3018 return (NULL);
3019 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3020 zone = (zone_t *)hv;
3021 return (zone);
3024 static zone_t *
3025 zone_find_all_by_name(char *name)
3027 mod_hash_val_t hv;
3028 zone_t *zone = NULL;
3030 ASSERT(MUTEX_HELD(&zonehash_lock));
3032 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3033 zone = (zone_t *)hv;
3034 return (zone);
3038 * Public interface for looking up a zone by zoneid. Only returns the zone if
3039 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3040 * Caller must call zone_rele() once it is done with the zone.
3042 * The zone may begin the zone_destroy() sequence immediately after this
3043 * function returns, but may be safely used until zone_rele() is called.
3045 zone_t *
3046 zone_find_by_id(zoneid_t zoneid)
3048 zone_t *zone;
3049 zone_status_t status;
3051 mutex_enter(&zonehash_lock);
3052 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3053 mutex_exit(&zonehash_lock);
3054 return (NULL);
3056 status = zone_status_get(zone);
3057 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3059 * For all practical purposes the zone doesn't exist.
3061 mutex_exit(&zonehash_lock);
3062 return (NULL);
3064 zone_hold(zone);
3065 mutex_exit(&zonehash_lock);
3066 return (zone);
3070 * Similar to zone_find_by_id, but using zone label as the key.
3072 zone_t *
3073 zone_find_by_label(const ts_label_t *label)
3075 zone_t *zone;
3076 zone_status_t status;
3078 mutex_enter(&zonehash_lock);
3079 if ((zone = zone_find_all_by_label(label)) == NULL) {
3080 mutex_exit(&zonehash_lock);
3081 return (NULL);
3084 status = zone_status_get(zone);
3085 if (status > ZONE_IS_DOWN) {
3087 * For all practical purposes the zone doesn't exist.
3089 mutex_exit(&zonehash_lock);
3090 return (NULL);
3092 zone_hold(zone);
3093 mutex_exit(&zonehash_lock);
3094 return (zone);
3098 * Similar to zone_find_by_id, but using zone name as the key.
3100 zone_t *
3101 zone_find_by_name(char *name)
3103 zone_t *zone;
3104 zone_status_t status;
3106 mutex_enter(&zonehash_lock);
3107 if ((zone = zone_find_all_by_name(name)) == NULL) {
3108 mutex_exit(&zonehash_lock);
3109 return (NULL);
3111 status = zone_status_get(zone);
3112 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3114 * For all practical purposes the zone doesn't exist.
3116 mutex_exit(&zonehash_lock);
3117 return (NULL);
3119 zone_hold(zone);
3120 mutex_exit(&zonehash_lock);
3121 return (zone);
3125 * Similar to zone_find_by_id(), using the path as a key. For instance,
3126 * if there is a zone "foo" rooted at /foo/root, and the path argument
3127 * is "/foo/root/proc", it will return the held zone_t corresponding to
3128 * zone "foo".
3130 * zone_find_by_path() always returns a non-NULL value, since at the
3131 * very least every path will be contained in the global zone.
3133 * As with the other zone_find_by_*() functions, the caller is
3134 * responsible for zone_rele()ing the return value of this function.
3136 zone_t *
3137 zone_find_by_path(const char *path)
3139 zone_t *zone;
3140 zone_t *zret = NULL;
3141 zone_status_t status;
3143 if (path == NULL) {
3145 * Call from rootconf().
3147 zone_hold(global_zone);
3148 return (global_zone);
3150 ASSERT(*path == '/');
3151 mutex_enter(&zonehash_lock);
3152 for (zone = list_head(&zone_active); zone != NULL;
3153 zone = list_next(&zone_active, zone)) {
3154 if (ZONE_PATH_VISIBLE(path, zone))
3155 zret = zone;
3157 ASSERT(zret != NULL);
3158 status = zone_status_get(zret);
3159 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3161 * Zone practically doesn't exist.
3163 zret = global_zone;
3165 zone_hold(zret);
3166 mutex_exit(&zonehash_lock);
3167 return (zret);
3171 * Public interface for updating per-zone load averages. Called once per
3172 * second.
3174 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3176 void
3177 zone_loadavg_update()
3179 zone_t *zp;
3180 zone_status_t status;
3181 struct loadavg_s *lavg;
3182 hrtime_t zone_total;
3183 int i;
3184 hrtime_t hr_avg;
3185 int nrun;
3186 static int64_t f[3] = { 135, 27, 9 };
3187 int64_t q, r;
3189 mutex_enter(&zonehash_lock);
3190 for (zp = list_head(&zone_active); zp != NULL;
3191 zp = list_next(&zone_active, zp)) {
3192 mutex_enter(&zp->zone_lock);
3194 /* Skip zones that are on the way down or not yet up */
3195 status = zone_status_get(zp);
3196 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3197 /* For all practical purposes the zone doesn't exist. */
3198 mutex_exit(&zp->zone_lock);
3199 continue;
3203 * Update the 10 second moving average data in zone_loadavg.
3205 lavg = &zp->zone_loadavg;
3207 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3208 scalehrtime(&zone_total);
3210 /* The zone_total should always be increasing. */
3211 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3212 zone_total - lavg->lg_total : 0;
3213 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3214 /* lg_total holds the prev. 1 sec. total */
3215 lavg->lg_total = zone_total;
3218 * To simplify the calculation, we don't calculate the load avg.
3219 * until the zone has been up for at least 10 seconds and our
3220 * moving average is thus full.
3222 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3223 lavg->lg_len++;
3224 mutex_exit(&zp->zone_lock);
3225 continue;
3228 /* Now calculate the 1min, 5min, 15 min load avg. */
3229 hr_avg = 0;
3230 for (i = 0; i < S_LOADAVG_SZ; i++)
3231 hr_avg += lavg->lg_loads[i];
3232 hr_avg = hr_avg / S_LOADAVG_SZ;
3233 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3235 /* Compute load avg. See comment in calcloadavg() */
3236 for (i = 0; i < 3; i++) {
3237 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3238 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3239 zp->zone_hp_avenrun[i] +=
3240 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3242 /* avenrun[] can only hold 31 bits of load avg. */
3243 if (zp->zone_hp_avenrun[i] <
3244 ((uint64_t)1<<(31+16-FSHIFT)))
3245 zp->zone_avenrun[i] = (int32_t)
3246 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3247 else
3248 zp->zone_avenrun[i] = 0x7fffffff;
3251 mutex_exit(&zp->zone_lock);
3253 mutex_exit(&zonehash_lock);
3257 * Get the number of cpus visible to this zone. The system-wide global
3258 * 'ncpus' is returned if pools are disabled, the caller is in the
3259 * global zone, or a NULL zone argument is passed in.
3262 zone_ncpus_get(zone_t *zone)
3264 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3266 return (myncpus != 0 ? myncpus : ncpus);
3270 * Get the number of online cpus visible to this zone. The system-wide
3271 * global 'ncpus_online' is returned if pools are disabled, the caller
3272 * is in the global zone, or a NULL zone argument is passed in.
3275 zone_ncpus_online_get(zone_t *zone)
3277 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3279 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3283 * Return the pool to which the zone is currently bound.
3285 pool_t *
3286 zone_pool_get(zone_t *zone)
3288 ASSERT(pool_lock_held());
3290 return (zone->zone_pool);
3294 * Set the zone's pool pointer and update the zone's visibility to match
3295 * the resources in the new pool.
3297 void
3298 zone_pool_set(zone_t *zone, pool_t *pool)
3300 ASSERT(pool_lock_held());
3301 ASSERT(MUTEX_HELD(&cpu_lock));
3303 zone->zone_pool = pool;
3304 zone_pset_set(zone, pool->pool_pset->pset_id);
3308 * Return the cached value of the id of the processor set to which the
3309 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3310 * facility is disabled.
3312 psetid_t
3313 zone_pset_get(zone_t *zone)
3315 ASSERT(MUTEX_HELD(&cpu_lock));
3317 return (zone->zone_psetid);
3321 * Set the cached value of the id of the processor set to which the zone
3322 * is currently bound. Also update the zone's visibility to match the
3323 * resources in the new processor set.
3325 void
3326 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3328 psetid_t oldpsetid;
3330 ASSERT(MUTEX_HELD(&cpu_lock));
3331 oldpsetid = zone_pset_get(zone);
3333 if (oldpsetid == newpsetid)
3334 return;
3336 * Global zone sees all.
3338 if (zone != global_zone) {
3339 zone->zone_psetid = newpsetid;
3340 if (newpsetid != ZONE_PS_INVAL)
3341 pool_pset_visibility_add(newpsetid, zone);
3342 if (oldpsetid != ZONE_PS_INVAL)
3343 pool_pset_visibility_remove(oldpsetid, zone);
3346 * Disabling pools, so we should start using the global values
3347 * for ncpus and ncpus_online.
3349 if (newpsetid == ZONE_PS_INVAL) {
3350 zone->zone_ncpus = 0;
3351 zone->zone_ncpus_online = 0;
3356 * Walk the list of active zones and issue the provided callback for
3357 * each of them.
3359 * Caller must not be holding any locks that may be acquired under
3360 * zonehash_lock. See comment at the beginning of the file for a list of
3361 * common locks and their interactions with zones.
3364 zone_walk(int (*cb)(zone_t *, void *), void *data)
3366 zone_t *zone;
3367 int ret = 0;
3368 zone_status_t status;
3370 mutex_enter(&zonehash_lock);
3371 for (zone = list_head(&zone_active); zone != NULL;
3372 zone = list_next(&zone_active, zone)) {
3374 * Skip zones that shouldn't be externally visible.
3376 status = zone_status_get(zone);
3377 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3378 continue;
3380 * Bail immediately if any callback invocation returns a
3381 * non-zero value.
3383 ret = (*cb)(zone, data);
3384 if (ret != 0)
3385 break;
3387 mutex_exit(&zonehash_lock);
3388 return (ret);
3391 static int
3392 zone_set_root(zone_t *zone, const char *upath)
3394 vnode_t *vp;
3395 int trycount;
3396 int error = 0;
3397 char *path;
3398 struct pathname upn, pn;
3399 size_t pathlen;
3401 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3402 return (error);
3404 pn_alloc(&pn);
3406 /* prevent infinite loop */
3407 trycount = 10;
3408 for (;;) {
3409 if (--trycount <= 0) {
3410 error = ESTALE;
3411 goto out;
3414 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3416 * VOP_ACCESS() may cover 'vp' with a new
3417 * filesystem, if 'vp' is an autoFS vnode.
3418 * Get the new 'vp' if so.
3420 if ((error =
3421 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3422 (!vn_ismntpt(vp) ||
3423 (error = traverse(&vp)) == 0)) {
3424 pathlen = pn.pn_pathlen + 2;
3425 path = kmem_alloc(pathlen, KM_SLEEP);
3426 (void) strncpy(path, pn.pn_path,
3427 pn.pn_pathlen + 1);
3428 path[pathlen - 2] = '/';
3429 path[pathlen - 1] = '\0';
3430 pn_free(&pn);
3431 pn_free(&upn);
3433 /* Success! */
3434 break;
3436 VN_RELE(vp);
3438 if (error != ESTALE)
3439 goto out;
3442 ASSERT(error == 0);
3443 zone->zone_rootvp = vp; /* we hold a reference to vp */
3444 zone->zone_rootpath = path;
3445 zone->zone_rootpathlen = pathlen;
3446 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3447 zone->zone_flags |= ZF_IS_SCRATCH;
3448 return (0);
3450 out:
3451 pn_free(&pn);
3452 pn_free(&upn);
3453 return (error);
3456 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3457 ((c) >= 'a' && (c) <= 'z') || \
3458 ((c) >= 'A' && (c) <= 'Z'))
3460 static int
3461 zone_set_name(zone_t *zone, const char *uname)
3463 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3464 size_t len;
3465 int i, err;
3467 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3468 kmem_free(kname, ZONENAME_MAX);
3469 return (err); /* EFAULT or ENAMETOOLONG */
3472 /* must be less than ZONENAME_MAX */
3473 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3474 kmem_free(kname, ZONENAME_MAX);
3475 return (EINVAL);
3479 * Name must start with an alphanumeric and must contain only
3480 * alphanumerics, '-', '_' and '.'.
3482 if (!isalnum(kname[0])) {
3483 kmem_free(kname, ZONENAME_MAX);
3484 return (EINVAL);
3486 for (i = 1; i < len - 1; i++) {
3487 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3488 kname[i] != '.') {
3489 kmem_free(kname, ZONENAME_MAX);
3490 return (EINVAL);
3494 zone->zone_name = kname;
3495 return (0);
3499 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3500 * is NULL or it points to a zone with no hostid emulation, then the machine's
3501 * hostid (i.e., the global zone's hostid) is returned. This function returns
3502 * zero if neither the zone nor the host machine (global zone) have hostids. It
3503 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3504 * hostid and the machine's hostid is invalid.
3506 uint32_t
3507 zone_get_hostid(zone_t *zonep)
3509 unsigned long machine_hostid;
3511 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3512 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3513 return (HW_INVALID_HOSTID);
3514 return ((uint32_t)machine_hostid);
3516 return (zonep->zone_hostid);
3520 * Similar to thread_create(), but makes sure the thread is in the appropriate
3521 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3523 /*ARGSUSED*/
3524 kthread_t *
3525 zthread_create(
3526 caddr_t stk,
3527 size_t stksize,
3528 void (*proc)(),
3529 void *arg,
3530 size_t len,
3531 pri_t pri)
3533 kthread_t *t;
3534 zone_t *zone = curproc->p_zone;
3535 proc_t *pp = zone->zone_zsched;
3537 zone_hold(zone); /* Reference to be dropped when thread exits */
3540 * No-one should be trying to create threads if the zone is shutting
3541 * down and there aren't any kernel threads around. See comment
3542 * in zthread_exit().
3544 ASSERT(!(zone->zone_kthreads == NULL &&
3545 zone_status_get(zone) >= ZONE_IS_EMPTY));
3547 * Create a thread, but don't let it run until we've finished setting
3548 * things up.
3550 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3551 ASSERT(t->t_forw == NULL);
3552 mutex_enter(&zone_status_lock);
3553 if (zone->zone_kthreads == NULL) {
3554 t->t_forw = t->t_back = t;
3555 } else {
3556 kthread_t *tx = zone->zone_kthreads;
3558 t->t_forw = tx;
3559 t->t_back = tx->t_back;
3560 tx->t_back->t_forw = t;
3561 tx->t_back = t;
3563 zone->zone_kthreads = t;
3564 mutex_exit(&zone_status_lock);
3566 mutex_enter(&pp->p_lock);
3567 t->t_proc_flag |= TP_ZTHREAD;
3568 project_rele(t->t_proj);
3569 t->t_proj = project_hold(pp->p_task->tk_proj);
3572 * Setup complete, let it run.
3574 thread_lock(t);
3575 t->t_schedflag |= TS_ALLSTART;
3576 setrun_locked(t);
3577 thread_unlock(t);
3579 mutex_exit(&pp->p_lock);
3581 return (t);
3585 * Similar to thread_exit(). Must be called by threads created via
3586 * zthread_exit().
3588 void
3589 zthread_exit(void)
3591 kthread_t *t = curthread;
3592 proc_t *pp = curproc;
3593 zone_t *zone = pp->p_zone;
3595 mutex_enter(&zone_status_lock);
3598 * Reparent to p0
3600 kpreempt_disable();
3601 mutex_enter(&pp->p_lock);
3602 t->t_proc_flag &= ~TP_ZTHREAD;
3603 t->t_procp = &p0;
3604 hat_thread_exit(t);
3605 mutex_exit(&pp->p_lock);
3606 kpreempt_enable();
3608 if (t->t_back == t) {
3609 ASSERT(t->t_forw == t);
3611 * If the zone is empty, once the thread count
3612 * goes to zero no further kernel threads can be
3613 * created. This is because if the creator is a process
3614 * in the zone, then it must have exited before the zone
3615 * state could be set to ZONE_IS_EMPTY.
3616 * Otherwise, if the creator is a kernel thread in the
3617 * zone, the thread count is non-zero.
3619 * This really means that non-zone kernel threads should
3620 * not create zone kernel threads.
3622 zone->zone_kthreads = NULL;
3623 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3624 zone_status_set(zone, ZONE_IS_DOWN);
3626 * Remove any CPU caps on this zone.
3628 cpucaps_zone_remove(zone);
3630 } else {
3631 t->t_forw->t_back = t->t_back;
3632 t->t_back->t_forw = t->t_forw;
3633 if (zone->zone_kthreads == t)
3634 zone->zone_kthreads = t->t_forw;
3636 mutex_exit(&zone_status_lock);
3637 zone_rele(zone);
3638 thread_exit();
3639 /* NOTREACHED */
3642 static void
3643 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3645 vnode_t *oldvp;
3647 /* we're going to hold a reference here to the directory */
3648 VN_HOLD(vp);
3650 /* update abs cwd/root path see c2/audit.c */
3651 if (AU_AUDITING())
3652 audit_chdirec(vp, vpp);
3654 mutex_enter(&pp->p_lock);
3655 oldvp = *vpp;
3656 *vpp = vp;
3657 mutex_exit(&pp->p_lock);
3658 if (oldvp != NULL)
3659 VN_RELE(oldvp);
3663 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3665 static int
3666 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3668 nvpair_t *nvp = NULL;
3669 boolean_t priv_set = B_FALSE;
3670 boolean_t limit_set = B_FALSE;
3671 boolean_t action_set = B_FALSE;
3673 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3674 const char *name;
3675 uint64_t ui64;
3677 name = nvpair_name(nvp);
3678 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3679 return (EINVAL);
3680 (void) nvpair_value_uint64(nvp, &ui64);
3681 if (strcmp(name, "privilege") == 0) {
3683 * Currently only privileged values are allowed, but
3684 * this may change in the future.
3686 if (ui64 != RCPRIV_PRIVILEGED)
3687 return (EINVAL);
3688 rv->rcv_privilege = ui64;
3689 priv_set = B_TRUE;
3690 } else if (strcmp(name, "limit") == 0) {
3691 rv->rcv_value = ui64;
3692 limit_set = B_TRUE;
3693 } else if (strcmp(name, "action") == 0) {
3694 if (ui64 != RCTL_LOCAL_NOACTION &&
3695 ui64 != RCTL_LOCAL_DENY)
3696 return (EINVAL);
3697 rv->rcv_flagaction = ui64;
3698 action_set = B_TRUE;
3699 } else {
3700 return (EINVAL);
3704 if (!(priv_set && limit_set && action_set))
3705 return (EINVAL);
3706 rv->rcv_action_signal = 0;
3707 rv->rcv_action_recipient = NULL;
3708 rv->rcv_action_recip_pid = -1;
3709 rv->rcv_firing_time = 0;
3711 return (0);
3715 * Non-global zone version of start_init.
3717 void
3718 zone_start_init(void)
3720 proc_t *p = ttoproc(curthread);
3721 zone_t *z = p->p_zone;
3723 ASSERT(!INGLOBALZONE(curproc));
3726 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3727 * storing just the pid of init is sufficient.
3729 z->zone_proc_initpid = p->p_pid;
3732 * We maintain zone_boot_err so that we can return the cause of the
3733 * failure back to the caller of the zone_boot syscall.
3735 p->p_zone->zone_boot_err = start_init_common();
3738 * We will prevent booting zones from becoming running zones if the
3739 * global zone is shutting down.
3741 mutex_enter(&zone_status_lock);
3742 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3743 ZONE_IS_SHUTTING_DOWN) {
3745 * Make sure we are still in the booting state-- we could have
3746 * raced and already be shutting down, or even further along.
3748 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3749 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3751 mutex_exit(&zone_status_lock);
3752 /* It's gone bad, dispose of the process */
3753 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3754 mutex_enter(&p->p_lock);
3755 ASSERT(p->p_flag & SEXITLWPS);
3756 lwp_exit();
3758 } else {
3759 if (zone_status_get(z) == ZONE_IS_BOOTING)
3760 zone_status_set(z, ZONE_IS_RUNNING);
3761 mutex_exit(&zone_status_lock);
3762 /* cause the process to return to userland. */
3763 lwp_rtt();
3767 struct zsched_arg {
3768 zone_t *zone;
3769 nvlist_t *nvlist;
3773 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3774 * anything to do with scheduling, but rather with the fact that
3775 * per-zone kernel threads are parented to zsched, just like regular
3776 * kernel threads are parented to sched (p0).
3778 * zsched is also responsible for launching init for the zone.
3780 static void
3781 zsched(void *arg)
3783 struct zsched_arg *za = arg;
3784 proc_t *pp = curproc;
3785 proc_t *initp = proc_init;
3786 zone_t *zone = za->zone;
3787 cred_t *cr, *oldcred;
3788 rctl_set_t *set;
3789 rctl_alloc_gp_t *gp;
3790 contract_t *ct = NULL;
3791 task_t *tk, *oldtk;
3792 rctl_entity_p_t e;
3793 kproject_t *pj;
3795 nvlist_t *nvl = za->nvlist;
3796 nvpair_t *nvp = NULL;
3798 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3799 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3800 PTOU(pp)->u_argc = 0;
3801 PTOU(pp)->u_argv = NULL;
3802 PTOU(pp)->u_envp = NULL;
3803 closeall(P_FINFO(pp));
3806 * We are this zone's "zsched" process. As the zone isn't generally
3807 * visible yet we don't need to grab any locks before initializing its
3808 * zone_proc pointer.
3810 zone_hold(zone); /* this hold is released by zone_destroy() */
3811 zone->zone_zsched = pp;
3812 mutex_enter(&pp->p_lock);
3813 pp->p_zone = zone;
3814 mutex_exit(&pp->p_lock);
3817 * Disassociate process from its 'parent'; parent ourselves to init
3818 * (pid 1) and change other values as needed.
3820 sess_create();
3822 mutex_enter(&pidlock);
3823 proc_detach(pp);
3824 pp->p_ppid = 1;
3825 pp->p_flag |= SZONETOP;
3826 pp->p_ancpid = 1;
3827 pp->p_parent = initp;
3828 pp->p_psibling = NULL;
3829 if (initp->p_child)
3830 initp->p_child->p_psibling = pp;
3831 pp->p_sibling = initp->p_child;
3832 initp->p_child = pp;
3834 /* Decrement what newproc() incremented. */
3835 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3837 * Our credentials are about to become kcred-like, so we don't care
3838 * about the caller's ruid.
3840 upcount_inc(crgetruid(kcred), zone->zone_id);
3841 mutex_exit(&pidlock);
3844 * getting out of global zone, so decrement lwp and process counts
3846 pj = pp->p_task->tk_proj;
3847 mutex_enter(&global_zone->zone_nlwps_lock);
3848 pj->kpj_nlwps -= pp->p_lwpcnt;
3849 global_zone->zone_nlwps -= pp->p_lwpcnt;
3850 pj->kpj_nprocs--;
3851 global_zone->zone_nprocs--;
3852 mutex_exit(&global_zone->zone_nlwps_lock);
3855 * Decrement locked memory counts on old zone and project.
3857 mutex_enter(&global_zone->zone_mem_lock);
3858 global_zone->zone_locked_mem -= pp->p_locked_mem;
3859 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3860 mutex_exit(&global_zone->zone_mem_lock);
3863 * Create and join a new task in project '0' of this zone.
3865 * We don't need to call holdlwps() since we know we're the only lwp in
3866 * this process.
3868 * task_join() returns with p_lock held.
3870 tk = task_create(0, zone);
3871 mutex_enter(&cpu_lock);
3872 oldtk = task_join(tk, 0);
3874 pj = pp->p_task->tk_proj;
3876 mutex_enter(&zone->zone_mem_lock);
3877 zone->zone_locked_mem += pp->p_locked_mem;
3878 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3879 mutex_exit(&zone->zone_mem_lock);
3882 * add lwp and process counts to zsched's zone, and increment
3883 * project's task and process count due to the task created in
3884 * the above task_create.
3886 mutex_enter(&zone->zone_nlwps_lock);
3887 pj->kpj_nlwps += pp->p_lwpcnt;
3888 pj->kpj_ntasks += 1;
3889 zone->zone_nlwps += pp->p_lwpcnt;
3890 pj->kpj_nprocs++;
3891 zone->zone_nprocs++;
3892 mutex_exit(&zone->zone_nlwps_lock);
3894 mutex_exit(&curproc->p_lock);
3895 mutex_exit(&cpu_lock);
3896 task_rele(oldtk);
3899 * The process was created by a process in the global zone, hence the
3900 * credentials are wrong. We might as well have kcred-ish credentials.
3902 cr = zone->zone_kcred;
3903 crhold(cr);
3904 mutex_enter(&pp->p_crlock);
3905 oldcred = pp->p_cred;
3906 pp->p_cred = cr;
3907 mutex_exit(&pp->p_crlock);
3908 crfree(oldcred);
3911 * Hold credentials again (for thread)
3913 crhold(cr);
3916 * p_lwpcnt can't change since this is a kernel process.
3918 crset(pp, cr);
3921 * Chroot
3923 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3924 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3927 * Initialize zone's rctl set.
3929 set = rctl_set_create();
3930 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3931 mutex_enter(&pp->p_lock);
3932 e.rcep_p.zone = zone;
3933 e.rcep_t = RCENTITY_ZONE;
3934 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3935 mutex_exit(&pp->p_lock);
3936 rctl_prealloc_destroy(gp);
3939 * Apply the rctls passed in to zone_create(). This is basically a list
3940 * assignment: all of the old values are removed and the new ones
3941 * inserted. That is, if an empty list is passed in, all values are
3942 * removed.
3944 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3945 rctl_dict_entry_t *rde;
3946 rctl_hndl_t hndl;
3947 char *name;
3948 nvlist_t **nvlarray;
3949 uint_t i, nelem;
3950 int error; /* For ASSERT()s */
3952 name = nvpair_name(nvp);
3953 hndl = rctl_hndl_lookup(name);
3954 ASSERT(hndl != -1);
3955 rde = rctl_dict_lookup_hndl(hndl);
3956 ASSERT(rde != NULL);
3958 for (; /* ever */; ) {
3959 rctl_val_t oval;
3961 mutex_enter(&pp->p_lock);
3962 error = rctl_local_get(hndl, NULL, &oval, pp);
3963 mutex_exit(&pp->p_lock);
3964 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3965 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3966 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3967 break;
3968 mutex_enter(&pp->p_lock);
3969 error = rctl_local_delete(hndl, &oval, pp);
3970 mutex_exit(&pp->p_lock);
3971 ASSERT(error == 0);
3973 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3974 ASSERT(error == 0);
3975 for (i = 0; i < nelem; i++) {
3976 rctl_val_t *nvalp;
3978 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3979 error = nvlist2rctlval(nvlarray[i], nvalp);
3980 ASSERT(error == 0);
3982 * rctl_local_insert can fail if the value being
3983 * inserted is a duplicate; this is OK.
3985 mutex_enter(&pp->p_lock);
3986 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3987 kmem_cache_free(rctl_val_cache, nvalp);
3988 mutex_exit(&pp->p_lock);
3992 * Tell the world that we're done setting up.
3994 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3995 * and atomically set the zone's processor set visibility. Once
3996 * we drop pool_lock() this zone will automatically get updated
3997 * to reflect any future changes to the pools configuration.
3999 * Note that after we drop the locks below (zonehash_lock in
4000 * particular) other operations such as a zone_getattr call can
4001 * now proceed and observe the zone. That is the reason for doing a
4002 * state transition to the INITIALIZED state.
4004 pool_lock();
4005 mutex_enter(&cpu_lock);
4006 mutex_enter(&zonehash_lock);
4007 zone_uniqid(zone);
4008 zone_zsd_configure(zone);
4009 if (pool_state == POOL_ENABLED)
4010 zone_pset_set(zone, pool_default->pool_pset->pset_id);
4011 mutex_enter(&zone_status_lock);
4012 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4013 zone_status_set(zone, ZONE_IS_INITIALIZED);
4014 mutex_exit(&zone_status_lock);
4015 mutex_exit(&zonehash_lock);
4016 mutex_exit(&cpu_lock);
4017 pool_unlock();
4019 /* Now call the create callback for this key */
4020 zsd_apply_all_keys(zsd_apply_create, zone);
4022 /* The callbacks are complete. Mark ZONE_IS_READY */
4023 mutex_enter(&zone_status_lock);
4024 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4025 zone_status_set(zone, ZONE_IS_READY);
4026 mutex_exit(&zone_status_lock);
4029 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4030 * we launch init, and set the state to running.
4032 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4034 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4035 id_t cid;
4038 * Ok, this is a little complicated. We need to grab the
4039 * zone's pool's scheduling class ID; note that by now, we
4040 * are already bound to a pool if we need to be (zoneadmd
4041 * will have done that to us while we're in the READY
4042 * state). *But* the scheduling class for the zone's 'init'
4043 * must be explicitly passed to newproc, which doesn't
4044 * respect pool bindings.
4046 * We hold the pool_lock across the call to newproc() to
4047 * close the obvious race: the pool's scheduling class
4048 * could change before we manage to create the LWP with
4049 * classid 'cid'.
4051 pool_lock();
4052 if (zone->zone_defaultcid > 0)
4053 cid = zone->zone_defaultcid;
4054 else
4055 cid = pool_get_class(zone->zone_pool);
4056 if (cid == -1)
4057 cid = defaultcid;
4060 * If this fails, zone_boot will ultimately fail. The
4061 * state of the zone will be set to SHUTTING_DOWN-- userland
4062 * will have to tear down the zone, and fail, or try again.
4064 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4065 minclsyspri - 1, &ct, 0)) != 0) {
4066 mutex_enter(&zone_status_lock);
4067 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4068 mutex_exit(&zone_status_lock);
4069 } else {
4070 zone->zone_boot_time = gethrestime_sec();
4073 pool_unlock();
4077 * Wait for zone_destroy() to be called. This is what we spend
4078 * most of our life doing.
4080 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4082 if (ct)
4084 * At this point the process contract should be empty.
4085 * (Though if it isn't, it's not the end of the world.)
4087 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4090 * Allow kcred to be freed when all referring processes
4091 * (including this one) go away. We can't just do this in
4092 * zone_free because we need to wait for the zone_cred_ref to
4093 * drop to 0 before calling zone_free, and the existence of
4094 * zone_kcred will prevent that. Thus, we call crfree here to
4095 * balance the crdup in zone_create. The crhold calls earlier
4096 * in zsched will be dropped when the thread and process exit.
4098 crfree(zone->zone_kcred);
4099 zone->zone_kcred = NULL;
4101 exit(CLD_EXITED, 0);
4105 * Helper function to determine if there are any submounts of the
4106 * provided path. Used to make sure the zone doesn't "inherit" any
4107 * mounts from before it is created.
4109 static uint_t
4110 zone_mount_count(const char *rootpath)
4112 vfs_t *vfsp;
4113 uint_t count = 0;
4114 size_t rootpathlen = strlen(rootpath);
4117 * Holding zonehash_lock prevents race conditions with
4118 * vfs_list_add()/vfs_list_remove() since we serialize with
4119 * zone_find_by_path().
4121 ASSERT(MUTEX_HELD(&zonehash_lock));
4123 * The rootpath must end with a '/'
4125 ASSERT(rootpath[rootpathlen - 1] == '/');
4128 * This intentionally does not count the rootpath itself if that
4129 * happens to be a mount point.
4131 vfs_list_read_lock();
4132 vfsp = rootvfs;
4133 do {
4134 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4135 rootpathlen) == 0)
4136 count++;
4137 vfsp = vfsp->vfs_next;
4138 } while (vfsp != rootvfs);
4139 vfs_list_unlock();
4140 return (count);
4144 * Helper function to make sure that a zone created on 'rootpath'
4145 * wouldn't end up containing other zones' rootpaths.
4147 static boolean_t
4148 zone_is_nested(const char *rootpath)
4150 zone_t *zone;
4151 size_t rootpathlen = strlen(rootpath);
4152 size_t len;
4154 ASSERT(MUTEX_HELD(&zonehash_lock));
4157 * zone_set_root() appended '/' and '\0' at the end of rootpath
4159 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4160 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4161 return (B_TRUE);
4163 for (zone = list_head(&zone_active); zone != NULL;
4164 zone = list_next(&zone_active, zone)) {
4165 if (zone == global_zone)
4166 continue;
4167 len = strlen(zone->zone_rootpath);
4168 if (strncmp(rootpath, zone->zone_rootpath,
4169 MIN(rootpathlen, len)) == 0)
4170 return (B_TRUE);
4172 return (B_FALSE);
4175 static int
4176 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4177 size_t zone_privssz)
4179 priv_set_t *privs;
4181 if (zone_privssz < sizeof (priv_set_t))
4182 return (ENOMEM);
4184 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4186 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4187 kmem_free(privs, sizeof (priv_set_t));
4188 return (EFAULT);
4191 zone->zone_privset = privs;
4192 return (0);
4196 * We make creative use of nvlists to pass in rctls from userland. The list is
4197 * a list of the following structures:
4199 * (name = rctl_name, value = nvpair_list_array)
4201 * Where each element of the nvpair_list_array is of the form:
4203 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4204 * (name = "limit", value = uint64_t),
4205 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4207 static int
4208 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4210 nvpair_t *nvp = NULL;
4211 nvlist_t *nvl = NULL;
4212 char *kbuf;
4213 int error;
4214 rctl_val_t rv;
4216 *nvlp = NULL;
4218 if (buflen == 0)
4219 return (0);
4221 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4222 return (ENOMEM);
4223 if (copyin(ubuf, kbuf, buflen)) {
4224 error = EFAULT;
4225 goto out;
4227 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4229 * nvl may have been allocated/free'd, but the value set to
4230 * non-NULL, so we reset it here.
4232 nvl = NULL;
4233 error = EINVAL;
4234 goto out;
4236 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4237 rctl_dict_entry_t *rde;
4238 rctl_hndl_t hndl;
4239 nvlist_t **nvlarray;
4240 uint_t i, nelem;
4241 char *name;
4243 error = EINVAL;
4244 name = nvpair_name(nvp);
4245 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4246 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4247 goto out;
4249 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4250 goto out;
4252 rde = rctl_dict_lookup_hndl(hndl);
4253 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4254 ASSERT(error == 0);
4255 for (i = 0; i < nelem; i++) {
4256 if (error = nvlist2rctlval(nvlarray[i], &rv))
4257 goto out;
4259 if (rctl_invalid_value(rde, &rv)) {
4260 error = EINVAL;
4261 goto out;
4264 error = 0;
4265 *nvlp = nvl;
4266 out:
4267 kmem_free(kbuf, buflen);
4268 if (error && nvl != NULL)
4269 nvlist_free(nvl);
4270 return (error);
4274 zone_create_error(int er_error, int er_ext, int *er_out) {
4275 if (er_out != NULL) {
4276 if (copyout(&er_ext, er_out, sizeof (int))) {
4277 return (set_errno(EFAULT));
4280 return (set_errno(er_error));
4283 static int
4284 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4286 ts_label_t *tsl;
4287 bslabel_t blab;
4289 /* Get label from user */
4290 if (copyin(lab, &blab, sizeof (blab)) != 0)
4291 return (EFAULT);
4292 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4293 if (tsl == NULL)
4294 return (ENOMEM);
4296 zone->zone_slabel = tsl;
4297 return (0);
4301 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4303 static int
4304 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4306 char *kbuf;
4307 char *dataset, *next;
4308 zone_dataset_t *zd;
4309 size_t len;
4311 if (ubuf == NULL || buflen == 0)
4312 return (0);
4314 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4315 return (ENOMEM);
4317 if (copyin(ubuf, kbuf, buflen) != 0) {
4318 kmem_free(kbuf, buflen);
4319 return (EFAULT);
4322 dataset = next = kbuf;
4323 for (;;) {
4324 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4326 next = strchr(dataset, ',');
4328 if (next == NULL)
4329 len = strlen(dataset);
4330 else
4331 len = next - dataset;
4333 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4334 bcopy(dataset, zd->zd_dataset, len);
4335 zd->zd_dataset[len] = '\0';
4337 list_insert_head(&zone->zone_datasets, zd);
4339 if (next == NULL)
4340 break;
4342 dataset = next + 1;
4345 kmem_free(kbuf, buflen);
4346 return (0);
4350 * System call to create/initialize a new zone named 'zone_name', rooted
4351 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4352 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4353 * with labeling set by 'match', 'doi', and 'label'.
4355 * If extended error is non-null, we may use it to return more detailed
4356 * error information.
4358 static zoneid_t
4359 zone_create(const char *zone_name, const char *zone_root,
4360 const priv_set_t *zone_privs, size_t zone_privssz,
4361 caddr_t rctlbuf, size_t rctlbufsz,
4362 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4363 int match, uint32_t doi, const bslabel_t *label,
4364 int flags)
4366 struct zsched_arg zarg;
4367 nvlist_t *rctls = NULL;
4368 proc_t *pp = curproc;
4369 zone_t *zone, *ztmp;
4370 zoneid_t zoneid;
4371 int error;
4372 int error2 = 0;
4373 char *str;
4374 cred_t *zkcr;
4375 boolean_t insert_label_hash;
4377 if (secpolicy_zone_config(CRED()) != 0)
4378 return (set_errno(EPERM));
4380 /* can't boot zone from within chroot environment */
4381 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4382 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4383 extended_error));
4385 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4386 zoneid = zone->zone_id = id_alloc(zoneid_space);
4387 zone->zone_status = ZONE_IS_UNINITIALIZED;
4388 zone->zone_pool = pool_default;
4389 zone->zone_pool_mod = gethrtime();
4390 zone->zone_psetid = ZONE_PS_INVAL;
4391 zone->zone_ncpus = 0;
4392 zone->zone_ncpus_online = 0;
4393 zone->zone_restart_init = B_TRUE;
4394 zone->zone_brand = &native_brand;
4395 zone->zone_initname = NULL;
4396 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4397 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4398 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4399 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4400 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4401 offsetof(zone_ref_t, zref_linkage));
4402 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4403 offsetof(struct zsd_entry, zsd_linkage));
4404 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4405 offsetof(zone_dataset_t, zd_linkage));
4406 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4407 offsetof(zone_dl_t, zdl_linkage));
4408 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4409 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4411 if (flags & ZCF_NET_EXCL) {
4412 zone->zone_flags |= ZF_NET_EXCL;
4415 if ((error = zone_set_name(zone, zone_name)) != 0) {
4416 zone_free(zone);
4417 return (zone_create_error(error, 0, extended_error));
4420 if ((error = zone_set_root(zone, zone_root)) != 0) {
4421 zone_free(zone);
4422 return (zone_create_error(error, 0, extended_error));
4424 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4425 zone_free(zone);
4426 return (zone_create_error(error, 0, extended_error));
4429 /* initialize node name to be the same as zone name */
4430 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4431 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4432 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4434 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4435 zone->zone_domain[0] = '\0';
4436 zone->zone_hostid = HW_INVALID_HOSTID;
4437 zone->zone_shares = 1;
4438 zone->zone_shmmax = 0;
4439 zone->zone_ipc.ipcq_shmmni = 0;
4440 zone->zone_ipc.ipcq_semmni = 0;
4441 zone->zone_ipc.ipcq_msgmni = 0;
4442 zone->zone_bootargs = NULL;
4443 zone->zone_fs_allowed = NULL;
4444 zone->zone_initname =
4445 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4446 (void) strcpy(zone->zone_initname, zone_default_initname);
4447 zone->zone_nlwps = 0;
4448 zone->zone_nlwps_ctl = INT_MAX;
4449 zone->zone_nprocs = 0;
4450 zone->zone_nprocs_ctl = INT_MAX;
4451 zone->zone_locked_mem = 0;
4452 zone->zone_locked_mem_ctl = UINT64_MAX;
4453 zone->zone_max_swap = 0;
4454 zone->zone_max_swap_ctl = UINT64_MAX;
4455 zone->zone_max_lofi = 0;
4456 zone->zone_max_lofi_ctl = UINT64_MAX;
4457 zone0.zone_lockedmem_kstat = NULL;
4458 zone0.zone_swapresv_kstat = NULL;
4461 * Zsched initializes the rctls.
4463 zone->zone_rctls = NULL;
4465 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4466 zone_free(zone);
4467 return (zone_create_error(error, 0, extended_error));
4470 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4471 zone_free(zone);
4472 return (set_errno(error));
4476 * Read in the trusted system parameters:
4477 * match flag and sensitivity label.
4479 zone->zone_match = match;
4480 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4481 /* Fail if requested to set doi to anything but system's doi */
4482 if (doi != 0 && doi != default_doi) {
4483 zone_free(zone);
4484 return (set_errno(EINVAL));
4486 /* Always apply system's doi to the zone */
4487 error = zone_set_label(zone, label, default_doi);
4488 if (error != 0) {
4489 zone_free(zone);
4490 return (set_errno(error));
4492 insert_label_hash = B_TRUE;
4493 } else {
4494 /* all zones get an admin_low label if system is not labeled */
4495 zone->zone_slabel = l_admin_low;
4496 label_hold(l_admin_low);
4497 insert_label_hash = B_FALSE;
4501 * Stop all lwps since that's what normally happens as part of fork().
4502 * This needs to happen before we grab any locks to avoid deadlock
4503 * (another lwp in the process could be waiting for the held lock).
4505 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4506 zone_free(zone);
4507 nvlist_free(rctls);
4508 return (zone_create_error(error, 0, extended_error));
4511 if (block_mounts(zone) == 0) {
4512 mutex_enter(&pp->p_lock);
4513 if (curthread != pp->p_agenttp)
4514 continuelwps(pp);
4515 mutex_exit(&pp->p_lock);
4516 zone_free(zone);
4517 nvlist_free(rctls);
4518 return (zone_create_error(error, 0, extended_error));
4522 * Set up credential for kernel access. After this, any errors
4523 * should go through the dance in errout rather than calling
4524 * zone_free directly.
4526 zone->zone_kcred = crdup(kcred);
4527 crsetzone(zone->zone_kcred, zone);
4528 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4529 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4530 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4531 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4533 mutex_enter(&zonehash_lock);
4535 * Make sure zone doesn't already exist.
4537 * If the system and zone are labeled,
4538 * make sure no other zone exists that has the same label.
4540 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4541 (insert_label_hash &&
4542 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4543 zone_status_t status;
4545 status = zone_status_get(ztmp);
4546 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4547 error = EEXIST;
4548 else
4549 error = EBUSY;
4551 if (insert_label_hash)
4552 error2 = ZE_LABELINUSE;
4554 goto errout;
4558 * Don't allow zone creations which would cause one zone's rootpath to
4559 * be accessible from that of another (non-global) zone.
4561 if (zone_is_nested(zone->zone_rootpath)) {
4562 error = EBUSY;
4563 goto errout;
4566 ASSERT(zonecount != 0); /* check for leaks */
4567 if (zonecount + 1 > maxzones) {
4568 error = ENOMEM;
4569 goto errout;
4572 if (zone_mount_count(zone->zone_rootpath) != 0) {
4573 error = EBUSY;
4574 error2 = ZE_AREMOUNTS;
4575 goto errout;
4579 * Zone is still incomplete, but we need to drop all locks while
4580 * zsched() initializes this zone's kernel process. We
4581 * optimistically add the zone to the hashtable and associated
4582 * lists so a parallel zone_create() doesn't try to create the
4583 * same zone.
4585 zonecount++;
4586 (void) mod_hash_insert(zonehashbyid,
4587 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4588 (mod_hash_val_t)(uintptr_t)zone);
4589 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4590 (void) strcpy(str, zone->zone_name);
4591 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4592 (mod_hash_val_t)(uintptr_t)zone);
4593 if (insert_label_hash) {
4594 (void) mod_hash_insert(zonehashbylabel,
4595 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4596 zone->zone_flags |= ZF_HASHED_LABEL;
4600 * Insert into active list. At this point there are no 'hold's
4601 * on the zone, but everyone else knows not to use it, so we can
4602 * continue to use it. zsched() will do a zone_hold() if the
4603 * newproc() is successful.
4605 list_insert_tail(&zone_active, zone);
4606 mutex_exit(&zonehash_lock);
4608 zarg.zone = zone;
4609 zarg.nvlist = rctls;
4611 * The process, task, and project rctls are probably wrong;
4612 * we need an interface to get the default values of all rctls,
4613 * and initialize zsched appropriately. I'm not sure that that
4614 * makes much of a difference, though.
4616 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4617 if (error != 0) {
4619 * We need to undo all globally visible state.
4621 mutex_enter(&zonehash_lock);
4622 list_remove(&zone_active, zone);
4623 if (zone->zone_flags & ZF_HASHED_LABEL) {
4624 ASSERT(zone->zone_slabel != NULL);
4625 (void) mod_hash_destroy(zonehashbylabel,
4626 (mod_hash_key_t)zone->zone_slabel);
4628 (void) mod_hash_destroy(zonehashbyname,
4629 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4630 (void) mod_hash_destroy(zonehashbyid,
4631 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4632 ASSERT(zonecount > 1);
4633 zonecount--;
4634 goto errout;
4638 * Zone creation can't fail from now on.
4642 * Create zone kstats
4644 zone_kstat_create(zone);
4647 * Let the other lwps continue.
4649 mutex_enter(&pp->p_lock);
4650 if (curthread != pp->p_agenttp)
4651 continuelwps(pp);
4652 mutex_exit(&pp->p_lock);
4655 * Wait for zsched to finish initializing the zone.
4657 zone_status_wait(zone, ZONE_IS_READY);
4659 * The zone is fully visible, so we can let mounts progress.
4661 resume_mounts(zone);
4662 nvlist_free(rctls);
4664 return (zoneid);
4666 errout:
4667 mutex_exit(&zonehash_lock);
4669 * Let the other lwps continue.
4671 mutex_enter(&pp->p_lock);
4672 if (curthread != pp->p_agenttp)
4673 continuelwps(pp);
4674 mutex_exit(&pp->p_lock);
4676 resume_mounts(zone);
4677 nvlist_free(rctls);
4679 * There is currently one reference to the zone, a cred_ref from
4680 * zone_kcred. To free the zone, we call crfree, which will call
4681 * zone_cred_rele, which will call zone_free.
4683 ASSERT(zone->zone_cred_ref == 1);
4684 ASSERT(zone->zone_kcred->cr_ref == 1);
4685 ASSERT(zone->zone_ref == 0);
4686 zkcr = zone->zone_kcred;
4687 zone->zone_kcred = NULL;
4688 crfree(zkcr); /* triggers call to zone_free */
4689 return (zone_create_error(error, error2, extended_error));
4693 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4694 * the heavy lifting. initname is the path to the program to launch
4695 * at the "top" of the zone; if this is NULL, we use the system default,
4696 * which is stored at zone_default_initname.
4698 static int
4699 zone_boot(zoneid_t zoneid)
4701 int err;
4702 zone_t *zone;
4704 if (secpolicy_zone_config(CRED()) != 0)
4705 return (set_errno(EPERM));
4706 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4707 return (set_errno(EINVAL));
4709 mutex_enter(&zonehash_lock);
4711 * Look for zone under hash lock to prevent races with calls to
4712 * zone_shutdown, zone_destroy, etc.
4714 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4715 mutex_exit(&zonehash_lock);
4716 return (set_errno(EINVAL));
4719 mutex_enter(&zone_status_lock);
4720 if (zone_status_get(zone) != ZONE_IS_READY) {
4721 mutex_exit(&zone_status_lock);
4722 mutex_exit(&zonehash_lock);
4723 return (set_errno(EINVAL));
4725 zone_status_set(zone, ZONE_IS_BOOTING);
4726 mutex_exit(&zone_status_lock);
4728 zone_hold(zone); /* so we can use the zone_t later */
4729 mutex_exit(&zonehash_lock);
4731 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4732 zone_rele(zone);
4733 return (set_errno(EINTR));
4737 * Boot (starting init) might have failed, in which case the zone
4738 * will go to the SHUTTING_DOWN state; an appropriate errno will
4739 * be placed in zone->zone_boot_err, and so we return that.
4741 err = zone->zone_boot_err;
4742 zone_rele(zone);
4743 return (err ? set_errno(err) : 0);
4747 * Kills all user processes in the zone, waiting for them all to exit
4748 * before returning.
4750 static int
4751 zone_empty(zone_t *zone)
4753 int waitstatus;
4756 * We need to drop zonehash_lock before killing all
4757 * processes, otherwise we'll deadlock with zone_find_*
4758 * which can be called from the exit path.
4760 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4761 while ((waitstatus = zone_status_timedwait_sig(zone,
4762 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4763 killall(zone->zone_id);
4766 * return EINTR if we were signaled
4768 if (waitstatus == 0)
4769 return (EINTR);
4770 return (0);
4774 * This function implements the policy for zone visibility.
4776 * In standard Solaris, a non-global zone can only see itself.
4778 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4779 * it dominates. For this test, the label of the global zone is treated as
4780 * admin_high so it is special-cased instead of being checked for dominance.
4782 * Returns true if zone attributes are viewable, false otherwise.
4784 static boolean_t
4785 zone_list_access(zone_t *zone)
4788 if (curproc->p_zone == global_zone ||
4789 curproc->p_zone == zone) {
4790 return (B_TRUE);
4791 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4792 bslabel_t *curproc_label;
4793 bslabel_t *zone_label;
4795 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4796 zone_label = label2bslabel(zone->zone_slabel);
4798 if (zone->zone_id != GLOBAL_ZONEID &&
4799 bldominates(curproc_label, zone_label)) {
4800 return (B_TRUE);
4801 } else {
4802 return (B_FALSE);
4804 } else {
4805 return (B_FALSE);
4810 * Systemcall to start the zone's halt sequence. By the time this
4811 * function successfully returns, all user processes and kernel threads
4812 * executing in it will have exited, ZSD shutdown callbacks executed,
4813 * and the zone status set to ZONE_IS_DOWN.
4815 * It is possible that the call will interrupt itself if the caller is the
4816 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4818 static int
4819 zone_shutdown(zoneid_t zoneid)
4821 int error;
4822 zone_t *zone;
4823 zone_status_t status;
4825 if (secpolicy_zone_config(CRED()) != 0)
4826 return (set_errno(EPERM));
4827 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4828 return (set_errno(EINVAL));
4830 mutex_enter(&zonehash_lock);
4832 * Look for zone under hash lock to prevent races with other
4833 * calls to zone_shutdown and zone_destroy.
4835 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4836 mutex_exit(&zonehash_lock);
4837 return (set_errno(EINVAL));
4841 * We have to drop zonehash_lock before calling block_mounts.
4842 * Hold the zone so we can continue to use the zone_t.
4844 zone_hold(zone);
4845 mutex_exit(&zonehash_lock);
4848 * Block mounts so that VFS_MOUNT() can get an accurate view of
4849 * the zone's status with regards to ZONE_IS_SHUTTING down.
4851 * e.g. NFS can fail the mount if it determines that the zone
4852 * has already begun the shutdown sequence.
4855 if (block_mounts(zone) == 0) {
4856 zone_rele(zone);
4857 return (set_errno(EINTR));
4860 mutex_enter(&zonehash_lock);
4861 mutex_enter(&zone_status_lock);
4862 status = zone_status_get(zone);
4864 * Fail if the zone isn't fully initialized yet.
4866 if (status < ZONE_IS_READY) {
4867 mutex_exit(&zone_status_lock);
4868 mutex_exit(&zonehash_lock);
4869 resume_mounts(zone);
4870 zone_rele(zone);
4871 return (set_errno(EINVAL));
4874 * If conditions required for zone_shutdown() to return have been met,
4875 * return success.
4877 if (status >= ZONE_IS_DOWN) {
4878 mutex_exit(&zone_status_lock);
4879 mutex_exit(&zonehash_lock);
4880 resume_mounts(zone);
4881 zone_rele(zone);
4882 return (0);
4885 * If zone_shutdown() hasn't been called before, go through the motions.
4886 * If it has, there's nothing to do but wait for the kernel threads to
4887 * drain.
4889 if (status < ZONE_IS_EMPTY) {
4890 uint_t ntasks;
4892 mutex_enter(&zone->zone_lock);
4893 if ((ntasks = zone->zone_ntasks) != 1) {
4895 * There's still stuff running.
4897 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4899 mutex_exit(&zone->zone_lock);
4900 if (ntasks == 1) {
4902 * The only way to create another task is through
4903 * zone_enter(), which will block until we drop
4904 * zonehash_lock. The zone is empty.
4906 if (zone->zone_kthreads == NULL) {
4908 * Skip ahead to ZONE_IS_DOWN
4910 zone_status_set(zone, ZONE_IS_DOWN);
4911 } else {
4912 zone_status_set(zone, ZONE_IS_EMPTY);
4916 mutex_exit(&zone_status_lock);
4917 mutex_exit(&zonehash_lock);
4918 resume_mounts(zone);
4920 if (error = zone_empty(zone)) {
4921 zone_rele(zone);
4922 return (set_errno(error));
4925 * After the zone status goes to ZONE_IS_DOWN this zone will no
4926 * longer be notified of changes to the pools configuration, so
4927 * in order to not end up with a stale pool pointer, we point
4928 * ourselves at the default pool and remove all resource
4929 * visibility. This is especially important as the zone_t may
4930 * languish on the deathrow for a very long time waiting for
4931 * cred's to drain out.
4933 * This rebinding of the zone can happen multiple times
4934 * (presumably due to interrupted or parallel systemcalls)
4935 * without any adverse effects.
4937 if (pool_lock_intr() != 0) {
4938 zone_rele(zone);
4939 return (set_errno(EINTR));
4941 if (pool_state == POOL_ENABLED) {
4942 mutex_enter(&cpu_lock);
4943 zone_pool_set(zone, pool_default);
4945 * The zone no longer needs to be able to see any cpus.
4947 zone_pset_set(zone, ZONE_PS_INVAL);
4948 mutex_exit(&cpu_lock);
4950 pool_unlock();
4953 * ZSD shutdown callbacks can be executed multiple times, hence
4954 * it is safe to not be holding any locks across this call.
4956 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4958 mutex_enter(&zone_status_lock);
4959 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4960 zone_status_set(zone, ZONE_IS_DOWN);
4961 mutex_exit(&zone_status_lock);
4964 * Wait for kernel threads to drain.
4966 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4967 zone_rele(zone);
4968 return (set_errno(EINTR));
4972 * Zone can be become down/destroyable even if the above wait
4973 * returns EINTR, so any code added here may never execute.
4974 * (i.e. don't add code here)
4977 zone_rele(zone);
4978 return (0);
4982 * Log the specified zone's reference counts. The caller should not be
4983 * holding the zone's zone_lock.
4985 static void
4986 zone_log_refcounts(zone_t *zone)
4988 char *buffer;
4989 char *buffer_position;
4990 uint32_t buffer_size;
4991 uint32_t index;
4992 uint_t ref;
4993 uint_t cred_ref;
4996 * Construct a string representing the subsystem-specific reference
4997 * counts. The counts are printed in ascending order by index into the
4998 * zone_t::zone_subsys_ref array. The list will be surrounded by
4999 * square brackets [] and will only contain nonzero reference counts.
5001 * The buffer will hold two square bracket characters plus ten digits,
5002 * one colon, one space, one comma, and some characters for a
5003 * subsystem name per subsystem-specific reference count. (Unsigned 32-
5004 * bit integers have at most ten decimal digits.) The last
5005 * reference count's comma is replaced by the closing square
5006 * bracket and a NULL character to terminate the string.
5008 * NOTE: We have to grab the zone's zone_lock to create a consistent
5009 * snapshot of the zone's reference counters.
5011 * First, figure out how much space the string buffer will need.
5012 * The buffer's size is stored in buffer_size.
5014 buffer_size = 2; /* for the square brackets */
5015 mutex_enter(&zone->zone_lock);
5016 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5017 ref = zone->zone_ref;
5018 cred_ref = zone->zone_cred_ref;
5019 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5020 if (zone->zone_subsys_ref[index] != 0)
5021 buffer_size += strlen(zone_ref_subsys_names[index]) +
5023 if (buffer_size == 2) {
5025 * No subsystems had nonzero reference counts. Don't bother
5026 * with allocating a buffer; just log the general-purpose and
5027 * credential reference counts.
5029 mutex_exit(&zone->zone_lock);
5030 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5031 "Zone '%s' (ID: %d) is shutting down, but %u zone "
5032 "references and %u credential references are still extant",
5033 zone->zone_name, zone->zone_id, ref, cred_ref);
5034 return;
5038 * buffer_size contains the exact number of characters that the
5039 * buffer will need. Allocate the buffer and fill it with nonzero
5040 * subsystem-specific reference counts. Surround the results with
5041 * square brackets afterwards.
5043 buffer = kmem_alloc(buffer_size, KM_SLEEP);
5044 buffer_position = &buffer[1];
5045 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5047 * NOTE: The DDI's version of sprintf() returns a pointer to
5048 * the modified buffer rather than the number of bytes written
5049 * (as in snprintf(3C)). This is unfortunate and annoying.
5050 * Therefore, we'll use snprintf() with INT_MAX to get the
5051 * number of bytes written. Using INT_MAX is safe because
5052 * the buffer is perfectly sized for the data: we'll never
5053 * overrun the buffer.
5055 if (zone->zone_subsys_ref[index] != 0)
5056 buffer_position += snprintf(buffer_position, INT_MAX,
5057 "%s: %u,", zone_ref_subsys_names[index],
5058 zone->zone_subsys_ref[index]);
5060 mutex_exit(&zone->zone_lock);
5061 buffer[0] = '[';
5062 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5063 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5064 buffer_position[-1] = ']';
5067 * Log the reference counts and free the message buffer.
5069 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5070 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5071 "%u credential references are still extant %s", zone->zone_name,
5072 zone->zone_id, ref, cred_ref, buffer);
5073 kmem_free(buffer, buffer_size);
5077 * Systemcall entry point to finalize the zone halt process. The caller
5078 * must have already successfully called zone_shutdown().
5080 * Upon successful completion, the zone will have been fully destroyed:
5081 * zsched will have exited, destructor callbacks executed, and the zone
5082 * removed from the list of active zones.
5084 static int
5085 zone_destroy(zoneid_t zoneid)
5087 uint64_t uniqid;
5088 zone_t *zone;
5089 zone_status_t status;
5090 clock_t wait_time;
5091 boolean_t log_refcounts;
5093 if (secpolicy_zone_config(CRED()) != 0)
5094 return (set_errno(EPERM));
5095 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5096 return (set_errno(EINVAL));
5098 mutex_enter(&zonehash_lock);
5100 * Look for zone under hash lock to prevent races with other
5101 * calls to zone_destroy.
5103 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5104 mutex_exit(&zonehash_lock);
5105 return (set_errno(EINVAL));
5108 if (zone_mount_count(zone->zone_rootpath) != 0) {
5109 mutex_exit(&zonehash_lock);
5110 return (set_errno(EBUSY));
5112 mutex_enter(&zone_status_lock);
5113 status = zone_status_get(zone);
5114 if (status < ZONE_IS_DOWN) {
5115 mutex_exit(&zone_status_lock);
5116 mutex_exit(&zonehash_lock);
5117 return (set_errno(EBUSY));
5118 } else if (status == ZONE_IS_DOWN) {
5119 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5121 mutex_exit(&zone_status_lock);
5122 zone_hold(zone);
5123 mutex_exit(&zonehash_lock);
5126 * wait for zsched to exit
5128 zone_status_wait(zone, ZONE_IS_DEAD);
5129 zone_zsd_callbacks(zone, ZSD_DESTROY);
5130 zone->zone_netstack = NULL;
5131 uniqid = zone->zone_uniqid;
5132 zone_rele(zone);
5133 zone = NULL; /* potentially free'd */
5135 log_refcounts = B_FALSE;
5136 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5137 mutex_enter(&zonehash_lock);
5138 for (; /* ever */; ) {
5139 boolean_t unref;
5140 boolean_t refs_have_been_logged;
5142 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5143 zone->zone_uniqid != uniqid) {
5145 * The zone has gone away. Necessary conditions
5146 * are met, so we return success.
5148 mutex_exit(&zonehash_lock);
5149 return (0);
5151 mutex_enter(&zone->zone_lock);
5152 unref = ZONE_IS_UNREF(zone);
5153 refs_have_been_logged = (zone->zone_flags &
5154 ZF_REFCOUNTS_LOGGED);
5155 mutex_exit(&zone->zone_lock);
5156 if (unref) {
5158 * There is only one reference to the zone -- that
5159 * added when the zone was added to the hashtables --
5160 * and things will remain this way until we drop
5161 * zonehash_lock... we can go ahead and cleanup the
5162 * zone.
5164 break;
5168 * Wait for zone_rele_common() or zone_cred_rele() to signal
5169 * zone_destroy_cv. zone_destroy_cv is signaled only when
5170 * some zone's general-purpose reference count reaches one.
5171 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5172 * on zone_destroy_cv, then log the zone's reference counts and
5173 * continue to wait for zone_rele() and zone_cred_rele().
5175 if (!refs_have_been_logged) {
5176 if (!log_refcounts) {
5178 * This thread hasn't timed out waiting on
5179 * zone_destroy_cv yet. Wait wait_time clock
5180 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5181 * seconds) for the zone's references to clear.
5183 ASSERT(wait_time > 0);
5184 wait_time = cv_reltimedwait_sig(
5185 &zone_destroy_cv, &zonehash_lock, wait_time,
5186 TR_SEC);
5187 if (wait_time > 0) {
5189 * A thread in zone_rele() or
5190 * zone_cred_rele() signaled
5191 * zone_destroy_cv before this thread's
5192 * wait timed out. The zone might have
5193 * only one reference left; find out!
5195 continue;
5196 } else if (wait_time == 0) {
5197 /* The thread's process was signaled. */
5198 mutex_exit(&zonehash_lock);
5199 return (set_errno(EINTR));
5203 * The thread timed out while waiting on
5204 * zone_destroy_cv. Even though the thread
5205 * timed out, it has to check whether another
5206 * thread woke up from zone_destroy_cv and
5207 * destroyed the zone.
5209 * If the zone still exists and has more than
5210 * one unreleased general-purpose reference,
5211 * then log the zone's reference counts.
5213 log_refcounts = B_TRUE;
5214 continue;
5218 * The thread already timed out on zone_destroy_cv while
5219 * waiting for subsystems to release the zone's last
5220 * general-purpose references. Log the zone's reference
5221 * counts and wait indefinitely on zone_destroy_cv.
5223 zone_log_refcounts(zone);
5225 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5226 /* The thread's process was signaled. */
5227 mutex_exit(&zonehash_lock);
5228 return (set_errno(EINTR));
5233 * Remove CPU cap for this zone now since we're not going to
5234 * fail below this point.
5236 cpucaps_zone_remove(zone);
5238 /* Get rid of the zone's kstats */
5239 zone_kstat_delete(zone);
5241 /* remove the pfexecd doors */
5242 if (zone->zone_pfexecd != NULL) {
5243 klpd_freelist(&zone->zone_pfexecd);
5244 zone->zone_pfexecd = NULL;
5247 /* free brand specific data */
5248 if (ZONE_IS_BRANDED(zone))
5249 ZBROP(zone)->b_free_brand_data(zone);
5251 /* Say goodbye to brand framework. */
5252 brand_unregister_zone(zone->zone_brand);
5255 * It is now safe to let the zone be recreated; remove it from the
5256 * lists. The memory will not be freed until the last cred
5257 * reference goes away.
5259 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5260 zonecount--;
5261 /* remove from active list and hash tables */
5262 list_remove(&zone_active, zone);
5263 (void) mod_hash_destroy(zonehashbyname,
5264 (mod_hash_key_t)zone->zone_name);
5265 (void) mod_hash_destroy(zonehashbyid,
5266 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5267 if (zone->zone_flags & ZF_HASHED_LABEL)
5268 (void) mod_hash_destroy(zonehashbylabel,
5269 (mod_hash_key_t)zone->zone_slabel);
5270 mutex_exit(&zonehash_lock);
5273 * Release the root vnode; we're not using it anymore. Nor should any
5274 * other thread that might access it exist.
5276 if (zone->zone_rootvp != NULL) {
5277 VN_RELE(zone->zone_rootvp);
5278 zone->zone_rootvp = NULL;
5281 /* add to deathrow list */
5282 mutex_enter(&zone_deathrow_lock);
5283 list_insert_tail(&zone_deathrow, zone);
5284 mutex_exit(&zone_deathrow_lock);
5287 * Drop last reference (which was added by zsched()), this will
5288 * free the zone unless there are outstanding cred references.
5290 zone_rele(zone);
5291 return (0);
5295 * Systemcall entry point for zone_getattr(2).
5297 static ssize_t
5298 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5300 size_t size;
5301 int error = 0, err;
5302 zone_t *zone;
5303 char *zonepath;
5304 char *outstr;
5305 zone_status_t zone_status;
5306 pid_t initpid;
5307 boolean_t global = (curzone == global_zone);
5308 boolean_t inzone = (curzone->zone_id == zoneid);
5309 ushort_t flags;
5310 zone_net_data_t *zbuf;
5312 mutex_enter(&zonehash_lock);
5313 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5314 mutex_exit(&zonehash_lock);
5315 return (set_errno(EINVAL));
5317 zone_status = zone_status_get(zone);
5318 if (zone_status < ZONE_IS_INITIALIZED) {
5319 mutex_exit(&zonehash_lock);
5320 return (set_errno(EINVAL));
5322 zone_hold(zone);
5323 mutex_exit(&zonehash_lock);
5326 * If not in the global zone, don't show information about other zones,
5327 * unless the system is labeled and the local zone's label dominates
5328 * the other zone.
5330 if (!zone_list_access(zone)) {
5331 zone_rele(zone);
5332 return (set_errno(EINVAL));
5335 switch (attr) {
5336 case ZONE_ATTR_ROOT:
5337 if (global) {
5339 * Copy the path to trim the trailing "/" (except for
5340 * the global zone).
5342 if (zone != global_zone)
5343 size = zone->zone_rootpathlen - 1;
5344 else
5345 size = zone->zone_rootpathlen;
5346 zonepath = kmem_alloc(size, KM_SLEEP);
5347 bcopy(zone->zone_rootpath, zonepath, size);
5348 zonepath[size - 1] = '\0';
5349 } else {
5350 if (inzone || !is_system_labeled()) {
5352 * Caller is not in the global zone.
5353 * if the query is on the current zone
5354 * or the system is not labeled,
5355 * just return faked-up path for current zone.
5357 zonepath = "/";
5358 size = 2;
5359 } else {
5361 * Return related path for current zone.
5363 int prefix_len = strlen(zone_prefix);
5364 int zname_len = strlen(zone->zone_name);
5366 size = prefix_len + zname_len + 1;
5367 zonepath = kmem_alloc(size, KM_SLEEP);
5368 bcopy(zone_prefix, zonepath, prefix_len);
5369 bcopy(zone->zone_name, zonepath +
5370 prefix_len, zname_len);
5371 zonepath[size - 1] = '\0';
5374 if (bufsize > size)
5375 bufsize = size;
5376 if (buf != NULL) {
5377 err = copyoutstr(zonepath, buf, bufsize, NULL);
5378 if (err != 0 && err != ENAMETOOLONG)
5379 error = EFAULT;
5381 if (global || (is_system_labeled() && !inzone))
5382 kmem_free(zonepath, size);
5383 break;
5385 case ZONE_ATTR_NAME:
5386 size = strlen(zone->zone_name) + 1;
5387 if (bufsize > size)
5388 bufsize = size;
5389 if (buf != NULL) {
5390 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5391 if (err != 0 && err != ENAMETOOLONG)
5392 error = EFAULT;
5394 break;
5396 case ZONE_ATTR_STATUS:
5398 * Since we're not holding zonehash_lock, the zone status
5399 * may be anything; leave it up to userland to sort it out.
5401 size = sizeof (zone_status);
5402 if (bufsize > size)
5403 bufsize = size;
5404 zone_status = zone_status_get(zone);
5405 if (buf != NULL &&
5406 copyout(&zone_status, buf, bufsize) != 0)
5407 error = EFAULT;
5408 break;
5409 case ZONE_ATTR_FLAGS:
5410 size = sizeof (zone->zone_flags);
5411 if (bufsize > size)
5412 bufsize = size;
5413 flags = zone->zone_flags;
5414 if (buf != NULL &&
5415 copyout(&flags, buf, bufsize) != 0)
5416 error = EFAULT;
5417 break;
5418 case ZONE_ATTR_PRIVSET:
5419 size = sizeof (priv_set_t);
5420 if (bufsize > size)
5421 bufsize = size;
5422 if (buf != NULL &&
5423 copyout(zone->zone_privset, buf, bufsize) != 0)
5424 error = EFAULT;
5425 break;
5426 case ZONE_ATTR_UNIQID:
5427 size = sizeof (zone->zone_uniqid);
5428 if (bufsize > size)
5429 bufsize = size;
5430 if (buf != NULL &&
5431 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5432 error = EFAULT;
5433 break;
5434 case ZONE_ATTR_POOLID:
5436 pool_t *pool;
5437 poolid_t poolid;
5439 if (pool_lock_intr() != 0) {
5440 error = EINTR;
5441 break;
5443 pool = zone_pool_get(zone);
5444 poolid = pool->pool_id;
5445 pool_unlock();
5446 size = sizeof (poolid);
5447 if (bufsize > size)
5448 bufsize = size;
5449 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5450 error = EFAULT;
5452 break;
5453 case ZONE_ATTR_SLBL:
5454 size = sizeof (bslabel_t);
5455 if (bufsize > size)
5456 bufsize = size;
5457 if (zone->zone_slabel == NULL)
5458 error = EINVAL;
5459 else if (buf != NULL &&
5460 copyout(label2bslabel(zone->zone_slabel), buf,
5461 bufsize) != 0)
5462 error = EFAULT;
5463 break;
5464 case ZONE_ATTR_INITPID:
5465 size = sizeof (initpid);
5466 if (bufsize > size)
5467 bufsize = size;
5468 initpid = zone->zone_proc_initpid;
5469 if (initpid == -1) {
5470 error = ESRCH;
5471 break;
5473 if (buf != NULL &&
5474 copyout(&initpid, buf, bufsize) != 0)
5475 error = EFAULT;
5476 break;
5477 case ZONE_ATTR_BRAND:
5478 size = strlen(zone->zone_brand->b_name) + 1;
5480 if (bufsize > size)
5481 bufsize = size;
5482 if (buf != NULL) {
5483 err = copyoutstr(zone->zone_brand->b_name, buf,
5484 bufsize, NULL);
5485 if (err != 0 && err != ENAMETOOLONG)
5486 error = EFAULT;
5488 break;
5489 case ZONE_ATTR_INITNAME:
5490 size = strlen(zone->zone_initname) + 1;
5491 if (bufsize > size)
5492 bufsize = size;
5493 if (buf != NULL) {
5494 err = copyoutstr(zone->zone_initname, buf, bufsize,
5495 NULL);
5496 if (err != 0 && err != ENAMETOOLONG)
5497 error = EFAULT;
5499 break;
5500 case ZONE_ATTR_BOOTARGS:
5501 if (zone->zone_bootargs == NULL)
5502 outstr = "";
5503 else
5504 outstr = zone->zone_bootargs;
5505 size = strlen(outstr) + 1;
5506 if (bufsize > size)
5507 bufsize = size;
5508 if (buf != NULL) {
5509 err = copyoutstr(outstr, buf, bufsize, NULL);
5510 if (err != 0 && err != ENAMETOOLONG)
5511 error = EFAULT;
5513 break;
5514 case ZONE_ATTR_PHYS_MCAP:
5515 size = sizeof (zone->zone_phys_mcap);
5516 if (bufsize > size)
5517 bufsize = size;
5518 if (buf != NULL &&
5519 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5520 error = EFAULT;
5521 break;
5522 case ZONE_ATTR_SCHED_CLASS:
5523 mutex_enter(&class_lock);
5525 if (zone->zone_defaultcid >= loaded_classes)
5526 outstr = "";
5527 else
5528 outstr = sclass[zone->zone_defaultcid].cl_name;
5529 size = strlen(outstr) + 1;
5530 if (bufsize > size)
5531 bufsize = size;
5532 if (buf != NULL) {
5533 err = copyoutstr(outstr, buf, bufsize, NULL);
5534 if (err != 0 && err != ENAMETOOLONG)
5535 error = EFAULT;
5538 mutex_exit(&class_lock);
5539 break;
5540 case ZONE_ATTR_HOSTID:
5541 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5542 bufsize == sizeof (zone->zone_hostid)) {
5543 size = sizeof (zone->zone_hostid);
5544 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5545 bufsize) != 0)
5546 error = EFAULT;
5547 } else {
5548 error = EINVAL;
5550 break;
5551 case ZONE_ATTR_FS_ALLOWED:
5552 if (zone->zone_fs_allowed == NULL)
5553 outstr = "";
5554 else
5555 outstr = zone->zone_fs_allowed;
5556 size = strlen(outstr) + 1;
5557 if (bufsize > size)
5558 bufsize = size;
5559 if (buf != NULL) {
5560 err = copyoutstr(outstr, buf, bufsize, NULL);
5561 if (err != 0 && err != ENAMETOOLONG)
5562 error = EFAULT;
5564 break;
5565 case ZONE_ATTR_NETWORK:
5566 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5567 if (copyin(buf, zbuf, bufsize) != 0) {
5568 error = EFAULT;
5569 } else {
5570 error = zone_get_network(zoneid, zbuf);
5571 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5572 error = EFAULT;
5574 kmem_free(zbuf, bufsize);
5575 break;
5576 default:
5577 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5578 size = bufsize;
5579 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5580 } else {
5581 error = EINVAL;
5584 zone_rele(zone);
5586 if (error)
5587 return (set_errno(error));
5588 return ((ssize_t)size);
5592 * Systemcall entry point for zone_setattr(2).
5594 /*ARGSUSED*/
5595 static int
5596 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5598 zone_t *zone;
5599 zone_status_t zone_status;
5600 int err = -1;
5601 zone_net_data_t *zbuf;
5603 if (secpolicy_zone_config(CRED()) != 0)
5604 return (set_errno(EPERM));
5607 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5608 * global zone.
5610 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5611 return (set_errno(EINVAL));
5614 mutex_enter(&zonehash_lock);
5615 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5616 mutex_exit(&zonehash_lock);
5617 return (set_errno(EINVAL));
5619 zone_hold(zone);
5620 mutex_exit(&zonehash_lock);
5623 * At present most attributes can only be set on non-running,
5624 * non-global zones.
5626 zone_status = zone_status_get(zone);
5627 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5628 err = EINVAL;
5629 goto done;
5632 switch (attr) {
5633 case ZONE_ATTR_INITNAME:
5634 err = zone_set_initname(zone, (const char *)buf);
5635 break;
5636 case ZONE_ATTR_INITNORESTART:
5637 zone->zone_restart_init = B_FALSE;
5638 err = 0;
5639 break;
5640 case ZONE_ATTR_BOOTARGS:
5641 err = zone_set_bootargs(zone, (const char *)buf);
5642 break;
5643 case ZONE_ATTR_BRAND:
5644 err = zone_set_brand(zone, (const char *)buf);
5645 break;
5646 case ZONE_ATTR_FS_ALLOWED:
5647 err = zone_set_fs_allowed(zone, (const char *)buf);
5648 break;
5649 case ZONE_ATTR_PHYS_MCAP:
5650 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5651 break;
5652 case ZONE_ATTR_SCHED_CLASS:
5653 err = zone_set_sched_class(zone, (const char *)buf);
5654 break;
5655 case ZONE_ATTR_HOSTID:
5656 if (bufsize == sizeof (zone->zone_hostid)) {
5657 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5658 err = 0;
5659 else
5660 err = EFAULT;
5661 } else {
5662 err = EINVAL;
5664 break;
5665 case ZONE_ATTR_NETWORK:
5666 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5667 err = EINVAL;
5668 break;
5670 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5671 if (copyin(buf, zbuf, bufsize) != 0) {
5672 kmem_free(zbuf, bufsize);
5673 err = EFAULT;
5674 break;
5676 err = zone_set_network(zoneid, zbuf);
5677 kmem_free(zbuf, bufsize);
5678 break;
5679 default:
5680 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5681 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5682 else
5683 err = EINVAL;
5686 done:
5687 zone_rele(zone);
5688 ASSERT(err != -1);
5689 return (err != 0 ? set_errno(err) : 0);
5693 * Return zero if the process has at least one vnode mapped in to its
5694 * address space which shouldn't be allowed to change zones.
5696 * Also return zero if the process has any shared mappings which reserve
5697 * swap. This is because the counting for zone.max-swap does not allow swap
5698 * reservation to be shared between zones. zone swap reservation is counted
5699 * on zone->zone_max_swap.
5701 static int
5702 as_can_change_zones(void)
5704 proc_t *pp = curproc;
5705 struct seg *seg;
5706 struct as *as = pp->p_as;
5707 vnode_t *vp;
5708 int allow = 1;
5710 ASSERT(pp->p_as != &kas);
5711 AS_LOCK_ENTER(as, RW_READER);
5712 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5715 * Cannot enter zone with shared anon memory which
5716 * reserves swap. See comment above.
5718 if (seg_can_change_zones(seg) == B_FALSE) {
5719 allow = 0;
5720 break;
5723 * if we can't get a backing vnode for this segment then skip
5724 * it.
5726 vp = NULL;
5727 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5728 continue;
5729 if (!vn_can_change_zones(vp)) { /* bail on first match */
5730 allow = 0;
5731 break;
5734 AS_LOCK_EXIT(as);
5735 return (allow);
5739 * Count swap reserved by curproc's address space
5741 static size_t
5742 as_swresv(void)
5744 proc_t *pp = curproc;
5745 struct seg *seg;
5746 struct as *as = pp->p_as;
5747 size_t swap = 0;
5749 ASSERT(pp->p_as != &kas);
5750 ASSERT(AS_WRITE_HELD(as));
5751 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5752 swap += seg_swresv(seg);
5754 return (swap);
5758 * Systemcall entry point for zone_enter().
5760 * The current process is injected into said zone. In the process
5761 * it will change its project membership, privileges, rootdir/cwd,
5762 * zone-wide rctls, and pool association to match those of the zone.
5764 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5765 * state will transition it to ZONE_IS_RUNNING. Processes may only
5766 * enter a zone that is "ready" or "running".
5768 static int
5769 zone_enter(zoneid_t zoneid)
5771 zone_t *zone;
5772 vnode_t *vp;
5773 proc_t *pp = curproc;
5774 contract_t *ct;
5775 cont_process_t *ctp;
5776 task_t *tk, *oldtk;
5777 kproject_t *zone_proj0;
5778 cred_t *cr, *newcr;
5779 pool_t *oldpool, *newpool;
5780 sess_t *sp;
5781 uid_t uid;
5782 zone_status_t status;
5783 int err = 0;
5784 rctl_entity_p_t e;
5785 size_t swap;
5786 kthread_id_t t;
5788 if (secpolicy_zone_config(CRED()) != 0)
5789 return (set_errno(EPERM));
5790 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5791 return (set_errno(EINVAL));
5794 * Stop all lwps so we don't need to hold a lock to look at
5795 * curproc->p_zone. This needs to happen before we grab any
5796 * locks to avoid deadlock (another lwp in the process could
5797 * be waiting for the held lock).
5799 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5800 return (set_errno(EINTR));
5803 * Make sure we're not changing zones with files open or mapped in
5804 * to our address space which shouldn't be changing zones.
5806 if (!files_can_change_zones()) {
5807 err = EBADF;
5808 goto out;
5810 if (!as_can_change_zones()) {
5811 err = EFAULT;
5812 goto out;
5815 mutex_enter(&zonehash_lock);
5816 if (pp->p_zone != global_zone) {
5817 mutex_exit(&zonehash_lock);
5818 err = EINVAL;
5819 goto out;
5822 zone = zone_find_all_by_id(zoneid);
5823 if (zone == NULL) {
5824 mutex_exit(&zonehash_lock);
5825 err = EINVAL;
5826 goto out;
5830 * To prevent processes in a zone from holding contracts on
5831 * extrazonal resources, and to avoid process contract
5832 * memberships which span zones, contract holders and processes
5833 * which aren't the sole members of their encapsulating process
5834 * contracts are not allowed to zone_enter.
5836 ctp = pp->p_ct_process;
5837 ct = &ctp->conp_contract;
5838 mutex_enter(&ct->ct_lock);
5839 mutex_enter(&pp->p_lock);
5840 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5841 mutex_exit(&pp->p_lock);
5842 mutex_exit(&ct->ct_lock);
5843 mutex_exit(&zonehash_lock);
5844 err = EINVAL;
5845 goto out;
5849 * Moreover, we don't allow processes whose encapsulating
5850 * process contracts have inherited extrazonal contracts.
5851 * While it would be easier to eliminate all process contracts
5852 * with inherited contracts, we need to be able to give a
5853 * restarted init (or other zone-penetrating process) its
5854 * predecessor's contracts.
5856 if (ctp->conp_ninherited != 0) {
5857 contract_t *next;
5858 for (next = list_head(&ctp->conp_inherited); next;
5859 next = list_next(&ctp->conp_inherited, next)) {
5860 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5861 mutex_exit(&pp->p_lock);
5862 mutex_exit(&ct->ct_lock);
5863 mutex_exit(&zonehash_lock);
5864 err = EINVAL;
5865 goto out;
5870 mutex_exit(&pp->p_lock);
5871 mutex_exit(&ct->ct_lock);
5873 status = zone_status_get(zone);
5874 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5876 * Can't join
5878 mutex_exit(&zonehash_lock);
5879 err = EINVAL;
5880 goto out;
5884 * Make sure new priv set is within the permitted set for caller
5886 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5887 mutex_exit(&zonehash_lock);
5888 err = EPERM;
5889 goto out;
5892 * We want to momentarily drop zonehash_lock while we optimistically
5893 * bind curproc to the pool it should be running in. This is safe
5894 * since the zone can't disappear (we have a hold on it).
5896 zone_hold(zone);
5897 mutex_exit(&zonehash_lock);
5900 * Grab pool_lock to keep the pools configuration from changing
5901 * and to stop ourselves from getting rebound to another pool
5902 * until we join the zone.
5904 if (pool_lock_intr() != 0) {
5905 zone_rele(zone);
5906 err = EINTR;
5907 goto out;
5909 ASSERT(secpolicy_pool(CRED()) == 0);
5911 * Bind ourselves to the pool currently associated with the zone.
5913 oldpool = curproc->p_pool;
5914 newpool = zone_pool_get(zone);
5915 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5916 (err = pool_do_bind(newpool, P_PID, P_MYID,
5917 POOL_BIND_ALL)) != 0) {
5918 pool_unlock();
5919 zone_rele(zone);
5920 goto out;
5924 * Grab cpu_lock now; we'll need it later when we call
5925 * task_join().
5927 mutex_enter(&cpu_lock);
5928 mutex_enter(&zonehash_lock);
5930 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5932 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5934 * Can't join anymore.
5936 mutex_exit(&zonehash_lock);
5937 mutex_exit(&cpu_lock);
5938 if (pool_state == POOL_ENABLED &&
5939 newpool != oldpool)
5940 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5941 POOL_BIND_ALL);
5942 pool_unlock();
5943 zone_rele(zone);
5944 err = EINVAL;
5945 goto out;
5949 * a_lock must be held while transfering locked memory and swap
5950 * reservation from the global zone to the non global zone because
5951 * asynchronous faults on the processes' address space can lock
5952 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5953 * segments respectively.
5955 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5956 swap = as_swresv();
5957 mutex_enter(&pp->p_lock);
5958 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5959 /* verify that we do not exceed and task or lwp limits */
5960 mutex_enter(&zone->zone_nlwps_lock);
5961 /* add new lwps to zone and zone's proj0 */
5962 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5963 zone->zone_nlwps += pp->p_lwpcnt;
5964 /* add 1 task to zone's proj0 */
5965 zone_proj0->kpj_ntasks += 1;
5967 zone_proj0->kpj_nprocs++;
5968 zone->zone_nprocs++;
5969 mutex_exit(&zone->zone_nlwps_lock);
5971 mutex_enter(&zone->zone_mem_lock);
5972 zone->zone_locked_mem += pp->p_locked_mem;
5973 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5974 zone->zone_max_swap += swap;
5975 mutex_exit(&zone->zone_mem_lock);
5977 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5978 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5979 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5981 /* remove lwps and process from proc's old zone and old project */
5982 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5983 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5984 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5985 pp->p_task->tk_proj->kpj_nprocs--;
5986 pp->p_zone->zone_nprocs--;
5987 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5989 mutex_enter(&pp->p_zone->zone_mem_lock);
5990 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5991 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5992 pp->p_zone->zone_max_swap -= swap;
5993 mutex_exit(&pp->p_zone->zone_mem_lock);
5995 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5996 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5997 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5999 pp->p_flag |= SZONETOP;
6000 pp->p_zone = zone;
6001 mutex_exit(&pp->p_lock);
6002 AS_LOCK_EXIT(pp->p_as);
6005 * Joining the zone cannot fail from now on.
6007 * This means that a lot of the following code can be commonized and
6008 * shared with zsched().
6012 * If the process contract fmri was inherited, we need to
6013 * flag this so that any contract status will not leak
6014 * extra zone information, svc_fmri in this case
6016 if (ctp->conp_svc_ctid != ct->ct_id) {
6017 mutex_enter(&ct->ct_lock);
6018 ctp->conp_svc_zone_enter = ct->ct_id;
6019 mutex_exit(&ct->ct_lock);
6023 * Reset the encapsulating process contract's zone.
6025 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6026 contract_setzuniqid(ct, zone->zone_uniqid);
6029 * Create a new task and associate the process with the project keyed
6030 * by (projid,zoneid).
6032 * We might as well be in project 0; the global zone's projid doesn't
6033 * make much sense in a zone anyhow.
6035 * This also increments zone_ntasks, and returns with p_lock held.
6037 tk = task_create(0, zone);
6038 oldtk = task_join(tk, 0);
6039 mutex_exit(&cpu_lock);
6042 * call RCTLOP_SET functions on this proc
6044 e.rcep_p.zone = zone;
6045 e.rcep_t = RCENTITY_ZONE;
6046 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6047 RCD_CALLBACK);
6048 mutex_exit(&pp->p_lock);
6051 * We don't need to hold any of zsched's locks here; not only do we know
6052 * the process and zone aren't going away, we know its session isn't
6053 * changing either.
6055 * By joining zsched's session here, we mimic the behavior in the
6056 * global zone of init's sid being the pid of sched. We extend this
6057 * to all zlogin-like zone_enter()'ing processes as well.
6059 mutex_enter(&pidlock);
6060 sp = zone->zone_zsched->p_sessp;
6061 sess_hold(zone->zone_zsched);
6062 mutex_enter(&pp->p_lock);
6063 pgexit(pp);
6064 sess_rele(pp->p_sessp, B_TRUE);
6065 pp->p_sessp = sp;
6066 pgjoin(pp, zone->zone_zsched->p_pidp);
6069 * If any threads are scheduled to be placed on zone wait queue they
6070 * should abandon the idea since the wait queue is changing.
6071 * We need to be holding pidlock & p_lock to do this.
6073 if ((t = pp->p_tlist) != NULL) {
6074 do {
6075 thread_lock(t);
6077 * Kick this thread so that he doesn't sit
6078 * on a wrong wait queue.
6080 if (ISWAITING(t))
6081 setrun_locked(t);
6083 if (t->t_schedflag & TS_ANYWAITQ)
6084 t->t_schedflag &= ~ TS_ANYWAITQ;
6086 thread_unlock(t);
6087 } while ((t = t->t_forw) != pp->p_tlist);
6091 * If there is a default scheduling class for the zone and it is not
6092 * the class we are currently in, change all of the threads in the
6093 * process to the new class. We need to be holding pidlock & p_lock
6094 * when we call parmsset so this is a good place to do it.
6096 if (zone->zone_defaultcid > 0 &&
6097 zone->zone_defaultcid != curthread->t_cid) {
6098 pcparms_t pcparms;
6100 pcparms.pc_cid = zone->zone_defaultcid;
6101 pcparms.pc_clparms[0] = 0;
6104 * If setting the class fails, we still want to enter the zone.
6106 if ((t = pp->p_tlist) != NULL) {
6107 do {
6108 (void) parmsset(&pcparms, t);
6109 } while ((t = t->t_forw) != pp->p_tlist);
6113 mutex_exit(&pp->p_lock);
6114 mutex_exit(&pidlock);
6116 mutex_exit(&zonehash_lock);
6118 * We're firmly in the zone; let pools progress.
6120 pool_unlock();
6121 task_rele(oldtk);
6123 * We don't need to retain a hold on the zone since we already
6124 * incremented zone_ntasks, so the zone isn't going anywhere.
6126 zone_rele(zone);
6129 * Chroot
6131 vp = zone->zone_rootvp;
6132 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6133 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6136 * Change process credentials
6138 newcr = cralloc();
6139 mutex_enter(&pp->p_crlock);
6140 cr = pp->p_cred;
6141 crcopy_to(cr, newcr);
6142 crsetzone(newcr, zone);
6143 pp->p_cred = newcr;
6146 * Restrict all process privilege sets to zone limit
6148 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6149 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6150 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6151 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6152 mutex_exit(&pp->p_crlock);
6153 crset(pp, newcr);
6156 * Adjust upcount to reflect zone entry.
6158 uid = crgetruid(newcr);
6159 mutex_enter(&pidlock);
6160 upcount_dec(uid, GLOBAL_ZONEID);
6161 upcount_inc(uid, zoneid);
6162 mutex_exit(&pidlock);
6165 * Set up core file path and content.
6167 set_core_defaults();
6169 out:
6171 * Let the other lwps continue.
6173 mutex_enter(&pp->p_lock);
6174 if (curthread != pp->p_agenttp)
6175 continuelwps(pp);
6176 mutex_exit(&pp->p_lock);
6178 return (err != 0 ? set_errno(err) : 0);
6182 * Systemcall entry point for zone_list(2).
6184 * Processes running in a (non-global) zone only see themselves.
6185 * On labeled systems, they see all zones whose label they dominate.
6187 static int
6188 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6190 zoneid_t *zoneids;
6191 zone_t *zone, *myzone;
6192 uint_t user_nzones, real_nzones;
6193 uint_t domi_nzones;
6194 int error;
6196 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6197 return (set_errno(EFAULT));
6199 myzone = curproc->p_zone;
6200 if (myzone != global_zone) {
6201 bslabel_t *mybslab;
6203 if (!is_system_labeled()) {
6204 /* just return current zone */
6205 real_nzones = domi_nzones = 1;
6206 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6207 zoneids[0] = myzone->zone_id;
6208 } else {
6209 /* return all zones that are dominated */
6210 mutex_enter(&zonehash_lock);
6211 real_nzones = zonecount;
6212 domi_nzones = 0;
6213 if (real_nzones > 0) {
6214 zoneids = kmem_alloc(real_nzones *
6215 sizeof (zoneid_t), KM_SLEEP);
6216 mybslab = label2bslabel(myzone->zone_slabel);
6217 for (zone = list_head(&zone_active);
6218 zone != NULL;
6219 zone = list_next(&zone_active, zone)) {
6220 if (zone->zone_id == GLOBAL_ZONEID)
6221 continue;
6222 if (zone != myzone &&
6223 (zone->zone_flags & ZF_IS_SCRATCH))
6224 continue;
6226 * Note that a label always dominates
6227 * itself, so myzone is always included
6228 * in the list.
6230 if (bldominates(mybslab,
6231 label2bslabel(zone->zone_slabel))) {
6232 zoneids[domi_nzones++] =
6233 zone->zone_id;
6237 mutex_exit(&zonehash_lock);
6239 } else {
6240 mutex_enter(&zonehash_lock);
6241 real_nzones = zonecount;
6242 domi_nzones = 0;
6243 if (real_nzones > 0) {
6244 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6245 KM_SLEEP);
6246 for (zone = list_head(&zone_active); zone != NULL;
6247 zone = list_next(&zone_active, zone))
6248 zoneids[domi_nzones++] = zone->zone_id;
6249 ASSERT(domi_nzones == real_nzones);
6251 mutex_exit(&zonehash_lock);
6255 * If user has allocated space for fewer entries than we found, then
6256 * return only up to his limit. Either way, tell him exactly how many
6257 * we found.
6259 if (domi_nzones < user_nzones)
6260 user_nzones = domi_nzones;
6261 error = 0;
6262 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6263 error = EFAULT;
6264 } else if (zoneidlist != NULL && user_nzones != 0) {
6265 if (copyout(zoneids, zoneidlist,
6266 user_nzones * sizeof (zoneid_t)) != 0)
6267 error = EFAULT;
6270 if (real_nzones > 0)
6271 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6273 if (error != 0)
6274 return (set_errno(error));
6275 else
6276 return (0);
6280 * Systemcall entry point for zone_lookup(2).
6282 * Non-global zones are only able to see themselves and (on labeled systems)
6283 * the zones they dominate.
6285 static zoneid_t
6286 zone_lookup(const char *zone_name)
6288 char *kname;
6289 zone_t *zone;
6290 zoneid_t zoneid;
6291 int err;
6293 if (zone_name == NULL) {
6294 /* return caller's zone id */
6295 return (getzoneid());
6298 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6299 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6300 kmem_free(kname, ZONENAME_MAX);
6301 return (set_errno(err));
6304 mutex_enter(&zonehash_lock);
6305 zone = zone_find_all_by_name(kname);
6306 kmem_free(kname, ZONENAME_MAX);
6308 * In a non-global zone, can only lookup global and own name.
6309 * In Trusted Extensions zone label dominance rules apply.
6311 if (zone == NULL ||
6312 zone_status_get(zone) < ZONE_IS_READY ||
6313 !zone_list_access(zone)) {
6314 mutex_exit(&zonehash_lock);
6315 return (set_errno(EINVAL));
6316 } else {
6317 zoneid = zone->zone_id;
6318 mutex_exit(&zonehash_lock);
6319 return (zoneid);
6323 static int
6324 zone_version(int *version_arg)
6326 int version = ZONE_SYSCALL_API_VERSION;
6328 if (copyout(&version, version_arg, sizeof (int)) != 0)
6329 return (set_errno(EFAULT));
6330 return (0);
6333 /* ARGSUSED */
6334 long
6335 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6337 zone_def zs;
6338 int err;
6340 switch (cmd) {
6341 case ZONE_CREATE:
6342 if (get_udatamodel() == DATAMODEL_NATIVE) {
6343 if (copyin(arg1, &zs, sizeof (zone_def))) {
6344 return (set_errno(EFAULT));
6346 } else {
6347 #ifdef _SYSCALL32_IMPL
6348 zone_def32 zs32;
6350 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6351 return (set_errno(EFAULT));
6353 zs.zone_name =
6354 (const char *)(unsigned long)zs32.zone_name;
6355 zs.zone_root =
6356 (const char *)(unsigned long)zs32.zone_root;
6357 zs.zone_privs =
6358 (const struct priv_set *)
6359 (unsigned long)zs32.zone_privs;
6360 zs.zone_privssz = zs32.zone_privssz;
6361 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6362 zs.rctlbufsz = zs32.rctlbufsz;
6363 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6364 zs.zfsbufsz = zs32.zfsbufsz;
6365 zs.extended_error =
6366 (int *)(unsigned long)zs32.extended_error;
6367 zs.match = zs32.match;
6368 zs.doi = zs32.doi;
6369 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6370 zs.flags = zs32.flags;
6371 #else
6372 panic("get_udatamodel() returned bogus result\n");
6373 #endif
6376 return (zone_create(zs.zone_name, zs.zone_root,
6377 zs.zone_privs, zs.zone_privssz,
6378 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6379 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6380 zs.extended_error, zs.match, zs.doi,
6381 zs.label, zs.flags));
6382 case ZONE_BOOT:
6383 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6384 case ZONE_DESTROY:
6385 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6386 case ZONE_GETATTR:
6387 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6388 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6389 case ZONE_SETATTR:
6390 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6391 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6392 case ZONE_ENTER:
6393 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6394 case ZONE_LIST:
6395 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6396 case ZONE_SHUTDOWN:
6397 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6398 case ZONE_LOOKUP:
6399 return (zone_lookup((const char *)arg1));
6400 case ZONE_VERSION:
6401 return (zone_version((int *)arg1));
6402 case ZONE_ADD_DATALINK:
6403 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6404 (datalink_id_t)(uintptr_t)arg2));
6405 case ZONE_DEL_DATALINK:
6406 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6407 (datalink_id_t)(uintptr_t)arg2));
6408 case ZONE_CHECK_DATALINK: {
6409 zoneid_t zoneid;
6410 boolean_t need_copyout;
6412 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6413 return (EFAULT);
6414 need_copyout = (zoneid == ALL_ZONES);
6415 err = zone_check_datalink(&zoneid,
6416 (datalink_id_t)(uintptr_t)arg2);
6417 if (err == 0 && need_copyout) {
6418 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6419 err = EFAULT;
6421 return (err == 0 ? 0 : set_errno(err));
6423 case ZONE_LIST_DATALINK:
6424 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6425 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6426 default:
6427 return (set_errno(EINVAL));
6431 struct zarg {
6432 zone_t *zone;
6433 zone_cmd_arg_t arg;
6436 static int
6437 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6439 char *buf;
6440 size_t buflen;
6441 int error;
6443 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6444 buf = kmem_alloc(buflen, KM_SLEEP);
6445 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6446 error = door_ki_open(buf, doorp);
6447 kmem_free(buf, buflen);
6448 return (error);
6451 static void
6452 zone_release_door(door_handle_t *doorp)
6454 door_ki_rele(*doorp);
6455 *doorp = NULL;
6458 static void
6459 zone_ki_call_zoneadmd(struct zarg *zargp)
6461 door_handle_t door = NULL;
6462 door_arg_t darg, save_arg;
6463 char *zone_name;
6464 size_t zone_namelen;
6465 zoneid_t zoneid;
6466 zone_t *zone;
6467 zone_cmd_arg_t arg;
6468 uint64_t uniqid;
6469 size_t size;
6470 int error;
6471 int retry;
6473 zone = zargp->zone;
6474 arg = zargp->arg;
6475 kmem_free(zargp, sizeof (*zargp));
6477 zone_namelen = strlen(zone->zone_name) + 1;
6478 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6479 bcopy(zone->zone_name, zone_name, zone_namelen);
6480 zoneid = zone->zone_id;
6481 uniqid = zone->zone_uniqid;
6483 * zoneadmd may be down, but at least we can empty out the zone.
6484 * We can ignore the return value of zone_empty() since we're called
6485 * from a kernel thread and know we won't be delivered any signals.
6487 ASSERT(curproc == &p0);
6488 (void) zone_empty(zone);
6489 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6490 zone_rele(zone);
6492 size = sizeof (arg);
6493 darg.rbuf = (char *)&arg;
6494 darg.data_ptr = (char *)&arg;
6495 darg.rsize = size;
6496 darg.data_size = size;
6497 darg.desc_ptr = NULL;
6498 darg.desc_num = 0;
6500 save_arg = darg;
6502 * Since we're not holding a reference to the zone, any number of
6503 * things can go wrong, including the zone disappearing before we get a
6504 * chance to talk to zoneadmd.
6506 for (retry = 0; /* forever */; retry++) {
6507 if (door == NULL &&
6508 (error = zone_lookup_door(zone_name, &door)) != 0) {
6509 goto next;
6511 ASSERT(door != NULL);
6513 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6514 SIZE_MAX, 0)) == 0) {
6515 break;
6517 switch (error) {
6518 case EINTR:
6519 /* FALLTHROUGH */
6520 case EAGAIN: /* process may be forking */
6522 * Back off for a bit
6524 break;
6525 case EBADF:
6526 zone_release_door(&door);
6527 if (zone_lookup_door(zone_name, &door) != 0) {
6529 * zoneadmd may be dead, but it may come back to
6530 * life later.
6532 break;
6534 break;
6535 default:
6536 cmn_err(CE_WARN,
6537 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6538 error);
6539 goto out;
6541 next:
6543 * If this isn't the same zone_t that we originally had in mind,
6544 * then this is the same as if two kadmin requests come in at
6545 * the same time: the first one wins. This means we lose, so we
6546 * bail.
6548 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6550 * Problem is solved.
6552 break;
6554 if (zone->zone_uniqid != uniqid) {
6556 * zoneid recycled
6558 zone_rele(zone);
6559 break;
6562 * We could zone_status_timedwait(), but there doesn't seem to
6563 * be much point in doing that (plus, it would mean that
6564 * zone_free() isn't called until this thread exits).
6566 zone_rele(zone);
6567 delay(hz);
6568 darg = save_arg;
6570 out:
6571 if (door != NULL) {
6572 zone_release_door(&door);
6574 kmem_free(zone_name, zone_namelen);
6575 thread_exit();
6579 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6580 * kadmin(). The caller is a process in the zone.
6582 * In order to shutdown the zone, we will hand off control to zoneadmd
6583 * (running in the global zone) via a door. We do a half-hearted job at
6584 * killing all processes in the zone, create a kernel thread to contact
6585 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6586 * a form of generation number used to let zoneadmd (as well as
6587 * zone_destroy()) know exactly which zone they're re talking about.
6590 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6592 struct zarg *zargp;
6593 zone_cmd_t zcmd;
6594 zone_t *zone;
6596 zone = curproc->p_zone;
6597 ASSERT(getzoneid() != GLOBAL_ZONEID);
6599 switch (cmd) {
6600 case A_SHUTDOWN:
6601 switch (fcn) {
6602 case AD_HALT:
6603 case AD_POWEROFF:
6604 zcmd = Z_HALT;
6605 break;
6606 case AD_BOOT:
6607 zcmd = Z_REBOOT;
6608 break;
6609 case AD_IBOOT:
6610 case AD_SBOOT:
6611 case AD_SIBOOT:
6612 case AD_NOSYNC:
6613 return (ENOTSUP);
6614 default:
6615 return (EINVAL);
6617 break;
6618 case A_REBOOT:
6619 zcmd = Z_REBOOT;
6620 break;
6621 case A_FTRACE:
6622 case A_REMOUNT:
6623 case A_FREEZE:
6624 case A_DUMP:
6625 case A_CONFIG:
6626 return (ENOTSUP);
6627 default:
6628 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6629 return (EINVAL);
6632 if (secpolicy_zone_admin(credp, B_FALSE))
6633 return (EPERM);
6634 mutex_enter(&zone_status_lock);
6637 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6638 * is in the zone.
6640 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6641 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6643 * This zone is already on its way down.
6645 mutex_exit(&zone_status_lock);
6646 return (0);
6649 * Prevent future zone_enter()s
6651 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6652 mutex_exit(&zone_status_lock);
6655 * Kill everyone now and call zoneadmd later.
6656 * zone_ki_call_zoneadmd() will do a more thorough job of this
6657 * later.
6659 killall(zone->zone_id);
6661 * Now, create the thread to contact zoneadmd and do the rest of the
6662 * work. This thread can't be created in our zone otherwise
6663 * zone_destroy() would deadlock.
6665 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6666 zargp->arg.cmd = zcmd;
6667 zargp->arg.uniqid = zone->zone_uniqid;
6668 zargp->zone = zone;
6669 (void) strcpy(zargp->arg.locale, "C");
6670 /* mdep was already copied in for us by uadmin */
6671 if (mdep != NULL)
6672 (void) strlcpy(zargp->arg.bootbuf, mdep,
6673 sizeof (zargp->arg.bootbuf));
6674 zone_hold(zone);
6676 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6677 TS_RUN, minclsyspri);
6678 exit(CLD_EXITED, 0);
6680 return (EINVAL);
6684 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6685 * status to ZONE_IS_SHUTTING_DOWN.
6687 * This function also shuts down all running zones to ensure that they won't
6688 * fork new processes.
6690 void
6691 zone_shutdown_global(void)
6693 zone_t *current_zonep;
6695 ASSERT(INGLOBALZONE(curproc));
6696 mutex_enter(&zonehash_lock);
6697 mutex_enter(&zone_status_lock);
6699 /* Modify the global zone's status first. */
6700 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6701 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6704 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6705 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6706 * could cause assertions to fail (e.g., assertions about a zone's
6707 * state during initialization, readying, or booting) or produce races.
6708 * We'll let threads continue to initialize and ready new zones: they'll
6709 * fail to boot the new zones when they see that the global zone is
6710 * shutting down.
6712 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6713 current_zonep = list_next(&zone_active, current_zonep)) {
6714 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6715 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6717 mutex_exit(&zone_status_lock);
6718 mutex_exit(&zonehash_lock);
6722 * Returns true if the named dataset is visible in the current zone.
6723 * The 'write' parameter is set to 1 if the dataset is also writable.
6726 zone_dataset_visible(const char *dataset, int *write)
6728 static int zfstype = -1;
6729 zone_dataset_t *zd;
6730 size_t len;
6731 zone_t *zone = curproc->p_zone;
6732 const char *name = NULL;
6733 vfs_t *vfsp = NULL;
6735 if (dataset[0] == '\0')
6736 return (0);
6739 * Walk the list once, looking for datasets which match exactly, or
6740 * specify a dataset underneath an exported dataset. If found, return
6741 * true and note that it is writable.
6743 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6744 zd = list_next(&zone->zone_datasets, zd)) {
6746 len = strlen(zd->zd_dataset);
6747 if (strlen(dataset) >= len &&
6748 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6749 (dataset[len] == '\0' || dataset[len] == '/' ||
6750 dataset[len] == '@')) {
6751 if (write)
6752 *write = 1;
6753 return (1);
6758 * Walk the list a second time, searching for datasets which are parents
6759 * of exported datasets. These should be visible, but read-only.
6761 * Note that we also have to support forms such as 'pool/dataset/', with
6762 * a trailing slash.
6764 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6765 zd = list_next(&zone->zone_datasets, zd)) {
6767 len = strlen(dataset);
6768 if (dataset[len - 1] == '/')
6769 len--; /* Ignore trailing slash */
6770 if (len < strlen(zd->zd_dataset) &&
6771 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6772 zd->zd_dataset[len] == '/') {
6773 if (write)
6774 *write = 0;
6775 return (1);
6780 * We reach here if the given dataset is not found in the zone_dataset
6781 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6782 * instead of delegation. For this we search for the dataset in the
6783 * zone_vfslist of this zone. If found, return true and note that it is
6784 * not writable.
6788 * Initialize zfstype if it is not initialized yet.
6790 if (zfstype == -1) {
6791 struct vfssw *vswp = vfs_getvfssw("zfs");
6792 zfstype = vswp - vfssw;
6793 vfs_unrefvfssw(vswp);
6796 vfs_list_read_lock();
6797 vfsp = zone->zone_vfslist;
6798 do {
6799 ASSERT(vfsp);
6800 if (vfsp->vfs_fstype == zfstype) {
6801 name = refstr_value(vfsp->vfs_resource);
6804 * Check if we have an exact match.
6806 if (strcmp(dataset, name) == 0) {
6807 vfs_list_unlock();
6808 if (write)
6809 *write = 0;
6810 return (1);
6813 * We need to check if we are looking for parents of
6814 * a dataset. These should be visible, but read-only.
6816 len = strlen(dataset);
6817 if (dataset[len - 1] == '/')
6818 len--;
6820 if (len < strlen(name) &&
6821 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6822 vfs_list_unlock();
6823 if (write)
6824 *write = 0;
6825 return (1);
6828 vfsp = vfsp->vfs_zone_next;
6829 } while (vfsp != zone->zone_vfslist);
6831 vfs_list_unlock();
6832 return (0);
6836 * zone_find_by_any_path() -
6838 * kernel-private routine similar to zone_find_by_path(), but which
6839 * effectively compares against zone paths rather than zonerootpath
6840 * (i.e., the last component of zonerootpaths, which should be "root/",
6841 * are not compared.) This is done in order to accurately identify all
6842 * paths, whether zone-visible or not, including those which are parallel
6843 * to /root/, such as /dev/, /home/, etc...
6845 * If the specified path does not fall under any zone path then global
6846 * zone is returned.
6848 * The treat_abs parameter indicates whether the path should be treated as
6849 * an absolute path although it does not begin with "/". (This supports
6850 * nfs mount syntax such as host:any/path.)
6852 * The caller is responsible for zone_rele of the returned zone.
6854 zone_t *
6855 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6857 zone_t *zone;
6858 int path_offset = 0;
6860 if (path == NULL) {
6861 zone_hold(global_zone);
6862 return (global_zone);
6865 if (*path != '/') {
6866 ASSERT(treat_abs);
6867 path_offset = 1;
6870 mutex_enter(&zonehash_lock);
6871 for (zone = list_head(&zone_active); zone != NULL;
6872 zone = list_next(&zone_active, zone)) {
6873 char *c;
6874 size_t pathlen;
6875 char *rootpath_start;
6877 if (zone == global_zone) /* skip global zone */
6878 continue;
6880 /* scan backwards to find start of last component */
6881 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6882 do {
6883 c--;
6884 } while (*c != '/');
6886 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6887 rootpath_start = (zone->zone_rootpath + path_offset);
6888 if (strncmp(path, rootpath_start, pathlen) == 0)
6889 break;
6891 if (zone == NULL)
6892 zone = global_zone;
6893 zone_hold(zone);
6894 mutex_exit(&zonehash_lock);
6895 return (zone);
6899 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6900 * zone_dl_t pointer if found, and NULL otherwise.
6902 static zone_dl_t *
6903 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6905 zone_dl_t *zdl;
6907 ASSERT(mutex_owned(&zone->zone_lock));
6908 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6909 zdl = list_next(&zone->zone_dl_list, zdl)) {
6910 if (zdl->zdl_id == linkid)
6911 break;
6913 return (zdl);
6916 static boolean_t
6917 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6919 boolean_t exists;
6921 mutex_enter(&zone->zone_lock);
6922 exists = (zone_find_dl(zone, linkid) != NULL);
6923 mutex_exit(&zone->zone_lock);
6924 return (exists);
6928 * Add an data link name for the zone.
6930 static int
6931 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6933 zone_dl_t *zdl;
6934 zone_t *zone;
6935 zone_t *thiszone;
6937 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6938 return (set_errno(ENXIO));
6940 /* Verify that the datalink ID doesn't already belong to a zone. */
6941 mutex_enter(&zonehash_lock);
6942 for (zone = list_head(&zone_active); zone != NULL;
6943 zone = list_next(&zone_active, zone)) {
6944 if (zone_dl_exists(zone, linkid)) {
6945 mutex_exit(&zonehash_lock);
6946 zone_rele(thiszone);
6947 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6951 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6952 zdl->zdl_id = linkid;
6953 zdl->zdl_net = NULL;
6954 mutex_enter(&thiszone->zone_lock);
6955 list_insert_head(&thiszone->zone_dl_list, zdl);
6956 mutex_exit(&thiszone->zone_lock);
6957 mutex_exit(&zonehash_lock);
6958 zone_rele(thiszone);
6959 return (0);
6962 static int
6963 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6965 zone_dl_t *zdl;
6966 zone_t *zone;
6967 int err = 0;
6969 if ((zone = zone_find_by_id(zoneid)) == NULL)
6970 return (set_errno(EINVAL));
6972 mutex_enter(&zone->zone_lock);
6973 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6974 err = ENXIO;
6975 } else {
6976 list_remove(&zone->zone_dl_list, zdl);
6977 nvlist_free(zdl->zdl_net);
6978 kmem_free(zdl, sizeof (zone_dl_t));
6980 mutex_exit(&zone->zone_lock);
6981 zone_rele(zone);
6982 return (err == 0 ? 0 : set_errno(err));
6986 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6987 * the linkid. Otherwise we just check if the specified zoneidp has been
6988 * assigned the supplied linkid.
6991 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6993 zone_t *zone;
6994 int err = ENXIO;
6996 if (*zoneidp != ALL_ZONES) {
6997 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6998 if (zone_dl_exists(zone, linkid))
6999 err = 0;
7000 zone_rele(zone);
7002 return (err);
7005 mutex_enter(&zonehash_lock);
7006 for (zone = list_head(&zone_active); zone != NULL;
7007 zone = list_next(&zone_active, zone)) {
7008 if (zone_dl_exists(zone, linkid)) {
7009 *zoneidp = zone->zone_id;
7010 err = 0;
7011 break;
7014 mutex_exit(&zonehash_lock);
7015 return (err);
7019 * Get the list of datalink IDs assigned to a zone.
7021 * On input, *nump is the number of datalink IDs that can fit in the supplied
7022 * idarray. Upon return, *nump is either set to the number of datalink IDs
7023 * that were placed in the array if the array was large enough, or to the
7024 * number of datalink IDs that the function needs to place in the array if the
7025 * array is too small.
7027 static int
7028 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7030 uint_t num, dlcount;
7031 zone_t *zone;
7032 zone_dl_t *zdl;
7033 datalink_id_t *idptr = idarray;
7035 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7036 return (set_errno(EFAULT));
7037 if ((zone = zone_find_by_id(zoneid)) == NULL)
7038 return (set_errno(ENXIO));
7040 num = 0;
7041 mutex_enter(&zone->zone_lock);
7042 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7043 zdl = list_next(&zone->zone_dl_list, zdl)) {
7045 * If the list is bigger than what the caller supplied, just
7046 * count, don't do copyout.
7048 if (++num > dlcount)
7049 continue;
7050 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7051 mutex_exit(&zone->zone_lock);
7052 zone_rele(zone);
7053 return (set_errno(EFAULT));
7055 idptr++;
7057 mutex_exit(&zone->zone_lock);
7058 zone_rele(zone);
7060 /* Increased or decreased, caller should be notified. */
7061 if (num != dlcount) {
7062 if (copyout(&num, nump, sizeof (num)) != 0)
7063 return (set_errno(EFAULT));
7065 return (0);
7069 * Public interface for looking up a zone by zoneid. It's a customized version
7070 * for netstack_zone_create(). It can only be called from the zsd create
7071 * callbacks, since it doesn't have reference on the zone structure hence if
7072 * it is called elsewhere the zone could disappear after the zonehash_lock
7073 * is dropped.
7075 * Furthermore it
7076 * 1. Doesn't check the status of the zone.
7077 * 2. It will be called even before zone_init is called, in that case the
7078 * address of zone0 is returned directly, and netstack_zone_create()
7079 * will only assign a value to zone0.zone_netstack, won't break anything.
7080 * 3. Returns without the zone being held.
7082 zone_t *
7083 zone_find_by_id_nolock(zoneid_t zoneid)
7085 zone_t *zone;
7087 mutex_enter(&zonehash_lock);
7088 if (zonehashbyid == NULL)
7089 zone = &zone0;
7090 else
7091 zone = zone_find_all_by_id(zoneid);
7092 mutex_exit(&zonehash_lock);
7093 return (zone);
7097 * Walk the datalinks for a given zone
7100 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7101 void *data)
7103 zone_t *zone;
7104 zone_dl_t *zdl;
7105 datalink_id_t *idarray;
7106 uint_t idcount = 0;
7107 int i, ret = 0;
7109 if ((zone = zone_find_by_id(zoneid)) == NULL)
7110 return (ENOENT);
7113 * We first build an array of linkid's so that we can walk these and
7114 * execute the callback with the zone_lock dropped.
7116 mutex_enter(&zone->zone_lock);
7117 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7118 zdl = list_next(&zone->zone_dl_list, zdl)) {
7119 idcount++;
7122 if (idcount == 0) {
7123 mutex_exit(&zone->zone_lock);
7124 zone_rele(zone);
7125 return (0);
7128 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7129 if (idarray == NULL) {
7130 mutex_exit(&zone->zone_lock);
7131 zone_rele(zone);
7132 return (ENOMEM);
7135 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7136 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7137 idarray[i] = zdl->zdl_id;
7140 mutex_exit(&zone->zone_lock);
7142 for (i = 0; i < idcount && ret == 0; i++) {
7143 if ((ret = (*cb)(idarray[i], data)) != 0)
7144 break;
7147 zone_rele(zone);
7148 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7149 return (ret);
7152 static char *
7153 zone_net_type2name(int type)
7155 switch (type) {
7156 case ZONE_NETWORK_ADDRESS:
7157 return (ZONE_NET_ADDRNAME);
7158 case ZONE_NETWORK_DEFROUTER:
7159 return (ZONE_NET_RTRNAME);
7160 default:
7161 return (NULL);
7165 static int
7166 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7168 zone_t *zone;
7169 zone_dl_t *zdl;
7170 nvlist_t *nvl;
7171 int err = 0;
7172 uint8_t *new = NULL;
7173 char *nvname;
7174 int bufsize;
7175 datalink_id_t linkid = znbuf->zn_linkid;
7177 if (secpolicy_zone_config(CRED()) != 0)
7178 return (set_errno(EPERM));
7180 if (zoneid == GLOBAL_ZONEID)
7181 return (set_errno(EINVAL));
7183 nvname = zone_net_type2name(znbuf->zn_type);
7184 bufsize = znbuf->zn_len;
7185 new = znbuf->zn_val;
7186 if (nvname == NULL)
7187 return (set_errno(EINVAL));
7189 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7190 return (set_errno(EINVAL));
7193 mutex_enter(&zone->zone_lock);
7194 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7195 err = ENXIO;
7196 goto done;
7198 if ((nvl = zdl->zdl_net) == NULL) {
7199 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7200 err = ENOMEM;
7201 goto done;
7202 } else {
7203 zdl->zdl_net = nvl;
7206 if (nvlist_exists(nvl, nvname)) {
7207 err = EINVAL;
7208 goto done;
7210 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7211 ASSERT(err == 0);
7212 done:
7213 mutex_exit(&zone->zone_lock);
7214 zone_rele(zone);
7215 if (err != 0)
7216 return (set_errno(err));
7217 else
7218 return (0);
7221 static int
7222 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7224 zone_t *zone;
7225 zone_dl_t *zdl;
7226 nvlist_t *nvl;
7227 uint8_t *ptr;
7228 uint_t psize;
7229 int err = 0;
7230 char *nvname;
7231 int bufsize;
7232 void *buf;
7233 datalink_id_t linkid = znbuf->zn_linkid;
7235 if (zoneid == GLOBAL_ZONEID)
7236 return (set_errno(EINVAL));
7238 nvname = zone_net_type2name(znbuf->zn_type);
7239 bufsize = znbuf->zn_len;
7240 buf = znbuf->zn_val;
7242 if (nvname == NULL)
7243 return (set_errno(EINVAL));
7244 if ((zone = zone_find_by_id(zoneid)) == NULL)
7245 return (set_errno(EINVAL));
7247 mutex_enter(&zone->zone_lock);
7248 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7249 err = ENXIO;
7250 goto done;
7252 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7253 err = ENOENT;
7254 goto done;
7256 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7257 ASSERT(err == 0);
7259 if (psize > bufsize) {
7260 err = ENOBUFS;
7261 goto done;
7263 znbuf->zn_len = psize;
7264 bcopy(ptr, buf, psize);
7265 done:
7266 mutex_exit(&zone->zone_lock);
7267 zone_rele(zone);
7268 if (err != 0)
7269 return (set_errno(err));
7270 else
7271 return (0);