7392 remove event channel support from lofi and implement lofi_devlink_cache.
[unleashed.git] / usr / src / uts / common / os / sunddi.c
blobede7da413b1ff9f4dbaf0e098eb2553c5fb4ff35
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2014 Garrett D'Amore <garrett@damore.org>
27 #include <sys/note.h>
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/uio.h>
33 #include <sys/cred.h>
34 #include <sys/poll.h>
35 #include <sys/mman.h>
36 #include <sys/kmem.h>
37 #include <sys/model.h>
38 #include <sys/file.h>
39 #include <sys/proc.h>
40 #include <sys/open.h>
41 #include <sys/user.h>
42 #include <sys/t_lock.h>
43 #include <sys/vm.h>
44 #include <sys/stat.h>
45 #include <vm/hat.h>
46 #include <vm/seg.h>
47 #include <vm/seg_vn.h>
48 #include <vm/seg_dev.h>
49 #include <vm/as.h>
50 #include <sys/cmn_err.h>
51 #include <sys/cpuvar.h>
52 #include <sys/debug.h>
53 #include <sys/autoconf.h>
54 #include <sys/sunddi.h>
55 #include <sys/esunddi.h>
56 #include <sys/sunndi.h>
57 #include <sys/kstat.h>
58 #include <sys/conf.h>
59 #include <sys/ddi_impldefs.h> /* include implementation structure defs */
60 #include <sys/ndi_impldefs.h> /* include prototypes */
61 #include <sys/ddi_periodic.h>
62 #include <sys/hwconf.h>
63 #include <sys/pathname.h>
64 #include <sys/modctl.h>
65 #include <sys/epm.h>
66 #include <sys/devctl.h>
67 #include <sys/callb.h>
68 #include <sys/cladm.h>
69 #include <sys/sysevent.h>
70 #include <sys/dacf_impl.h>
71 #include <sys/ddidevmap.h>
72 #include <sys/bootconf.h>
73 #include <sys/disp.h>
74 #include <sys/atomic.h>
75 #include <sys/promif.h>
76 #include <sys/instance.h>
77 #include <sys/sysevent/eventdefs.h>
78 #include <sys/task.h>
79 #include <sys/project.h>
80 #include <sys/taskq.h>
81 #include <sys/devpolicy.h>
82 #include <sys/ctype.h>
83 #include <net/if.h>
84 #include <sys/rctl.h>
85 #include <sys/zone.h>
86 #include <sys/clock_impl.h>
87 #include <sys/ddi.h>
88 #include <sys/modhash.h>
89 #include <sys/sunldi_impl.h>
90 #include <sys/fs/dv_node.h>
91 #include <sys/fs/snode.h>
93 extern pri_t minclsyspri;
95 extern rctl_hndl_t rc_project_locked_mem;
96 extern rctl_hndl_t rc_zone_locked_mem;
98 #ifdef DEBUG
99 static int sunddi_debug = 0;
100 #endif /* DEBUG */
102 /* ddi_umem_unlock miscellaneous */
104 static void i_ddi_umem_unlock_thread_start(void);
106 static kmutex_t ddi_umem_unlock_mutex; /* unlock list mutex */
107 static kcondvar_t ddi_umem_unlock_cv; /* unlock list block/unblock */
108 static kthread_t *ddi_umem_unlock_thread;
110 * The ddi_umem_unlock FIFO list. NULL head pointer indicates empty list.
112 static struct ddi_umem_cookie *ddi_umem_unlock_head = NULL;
113 static struct ddi_umem_cookie *ddi_umem_unlock_tail = NULL;
116 * DDI(Sun) Function and flag definitions:
119 #if defined(__x86)
121 * Used to indicate which entries were chosen from a range.
123 char *chosen_reg = "chosen-reg";
124 #endif
127 * Function used to ring system console bell
129 void (*ddi_console_bell_func)(clock_t duration);
132 * Creating register mappings and handling interrupts:
136 * Generic ddi_map: Call parent to fulfill request...
140 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset,
141 off_t len, caddr_t *addrp)
143 dev_info_t *pdip;
145 ASSERT(dp);
146 pdip = (dev_info_t *)DEVI(dp)->devi_parent;
147 return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip,
148 dp, mp, offset, len, addrp));
152 * ddi_apply_range: (Called by nexi only.)
153 * Apply ranges in parent node dp, to child regspec rp...
157 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp)
159 return (i_ddi_apply_range(dp, rdip, rp));
163 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
164 off_t len)
166 ddi_map_req_t mr;
167 #if defined(__x86)
168 struct {
169 int bus;
170 int addr;
171 int size;
172 } reg, *reglist;
173 uint_t length;
174 int rc;
177 * get the 'registers' or the 'reg' property.
178 * We look up the reg property as an array of
179 * int's.
181 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
182 DDI_PROP_DONTPASS, "registers", (int **)&reglist, &length);
183 if (rc != DDI_PROP_SUCCESS)
184 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
185 DDI_PROP_DONTPASS, "reg", (int **)&reglist, &length);
186 if (rc == DDI_PROP_SUCCESS) {
188 * point to the required entry.
190 reg = reglist[rnumber];
191 reg.addr += offset;
192 if (len != 0)
193 reg.size = len;
195 * make a new property containing ONLY the required tuple.
197 if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
198 chosen_reg, (int *)&reg, (sizeof (reg)/sizeof (int)))
199 != DDI_PROP_SUCCESS) {
200 cmn_err(CE_WARN, "%s%d: cannot create '%s' "
201 "property", DEVI(dip)->devi_name,
202 DEVI(dip)->devi_instance, chosen_reg);
205 * free the memory allocated by
206 * ddi_prop_lookup_int_array ().
208 ddi_prop_free((void *)reglist);
210 #endif
211 mr.map_op = DDI_MO_MAP_LOCKED;
212 mr.map_type = DDI_MT_RNUMBER;
213 mr.map_obj.rnumber = rnumber;
214 mr.map_prot = PROT_READ | PROT_WRITE;
215 mr.map_flags = DDI_MF_KERNEL_MAPPING;
216 mr.map_handlep = NULL;
217 mr.map_vers = DDI_MAP_VERSION;
220 * Call my parent to map in my regs.
223 return (ddi_map(dip, &mr, offset, len, kaddrp));
226 void
227 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
228 off_t len)
230 ddi_map_req_t mr;
232 mr.map_op = DDI_MO_UNMAP;
233 mr.map_type = DDI_MT_RNUMBER;
234 mr.map_flags = DDI_MF_KERNEL_MAPPING;
235 mr.map_prot = PROT_READ | PROT_WRITE; /* who cares? */
236 mr.map_obj.rnumber = rnumber;
237 mr.map_handlep = NULL;
238 mr.map_vers = DDI_MAP_VERSION;
241 * Call my parent to unmap my regs.
244 (void) ddi_map(dip, &mr, offset, len, kaddrp);
245 *kaddrp = (caddr_t)0;
246 #if defined(__x86)
247 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg);
248 #endif
252 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
253 off_t offset, off_t len, caddr_t *vaddrp)
255 return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp));
259 * nullbusmap: The/DDI default bus_map entry point for nexi
260 * not conforming to the reg/range paradigm (i.e. scsi, etc.)
261 * with no HAT/MMU layer to be programmed at this level.
263 * If the call is to map by rnumber, return an error,
264 * otherwise pass anything else up the tree to my parent.
267 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
268 off_t offset, off_t len, caddr_t *vaddrp)
270 _NOTE(ARGUNUSED(rdip))
271 if (mp->map_type == DDI_MT_RNUMBER)
272 return (DDI_ME_UNSUPPORTED);
274 return (ddi_map(dip, mp, offset, len, vaddrp));
278 * ddi_rnumber_to_regspec: Not for use by leaf drivers.
279 * Only for use by nexi using the reg/range paradigm.
281 struct regspec *
282 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber)
284 return (i_ddi_rnumber_to_regspec(dip, rnumber));
289 * Note that we allow the dip to be nil because we may be called
290 * prior even to the instantiation of the devinfo tree itself - all
291 * regular leaf and nexus drivers should always use a non-nil dip!
293 * We treat peek in a somewhat cavalier fashion .. assuming that we'll
294 * simply get a synchronous fault as soon as we touch a missing address.
296 * Poke is rather more carefully handled because we might poke to a write
297 * buffer, "succeed", then only find some time later that we got an
298 * asynchronous fault that indicated that the address we were writing to
299 * was not really backed by hardware.
302 static int
303 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size,
304 void *addr, void *value_p)
306 union {
307 uint64_t u64;
308 uint32_t u32;
309 uint16_t u16;
310 uint8_t u8;
311 } peekpoke_value;
313 peekpoke_ctlops_t peekpoke_args;
314 uint64_t dummy_result;
315 int rval;
317 /* Note: size is assumed to be correct; it is not checked. */
318 peekpoke_args.size = size;
319 peekpoke_args.dev_addr = (uintptr_t)addr;
320 peekpoke_args.handle = NULL;
321 peekpoke_args.repcount = 1;
322 peekpoke_args.flags = 0;
324 if (cmd == DDI_CTLOPS_POKE) {
325 switch (size) {
326 case sizeof (uint8_t):
327 peekpoke_value.u8 = *(uint8_t *)value_p;
328 break;
329 case sizeof (uint16_t):
330 peekpoke_value.u16 = *(uint16_t *)value_p;
331 break;
332 case sizeof (uint32_t):
333 peekpoke_value.u32 = *(uint32_t *)value_p;
334 break;
335 case sizeof (uint64_t):
336 peekpoke_value.u64 = *(uint64_t *)value_p;
337 break;
341 peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64;
343 if (devi != NULL)
344 rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args,
345 &dummy_result);
346 else
347 rval = peekpoke_mem(cmd, &peekpoke_args);
350 * A NULL value_p is permitted by ddi_peek(9F); discard the result.
352 if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) {
353 switch (size) {
354 case sizeof (uint8_t):
355 *(uint8_t *)value_p = peekpoke_value.u8;
356 break;
357 case sizeof (uint16_t):
358 *(uint16_t *)value_p = peekpoke_value.u16;
359 break;
360 case sizeof (uint32_t):
361 *(uint32_t *)value_p = peekpoke_value.u32;
362 break;
363 case sizeof (uint64_t):
364 *(uint64_t *)value_p = peekpoke_value.u64;
365 break;
369 return (rval);
373 * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this.
374 * they shouldn't be, but the 9f manpage kind of pseudo exposes it.
377 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p)
379 switch (size) {
380 case sizeof (uint8_t):
381 case sizeof (uint16_t):
382 case sizeof (uint32_t):
383 case sizeof (uint64_t):
384 break;
385 default:
386 return (DDI_FAILURE);
389 return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p));
393 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p)
395 switch (size) {
396 case sizeof (uint8_t):
397 case sizeof (uint16_t):
398 case sizeof (uint32_t):
399 case sizeof (uint64_t):
400 break;
401 default:
402 return (DDI_FAILURE);
405 return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p));
409 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p)
411 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
412 val_p));
416 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p)
418 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
419 val_p));
423 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p)
425 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
426 val_p));
430 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p)
432 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
433 val_p));
438 * We need to separate the old interfaces from the new ones and leave them
439 * in here for a while. Previous versions of the OS defined the new interfaces
440 * to the old interfaces. This way we can fix things up so that we can
441 * eventually remove these interfaces.
442 * e.g. A 3rd party module/driver using ddi_peek8 and built against S10
443 * or earlier will actually have a reference to ddi_peekc in the binary.
445 #ifdef _ILP32
447 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p)
449 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
450 val_p));
454 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p)
456 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
457 val_p));
461 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p)
463 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
464 val_p));
468 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p)
470 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
471 val_p));
473 #endif /* _ILP32 */
476 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val)
478 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
482 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val)
484 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
488 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val)
490 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
494 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val)
496 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
500 * We need to separate the old interfaces from the new ones and leave them
501 * in here for a while. Previous versions of the OS defined the new interfaces
502 * to the old interfaces. This way we can fix things up so that we can
503 * eventually remove these interfaces.
504 * e.g. A 3rd party module/driver using ddi_poke8 and built against S10
505 * or earlier will actually have a reference to ddi_pokec in the binary.
507 #ifdef _ILP32
509 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val)
511 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
515 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val)
517 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
521 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val)
523 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
527 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val)
529 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
531 #endif /* _ILP32 */
534 * ddi_peekpokeio() is used primarily by the mem drivers for moving
535 * data to and from uio structures via peek and poke. Note that we
536 * use "internal" routines ddi_peek and ddi_poke to make this go
537 * slightly faster, avoiding the call overhead ..
540 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
541 caddr_t addr, size_t len, uint_t xfersize)
543 int64_t ibuffer;
544 int8_t w8;
545 size_t sz;
546 int o;
548 if (xfersize > sizeof (long))
549 xfersize = sizeof (long);
551 while (len != 0) {
552 if ((len | (uintptr_t)addr) & 1) {
553 sz = sizeof (int8_t);
554 if (rw == UIO_WRITE) {
555 if ((o = uwritec(uio)) == -1)
556 return (DDI_FAILURE);
557 if (ddi_poke8(devi, (int8_t *)addr,
558 (int8_t)o) != DDI_SUCCESS)
559 return (DDI_FAILURE);
560 } else {
561 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
562 (int8_t *)addr, &w8) != DDI_SUCCESS)
563 return (DDI_FAILURE);
564 if (ureadc(w8, uio))
565 return (DDI_FAILURE);
567 } else {
568 switch (xfersize) {
569 case sizeof (int64_t):
570 if (((len | (uintptr_t)addr) &
571 (sizeof (int64_t) - 1)) == 0) {
572 sz = xfersize;
573 break;
575 /*FALLTHROUGH*/
576 case sizeof (int32_t):
577 if (((len | (uintptr_t)addr) &
578 (sizeof (int32_t) - 1)) == 0) {
579 sz = xfersize;
580 break;
582 /*FALLTHROUGH*/
583 default:
585 * This still assumes that we might have an
586 * I/O bus out there that permits 16-bit
587 * transfers (and that it would be upset by
588 * 32-bit transfers from such locations).
590 sz = sizeof (int16_t);
591 break;
594 if (rw == UIO_READ) {
595 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
596 addr, &ibuffer) != DDI_SUCCESS)
597 return (DDI_FAILURE);
600 if (uiomove(&ibuffer, sz, rw, uio))
601 return (DDI_FAILURE);
603 if (rw == UIO_WRITE) {
604 if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz,
605 addr, &ibuffer) != DDI_SUCCESS)
606 return (DDI_FAILURE);
609 addr += sz;
610 len -= sz;
612 return (DDI_SUCCESS);
616 * These routines are used by drivers that do layered ioctls
617 * On sparc, they're implemented in assembler to avoid spilling
618 * register windows in the common (copyin) case ..
620 #if !defined(__sparc)
622 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags)
624 if (flags & FKIOCTL)
625 return (kcopy(buf, kernbuf, size) ? -1 : 0);
626 return (copyin(buf, kernbuf, size));
630 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags)
632 if (flags & FKIOCTL)
633 return (kcopy(buf, kernbuf, size) ? -1 : 0);
634 return (copyout(buf, kernbuf, size));
636 #endif /* !__sparc */
639 * Conversions in nexus pagesize units. We don't duplicate the
640 * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI
641 * routines anyway.
643 unsigned long
644 ddi_btop(dev_info_t *dip, unsigned long bytes)
646 unsigned long pages;
648 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages);
649 return (pages);
652 unsigned long
653 ddi_btopr(dev_info_t *dip, unsigned long bytes)
655 unsigned long pages;
657 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages);
658 return (pages);
661 unsigned long
662 ddi_ptob(dev_info_t *dip, unsigned long pages)
664 unsigned long bytes;
666 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes);
667 return (bytes);
670 unsigned int
671 ddi_enter_critical(void)
673 return ((uint_t)spl7());
676 void
677 ddi_exit_critical(unsigned int spl)
679 splx((int)spl);
683 * Nexus ctlops punter
686 #if !defined(__sparc)
688 * Request bus_ctl parent to handle a bus_ctl request
690 * (The sparc version is in sparc_ddi.s)
693 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
695 int (*fp)();
697 if (!d || !r)
698 return (DDI_FAILURE);
700 if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL)
701 return (DDI_FAILURE);
703 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
704 return ((*fp)(d, r, op, a, v));
707 #endif
710 * DMA/DVMA setup
713 #if !defined(__sparc)
715 * Request bus_dma_ctl parent to fiddle with a dma request.
717 * (The sparc version is in sparc_subr.s)
720 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
721 ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
722 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
724 int (*fp)();
726 if (dip != ddi_root_node())
727 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl;
728 fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl;
729 return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags));
731 #endif
734 * For all DMA control functions, call the DMA control
735 * routine and return status.
737 * Just plain assume that the parent is to be called.
738 * If a nexus driver or a thread outside the framework
739 * of a nexus driver or a leaf driver calls these functions,
740 * it is up to them to deal with the fact that the parent's
741 * bus_dma_ctl function will be the first one called.
744 #define HD ((ddi_dma_impl_t *)h)->dmai_rdip
747 * This routine is left in place to satisfy link dependencies
748 * for any 3rd party nexus drivers that rely on it. It is never
749 * called, though.
751 /*ARGSUSED*/
753 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
754 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
756 return (DDI_FAILURE);
759 #if !defined(__sparc)
762 * The SPARC versions of these routines are done in assembler to
763 * save register windows, so they're in sparc_subr.s.
767 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
768 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
770 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *,
771 int (*)(caddr_t), caddr_t, ddi_dma_handle_t *);
773 if (dip != ddi_root_node())
774 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
776 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_allochdl;
777 return ((*funcp)(dip, rdip, attr, waitfp, arg, handlep));
781 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep)
783 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
785 if (dip != ddi_root_node())
786 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
788 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_freehdl;
789 return ((*funcp)(dip, rdip, handlep));
793 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
794 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
795 ddi_dma_cookie_t *cp, uint_t *ccountp)
797 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
798 struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *);
800 if (dip != ddi_root_node())
801 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
803 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_bindhdl;
804 return ((*funcp)(dip, rdip, handle, dmareq, cp, ccountp));
808 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
809 ddi_dma_handle_t handle)
811 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
813 if (dip != ddi_root_node())
814 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
816 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
817 return ((*funcp)(dip, rdip, handle));
822 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
823 ddi_dma_handle_t handle, off_t off, size_t len,
824 uint_t cache_flags)
826 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
827 off_t, size_t, uint_t);
829 if (dip != ddi_root_node())
830 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
832 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
833 return ((*funcp)(dip, rdip, handle, off, len, cache_flags));
837 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
838 ddi_dma_handle_t handle, uint_t win, off_t *offp,
839 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
841 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
842 uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *);
844 if (dip != ddi_root_node())
845 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win;
847 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_win;
848 return ((*funcp)(dip, rdip, handle, win, offp, lenp,
849 cookiep, ccountp));
853 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom)
855 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
856 dev_info_t *dip, *rdip;
857 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t,
858 size_t, uint_t);
861 * the DMA nexus driver will set DMP_NOSYNC if the
862 * platform does not require any sync operation. For
863 * example if the memory is uncached or consistent
864 * and without any I/O write buffers involved.
866 if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC)
867 return (DDI_SUCCESS);
869 dip = rdip = hp->dmai_rdip;
870 if (dip != ddi_root_node())
871 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
872 funcp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_flush;
873 return ((*funcp)(dip, rdip, h, o, l, whom));
877 ddi_dma_unbind_handle(ddi_dma_handle_t h)
879 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
880 dev_info_t *dip, *rdip;
881 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
883 dip = rdip = hp->dmai_rdip;
884 if (dip != ddi_root_node())
885 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
886 funcp = DEVI(rdip)->devi_bus_dma_unbindfunc;
887 return ((*funcp)(dip, rdip, h));
890 #endif /* !__sparc */
893 * DMA burst sizes, and transfer minimums
897 ddi_dma_burstsizes(ddi_dma_handle_t handle)
899 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
901 if (!dimp)
902 return (0);
903 else
904 return (dimp->dmai_burstsizes);
908 * Given two DMA attribute structures, apply the attributes
909 * of one to the other, following the rules of attributes
910 * and the wishes of the caller.
912 * The rules of DMA attribute structures are that you cannot
913 * make things *less* restrictive as you apply one set
914 * of attributes to another.
917 void
918 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod)
920 attr->dma_attr_addr_lo =
921 MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo);
922 attr->dma_attr_addr_hi =
923 MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi);
924 attr->dma_attr_count_max =
925 MIN(attr->dma_attr_count_max, mod->dma_attr_count_max);
926 attr->dma_attr_align =
927 MAX(attr->dma_attr_align, mod->dma_attr_align);
928 attr->dma_attr_burstsizes =
929 (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes);
930 attr->dma_attr_minxfer =
931 maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer);
932 attr->dma_attr_maxxfer =
933 MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer);
934 attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg);
935 attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen,
936 (uint_t)mod->dma_attr_sgllen);
937 attr->dma_attr_granular =
938 MAX(attr->dma_attr_granular, mod->dma_attr_granular);
942 * mmap/segmap interface:
946 * ddi_segmap: setup the default segment driver. Calls the drivers
947 * XXmmap routine to validate the range to be mapped.
948 * Return ENXIO of the range is not valid. Create
949 * a seg_dev segment that contains all of the
950 * necessary information and will reference the
951 * default segment driver routines. It returns zero
952 * on success or non-zero on failure.
955 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
956 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)
958 extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *,
959 off_t, uint_t, uint_t, uint_t, struct cred *);
961 return (spec_segmap(dev, offset, asp, addrp, len,
962 prot, maxprot, flags, credp));
966 * ddi_map_fault: Resolve mappings at fault time. Used by segment
967 * drivers. Allows each successive parent to resolve
968 * address translations and add its mappings to the
969 * mapping list supplied in the page structure. It
970 * returns zero on success or non-zero on failure.
974 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg,
975 caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock)
977 return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock));
981 * ddi_device_mapping_check: Called from ddi_segmap_setup.
982 * Invokes platform specific DDI to determine whether attributes specified
983 * in attr(9s) are valid for the region of memory that will be made
984 * available for direct access to user process via the mmap(2) system call.
987 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
988 uint_t rnumber, uint_t *hat_flags)
990 ddi_acc_handle_t handle;
991 ddi_map_req_t mr;
992 ddi_acc_hdl_t *hp;
993 int result;
994 dev_info_t *dip;
997 * we use e_ddi_hold_devi_by_dev to search for the devi. We
998 * release it immediately since it should already be held by
999 * a devfs vnode.
1001 if ((dip =
1002 e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL)
1003 return (-1);
1004 ddi_release_devi(dip); /* for e_ddi_hold_devi_by_dev() */
1007 * Allocate and initialize the common elements of data
1008 * access handle.
1010 handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
1011 if (handle == NULL)
1012 return (-1);
1014 hp = impl_acc_hdl_get(handle);
1015 hp->ah_vers = VERS_ACCHDL;
1016 hp->ah_dip = dip;
1017 hp->ah_rnumber = rnumber;
1018 hp->ah_offset = 0;
1019 hp->ah_len = 0;
1020 hp->ah_acc = *accattrp;
1023 * Set up the mapping request and call to parent.
1025 mr.map_op = DDI_MO_MAP_HANDLE;
1026 mr.map_type = DDI_MT_RNUMBER;
1027 mr.map_obj.rnumber = rnumber;
1028 mr.map_prot = PROT_READ | PROT_WRITE;
1029 mr.map_flags = DDI_MF_KERNEL_MAPPING;
1030 mr.map_handlep = hp;
1031 mr.map_vers = DDI_MAP_VERSION;
1032 result = ddi_map(dip, &mr, 0, 0, NULL);
1035 * Region must be mappable, pick up flags from the framework.
1037 *hat_flags = hp->ah_hat_flags;
1039 impl_acc_hdl_free(handle);
1042 * check for end result.
1044 if (result != DDI_SUCCESS)
1045 return (-1);
1046 return (0);
1051 * Property functions: See also, ddipropdefs.h.
1053 * These functions are the framework for the property functions,
1054 * i.e. they support software defined properties. All implementation
1055 * specific property handling (i.e.: self-identifying devices and
1056 * PROM defined properties are handled in the implementation specific
1057 * functions (defined in ddi_implfuncs.h).
1061 * nopropop: Shouldn't be called, right?
1064 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1065 char *name, caddr_t valuep, int *lengthp)
1067 _NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp))
1068 return (DDI_PROP_NOT_FOUND);
1071 #ifdef DDI_PROP_DEBUG
1072 int ddi_prop_debug_flag = 0;
1075 ddi_prop_debug(int enable)
1077 int prev = ddi_prop_debug_flag;
1079 if ((enable != 0) || (prev != 0))
1080 printf("ddi_prop_debug: debugging %s\n",
1081 enable ? "enabled" : "disabled");
1082 ddi_prop_debug_flag = enable;
1083 return (prev);
1086 #endif /* DDI_PROP_DEBUG */
1089 * Search a property list for a match, if found return pointer
1090 * to matching prop struct, else return NULL.
1093 ddi_prop_t *
1094 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head)
1096 ddi_prop_t *propp;
1099 * find the property in child's devinfo:
1100 * Search order defined by this search function is first matching
1101 * property with input dev == DDI_DEV_T_ANY matching any dev or
1102 * dev == propp->prop_dev, name == propp->name, and the correct
1103 * data type as specified in the flags. If a DDI_DEV_T_NONE dev
1104 * value made it this far then it implies a DDI_DEV_T_ANY search.
1106 if (dev == DDI_DEV_T_NONE)
1107 dev = DDI_DEV_T_ANY;
1109 for (propp = *list_head; propp != NULL; propp = propp->prop_next) {
1111 if (!DDI_STRSAME(propp->prop_name, name))
1112 continue;
1114 if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev))
1115 continue;
1117 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1118 continue;
1120 return (propp);
1123 return ((ddi_prop_t *)0);
1127 * Search for property within devnames structures
1129 ddi_prop_t *
1130 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags)
1132 major_t major;
1133 struct devnames *dnp;
1134 ddi_prop_t *propp;
1137 * Valid dev_t value is needed to index into the
1138 * correct devnames entry, therefore a dev_t
1139 * value of DDI_DEV_T_ANY is not appropriate.
1141 ASSERT(dev != DDI_DEV_T_ANY);
1142 if (dev == DDI_DEV_T_ANY) {
1143 return ((ddi_prop_t *)0);
1146 major = getmajor(dev);
1147 dnp = &(devnamesp[major]);
1149 if (dnp->dn_global_prop_ptr == NULL)
1150 return ((ddi_prop_t *)0);
1152 LOCK_DEV_OPS(&dnp->dn_lock);
1154 for (propp = dnp->dn_global_prop_ptr->prop_list;
1155 propp != NULL;
1156 propp = (ddi_prop_t *)propp->prop_next) {
1158 if (!DDI_STRSAME(propp->prop_name, name))
1159 continue;
1161 if ((!(flags & DDI_PROP_ROOTNEX_GLOBAL)) &&
1162 (!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev))
1163 continue;
1165 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1166 continue;
1168 /* Property found, return it */
1169 UNLOCK_DEV_OPS(&dnp->dn_lock);
1170 return (propp);
1173 UNLOCK_DEV_OPS(&dnp->dn_lock);
1174 return ((ddi_prop_t *)0);
1177 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>";
1180 * ddi_prop_search_global:
1181 * Search the global property list within devnames
1182 * for the named property. Return the encoded value.
1184 static int
1185 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name,
1186 void *valuep, uint_t *lengthp)
1188 ddi_prop_t *propp;
1189 caddr_t buffer;
1191 propp = i_ddi_search_global_prop(dev, name, flags);
1193 /* Property NOT found, bail */
1194 if (propp == (ddi_prop_t *)0)
1195 return (DDI_PROP_NOT_FOUND);
1197 if (propp->prop_flags & DDI_PROP_UNDEF_IT)
1198 return (DDI_PROP_UNDEFINED);
1200 if ((buffer = kmem_alloc(propp->prop_len,
1201 (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) {
1202 cmn_err(CE_CONT, prop_no_mem_msg, name);
1203 return (DDI_PROP_NO_MEMORY);
1207 * Return the encoded data
1209 *(caddr_t *)valuep = buffer;
1210 *lengthp = propp->prop_len;
1211 bcopy(propp->prop_val, buffer, propp->prop_len);
1213 return (DDI_PROP_SUCCESS);
1217 * ddi_prop_search_common: Lookup and return the encoded value
1220 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1221 uint_t flags, char *name, void *valuep, uint_t *lengthp)
1223 ddi_prop_t *propp;
1224 int i;
1225 caddr_t buffer;
1226 caddr_t prealloc = NULL;
1227 int plength = 0;
1228 dev_info_t *pdip;
1229 int (*bop)();
1231 /*CONSTANTCONDITION*/
1232 while (1) {
1234 mutex_enter(&(DEVI(dip)->devi_lock));
1238 * find the property in child's devinfo:
1239 * Search order is:
1240 * 1. driver defined properties
1241 * 2. system defined properties
1242 * 3. driver global properties
1243 * 4. boot defined properties
1246 propp = i_ddi_prop_search(dev, name, flags,
1247 &(DEVI(dip)->devi_drv_prop_ptr));
1248 if (propp == NULL) {
1249 propp = i_ddi_prop_search(dev, name, flags,
1250 &(DEVI(dip)->devi_sys_prop_ptr));
1252 if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) {
1253 propp = i_ddi_prop_search(dev, name, flags,
1254 &DEVI(dip)->devi_global_prop_list->prop_list);
1257 if (propp == NULL) {
1258 propp = i_ddi_prop_search(dev, name, flags,
1259 &(DEVI(dip)->devi_hw_prop_ptr));
1263 * Software property found?
1265 if (propp != (ddi_prop_t *)0) {
1268 * If explicit undefine, return now.
1270 if (propp->prop_flags & DDI_PROP_UNDEF_IT) {
1271 mutex_exit(&(DEVI(dip)->devi_lock));
1272 if (prealloc)
1273 kmem_free(prealloc, plength);
1274 return (DDI_PROP_UNDEFINED);
1278 * If we only want to know if it exists, return now
1280 if (prop_op == PROP_EXISTS) {
1281 mutex_exit(&(DEVI(dip)->devi_lock));
1282 ASSERT(prealloc == NULL);
1283 return (DDI_PROP_SUCCESS);
1287 * If length only request or prop length == 0,
1288 * service request and return now.
1290 if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) {
1291 *lengthp = propp->prop_len;
1294 * if prop_op is PROP_LEN_AND_VAL_ALLOC
1295 * that means prop_len is 0, so set valuep
1296 * also to NULL
1298 if (prop_op == PROP_LEN_AND_VAL_ALLOC)
1299 *(caddr_t *)valuep = NULL;
1301 mutex_exit(&(DEVI(dip)->devi_lock));
1302 if (prealloc)
1303 kmem_free(prealloc, plength);
1304 return (DDI_PROP_SUCCESS);
1308 * If LEN_AND_VAL_ALLOC and the request can sleep,
1309 * drop the mutex, allocate the buffer, and go
1310 * through the loop again. If we already allocated
1311 * the buffer, and the size of the property changed,
1312 * keep trying...
1314 if ((prop_op == PROP_LEN_AND_VAL_ALLOC) &&
1315 (flags & DDI_PROP_CANSLEEP)) {
1316 if (prealloc && (propp->prop_len != plength)) {
1317 kmem_free(prealloc, plength);
1318 prealloc = NULL;
1320 if (prealloc == NULL) {
1321 plength = propp->prop_len;
1322 mutex_exit(&(DEVI(dip)->devi_lock));
1323 prealloc = kmem_alloc(plength,
1324 KM_SLEEP);
1325 continue;
1330 * Allocate buffer, if required. Either way,
1331 * set `buffer' variable.
1333 i = *lengthp; /* Get callers length */
1334 *lengthp = propp->prop_len; /* Set callers length */
1336 switch (prop_op) {
1338 case PROP_LEN_AND_VAL_ALLOC:
1340 if (prealloc == NULL) {
1341 buffer = kmem_alloc(propp->prop_len,
1342 KM_NOSLEEP);
1343 } else {
1344 buffer = prealloc;
1347 if (buffer == NULL) {
1348 mutex_exit(&(DEVI(dip)->devi_lock));
1349 cmn_err(CE_CONT, prop_no_mem_msg, name);
1350 return (DDI_PROP_NO_MEMORY);
1352 /* Set callers buf ptr */
1353 *(caddr_t *)valuep = buffer;
1354 break;
1356 case PROP_LEN_AND_VAL_BUF:
1358 if (propp->prop_len > (i)) {
1359 mutex_exit(&(DEVI(dip)->devi_lock));
1360 return (DDI_PROP_BUF_TOO_SMALL);
1363 buffer = valuep; /* Get callers buf ptr */
1364 break;
1366 default:
1367 break;
1371 * Do the copy.
1373 bcopy(propp->prop_val, buffer, propp->prop_len);
1374 mutex_exit(&(DEVI(dip)->devi_lock));
1375 return (DDI_PROP_SUCCESS);
1378 mutex_exit(&(DEVI(dip)->devi_lock));
1379 if (prealloc)
1380 kmem_free(prealloc, plength);
1381 prealloc = NULL;
1384 * Prop not found, call parent bus_ops to deal with possible
1385 * h/w layer (possible PROM defined props, etc.) and to
1386 * possibly ascend the hierarchy, if allowed by flags.
1388 pdip = (dev_info_t *)DEVI(dip)->devi_parent;
1391 * One last call for the root driver PROM props?
1393 if (dip == ddi_root_node()) {
1394 return (ddi_bus_prop_op(dev, dip, dip, prop_op,
1395 flags, name, valuep, (int *)lengthp));
1399 * We may have been called to check for properties
1400 * within a single devinfo node that has no parent -
1401 * see make_prop()
1403 if (pdip == NULL) {
1404 ASSERT((flags &
1405 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) ==
1406 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM));
1407 return (DDI_PROP_NOT_FOUND);
1411 * Instead of recursing, we do iterative calls up the tree.
1412 * As a bit of optimization, skip the bus_op level if the
1413 * node is a s/w node and if the parent's bus_prop_op function
1414 * is `ddi_bus_prop_op', because we know that in this case,
1415 * this function does nothing.
1417 * 4225415: If the parent isn't attached, or the child
1418 * hasn't been named by the parent yet, use the default
1419 * ddi_bus_prop_op as a proxy for the parent. This
1420 * allows property lookups in any child/parent state to
1421 * include 'prom' and inherited properties, even when
1422 * there are no drivers attached to the child or parent.
1425 bop = ddi_bus_prop_op;
1426 if (i_ddi_devi_attached(pdip) &&
1427 (i_ddi_node_state(dip) >= DS_INITIALIZED))
1428 bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op;
1430 i = DDI_PROP_NOT_FOUND;
1432 if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) {
1433 i = (*bop)(dev, pdip, dip, prop_op,
1434 flags | DDI_PROP_DONTPASS,
1435 name, valuep, lengthp);
1438 if ((flags & DDI_PROP_DONTPASS) ||
1439 (i != DDI_PROP_NOT_FOUND))
1440 return (i);
1442 dip = pdip;
1444 /*NOTREACHED*/
1449 * ddi_prop_op: The basic property operator for drivers.
1451 * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
1453 * prop_op valuep
1454 * ------ ------
1456 * PROP_LEN <unused>
1458 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer
1460 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to
1461 * address of allocated buffer, if successful)
1464 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1465 char *name, caddr_t valuep, int *lengthp)
1467 int i;
1469 ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0);
1472 * If this was originally an LDI prop lookup then we bail here.
1473 * The reason is that the LDI property lookup interfaces first call
1474 * a drivers prop_op() entry point to allow it to override
1475 * properties. But if we've made it here, then the driver hasn't
1476 * overriden any properties. We don't want to continue with the
1477 * property search here because we don't have any type inforamtion.
1478 * When we return failure, the LDI interfaces will then proceed to
1479 * call the typed property interfaces to look up the property.
1481 if (mod_flags & DDI_PROP_DYNAMIC)
1482 return (DDI_PROP_NOT_FOUND);
1485 * check for pre-typed property consumer asking for typed property:
1486 * see e_ddi_getprop_int64.
1488 if (mod_flags & DDI_PROP_CONSUMER_TYPED)
1489 mod_flags |= DDI_PROP_TYPE_INT64;
1490 mod_flags |= DDI_PROP_TYPE_ANY;
1492 i = ddi_prop_search_common(dev, dip, prop_op,
1493 mod_flags, name, valuep, (uint_t *)lengthp);
1494 if (i == DDI_PROP_FOUND_1275)
1495 return (DDI_PROP_SUCCESS);
1496 return (i);
1500 * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that
1501 * maintain size in number of blksize blocks. Provides a dynamic property
1502 * implementation for size oriented properties based on nblocks64 and blksize
1503 * values passed in by the driver. Fallback to ddi_prop_op if the nblocks64
1504 * is too large. This interface should not be used with a nblocks64 that
1505 * represents the driver's idea of how to represent unknown, if nblocks is
1506 * unknown use ddi_prop_op.
1509 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1510 int mod_flags, char *name, caddr_t valuep, int *lengthp,
1511 uint64_t nblocks64, uint_t blksize)
1513 uint64_t size64;
1514 int blkshift;
1516 /* convert block size to shift value */
1517 ASSERT(BIT_ONLYONESET(blksize));
1518 blkshift = highbit(blksize) - 1;
1521 * There is no point in supporting nblocks64 values that don't have
1522 * an accurate uint64_t byte count representation.
1524 if (nblocks64 >= (UINT64_MAX >> blkshift))
1525 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1526 name, valuep, lengthp));
1528 size64 = nblocks64 << blkshift;
1529 return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags,
1530 name, valuep, lengthp, size64, blksize));
1534 * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize.
1537 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1538 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64)
1540 return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op,
1541 mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE));
1545 * ddi_prop_op_size_blksize: The basic property operator for block drivers that
1546 * maintain size in bytes. Provides a of dynamic property implementation for
1547 * size oriented properties based on size64 value and blksize passed in by the
1548 * driver. Fallback to ddi_prop_op if the size64 is too large. This interface
1549 * should not be used with a size64 that represents the driver's idea of how
1550 * to represent unknown, if size is unknown use ddi_prop_op.
1552 * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned
1553 * integers. While the most likely interface to request them ([bc]devi_size)
1554 * is declared int (signed) there is no enforcement of this, which means we
1555 * can't enforce limitations here without risking regression.
1558 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1559 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64,
1560 uint_t blksize)
1562 uint64_t nblocks64;
1563 int callers_length;
1564 caddr_t buffer;
1565 int blkshift;
1568 * This is a kludge to support capture of size(9P) pure dynamic
1569 * properties in snapshots for non-cmlb code (without exposing
1570 * i_ddi_prop_dyn changes). When everyone uses cmlb, this code
1571 * should be removed.
1573 if (i_ddi_prop_dyn_driver_get(dip) == NULL) {
1574 static i_ddi_prop_dyn_t prop_dyn_size[] = {
1575 {"Size", DDI_PROP_TYPE_INT64, S_IFCHR},
1576 {"Nblocks", DDI_PROP_TYPE_INT64, S_IFBLK},
1577 {NULL}
1579 i_ddi_prop_dyn_driver_set(dip, prop_dyn_size);
1582 /* convert block size to shift value */
1583 ASSERT(BIT_ONLYONESET(blksize));
1584 blkshift = highbit(blksize) - 1;
1586 /* compute DEV_BSIZE nblocks value */
1587 nblocks64 = size64 >> blkshift;
1589 /* get callers length, establish length of our dynamic properties */
1590 callers_length = *lengthp;
1592 if (strcmp(name, "Nblocks") == 0)
1593 *lengthp = sizeof (uint64_t);
1594 else if (strcmp(name, "Size") == 0)
1595 *lengthp = sizeof (uint64_t);
1596 else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX))
1597 *lengthp = sizeof (uint32_t);
1598 else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX))
1599 *lengthp = sizeof (uint32_t);
1600 else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX))
1601 *lengthp = sizeof (uint32_t);
1602 else {
1603 /* fallback to ddi_prop_op */
1604 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1605 name, valuep, lengthp));
1608 /* service request for the length of the property */
1609 if (prop_op == PROP_LEN)
1610 return (DDI_PROP_SUCCESS);
1612 switch (prop_op) {
1613 case PROP_LEN_AND_VAL_ALLOC:
1614 if ((buffer = kmem_alloc(*lengthp,
1615 (mod_flags & DDI_PROP_CANSLEEP) ?
1616 KM_SLEEP : KM_NOSLEEP)) == NULL)
1617 return (DDI_PROP_NO_MEMORY);
1619 *(caddr_t *)valuep = buffer; /* set callers buf ptr */
1620 break;
1622 case PROP_LEN_AND_VAL_BUF:
1623 /* the length of the property and the request must match */
1624 if (callers_length != *lengthp)
1625 return (DDI_PROP_INVAL_ARG);
1627 buffer = valuep; /* get callers buf ptr */
1628 break;
1630 default:
1631 return (DDI_PROP_INVAL_ARG);
1634 /* transfer the value into the buffer */
1635 if (strcmp(name, "Nblocks") == 0)
1636 *((uint64_t *)buffer) = nblocks64;
1637 else if (strcmp(name, "Size") == 0)
1638 *((uint64_t *)buffer) = size64;
1639 else if (strcmp(name, "nblocks") == 0)
1640 *((uint32_t *)buffer) = (uint32_t)nblocks64;
1641 else if (strcmp(name, "size") == 0)
1642 *((uint32_t *)buffer) = (uint32_t)size64;
1643 else if (strcmp(name, "blksize") == 0)
1644 *((uint32_t *)buffer) = (uint32_t)blksize;
1645 return (DDI_PROP_SUCCESS);
1649 * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size.
1652 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1653 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64)
1655 return (ddi_prop_op_size_blksize(dev, dip, prop_op,
1656 mod_flags, name, valuep, lengthp, size64, DEV_BSIZE));
1660 * Variable length props...
1664 * ddi_getlongprop: Get variable length property len+val into a buffer
1665 * allocated by property provider via kmem_alloc. Requester
1666 * is responsible for freeing returned property via kmem_free.
1668 * Arguments:
1670 * dev_t: Input: dev_t of property.
1671 * dip: Input: dev_info_t pointer of child.
1672 * flags: Input: Possible flag modifiers are:
1673 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found.
1674 * DDI_PROP_CANSLEEP: Memory allocation may sleep.
1675 * name: Input: name of property.
1676 * valuep: Output: Addr of callers buffer pointer.
1677 * lengthp:Output: *lengthp will contain prop length on exit.
1679 * Possible Returns:
1681 * DDI_PROP_SUCCESS: Prop found and returned.
1682 * DDI_PROP_NOT_FOUND: Prop not found
1683 * DDI_PROP_UNDEFINED: Prop explicitly undefined.
1684 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem.
1688 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
1689 char *name, caddr_t valuep, int *lengthp)
1691 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC,
1692 flags, name, valuep, lengthp));
1697 * ddi_getlongprop_buf: Get long prop into pre-allocated callers
1698 * buffer. (no memory allocation by provider).
1700 * dev_t: Input: dev_t of property.
1701 * dip: Input: dev_info_t pointer of child.
1702 * flags: Input: DDI_PROP_DONTPASS or NULL
1703 * name: Input: name of property
1704 * valuep: Input: ptr to callers buffer.
1705 * lengthp:I/O: ptr to length of callers buffer on entry,
1706 * actual length of property on exit.
1708 * Possible returns:
1710 * DDI_PROP_SUCCESS Prop found and returned
1711 * DDI_PROP_NOT_FOUND Prop not found
1712 * DDI_PROP_UNDEFINED Prop explicitly undefined.
1713 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small,
1714 * no value returned, but actual prop
1715 * length returned in *lengthp
1720 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
1721 char *name, caddr_t valuep, int *lengthp)
1723 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1724 flags, name, valuep, lengthp));
1728 * Integer/boolean sized props.
1730 * Call is value only... returns found boolean or int sized prop value or
1731 * defvalue if prop not found or is wrong length or is explicitly undefined.
1732 * Only flag is DDI_PROP_DONTPASS...
1734 * By convention, this interface returns boolean (0) sized properties
1735 * as value (int)1.
1737 * This never returns an error, if property not found or specifically
1738 * undefined, the input `defvalue' is returned.
1742 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue)
1744 int propvalue = defvalue;
1745 int proplength = sizeof (int);
1746 int error;
1748 error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
1749 flags, name, (caddr_t)&propvalue, &proplength);
1751 if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
1752 propvalue = 1;
1754 return (propvalue);
1758 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
1759 * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
1763 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp)
1765 return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp));
1769 * Allocate a struct prop_driver_data, along with 'size' bytes
1770 * for decoded property data. This structure is freed by
1771 * calling ddi_prop_free(9F).
1773 static void *
1774 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *))
1776 struct prop_driver_data *pdd;
1779 * Allocate a structure with enough memory to store the decoded data.
1781 pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP);
1782 pdd->pdd_size = (sizeof (struct prop_driver_data) + size);
1783 pdd->pdd_prop_free = prop_free;
1786 * Return a pointer to the location to put the decoded data.
1788 return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data)));
1792 * Allocated the memory needed to store the encoded data in the property
1793 * handle.
1795 static int
1796 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size)
1799 * If size is zero, then set data to NULL and size to 0. This
1800 * is a boolean property.
1802 if (size == 0) {
1803 ph->ph_size = 0;
1804 ph->ph_data = NULL;
1805 ph->ph_cur_pos = NULL;
1806 ph->ph_save_pos = NULL;
1807 } else {
1808 if (ph->ph_flags == DDI_PROP_DONTSLEEP) {
1809 ph->ph_data = kmem_zalloc(size, KM_NOSLEEP);
1810 if (ph->ph_data == NULL)
1811 return (DDI_PROP_NO_MEMORY);
1812 } else
1813 ph->ph_data = kmem_zalloc(size, KM_SLEEP);
1814 ph->ph_size = size;
1815 ph->ph_cur_pos = ph->ph_data;
1816 ph->ph_save_pos = ph->ph_data;
1818 return (DDI_PROP_SUCCESS);
1822 * Free the space allocated by the lookup routines. Each lookup routine
1823 * returns a pointer to the decoded data to the driver. The driver then
1824 * passes this pointer back to us. This data actually lives in a struct
1825 * prop_driver_data. We use negative indexing to find the beginning of
1826 * the structure and then free the entire structure using the size and
1827 * the free routine stored in the structure.
1829 void
1830 ddi_prop_free(void *datap)
1832 struct prop_driver_data *pdd;
1835 * Get the structure
1837 pdd = (struct prop_driver_data *)
1838 ((caddr_t)datap - sizeof (struct prop_driver_data));
1840 * Call the free routine to free it
1842 (*pdd->pdd_prop_free)(pdd);
1846 * Free the data associated with an array of ints,
1847 * allocated with ddi_prop_decode_alloc().
1849 static void
1850 ddi_prop_free_ints(struct prop_driver_data *pdd)
1852 kmem_free(pdd, pdd->pdd_size);
1856 * Free a single string property or a single string contained within
1857 * the argv style return value of an array of strings.
1859 static void
1860 ddi_prop_free_string(struct prop_driver_data *pdd)
1862 kmem_free(pdd, pdd->pdd_size);
1867 * Free an array of strings.
1869 static void
1870 ddi_prop_free_strings(struct prop_driver_data *pdd)
1872 kmem_free(pdd, pdd->pdd_size);
1876 * Free the data associated with an array of bytes.
1878 static void
1879 ddi_prop_free_bytes(struct prop_driver_data *pdd)
1881 kmem_free(pdd, pdd->pdd_size);
1885 * Reset the current location pointer in the property handle to the
1886 * beginning of the data.
1888 void
1889 ddi_prop_reset_pos(prop_handle_t *ph)
1891 ph->ph_cur_pos = ph->ph_data;
1892 ph->ph_save_pos = ph->ph_data;
1896 * Restore the current location pointer in the property handle to the
1897 * saved position.
1899 void
1900 ddi_prop_save_pos(prop_handle_t *ph)
1902 ph->ph_save_pos = ph->ph_cur_pos;
1906 * Save the location that the current location pointer is pointing to..
1908 void
1909 ddi_prop_restore_pos(prop_handle_t *ph)
1911 ph->ph_cur_pos = ph->ph_save_pos;
1915 * Property encode/decode functions
1919 * Decode a single integer property
1921 static int
1922 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements)
1924 int i;
1925 int tmp;
1928 * If there is nothing to decode return an error
1930 if (ph->ph_size == 0)
1931 return (DDI_PROP_END_OF_DATA);
1934 * Decode the property as a single integer and return it
1935 * in data if we were able to decode it.
1937 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp);
1938 if (i < DDI_PROP_RESULT_OK) {
1939 switch (i) {
1940 case DDI_PROP_RESULT_EOF:
1941 return (DDI_PROP_END_OF_DATA);
1943 case DDI_PROP_RESULT_ERROR:
1944 return (DDI_PROP_CANNOT_DECODE);
1948 *(int *)data = tmp;
1949 *nelements = 1;
1950 return (DDI_PROP_SUCCESS);
1954 * Decode a single 64 bit integer property
1956 static int
1957 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements)
1959 int i;
1960 int64_t tmp;
1963 * If there is nothing to decode return an error
1965 if (ph->ph_size == 0)
1966 return (DDI_PROP_END_OF_DATA);
1969 * Decode the property as a single integer and return it
1970 * in data if we were able to decode it.
1972 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp);
1973 if (i < DDI_PROP_RESULT_OK) {
1974 switch (i) {
1975 case DDI_PROP_RESULT_EOF:
1976 return (DDI_PROP_END_OF_DATA);
1978 case DDI_PROP_RESULT_ERROR:
1979 return (DDI_PROP_CANNOT_DECODE);
1983 *(int64_t *)data = tmp;
1984 *nelements = 1;
1985 return (DDI_PROP_SUCCESS);
1989 * Decode an array of integers property
1991 static int
1992 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements)
1994 int i;
1995 int cnt = 0;
1996 int *tmp;
1997 int *intp;
1998 int n;
2001 * Figure out how many array elements there are by going through the
2002 * data without decoding it first and counting.
2004 for (;;) {
2005 i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL);
2006 if (i < 0)
2007 break;
2008 cnt++;
2012 * If there are no elements return an error
2014 if (cnt == 0)
2015 return (DDI_PROP_END_OF_DATA);
2018 * If we cannot skip through the data, we cannot decode it
2020 if (i == DDI_PROP_RESULT_ERROR)
2021 return (DDI_PROP_CANNOT_DECODE);
2024 * Reset the data pointer to the beginning of the encoded data
2026 ddi_prop_reset_pos(ph);
2029 * Allocated memory to store the decoded value in.
2031 intp = ddi_prop_decode_alloc((cnt * sizeof (int)),
2032 ddi_prop_free_ints);
2035 * Decode each element and place it in the space we just allocated
2037 tmp = intp;
2038 for (n = 0; n < cnt; n++, tmp++) {
2039 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp);
2040 if (i < DDI_PROP_RESULT_OK) {
2042 * Free the space we just allocated
2043 * and return an error.
2045 ddi_prop_free(intp);
2046 switch (i) {
2047 case DDI_PROP_RESULT_EOF:
2048 return (DDI_PROP_END_OF_DATA);
2050 case DDI_PROP_RESULT_ERROR:
2051 return (DDI_PROP_CANNOT_DECODE);
2056 *nelements = cnt;
2057 *(int **)data = intp;
2059 return (DDI_PROP_SUCCESS);
2063 * Decode a 64 bit integer array property
2065 static int
2066 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements)
2068 int i;
2069 int n;
2070 int cnt = 0;
2071 int64_t *tmp;
2072 int64_t *intp;
2075 * Count the number of array elements by going
2076 * through the data without decoding it.
2078 for (;;) {
2079 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL);
2080 if (i < 0)
2081 break;
2082 cnt++;
2086 * If there are no elements return an error
2088 if (cnt == 0)
2089 return (DDI_PROP_END_OF_DATA);
2092 * If we cannot skip through the data, we cannot decode it
2094 if (i == DDI_PROP_RESULT_ERROR)
2095 return (DDI_PROP_CANNOT_DECODE);
2098 * Reset the data pointer to the beginning of the encoded data
2100 ddi_prop_reset_pos(ph);
2103 * Allocate memory to store the decoded value.
2105 intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)),
2106 ddi_prop_free_ints);
2109 * Decode each element and place it in the space allocated
2111 tmp = intp;
2112 for (n = 0; n < cnt; n++, tmp++) {
2113 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp);
2114 if (i < DDI_PROP_RESULT_OK) {
2116 * Free the space we just allocated
2117 * and return an error.
2119 ddi_prop_free(intp);
2120 switch (i) {
2121 case DDI_PROP_RESULT_EOF:
2122 return (DDI_PROP_END_OF_DATA);
2124 case DDI_PROP_RESULT_ERROR:
2125 return (DDI_PROP_CANNOT_DECODE);
2130 *nelements = cnt;
2131 *(int64_t **)data = intp;
2133 return (DDI_PROP_SUCCESS);
2137 * Encode an array of integers property (Can be one element)
2140 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements)
2142 int i;
2143 int *tmp;
2144 int cnt;
2145 int size;
2148 * If there is no data, we cannot do anything
2150 if (nelements == 0)
2151 return (DDI_PROP_CANNOT_ENCODE);
2154 * Get the size of an encoded int.
2156 size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2158 if (size < DDI_PROP_RESULT_OK) {
2159 switch (size) {
2160 case DDI_PROP_RESULT_EOF:
2161 return (DDI_PROP_END_OF_DATA);
2163 case DDI_PROP_RESULT_ERROR:
2164 return (DDI_PROP_CANNOT_ENCODE);
2169 * Allocate space in the handle to store the encoded int.
2171 if (ddi_prop_encode_alloc(ph, size * nelements) !=
2172 DDI_PROP_SUCCESS)
2173 return (DDI_PROP_NO_MEMORY);
2176 * Encode the array of ints.
2178 tmp = (int *)data;
2179 for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2180 i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp);
2181 if (i < DDI_PROP_RESULT_OK) {
2182 switch (i) {
2183 case DDI_PROP_RESULT_EOF:
2184 return (DDI_PROP_END_OF_DATA);
2186 case DDI_PROP_RESULT_ERROR:
2187 return (DDI_PROP_CANNOT_ENCODE);
2192 return (DDI_PROP_SUCCESS);
2197 * Encode a 64 bit integer array property
2200 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements)
2202 int i;
2203 int cnt;
2204 int size;
2205 int64_t *tmp;
2208 * If there is no data, we cannot do anything
2210 if (nelements == 0)
2211 return (DDI_PROP_CANNOT_ENCODE);
2214 * Get the size of an encoded 64 bit int.
2216 size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2218 if (size < DDI_PROP_RESULT_OK) {
2219 switch (size) {
2220 case DDI_PROP_RESULT_EOF:
2221 return (DDI_PROP_END_OF_DATA);
2223 case DDI_PROP_RESULT_ERROR:
2224 return (DDI_PROP_CANNOT_ENCODE);
2229 * Allocate space in the handle to store the encoded int.
2231 if (ddi_prop_encode_alloc(ph, size * nelements) !=
2232 DDI_PROP_SUCCESS)
2233 return (DDI_PROP_NO_MEMORY);
2236 * Encode the array of ints.
2238 tmp = (int64_t *)data;
2239 for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2240 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp);
2241 if (i < DDI_PROP_RESULT_OK) {
2242 switch (i) {
2243 case DDI_PROP_RESULT_EOF:
2244 return (DDI_PROP_END_OF_DATA);
2246 case DDI_PROP_RESULT_ERROR:
2247 return (DDI_PROP_CANNOT_ENCODE);
2252 return (DDI_PROP_SUCCESS);
2256 * Decode a single string property
2258 static int
2259 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements)
2261 char *tmp;
2262 char *str;
2263 int i;
2264 int size;
2267 * If there is nothing to decode return an error
2269 if (ph->ph_size == 0)
2270 return (DDI_PROP_END_OF_DATA);
2273 * Get the decoded size of the encoded string.
2275 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2276 if (size < DDI_PROP_RESULT_OK) {
2277 switch (size) {
2278 case DDI_PROP_RESULT_EOF:
2279 return (DDI_PROP_END_OF_DATA);
2281 case DDI_PROP_RESULT_ERROR:
2282 return (DDI_PROP_CANNOT_DECODE);
2287 * Allocated memory to store the decoded value in.
2289 str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string);
2291 ddi_prop_reset_pos(ph);
2294 * Decode the str and place it in the space we just allocated
2296 tmp = str;
2297 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp);
2298 if (i < DDI_PROP_RESULT_OK) {
2300 * Free the space we just allocated
2301 * and return an error.
2303 ddi_prop_free(str);
2304 switch (i) {
2305 case DDI_PROP_RESULT_EOF:
2306 return (DDI_PROP_END_OF_DATA);
2308 case DDI_PROP_RESULT_ERROR:
2309 return (DDI_PROP_CANNOT_DECODE);
2313 *(char **)data = str;
2314 *nelements = 1;
2316 return (DDI_PROP_SUCCESS);
2320 * Decode an array of strings.
2323 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements)
2325 int cnt = 0;
2326 char **strs;
2327 char **tmp;
2328 char *ptr;
2329 int i;
2330 int n;
2331 int size;
2332 size_t nbytes;
2335 * Figure out how many array elements there are by going through the
2336 * data without decoding it first and counting.
2338 for (;;) {
2339 i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL);
2340 if (i < 0)
2341 break;
2342 cnt++;
2346 * If there are no elements return an error
2348 if (cnt == 0)
2349 return (DDI_PROP_END_OF_DATA);
2352 * If we cannot skip through the data, we cannot decode it
2354 if (i == DDI_PROP_RESULT_ERROR)
2355 return (DDI_PROP_CANNOT_DECODE);
2358 * Reset the data pointer to the beginning of the encoded data
2360 ddi_prop_reset_pos(ph);
2363 * Figure out how much memory we need for the sum total
2365 nbytes = (cnt + 1) * sizeof (char *);
2367 for (n = 0; n < cnt; n++) {
2369 * Get the decoded size of the current encoded string.
2371 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2372 if (size < DDI_PROP_RESULT_OK) {
2373 switch (size) {
2374 case DDI_PROP_RESULT_EOF:
2375 return (DDI_PROP_END_OF_DATA);
2377 case DDI_PROP_RESULT_ERROR:
2378 return (DDI_PROP_CANNOT_DECODE);
2382 nbytes += size;
2386 * Allocate memory in which to store the decoded strings.
2388 strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings);
2391 * Set up pointers for each string by figuring out yet
2392 * again how long each string is.
2394 ddi_prop_reset_pos(ph);
2395 ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *));
2396 for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2398 * Get the decoded size of the current encoded string.
2400 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2401 if (size < DDI_PROP_RESULT_OK) {
2402 ddi_prop_free(strs);
2403 switch (size) {
2404 case DDI_PROP_RESULT_EOF:
2405 return (DDI_PROP_END_OF_DATA);
2407 case DDI_PROP_RESULT_ERROR:
2408 return (DDI_PROP_CANNOT_DECODE);
2412 *tmp = ptr;
2413 ptr += size;
2417 * String array is terminated by a NULL
2419 *tmp = NULL;
2422 * Finally, we can decode each string
2424 ddi_prop_reset_pos(ph);
2425 for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2426 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp);
2427 if (i < DDI_PROP_RESULT_OK) {
2429 * Free the space we just allocated
2430 * and return an error
2432 ddi_prop_free(strs);
2433 switch (i) {
2434 case DDI_PROP_RESULT_EOF:
2435 return (DDI_PROP_END_OF_DATA);
2437 case DDI_PROP_RESULT_ERROR:
2438 return (DDI_PROP_CANNOT_DECODE);
2443 *(char ***)data = strs;
2444 *nelements = cnt;
2446 return (DDI_PROP_SUCCESS);
2450 * Encode a string.
2453 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements)
2455 char **tmp;
2456 int size;
2457 int i;
2460 * If there is no data, we cannot do anything
2462 if (nelements == 0)
2463 return (DDI_PROP_CANNOT_ENCODE);
2466 * Get the size of the encoded string.
2468 tmp = (char **)data;
2469 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2470 if (size < DDI_PROP_RESULT_OK) {
2471 switch (size) {
2472 case DDI_PROP_RESULT_EOF:
2473 return (DDI_PROP_END_OF_DATA);
2475 case DDI_PROP_RESULT_ERROR:
2476 return (DDI_PROP_CANNOT_ENCODE);
2481 * Allocate space in the handle to store the encoded string.
2483 if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS)
2484 return (DDI_PROP_NO_MEMORY);
2486 ddi_prop_reset_pos(ph);
2489 * Encode the string.
2491 tmp = (char **)data;
2492 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2493 if (i < DDI_PROP_RESULT_OK) {
2494 switch (i) {
2495 case DDI_PROP_RESULT_EOF:
2496 return (DDI_PROP_END_OF_DATA);
2498 case DDI_PROP_RESULT_ERROR:
2499 return (DDI_PROP_CANNOT_ENCODE);
2503 return (DDI_PROP_SUCCESS);
2508 * Encode an array of strings.
2511 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements)
2513 int cnt = 0;
2514 char **tmp;
2515 int size;
2516 uint_t total_size;
2517 int i;
2520 * If there is no data, we cannot do anything
2522 if (nelements == 0)
2523 return (DDI_PROP_CANNOT_ENCODE);
2526 * Get the total size required to encode all the strings.
2528 total_size = 0;
2529 tmp = (char **)data;
2530 for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2531 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2532 if (size < DDI_PROP_RESULT_OK) {
2533 switch (size) {
2534 case DDI_PROP_RESULT_EOF:
2535 return (DDI_PROP_END_OF_DATA);
2537 case DDI_PROP_RESULT_ERROR:
2538 return (DDI_PROP_CANNOT_ENCODE);
2541 total_size += (uint_t)size;
2545 * Allocate space in the handle to store the encoded strings.
2547 if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS)
2548 return (DDI_PROP_NO_MEMORY);
2550 ddi_prop_reset_pos(ph);
2553 * Encode the array of strings.
2555 tmp = (char **)data;
2556 for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2557 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2558 if (i < DDI_PROP_RESULT_OK) {
2559 switch (i) {
2560 case DDI_PROP_RESULT_EOF:
2561 return (DDI_PROP_END_OF_DATA);
2563 case DDI_PROP_RESULT_ERROR:
2564 return (DDI_PROP_CANNOT_ENCODE);
2569 return (DDI_PROP_SUCCESS);
2574 * Decode an array of bytes.
2576 static int
2577 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements)
2579 uchar_t *tmp;
2580 int nbytes;
2581 int i;
2584 * If there are no elements return an error
2586 if (ph->ph_size == 0)
2587 return (DDI_PROP_END_OF_DATA);
2590 * Get the size of the encoded array of bytes.
2592 nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE,
2593 data, ph->ph_size);
2594 if (nbytes < DDI_PROP_RESULT_OK) {
2595 switch (nbytes) {
2596 case DDI_PROP_RESULT_EOF:
2597 return (DDI_PROP_END_OF_DATA);
2599 case DDI_PROP_RESULT_ERROR:
2600 return (DDI_PROP_CANNOT_DECODE);
2605 * Allocated memory to store the decoded value in.
2607 tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes);
2610 * Decode each element and place it in the space we just allocated
2612 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes);
2613 if (i < DDI_PROP_RESULT_OK) {
2615 * Free the space we just allocated
2616 * and return an error
2618 ddi_prop_free(tmp);
2619 switch (i) {
2620 case DDI_PROP_RESULT_EOF:
2621 return (DDI_PROP_END_OF_DATA);
2623 case DDI_PROP_RESULT_ERROR:
2624 return (DDI_PROP_CANNOT_DECODE);
2628 *(uchar_t **)data = tmp;
2629 *nelements = nbytes;
2631 return (DDI_PROP_SUCCESS);
2635 * Encode an array of bytes.
2638 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements)
2640 int size;
2641 int i;
2644 * If there are no elements, then this is a boolean property,
2645 * so just create a property handle with no data and return.
2647 if (nelements == 0) {
2648 (void) ddi_prop_encode_alloc(ph, 0);
2649 return (DDI_PROP_SUCCESS);
2653 * Get the size of the encoded array of bytes.
2655 size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data,
2656 nelements);
2657 if (size < DDI_PROP_RESULT_OK) {
2658 switch (size) {
2659 case DDI_PROP_RESULT_EOF:
2660 return (DDI_PROP_END_OF_DATA);
2662 case DDI_PROP_RESULT_ERROR:
2663 return (DDI_PROP_CANNOT_DECODE);
2668 * Allocate space in the handle to store the encoded bytes.
2670 if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS)
2671 return (DDI_PROP_NO_MEMORY);
2674 * Encode the array of bytes.
2676 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data,
2677 nelements);
2678 if (i < DDI_PROP_RESULT_OK) {
2679 switch (i) {
2680 case DDI_PROP_RESULT_EOF:
2681 return (DDI_PROP_END_OF_DATA);
2683 case DDI_PROP_RESULT_ERROR:
2684 return (DDI_PROP_CANNOT_ENCODE);
2688 return (DDI_PROP_SUCCESS);
2692 * OBP 1275 integer, string and byte operators.
2694 * DDI_PROP_CMD_DECODE:
2696 * DDI_PROP_RESULT_ERROR: cannot decode the data
2697 * DDI_PROP_RESULT_EOF: end of data
2698 * DDI_PROP_OK: data was decoded
2700 * DDI_PROP_CMD_ENCODE:
2702 * DDI_PROP_RESULT_ERROR: cannot encode the data
2703 * DDI_PROP_RESULT_EOF: end of data
2704 * DDI_PROP_OK: data was encoded
2706 * DDI_PROP_CMD_SKIP:
2708 * DDI_PROP_RESULT_ERROR: cannot skip the data
2709 * DDI_PROP_RESULT_EOF: end of data
2710 * DDI_PROP_OK: data was skipped
2712 * DDI_PROP_CMD_GET_ESIZE:
2714 * DDI_PROP_RESULT_ERROR: cannot get encoded size
2715 * DDI_PROP_RESULT_EOF: end of data
2716 * > 0: the encoded size
2718 * DDI_PROP_CMD_GET_DSIZE:
2720 * DDI_PROP_RESULT_ERROR: cannot get decoded size
2721 * DDI_PROP_RESULT_EOF: end of data
2722 * > 0: the decoded size
2726 * OBP 1275 integer operator
2728 * OBP properties are a byte stream of data, so integers may not be
2729 * properly aligned. Therefore we need to copy them one byte at a time.
2732 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data)
2734 int i;
2736 switch (cmd) {
2737 case DDI_PROP_CMD_DECODE:
2739 * Check that there is encoded data
2741 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2742 return (DDI_PROP_RESULT_ERROR);
2743 if (ph->ph_flags & PH_FROM_PROM) {
2744 i = MIN(ph->ph_size, PROP_1275_INT_SIZE);
2745 if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2746 ph->ph_size - i))
2747 return (DDI_PROP_RESULT_ERROR);
2748 } else {
2749 if (ph->ph_size < sizeof (int) ||
2750 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2751 ph->ph_size - sizeof (int))))
2752 return (DDI_PROP_RESULT_ERROR);
2756 * Copy the integer, using the implementation-specific
2757 * copy function if the property is coming from the PROM.
2759 if (ph->ph_flags & PH_FROM_PROM) {
2760 *data = impl_ddi_prop_int_from_prom(
2761 (uchar_t *)ph->ph_cur_pos,
2762 (ph->ph_size < PROP_1275_INT_SIZE) ?
2763 ph->ph_size : PROP_1275_INT_SIZE);
2764 } else {
2765 bcopy(ph->ph_cur_pos, data, sizeof (int));
2769 * Move the current location to the start of the next
2770 * bit of undecoded data.
2772 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2773 PROP_1275_INT_SIZE;
2774 return (DDI_PROP_RESULT_OK);
2776 case DDI_PROP_CMD_ENCODE:
2778 * Check that there is room to encoded the data
2780 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2781 ph->ph_size < PROP_1275_INT_SIZE ||
2782 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
2783 ph->ph_size - sizeof (int))))
2784 return (DDI_PROP_RESULT_ERROR);
2787 * Encode the integer into the byte stream one byte at a
2788 * time.
2790 bcopy(data, ph->ph_cur_pos, sizeof (int));
2793 * Move the current location to the start of the next bit of
2794 * space where we can store encoded data.
2796 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2797 return (DDI_PROP_RESULT_OK);
2799 case DDI_PROP_CMD_SKIP:
2801 * Check that there is encoded data
2803 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2804 ph->ph_size < PROP_1275_INT_SIZE)
2805 return (DDI_PROP_RESULT_ERROR);
2808 if ((caddr_t)ph->ph_cur_pos ==
2809 (caddr_t)ph->ph_data + ph->ph_size) {
2810 return (DDI_PROP_RESULT_EOF);
2811 } else if ((caddr_t)ph->ph_cur_pos >
2812 (caddr_t)ph->ph_data + ph->ph_size) {
2813 return (DDI_PROP_RESULT_EOF);
2817 * Move the current location to the start of the next bit of
2818 * undecoded data.
2820 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
2821 return (DDI_PROP_RESULT_OK);
2823 case DDI_PROP_CMD_GET_ESIZE:
2825 * Return the size of an encoded integer on OBP
2827 return (PROP_1275_INT_SIZE);
2829 case DDI_PROP_CMD_GET_DSIZE:
2831 * Return the size of a decoded integer on the system.
2833 return (sizeof (int));
2835 default:
2836 #ifdef DEBUG
2837 panic("ddi_prop_1275_int: %x impossible", cmd);
2838 /*NOTREACHED*/
2839 #else
2840 return (DDI_PROP_RESULT_ERROR);
2841 #endif /* DEBUG */
2846 * 64 bit integer operator.
2848 * This is an extension, defined by Sun, to the 1275 integer
2849 * operator. This routine handles the encoding/decoding of
2850 * 64 bit integer properties.
2853 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data)
2856 switch (cmd) {
2857 case DDI_PROP_CMD_DECODE:
2859 * Check that there is encoded data
2861 if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
2862 return (DDI_PROP_RESULT_ERROR);
2863 if (ph->ph_flags & PH_FROM_PROM) {
2864 return (DDI_PROP_RESULT_ERROR);
2865 } else {
2866 if (ph->ph_size < sizeof (int64_t) ||
2867 ((int64_t *)ph->ph_cur_pos >
2868 ((int64_t *)ph->ph_data +
2869 ph->ph_size - sizeof (int64_t))))
2870 return (DDI_PROP_RESULT_ERROR);
2873 * Copy the integer, using the implementation-specific
2874 * copy function if the property is coming from the PROM.
2876 if (ph->ph_flags & PH_FROM_PROM) {
2877 return (DDI_PROP_RESULT_ERROR);
2878 } else {
2879 bcopy(ph->ph_cur_pos, data, sizeof (int64_t));
2883 * Move the current location to the start of the next
2884 * bit of undecoded data.
2886 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2887 sizeof (int64_t);
2888 return (DDI_PROP_RESULT_OK);
2890 case DDI_PROP_CMD_ENCODE:
2892 * Check that there is room to encoded the data
2894 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2895 ph->ph_size < sizeof (int64_t) ||
2896 ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data +
2897 ph->ph_size - sizeof (int64_t))))
2898 return (DDI_PROP_RESULT_ERROR);
2901 * Encode the integer into the byte stream one byte at a
2902 * time.
2904 bcopy(data, ph->ph_cur_pos, sizeof (int64_t));
2907 * Move the current location to the start of the next bit of
2908 * space where we can store encoded data.
2910 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2911 sizeof (int64_t);
2912 return (DDI_PROP_RESULT_OK);
2914 case DDI_PROP_CMD_SKIP:
2916 * Check that there is encoded data
2918 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
2919 ph->ph_size < sizeof (int64_t))
2920 return (DDI_PROP_RESULT_ERROR);
2922 if ((caddr_t)ph->ph_cur_pos ==
2923 (caddr_t)ph->ph_data + ph->ph_size) {
2924 return (DDI_PROP_RESULT_EOF);
2925 } else if ((caddr_t)ph->ph_cur_pos >
2926 (caddr_t)ph->ph_data + ph->ph_size) {
2927 return (DDI_PROP_RESULT_EOF);
2931 * Move the current location to the start of
2932 * the next bit of undecoded data.
2934 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
2935 sizeof (int64_t);
2936 return (DDI_PROP_RESULT_OK);
2938 case DDI_PROP_CMD_GET_ESIZE:
2940 * Return the size of an encoded integer on OBP
2942 return (sizeof (int64_t));
2944 case DDI_PROP_CMD_GET_DSIZE:
2946 * Return the size of a decoded integer on the system.
2948 return (sizeof (int64_t));
2950 default:
2951 #ifdef DEBUG
2952 panic("ddi_prop_int64_op: %x impossible", cmd);
2953 /*NOTREACHED*/
2954 #else
2955 return (DDI_PROP_RESULT_ERROR);
2956 #endif /* DEBUG */
2961 * OBP 1275 string operator.
2963 * OBP strings are NULL terminated.
2966 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data)
2968 int n;
2969 char *p;
2970 char *end;
2972 switch (cmd) {
2973 case DDI_PROP_CMD_DECODE:
2975 * Check that there is encoded data
2977 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
2978 return (DDI_PROP_RESULT_ERROR);
2982 * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and
2983 * how to NULL terminate result.
2985 p = (char *)ph->ph_cur_pos;
2986 end = (char *)ph->ph_data + ph->ph_size;
2987 if (p >= end)
2988 return (DDI_PROP_RESULT_EOF);
2990 while (p < end) {
2991 *data++ = *p;
2992 if (*p++ == 0) { /* NULL from OBP */
2993 ph->ph_cur_pos = p;
2994 return (DDI_PROP_RESULT_OK);
2999 * If OBP did not NULL terminate string, which happens
3000 * (at least) for 'true'/'false' boolean values, account for
3001 * the space and store null termination on decode.
3003 ph->ph_cur_pos = p;
3004 *data = 0;
3005 return (DDI_PROP_RESULT_OK);
3007 case DDI_PROP_CMD_ENCODE:
3009 * Check that there is room to encoded the data
3011 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3012 return (DDI_PROP_RESULT_ERROR);
3015 n = strlen(data) + 1;
3016 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3017 ph->ph_size - n)) {
3018 return (DDI_PROP_RESULT_ERROR);
3022 * Copy the NULL terminated string
3024 bcopy(data, ph->ph_cur_pos, n);
3027 * Move the current location to the start of the next bit of
3028 * space where we can store encoded data.
3030 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n;
3031 return (DDI_PROP_RESULT_OK);
3033 case DDI_PROP_CMD_SKIP:
3035 * Check that there is encoded data
3037 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3038 return (DDI_PROP_RESULT_ERROR);
3042 * Return the string length plus one for the NULL
3043 * We know the size of the property, we need to
3044 * ensure that the string is properly formatted,
3045 * since we may be looking up random OBP data.
3047 p = (char *)ph->ph_cur_pos;
3048 end = (char *)ph->ph_data + ph->ph_size;
3049 if (p >= end)
3050 return (DDI_PROP_RESULT_EOF);
3052 while (p < end) {
3053 if (*p++ == 0) { /* NULL from OBP */
3054 ph->ph_cur_pos = p;
3055 return (DDI_PROP_RESULT_OK);
3060 * Accommodate the fact that OBP does not always NULL
3061 * terminate strings.
3063 ph->ph_cur_pos = p;
3064 return (DDI_PROP_RESULT_OK);
3066 case DDI_PROP_CMD_GET_ESIZE:
3068 * Return the size of the encoded string on OBP.
3070 return (strlen(data) + 1);
3072 case DDI_PROP_CMD_GET_DSIZE:
3074 * Return the string length plus one for the NULL.
3075 * We know the size of the property, we need to
3076 * ensure that the string is properly formatted,
3077 * since we may be looking up random OBP data.
3079 p = (char *)ph->ph_cur_pos;
3080 end = (char *)ph->ph_data + ph->ph_size;
3081 if (p >= end)
3082 return (DDI_PROP_RESULT_EOF);
3084 for (n = 0; p < end; n++) {
3085 if (*p++ == 0) { /* NULL from OBP */
3086 ph->ph_cur_pos = p;
3087 return (n + 1);
3092 * If OBP did not NULL terminate string, which happens for
3093 * 'true'/'false' boolean values, account for the space
3094 * to store null termination here.
3096 ph->ph_cur_pos = p;
3097 return (n + 1);
3099 default:
3100 #ifdef DEBUG
3101 panic("ddi_prop_1275_string: %x impossible", cmd);
3102 /*NOTREACHED*/
3103 #else
3104 return (DDI_PROP_RESULT_ERROR);
3105 #endif /* DEBUG */
3110 * OBP 1275 byte operator
3112 * Caller must specify the number of bytes to get. OBP encodes bytes
3113 * as a byte so there is a 1-to-1 translation.
3116 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data,
3117 uint_t nelements)
3119 switch (cmd) {
3120 case DDI_PROP_CMD_DECODE:
3122 * Check that there is encoded data
3124 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3125 ph->ph_size < nelements ||
3126 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3127 ph->ph_size - nelements)))
3128 return (DDI_PROP_RESULT_ERROR);
3131 * Copy out the bytes
3133 bcopy(ph->ph_cur_pos, data, nelements);
3136 * Move the current location
3138 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3139 return (DDI_PROP_RESULT_OK);
3141 case DDI_PROP_CMD_ENCODE:
3143 * Check that there is room to encode the data
3145 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3146 ph->ph_size < nelements ||
3147 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3148 ph->ph_size - nelements)))
3149 return (DDI_PROP_RESULT_ERROR);
3152 * Copy in the bytes
3154 bcopy(data, ph->ph_cur_pos, nelements);
3157 * Move the current location to the start of the next bit of
3158 * space where we can store encoded data.
3160 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3161 return (DDI_PROP_RESULT_OK);
3163 case DDI_PROP_CMD_SKIP:
3165 * Check that there is encoded data
3167 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3168 ph->ph_size < nelements)
3169 return (DDI_PROP_RESULT_ERROR);
3171 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3172 ph->ph_size - nelements))
3173 return (DDI_PROP_RESULT_EOF);
3176 * Move the current location
3178 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3179 return (DDI_PROP_RESULT_OK);
3181 case DDI_PROP_CMD_GET_ESIZE:
3183 * The size in bytes of the encoded size is the
3184 * same as the decoded size provided by the caller.
3186 return (nelements);
3188 case DDI_PROP_CMD_GET_DSIZE:
3190 * Just return the number of bytes specified by the caller.
3192 return (nelements);
3194 default:
3195 #ifdef DEBUG
3196 panic("ddi_prop_1275_bytes: %x impossible", cmd);
3197 /*NOTREACHED*/
3198 #else
3199 return (DDI_PROP_RESULT_ERROR);
3200 #endif /* DEBUG */
3205 * Used for properties that come from the OBP, hardware configuration files,
3206 * or that are created by calls to ddi_prop_update(9F).
3208 static struct prop_handle_ops prop_1275_ops = {
3209 ddi_prop_1275_int,
3210 ddi_prop_1275_string,
3211 ddi_prop_1275_bytes,
3212 ddi_prop_int64_op
3217 * Interface to create/modify a managed property on child's behalf...
3218 * Flags interpreted are:
3219 * DDI_PROP_CANSLEEP: Allow memory allocation to sleep.
3220 * DDI_PROP_SYSTEM_DEF: Manipulate system list rather than driver list.
3222 * Use same dev_t when modifying or undefining a property.
3223 * Search for properties with DDI_DEV_T_ANY to match first named
3224 * property on the list.
3226 * Properties are stored LIFO and subsequently will match the first
3227 * `matching' instance.
3231 * ddi_prop_add: Add a software defined property
3235 * define to get a new ddi_prop_t.
3236 * km_flags are KM_SLEEP or KM_NOSLEEP.
3239 #define DDI_NEW_PROP_T(km_flags) \
3240 (kmem_zalloc(sizeof (ddi_prop_t), km_flags))
3242 static int
3243 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags,
3244 char *name, caddr_t value, int length)
3246 ddi_prop_t *new_propp, *propp;
3247 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
3248 int km_flags = KM_NOSLEEP;
3249 int name_buf_len;
3252 * If dev_t is DDI_DEV_T_ANY or name's length is zero return error.
3255 if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0)
3256 return (DDI_PROP_INVAL_ARG);
3258 if (flags & DDI_PROP_CANSLEEP)
3259 km_flags = KM_SLEEP;
3261 if (flags & DDI_PROP_SYSTEM_DEF)
3262 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
3263 else if (flags & DDI_PROP_HW_DEF)
3264 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
3266 if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL) {
3267 cmn_err(CE_CONT, prop_no_mem_msg, name);
3268 return (DDI_PROP_NO_MEMORY);
3272 * If dev is major number 0, then we need to do a ddi_name_to_major
3273 * to get the real major number for the device. This needs to be
3274 * done because some drivers need to call ddi_prop_create in their
3275 * attach routines but they don't have a dev. By creating the dev
3276 * ourself if the major number is 0, drivers will not have to know what
3277 * their major number. They can just create a dev with major number
3278 * 0 and pass it in. For device 0, we will be doing a little extra
3279 * work by recreating the same dev that we already have, but its the
3280 * price you pay :-).
3282 * This fixes bug #1098060.
3284 if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) {
3285 new_propp->prop_dev =
3286 makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name),
3287 getminor(dev));
3288 } else
3289 new_propp->prop_dev = dev;
3292 * Allocate space for property name and copy it in...
3295 name_buf_len = strlen(name) + 1;
3296 new_propp->prop_name = kmem_alloc(name_buf_len, km_flags);
3297 if (new_propp->prop_name == 0) {
3298 kmem_free(new_propp, sizeof (ddi_prop_t));
3299 cmn_err(CE_CONT, prop_no_mem_msg, name);
3300 return (DDI_PROP_NO_MEMORY);
3302 bcopy(name, new_propp->prop_name, name_buf_len);
3305 * Set the property type
3307 new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK;
3310 * Set length and value ONLY if not an explicit property undefine:
3311 * NOTE: value and length are zero for explicit undefines.
3314 if (flags & DDI_PROP_UNDEF_IT) {
3315 new_propp->prop_flags |= DDI_PROP_UNDEF_IT;
3316 } else {
3317 if ((new_propp->prop_len = length) != 0) {
3318 new_propp->prop_val = kmem_alloc(length, km_flags);
3319 if (new_propp->prop_val == 0) {
3320 kmem_free(new_propp->prop_name, name_buf_len);
3321 kmem_free(new_propp, sizeof (ddi_prop_t));
3322 cmn_err(CE_CONT, prop_no_mem_msg, name);
3323 return (DDI_PROP_NO_MEMORY);
3325 bcopy(value, new_propp->prop_val, length);
3330 * Link property into beginning of list. (Properties are LIFO order.)
3333 mutex_enter(&(DEVI(dip)->devi_lock));
3334 propp = *list_head;
3335 new_propp->prop_next = propp;
3336 *list_head = new_propp;
3337 mutex_exit(&(DEVI(dip)->devi_lock));
3338 return (DDI_PROP_SUCCESS);
3343 * ddi_prop_change: Modify a software managed property value
3345 * Set new length and value if found.
3346 * returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or
3347 * input name is the NULL string.
3348 * returns DDI_PROP_NO_MEMORY if unable to allocate memory
3350 * Note: an undef can be modified to be a define,
3351 * (you can't go the other way.)
3354 static int
3355 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags,
3356 char *name, caddr_t value, int length)
3358 ddi_prop_t *propp;
3359 ddi_prop_t **ppropp;
3360 caddr_t p = NULL;
3362 if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0))
3363 return (DDI_PROP_INVAL_ARG);
3366 * Preallocate buffer, even if we don't need it...
3368 if (length != 0) {
3369 p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ?
3370 KM_SLEEP : KM_NOSLEEP);
3371 if (p == NULL) {
3372 cmn_err(CE_CONT, prop_no_mem_msg, name);
3373 return (DDI_PROP_NO_MEMORY);
3378 * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major
3379 * number, a real dev_t value should be created based upon the dip's
3380 * binding driver. See ddi_prop_add...
3382 if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN)
3383 dev = makedevice(
3384 ddi_name_to_major(DEVI(dip)->devi_binding_name),
3385 getminor(dev));
3388 * Check to see if the property exists. If so we modify it.
3389 * Else we create it by calling ddi_prop_add().
3391 mutex_enter(&(DEVI(dip)->devi_lock));
3392 ppropp = &DEVI(dip)->devi_drv_prop_ptr;
3393 if (flags & DDI_PROP_SYSTEM_DEF)
3394 ppropp = &DEVI(dip)->devi_sys_prop_ptr;
3395 else if (flags & DDI_PROP_HW_DEF)
3396 ppropp = &DEVI(dip)->devi_hw_prop_ptr;
3398 if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) {
3400 * Need to reallocate buffer? If so, do it
3401 * carefully (reuse same space if new prop
3402 * is same size and non-NULL sized).
3404 if (length != 0)
3405 bcopy(value, p, length);
3407 if (propp->prop_len != 0)
3408 kmem_free(propp->prop_val, propp->prop_len);
3410 propp->prop_len = length;
3411 propp->prop_val = p;
3412 propp->prop_flags &= ~DDI_PROP_UNDEF_IT;
3413 mutex_exit(&(DEVI(dip)->devi_lock));
3414 return (DDI_PROP_SUCCESS);
3417 mutex_exit(&(DEVI(dip)->devi_lock));
3418 if (length != 0)
3419 kmem_free(p, length);
3421 return (ddi_prop_add(dev, dip, flags, name, value, length));
3425 * Common update routine used to update and encode a property. Creates
3426 * a property handle, calls the property encode routine, figures out if
3427 * the property already exists and updates if it does. Otherwise it
3428 * creates if it does not exist.
3431 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags,
3432 char *name, void *data, uint_t nelements,
3433 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3435 prop_handle_t ph;
3436 int rval;
3437 uint_t ourflags;
3440 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3441 * return error.
3443 if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3444 return (DDI_PROP_INVAL_ARG);
3447 * Create the handle
3449 ph.ph_data = NULL;
3450 ph.ph_cur_pos = NULL;
3451 ph.ph_save_pos = NULL;
3452 ph.ph_size = 0;
3453 ph.ph_ops = &prop_1275_ops;
3456 * ourflags:
3457 * For compatibility with the old interfaces. The old interfaces
3458 * didn't sleep by default and slept when the flag was set. These
3459 * interfaces to the opposite. So the old interfaces now set the
3460 * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep.
3462 * ph.ph_flags:
3463 * Blocked data or unblocked data allocation
3464 * for ph.ph_data in ddi_prop_encode_alloc()
3466 if (flags & DDI_PROP_DONTSLEEP) {
3467 ourflags = flags;
3468 ph.ph_flags = DDI_PROP_DONTSLEEP;
3469 } else {
3470 ourflags = flags | DDI_PROP_CANSLEEP;
3471 ph.ph_flags = DDI_PROP_CANSLEEP;
3475 * Encode the data and store it in the property handle by
3476 * calling the prop_encode routine.
3478 if ((rval = (*prop_create)(&ph, data, nelements)) !=
3479 DDI_PROP_SUCCESS) {
3480 if (rval == DDI_PROP_NO_MEMORY)
3481 cmn_err(CE_CONT, prop_no_mem_msg, name);
3482 if (ph.ph_size != 0)
3483 kmem_free(ph.ph_data, ph.ph_size);
3484 return (rval);
3488 * The old interfaces use a stacking approach to creating
3489 * properties. If we are being called from the old interfaces,
3490 * the DDI_PROP_STACK_CREATE flag will be set, so we just do a
3491 * create without checking.
3493 if (flags & DDI_PROP_STACK_CREATE) {
3494 rval = ddi_prop_add(match_dev, dip,
3495 ourflags, name, ph.ph_data, ph.ph_size);
3496 } else {
3497 rval = ddi_prop_change(match_dev, dip,
3498 ourflags, name, ph.ph_data, ph.ph_size);
3502 * Free the encoded data allocated in the prop_encode routine.
3504 if (ph.ph_size != 0)
3505 kmem_free(ph.ph_data, ph.ph_size);
3507 return (rval);
3512 * ddi_prop_create: Define a managed property:
3513 * See above for details.
3517 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3518 char *name, caddr_t value, int length)
3520 if (!(flag & DDI_PROP_CANSLEEP)) {
3521 flag |= DDI_PROP_DONTSLEEP;
3522 #ifdef DDI_PROP_DEBUG
3523 if (length != 0)
3524 cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete,"
3525 "use ddi_prop_update (prop = %s, node = %s%d)",
3526 name, ddi_driver_name(dip), ddi_get_instance(dip));
3527 #endif /* DDI_PROP_DEBUG */
3529 flag &= ~DDI_PROP_SYSTEM_DEF;
3530 flag |= DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3531 return (ddi_prop_update_common(dev, dip, flag, name,
3532 value, length, ddi_prop_fm_encode_bytes));
3536 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3537 char *name, caddr_t value, int length)
3539 if (!(flag & DDI_PROP_CANSLEEP))
3540 flag |= DDI_PROP_DONTSLEEP;
3541 flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY;
3542 return (ddi_prop_update_common(dev, dip, flag,
3543 name, value, length, ddi_prop_fm_encode_bytes));
3547 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3548 char *name, caddr_t value, int length)
3550 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3553 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3554 * return error.
3556 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3557 return (DDI_PROP_INVAL_ARG);
3559 if (!(flag & DDI_PROP_CANSLEEP))
3560 flag |= DDI_PROP_DONTSLEEP;
3561 flag &= ~DDI_PROP_SYSTEM_DEF;
3562 if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0)
3563 return (DDI_PROP_NOT_FOUND);
3565 return (ddi_prop_update_common(dev, dip,
3566 (flag | DDI_PROP_TYPE_BYTE), name,
3567 value, length, ddi_prop_fm_encode_bytes));
3571 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3572 char *name, caddr_t value, int length)
3574 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3577 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3578 * return error.
3580 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3581 return (DDI_PROP_INVAL_ARG);
3583 if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0)
3584 return (DDI_PROP_NOT_FOUND);
3586 if (!(flag & DDI_PROP_CANSLEEP))
3587 flag |= DDI_PROP_DONTSLEEP;
3588 return (ddi_prop_update_common(dev, dip,
3589 (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE),
3590 name, value, length, ddi_prop_fm_encode_bytes));
3595 * Common lookup routine used to lookup and decode a property.
3596 * Creates a property handle, searches for the raw encoded data,
3597 * fills in the handle, and calls the property decode functions
3598 * passed in.
3600 * This routine is not static because ddi_bus_prop_op() which lives in
3601 * ddi_impl.c calls it. No driver should be calling this routine.
3604 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip,
3605 uint_t flags, char *name, void *data, uint_t *nelements,
3606 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3608 int rval;
3609 uint_t ourflags;
3610 prop_handle_t ph;
3612 if ((match_dev == DDI_DEV_T_NONE) ||
3613 (name == NULL) || (strlen(name) == 0))
3614 return (DDI_PROP_INVAL_ARG);
3616 ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags :
3617 flags | DDI_PROP_CANSLEEP;
3620 * Get the encoded data
3622 bzero(&ph, sizeof (prop_handle_t));
3624 if ((flags & DDI_UNBND_DLPI2) || (flags & DDI_PROP_ROOTNEX_GLOBAL)) {
3626 * For rootnex and unbound dlpi style-2 devices, index into
3627 * the devnames' array and search the global
3628 * property list.
3630 ourflags &= ~DDI_UNBND_DLPI2;
3631 rval = i_ddi_prop_search_global(match_dev,
3632 ourflags, name, &ph.ph_data, &ph.ph_size);
3633 } else {
3634 rval = ddi_prop_search_common(match_dev, dip,
3635 PROP_LEN_AND_VAL_ALLOC, ourflags, name,
3636 &ph.ph_data, &ph.ph_size);
3640 if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) {
3641 ASSERT(ph.ph_data == NULL);
3642 ASSERT(ph.ph_size == 0);
3643 return (rval);
3647 * If the encoded data came from a OBP or software
3648 * use the 1275 OBP decode/encode routines.
3650 ph.ph_cur_pos = ph.ph_data;
3651 ph.ph_save_pos = ph.ph_data;
3652 ph.ph_ops = &prop_1275_ops;
3653 ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0;
3655 rval = (*prop_decoder)(&ph, data, nelements);
3658 * Free the encoded data
3660 if (ph.ph_size != 0)
3661 kmem_free(ph.ph_data, ph.ph_size);
3663 return (rval);
3667 * Lookup and return an array of composite properties. The driver must
3668 * provide the decode routine.
3671 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip,
3672 uint_t flags, char *name, void *data, uint_t *nelements,
3673 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3675 return (ddi_prop_lookup_common(match_dev, dip,
3676 (flags | DDI_PROP_TYPE_COMPOSITE), name,
3677 data, nelements, prop_decoder));
3681 * Return 1 if a property exists (no type checking done).
3682 * Return 0 if it does not exist.
3685 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name)
3687 int i;
3688 uint_t x = 0;
3690 i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS,
3691 flags | DDI_PROP_TYPE_MASK, name, NULL, &x);
3692 return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275);
3697 * Update an array of composite properties. The driver must
3698 * provide the encode routine.
3701 ddi_prop_update(dev_t match_dev, dev_info_t *dip,
3702 char *name, void *data, uint_t nelements,
3703 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3705 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE,
3706 name, data, nelements, prop_create));
3710 * Get a single integer or boolean property and return it.
3711 * If the property does not exists, or cannot be decoded,
3712 * then return the defvalue passed in.
3714 * This routine always succeeds.
3717 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
3718 char *name, int defvalue)
3720 int data;
3721 uint_t nelements;
3722 int rval;
3724 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3725 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3726 #ifdef DEBUG
3727 if (dip != NULL) {
3728 cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag"
3729 " 0x%x (prop = %s, node = %s%d)", flags,
3730 name, ddi_driver_name(dip), ddi_get_instance(dip));
3732 #endif /* DEBUG */
3733 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3734 LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3737 if ((rval = ddi_prop_lookup_common(match_dev, dip,
3738 (flags | DDI_PROP_TYPE_INT), name, &data, &nelements,
3739 ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) {
3740 if (rval == DDI_PROP_END_OF_DATA)
3741 data = 1;
3742 else
3743 data = defvalue;
3745 return (data);
3749 * Get a single 64 bit integer or boolean property and return it.
3750 * If the property does not exists, or cannot be decoded,
3751 * then return the defvalue passed in.
3753 * This routine always succeeds.
3755 int64_t
3756 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
3757 char *name, int64_t defvalue)
3759 int64_t data;
3760 uint_t nelements;
3761 int rval;
3763 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3764 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3765 #ifdef DEBUG
3766 if (dip != NULL) {
3767 cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag"
3768 " 0x%x (prop = %s, node = %s%d)", flags,
3769 name, ddi_driver_name(dip), ddi_get_instance(dip));
3771 #endif /* DEBUG */
3772 return (DDI_PROP_INVAL_ARG);
3775 if ((rval = ddi_prop_lookup_common(match_dev, dip,
3776 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3777 name, &data, &nelements, ddi_prop_fm_decode_int64))
3778 != DDI_PROP_SUCCESS) {
3779 if (rval == DDI_PROP_END_OF_DATA)
3780 data = 1;
3781 else
3782 data = defvalue;
3784 return (data);
3788 * Get an array of integer property
3791 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3792 char *name, int **data, uint_t *nelements)
3794 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3795 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3796 #ifdef DEBUG
3797 if (dip != NULL) {
3798 cmn_err(CE_WARN, "ddi_prop_lookup_int_array: "
3799 "invalid flag 0x%x (prop = %s, node = %s%d)",
3800 flags, name, ddi_driver_name(dip),
3801 ddi_get_instance(dip));
3803 #endif /* DEBUG */
3804 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3805 LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3808 return (ddi_prop_lookup_common(match_dev, dip,
3809 (flags | DDI_PROP_TYPE_INT), name, data,
3810 nelements, ddi_prop_fm_decode_ints));
3814 * Get an array of 64 bit integer properties
3817 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3818 char *name, int64_t **data, uint_t *nelements)
3820 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3821 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3822 #ifdef DEBUG
3823 if (dip != NULL) {
3824 cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: "
3825 "invalid flag 0x%x (prop = %s, node = %s%d)",
3826 flags, name, ddi_driver_name(dip),
3827 ddi_get_instance(dip));
3829 #endif /* DEBUG */
3830 return (DDI_PROP_INVAL_ARG);
3833 return (ddi_prop_lookup_common(match_dev, dip,
3834 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
3835 name, data, nelements, ddi_prop_fm_decode_int64_array));
3839 * Update a single integer property. If the property exists on the drivers
3840 * property list it updates, else it creates it.
3843 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3844 char *name, int data)
3846 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3847 name, &data, 1, ddi_prop_fm_encode_ints));
3851 * Update a single 64 bit integer property.
3852 * Update the driver property list if it exists, else create it.
3855 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3856 char *name, int64_t data)
3858 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3859 name, &data, 1, ddi_prop_fm_encode_int64));
3863 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
3864 char *name, int data)
3866 return (ddi_prop_update_common(match_dev, dip,
3867 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3868 name, &data, 1, ddi_prop_fm_encode_ints));
3872 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
3873 char *name, int64_t data)
3875 return (ddi_prop_update_common(match_dev, dip,
3876 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3877 name, &data, 1, ddi_prop_fm_encode_int64));
3881 * Update an array of integer property. If the property exists on the drivers
3882 * property list it updates, else it creates it.
3885 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3886 char *name, int *data, uint_t nelements)
3888 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
3889 name, data, nelements, ddi_prop_fm_encode_ints));
3893 * Update an array of 64 bit integer properties.
3894 * Update the driver property list if it exists, else create it.
3897 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3898 char *name, int64_t *data, uint_t nelements)
3900 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
3901 name, data, nelements, ddi_prop_fm_encode_int64));
3905 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
3906 char *name, int64_t *data, uint_t nelements)
3908 return (ddi_prop_update_common(match_dev, dip,
3909 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
3910 name, data, nelements, ddi_prop_fm_encode_int64));
3914 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
3915 char *name, int *data, uint_t nelements)
3917 return (ddi_prop_update_common(match_dev, dip,
3918 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
3919 name, data, nelements, ddi_prop_fm_encode_ints));
3923 * Get a single string property.
3926 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
3927 char *name, char **data)
3929 uint_t x;
3931 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3932 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3933 #ifdef DEBUG
3934 if (dip != NULL) {
3935 cmn_err(CE_WARN, "%s: invalid flag 0x%x "
3936 "(prop = %s, node = %s%d); invalid bits ignored",
3937 "ddi_prop_lookup_string", flags, name,
3938 ddi_driver_name(dip), ddi_get_instance(dip));
3940 #endif /* DEBUG */
3941 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3942 LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3945 return (ddi_prop_lookup_common(match_dev, dip,
3946 (flags | DDI_PROP_TYPE_STRING), name, data,
3947 &x, ddi_prop_fm_decode_string));
3951 * Get an array of strings property.
3954 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
3955 char *name, char ***data, uint_t *nelements)
3957 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3958 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
3959 #ifdef DEBUG
3960 if (dip != NULL) {
3961 cmn_err(CE_WARN, "ddi_prop_lookup_string_array: "
3962 "invalid flag 0x%x (prop = %s, node = %s%d)",
3963 flags, name, ddi_driver_name(dip),
3964 ddi_get_instance(dip));
3966 #endif /* DEBUG */
3967 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3968 LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
3971 return (ddi_prop_lookup_common(match_dev, dip,
3972 (flags | DDI_PROP_TYPE_STRING), name, data,
3973 nelements, ddi_prop_fm_decode_strings));
3977 * Update a single string property.
3980 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3981 char *name, char *data)
3983 return (ddi_prop_update_common(match_dev, dip,
3984 DDI_PROP_TYPE_STRING, name, &data, 1,
3985 ddi_prop_fm_encode_string));
3989 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
3990 char *name, char *data)
3992 return (ddi_prop_update_common(match_dev, dip,
3993 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
3994 name, &data, 1, ddi_prop_fm_encode_string));
3999 * Update an array of strings property.
4002 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4003 char *name, char **data, uint_t nelements)
4005 return (ddi_prop_update_common(match_dev, dip,
4006 DDI_PROP_TYPE_STRING, name, data, nelements,
4007 ddi_prop_fm_encode_strings));
4011 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4012 char *name, char **data, uint_t nelements)
4014 return (ddi_prop_update_common(match_dev, dip,
4015 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4016 name, data, nelements,
4017 ddi_prop_fm_encode_strings));
4022 * Get an array of bytes property.
4025 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4026 char *name, uchar_t **data, uint_t *nelements)
4028 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4029 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) {
4030 #ifdef DEBUG
4031 if (dip != NULL) {
4032 cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: "
4033 " invalid flag 0x%x (prop = %s, node = %s%d)",
4034 flags, name, ddi_driver_name(dip),
4035 ddi_get_instance(dip));
4037 #endif /* DEBUG */
4038 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4039 LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4042 return (ddi_prop_lookup_common(match_dev, dip,
4043 (flags | DDI_PROP_TYPE_BYTE), name, data,
4044 nelements, ddi_prop_fm_decode_bytes));
4048 * Update an array of bytes property.
4051 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4052 char *name, uchar_t *data, uint_t nelements)
4054 if (nelements == 0)
4055 return (DDI_PROP_INVAL_ARG);
4057 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE,
4058 name, data, nelements, ddi_prop_fm_encode_bytes));
4063 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4064 char *name, uchar_t *data, uint_t nelements)
4066 if (nelements == 0)
4067 return (DDI_PROP_INVAL_ARG);
4069 return (ddi_prop_update_common(match_dev, dip,
4070 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE,
4071 name, data, nelements, ddi_prop_fm_encode_bytes));
4076 * ddi_prop_remove_common: Undefine a managed property:
4077 * Input dev_t must match dev_t when defined.
4078 * Returns DDI_PROP_NOT_FOUND, possibly.
4079 * DDI_PROP_INVAL_ARG is also possible if dev is
4080 * DDI_DEV_T_ANY or incoming name is the NULL string.
4083 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag)
4085 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4086 ddi_prop_t *propp;
4087 ddi_prop_t *lastpropp = NULL;
4089 if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) ||
4090 (strlen(name) == 0)) {
4091 return (DDI_PROP_INVAL_ARG);
4094 if (flag & DDI_PROP_SYSTEM_DEF)
4095 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4096 else if (flag & DDI_PROP_HW_DEF)
4097 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4099 mutex_enter(&(DEVI(dip)->devi_lock));
4101 for (propp = *list_head; propp != NULL; propp = propp->prop_next) {
4102 if (DDI_STRSAME(propp->prop_name, name) &&
4103 (dev == propp->prop_dev)) {
4105 * Unlink this propp allowing for it to
4106 * be first in the list:
4109 if (lastpropp == NULL)
4110 *list_head = propp->prop_next;
4111 else
4112 lastpropp->prop_next = propp->prop_next;
4114 mutex_exit(&(DEVI(dip)->devi_lock));
4117 * Free memory and return...
4119 kmem_free(propp->prop_name,
4120 strlen(propp->prop_name) + 1);
4121 if (propp->prop_len != 0)
4122 kmem_free(propp->prop_val, propp->prop_len);
4123 kmem_free(propp, sizeof (ddi_prop_t));
4124 return (DDI_PROP_SUCCESS);
4126 lastpropp = propp;
4128 mutex_exit(&(DEVI(dip)->devi_lock));
4129 return (DDI_PROP_NOT_FOUND);
4133 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4135 return (ddi_prop_remove_common(dev, dip, name, 0));
4139 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4141 return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF));
4145 * e_ddi_prop_list_delete: remove a list of properties
4146 * Note that the caller needs to provide the required protection
4147 * (eg. devi_lock if these properties are still attached to a devi)
4149 void
4150 e_ddi_prop_list_delete(ddi_prop_t *props)
4152 i_ddi_prop_list_delete(props);
4156 * ddi_prop_remove_all_common:
4157 * Used before unloading a driver to remove
4158 * all properties. (undefines all dev_t's props.)
4159 * Also removes `explicitly undefined' props.
4160 * No errors possible.
4162 void
4163 ddi_prop_remove_all_common(dev_info_t *dip, int flag)
4165 ddi_prop_t **list_head;
4167 mutex_enter(&(DEVI(dip)->devi_lock));
4168 if (flag & DDI_PROP_SYSTEM_DEF) {
4169 list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4170 } else if (flag & DDI_PROP_HW_DEF) {
4171 list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4172 } else {
4173 list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4175 i_ddi_prop_list_delete(*list_head);
4176 *list_head = NULL;
4177 mutex_exit(&(DEVI(dip)->devi_lock));
4182 * ddi_prop_remove_all: Remove all driver prop definitions.
4185 void
4186 ddi_prop_remove_all(dev_info_t *dip)
4188 i_ddi_prop_dyn_driver_set(dip, NULL);
4189 ddi_prop_remove_all_common(dip, 0);
4193 * e_ddi_prop_remove_all: Remove all system prop definitions.
4196 void
4197 e_ddi_prop_remove_all(dev_info_t *dip)
4199 ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF);
4204 * ddi_prop_undefine: Explicitly undefine a property. Property
4205 * searches which match this property return
4206 * the error code DDI_PROP_UNDEFINED.
4208 * Use ddi_prop_remove to negate effect of
4209 * ddi_prop_undefine
4211 * See above for error returns.
4215 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4217 if (!(flag & DDI_PROP_CANSLEEP))
4218 flag |= DDI_PROP_DONTSLEEP;
4219 flag |= DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4220 return (ddi_prop_update_common(dev, dip, flag,
4221 name, NULL, 0, ddi_prop_fm_encode_bytes));
4225 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4227 if (!(flag & DDI_PROP_CANSLEEP))
4228 flag |= DDI_PROP_DONTSLEEP;
4229 flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
4230 DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY;
4231 return (ddi_prop_update_common(dev, dip, flag,
4232 name, NULL, 0, ddi_prop_fm_encode_bytes));
4236 * Support for gathering dynamic properties in devinfo snapshot.
4238 void
4239 i_ddi_prop_dyn_driver_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4241 DEVI(dip)->devi_prop_dyn_driver = dp;
4244 i_ddi_prop_dyn_t *
4245 i_ddi_prop_dyn_driver_get(dev_info_t *dip)
4247 return (DEVI(dip)->devi_prop_dyn_driver);
4250 void
4251 i_ddi_prop_dyn_parent_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4253 DEVI(dip)->devi_prop_dyn_parent = dp;
4256 i_ddi_prop_dyn_t *
4257 i_ddi_prop_dyn_parent_get(dev_info_t *dip)
4259 return (DEVI(dip)->devi_prop_dyn_parent);
4262 void
4263 i_ddi_prop_dyn_cache_invalidate(dev_info_t *dip, i_ddi_prop_dyn_t *dp)
4265 /* for now we invalidate the entire cached snapshot */
4266 if (dip && dp)
4267 i_ddi_di_cache_invalidate();
4270 /* ARGSUSED */
4271 void
4272 ddi_prop_cache_invalidate(dev_t dev, dev_info_t *dip, char *name, int flags)
4274 /* for now we invalidate the entire cached snapshot */
4275 i_ddi_di_cache_invalidate();
4280 * Code to search hardware layer (PROM), if it exists, on behalf of child.
4282 * if input dip != child_dip, then call is on behalf of child
4283 * to search PROM, do it via ddi_prop_search_common() and ascend only
4284 * if allowed.
4286 * if input dip == ch_dip (child_dip), call is on behalf of root driver,
4287 * to search for PROM defined props only.
4289 * Note that the PROM search is done only if the requested dev
4290 * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties
4291 * have no associated dev, thus are automatically associated with
4292 * DDI_DEV_T_NONE.
4294 * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer.
4296 * Returns DDI_PROP_FOUND_1275 if found to indicate to framework
4297 * that the property resides in the prom.
4300 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4301 ddi_prop_op_t prop_op, int mod_flags,
4302 char *name, caddr_t valuep, int *lengthp)
4304 int len;
4305 caddr_t buffer;
4308 * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then
4309 * look in caller's PROM if it's a self identifying device...
4311 * Note that this is very similar to ddi_prop_op, but we
4312 * search the PROM instead of the s/w defined properties,
4313 * and we are called on by the parent driver to do this for
4314 * the child.
4317 if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) &&
4318 ndi_dev_is_prom_node(ch_dip) &&
4319 ((mod_flags & DDI_PROP_NOTPROM) == 0)) {
4320 len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name);
4321 if (len == -1) {
4322 return (DDI_PROP_NOT_FOUND);
4326 * If exists only request, we're done
4328 if (prop_op == PROP_EXISTS) {
4329 return (DDI_PROP_FOUND_1275);
4333 * If length only request or prop length == 0, get out
4335 if ((prop_op == PROP_LEN) || (len == 0)) {
4336 *lengthp = len;
4337 return (DDI_PROP_FOUND_1275);
4341 * Allocate buffer if required... (either way `buffer'
4342 * is receiving address).
4345 switch (prop_op) {
4347 case PROP_LEN_AND_VAL_ALLOC:
4349 buffer = kmem_alloc((size_t)len,
4350 mod_flags & DDI_PROP_CANSLEEP ?
4351 KM_SLEEP : KM_NOSLEEP);
4352 if (buffer == NULL) {
4353 return (DDI_PROP_NO_MEMORY);
4355 *(caddr_t *)valuep = buffer;
4356 break;
4358 case PROP_LEN_AND_VAL_BUF:
4360 if (len > (*lengthp)) {
4361 *lengthp = len;
4362 return (DDI_PROP_BUF_TOO_SMALL);
4365 buffer = valuep;
4366 break;
4368 default:
4369 break;
4373 * Call the PROM function to do the copy.
4375 (void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid,
4376 name, buffer);
4378 *lengthp = len; /* return the actual length to the caller */
4379 (void) impl_fix_props(dip, ch_dip, name, len, buffer);
4380 return (DDI_PROP_FOUND_1275);
4383 return (DDI_PROP_NOT_FOUND);
4387 * The ddi_bus_prop_op default bus nexus prop op function.
4389 * Code to search hardware layer (PROM), if it exists,
4390 * on behalf of child, then, if appropriate, ascend and check
4391 * my own software defined properties...
4394 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4395 ddi_prop_op_t prop_op, int mod_flags,
4396 char *name, caddr_t valuep, int *lengthp)
4398 int error;
4400 error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags,
4401 name, valuep, lengthp);
4403 if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 ||
4404 error == DDI_PROP_BUF_TOO_SMALL)
4405 return (error);
4407 if (error == DDI_PROP_NO_MEMORY) {
4408 cmn_err(CE_CONT, prop_no_mem_msg, name);
4409 return (DDI_PROP_NO_MEMORY);
4413 * Check the 'options' node as a last resort
4415 if ((mod_flags & DDI_PROP_DONTPASS) != 0)
4416 return (DDI_PROP_NOT_FOUND);
4418 if (ch_dip == ddi_root_node()) {
4420 * As a last resort, when we've reached
4421 * the top and still haven't found the
4422 * property, see if the desired property
4423 * is attached to the options node.
4425 * The options dip is attached right after boot.
4427 ASSERT(options_dip != NULL);
4429 * Force the "don't pass" flag to *just* see
4430 * what the options node has to offer.
4432 return (ddi_prop_search_common(dev, options_dip, prop_op,
4433 mod_flags|DDI_PROP_DONTPASS, name, valuep,
4434 (uint_t *)lengthp));
4438 * Otherwise, continue search with parent's s/w defined properties...
4439 * NOTE: Using `dip' in following call increments the level.
4442 return (ddi_prop_search_common(dev, dip, prop_op, mod_flags,
4443 name, valuep, (uint_t *)lengthp));
4447 * External property functions used by other parts of the kernel...
4451 * e_ddi_getlongprop: See comments for ddi_get_longprop.
4455 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags,
4456 caddr_t valuep, int *lengthp)
4458 _NOTE(ARGUNUSED(type))
4459 dev_info_t *devi;
4460 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC;
4461 int error;
4463 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4464 return (DDI_PROP_NOT_FOUND);
4466 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4467 ddi_release_devi(devi);
4468 return (error);
4472 * e_ddi_getlongprop_buf: See comments for ddi_getlongprop_buf.
4476 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags,
4477 caddr_t valuep, int *lengthp)
4479 _NOTE(ARGUNUSED(type))
4480 dev_info_t *devi;
4481 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4482 int error;
4484 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4485 return (DDI_PROP_NOT_FOUND);
4487 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4488 ddi_release_devi(devi);
4489 return (error);
4493 * e_ddi_getprop: See comments for ddi_getprop.
4496 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue)
4498 _NOTE(ARGUNUSED(type))
4499 dev_info_t *devi;
4500 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4501 int propvalue = defvalue;
4502 int proplength = sizeof (int);
4503 int error;
4505 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4506 return (defvalue);
4508 error = cdev_prop_op(dev, devi, prop_op,
4509 flags, name, (caddr_t)&propvalue, &proplength);
4510 ddi_release_devi(devi);
4512 if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4513 propvalue = 1;
4515 return (propvalue);
4519 * e_ddi_getprop_int64:
4521 * This is a typed interfaces, but predates typed properties. With the
4522 * introduction of typed properties the framework tries to ensure
4523 * consistent use of typed interfaces. This is why TYPE_INT64 is not
4524 * part of TYPE_ANY. E_ddi_getprop_int64 is a special case where a
4525 * typed interface invokes legacy (non-typed) interfaces:
4526 * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)). In this case the
4527 * fact that TYPE_INT64 is not part of TYPE_ANY matters. To support
4528 * this type of lookup as a single operation we invoke the legacy
4529 * non-typed interfaces with the special CONSUMER_TYPED bit set. The
4530 * framework ddi_prop_op(9F) implementation is expected to check for
4531 * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY
4532 * (currently TYPE_INT64).
4534 int64_t
4535 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name,
4536 int flags, int64_t defvalue)
4538 _NOTE(ARGUNUSED(type))
4539 dev_info_t *devi;
4540 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4541 int64_t propvalue = defvalue;
4542 int proplength = sizeof (propvalue);
4543 int error;
4545 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4546 return (defvalue);
4548 error = cdev_prop_op(dev, devi, prop_op, flags |
4549 DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength);
4550 ddi_release_devi(devi);
4552 if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4553 propvalue = 1;
4555 return (propvalue);
4559 * e_ddi_getproplen: See comments for ddi_getproplen.
4562 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp)
4564 _NOTE(ARGUNUSED(type))
4565 dev_info_t *devi;
4566 ddi_prop_op_t prop_op = PROP_LEN;
4567 int error;
4569 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4570 return (DDI_PROP_NOT_FOUND);
4572 error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp);
4573 ddi_release_devi(devi);
4574 return (error);
4578 * Routines to get at elements of the dev_info structure
4582 * ddi_binding_name: Return the driver binding name of the devinfo node
4583 * This is the name the OS used to bind the node to a driver.
4585 char *
4586 ddi_binding_name(dev_info_t *dip)
4588 return (DEVI(dip)->devi_binding_name);
4592 * ddi_driver_major: Return the major number of the driver that
4593 * the supplied devinfo is bound to. If not yet bound,
4594 * DDI_MAJOR_T_NONE.
4596 * When used by the driver bound to 'devi', this
4597 * function will reliably return the driver major number.
4598 * Other ways of determining the driver major number, such as
4599 * major = ddi_name_to_major(ddi_get_name(devi));
4600 * major = ddi_name_to_major(ddi_binding_name(devi));
4601 * can return a different result as the driver/alias binding
4602 * can change dynamically, and thus should be avoided.
4604 major_t
4605 ddi_driver_major(dev_info_t *devi)
4607 return (DEVI(devi)->devi_major);
4611 * ddi_driver_name: Return the normalized driver name. this is the
4612 * actual driver name
4614 const char *
4615 ddi_driver_name(dev_info_t *devi)
4617 major_t major;
4619 if ((major = ddi_driver_major(devi)) != DDI_MAJOR_T_NONE)
4620 return (ddi_major_to_name(major));
4622 return (ddi_node_name(devi));
4626 * i_ddi_set_binding_name: Set binding name.
4628 * Set the binding name to the given name.
4629 * This routine is for use by the ddi implementation, not by drivers.
4631 void
4632 i_ddi_set_binding_name(dev_info_t *dip, char *name)
4634 DEVI(dip)->devi_binding_name = name;
4639 * ddi_get_name: A synonym of ddi_binding_name() ... returns a name
4640 * the implementation has used to bind the node to a driver.
4642 char *
4643 ddi_get_name(dev_info_t *dip)
4645 return (DEVI(dip)->devi_binding_name);
4649 * ddi_node_name: Return the name property of the devinfo node
4650 * This may differ from ddi_binding_name if the node name
4651 * does not define a binding to a driver (i.e. generic names).
4653 char *
4654 ddi_node_name(dev_info_t *dip)
4656 return (DEVI(dip)->devi_node_name);
4661 * ddi_get_nodeid: Get nodeid stored in dev_info structure.
4664 ddi_get_nodeid(dev_info_t *dip)
4666 return (DEVI(dip)->devi_nodeid);
4670 ddi_get_instance(dev_info_t *dip)
4672 return (DEVI(dip)->devi_instance);
4675 struct dev_ops *
4676 ddi_get_driver(dev_info_t *dip)
4678 return (DEVI(dip)->devi_ops);
4681 void
4682 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo)
4684 DEVI(dip)->devi_ops = devo;
4688 * ddi_set_driver_private/ddi_get_driver_private:
4689 * Get/set device driver private data in devinfo.
4691 void
4692 ddi_set_driver_private(dev_info_t *dip, void *data)
4694 DEVI(dip)->devi_driver_data = data;
4697 void *
4698 ddi_get_driver_private(dev_info_t *dip)
4700 return (DEVI(dip)->devi_driver_data);
4704 * ddi_get_parent, ddi_get_child, ddi_get_next_sibling
4707 dev_info_t *
4708 ddi_get_parent(dev_info_t *dip)
4710 return ((dev_info_t *)DEVI(dip)->devi_parent);
4713 dev_info_t *
4714 ddi_get_child(dev_info_t *dip)
4716 return ((dev_info_t *)DEVI(dip)->devi_child);
4719 dev_info_t *
4720 ddi_get_next_sibling(dev_info_t *dip)
4722 return ((dev_info_t *)DEVI(dip)->devi_sibling);
4725 dev_info_t *
4726 ddi_get_next(dev_info_t *dip)
4728 return ((dev_info_t *)DEVI(dip)->devi_next);
4731 void
4732 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip)
4734 DEVI(dip)->devi_next = DEVI(nextdip);
4738 * ddi_root_node: Return root node of devinfo tree
4741 dev_info_t *
4742 ddi_root_node(void)
4744 extern dev_info_t *top_devinfo;
4746 return (top_devinfo);
4750 * Miscellaneous functions:
4754 * Implementation specific hooks
4757 void
4758 ddi_report_dev(dev_info_t *d)
4760 char *b;
4762 (void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0);
4765 * If this devinfo node has cb_ops, it's implicitly accessible from
4766 * userland, so we print its full name together with the instance
4767 * number 'abbreviation' that the driver may use internally.
4769 if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 &&
4770 (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) {
4771 cmn_err(CE_CONT, "?%s%d is %s\n",
4772 ddi_driver_name(d), ddi_get_instance(d),
4773 ddi_pathname(d, b));
4774 kmem_free(b, MAXPATHLEN);
4779 * ddi_ctlops() is described in the assembler not to buy a new register
4780 * window when it's called and can reduce cost in climbing the device tree
4781 * without using the tail call optimization.
4784 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result)
4786 int ret;
4788 ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE,
4789 (void *)&rnumber, (void *)result);
4791 return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
4795 ddi_dev_nregs(dev_info_t *dev, int *result)
4797 return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result));
4801 ddi_dev_is_sid(dev_info_t *d)
4803 return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0));
4807 ddi_slaveonly(dev_info_t *d)
4809 return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0));
4813 ddi_dev_affinity(dev_info_t *a, dev_info_t *b)
4815 return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0));
4819 ddi_streams_driver(dev_info_t *dip)
4821 if (i_ddi_devi_attached(dip) &&
4822 (DEVI(dip)->devi_ops->devo_cb_ops != NULL) &&
4823 (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL))
4824 return (DDI_SUCCESS);
4825 return (DDI_FAILURE);
4829 * callback free list
4832 static int ncallbacks;
4833 static int nc_low = 170;
4834 static int nc_med = 512;
4835 static int nc_high = 2048;
4836 static struct ddi_callback *callbackq;
4837 static struct ddi_callback *callbackqfree;
4840 * set/run callback lists
4842 struct cbstats {
4843 kstat_named_t cb_asked;
4844 kstat_named_t cb_new;
4845 kstat_named_t cb_run;
4846 kstat_named_t cb_delete;
4847 kstat_named_t cb_maxreq;
4848 kstat_named_t cb_maxlist;
4849 kstat_named_t cb_alloc;
4850 kstat_named_t cb_runouts;
4851 kstat_named_t cb_L2;
4852 kstat_named_t cb_grow;
4853 } cbstats = {
4854 {"asked", KSTAT_DATA_UINT32},
4855 {"new", KSTAT_DATA_UINT32},
4856 {"run", KSTAT_DATA_UINT32},
4857 {"delete", KSTAT_DATA_UINT32},
4858 {"maxreq", KSTAT_DATA_UINT32},
4859 {"maxlist", KSTAT_DATA_UINT32},
4860 {"alloc", KSTAT_DATA_UINT32},
4861 {"runouts", KSTAT_DATA_UINT32},
4862 {"L2", KSTAT_DATA_UINT32},
4863 {"grow", KSTAT_DATA_UINT32},
4866 #define nc_asked cb_asked.value.ui32
4867 #define nc_new cb_new.value.ui32
4868 #define nc_run cb_run.value.ui32
4869 #define nc_delete cb_delete.value.ui32
4870 #define nc_maxreq cb_maxreq.value.ui32
4871 #define nc_maxlist cb_maxlist.value.ui32
4872 #define nc_alloc cb_alloc.value.ui32
4873 #define nc_runouts cb_runouts.value.ui32
4874 #define nc_L2 cb_L2.value.ui32
4875 #define nc_grow cb_grow.value.ui32
4877 static kmutex_t ddi_callback_mutex;
4880 * callbacks are handled using a L1/L2 cache. The L1 cache
4881 * comes out of kmem_cache_alloc and can expand/shrink dynamically. If
4882 * we can't get callbacks from the L1 cache [because pageout is doing
4883 * I/O at the time freemem is 0], we allocate callbacks out of the
4884 * L2 cache. The L2 cache is static and depends on the memory size.
4885 * [We might also count the number of devices at probe time and
4886 * allocate one structure per device and adjust for deferred attach]
4888 void
4889 impl_ddi_callback_init(void)
4891 int i;
4892 uint_t physmegs;
4893 kstat_t *ksp;
4895 physmegs = physmem >> (20 - PAGESHIFT);
4896 if (physmegs < 48) {
4897 ncallbacks = nc_low;
4898 } else if (physmegs < 128) {
4899 ncallbacks = nc_med;
4900 } else {
4901 ncallbacks = nc_high;
4905 * init free list
4907 callbackq = kmem_zalloc(
4908 ncallbacks * sizeof (struct ddi_callback), KM_SLEEP);
4909 for (i = 0; i < ncallbacks-1; i++)
4910 callbackq[i].c_nfree = &callbackq[i+1];
4911 callbackqfree = callbackq;
4913 /* init kstats */
4914 if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED,
4915 sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) {
4916 ksp->ks_data = (void *) &cbstats;
4917 kstat_install(ksp);
4922 static void
4923 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid,
4924 int count)
4926 struct ddi_callback *list, *marker, *new;
4927 size_t size = sizeof (struct ddi_callback);
4929 list = marker = (struct ddi_callback *)*listid;
4930 while (list != NULL) {
4931 if (list->c_call == funcp && list->c_arg == arg) {
4932 list->c_count += count;
4933 return;
4935 marker = list;
4936 list = list->c_nlist;
4938 new = kmem_alloc(size, KM_NOSLEEP);
4939 if (new == NULL) {
4940 new = callbackqfree;
4941 if (new == NULL) {
4942 new = kmem_alloc_tryhard(sizeof (struct ddi_callback),
4943 &size, KM_NOSLEEP | KM_PANIC);
4944 cbstats.nc_grow++;
4945 } else {
4946 callbackqfree = new->c_nfree;
4947 cbstats.nc_L2++;
4950 if (marker != NULL) {
4951 marker->c_nlist = new;
4952 } else {
4953 *listid = (uintptr_t)new;
4955 new->c_size = size;
4956 new->c_nlist = NULL;
4957 new->c_call = funcp;
4958 new->c_arg = arg;
4959 new->c_count = count;
4960 cbstats.nc_new++;
4961 cbstats.nc_alloc++;
4962 if (cbstats.nc_alloc > cbstats.nc_maxlist)
4963 cbstats.nc_maxlist = cbstats.nc_alloc;
4966 void
4967 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid)
4969 mutex_enter(&ddi_callback_mutex);
4970 cbstats.nc_asked++;
4971 if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq)
4972 cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run);
4973 (void) callback_insert(funcp, arg, listid, 1);
4974 mutex_exit(&ddi_callback_mutex);
4977 static void
4978 real_callback_run(void *Queue)
4980 int (*funcp)(caddr_t);
4981 caddr_t arg;
4982 int count, rval;
4983 uintptr_t *listid;
4984 struct ddi_callback *list, *marker;
4985 int check_pending = 1;
4986 int pending = 0;
4988 do {
4989 mutex_enter(&ddi_callback_mutex);
4990 listid = Queue;
4991 list = (struct ddi_callback *)*listid;
4992 if (list == NULL) {
4993 mutex_exit(&ddi_callback_mutex);
4994 return;
4996 if (check_pending) {
4997 marker = list;
4998 while (marker != NULL) {
4999 pending += marker->c_count;
5000 marker = marker->c_nlist;
5002 check_pending = 0;
5004 ASSERT(pending > 0);
5005 ASSERT(list->c_count > 0);
5006 funcp = list->c_call;
5007 arg = list->c_arg;
5008 count = list->c_count;
5009 *(uintptr_t *)Queue = (uintptr_t)list->c_nlist;
5010 if (list >= &callbackq[0] &&
5011 list <= &callbackq[ncallbacks-1]) {
5012 list->c_nfree = callbackqfree;
5013 callbackqfree = list;
5014 } else
5015 kmem_free(list, list->c_size);
5017 cbstats.nc_delete++;
5018 cbstats.nc_alloc--;
5019 mutex_exit(&ddi_callback_mutex);
5021 do {
5022 if ((rval = (*funcp)(arg)) == 0) {
5023 pending -= count;
5024 mutex_enter(&ddi_callback_mutex);
5025 (void) callback_insert(funcp, arg, listid,
5026 count);
5027 cbstats.nc_runouts++;
5028 } else {
5029 pending--;
5030 mutex_enter(&ddi_callback_mutex);
5031 cbstats.nc_run++;
5033 mutex_exit(&ddi_callback_mutex);
5034 } while (rval != 0 && (--count > 0));
5035 } while (pending > 0);
5038 void
5039 ddi_run_callback(uintptr_t *listid)
5041 softcall(real_callback_run, listid);
5045 * ddi_periodic_t
5046 * ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval,
5047 * int level)
5049 * INTERFACE LEVEL
5050 * Solaris DDI specific (Solaris DDI)
5052 * PARAMETERS
5053 * func: the callback function
5055 * The callback function will be invoked. The function is invoked
5056 * in kernel context if the argument level passed is the zero.
5057 * Otherwise it's invoked in interrupt context at the specified
5058 * level.
5060 * arg: the argument passed to the callback function
5062 * interval: interval time
5064 * level : callback interrupt level
5066 * If the value is the zero, the callback function is invoked
5067 * in kernel context. If the value is more than the zero, but
5068 * less than or equal to ten, the callback function is invoked in
5069 * interrupt context at the specified interrupt level, which may
5070 * be used for real time applications.
5072 * This value must be in range of 0-10, which can be a numeric
5073 * number or a pre-defined macro (DDI_IPL_0, ... , DDI_IPL_10).
5075 * DESCRIPTION
5076 * ddi_periodic_add(9F) schedules the specified function to be
5077 * periodically invoked in the interval time.
5079 * As well as timeout(9F), the exact time interval over which the function
5080 * takes effect cannot be guaranteed, but the value given is a close
5081 * approximation.
5083 * Drivers waiting on behalf of processes with real-time constraints must
5084 * pass non-zero value with the level argument to ddi_periodic_add(9F).
5086 * RETURN VALUES
5087 * ddi_periodic_add(9F) returns a non-zero opaque value (ddi_periodic_t),
5088 * which must be used for ddi_periodic_delete(9F) to specify the request.
5090 * CONTEXT
5091 * ddi_periodic_add(9F) can be called in user or kernel context, but
5092 * it cannot be called in interrupt context, which is different from
5093 * timeout(9F).
5095 ddi_periodic_t
5096 ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, int level)
5099 * Sanity check of the argument level.
5101 if (level < DDI_IPL_0 || level > DDI_IPL_10)
5102 cmn_err(CE_PANIC,
5103 "ddi_periodic_add: invalid interrupt level (%d).", level);
5106 * Sanity check of the context. ddi_periodic_add() cannot be
5107 * called in either interrupt context or high interrupt context.
5109 if (servicing_interrupt())
5110 cmn_err(CE_PANIC,
5111 "ddi_periodic_add: called in (high) interrupt context.");
5113 return ((ddi_periodic_t)i_timeout(func, arg, interval, level));
5117 * void
5118 * ddi_periodic_delete(ddi_periodic_t req)
5120 * INTERFACE LEVEL
5121 * Solaris DDI specific (Solaris DDI)
5123 * PARAMETERS
5124 * req: ddi_periodic_t opaque value ddi_periodic_add(9F) returned
5125 * previously.
5127 * DESCRIPTION
5128 * ddi_periodic_delete(9F) cancels the ddi_periodic_add(9F) request
5129 * previously requested.
5131 * ddi_periodic_delete(9F) will not return until the pending request
5132 * is canceled or executed.
5134 * As well as untimeout(9F), calling ddi_periodic_delete(9F) for a
5135 * timeout which is either running on another CPU, or has already
5136 * completed causes no problems. However, unlike untimeout(9F), there is
5137 * no restrictions on the lock which might be held across the call to
5138 * ddi_periodic_delete(9F).
5140 * Drivers should be structured with the understanding that the arrival of
5141 * both an interrupt and a timeout for that interrupt can occasionally
5142 * occur, in either order.
5144 * CONTEXT
5145 * ddi_periodic_delete(9F) can be called in user or kernel context, but
5146 * it cannot be called in interrupt context, which is different from
5147 * untimeout(9F).
5149 void
5150 ddi_periodic_delete(ddi_periodic_t req)
5153 * Sanity check of the context. ddi_periodic_delete() cannot be
5154 * called in either interrupt context or high interrupt context.
5156 if (servicing_interrupt())
5157 cmn_err(CE_PANIC,
5158 "ddi_periodic_delete: called in (high) interrupt context.");
5160 i_untimeout((timeout_t)req);
5163 dev_info_t *
5164 nodevinfo(dev_t dev, int otyp)
5166 _NOTE(ARGUNUSED(dev, otyp))
5167 return ((dev_info_t *)0);
5171 * A driver should support its own getinfo(9E) entry point. This function
5172 * is provided as a convenience for ON drivers that don't expect their
5173 * getinfo(9E) entry point to be called. A driver that uses this must not
5174 * call ddi_create_minor_node.
5177 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5179 _NOTE(ARGUNUSED(dip, infocmd, arg, result))
5180 return (DDI_FAILURE);
5184 * A driver should support its own getinfo(9E) entry point. This function
5185 * is provided as a convenience for ON drivers that where the minor number
5186 * is the instance. Drivers that do not have 1:1 mapping must implement
5187 * their own getinfo(9E) function.
5190 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
5191 void *arg, void **result)
5193 _NOTE(ARGUNUSED(dip))
5194 int instance;
5196 if (infocmd != DDI_INFO_DEVT2INSTANCE)
5197 return (DDI_FAILURE);
5199 instance = getminor((dev_t)(uintptr_t)arg);
5200 *result = (void *)(uintptr_t)instance;
5201 return (DDI_SUCCESS);
5205 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd)
5207 _NOTE(ARGUNUSED(devi, cmd))
5208 return (DDI_FAILURE);
5212 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
5213 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
5215 _NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep))
5216 return (DDI_DMA_NOMAPPING);
5220 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
5221 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
5223 _NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep))
5224 return (DDI_DMA_BADATTR);
5228 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
5229 ddi_dma_handle_t handle)
5231 _NOTE(ARGUNUSED(dip, rdip, handle))
5232 return (DDI_FAILURE);
5236 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
5237 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
5238 ddi_dma_cookie_t *cp, uint_t *ccountp)
5240 _NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp))
5241 return (DDI_DMA_NOMAPPING);
5245 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
5246 ddi_dma_handle_t handle)
5248 _NOTE(ARGUNUSED(dip, rdip, handle))
5249 return (DDI_FAILURE);
5253 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
5254 ddi_dma_handle_t handle, off_t off, size_t len,
5255 uint_t cache_flags)
5257 _NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags))
5258 return (DDI_FAILURE);
5262 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
5263 ddi_dma_handle_t handle, uint_t win, off_t *offp,
5264 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
5266 _NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp))
5267 return (DDI_FAILURE);
5271 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
5272 ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
5273 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
5275 _NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags))
5276 return (DDI_FAILURE);
5279 void
5280 ddivoid(void)
5284 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
5285 struct pollhead **pollhdrp)
5287 _NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp))
5288 return (ENXIO);
5291 cred_t *
5292 ddi_get_cred(void)
5294 return (CRED());
5297 clock_t
5298 ddi_get_lbolt(void)
5300 return ((clock_t)lbolt_hybrid());
5303 int64_t
5304 ddi_get_lbolt64(void)
5306 return (lbolt_hybrid());
5309 time_t
5310 ddi_get_time(void)
5312 time_t now;
5314 if ((now = gethrestime_sec()) == 0) {
5315 timestruc_t ts;
5316 mutex_enter(&tod_lock);
5317 ts = tod_get();
5318 mutex_exit(&tod_lock);
5319 return (ts.tv_sec);
5320 } else {
5321 return (now);
5325 pid_t
5326 ddi_get_pid(void)
5328 return (ttoproc(curthread)->p_pid);
5331 kt_did_t
5332 ddi_get_kt_did(void)
5334 return (curthread->t_did);
5338 * This function returns B_TRUE if the caller can reasonably expect that a call
5339 * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened
5340 * by user-level signal. If it returns B_FALSE, then the caller should use
5341 * other means to make certain that the wait will not hang "forever."
5343 * It does not check the signal mask, nor for reception of any particular
5344 * signal.
5346 * Currently, a thread can receive a signal if it's not a kernel thread and it
5347 * is not in the middle of exit(2) tear-down. Threads that are in that
5348 * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to
5349 * cv_timedwait, and qwait_sig to qwait.
5351 boolean_t
5352 ddi_can_receive_sig(void)
5354 proc_t *pp;
5356 if (curthread->t_proc_flag & TP_LWPEXIT)
5357 return (B_FALSE);
5358 if ((pp = ttoproc(curthread)) == NULL)
5359 return (B_FALSE);
5360 return (pp->p_as != &kas);
5364 * Swap bytes in 16-bit [half-]words
5366 void
5367 swab(void *src, void *dst, size_t nbytes)
5369 uchar_t *pf = (uchar_t *)src;
5370 uchar_t *pt = (uchar_t *)dst;
5371 uchar_t tmp;
5372 int nshorts;
5374 nshorts = nbytes >> 1;
5376 while (--nshorts >= 0) {
5377 tmp = *pf++;
5378 *pt++ = *pf++;
5379 *pt++ = tmp;
5383 static void
5384 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp)
5386 int circ;
5387 struct ddi_minor_data *dp;
5389 ndi_devi_enter(ddip, &circ);
5390 if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) {
5391 DEVI(ddip)->devi_minor = dmdp;
5392 } else {
5393 while (dp->next != (struct ddi_minor_data *)NULL)
5394 dp = dp->next;
5395 dp->next = dmdp;
5397 ndi_devi_exit(ddip, circ);
5401 * Part of the obsolete SunCluster DDI Hooks.
5402 * Keep for binary compatibility
5404 minor_t
5405 ddi_getiminor(dev_t dev)
5407 return (getminor(dev));
5410 static int
5411 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name)
5413 int se_flag;
5414 int kmem_flag;
5415 int se_err;
5416 char *pathname, *class_name;
5417 sysevent_t *ev = NULL;
5418 sysevent_id_t eid;
5419 sysevent_value_t se_val;
5420 sysevent_attr_list_t *ev_attr_list = NULL;
5422 /* determine interrupt context */
5423 se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP;
5424 kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
5426 i_ddi_di_cache_invalidate();
5428 #ifdef DEBUG
5429 if ((se_flag == SE_NOSLEEP) && sunddi_debug) {
5430 cmn_err(CE_CONT, "ddi_create_minor_node: called from "
5431 "interrupt level by driver %s",
5432 ddi_driver_name(dip));
5434 #endif /* DEBUG */
5436 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag);
5437 if (ev == NULL) {
5438 goto fail;
5441 pathname = kmem_alloc(MAXPATHLEN, kmem_flag);
5442 if (pathname == NULL) {
5443 sysevent_free(ev);
5444 goto fail;
5447 (void) ddi_pathname(dip, pathname);
5448 ASSERT(strlen(pathname));
5449 se_val.value_type = SE_DATA_TYPE_STRING;
5450 se_val.value.sv_string = pathname;
5451 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5452 &se_val, se_flag) != 0) {
5453 kmem_free(pathname, MAXPATHLEN);
5454 sysevent_free(ev);
5455 goto fail;
5457 kmem_free(pathname, MAXPATHLEN);
5459 /* add the device class attribute */
5460 if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5461 se_val.value_type = SE_DATA_TYPE_STRING;
5462 se_val.value.sv_string = class_name;
5463 if (sysevent_add_attr(&ev_attr_list,
5464 DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5465 sysevent_free_attr(ev_attr_list);
5466 goto fail;
5471 * allow for NULL minor names
5473 if (minor_name != NULL) {
5474 se_val.value.sv_string = minor_name;
5475 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5476 &se_val, se_flag) != 0) {
5477 sysevent_free_attr(ev_attr_list);
5478 sysevent_free(ev);
5479 goto fail;
5483 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5484 sysevent_free_attr(ev_attr_list);
5485 sysevent_free(ev);
5486 goto fail;
5489 if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) {
5490 if (se_err == SE_NO_TRANSPORT) {
5491 cmn_err(CE_WARN, "/devices or /dev may not be current "
5492 "for driver %s (%s). Run devfsadm -i %s",
5493 ddi_driver_name(dip), "syseventd not responding",
5494 ddi_driver_name(dip));
5495 } else {
5496 sysevent_free(ev);
5497 goto fail;
5501 sysevent_free(ev);
5502 return (DDI_SUCCESS);
5503 fail:
5504 cmn_err(CE_WARN, "/devices or /dev may not be current "
5505 "for driver %s. Run devfsadm -i %s",
5506 ddi_driver_name(dip), ddi_driver_name(dip));
5507 return (DDI_SUCCESS);
5511 * failing to remove a minor node is not of interest
5512 * therefore we do not generate an error message
5514 static int
5515 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name)
5517 char *pathname, *class_name;
5518 sysevent_t *ev;
5519 sysevent_id_t eid;
5520 sysevent_value_t se_val;
5521 sysevent_attr_list_t *ev_attr_list = NULL;
5524 * only log ddi_remove_minor_node() calls outside the scope
5525 * of attach/detach reconfigurations and when the dip is
5526 * still initialized.
5528 if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) ||
5529 (i_ddi_node_state(dip) < DS_INITIALIZED)) {
5530 return (DDI_SUCCESS);
5533 i_ddi_di_cache_invalidate();
5535 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP);
5536 if (ev == NULL) {
5537 return (DDI_SUCCESS);
5540 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5541 if (pathname == NULL) {
5542 sysevent_free(ev);
5543 return (DDI_SUCCESS);
5546 (void) ddi_pathname(dip, pathname);
5547 ASSERT(strlen(pathname));
5548 se_val.value_type = SE_DATA_TYPE_STRING;
5549 se_val.value.sv_string = pathname;
5550 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5551 &se_val, SE_SLEEP) != 0) {
5552 kmem_free(pathname, MAXPATHLEN);
5553 sysevent_free(ev);
5554 return (DDI_SUCCESS);
5557 kmem_free(pathname, MAXPATHLEN);
5560 * allow for NULL minor names
5562 if (minor_name != NULL) {
5563 se_val.value.sv_string = minor_name;
5564 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5565 &se_val, SE_SLEEP) != 0) {
5566 sysevent_free_attr(ev_attr_list);
5567 goto fail;
5571 if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5572 /* add the device class, driver name and instance attributes */
5574 se_val.value_type = SE_DATA_TYPE_STRING;
5575 se_val.value.sv_string = class_name;
5576 if (sysevent_add_attr(&ev_attr_list,
5577 DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5578 sysevent_free_attr(ev_attr_list);
5579 goto fail;
5582 se_val.value_type = SE_DATA_TYPE_STRING;
5583 se_val.value.sv_string = (char *)ddi_driver_name(dip);
5584 if (sysevent_add_attr(&ev_attr_list,
5585 DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
5586 sysevent_free_attr(ev_attr_list);
5587 goto fail;
5590 se_val.value_type = SE_DATA_TYPE_INT32;
5591 se_val.value.sv_int32 = ddi_get_instance(dip);
5592 if (sysevent_add_attr(&ev_attr_list,
5593 DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
5594 sysevent_free_attr(ev_attr_list);
5595 goto fail;
5600 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5601 sysevent_free_attr(ev_attr_list);
5602 } else {
5603 (void) log_sysevent(ev, SE_SLEEP, &eid);
5605 fail:
5606 sysevent_free(ev);
5607 return (DDI_SUCCESS);
5611 * Derive the device class of the node.
5612 * Device class names aren't defined yet. Until this is done we use
5613 * devfs event subclass names as device class names.
5615 static int
5616 derive_devi_class(dev_info_t *dip, char *node_type, int flag)
5618 int rv = DDI_SUCCESS;
5620 if (i_ddi_devi_class(dip) == NULL) {
5621 if (strncmp(node_type, DDI_NT_BLOCK,
5622 sizeof (DDI_NT_BLOCK) - 1) == 0 &&
5623 (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' ||
5624 node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') &&
5625 strcmp(node_type, DDI_NT_FD) != 0) {
5627 rv = i_ddi_set_devi_class(dip, ESC_DISK, flag);
5629 } else if (strncmp(node_type, DDI_NT_NET,
5630 sizeof (DDI_NT_NET) - 1) == 0 &&
5631 (node_type[sizeof (DDI_NT_NET) - 1] == '\0' ||
5632 node_type[sizeof (DDI_NT_NET) - 1] == ':')) {
5634 rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag);
5636 } else if (strncmp(node_type, DDI_NT_PRINTER,
5637 sizeof (DDI_NT_PRINTER) - 1) == 0 &&
5638 (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' ||
5639 node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) {
5641 rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag);
5643 } else if (strncmp(node_type, DDI_PSEUDO,
5644 sizeof (DDI_PSEUDO) -1) == 0 &&
5645 (strncmp(ESC_LOFI, ddi_node_name(dip),
5646 sizeof (ESC_LOFI) -1) == 0)) {
5647 rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag);
5651 return (rv);
5655 * Check compliance with PSARC 2003/375:
5657 * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not
5658 * exceed IFNAMSIZ (16) characters in length.
5660 static boolean_t
5661 verify_name(char *name)
5663 size_t len = strlen(name);
5664 char *cp;
5666 if (len == 0 || len > IFNAMSIZ)
5667 return (B_FALSE);
5669 for (cp = name; *cp != '\0'; cp++) {
5670 if (!isalnum(*cp) && *cp != '_')
5671 return (B_FALSE);
5674 return (B_TRUE);
5678 * ddi_create_minor_common: Create a ddi_minor_data structure and
5679 * attach it to the given devinfo node.
5683 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type,
5684 minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype,
5685 const char *read_priv, const char *write_priv, mode_t priv_mode)
5687 struct ddi_minor_data *dmdp;
5688 major_t major;
5690 if (spec_type != S_IFCHR && spec_type != S_IFBLK)
5691 return (DDI_FAILURE);
5693 if (name == NULL)
5694 return (DDI_FAILURE);
5697 * Log a message if the minor number the driver is creating
5698 * is not expressible on the on-disk filesystem (currently
5699 * this is limited to 18 bits both by UFS). The device can
5700 * be opened via devfs, but not by device special files created
5701 * via mknod().
5703 if (minor_num > L_MAXMIN32) {
5704 cmn_err(CE_WARN,
5705 "%s%d:%s minor 0x%x too big for 32-bit applications",
5706 ddi_driver_name(dip), ddi_get_instance(dip),
5707 name, minor_num);
5708 return (DDI_FAILURE);
5711 /* dip must be bound and attached */
5712 major = ddi_driver_major(dip);
5713 ASSERT(major != DDI_MAJOR_T_NONE);
5716 * Default node_type to DDI_PSEUDO and issue notice in debug mode
5718 if (node_type == NULL) {
5719 node_type = DDI_PSEUDO;
5720 NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d "
5721 " minor node %s; default to DDI_PSEUDO",
5722 ddi_driver_name(dip), ddi_get_instance(dip), name));
5726 * If the driver is a network driver, ensure that the name falls within
5727 * the interface naming constraints specified by PSARC/2003/375.
5729 if (strcmp(node_type, DDI_NT_NET) == 0) {
5730 if (!verify_name(name))
5731 return (DDI_FAILURE);
5733 if (mtype == DDM_MINOR) {
5734 struct devnames *dnp = &devnamesp[major];
5736 /* Mark driver as a network driver */
5737 LOCK_DEV_OPS(&dnp->dn_lock);
5738 dnp->dn_flags |= DN_NETWORK_DRIVER;
5741 * If this minor node is created during the device
5742 * attachment, this is a physical network device.
5743 * Mark the driver as a physical network driver.
5745 if (DEVI_IS_ATTACHING(dip))
5746 dnp->dn_flags |= DN_NETWORK_PHYSDRIVER;
5747 UNLOCK_DEV_OPS(&dnp->dn_lock);
5751 if (mtype == DDM_MINOR) {
5752 if (derive_devi_class(dip, node_type, KM_NOSLEEP) !=
5753 DDI_SUCCESS)
5754 return (DDI_FAILURE);
5758 * Take care of minor number information for the node.
5761 if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data),
5762 KM_NOSLEEP)) == NULL) {
5763 return (DDI_FAILURE);
5765 if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) {
5766 kmem_free(dmdp, sizeof (struct ddi_minor_data));
5767 return (DDI_FAILURE);
5769 dmdp->dip = dip;
5770 dmdp->ddm_dev = makedevice(major, minor_num);
5771 dmdp->ddm_spec_type = spec_type;
5772 dmdp->ddm_node_type = node_type;
5773 dmdp->type = mtype;
5774 if (flag & CLONE_DEV) {
5775 dmdp->type = DDM_ALIAS;
5776 dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major);
5778 if (flag & PRIVONLY_DEV) {
5779 dmdp->ddm_flags |= DM_NO_FSPERM;
5781 if (read_priv || write_priv) {
5782 dmdp->ddm_node_priv =
5783 devpolicy_priv_by_name(read_priv, write_priv);
5785 dmdp->ddm_priv_mode = priv_mode;
5787 ddi_append_minor_node(dip, dmdp);
5790 * only log ddi_create_minor_node() calls which occur
5791 * outside the scope of attach(9e)/detach(9e) reconfigurations
5793 if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) &&
5794 mtype != DDM_INTERNAL_PATH) {
5795 (void) i_log_devfs_minor_create(dip, name);
5799 * Check if any dacf rules match the creation of this minor node
5801 dacfc_match_create_minor(name, node_type, dip, dmdp, flag);
5802 return (DDI_SUCCESS);
5806 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
5807 minor_t minor_num, char *node_type, int flag)
5809 return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5810 node_type, flag, DDM_MINOR, NULL, NULL, 0));
5814 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
5815 minor_t minor_num, char *node_type, int flag,
5816 const char *rdpriv, const char *wrpriv, mode_t priv_mode)
5818 return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5819 node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode));
5823 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type,
5824 minor_t minor_num, char *node_type, int flag)
5826 return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5827 node_type, flag, DDM_DEFAULT, NULL, NULL, 0));
5831 * Internal (non-ddi) routine for drivers to export names known
5832 * to the kernel (especially ddi_pathname_to_dev_t and friends)
5833 * but not exported externally to /dev
5836 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type,
5837 minor_t minor_num)
5839 return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5840 "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0));
5843 void
5844 ddi_remove_minor_node(dev_info_t *dip, char *name)
5846 int circ;
5847 struct ddi_minor_data *dmdp, *dmdp1;
5848 struct ddi_minor_data **dmdp_prev;
5850 ndi_devi_enter(dip, &circ);
5851 dmdp_prev = &DEVI(dip)->devi_minor;
5852 dmdp = DEVI(dip)->devi_minor;
5853 while (dmdp != NULL) {
5854 dmdp1 = dmdp->next;
5855 if ((name == NULL || (dmdp->ddm_name != NULL &&
5856 strcmp(name, dmdp->ddm_name) == 0))) {
5857 if (dmdp->ddm_name != NULL) {
5858 if (dmdp->type != DDM_INTERNAL_PATH)
5859 (void) i_log_devfs_minor_remove(dip,
5860 dmdp->ddm_name);
5861 kmem_free(dmdp->ddm_name,
5862 strlen(dmdp->ddm_name) + 1);
5865 * Release device privilege, if any.
5866 * Release dacf client data associated with this minor
5867 * node by storing NULL.
5869 if (dmdp->ddm_node_priv)
5870 dpfree(dmdp->ddm_node_priv);
5871 dacf_store_info((dacf_infohdl_t)dmdp, NULL);
5872 kmem_free(dmdp, sizeof (struct ddi_minor_data));
5873 *dmdp_prev = dmdp1;
5875 * OK, we found it, so get out now -- if we drive on,
5876 * we will strcmp against garbage. See 1139209.
5878 if (name != NULL)
5879 break;
5880 } else {
5881 dmdp_prev = &dmdp->next;
5883 dmdp = dmdp1;
5885 ndi_devi_exit(dip, circ);
5890 ddi_in_panic()
5892 return (panicstr != NULL);
5897 * Find first bit set in a mask (returned counting from 1 up)
5901 ddi_ffs(long mask)
5903 return (ffs(mask));
5907 * Find last bit set. Take mask and clear
5908 * all but the most significant bit, and
5909 * then let ffs do the rest of the work.
5911 * Algorithm courtesy of Steve Chessin.
5915 ddi_fls(long mask)
5917 while (mask) {
5918 long nx;
5920 if ((nx = (mask & (mask - 1))) == 0)
5921 break;
5922 mask = nx;
5924 return (ffs(mask));
5928 * The ddi_soft_state_* routines comprise generic storage management utilities
5929 * for driver soft state structures (in "the old days," this was done with
5930 * statically sized array - big systems and dynamic loading and unloading
5931 * make heap allocation more attractive).
5935 * Allocate a set of pointers to 'n_items' objects of size 'size'
5936 * bytes. Each pointer is initialized to nil.
5938 * The 'size' and 'n_items' values are stashed in the opaque
5939 * handle returned to the caller.
5941 * This implementation interprets 'set of pointers' to mean 'array
5942 * of pointers' but note that nothing in the interface definition
5943 * precludes an implementation that uses, for example, a linked list.
5944 * However there should be a small efficiency gain from using an array
5945 * at lookup time.
5947 * NOTE As an optimization, we make our growable array allocations in
5948 * powers of two (bytes), since that's how much kmem_alloc (currently)
5949 * gives us anyway. It should save us some free/realloc's ..
5951 * As a further optimization, we make the growable array start out
5952 * with MIN_N_ITEMS in it.
5955 #define MIN_N_ITEMS 8 /* 8 void *'s == 32 bytes */
5958 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
5960 i_ddi_soft_state *ss;
5962 if (state_p == NULL || size == 0)
5963 return (EINVAL);
5965 ss = kmem_zalloc(sizeof (*ss), KM_SLEEP);
5966 mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL);
5967 ss->size = size;
5969 if (n_items < MIN_N_ITEMS)
5970 ss->n_items = MIN_N_ITEMS;
5971 else {
5972 int bitlog;
5974 if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items))
5975 bitlog--;
5976 ss->n_items = 1 << bitlog;
5979 ASSERT(ss->n_items >= n_items);
5981 ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP);
5983 *state_p = ss;
5984 return (0);
5988 * Allocate a state structure of size 'size' to be associated
5989 * with item 'item'.
5991 * In this implementation, the array is extended to
5992 * allow the requested offset, if needed.
5995 ddi_soft_state_zalloc(void *state, int item)
5997 i_ddi_soft_state *ss = (i_ddi_soft_state *)state;
5998 void **array;
5999 void *new_element;
6001 if ((state == NULL) || (item < 0))
6002 return (DDI_FAILURE);
6004 mutex_enter(&ss->lock);
6005 if (ss->size == 0) {
6006 mutex_exit(&ss->lock);
6007 cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s",
6008 mod_containing_pc(caller()));
6009 return (DDI_FAILURE);
6012 array = ss->array; /* NULL if ss->n_items == 0 */
6013 ASSERT(ss->n_items != 0 && array != NULL);
6016 * refuse to tread on an existing element
6018 if (item < ss->n_items && array[item] != NULL) {
6019 mutex_exit(&ss->lock);
6020 return (DDI_FAILURE);
6024 * Allocate a new element to plug in
6026 new_element = kmem_zalloc(ss->size, KM_SLEEP);
6029 * Check if the array is big enough, if not, grow it.
6031 if (item >= ss->n_items) {
6032 void **new_array;
6033 size_t new_n_items;
6034 struct i_ddi_soft_state *dirty;
6037 * Allocate a new array of the right length, copy
6038 * all the old pointers to the new array, then
6039 * if it exists at all, put the old array on the
6040 * dirty list.
6042 * Note that we can't kmem_free() the old array.
6044 * Why -- well the 'get' operation is 'mutex-free', so we
6045 * can't easily catch a suspended thread that is just about
6046 * to dereference the array we just grew out of. So we
6047 * cons up a header and put it on a list of 'dirty'
6048 * pointer arrays. (Dirty in the sense that there may
6049 * be suspended threads somewhere that are in the middle
6050 * of referencing them). Fortunately, we -can- garbage
6051 * collect it all at ddi_soft_state_fini time.
6053 new_n_items = ss->n_items;
6054 while (new_n_items < (1 + item))
6055 new_n_items <<= 1; /* double array size .. */
6057 ASSERT(new_n_items >= (1 + item)); /* sanity check! */
6059 new_array = kmem_zalloc(new_n_items * sizeof (void *),
6060 KM_SLEEP);
6062 * Copy the pointers into the new array
6064 bcopy(array, new_array, ss->n_items * sizeof (void *));
6067 * Save the old array on the dirty list
6069 dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP);
6070 dirty->array = ss->array;
6071 dirty->n_items = ss->n_items;
6072 dirty->next = ss->next;
6073 ss->next = dirty;
6075 ss->array = (array = new_array);
6076 ss->n_items = new_n_items;
6079 ASSERT(array != NULL && item < ss->n_items && array[item] == NULL);
6081 array[item] = new_element;
6083 mutex_exit(&ss->lock);
6084 return (DDI_SUCCESS);
6088 * Fetch a pointer to the allocated soft state structure.
6090 * This is designed to be cheap.
6092 * There's an argument that there should be more checking for
6093 * nil pointers and out of bounds on the array.. but we do a lot
6094 * of that in the alloc/free routines.
6096 * An array has the convenience that we don't need to lock read-access
6097 * to it c.f. a linked list. However our "expanding array" strategy
6098 * means that we should hold a readers lock on the i_ddi_soft_state
6099 * structure.
6101 * However, from a performance viewpoint, we need to do it without
6102 * any locks at all -- this also makes it a leaf routine. The algorithm
6103 * is 'lock-free' because we only discard the pointer arrays at
6104 * ddi_soft_state_fini() time.
6106 void *
6107 ddi_get_soft_state(void *state, int item)
6109 i_ddi_soft_state *ss = (i_ddi_soft_state *)state;
6111 ASSERT((ss != NULL) && (item >= 0));
6113 if (item < ss->n_items && ss->array != NULL)
6114 return (ss->array[item]);
6115 return (NULL);
6119 * Free the state structure corresponding to 'item.' Freeing an
6120 * element that has either gone or was never allocated is not
6121 * considered an error. Note that we free the state structure, but
6122 * we don't shrink our pointer array, or discard 'dirty' arrays,
6123 * since even a few pointers don't really waste too much memory.
6125 * Passing an item number that is out of bounds, or a null pointer will
6126 * provoke an error message.
6128 void
6129 ddi_soft_state_free(void *state, int item)
6131 i_ddi_soft_state *ss = (i_ddi_soft_state *)state;
6132 void **array;
6133 void *element;
6134 static char msg[] = "ddi_soft_state_free:";
6136 if (ss == NULL) {
6137 cmn_err(CE_WARN, "%s null handle: %s",
6138 msg, mod_containing_pc(caller()));
6139 return;
6142 element = NULL;
6144 mutex_enter(&ss->lock);
6146 if ((array = ss->array) == NULL || ss->size == 0) {
6147 cmn_err(CE_WARN, "%s bad handle: %s",
6148 msg, mod_containing_pc(caller()));
6149 } else if (item < 0 || item >= ss->n_items) {
6150 cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s",
6151 msg, item, ss->n_items - 1, mod_containing_pc(caller()));
6152 } else if (array[item] != NULL) {
6153 element = array[item];
6154 array[item] = NULL;
6157 mutex_exit(&ss->lock);
6159 if (element)
6160 kmem_free(element, ss->size);
6164 * Free the entire set of pointers, and any
6165 * soft state structures contained therein.
6167 * Note that we don't grab the ss->lock mutex, even though
6168 * we're inspecting the various fields of the data structure.
6170 * There is an implicit assumption that this routine will
6171 * never run concurrently with any of the above on this
6172 * particular state structure i.e. by the time the driver
6173 * calls this routine, there should be no other threads
6174 * running in the driver.
6176 void
6177 ddi_soft_state_fini(void **state_p)
6179 i_ddi_soft_state *ss, *dirty;
6180 int item;
6181 static char msg[] = "ddi_soft_state_fini:";
6183 if (state_p == NULL ||
6184 (ss = (i_ddi_soft_state *)(*state_p)) == NULL) {
6185 cmn_err(CE_WARN, "%s null handle: %s",
6186 msg, mod_containing_pc(caller()));
6187 return;
6190 if (ss->size == 0) {
6191 cmn_err(CE_WARN, "%s bad handle: %s",
6192 msg, mod_containing_pc(caller()));
6193 return;
6196 if (ss->n_items > 0) {
6197 for (item = 0; item < ss->n_items; item++)
6198 ddi_soft_state_free(ss, item);
6199 kmem_free(ss->array, ss->n_items * sizeof (void *));
6203 * Now delete any dirty arrays from previous 'grow' operations
6205 for (dirty = ss->next; dirty; dirty = ss->next) {
6206 ss->next = dirty->next;
6207 kmem_free(dirty->array, dirty->n_items * sizeof (void *));
6208 kmem_free(dirty, sizeof (*dirty));
6211 mutex_destroy(&ss->lock);
6212 kmem_free(ss, sizeof (*ss));
6214 *state_p = NULL;
6217 #define SS_N_ITEMS_PER_HASH 16
6218 #define SS_MIN_HASH_SZ 16
6219 #define SS_MAX_HASH_SZ 4096
6222 ddi_soft_state_bystr_init(ddi_soft_state_bystr **state_p, size_t size,
6223 int n_items)
6225 i_ddi_soft_state_bystr *sss;
6226 int hash_sz;
6228 ASSERT(state_p && size && n_items);
6229 if ((state_p == NULL) || (size == 0) || (n_items == 0))
6230 return (EINVAL);
6232 /* current implementation is based on hash, convert n_items to hash */
6233 hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6234 if (hash_sz < SS_MIN_HASH_SZ)
6235 hash_sz = SS_MIN_HASH_SZ;
6236 else if (hash_sz > SS_MAX_HASH_SZ)
6237 hash_sz = SS_MAX_HASH_SZ;
6239 /* allocate soft_state pool */
6240 sss = kmem_zalloc(sizeof (*sss), KM_SLEEP);
6241 sss->ss_size = size;
6242 sss->ss_mod_hash = mod_hash_create_strhash("soft_state_bystr",
6243 hash_sz, mod_hash_null_valdtor);
6244 *state_p = (ddi_soft_state_bystr *)sss;
6245 return (0);
6249 ddi_soft_state_bystr_zalloc(ddi_soft_state_bystr *state, const char *str)
6251 i_ddi_soft_state_bystr *sss = (i_ddi_soft_state_bystr *)state;
6252 void *sso;
6253 char *dup_str;
6255 ASSERT(sss && str && sss->ss_mod_hash);
6256 if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6257 return (DDI_FAILURE);
6258 sso = kmem_zalloc(sss->ss_size, KM_SLEEP);
6259 dup_str = i_ddi_strdup((char *)str, KM_SLEEP);
6260 if (mod_hash_insert(sss->ss_mod_hash,
6261 (mod_hash_key_t)dup_str, (mod_hash_val_t)sso) == 0)
6262 return (DDI_SUCCESS);
6265 * The only error from an strhash insert is caused by a duplicate key.
6266 * We refuse to tread on an existing elements, so free and fail.
6268 kmem_free(dup_str, strlen(dup_str) + 1);
6269 kmem_free(sso, sss->ss_size);
6270 return (DDI_FAILURE);
6273 void *
6274 ddi_soft_state_bystr_get(ddi_soft_state_bystr *state, const char *str)
6276 i_ddi_soft_state_bystr *sss = (i_ddi_soft_state_bystr *)state;
6277 void *sso;
6279 ASSERT(sss && str && sss->ss_mod_hash);
6280 if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6281 return (NULL);
6283 if (mod_hash_find(sss->ss_mod_hash,
6284 (mod_hash_key_t)str, (mod_hash_val_t *)&sso) == 0)
6285 return (sso);
6286 return (NULL);
6289 void
6290 ddi_soft_state_bystr_free(ddi_soft_state_bystr *state, const char *str)
6292 i_ddi_soft_state_bystr *sss = (i_ddi_soft_state_bystr *)state;
6293 void *sso;
6295 ASSERT(sss && str && sss->ss_mod_hash);
6296 if ((sss == NULL) || (str == NULL) || (sss->ss_mod_hash == NULL))
6297 return;
6299 (void) mod_hash_remove(sss->ss_mod_hash,
6300 (mod_hash_key_t)str, (mod_hash_val_t *)&sso);
6301 kmem_free(sso, sss->ss_size);
6304 void
6305 ddi_soft_state_bystr_fini(ddi_soft_state_bystr **state_p)
6307 i_ddi_soft_state_bystr *sss;
6309 ASSERT(state_p);
6310 if (state_p == NULL)
6311 return;
6313 sss = (i_ddi_soft_state_bystr *)(*state_p);
6314 if (sss == NULL)
6315 return;
6317 ASSERT(sss->ss_mod_hash);
6318 if (sss->ss_mod_hash) {
6319 mod_hash_destroy_strhash(sss->ss_mod_hash);
6320 sss->ss_mod_hash = NULL;
6323 kmem_free(sss, sizeof (*sss));
6324 *state_p = NULL;
6328 * The ddi_strid_* routines provide string-to-index management utilities.
6330 /* allocate and initialize an strid set */
6332 ddi_strid_init(ddi_strid **strid_p, int n_items)
6334 i_ddi_strid *ss;
6335 int hash_sz;
6337 if (strid_p == NULL)
6338 return (DDI_FAILURE);
6340 /* current implementation is based on hash, convert n_items to hash */
6341 hash_sz = n_items / SS_N_ITEMS_PER_HASH;
6342 if (hash_sz < SS_MIN_HASH_SZ)
6343 hash_sz = SS_MIN_HASH_SZ;
6344 else if (hash_sz > SS_MAX_HASH_SZ)
6345 hash_sz = SS_MAX_HASH_SZ;
6347 ss = kmem_alloc(sizeof (*ss), KM_SLEEP);
6348 ss->strid_chunksz = n_items;
6349 ss->strid_spacesz = n_items;
6350 ss->strid_space = id_space_create("strid", 1, n_items);
6351 ss->strid_bystr = mod_hash_create_strhash("strid_bystr", hash_sz,
6352 mod_hash_null_valdtor);
6353 ss->strid_byid = mod_hash_create_idhash("strid_byid", hash_sz,
6354 mod_hash_null_valdtor);
6355 *strid_p = (ddi_strid *)ss;
6356 return (DDI_SUCCESS);
6359 /* allocate an id mapping within the specified set for str, return id */
6360 static id_t
6361 i_ddi_strid_alloc(ddi_strid *strid, char *str)
6363 i_ddi_strid *ss = (i_ddi_strid *)strid;
6364 id_t id;
6365 char *s;
6367 ASSERT(ss && str);
6368 if ((ss == NULL) || (str == NULL))
6369 return (0);
6372 * Allocate an id using VM_FIRSTFIT in order to keep allocated id
6373 * range as compressed as possible. This is important to minimize
6374 * the amount of space used when the id is used as a ddi_soft_state
6375 * index by the caller.
6377 * If the id list is exhausted, increase the size of the list
6378 * by the chuck size specified in ddi_strid_init and reattempt
6379 * the allocation
6381 if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1) {
6382 id_space_extend(ss->strid_space, ss->strid_spacesz,
6383 ss->strid_spacesz + ss->strid_chunksz);
6384 ss->strid_spacesz += ss->strid_chunksz;
6385 if ((id = id_allocff_nosleep(ss->strid_space)) == (id_t)-1)
6386 return (0);
6390 * NOTE: since we create and destroy in unison we can save space by
6391 * using bystr key as the byid value. This means destroy must occur
6392 * in (byid, bystr) order.
6394 s = i_ddi_strdup(str, KM_SLEEP);
6395 if (mod_hash_insert(ss->strid_bystr, (mod_hash_key_t)s,
6396 (mod_hash_val_t)(intptr_t)id) != 0) {
6397 ddi_strid_free(strid, id);
6398 return (0);
6400 if (mod_hash_insert(ss->strid_byid, (mod_hash_key_t)(intptr_t)id,
6401 (mod_hash_val_t)s) != 0) {
6402 ddi_strid_free(strid, id);
6403 return (0);
6406 /* NOTE: s if freed on mod_hash_destroy by mod_hash_strval_dtor */
6407 return (id);
6410 /* allocate an id mapping within the specified set for str, return id */
6411 id_t
6412 ddi_strid_alloc(ddi_strid *strid, char *str)
6414 return (i_ddi_strid_alloc(strid, str));
6417 /* return the id within the specified strid given the str */
6418 id_t
6419 ddi_strid_str2id(ddi_strid *strid, char *str)
6421 i_ddi_strid *ss = (i_ddi_strid *)strid;
6422 id_t id = 0;
6423 mod_hash_val_t hv;
6425 ASSERT(ss && str);
6426 if (ss && str && (mod_hash_find(ss->strid_bystr,
6427 (mod_hash_key_t)str, &hv) == 0))
6428 id = (int)(intptr_t)hv;
6429 return (id);
6432 /* return str within the specified strid given the id */
6433 char *
6434 ddi_strid_id2str(ddi_strid *strid, id_t id)
6436 i_ddi_strid *ss = (i_ddi_strid *)strid;
6437 char *str = NULL;
6438 mod_hash_val_t hv;
6440 ASSERT(ss && id > 0);
6441 if (ss && (id > 0) && (mod_hash_find(ss->strid_byid,
6442 (mod_hash_key_t)(uintptr_t)id, &hv) == 0))
6443 str = (char *)hv;
6444 return (str);
6447 /* free the id mapping within the specified strid */
6448 void
6449 ddi_strid_free(ddi_strid *strid, id_t id)
6451 i_ddi_strid *ss = (i_ddi_strid *)strid;
6452 char *str;
6454 ASSERT(ss && id > 0);
6455 if ((ss == NULL) || (id <= 0))
6456 return;
6458 /* bystr key is byid value: destroy order must be (byid, bystr) */
6459 str = ddi_strid_id2str(strid, id);
6460 (void) mod_hash_destroy(ss->strid_byid, (mod_hash_key_t)(uintptr_t)id);
6461 id_free(ss->strid_space, id);
6463 if (str)
6464 (void) mod_hash_destroy(ss->strid_bystr, (mod_hash_key_t)str);
6467 /* destroy the strid set */
6468 void
6469 ddi_strid_fini(ddi_strid **strid_p)
6471 i_ddi_strid *ss;
6473 ASSERT(strid_p);
6474 if (strid_p == NULL)
6475 return;
6477 ss = (i_ddi_strid *)(*strid_p);
6478 if (ss == NULL)
6479 return;
6481 /* bystr key is byid value: destroy order must be (byid, bystr) */
6482 if (ss->strid_byid)
6483 mod_hash_destroy_hash(ss->strid_byid);
6484 if (ss->strid_byid)
6485 mod_hash_destroy_hash(ss->strid_bystr);
6486 if (ss->strid_space)
6487 id_space_destroy(ss->strid_space);
6488 kmem_free(ss, sizeof (*ss));
6489 *strid_p = NULL;
6493 * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'.
6494 * Storage is double buffered to prevent updates during devi_addr use -
6495 * double buffering is adaquate for reliable ddi_deviname() consumption.
6496 * The double buffer is not freed until dev_info structure destruction
6497 * (by i_ddi_free_node).
6499 void
6500 ddi_set_name_addr(dev_info_t *dip, char *name)
6502 char *buf = DEVI(dip)->devi_addr_buf;
6503 char *newaddr;
6505 if (buf == NULL) {
6506 buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP);
6507 DEVI(dip)->devi_addr_buf = buf;
6510 if (name) {
6511 ASSERT(strlen(name) < MAXNAMELEN);
6512 newaddr = (DEVI(dip)->devi_addr == buf) ?
6513 (buf + MAXNAMELEN) : buf;
6514 (void) strlcpy(newaddr, name, MAXNAMELEN);
6515 } else
6516 newaddr = NULL;
6518 DEVI(dip)->devi_addr = newaddr;
6521 char *
6522 ddi_get_name_addr(dev_info_t *dip)
6524 return (DEVI(dip)->devi_addr);
6527 void
6528 ddi_set_parent_data(dev_info_t *dip, void *pd)
6530 DEVI(dip)->devi_parent_data = pd;
6533 void *
6534 ddi_get_parent_data(dev_info_t *dip)
6536 return (DEVI(dip)->devi_parent_data);
6540 * ddi_name_to_major: returns the major number of a named module,
6541 * derived from the current driver alias binding.
6543 * Caveat: drivers should avoid the use of this function, in particular
6544 * together with ddi_get_name/ddi_binding name, as per
6545 * major = ddi_name_to_major(ddi_get_name(devi));
6546 * ddi_name_to_major() relies on the state of the device/alias binding,
6547 * which can and does change dynamically as aliases are administered
6548 * over time. An attached device instance cannot rely on the major
6549 * number returned by ddi_name_to_major() to match its own major number.
6551 * For driver use, ddi_driver_major() reliably returns the major number
6552 * for the module to which the device was bound at attach time over
6553 * the life of the instance.
6554 * major = ddi_driver_major(dev_info_t *)
6556 major_t
6557 ddi_name_to_major(char *name)
6559 return (mod_name_to_major(name));
6563 * ddi_major_to_name: Returns the module name bound to a major number.
6565 char *
6566 ddi_major_to_name(major_t major)
6568 return (mod_major_to_name(major));
6572 * Return the name of the devinfo node pointed at by 'dip' in the buffer
6573 * pointed at by 'name.' A devinfo node is named as a result of calling
6574 * ddi_initchild().
6576 * Note: the driver must be held before calling this function!
6578 char *
6579 ddi_deviname(dev_info_t *dip, char *name)
6581 char *addrname;
6582 char none = '\0';
6584 if (dip == ddi_root_node()) {
6585 *name = '\0';
6586 return (name);
6589 if (i_ddi_node_state(dip) < DS_BOUND) {
6590 addrname = &none;
6591 } else {
6593 * Use ddi_get_name_addr() without checking state so we get
6594 * a unit-address if we are called after ddi_set_name_addr()
6595 * by nexus DDI_CTL_INITCHILD code, but before completing
6596 * node promotion to DS_INITIALIZED. We currently have
6597 * two situations where we are called in this state:
6598 * o For framework processing of a path-oriented alias.
6599 * o If a SCSA nexus driver calls ddi_devid_register()
6600 * from it's tran_tgt_init(9E) implementation.
6602 addrname = ddi_get_name_addr(dip);
6603 if (addrname == NULL)
6604 addrname = &none;
6607 if (*addrname == '\0') {
6608 (void) sprintf(name, "/%s", ddi_node_name(dip));
6609 } else {
6610 (void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname);
6613 return (name);
6617 * Spits out the name of device node, typically name@addr, for a given node,
6618 * using the driver name, not the nodename.
6620 * Used by match_parent. Not to be used elsewhere.
6622 char *
6623 i_ddi_parname(dev_info_t *dip, char *name)
6625 char *addrname;
6627 if (dip == ddi_root_node()) {
6628 *name = '\0';
6629 return (name);
6632 ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
6634 if (*(addrname = ddi_get_name_addr(dip)) == '\0')
6635 (void) sprintf(name, "%s", ddi_binding_name(dip));
6636 else
6637 (void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname);
6638 return (name);
6641 static char *
6642 pathname_work(dev_info_t *dip, char *path)
6644 char *bp;
6646 if (dip == ddi_root_node()) {
6647 *path = '\0';
6648 return (path);
6650 (void) pathname_work(ddi_get_parent(dip), path);
6651 bp = path + strlen(path);
6652 (void) ddi_deviname(dip, bp);
6653 return (path);
6656 char *
6657 ddi_pathname(dev_info_t *dip, char *path)
6659 return (pathname_work(dip, path));
6662 char *
6663 ddi_pathname_minor(struct ddi_minor_data *dmdp, char *path)
6665 if (dmdp->dip == NULL)
6666 *path = '\0';
6667 else {
6668 (void) ddi_pathname(dmdp->dip, path);
6669 if (dmdp->ddm_name) {
6670 (void) strcat(path, ":");
6671 (void) strcat(path, dmdp->ddm_name);
6674 return (path);
6677 static char *
6678 pathname_work_obp(dev_info_t *dip, char *path)
6680 char *bp;
6681 char *obp_path;
6684 * look up the "obp-path" property, return the path if it exists
6686 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6687 "obp-path", &obp_path) == DDI_PROP_SUCCESS) {
6688 (void) strcpy(path, obp_path);
6689 ddi_prop_free(obp_path);
6690 return (path);
6694 * stop at root, no obp path
6696 if (dip == ddi_root_node()) {
6697 return (NULL);
6700 obp_path = pathname_work_obp(ddi_get_parent(dip), path);
6701 if (obp_path == NULL)
6702 return (NULL);
6705 * append our component to parent's obp path
6707 bp = path + strlen(path);
6708 if (*(bp - 1) != '/')
6709 (void) strcat(bp++, "/");
6710 (void) ddi_deviname(dip, bp);
6711 return (path);
6715 * return the 'obp-path' based path for the given node, or NULL if the node
6716 * does not have a different obp path. NOTE: Unlike ddi_pathname, this
6717 * function can't be called from interrupt context (since we need to
6718 * lookup a string property).
6720 char *
6721 ddi_pathname_obp(dev_info_t *dip, char *path)
6723 ASSERT(!servicing_interrupt());
6724 if (dip == NULL || path == NULL)
6725 return (NULL);
6727 /* split work into a separate function to aid debugging */
6728 return (pathname_work_obp(dip, path));
6732 ddi_pathname_obp_set(dev_info_t *dip, char *component)
6734 dev_info_t *pdip;
6735 char *obp_path = NULL;
6736 int rc = DDI_FAILURE;
6738 if (dip == NULL)
6739 return (DDI_FAILURE);
6741 obp_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6743 pdip = ddi_get_parent(dip);
6745 if (ddi_pathname_obp(pdip, obp_path) == NULL) {
6746 (void) ddi_pathname(pdip, obp_path);
6749 if (component) {
6750 (void) strncat(obp_path, "/", MAXPATHLEN);
6751 (void) strncat(obp_path, component, MAXPATHLEN);
6753 rc = ndi_prop_update_string(DDI_DEV_T_NONE, dip, "obp-path",
6754 obp_path);
6756 if (obp_path)
6757 kmem_free(obp_path, MAXPATHLEN);
6759 return (rc);
6763 * Given a dev_t, return the pathname of the corresponding device in the
6764 * buffer pointed at by "path." The buffer is assumed to be large enough
6765 * to hold the pathname of the device (MAXPATHLEN).
6767 * The pathname of a device is the pathname of the devinfo node to which
6768 * the device "belongs," concatenated with the character ':' and the name
6769 * of the minor node corresponding to the dev_t. If spec_type is 0 then
6770 * just the pathname of the devinfo node is returned without driving attach
6771 * of that node. For a non-zero spec_type, an attach is performed and a
6772 * search of the minor list occurs.
6774 * It is possible that the path associated with the dev_t is not
6775 * currently available in the devinfo tree. In order to have a
6776 * dev_t, a device must have been discovered before, which means
6777 * that the path is always in the instance tree. The one exception
6778 * to this is if the dev_t is associated with a pseudo driver, in
6779 * which case the device must exist on the pseudo branch of the
6780 * devinfo tree as a result of parsing .conf files.
6783 ddi_dev_pathname(dev_t devt, int spec_type, char *path)
6785 int circ;
6786 major_t major = getmajor(devt);
6787 int instance;
6788 dev_info_t *dip;
6789 char *minorname;
6790 char *drvname;
6792 if (major >= devcnt)
6793 goto fail;
6794 if (major == clone_major) {
6795 /* clone has no minor nodes, manufacture the path here */
6796 if ((drvname = ddi_major_to_name(getminor(devt))) == NULL)
6797 goto fail;
6799 (void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname);
6800 return (DDI_SUCCESS);
6803 /* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */
6804 if ((instance = dev_to_instance(devt)) == -1)
6805 goto fail;
6807 /* reconstruct the path given the major/instance */
6808 if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS)
6809 goto fail;
6811 /* if spec_type given we must drive attach and search minor nodes */
6812 if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) {
6813 /* attach the path so we can search minors */
6814 if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL)
6815 goto fail;
6817 /* Add minorname to path. */
6818 ndi_devi_enter(dip, &circ);
6819 minorname = i_ddi_devtspectype_to_minorname(dip,
6820 devt, spec_type);
6821 if (minorname) {
6822 (void) strcat(path, ":");
6823 (void) strcat(path, minorname);
6825 ndi_devi_exit(dip, circ);
6826 ddi_release_devi(dip);
6827 if (minorname == NULL)
6828 goto fail;
6830 ASSERT(strlen(path) < MAXPATHLEN);
6831 return (DDI_SUCCESS);
6833 fail: *path = 0;
6834 return (DDI_FAILURE);
6838 * Given a major number and an instance, return the path.
6839 * This interface does NOT drive attach.
6842 e_ddi_majorinstance_to_path(major_t major, int instance, char *path)
6844 struct devnames *dnp;
6845 dev_info_t *dip;
6847 if ((major >= devcnt) || (instance == -1)) {
6848 *path = 0;
6849 return (DDI_FAILURE);
6852 /* look for the major/instance in the instance tree */
6853 if (e_ddi_instance_majorinstance_to_path(major, instance,
6854 path) == DDI_SUCCESS) {
6855 ASSERT(strlen(path) < MAXPATHLEN);
6856 return (DDI_SUCCESS);
6860 * Not in instance tree, find the instance on the per driver list and
6861 * construct path to instance via ddi_pathname(). This is how paths
6862 * down the 'pseudo' branch are constructed.
6864 dnp = &(devnamesp[major]);
6865 LOCK_DEV_OPS(&(dnp->dn_lock));
6866 for (dip = dnp->dn_head; dip;
6867 dip = (dev_info_t *)DEVI(dip)->devi_next) {
6868 /* Skip if instance does not match. */
6869 if (DEVI(dip)->devi_instance != instance)
6870 continue;
6873 * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND
6874 * node demotion, so it is not an effective way of ensuring
6875 * that the ddi_pathname result has a unit-address. Instead,
6876 * we reverify the node state after calling ddi_pathname().
6878 if (i_ddi_node_state(dip) >= DS_INITIALIZED) {
6879 (void) ddi_pathname(dip, path);
6880 if (i_ddi_node_state(dip) < DS_INITIALIZED)
6881 continue;
6882 UNLOCK_DEV_OPS(&(dnp->dn_lock));
6883 ASSERT(strlen(path) < MAXPATHLEN);
6884 return (DDI_SUCCESS);
6887 UNLOCK_DEV_OPS(&(dnp->dn_lock));
6889 /* can't reconstruct the path */
6890 *path = 0;
6891 return (DDI_FAILURE);
6894 #define GLD_DRIVER_PPA "SUNW,gld_v0_ppa"
6897 * Given the dip for a network interface return the ppa for that interface.
6899 * In all cases except GLD v0 drivers, the ppa == instance.
6900 * In the case of GLD v0 drivers, the ppa is equal to the attach order.
6901 * So for these drivers when the attach routine calls gld_register(),
6902 * the GLD framework creates an integer property called "gld_driver_ppa"
6903 * that can be queried here.
6905 * The only time this function is used is when a system is booting over nfs.
6906 * In this case the system has to resolve the pathname of the boot device
6907 * to it's ppa.
6910 i_ddi_devi_get_ppa(dev_info_t *dip)
6912 return (ddi_prop_get_int(DDI_DEV_T_ANY, dip,
6913 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
6914 GLD_DRIVER_PPA, ddi_get_instance(dip)));
6918 * i_ddi_devi_set_ppa() should only be called from gld_register()
6919 * and only for GLD v0 drivers
6921 void
6922 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa)
6924 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa);
6929 * Private DDI Console bell functions.
6931 void
6932 ddi_ring_console_bell(clock_t duration)
6934 if (ddi_console_bell_func != NULL)
6935 (*ddi_console_bell_func)(duration);
6938 void
6939 ddi_set_console_bell(void (*bellfunc)(clock_t duration))
6941 ddi_console_bell_func = bellfunc;
6945 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
6946 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
6948 int (*funcp)() = ddi_dma_allochdl;
6949 ddi_dma_attr_t dma_attr;
6950 struct bus_ops *bop;
6952 if (attr == (ddi_dma_attr_t *)0)
6953 return (DDI_DMA_BADATTR);
6955 dma_attr = *attr;
6957 bop = DEVI(dip)->devi_ops->devo_bus_ops;
6958 if (bop && bop->bus_dma_allochdl)
6959 funcp = bop->bus_dma_allochdl;
6961 return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep));
6964 void
6965 ddi_dma_free_handle(ddi_dma_handle_t *handlep)
6967 ddi_dma_handle_t h = *handlep;
6968 (void) ddi_dma_freehdl(HD, HD, h);
6971 static uintptr_t dma_mem_list_id = 0;
6975 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
6976 ddi_device_acc_attr_t *accattrp, uint_t flags,
6977 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
6978 size_t *real_length, ddi_acc_handle_t *handlep)
6980 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6981 dev_info_t *dip = hp->dmai_rdip;
6982 ddi_acc_hdl_t *ap;
6983 ddi_dma_attr_t *attrp = &hp->dmai_attr;
6984 uint_t sleepflag, xfermodes;
6985 int (*fp)(caddr_t);
6986 int rval;
6988 if (waitfp == DDI_DMA_SLEEP)
6989 fp = (int (*)())KM_SLEEP;
6990 else if (waitfp == DDI_DMA_DONTWAIT)
6991 fp = (int (*)())KM_NOSLEEP;
6992 else
6993 fp = waitfp;
6994 *handlep = impl_acc_hdl_alloc(fp, arg);
6995 if (*handlep == NULL)
6996 return (DDI_FAILURE);
6998 /* check if the cache attributes are supported */
6999 if (i_ddi_check_cache_attr(flags) == B_FALSE)
7000 return (DDI_FAILURE);
7003 * Transfer the meaningful bits to xfermodes.
7004 * Double-check if the 3rd party driver correctly sets the bits.
7005 * If not, set DDI_DMA_STREAMING to keep compatibility.
7007 xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING);
7008 if (xfermodes == 0) {
7009 xfermodes = DDI_DMA_STREAMING;
7013 * initialize the common elements of data access handle
7015 ap = impl_acc_hdl_get(*handlep);
7016 ap->ah_vers = VERS_ACCHDL;
7017 ap->ah_dip = dip;
7018 ap->ah_offset = 0;
7019 ap->ah_len = 0;
7020 ap->ah_xfermodes = flags;
7021 ap->ah_acc = *accattrp;
7023 sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0);
7024 if (xfermodes == DDI_DMA_CONSISTENT) {
7025 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7026 flags, accattrp, kaddrp, NULL, ap);
7027 *real_length = length;
7028 } else {
7029 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
7030 flags, accattrp, kaddrp, real_length, ap);
7032 if (rval == DDI_SUCCESS) {
7033 ap->ah_len = (off_t)(*real_length);
7034 ap->ah_addr = *kaddrp;
7035 } else {
7036 impl_acc_hdl_free(*handlep);
7037 *handlep = (ddi_acc_handle_t)NULL;
7038 if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) {
7039 ddi_set_callback(waitfp, arg, &dma_mem_list_id);
7041 rval = DDI_FAILURE;
7043 return (rval);
7046 void
7047 ddi_dma_mem_free(ddi_acc_handle_t *handlep)
7049 ddi_acc_hdl_t *ap;
7051 ap = impl_acc_hdl_get(*handlep);
7052 ASSERT(ap);
7054 i_ddi_mem_free((caddr_t)ap->ah_addr, ap);
7057 * free the handle
7059 impl_acc_hdl_free(*handlep);
7060 *handlep = (ddi_acc_handle_t)NULL;
7062 if (dma_mem_list_id != 0) {
7063 ddi_run_callback(&dma_mem_list_id);
7068 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
7069 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
7070 ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7072 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7073 dev_info_t *dip, *rdip;
7074 struct ddi_dma_req dmareq;
7075 int (*funcp)();
7077 dmareq.dmar_flags = flags;
7078 dmareq.dmar_fp = waitfp;
7079 dmareq.dmar_arg = arg;
7080 dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
7082 if (bp->b_flags & B_PAGEIO) {
7083 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
7084 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
7085 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
7086 (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
7087 } else {
7088 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
7089 if (bp->b_flags & B_SHADOW) {
7090 dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
7091 bp->b_shadow;
7092 dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
7093 } else {
7094 dmareq.dmar_object.dmao_type =
7095 (bp->b_flags & (B_PHYS | B_REMAPPED)) ?
7096 DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR;
7097 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7101 * If the buffer has no proc pointer, or the proc
7102 * struct has the kernel address space, or the buffer has
7103 * been marked B_REMAPPED (meaning that it is now
7104 * mapped into the kernel's address space), then
7105 * the address space is kas (kernel address space).
7107 if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
7108 (bp->b_flags & B_REMAPPED)) {
7109 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
7110 } else {
7111 dmareq.dmar_object.dmao_obj.virt_obj.v_as =
7112 bp->b_proc->p_as;
7116 dip = rdip = hp->dmai_rdip;
7117 if (dip != ddi_root_node())
7118 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7119 funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7120 return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7124 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
7125 caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t),
7126 caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7128 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7129 dev_info_t *dip, *rdip;
7130 struct ddi_dma_req dmareq;
7131 int (*funcp)();
7133 if (len == (uint_t)0) {
7134 return (DDI_DMA_NOMAPPING);
7136 dmareq.dmar_flags = flags;
7137 dmareq.dmar_fp = waitfp;
7138 dmareq.dmar_arg = arg;
7139 dmareq.dmar_object.dmao_size = len;
7140 dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
7141 dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
7142 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
7143 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7145 dip = rdip = hp->dmai_rdip;
7146 if (dip != ddi_root_node())
7147 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7148 funcp = DEVI(rdip)->devi_bus_dma_bindfunc;
7149 return ((*funcp)(dip, rdip, handle, &dmareq, cookiep, ccountp));
7152 void
7153 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep)
7155 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7156 ddi_dma_cookie_t *cp;
7158 cp = hp->dmai_cookie;
7159 ASSERT(cp);
7161 cookiep->dmac_notused = cp->dmac_notused;
7162 cookiep->dmac_type = cp->dmac_type;
7163 cookiep->dmac_address = cp->dmac_address;
7164 cookiep->dmac_size = cp->dmac_size;
7165 hp->dmai_cookie++;
7169 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp)
7171 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7172 if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) {
7173 return (DDI_FAILURE);
7174 } else {
7175 *nwinp = hp->dmai_nwin;
7176 return (DDI_SUCCESS);
7181 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp,
7182 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7184 int (*funcp)() = ddi_dma_win;
7185 struct bus_ops *bop;
7187 bop = DEVI(HD)->devi_ops->devo_bus_ops;
7188 if (bop && bop->bus_dma_win)
7189 funcp = bop->bus_dma_win;
7191 return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp));
7195 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes)
7197 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0,
7198 &burstsizes, 0, 0));
7202 i_ddi_dma_fault_check(ddi_dma_impl_t *hp)
7204 return (hp->dmai_fault);
7208 ddi_check_dma_handle(ddi_dma_handle_t handle)
7210 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7211 int (*check)(ddi_dma_impl_t *);
7213 if ((check = hp->dmai_fault_check) == NULL)
7214 check = i_ddi_dma_fault_check;
7216 return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
7219 void
7220 i_ddi_dma_set_fault(ddi_dma_handle_t handle)
7222 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7223 void (*notify)(ddi_dma_impl_t *);
7225 if (!hp->dmai_fault) {
7226 hp->dmai_fault = 1;
7227 if ((notify = hp->dmai_fault_notify) != NULL)
7228 (*notify)(hp);
7232 void
7233 i_ddi_dma_clr_fault(ddi_dma_handle_t handle)
7235 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7236 void (*notify)(ddi_dma_impl_t *);
7238 if (hp->dmai_fault) {
7239 hp->dmai_fault = 0;
7240 if ((notify = hp->dmai_fault_notify) != NULL)
7241 (*notify)(hp);
7246 * register mapping routines.
7249 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
7250 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
7251 ddi_acc_handle_t *handle)
7253 ddi_map_req_t mr;
7254 ddi_acc_hdl_t *hp;
7255 int result;
7258 * Allocate and initialize the common elements of data access handle.
7260 *handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
7261 hp = impl_acc_hdl_get(*handle);
7262 hp->ah_vers = VERS_ACCHDL;
7263 hp->ah_dip = dip;
7264 hp->ah_rnumber = rnumber;
7265 hp->ah_offset = offset;
7266 hp->ah_len = len;
7267 hp->ah_acc = *accattrp;
7270 * Set up the mapping request and call to parent.
7272 mr.map_op = DDI_MO_MAP_LOCKED;
7273 mr.map_type = DDI_MT_RNUMBER;
7274 mr.map_obj.rnumber = rnumber;
7275 mr.map_prot = PROT_READ | PROT_WRITE;
7276 mr.map_flags = DDI_MF_KERNEL_MAPPING;
7277 mr.map_handlep = hp;
7278 mr.map_vers = DDI_MAP_VERSION;
7279 result = ddi_map(dip, &mr, offset, len, addrp);
7282 * check for end result
7284 if (result != DDI_SUCCESS) {
7285 impl_acc_hdl_free(*handle);
7286 *handle = (ddi_acc_handle_t)NULL;
7287 } else {
7288 hp->ah_addr = *addrp;
7291 return (result);
7294 void
7295 ddi_regs_map_free(ddi_acc_handle_t *handlep)
7297 ddi_map_req_t mr;
7298 ddi_acc_hdl_t *hp;
7300 hp = impl_acc_hdl_get(*handlep);
7301 ASSERT(hp);
7303 mr.map_op = DDI_MO_UNMAP;
7304 mr.map_type = DDI_MT_RNUMBER;
7305 mr.map_obj.rnumber = hp->ah_rnumber;
7306 mr.map_prot = PROT_READ | PROT_WRITE;
7307 mr.map_flags = DDI_MF_KERNEL_MAPPING;
7308 mr.map_handlep = hp;
7309 mr.map_vers = DDI_MAP_VERSION;
7312 * Call my parent to unmap my regs.
7314 (void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
7315 hp->ah_len, &hp->ah_addr);
7317 * free the handle
7319 impl_acc_hdl_free(*handlep);
7320 *handlep = (ddi_acc_handle_t)NULL;
7324 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
7325 ssize_t dev_advcnt, uint_t dev_datasz)
7327 uint8_t *b;
7328 uint16_t *w;
7329 uint32_t *l;
7330 uint64_t *ll;
7332 /* check for total byte count is multiple of data transfer size */
7333 if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7334 return (DDI_FAILURE);
7336 switch (dev_datasz) {
7337 case DDI_DATA_SZ01_ACC:
7338 for (b = (uint8_t *)dev_addr;
7339 bytecount != 0; bytecount -= 1, b += dev_advcnt)
7340 ddi_put8(handle, b, 0);
7341 break;
7342 case DDI_DATA_SZ02_ACC:
7343 for (w = (uint16_t *)dev_addr;
7344 bytecount != 0; bytecount -= 2, w += dev_advcnt)
7345 ddi_put16(handle, w, 0);
7346 break;
7347 case DDI_DATA_SZ04_ACC:
7348 for (l = (uint32_t *)dev_addr;
7349 bytecount != 0; bytecount -= 4, l += dev_advcnt)
7350 ddi_put32(handle, l, 0);
7351 break;
7352 case DDI_DATA_SZ08_ACC:
7353 for (ll = (uint64_t *)dev_addr;
7354 bytecount != 0; bytecount -= 8, ll += dev_advcnt)
7355 ddi_put64(handle, ll, 0x0ll);
7356 break;
7357 default:
7358 return (DDI_FAILURE);
7360 return (DDI_SUCCESS);
7364 ddi_device_copy(
7365 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
7366 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
7367 size_t bytecount, uint_t dev_datasz)
7369 uint8_t *b_src, *b_dst;
7370 uint16_t *w_src, *w_dst;
7371 uint32_t *l_src, *l_dst;
7372 uint64_t *ll_src, *ll_dst;
7374 /* check for total byte count is multiple of data transfer size */
7375 if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7376 return (DDI_FAILURE);
7378 switch (dev_datasz) {
7379 case DDI_DATA_SZ01_ACC:
7380 b_src = (uint8_t *)src_addr;
7381 b_dst = (uint8_t *)dest_addr;
7383 for (; bytecount != 0; bytecount -= 1) {
7384 ddi_put8(dest_handle, b_dst,
7385 ddi_get8(src_handle, b_src));
7386 b_dst += dest_advcnt;
7387 b_src += src_advcnt;
7389 break;
7390 case DDI_DATA_SZ02_ACC:
7391 w_src = (uint16_t *)src_addr;
7392 w_dst = (uint16_t *)dest_addr;
7394 for (; bytecount != 0; bytecount -= 2) {
7395 ddi_put16(dest_handle, w_dst,
7396 ddi_get16(src_handle, w_src));
7397 w_dst += dest_advcnt;
7398 w_src += src_advcnt;
7400 break;
7401 case DDI_DATA_SZ04_ACC:
7402 l_src = (uint32_t *)src_addr;
7403 l_dst = (uint32_t *)dest_addr;
7405 for (; bytecount != 0; bytecount -= 4) {
7406 ddi_put32(dest_handle, l_dst,
7407 ddi_get32(src_handle, l_src));
7408 l_dst += dest_advcnt;
7409 l_src += src_advcnt;
7411 break;
7412 case DDI_DATA_SZ08_ACC:
7413 ll_src = (uint64_t *)src_addr;
7414 ll_dst = (uint64_t *)dest_addr;
7416 for (; bytecount != 0; bytecount -= 8) {
7417 ddi_put64(dest_handle, ll_dst,
7418 ddi_get64(src_handle, ll_src));
7419 ll_dst += dest_advcnt;
7420 ll_src += src_advcnt;
7422 break;
7423 default:
7424 return (DDI_FAILURE);
7426 return (DDI_SUCCESS);
7429 #define swap16(value) \
7430 ((((value) & 0xff) << 8) | ((value) >> 8))
7432 #define swap32(value) \
7433 (((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \
7434 (uint32_t)swap16((uint16_t)((value) >> 16)))
7436 #define swap64(value) \
7437 (((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \
7438 << 32) | \
7439 (uint64_t)swap32((uint32_t)((value) >> 32)))
7441 uint16_t
7442 ddi_swap16(uint16_t value)
7444 return (swap16(value));
7447 uint32_t
7448 ddi_swap32(uint32_t value)
7450 return (swap32(value));
7453 uint64_t
7454 ddi_swap64(uint64_t value)
7456 return (swap64(value));
7460 * Convert a binding name to a driver name.
7461 * A binding name is the name used to determine the driver for a
7462 * device - it may be either an alias for the driver or the name
7463 * of the driver itself.
7465 char *
7466 i_binding_to_drv_name(char *bname)
7468 major_t major_no;
7470 ASSERT(bname != NULL);
7472 if ((major_no = ddi_name_to_major(bname)) == -1)
7473 return (NULL);
7474 return (ddi_major_to_name(major_no));
7478 * Search for minor name that has specified dev_t and spec_type.
7479 * If spec_type is zero then any dev_t match works. Since we
7480 * are returning a pointer to the minor name string, we require the
7481 * caller to do the locking.
7483 char *
7484 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type)
7486 struct ddi_minor_data *dmdp;
7489 * The did layered driver currently intentionally returns a
7490 * devinfo ptr for an underlying sd instance based on a did
7491 * dev_t. In this case it is not an error.
7493 * The did layered driver is associated with Sun Cluster.
7495 ASSERT((ddi_driver_major(dip) == getmajor(dev)) ||
7496 (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0));
7498 ASSERT(DEVI_BUSY_OWNED(dip));
7499 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7500 if (((dmdp->type == DDM_MINOR) ||
7501 (dmdp->type == DDM_INTERNAL_PATH) ||
7502 (dmdp->type == DDM_DEFAULT)) &&
7503 (dmdp->ddm_dev == dev) &&
7504 ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) ||
7505 (dmdp->ddm_spec_type == spec_type)))
7506 return (dmdp->ddm_name);
7509 return (NULL);
7513 * Find the devt and spectype of the specified minor_name.
7514 * Return DDI_FAILURE if minor_name not found. Since we are
7515 * returning everything via arguments we can do the locking.
7518 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name,
7519 dev_t *devtp, int *spectypep)
7521 int circ;
7522 struct ddi_minor_data *dmdp;
7524 /* deal with clone minor nodes */
7525 if (dip == clone_dip) {
7526 major_t major;
7528 * Make sure minor_name is a STREAMS driver.
7529 * We load the driver but don't attach to any instances.
7532 major = ddi_name_to_major(minor_name);
7533 if (major == DDI_MAJOR_T_NONE)
7534 return (DDI_FAILURE);
7536 if (ddi_hold_driver(major) == NULL)
7537 return (DDI_FAILURE);
7539 if (STREAMSTAB(major) == NULL) {
7540 ddi_rele_driver(major);
7541 return (DDI_FAILURE);
7543 ddi_rele_driver(major);
7545 if (devtp)
7546 *devtp = makedevice(clone_major, (minor_t)major);
7548 if (spectypep)
7549 *spectypep = S_IFCHR;
7551 return (DDI_SUCCESS);
7554 ndi_devi_enter(dip, &circ);
7555 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7556 if (((dmdp->type != DDM_MINOR) &&
7557 (dmdp->type != DDM_INTERNAL_PATH) &&
7558 (dmdp->type != DDM_DEFAULT)) ||
7559 strcmp(minor_name, dmdp->ddm_name))
7560 continue;
7562 if (devtp)
7563 *devtp = dmdp->ddm_dev;
7565 if (spectypep)
7566 *spectypep = dmdp->ddm_spec_type;
7568 ndi_devi_exit(dip, circ);
7569 return (DDI_SUCCESS);
7571 ndi_devi_exit(dip, circ);
7573 return (DDI_FAILURE);
7576 static kmutex_t devid_gen_mutex;
7577 static short devid_gen_number;
7579 #ifdef DEBUG
7581 static int devid_register_corrupt = 0;
7582 static int devid_register_corrupt_major = 0;
7583 static int devid_register_corrupt_hint = 0;
7584 static int devid_register_corrupt_hint_major = 0;
7586 static int devid_lyr_debug = 0;
7588 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs) \
7589 if (devid_lyr_debug) \
7590 ddi_debug_devid_devts(msg, ndevs, devs)
7592 #else
7594 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)
7596 #endif /* DEBUG */
7599 #ifdef DEBUG
7601 static void
7602 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs)
7604 int i;
7606 cmn_err(CE_CONT, "%s:\n", msg);
7607 for (i = 0; i < ndevs; i++) {
7608 cmn_err(CE_CONT, " 0x%lx\n", devs[i]);
7612 static void
7613 ddi_debug_devid_paths(char *msg, int npaths, char **paths)
7615 int i;
7617 cmn_err(CE_CONT, "%s:\n", msg);
7618 for (i = 0; i < npaths; i++) {
7619 cmn_err(CE_CONT, " %s\n", paths[i]);
7623 static void
7624 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs)
7626 int i;
7628 cmn_err(CE_CONT, "dev_ts per path %s\n", path);
7629 for (i = 0; i < ndevs; i++) {
7630 cmn_err(CE_CONT, " 0x%lx\n", devs[i]);
7634 #endif /* DEBUG */
7637 * Register device id into DDI framework.
7638 * Must be called when the driver is bound.
7640 static int
7641 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7643 impl_devid_t *i_devid = (impl_devid_t *)devid;
7644 size_t driver_len;
7645 const char *driver_name;
7646 char *devid_str;
7647 major_t major;
7649 if ((dip == NULL) ||
7650 ((major = ddi_driver_major(dip)) == DDI_MAJOR_T_NONE))
7651 return (DDI_FAILURE);
7653 /* verify that the devid is valid */
7654 if (ddi_devid_valid(devid) != DDI_SUCCESS)
7655 return (DDI_FAILURE);
7657 /* Updating driver name hint in devid */
7658 driver_name = ddi_driver_name(dip);
7659 driver_len = strlen(driver_name);
7660 if (driver_len > DEVID_HINT_SIZE) {
7661 /* Pick up last four characters of driver name */
7662 driver_name += driver_len - DEVID_HINT_SIZE;
7663 driver_len = DEVID_HINT_SIZE;
7665 bzero(i_devid->did_driver, DEVID_HINT_SIZE);
7666 bcopy(driver_name, i_devid->did_driver, driver_len);
7668 #ifdef DEBUG
7669 /* Corrupt the devid for testing. */
7670 if (devid_register_corrupt)
7671 i_devid->did_id[0] += devid_register_corrupt;
7672 if (devid_register_corrupt_major &&
7673 (major == devid_register_corrupt_major))
7674 i_devid->did_id[0] += 1;
7675 if (devid_register_corrupt_hint)
7676 i_devid->did_driver[0] += devid_register_corrupt_hint;
7677 if (devid_register_corrupt_hint_major &&
7678 (major == devid_register_corrupt_hint_major))
7679 i_devid->did_driver[0] += 1;
7680 #endif /* DEBUG */
7682 /* encode the devid as a string */
7683 if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL)
7684 return (DDI_FAILURE);
7686 /* add string as a string property */
7687 if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
7688 DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) {
7689 cmn_err(CE_WARN, "%s%d: devid property update failed",
7690 ddi_driver_name(dip), ddi_get_instance(dip));
7691 ddi_devid_str_free(devid_str);
7692 return (DDI_FAILURE);
7695 /* keep pointer to devid string for interrupt context fma code */
7696 if (DEVI(dip)->devi_devid_str)
7697 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7698 DEVI(dip)->devi_devid_str = devid_str;
7699 return (DDI_SUCCESS);
7703 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7705 int rval;
7707 rval = i_ddi_devid_register(dip, devid);
7708 if (rval == DDI_SUCCESS) {
7710 * Register devid in devid-to-path cache
7712 if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
7713 mutex_enter(&DEVI(dip)->devi_lock);
7714 DEVI(dip)->devi_flags |= DEVI_CACHED_DEVID;
7715 mutex_exit(&DEVI(dip)->devi_lock);
7716 } else if (ddi_get_name_addr(dip)) {
7718 * We only expect cache_register DDI_FAILURE when we
7719 * can't form the full path because of NULL devi_addr.
7721 cmn_err(CE_WARN, "%s%d: failed to cache devid",
7722 ddi_driver_name(dip), ddi_get_instance(dip));
7724 } else {
7725 cmn_err(CE_WARN, "%s%d: failed to register devid",
7726 ddi_driver_name(dip), ddi_get_instance(dip));
7728 return (rval);
7732 * Remove (unregister) device id from DDI framework.
7733 * Must be called when device is detached.
7735 static void
7736 i_ddi_devid_unregister(dev_info_t *dip)
7738 if (DEVI(dip)->devi_devid_str) {
7739 ddi_devid_str_free(DEVI(dip)->devi_devid_str);
7740 DEVI(dip)->devi_devid_str = NULL;
7743 /* remove the devid property */
7744 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME);
7747 void
7748 ddi_devid_unregister(dev_info_t *dip)
7750 mutex_enter(&DEVI(dip)->devi_lock);
7751 DEVI(dip)->devi_flags &= ~DEVI_CACHED_DEVID;
7752 mutex_exit(&DEVI(dip)->devi_lock);
7753 e_devid_cache_unregister(dip);
7754 i_ddi_devid_unregister(dip);
7758 * Allocate and initialize a device id.
7761 ddi_devid_init(
7762 dev_info_t *dip,
7763 ushort_t devid_type,
7764 ushort_t nbytes,
7765 void *id,
7766 ddi_devid_t *ret_devid)
7768 impl_devid_t *i_devid;
7769 int sz = sizeof (*i_devid) + nbytes - sizeof (char);
7770 int driver_len;
7771 const char *driver_name;
7773 switch (devid_type) {
7774 case DEVID_SCSI3_WWN:
7775 /*FALLTHRU*/
7776 case DEVID_SCSI_SERIAL:
7777 /*FALLTHRU*/
7778 case DEVID_ATA_SERIAL:
7779 /*FALLTHRU*/
7780 case DEVID_ENCAP:
7781 if (nbytes == 0)
7782 return (DDI_FAILURE);
7783 if (id == NULL)
7784 return (DDI_FAILURE);
7785 break;
7786 case DEVID_FAB:
7787 if (nbytes != 0)
7788 return (DDI_FAILURE);
7789 if (id != NULL)
7790 return (DDI_FAILURE);
7791 nbytes = sizeof (int) +
7792 sizeof (struct timeval32) + sizeof (short);
7793 sz += nbytes;
7794 break;
7795 default:
7796 return (DDI_FAILURE);
7799 if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL)
7800 return (DDI_FAILURE);
7802 i_devid->did_magic_hi = DEVID_MAGIC_MSB;
7803 i_devid->did_magic_lo = DEVID_MAGIC_LSB;
7804 i_devid->did_rev_hi = DEVID_REV_MSB;
7805 i_devid->did_rev_lo = DEVID_REV_LSB;
7806 DEVID_FORMTYPE(i_devid, devid_type);
7807 DEVID_FORMLEN(i_devid, nbytes);
7809 /* Fill in driver name hint */
7810 driver_name = ddi_driver_name(dip);
7811 driver_len = strlen(driver_name);
7812 if (driver_len > DEVID_HINT_SIZE) {
7813 /* Pick up last four characters of driver name */
7814 driver_name += driver_len - DEVID_HINT_SIZE;
7815 driver_len = DEVID_HINT_SIZE;
7818 bcopy(driver_name, i_devid->did_driver, driver_len);
7820 /* Fill in id field */
7821 if (devid_type == DEVID_FAB) {
7822 char *cp;
7823 uint32_t hostid;
7824 struct timeval32 timestamp32;
7825 int i;
7826 int *ip;
7827 short gen;
7829 /* increase the generation number */
7830 mutex_enter(&devid_gen_mutex);
7831 gen = devid_gen_number++;
7832 mutex_exit(&devid_gen_mutex);
7834 cp = i_devid->did_id;
7836 /* Fill in host id (big-endian byte ordering) */
7837 hostid = zone_get_hostid(NULL);
7838 *cp++ = hibyte(hiword(hostid));
7839 *cp++ = lobyte(hiword(hostid));
7840 *cp++ = hibyte(loword(hostid));
7841 *cp++ = lobyte(loword(hostid));
7844 * Fill in timestamp (big-endian byte ordering)
7846 * (Note that the format may have to be changed
7847 * before 2038 comes around, though it's arguably
7848 * unique enough as it is..)
7850 uniqtime32(&timestamp32);
7851 ip = (int *)&timestamp32;
7852 for (i = 0;
7853 i < sizeof (timestamp32) / sizeof (int); i++, ip++) {
7854 int val;
7855 val = *ip;
7856 *cp++ = hibyte(hiword(val));
7857 *cp++ = lobyte(hiword(val));
7858 *cp++ = hibyte(loword(val));
7859 *cp++ = lobyte(loword(val));
7862 /* fill in the generation number */
7863 *cp++ = hibyte(gen);
7864 *cp++ = lobyte(gen);
7865 } else
7866 bcopy(id, i_devid->did_id, nbytes);
7868 /* return device id */
7869 *ret_devid = (ddi_devid_t)i_devid;
7870 return (DDI_SUCCESS);
7874 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid)
7876 return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid));
7880 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid)
7882 char *devidstr;
7884 ASSERT(dev != DDI_DEV_T_NONE);
7886 /* look up the property, devt specific first */
7887 if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS,
7888 DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) {
7889 if ((dev == DDI_DEV_T_ANY) ||
7890 (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
7891 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) !=
7892 DDI_PROP_SUCCESS)) {
7893 return (DDI_FAILURE);
7897 /* convert to binary form */
7898 if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) {
7899 ddi_prop_free(devidstr);
7900 return (DDI_FAILURE);
7902 ddi_prop_free(devidstr);
7903 return (DDI_SUCCESS);
7907 * Return a copy of the device id for dev_t
7910 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid)
7912 dev_info_t *dip;
7913 int rval;
7915 /* get the dip */
7916 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7917 return (DDI_FAILURE);
7919 rval = i_ddi_devi_get_devid(dev, dip, ret_devid);
7921 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */
7922 return (rval);
7926 * Return a copy of the minor name for dev_t and spec_type
7929 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name)
7931 char *buf;
7932 int circ;
7933 dev_info_t *dip;
7934 char *nm;
7935 int rval;
7937 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) {
7938 *minor_name = NULL;
7939 return (DDI_FAILURE);
7942 /* Find the minor name and copy into max size buf */
7943 buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
7944 ndi_devi_enter(dip, &circ);
7945 nm = i_ddi_devtspectype_to_minorname(dip, dev, spec_type);
7946 if (nm)
7947 (void) strcpy(buf, nm);
7948 ndi_devi_exit(dip, circ);
7949 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */
7951 if (nm) {
7952 /* duplicate into min size buf for return result */
7953 *minor_name = i_ddi_strdup(buf, KM_SLEEP);
7954 rval = DDI_SUCCESS;
7955 } else {
7956 *minor_name = NULL;
7957 rval = DDI_FAILURE;
7960 /* free max size buf and return */
7961 kmem_free(buf, MAXNAMELEN);
7962 return (rval);
7966 ddi_lyr_devid_to_devlist(
7967 ddi_devid_t devid,
7968 char *minor_name,
7969 int *retndevs,
7970 dev_t **retdevs)
7972 ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
7974 if (e_devid_cache_to_devt_list(devid, minor_name,
7975 retndevs, retdevs) == DDI_SUCCESS) {
7976 ASSERT(*retndevs > 0);
7977 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7978 *retndevs, *retdevs);
7979 return (DDI_SUCCESS);
7982 if (e_ddi_devid_discovery(devid) == DDI_FAILURE) {
7983 return (DDI_FAILURE);
7986 if (e_devid_cache_to_devt_list(devid, minor_name,
7987 retndevs, retdevs) == DDI_SUCCESS) {
7988 ASSERT(*retndevs > 0);
7989 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7990 *retndevs, *retdevs);
7991 return (DDI_SUCCESS);
7994 return (DDI_FAILURE);
7997 void
7998 ddi_lyr_free_devlist(dev_t *devlist, int ndevs)
8000 kmem_free(devlist, sizeof (dev_t) * ndevs);
8004 * Note: This will need to be fixed if we ever allow processes to
8005 * have more than one data model per exec.
8007 model_t
8008 ddi_mmap_get_model(void)
8010 return (get_udatamodel());
8013 model_t
8014 ddi_model_convert_from(model_t model)
8016 return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE);
8020 * ddi interfaces managing storage and retrieval of eventcookies.
8024 * Invoke bus nexus driver's implementation of the
8025 * (*bus_remove_eventcall)() interface to remove a registered
8026 * callback handler for "event".
8029 ddi_remove_event_handler(ddi_callback_id_t id)
8031 ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id;
8032 dev_info_t *ddip;
8034 ASSERT(cb);
8035 if (!cb) {
8036 return (DDI_FAILURE);
8039 ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie);
8040 return (ndi_busop_remove_eventcall(ddip, id));
8044 * Invoke bus nexus driver's implementation of the
8045 * (*bus_add_eventcall)() interface to register a callback handler
8046 * for "event".
8049 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
8050 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
8051 void *arg, ddi_callback_id_t *id)
8053 return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id));
8058 * Return a handle for event "name" by calling up the device tree
8059 * hierarchy via (*bus_get_eventcookie)() interface until claimed
8060 * by a bus nexus or top of dev_info tree is reached.
8063 ddi_get_eventcookie(dev_info_t *dip, char *name,
8064 ddi_eventcookie_t *event_cookiep)
8066 return (ndi_busop_get_eventcookie(dip, dip,
8067 name, event_cookiep));
8071 * This procedure is provided as the general callback function when
8072 * umem_lockmemory calls as_add_callback for long term memory locking.
8073 * When as_unmap, as_setprot, or as_free encounter segments which have
8074 * locked memory, this callback will be invoked.
8076 void
8077 umem_lock_undo(struct as *as, void *arg, uint_t event)
8079 _NOTE(ARGUNUSED(as, event))
8080 struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg;
8083 * Call the cleanup function. Decrement the cookie reference
8084 * count, if it goes to zero, return the memory for the cookie.
8085 * The i_ddi_umem_unlock for this cookie may or may not have been
8086 * called already. It is the responsibility of the caller of
8087 * umem_lockmemory to handle the case of the cleanup routine
8088 * being called after a ddi_umem_unlock for the cookie
8089 * was called.
8092 (*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp);
8094 /* remove the cookie if reference goes to zero */
8095 if (atomic_dec_ulong_nv((ulong_t *)(&(cp->cook_refcnt))) == 0) {
8096 kmem_free(cp, sizeof (struct ddi_umem_cookie));
8101 * The following two Consolidation Private routines provide generic
8102 * interfaces to increase/decrease the amount of device-locked memory.
8104 * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory()
8105 * must be called every time i_ddi_incr_locked_memory() is called.
8108 /* ARGSUSED */
8109 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc)
8111 ASSERT(procp != NULL);
8112 mutex_enter(&procp->p_lock);
8113 if (rctl_incr_locked_mem(procp, NULL, inc, 1)) {
8114 mutex_exit(&procp->p_lock);
8115 return (ENOMEM);
8117 mutex_exit(&procp->p_lock);
8118 return (0);
8122 * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory()
8123 * must be called every time i_ddi_decr_locked_memory() is called.
8125 /* ARGSUSED */
8126 void
8127 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec)
8129 ASSERT(procp != NULL);
8130 mutex_enter(&procp->p_lock);
8131 rctl_decr_locked_mem(procp, NULL, dec, 1);
8132 mutex_exit(&procp->p_lock);
8136 * The cookie->upd_max_lock_rctl flag is used to determine if we should
8137 * charge device locked memory to the max-locked-memory rctl. Tracking
8138 * device locked memory causes the rctl locks to get hot under high-speed
8139 * I/O such as RDSv3 over IB. If there is no max-locked-memory rctl limit,
8140 * we bypass charging the locked memory to the rctl altogether. The cookie's
8141 * flag tells us if the rctl value should be updated when unlocking the memory,
8142 * in case the rctl gets changed after the memory was locked. Any device
8143 * locked memory in that rare case will not be counted toward the rctl limit.
8145 * When tracking the locked memory, the kproject_t parameter is always NULL
8146 * in the code paths:
8147 * i_ddi_incr_locked_memory -> rctl_incr_locked_mem
8148 * i_ddi_decr_locked_memory -> rctl_decr_locked_mem
8149 * Thus, we always use the tk_proj member to check the projp setting.
8151 static void
8152 init_lockedmem_rctl_flag(struct ddi_umem_cookie *cookie)
8154 proc_t *p;
8155 kproject_t *projp;
8156 zone_t *zonep;
8158 ASSERT(cookie);
8159 p = cookie->procp;
8160 ASSERT(p);
8162 zonep = p->p_zone;
8163 projp = p->p_task->tk_proj;
8165 ASSERT(zonep);
8166 ASSERT(projp);
8168 if (zonep->zone_locked_mem_ctl == UINT64_MAX &&
8169 projp->kpj_data.kpd_locked_mem_ctl == UINT64_MAX)
8170 cookie->upd_max_lock_rctl = 0;
8171 else
8172 cookie->upd_max_lock_rctl = 1;
8176 * This routine checks if the max-locked-memory resource ctl is
8177 * exceeded, if not increments it, grabs a hold on the project.
8178 * Returns 0 if successful otherwise returns error code
8180 static int
8181 umem_incr_devlockmem(struct ddi_umem_cookie *cookie)
8183 proc_t *procp;
8184 int ret;
8186 ASSERT(cookie);
8187 if (cookie->upd_max_lock_rctl == 0)
8188 return (0);
8190 procp = cookie->procp;
8191 ASSERT(procp);
8193 if ((ret = i_ddi_incr_locked_memory(procp,
8194 cookie->size)) != 0) {
8195 return (ret);
8197 return (0);
8201 * Decrements the max-locked-memory resource ctl and releases
8202 * the hold on the project that was acquired during umem_incr_devlockmem
8204 static void
8205 umem_decr_devlockmem(struct ddi_umem_cookie *cookie)
8207 proc_t *proc;
8209 if (cookie->upd_max_lock_rctl == 0)
8210 return;
8212 proc = (proc_t *)cookie->procp;
8213 if (!proc)
8214 return;
8216 i_ddi_decr_locked_memory(proc, cookie->size);
8220 * A consolidation private function which is essentially equivalent to
8221 * ddi_umem_lock but with the addition of arguments ops_vector and procp.
8222 * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and
8223 * the ops_vector is valid.
8225 * Lock the virtual address range in the current process and create a
8226 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8227 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8228 * to user space.
8230 * Note: The resource control accounting currently uses a full charge model
8231 * in other words attempts to lock the same/overlapping areas of memory
8232 * will deduct the full size of the buffer from the projects running
8233 * counter for the device locked memory.
8235 * addr, size should be PAGESIZE aligned
8237 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8238 * identifies whether the locked memory will be read or written or both
8239 * DDI_UMEMLOCK_LONGTERM must be set when the locking will
8240 * be maintained for an indefinitely long period (essentially permanent),
8241 * rather than for what would be required for a typical I/O completion.
8242 * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT
8243 * if the memory pertains to a regular file which is mapped MAP_SHARED.
8244 * This is to prevent a deadlock if a file truncation is attempted after
8245 * after the locking is done.
8247 * Returns 0 on success
8248 * EINVAL - for invalid parameters
8249 * EPERM, ENOMEM and other error codes returned by as_pagelock
8250 * ENOMEM - is returned if the current request to lock memory exceeds
8251 * *.max-locked-memory resource control value.
8252 * EFAULT - memory pertains to a regular file mapped shared and
8253 * and DDI_UMEMLOCK_LONGTERM flag is set
8254 * EAGAIN - could not start the ddi_umem_unlock list processing thread
8257 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie,
8258 struct umem_callback_ops *ops_vector,
8259 proc_t *procp)
8261 int error;
8262 struct ddi_umem_cookie *p;
8263 void (*driver_callback)() = NULL;
8264 struct as *as;
8265 struct seg *seg;
8266 vnode_t *vp;
8268 /* Allow device drivers to not have to reference "curproc" */
8269 if (procp == NULL)
8270 procp = curproc;
8271 as = procp->p_as;
8272 *cookie = NULL; /* in case of any error return */
8274 /* These are the only three valid flags */
8275 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE |
8276 DDI_UMEMLOCK_LONGTERM)) != 0)
8277 return (EINVAL);
8279 /* At least one (can be both) of the two access flags must be set */
8280 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0)
8281 return (EINVAL);
8283 /* addr and len must be page-aligned */
8284 if (((uintptr_t)addr & PAGEOFFSET) != 0)
8285 return (EINVAL);
8287 if ((len & PAGEOFFSET) != 0)
8288 return (EINVAL);
8291 * For longterm locking a driver callback must be specified; if
8292 * not longterm then a callback is optional.
8294 if (ops_vector != NULL) {
8295 if (ops_vector->cbo_umem_callback_version !=
8296 UMEM_CALLBACK_VERSION)
8297 return (EINVAL);
8298 else
8299 driver_callback = ops_vector->cbo_umem_lock_cleanup;
8301 if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM))
8302 return (EINVAL);
8305 * Call i_ddi_umem_unlock_thread_start if necessary. It will
8306 * be called on first ddi_umem_lock or umem_lockmemory call.
8308 if (ddi_umem_unlock_thread == NULL)
8309 i_ddi_umem_unlock_thread_start();
8311 /* Allocate memory for the cookie */
8312 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8314 /* Convert the flags to seg_rw type */
8315 if (flags & DDI_UMEMLOCK_WRITE) {
8316 p->s_flags = S_WRITE;
8317 } else {
8318 p->s_flags = S_READ;
8321 /* Store procp in cookie for later iosetup/unlock */
8322 p->procp = (void *)procp;
8325 * Store the struct as pointer in cookie for later use by
8326 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock
8327 * is called after relvm is called.
8329 p->asp = as;
8332 * The size field is needed for lockmem accounting.
8334 p->size = len;
8335 init_lockedmem_rctl_flag(p);
8337 if (umem_incr_devlockmem(p) != 0) {
8339 * The requested memory cannot be locked
8341 kmem_free(p, sizeof (struct ddi_umem_cookie));
8342 *cookie = (ddi_umem_cookie_t)NULL;
8343 return (ENOMEM);
8346 /* Lock the pages corresponding to addr, len in memory */
8347 error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags);
8348 if (error != 0) {
8349 umem_decr_devlockmem(p);
8350 kmem_free(p, sizeof (struct ddi_umem_cookie));
8351 *cookie = (ddi_umem_cookie_t)NULL;
8352 return (error);
8356 * For longterm locking the addr must pertain to a seg_vn segment or
8357 * or a seg_spt segment.
8358 * If the segment pertains to a regular file, it cannot be
8359 * mapped MAP_SHARED.
8360 * This is to prevent a deadlock if a file truncation is attempted
8361 * after the locking is done.
8362 * Doing this after as_pagelock guarantees persistence of the as; if
8363 * an unacceptable segment is found, the cleanup includes calling
8364 * as_pageunlock before returning EFAULT.
8366 * segdev is allowed here as it is already locked. This allows
8367 * for memory exported by drivers through mmap() (which is already
8368 * locked) to be allowed for LONGTERM.
8370 if (flags & DDI_UMEMLOCK_LONGTERM) {
8371 extern struct seg_ops segspt_shmops;
8372 extern struct seg_ops segdev_ops;
8373 AS_LOCK_ENTER(as, RW_READER);
8374 for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) {
8375 if (seg == NULL || seg->s_base > addr + len)
8376 break;
8377 if (seg->s_ops == &segdev_ops)
8378 continue;
8379 if (((seg->s_ops != &segvn_ops) &&
8380 (seg->s_ops != &segspt_shmops)) ||
8381 ((SEGOP_GETVP(seg, addr, &vp) == 0 &&
8382 vp != NULL && vp->v_type == VREG) &&
8383 (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) {
8384 as_pageunlock(as, p->pparray,
8385 addr, len, p->s_flags);
8386 AS_LOCK_EXIT(as);
8387 umem_decr_devlockmem(p);
8388 kmem_free(p, sizeof (struct ddi_umem_cookie));
8389 *cookie = (ddi_umem_cookie_t)NULL;
8390 return (EFAULT);
8393 AS_LOCK_EXIT(as);
8397 /* Initialize the fields in the ddi_umem_cookie */
8398 p->cvaddr = addr;
8399 p->type = UMEM_LOCKED;
8400 if (driver_callback != NULL) {
8401 /* i_ddi_umem_unlock and umem_lock_undo may need the cookie */
8402 p->cook_refcnt = 2;
8403 p->callbacks = *ops_vector;
8404 } else {
8405 /* only i_ddi_umme_unlock needs the cookie */
8406 p->cook_refcnt = 1;
8409 *cookie = (ddi_umem_cookie_t)p;
8412 * If a driver callback was specified, add an entry to the
8413 * as struct callback list. The as_pagelock above guarantees
8414 * the persistence of as.
8416 if (driver_callback) {
8417 error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT,
8418 addr, len, KM_SLEEP);
8419 if (error != 0) {
8420 as_pageunlock(as, p->pparray,
8421 addr, len, p->s_flags);
8422 umem_decr_devlockmem(p);
8423 kmem_free(p, sizeof (struct ddi_umem_cookie));
8424 *cookie = (ddi_umem_cookie_t)NULL;
8427 return (error);
8431 * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free
8432 * the cookie. Called from i_ddi_umem_unlock_thread.
8435 static void
8436 i_ddi_umem_unlock(struct ddi_umem_cookie *p)
8438 uint_t rc;
8441 * There is no way to determine whether a callback to
8442 * umem_lock_undo was registered via as_add_callback.
8443 * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and
8444 * a valid callback function structure.) as_delete_callback
8445 * is called to delete a possible registered callback. If the
8446 * return from as_delete_callbacks is AS_CALLBACK_DELETED, it
8447 * indicates that there was a callback registered, and that is was
8448 * successfully deleted. Thus, the cookie reference count
8449 * will never be decremented by umem_lock_undo. Just return the
8450 * memory for the cookie, since both users of the cookie are done.
8451 * A return of AS_CALLBACK_NOTFOUND indicates a callback was
8452 * never registered. A return of AS_CALLBACK_DELETE_DEFERRED
8453 * indicates that callback processing is taking place and, and
8454 * umem_lock_undo is, or will be, executing, and thus decrementing
8455 * the cookie reference count when it is complete.
8457 * This needs to be done before as_pageunlock so that the
8458 * persistence of as is guaranteed because of the locked pages.
8461 rc = as_delete_callback(p->asp, p);
8465 * The proc->p_as will be stale if i_ddi_umem_unlock is called
8466 * after relvm is called so use p->asp.
8468 as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags);
8471 * Now that we have unlocked the memory decrement the
8472 * *.max-locked-memory rctl
8474 umem_decr_devlockmem(p);
8476 if (rc == AS_CALLBACK_DELETED) {
8477 /* umem_lock_undo will not happen, return the cookie memory */
8478 ASSERT(p->cook_refcnt == 2);
8479 kmem_free(p, sizeof (struct ddi_umem_cookie));
8480 } else {
8482 * umem_undo_lock may happen if as_delete_callback returned
8483 * AS_CALLBACK_DELETE_DEFERRED. In that case, decrement the
8484 * reference count, atomically, and return the cookie
8485 * memory if the reference count goes to zero. The only
8486 * other value for rc is AS_CALLBACK_NOTFOUND. In that
8487 * case, just return the cookie memory.
8489 if ((rc != AS_CALLBACK_DELETE_DEFERRED) ||
8490 (atomic_dec_ulong_nv((ulong_t *)(&(p->cook_refcnt)))
8491 == 0)) {
8492 kmem_free(p, sizeof (struct ddi_umem_cookie));
8498 * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler.
8500 * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list
8501 * until it is empty. Then, wait for more to be added. This thread is awoken
8502 * via calls to ddi_umem_unlock.
8505 static void
8506 i_ddi_umem_unlock_thread(void)
8508 struct ddi_umem_cookie *ret_cookie;
8509 callb_cpr_t cprinfo;
8511 /* process the ddi_umem_unlock list */
8512 CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex,
8513 callb_generic_cpr, "unlock_thread");
8514 for (;;) {
8515 mutex_enter(&ddi_umem_unlock_mutex);
8516 if (ddi_umem_unlock_head != NULL) { /* list not empty */
8517 ret_cookie = ddi_umem_unlock_head;
8518 /* take if off the list */
8519 if ((ddi_umem_unlock_head =
8520 ddi_umem_unlock_head->unl_forw) == NULL) {
8521 ddi_umem_unlock_tail = NULL;
8523 mutex_exit(&ddi_umem_unlock_mutex);
8524 /* unlock the pages in this cookie */
8525 (void) i_ddi_umem_unlock(ret_cookie);
8526 } else { /* list is empty, wait for next ddi_umem_unlock */
8527 CALLB_CPR_SAFE_BEGIN(&cprinfo);
8528 cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex);
8529 CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex);
8530 mutex_exit(&ddi_umem_unlock_mutex);
8533 /* ddi_umem_unlock_thread does not exit */
8534 /* NOTREACHED */
8538 * Start the thread that will process the ddi_umem_unlock list if it is
8539 * not already started (i_ddi_umem_unlock_thread).
8541 static void
8542 i_ddi_umem_unlock_thread_start(void)
8544 mutex_enter(&ddi_umem_unlock_mutex);
8545 if (ddi_umem_unlock_thread == NULL) {
8546 ddi_umem_unlock_thread = thread_create(NULL, 0,
8547 i_ddi_umem_unlock_thread, NULL, 0, &p0,
8548 TS_RUN, minclsyspri);
8550 mutex_exit(&ddi_umem_unlock_mutex);
8554 * Lock the virtual address range in the current process and create a
8555 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8556 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8557 * to user space.
8559 * Note: The resource control accounting currently uses a full charge model
8560 * in other words attempts to lock the same/overlapping areas of memory
8561 * will deduct the full size of the buffer from the projects running
8562 * counter for the device locked memory. This applies to umem_lockmemory too.
8564 * addr, size should be PAGESIZE aligned
8565 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8566 * identifies whether the locked memory will be read or written or both
8568 * Returns 0 on success
8569 * EINVAL - for invalid parameters
8570 * EPERM, ENOMEM and other error codes returned by as_pagelock
8571 * ENOMEM - is returned if the current request to lock memory exceeds
8572 * *.max-locked-memory resource control value.
8573 * EAGAIN - could not start the ddi_umem_unlock list processing thread
8576 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie)
8578 int error;
8579 struct ddi_umem_cookie *p;
8581 *cookie = NULL; /* in case of any error return */
8583 /* These are the only two valid flags */
8584 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) {
8585 return (EINVAL);
8588 /* At least one of the two flags (or both) must be set */
8589 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) {
8590 return (EINVAL);
8593 /* addr and len must be page-aligned */
8594 if (((uintptr_t)addr & PAGEOFFSET) != 0) {
8595 return (EINVAL);
8598 if ((len & PAGEOFFSET) != 0) {
8599 return (EINVAL);
8603 * Call i_ddi_umem_unlock_thread_start if necessary. It will
8604 * be called on first ddi_umem_lock or umem_lockmemory call.
8606 if (ddi_umem_unlock_thread == NULL)
8607 i_ddi_umem_unlock_thread_start();
8609 /* Allocate memory for the cookie */
8610 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8612 /* Convert the flags to seg_rw type */
8613 if (flags & DDI_UMEMLOCK_WRITE) {
8614 p->s_flags = S_WRITE;
8615 } else {
8616 p->s_flags = S_READ;
8619 /* Store curproc in cookie for later iosetup/unlock */
8620 p->procp = (void *)curproc;
8623 * Store the struct as pointer in cookie for later use by
8624 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock
8625 * is called after relvm is called.
8627 p->asp = curproc->p_as;
8629 * The size field is needed for lockmem accounting.
8631 p->size = len;
8632 init_lockedmem_rctl_flag(p);
8634 if (umem_incr_devlockmem(p) != 0) {
8636 * The requested memory cannot be locked
8638 kmem_free(p, sizeof (struct ddi_umem_cookie));
8639 *cookie = (ddi_umem_cookie_t)NULL;
8640 return (ENOMEM);
8643 /* Lock the pages corresponding to addr, len in memory */
8644 error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray),
8645 addr, len, p->s_flags);
8646 if (error != 0) {
8647 umem_decr_devlockmem(p);
8648 kmem_free(p, sizeof (struct ddi_umem_cookie));
8649 *cookie = (ddi_umem_cookie_t)NULL;
8650 return (error);
8653 /* Initialize the fields in the ddi_umem_cookie */
8654 p->cvaddr = addr;
8655 p->type = UMEM_LOCKED;
8656 p->cook_refcnt = 1;
8658 *cookie = (ddi_umem_cookie_t)p;
8659 return (error);
8663 * Add the cookie to the ddi_umem_unlock list. Pages will be
8664 * unlocked by i_ddi_umem_unlock_thread.
8667 void
8668 ddi_umem_unlock(ddi_umem_cookie_t cookie)
8670 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8672 ASSERT(p->type == UMEM_LOCKED);
8673 ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */
8674 ASSERT(ddi_umem_unlock_thread != NULL);
8676 p->unl_forw = (struct ddi_umem_cookie *)NULL; /* end of list */
8678 * Queue the unlock request and notify i_ddi_umem_unlock thread
8679 * if it's called in the interrupt context. Otherwise, unlock pages
8680 * immediately.
8682 if (servicing_interrupt()) {
8683 /* queue the unlock request and notify the thread */
8684 mutex_enter(&ddi_umem_unlock_mutex);
8685 if (ddi_umem_unlock_head == NULL) {
8686 ddi_umem_unlock_head = ddi_umem_unlock_tail = p;
8687 cv_broadcast(&ddi_umem_unlock_cv);
8688 } else {
8689 ddi_umem_unlock_tail->unl_forw = p;
8690 ddi_umem_unlock_tail = p;
8692 mutex_exit(&ddi_umem_unlock_mutex);
8693 } else {
8694 /* unlock the pages right away */
8695 (void) i_ddi_umem_unlock(p);
8700 * Create a buf structure from a ddi_umem_cookie
8701 * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc
8702 * (only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported)
8703 * off, len - identifies the portion of the memory represented by the cookie
8704 * that the buf points to.
8705 * NOTE: off, len need to follow the alignment/size restrictions of the
8706 * device (dev) that this buf will be passed to. Some devices
8707 * will accept unrestricted alignment/size, whereas others (such as
8708 * st) require some block-size alignment/size. It is the caller's
8709 * responsibility to ensure that the alignment/size restrictions
8710 * are met (we cannot assert as we do not know the restrictions)
8712 * direction - is one of B_READ or B_WRITE and needs to be compatible with
8713 * the flags used in ddi_umem_lock
8715 * The following three arguments are used to initialize fields in the
8716 * buf structure and are uninterpreted by this routine.
8718 * dev
8719 * blkno
8720 * iodone
8722 * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP
8724 * Returns a buf structure pointer on success (to be freed by freerbuf)
8725 * NULL on any parameter error or memory alloc failure
8728 struct buf *
8729 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len,
8730 int direction, dev_t dev, daddr_t blkno,
8731 int (*iodone)(struct buf *), int sleepflag)
8733 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8734 struct buf *bp;
8737 * check for valid cookie offset, len
8739 if ((off + len) > p->size) {
8740 return (NULL);
8743 if (len > p->size) {
8744 return (NULL);
8747 /* direction has to be one of B_READ or B_WRITE */
8748 if ((direction != B_READ) && (direction != B_WRITE)) {
8749 return (NULL);
8752 /* These are the only two valid sleepflags */
8753 if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) {
8754 return (NULL);
8758 * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported
8760 if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) {
8761 return (NULL);
8764 /* If type is KMEM_NON_PAGEABLE procp is NULL */
8765 ASSERT((p->type == KMEM_NON_PAGEABLE) ?
8766 (p->procp == NULL) : (p->procp != NULL));
8768 bp = kmem_alloc(sizeof (struct buf), sleepflag);
8769 if (bp == NULL) {
8770 return (NULL);
8772 bioinit(bp);
8774 bp->b_flags = B_BUSY | B_PHYS | direction;
8775 bp->b_edev = dev;
8776 bp->b_lblkno = blkno;
8777 bp->b_iodone = iodone;
8778 bp->b_bcount = len;
8779 bp->b_proc = (proc_t *)p->procp;
8780 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8781 bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off);
8782 if (p->pparray != NULL) {
8783 bp->b_flags |= B_SHADOW;
8784 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8785 bp->b_shadow = p->pparray + btop(off);
8787 return (bp);
8791 * Fault-handling and related routines
8794 ddi_devstate_t
8795 ddi_get_devstate(dev_info_t *dip)
8797 if (DEVI_IS_DEVICE_OFFLINE(dip))
8798 return (DDI_DEVSTATE_OFFLINE);
8799 else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip))
8800 return (DDI_DEVSTATE_DOWN);
8801 else if (DEVI_IS_BUS_QUIESCED(dip))
8802 return (DDI_DEVSTATE_QUIESCED);
8803 else if (DEVI_IS_DEVICE_DEGRADED(dip))
8804 return (DDI_DEVSTATE_DEGRADED);
8805 else
8806 return (DDI_DEVSTATE_UP);
8809 void
8810 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact,
8811 ddi_fault_location_t location, const char *message)
8813 struct ddi_fault_event_data fd;
8814 ddi_eventcookie_t ec;
8817 * Assemble all the information into a fault-event-data structure
8819 fd.f_dip = dip;
8820 fd.f_impact = impact;
8821 fd.f_location = location;
8822 fd.f_message = message;
8823 fd.f_oldstate = ddi_get_devstate(dip);
8826 * Get eventcookie from defining parent.
8828 if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) !=
8829 DDI_SUCCESS)
8830 return;
8832 (void) ndi_post_event(dip, dip, ec, &fd);
8835 char *
8836 i_ddi_devi_class(dev_info_t *dip)
8838 return (DEVI(dip)->devi_device_class);
8842 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag)
8844 struct dev_info *devi = DEVI(dip);
8846 mutex_enter(&devi->devi_lock);
8848 if (devi->devi_device_class)
8849 kmem_free(devi->devi_device_class,
8850 strlen(devi->devi_device_class) + 1);
8852 if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag))
8853 != NULL) {
8854 mutex_exit(&devi->devi_lock);
8855 return (DDI_SUCCESS);
8858 mutex_exit(&devi->devi_lock);
8860 return (DDI_FAILURE);
8865 * Task Queues DDI interfaces.
8868 /* ARGSUSED */
8869 ddi_taskq_t *
8870 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads,
8871 pri_t pri, uint_t cflags)
8873 char full_name[TASKQ_NAMELEN];
8874 const char *tq_name;
8875 int nodeid = 0;
8877 if (dip == NULL)
8878 tq_name = name;
8879 else {
8880 nodeid = ddi_get_instance(dip);
8882 if (name == NULL)
8883 name = "tq";
8885 (void) snprintf(full_name, sizeof (full_name), "%s_%s",
8886 ddi_driver_name(dip), name);
8888 tq_name = full_name;
8891 return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads,
8892 pri == TASKQ_DEFAULTPRI ? minclsyspri : pri,
8893 nthreads, INT_MAX, TASKQ_PREPOPULATE));
8896 void
8897 ddi_taskq_destroy(ddi_taskq_t *tq)
8899 taskq_destroy((taskq_t *)tq);
8903 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
8904 void *arg, uint_t dflags)
8906 taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg,
8907 dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP);
8909 return (id != 0 ? DDI_SUCCESS : DDI_FAILURE);
8912 void
8913 ddi_taskq_wait(ddi_taskq_t *tq)
8915 taskq_wait((taskq_t *)tq);
8918 void
8919 ddi_taskq_suspend(ddi_taskq_t *tq)
8921 taskq_suspend((taskq_t *)tq);
8924 boolean_t
8925 ddi_taskq_suspended(ddi_taskq_t *tq)
8927 return (taskq_suspended((taskq_t *)tq));
8930 void
8931 ddi_taskq_resume(ddi_taskq_t *tq)
8933 taskq_resume((taskq_t *)tq);
8937 ddi_parse(
8938 const char *ifname,
8939 char *alnum,
8940 uint_t *nump)
8942 const char *p;
8943 int l;
8944 ulong_t num;
8945 boolean_t nonum = B_TRUE;
8946 char c;
8948 l = strlen(ifname);
8949 for (p = ifname + l; p != ifname; l--) {
8950 c = *--p;
8951 if (!isdigit(c)) {
8952 (void) strlcpy(alnum, ifname, l + 1);
8953 if (ddi_strtoul(p + 1, NULL, 10, &num) != 0)
8954 return (DDI_FAILURE);
8955 break;
8957 nonum = B_FALSE;
8959 if (l == 0 || nonum)
8960 return (DDI_FAILURE);
8962 *nump = num;
8963 return (DDI_SUCCESS);
8967 * Default initialization function for drivers that don't need to quiesce.
8969 /* ARGSUSED */
8971 ddi_quiesce_not_needed(dev_info_t *dip)
8973 return (DDI_SUCCESS);
8977 * Initialization function for drivers that should implement quiesce()
8978 * but haven't yet.
8980 /* ARGSUSED */
8982 ddi_quiesce_not_supported(dev_info_t *dip)
8984 return (DDI_FAILURE);
8987 char *
8988 ddi_strdup(const char *str, int flag)
8990 int n;
8991 char *ptr;
8993 ASSERT(str != NULL);
8994 ASSERT((flag == KM_SLEEP) || (flag == KM_NOSLEEP));
8996 n = strlen(str);
8997 if ((ptr = kmem_alloc(n + 1, flag)) == NULL)
8998 return (NULL);
8999 bcopy(str, ptr, n + 1);
9000 return (ptr);
9003 char *
9004 strdup(const char *str)
9006 return (ddi_strdup(str, KM_SLEEP));
9009 void
9010 strfree(char *str)
9012 ASSERT(str != NULL);
9013 kmem_free(str, strlen(str) + 1);
9017 * Generic DDI callback interfaces.
9021 ddi_cb_register(dev_info_t *dip, ddi_cb_flags_t flags, ddi_cb_func_t cbfunc,
9022 void *arg1, void *arg2, ddi_cb_handle_t *ret_hdlp)
9024 ddi_cb_t *cbp;
9026 ASSERT(dip != NULL);
9027 ASSERT(DDI_CB_FLAG_VALID(flags));
9028 ASSERT(cbfunc != NULL);
9029 ASSERT(ret_hdlp != NULL);
9031 /* Sanity check the context */
9032 ASSERT(!servicing_interrupt());
9033 if (servicing_interrupt())
9034 return (DDI_FAILURE);
9036 /* Validate parameters */
9037 if ((dip == NULL) || !DDI_CB_FLAG_VALID(flags) ||
9038 (cbfunc == NULL) || (ret_hdlp == NULL))
9039 return (DDI_EINVAL);
9041 /* Check for previous registration */
9042 if (DEVI(dip)->devi_cb_p != NULL)
9043 return (DDI_EALREADY);
9045 /* Allocate and initialize callback */
9046 cbp = kmem_zalloc(sizeof (ddi_cb_t), KM_SLEEP);
9047 cbp->cb_dip = dip;
9048 cbp->cb_func = cbfunc;
9049 cbp->cb_arg1 = arg1;
9050 cbp->cb_arg2 = arg2;
9051 cbp->cb_flags = flags;
9052 DEVI(dip)->devi_cb_p = cbp;
9054 /* If adding an IRM callback, notify IRM */
9055 if (flags & DDI_CB_FLAG_INTR)
9056 i_ddi_irm_set_cb(dip, B_TRUE);
9058 *ret_hdlp = (ddi_cb_handle_t)&(DEVI(dip)->devi_cb_p);
9059 return (DDI_SUCCESS);
9063 ddi_cb_unregister(ddi_cb_handle_t hdl)
9065 ddi_cb_t *cbp;
9066 dev_info_t *dip;
9068 ASSERT(hdl != NULL);
9070 /* Sanity check the context */
9071 ASSERT(!servicing_interrupt());
9072 if (servicing_interrupt())
9073 return (DDI_FAILURE);
9075 /* Validate parameters */
9076 if ((hdl == NULL) || ((cbp = *(ddi_cb_t **)hdl) == NULL) ||
9077 ((dip = cbp->cb_dip) == NULL))
9078 return (DDI_EINVAL);
9080 /* If removing an IRM callback, notify IRM */
9081 if (cbp->cb_flags & DDI_CB_FLAG_INTR)
9082 i_ddi_irm_set_cb(dip, B_FALSE);
9084 /* Destroy the callback */
9085 kmem_free(cbp, sizeof (ddi_cb_t));
9086 DEVI(dip)->devi_cb_p = NULL;
9088 return (DDI_SUCCESS);
9092 * Platform independent DR routines
9095 static int
9096 ndi2errno(int n)
9098 int err = 0;
9100 switch (n) {
9101 case NDI_NOMEM:
9102 err = ENOMEM;
9103 break;
9104 case NDI_BUSY:
9105 err = EBUSY;
9106 break;
9107 case NDI_FAULT:
9108 err = EFAULT;
9109 break;
9110 case NDI_FAILURE:
9111 err = EIO;
9112 break;
9113 case NDI_SUCCESS:
9114 break;
9115 case NDI_BADHANDLE:
9116 default:
9117 err = EINVAL;
9118 break;
9120 return (err);
9124 * Prom tree node list
9126 struct ptnode {
9127 pnode_t nodeid;
9128 struct ptnode *next;
9132 * Prom tree walk arg
9134 struct pta {
9135 dev_info_t *pdip;
9136 devi_branch_t *bp;
9137 uint_t flags;
9138 dev_info_t *fdip;
9139 struct ptnode *head;
9142 static void
9143 visit_node(pnode_t nodeid, struct pta *ap)
9145 struct ptnode **nextp;
9146 int (*select)(pnode_t, void *, uint_t);
9148 ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE);
9150 select = ap->bp->create.prom_branch_select;
9152 ASSERT(select);
9154 if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) {
9156 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next)
9159 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP);
9161 (*nextp)->nodeid = nodeid;
9164 if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD)
9165 return;
9167 nodeid = prom_childnode(nodeid);
9168 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9169 visit_node(nodeid, ap);
9170 nodeid = prom_nextnode(nodeid);
9175 * NOTE: The caller of this function must check for device contracts
9176 * or LDI callbacks against this dip before setting the dip offline.
9178 static int
9179 set_infant_dip_offline(dev_info_t *dip, void *arg)
9181 char *path = (char *)arg;
9183 ASSERT(dip);
9184 ASSERT(arg);
9186 if (i_ddi_node_state(dip) >= DS_ATTACHED) {
9187 (void) ddi_pathname(dip, path);
9188 cmn_err(CE_WARN, "Attempt to set offline flag on attached "
9189 "node: %s", path);
9190 return (DDI_FAILURE);
9193 mutex_enter(&(DEVI(dip)->devi_lock));
9194 if (!DEVI_IS_DEVICE_OFFLINE(dip))
9195 DEVI_SET_DEVICE_OFFLINE(dip);
9196 mutex_exit(&(DEVI(dip)->devi_lock));
9198 return (DDI_SUCCESS);
9201 typedef struct result {
9202 char *path;
9203 int result;
9204 } result_t;
9206 static int
9207 dip_set_offline(dev_info_t *dip, void *arg)
9209 int end;
9210 result_t *resp = (result_t *)arg;
9212 ASSERT(dip);
9213 ASSERT(resp);
9216 * We stop the walk if e_ddi_offline_notify() returns
9217 * failure, because this implies that one or more consumers
9218 * (either LDI or contract based) has blocked the offline.
9219 * So there is no point in conitnuing the walk
9221 if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9222 resp->result = DDI_FAILURE;
9223 return (DDI_WALK_TERMINATE);
9227 * If set_infant_dip_offline() returns failure, it implies
9228 * that we failed to set a particular dip offline. This
9229 * does not imply that the offline as a whole should fail.
9230 * We want to do the best we can, so we continue the walk.
9232 if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS)
9233 end = DDI_SUCCESS;
9234 else
9235 end = DDI_FAILURE;
9237 e_ddi_offline_finalize(dip, end);
9239 return (DDI_WALK_CONTINUE);
9243 * The call to e_ddi_offline_notify() exists for the
9244 * unlikely error case that a branch we are trying to
9245 * create already exists and has device contracts or LDI
9246 * event callbacks against it.
9248 * We allow create to succeed for such branches only if
9249 * no constraints block the offline.
9251 static int
9252 branch_set_offline(dev_info_t *dip, char *path)
9254 int circ;
9255 int end;
9256 result_t res;
9259 if (e_ddi_offline_notify(dip) == DDI_FAILURE) {
9260 return (DDI_FAILURE);
9263 if (set_infant_dip_offline(dip, path) == DDI_SUCCESS)
9264 end = DDI_SUCCESS;
9265 else
9266 end = DDI_FAILURE;
9268 e_ddi_offline_finalize(dip, end);
9270 if (end == DDI_FAILURE)
9271 return (DDI_FAILURE);
9273 res.result = DDI_SUCCESS;
9274 res.path = path;
9276 ndi_devi_enter(dip, &circ);
9277 ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res);
9278 ndi_devi_exit(dip, circ);
9280 return (res.result);
9283 /*ARGSUSED*/
9284 static int
9285 create_prom_branch(void *arg, int has_changed)
9287 int circ;
9288 int exists, rv;
9289 pnode_t nodeid;
9290 struct ptnode *tnp;
9291 dev_info_t *dip;
9292 struct pta *ap = arg;
9293 devi_branch_t *bp;
9294 char *path;
9296 ASSERT(ap);
9297 ASSERT(ap->fdip == NULL);
9298 ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip));
9300 bp = ap->bp;
9302 nodeid = ddi_get_nodeid(ap->pdip);
9303 if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) {
9304 cmn_err(CE_WARN, "create_prom_branch: invalid "
9305 "nodeid: 0x%x", nodeid);
9306 return (EINVAL);
9309 ap->head = NULL;
9311 nodeid = prom_childnode(nodeid);
9312 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
9313 visit_node(nodeid, ap);
9314 nodeid = prom_nextnode(nodeid);
9317 if (ap->head == NULL)
9318 return (ENODEV);
9320 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9321 rv = 0;
9322 while ((tnp = ap->head) != NULL) {
9323 ap->head = tnp->next;
9325 ndi_devi_enter(ap->pdip, &circ);
9328 * Check if the branch already exists.
9330 exists = 0;
9331 dip = e_ddi_nodeid_to_dip(tnp->nodeid);
9332 if (dip != NULL) {
9333 exists = 1;
9335 /* Parent is held busy, so release hold */
9336 ndi_rele_devi(dip);
9337 #ifdef DEBUG
9338 cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists"
9339 " for nodeid 0x%x", (void *)dip, tnp->nodeid);
9340 #endif
9341 } else {
9342 dip = i_ddi_create_branch(ap->pdip, tnp->nodeid);
9345 kmem_free(tnp, sizeof (struct ptnode));
9348 * Hold the branch if it is not already held
9350 if (dip && !exists) {
9351 e_ddi_branch_hold(dip);
9354 ASSERT(dip == NULL || e_ddi_branch_held(dip));
9357 * Set all dips in the newly created branch offline so that
9358 * only a "configure" operation can attach
9359 * the branch
9361 if (dip == NULL || branch_set_offline(dip, path)
9362 == DDI_FAILURE) {
9363 ndi_devi_exit(ap->pdip, circ);
9364 rv = EIO;
9365 continue;
9368 ASSERT(ddi_get_parent(dip) == ap->pdip);
9370 ndi_devi_exit(ap->pdip, circ);
9372 if (ap->flags & DEVI_BRANCH_CONFIGURE) {
9373 int error = e_ddi_branch_configure(dip, &ap->fdip, 0);
9374 if (error && rv == 0)
9375 rv = error;
9379 * Invoke devi_branch_callback() (if it exists) only for
9380 * newly created branches
9382 if (bp->devi_branch_callback && !exists)
9383 bp->devi_branch_callback(dip, bp->arg, 0);
9386 kmem_free(path, MAXPATHLEN);
9388 return (rv);
9391 static int
9392 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp)
9394 int rv, circ, len;
9395 int i, flags, ret;
9396 dev_info_t *dip;
9397 char *nbuf;
9398 char *path;
9399 static const char *noname = "<none>";
9401 ASSERT(pdip);
9402 ASSERT(DEVI_BUSY_OWNED(pdip));
9404 flags = 0;
9407 * Creating the root of a branch ?
9409 if (rdipp) {
9410 *rdipp = NULL;
9411 flags = DEVI_BRANCH_ROOT;
9414 ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip);
9415 rv = bp->create.sid_branch_create(dip, bp->arg, flags);
9417 nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP);
9419 if (rv == DDI_WALK_ERROR) {
9420 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting"
9421 " properties on devinfo node %p", (void *)dip);
9422 goto fail;
9425 len = OBP_MAXDRVNAME;
9426 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
9427 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len)
9428 != DDI_PROP_SUCCESS) {
9429 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has"
9430 "no name property", (void *)dip);
9431 goto fail;
9434 ASSERT(i_ddi_node_state(dip) == DS_PROTO);
9435 if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) {
9436 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)"
9437 " for devinfo node %p", nbuf, (void *)dip);
9438 goto fail;
9441 kmem_free(nbuf, OBP_MAXDRVNAME);
9444 * Ignore bind failures just like boot does
9446 (void) ndi_devi_bind_driver(dip, 0);
9448 switch (rv) {
9449 case DDI_WALK_CONTINUE:
9450 case DDI_WALK_PRUNESIB:
9451 ndi_devi_enter(dip, &circ);
9453 i = DDI_WALK_CONTINUE;
9454 for (; i == DDI_WALK_CONTINUE; ) {
9455 i = sid_node_create(dip, bp, NULL);
9458 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB);
9459 if (i == DDI_WALK_ERROR)
9460 rv = i;
9462 * If PRUNESIB stop creating siblings
9463 * of dip's child. Subsequent walk behavior
9464 * is determined by rv returned by dip.
9467 ndi_devi_exit(dip, circ);
9468 break;
9469 case DDI_WALK_TERMINATE:
9471 * Don't create children and ask our parent
9472 * to not create siblings either.
9474 rv = DDI_WALK_PRUNESIB;
9475 break;
9476 case DDI_WALK_PRUNECHILD:
9478 * Don't create children, but ask parent to continue
9479 * with siblings.
9481 rv = DDI_WALK_CONTINUE;
9482 break;
9483 default:
9484 ASSERT(0);
9485 break;
9488 if (rdipp)
9489 *rdipp = dip;
9492 * Set device offline - only the "configure" op should cause an attach.
9493 * Note that it is safe to set the dip offline without checking
9494 * for either device contract or layered driver (LDI) based constraints
9495 * since there cannot be any contracts or LDI opens of this device.
9496 * This is because this node is a newly created dip with the parent busy
9497 * held, so no other thread can come in and attach this dip. A dip that
9498 * has never been attached cannot have contracts since by definition
9499 * a device contract (an agreement between a process and a device minor
9500 * node) can only be created against a device that has minor nodes
9501 * i.e is attached. Similarly an LDI open will only succeed if the
9502 * dip is attached. We assert below that the dip is not attached.
9504 ASSERT(i_ddi_node_state(dip) < DS_ATTACHED);
9505 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9506 ret = set_infant_dip_offline(dip, path);
9507 ASSERT(ret == DDI_SUCCESS);
9508 kmem_free(path, MAXPATHLEN);
9510 return (rv);
9511 fail:
9512 (void) ndi_devi_free(dip);
9513 kmem_free(nbuf, OBP_MAXDRVNAME);
9514 return (DDI_WALK_ERROR);
9517 static int
9518 create_sid_branch(
9519 dev_info_t *pdip,
9520 devi_branch_t *bp,
9521 dev_info_t **dipp,
9522 uint_t flags)
9524 int rv = 0, state = DDI_WALK_CONTINUE;
9525 dev_info_t *rdip;
9527 while (state == DDI_WALK_CONTINUE) {
9528 int circ;
9530 ndi_devi_enter(pdip, &circ);
9532 state = sid_node_create(pdip, bp, &rdip);
9533 if (rdip == NULL) {
9534 ndi_devi_exit(pdip, circ);
9535 ASSERT(state == DDI_WALK_ERROR);
9536 break;
9539 e_ddi_branch_hold(rdip);
9541 ndi_devi_exit(pdip, circ);
9543 if (flags & DEVI_BRANCH_CONFIGURE) {
9544 int error = e_ddi_branch_configure(rdip, dipp, 0);
9545 if (error && rv == 0)
9546 rv = error;
9550 * devi_branch_callback() is optional
9552 if (bp->devi_branch_callback)
9553 bp->devi_branch_callback(rdip, bp->arg, 0);
9556 ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB);
9558 return (state == DDI_WALK_ERROR ? EIO : rv);
9562 e_ddi_branch_create(
9563 dev_info_t *pdip,
9564 devi_branch_t *bp,
9565 dev_info_t **dipp,
9566 uint_t flags)
9568 int prom_devi, sid_devi, error;
9570 if (pdip == NULL || bp == NULL || bp->type == 0)
9571 return (EINVAL);
9573 prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0;
9574 sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0;
9576 if (prom_devi && bp->create.prom_branch_select == NULL)
9577 return (EINVAL);
9578 else if (sid_devi && bp->create.sid_branch_create == NULL)
9579 return (EINVAL);
9580 else if (!prom_devi && !sid_devi)
9581 return (EINVAL);
9583 if (flags & DEVI_BRANCH_EVENT)
9584 return (EINVAL);
9586 if (prom_devi) {
9587 struct pta pta = {0};
9589 pta.pdip = pdip;
9590 pta.bp = bp;
9591 pta.flags = flags;
9593 error = prom_tree_access(create_prom_branch, &pta, NULL);
9595 if (dipp)
9596 *dipp = pta.fdip;
9597 else if (pta.fdip)
9598 ndi_rele_devi(pta.fdip);
9599 } else {
9600 error = create_sid_branch(pdip, bp, dipp, flags);
9603 return (error);
9607 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags)
9609 int rv;
9610 char *devnm;
9611 dev_info_t *pdip;
9613 if (dipp)
9614 *dipp = NULL;
9616 if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT))
9617 return (EINVAL);
9619 pdip = ddi_get_parent(rdip);
9621 ndi_hold_devi(pdip);
9623 if (!e_ddi_branch_held(rdip)) {
9624 ndi_rele_devi(pdip);
9625 cmn_err(CE_WARN, "e_ddi_branch_configure: "
9626 "dip(%p) not held", (void *)rdip);
9627 return (EINVAL);
9630 if (i_ddi_node_state(rdip) < DS_INITIALIZED) {
9632 * First attempt to bind a driver. If we fail, return
9633 * success (On some platforms, dips for some device
9634 * types (CPUs) may not have a driver)
9636 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) {
9637 ndi_rele_devi(pdip);
9638 return (0);
9641 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) {
9642 rv = NDI_FAILURE;
9643 goto out;
9647 ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED);
9649 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9651 (void) ddi_deviname(rdip, devnm);
9653 if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip,
9654 NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) {
9655 /* release hold from ndi_devi_config_one() */
9656 ndi_rele_devi(rdip);
9659 kmem_free(devnm, MAXNAMELEN + 1);
9660 out:
9661 if (rv != NDI_SUCCESS && dipp && rdip) {
9662 ndi_hold_devi(rdip);
9663 *dipp = rdip;
9665 ndi_rele_devi(pdip);
9666 return (ndi2errno(rv));
9669 void
9670 e_ddi_branch_hold(dev_info_t *rdip)
9672 if (e_ddi_branch_held(rdip)) {
9673 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held");
9674 return;
9677 mutex_enter(&DEVI(rdip)->devi_lock);
9678 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) {
9679 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD;
9680 DEVI(rdip)->devi_ref++;
9682 ASSERT(DEVI(rdip)->devi_ref > 0);
9683 mutex_exit(&DEVI(rdip)->devi_lock);
9687 e_ddi_branch_held(dev_info_t *rdip)
9689 int rv = 0;
9691 mutex_enter(&DEVI(rdip)->devi_lock);
9692 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) &&
9693 DEVI(rdip)->devi_ref > 0) {
9694 rv = 1;
9696 mutex_exit(&DEVI(rdip)->devi_lock);
9698 return (rv);
9701 void
9702 e_ddi_branch_rele(dev_info_t *rdip)
9704 mutex_enter(&DEVI(rdip)->devi_lock);
9705 DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD;
9706 DEVI(rdip)->devi_ref--;
9707 mutex_exit(&DEVI(rdip)->devi_lock);
9711 e_ddi_branch_unconfigure(
9712 dev_info_t *rdip,
9713 dev_info_t **dipp,
9714 uint_t flags)
9716 int circ, rv;
9717 int destroy;
9718 char *devnm;
9719 uint_t nflags;
9720 dev_info_t *pdip;
9722 if (dipp)
9723 *dipp = NULL;
9725 if (rdip == NULL)
9726 return (EINVAL);
9728 pdip = ddi_get_parent(rdip);
9730 ASSERT(pdip);
9733 * Check if caller holds pdip busy - can cause deadlocks during
9734 * devfs_clean()
9736 if (DEVI_BUSY_OWNED(pdip)) {
9737 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent"
9738 " devinfo node(%p) is busy held", (void *)pdip);
9739 return (EINVAL);
9742 destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0;
9744 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
9746 ndi_devi_enter(pdip, &circ);
9747 (void) ddi_deviname(rdip, devnm);
9748 ndi_devi_exit(pdip, circ);
9751 * ddi_deviname() returns a component name with / prepended.
9753 (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
9755 ndi_devi_enter(pdip, &circ);
9758 * Recreate device name as it may have changed state (init/uninit)
9759 * when parent busy lock was dropped for devfs_clean()
9761 (void) ddi_deviname(rdip, devnm);
9763 if (!e_ddi_branch_held(rdip)) {
9764 kmem_free(devnm, MAXNAMELEN + 1);
9765 ndi_devi_exit(pdip, circ);
9766 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held",
9767 destroy ? "destroy" : "unconfigure", (void *)rdip);
9768 return (EINVAL);
9772 * Release hold on the branch. This is ok since we are holding the
9773 * parent busy. If rdip is not removed, we must do a hold on the
9774 * branch before returning.
9776 e_ddi_branch_rele(rdip);
9778 nflags = NDI_DEVI_OFFLINE;
9779 if (destroy || (flags & DEVI_BRANCH_DESTROY)) {
9780 nflags |= NDI_DEVI_REMOVE;
9781 destroy = 1;
9782 } else {
9783 nflags |= NDI_UNCONFIG; /* uninit but don't remove */
9786 if (flags & DEVI_BRANCH_EVENT)
9787 nflags |= NDI_POST_EVENT;
9789 if (i_ddi_devi_attached(pdip) &&
9790 (i_ddi_node_state(rdip) >= DS_INITIALIZED)) {
9791 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags);
9792 } else {
9793 rv = e_ddi_devi_unconfig(rdip, dipp, nflags);
9794 if (rv == NDI_SUCCESS) {
9795 ASSERT(!destroy || ddi_get_child(rdip) == NULL);
9796 rv = ndi_devi_offline(rdip, nflags);
9800 if (!destroy || rv != NDI_SUCCESS) {
9801 /* The dip still exists, so do a hold */
9802 e_ddi_branch_hold(rdip);
9804 out:
9805 kmem_free(devnm, MAXNAMELEN + 1);
9806 ndi_devi_exit(pdip, circ);
9807 return (ndi2errno(rv));
9811 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag)
9813 return (e_ddi_branch_unconfigure(rdip, dipp,
9814 flag|DEVI_BRANCH_DESTROY));
9818 * Number of chains for hash table
9820 #define NUMCHAINS 17
9823 * Devinfo busy arg
9825 struct devi_busy {
9826 int dv_total;
9827 int s_total;
9828 mod_hash_t *dv_hash;
9829 mod_hash_t *s_hash;
9830 int (*callback)(dev_info_t *, void *, uint_t);
9831 void *arg;
9834 static int
9835 visit_dip(dev_info_t *dip, void *arg)
9837 uintptr_t sbusy, dvbusy, ref;
9838 struct devi_busy *bsp = arg;
9840 ASSERT(bsp->callback);
9843 * A dip cannot be busy if its reference count is 0
9845 if ((ref = e_ddi_devi_holdcnt(dip)) == 0) {
9846 return (bsp->callback(dip, bsp->arg, 0));
9849 if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy))
9850 dvbusy = 0;
9853 * To catch device opens currently maintained on specfs common snodes.
9855 if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9856 sbusy = 0;
9858 #ifdef DEBUG
9859 if (ref < sbusy || ref < dvbusy) {
9860 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu "
9861 "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref);
9863 #endif
9865 dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy;
9867 return (bsp->callback(dip, bsp->arg, dvbusy));
9870 static int
9871 visit_snode(struct snode *sp, void *arg)
9873 uintptr_t sbusy;
9874 dev_info_t *dip;
9875 int count;
9876 struct devi_busy *bsp = arg;
9878 ASSERT(sp);
9881 * The stable lock is held. This prevents
9882 * the snode and its associated dip from
9883 * going away.
9885 dip = NULL;
9886 count = spec_devi_open_count(sp, &dip);
9888 if (count <= 0)
9889 return (DDI_WALK_CONTINUE);
9891 ASSERT(dip);
9893 if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
9894 sbusy = count;
9895 else
9896 sbusy += count;
9898 if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) {
9899 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, "
9900 "sbusy = %lu", "e_ddi_branch_referenced",
9901 (void *)dip, sbusy);
9904 bsp->s_total += count;
9906 return (DDI_WALK_CONTINUE);
9909 static void
9910 visit_dvnode(struct dv_node *dv, void *arg)
9912 uintptr_t dvbusy;
9913 uint_t count;
9914 struct vnode *vp;
9915 struct devi_busy *bsp = arg;
9917 ASSERT(dv && dv->dv_devi);
9919 vp = DVTOV(dv);
9921 mutex_enter(&vp->v_lock);
9922 count = vp->v_count;
9923 mutex_exit(&vp->v_lock);
9925 if (!count)
9926 return;
9928 if (mod_hash_remove(bsp->dv_hash, dv->dv_devi,
9929 (mod_hash_val_t *)&dvbusy))
9930 dvbusy = count;
9931 else
9932 dvbusy += count;
9934 if (mod_hash_insert(bsp->dv_hash, dv->dv_devi,
9935 (mod_hash_val_t)dvbusy)) {
9936 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, "
9937 "dvbusy=%lu", "e_ddi_branch_referenced",
9938 (void *)dv->dv_devi, dvbusy);
9941 bsp->dv_total += count;
9945 * Returns reference count on success or -1 on failure.
9948 e_ddi_branch_referenced(
9949 dev_info_t *rdip,
9950 int (*callback)(dev_info_t *dip, void *arg, uint_t ref),
9951 void *arg)
9953 int circ;
9954 char *path;
9955 dev_info_t *pdip;
9956 struct devi_busy bsa = {0};
9958 ASSERT(rdip);
9960 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
9962 ndi_hold_devi(rdip);
9964 pdip = ddi_get_parent(rdip);
9966 ASSERT(pdip);
9969 * Check if caller holds pdip busy - can cause deadlocks during
9970 * devfs_walk()
9972 if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) {
9973 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: "
9974 "devinfo branch(%p) not held or parent busy held",
9975 (void *)rdip);
9976 ndi_rele_devi(rdip);
9977 kmem_free(path, MAXPATHLEN);
9978 return (-1);
9981 ndi_devi_enter(pdip, &circ);
9982 (void) ddi_pathname(rdip, path);
9983 ndi_devi_exit(pdip, circ);
9985 bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS,
9986 mod_hash_null_valdtor, sizeof (struct dev_info));
9988 bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS,
9989 mod_hash_null_valdtor, sizeof (struct snode));
9991 if (devfs_walk(path, visit_dvnode, &bsa)) {
9992 cmn_err(CE_WARN, "e_ddi_branch_referenced: "
9993 "devfs walk failed for: %s", path);
9994 kmem_free(path, MAXPATHLEN);
9995 bsa.s_total = bsa.dv_total = -1;
9996 goto out;
9999 kmem_free(path, MAXPATHLEN);
10002 * Walk the snode table to detect device opens, which are currently
10003 * maintained on specfs common snodes.
10005 spec_snode_walk(visit_snode, &bsa);
10007 if (callback == NULL)
10008 goto out;
10010 bsa.callback = callback;
10011 bsa.arg = arg;
10013 if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) {
10014 ndi_devi_enter(rdip, &circ);
10015 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa);
10016 ndi_devi_exit(rdip, circ);
10019 out:
10020 ndi_rele_devi(rdip);
10021 mod_hash_destroy_ptrhash(bsa.s_hash);
10022 mod_hash_destroy_ptrhash(bsa.dv_hash);
10023 return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total);