5296 Support for more than 16 groups with AUTH_SYS
[unleashed.git] / usr / src / uts / common / fs / nfs / nfs_auth.c
blob18d358795bbd6833b54dcd59caaadf4388ae377e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
27 #include <sys/param.h>
28 #include <sys/errno.h>
29 #include <sys/vfs.h>
30 #include <sys/vnode.h>
31 #include <sys/cred.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/kmem.h>
35 #include <sys/pathname.h>
36 #include <sys/utsname.h>
37 #include <sys/debug.h>
38 #include <sys/door.h>
39 #include <sys/sdt.h>
40 #include <sys/thread.h>
42 #include <rpc/types.h>
43 #include <rpc/auth.h>
44 #include <rpc/clnt.h>
46 #include <nfs/nfs.h>
47 #include <nfs/export.h>
48 #include <nfs/nfs_clnt.h>
49 #include <nfs/auth.h>
51 #define EQADDR(a1, a2) \
52 (bcmp((char *)(a1)->buf, (char *)(a2)->buf, (a1)->len) == 0 && \
53 (a1)->len == (a2)->len)
55 static struct knetconfig auth_knconf;
56 static servinfo_t svp;
57 static clinfo_t ci;
59 static struct kmem_cache *exi_cache_handle;
60 static void exi_cache_reclaim(void *);
61 static void exi_cache_trim(struct exportinfo *exi);
63 extern pri_t minclsyspri;
65 int nfsauth_cache_hit;
66 int nfsauth_cache_miss;
67 int nfsauth_cache_refresh;
68 int nfsauth_cache_reclaim;
71 * The lifetime of an auth cache entry:
72 * ------------------------------------
74 * An auth cache entry is created with both the auth_time
75 * and auth_freshness times set to the current time.
77 * Upon every client access which results in a hit, the
78 * auth_time will be updated.
80 * If a client access determines that the auth_freshness
81 * indicates that the entry is STALE, then it will be
82 * refreshed. Note that this will explicitly reset
83 * auth_time.
85 * When the REFRESH successfully occurs, then the
86 * auth_freshness is updated.
88 * There are two ways for an entry to leave the cache:
90 * 1) Purged by an action on the export (remove or changed)
91 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
93 * For 2) we check the timeout value against auth_time.
97 * Number of seconds until we mark for refresh an auth cache entry.
99 #define NFSAUTH_CACHE_REFRESH 600
102 * Number of idle seconds until we yield to backpressure
103 * to trim a cache entry.
105 #define NFSAUTH_CACHE_TRIM 3600
108 * While we could encapuslate the exi_list inside the
109 * exi structure, we can't do that for the auth_list.
110 * So, to keep things looking clean, we keep them both
111 * in these external lists.
113 typedef struct refreshq_exi_node {
114 struct exportinfo *ren_exi;
115 list_t ren_authlist;
116 list_node_t ren_node;
117 } refreshq_exi_node_t;
119 typedef struct refreshq_auth_node {
120 struct auth_cache *ran_auth;
121 list_node_t ran_node;
122 } refreshq_auth_node_t;
125 * Used to manipulate things on the refreshq_queue.
126 * Note that the refresh thread will effectively
127 * pop a node off of the queue, at which point it
128 * will no longer need to hold the mutex.
130 static kmutex_t refreshq_lock;
131 static list_t refreshq_queue;
132 static kcondvar_t refreshq_cv;
135 * A list_t would be overkill. These are auth_cache
136 * entries which are no longer linked to an exi.
137 * It should be the case that all of their states
138 * are NFS_AUTH_INVALID.
140 * I.e., the only way to be put on this list is
141 * iff their state indicated that they had been placed
142 * on the refreshq_queue.
144 * Note that while there is no link from the exi or
145 * back to the exi, the exi can not go away until
146 * these entries are harvested.
148 static struct auth_cache *refreshq_dead_entries;
151 * If there is ever a problem with loading the
152 * module, then nfsauth_fini() needs to be called
153 * to remove state. In that event, since the
154 * refreshq thread has been started, they need to
155 * work together to get rid of state.
157 typedef enum nfsauth_refreshq_thread_state {
158 REFRESHQ_THREAD_RUNNING,
159 REFRESHQ_THREAD_FINI_REQ,
160 REFRESHQ_THREAD_HALTED
161 } nfsauth_refreshq_thread_state_t;
163 nfsauth_refreshq_thread_state_t
164 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
166 static void nfsauth_free_node(struct auth_cache *);
167 static void nfsauth_remove_dead_entry(struct auth_cache *);
168 static void nfsauth_refresh_thread(void);
171 * mountd is a server-side only daemon. This will need to be
172 * revisited if the NFS server is ever made zones-aware.
174 kmutex_t mountd_lock;
175 door_handle_t mountd_dh;
177 void
178 mountd_args(uint_t did)
180 mutex_enter(&mountd_lock);
181 if (mountd_dh != NULL)
182 door_ki_rele(mountd_dh);
183 mountd_dh = door_ki_lookup(did);
184 mutex_exit(&mountd_lock);
187 void
188 nfsauth_init(void)
191 * mountd can be restarted by smf(5). We need to make sure
192 * the updated door handle will safely make it to mountd_dh
194 mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL);
196 mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
197 list_create(&refreshq_queue, sizeof (refreshq_exi_node_t),
198 offsetof(refreshq_exi_node_t, ren_node));
199 refreshq_dead_entries = NULL;
201 cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL);
204 * Allocate nfsauth cache handle
206 exi_cache_handle = kmem_cache_create("exi_cache_handle",
207 sizeof (struct auth_cache), 0, NULL, NULL,
208 exi_cache_reclaim, NULL, NULL, 0);
210 refreshq_thread_state = REFRESHQ_THREAD_RUNNING;
211 (void) zthread_create(NULL, 0, nfsauth_refresh_thread,
212 NULL, 0, minclsyspri);
216 * Finalization routine for nfsauth. It is important to call this routine
217 * before destroying the exported_lock.
219 void
220 nfsauth_fini(void)
222 refreshq_exi_node_t *ren;
223 refreshq_auth_node_t *ran;
224 struct auth_cache *p;
225 struct auth_cache *auth_next;
228 * Prevent the refreshq_thread from getting new
229 * work.
231 mutex_enter(&refreshq_lock);
232 if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
233 refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
234 cv_broadcast(&refreshq_cv);
237 * Also, wait for nfsauth_refresh_thread() to exit.
239 while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
240 cv_wait(&refreshq_cv, &refreshq_lock);
245 * Walk the exi_list and in turn, walk the
246 * auth_lists.
248 while ((ren = list_remove_head(&refreshq_queue))) {
249 while ((ran = list_remove_head(&ren->ren_authlist))) {
250 kmem_free(ran, sizeof (refreshq_auth_node_t));
253 list_destroy(&ren->ren_authlist);
254 exi_rele(ren->ren_exi);
255 kmem_free(ren, sizeof (refreshq_exi_node_t));
259 * Okay, now that the lists are deleted, we
260 * need to see if there are any dead entries
261 * to harvest.
263 for (p = refreshq_dead_entries; p != NULL; p = auth_next) {
264 auth_next = p->auth_next;
265 nfsauth_free_node(p);
268 mutex_exit(&refreshq_lock);
270 list_destroy(&refreshq_queue);
272 cv_destroy(&refreshq_cv);
273 mutex_destroy(&refreshq_lock);
275 mutex_destroy(&mountd_lock);
278 * Deallocate nfsauth cache handle
280 kmem_cache_destroy(exi_cache_handle);
284 * Convert the address in a netbuf to
285 * a hash index for the auth_cache table.
287 static int
288 hash(struct netbuf *a)
290 int i, h = 0;
292 for (i = 0; i < a->len; i++)
293 h ^= a->buf[i];
295 return (h & (AUTH_TABLESIZE - 1));
299 * Mask out the components of an
300 * address that do not identify
301 * a host. For socket addresses the
302 * masking gets rid of the port number.
304 static void
305 addrmask(struct netbuf *addr, struct netbuf *mask)
307 int i;
309 for (i = 0; i < addr->len; i++)
310 addr->buf[i] &= mask->buf[i];
314 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
315 * the common nfsauth_access(), it will check if the client can
316 * have a limited access to this vnode even if the security flavor
317 * used does not meet the policy.
320 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
321 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
323 int access;
325 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
328 * There are cases that the server needs to allow the client
329 * to have a limited view.
331 * e.g.
332 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
333 * /export/home is shared as "sec=sys,rw"
335 * When the client mounts /export with sec=sys, the client
336 * would get a limited view with RO access on /export to see
337 * "home" only because the client is allowed to access
338 * /export/home with auth_sys.
340 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
342 * Allow ro permission with LIMITED view if there is a
343 * sub-dir exported under vp.
345 if (has_visible(exi, vp))
346 return (NFSAUTH_LIMITED);
349 return (access);
352 static void
353 sys_log(const char *msg)
355 static time_t tstamp = 0;
356 time_t now;
359 * msg is shown (at most) once per minute
361 now = gethrestime_sec();
362 if ((tstamp + 60) < now) {
363 tstamp = now;
364 cmn_err(CE_WARN, msg);
369 * Callup to the mountd to get access information in the kernel.
371 static bool_t
372 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor,
373 struct netbuf *addr, int *access, uid_t clnt_uid, gid_t clnt_gid,
374 uint_t clnt_gids_cnt, const gid_t *clnt_gids, uid_t *srv_uid,
375 gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids)
377 varg_t varg = {0};
378 nfsauth_res_t res = {0};
379 XDR xdrs;
380 size_t absz;
381 caddr_t abuf;
382 int last = 0;
383 door_arg_t da;
384 door_info_t di;
385 door_handle_t dh;
386 uint_t ntries = 0;
389 * No entry in the cache for this client/flavor
390 * so we need to call the nfsauth service in the
391 * mount daemon.
394 varg.vers = V_PROTO;
395 varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
396 varg.arg_u.arg.areq.req_client.n_len = addr->len;
397 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
398 varg.arg_u.arg.areq.req_netid = req_netid;
399 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
400 varg.arg_u.arg.areq.req_flavor = flavor;
401 varg.arg_u.arg.areq.req_clnt_uid = clnt_uid;
402 varg.arg_u.arg.areq.req_clnt_gid = clnt_gid;
403 varg.arg_u.arg.areq.req_clnt_gids.len = clnt_gids_cnt;
404 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)clnt_gids;
406 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
409 * Setup the XDR stream for encoding the arguments. Notice that
410 * in addition to the args having variable fields (req_netid and
411 * req_path), the argument data structure is itself versioned,
412 * so we need to make sure we can size the arguments buffer
413 * appropriately to encode all the args. If we can't get sizing
414 * info _or_ properly encode the arguments, there's really no
415 * point in continuting, so we fail the request.
417 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
418 *access = NFSAUTH_DENIED;
419 return (FALSE);
422 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
423 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
424 if (!xdr_varg(&xdrs, &varg)) {
425 XDR_DESTROY(&xdrs);
426 goto fail;
428 XDR_DESTROY(&xdrs);
431 * Prepare the door arguments
433 * We don't know the size of the message the daemon
434 * will pass back to us. By setting rbuf to NULL,
435 * we force the door code to allocate a buf of the
436 * appropriate size. We must set rsize > 0, however,
437 * else the door code acts as if no response was
438 * expected and doesn't pass the data to us.
440 da.data_ptr = (char *)abuf;
441 da.data_size = absz;
442 da.desc_ptr = NULL;
443 da.desc_num = 0;
444 da.rbuf = NULL;
445 da.rsize = 1;
447 retry:
448 mutex_enter(&mountd_lock);
449 dh = mountd_dh;
450 if (dh != NULL)
451 door_ki_hold(dh);
452 mutex_exit(&mountd_lock);
454 if (dh == NULL) {
456 * The rendezvous point has not been established yet!
457 * This could mean that either mountd(1m) has not yet
458 * been started or that _this_ routine nuked the door
459 * handle after receiving an EINTR for a REVOKED door.
461 * Returning NFSAUTH_DROP will cause the NFS client
462 * to retransmit the request, so let's try to be more
463 * rescillient and attempt for ntries before we bail.
465 if (++ntries % NFSAUTH_DR_TRYCNT) {
466 delay(hz);
467 goto retry;
470 kmem_free(abuf, absz);
472 sys_log("nfsauth: mountd has not established door");
473 *access = NFSAUTH_DROP;
474 return (FALSE);
477 ntries = 0;
480 * Now that we've got what we need, place the call.
482 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
483 case 0: /* Success */
484 door_ki_rele(dh);
486 if (da.data_ptr == NULL && da.data_size == 0) {
488 * The door_return that contained the data
489 * failed! We're here because of the 2nd
490 * door_return (w/o data) such that we can
491 * get control of the thread (and exit
492 * gracefully).
494 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
495 door_arg_t *, &da);
496 goto fail;
499 break;
501 case EAGAIN:
503 * Server out of resources; back off for a bit
505 door_ki_rele(dh);
506 delay(hz);
507 goto retry;
508 /* NOTREACHED */
510 case EINTR:
511 if (!door_ki_info(dh, &di)) {
512 door_ki_rele(dh);
514 if (di.di_attributes & DOOR_REVOKED) {
516 * The server barfed and revoked
517 * the (existing) door on us; we
518 * want to wait to give smf(5) a
519 * chance to restart mountd(1m)
520 * and establish a new door handle.
522 mutex_enter(&mountd_lock);
523 if (dh == mountd_dh) {
524 door_ki_rele(mountd_dh);
525 mountd_dh = NULL;
527 mutex_exit(&mountd_lock);
528 delay(hz);
529 goto retry;
532 * If the door was _not_ revoked on us,
533 * then more than likely we took an INTR,
534 * so we need to fail the operation.
536 goto fail;
539 * The only failure that can occur from getting
540 * the door info is EINVAL, so we let the code
541 * below handle it.
543 /* FALLTHROUGH */
545 case EBADF:
546 case EINVAL:
547 default:
549 * If we have a stale door handle, give smf a last
550 * chance to start it by sleeping for a little bit.
551 * If we're still hosed, we'll fail the call.
553 * Since we're going to reacquire the door handle
554 * upon the retry, we opt to sleep for a bit and
555 * _not_ to clear mountd_dh. If mountd restarted
556 * and was able to set mountd_dh, we should see
557 * the new instance; if not, we won't get caught
558 * up in the retry/DELAY loop.
560 door_ki_rele(dh);
561 if (!last) {
562 delay(hz);
563 last++;
564 goto retry;
566 sys_log("nfsauth: stale mountd door handle");
567 goto fail;
570 ASSERT(da.rbuf != NULL);
573 * No door errors encountered; setup the XDR stream for decoding
574 * the results. If we fail to decode the results, we've got no
575 * other recourse than to fail the request.
577 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
578 if (!xdr_nfsauth_res(&xdrs, &res)) {
579 xdr_free(xdr_nfsauth_res, (char *)&res);
580 XDR_DESTROY(&xdrs);
581 kmem_free(da.rbuf, da.rsize);
582 goto fail;
584 XDR_DESTROY(&xdrs);
585 kmem_free(da.rbuf, da.rsize);
587 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
588 switch (res.stat) {
589 case NFSAUTH_DR_OKAY:
590 *access = res.ares.auth_perm;
591 *srv_uid = res.ares.auth_srv_uid;
592 *srv_gid = res.ares.auth_srv_gid;
593 *srv_gids_cnt = res.ares.auth_srv_gids.len;
594 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t),
595 KM_SLEEP);
596 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
597 *srv_gids_cnt * sizeof (gid_t));
598 break;
600 case NFSAUTH_DR_EFAIL:
601 case NFSAUTH_DR_DECERR:
602 case NFSAUTH_DR_BADCMD:
603 default:
604 xdr_free(xdr_nfsauth_res, (char *)&res);
605 fail:
606 *access = NFSAUTH_DENIED;
607 kmem_free(abuf, absz);
608 return (FALSE);
609 /* NOTREACHED */
612 xdr_free(xdr_nfsauth_res, (char *)&res);
613 kmem_free(abuf, absz);
615 return (TRUE);
618 static void
619 nfsauth_refresh_thread(void)
621 refreshq_exi_node_t *ren;
622 refreshq_auth_node_t *ran;
624 struct exportinfo *exi;
626 int access;
627 bool_t retrieval;
629 callb_cpr_t cprinfo;
631 CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr,
632 "nfsauth_refresh");
634 for (;;) {
635 mutex_enter(&refreshq_lock);
636 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
637 /* Keep the hold on the lock! */
638 break;
641 ren = list_remove_head(&refreshq_queue);
642 if (ren == NULL) {
643 CALLB_CPR_SAFE_BEGIN(&cprinfo);
644 cv_wait(&refreshq_cv, &refreshq_lock);
645 CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock);
646 mutex_exit(&refreshq_lock);
647 continue;
649 mutex_exit(&refreshq_lock);
651 exi = ren->ren_exi;
652 ASSERT(exi != NULL);
655 * Since the ren was removed from the refreshq_queue above,
656 * this is the only thread aware about the ren existence, so we
657 * have the exclusive ownership of it and we do not need to
658 * protect it by any lock.
660 while ((ran = list_remove_head(&ren->ren_authlist))) {
662 uint_t ngids;
663 gid_t *gids;
664 struct auth_cache *p = ran->ran_auth;
666 ASSERT(p != NULL);
667 kmem_free(ran, sizeof (refreshq_auth_node_t));
670 * We are shutting down. No need to refresh
671 * entries which are about to be nuked.
673 * So just throw them away until we are done
674 * with this exi node...
676 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING)
677 continue;
679 mutex_enter(&p->auth_lock);
682 * Make sure the state is valid now that
683 * we have the lock. Note that once we
684 * change the state to NFS_AUTH_REFRESHING,
685 * no other thread will be able to work on
686 * this entry.
688 if (p->auth_state != NFS_AUTH_STALE) {
690 * Once it goes INVALID, it can not
691 * change state.
693 if (p->auth_state == NFS_AUTH_INVALID) {
694 mutex_exit(&p->auth_lock);
695 nfsauth_remove_dead_entry(p);
696 } else
697 mutex_exit(&p->auth_lock);
699 continue;
702 p->auth_state = NFS_AUTH_REFRESHING;
703 mutex_exit(&p->auth_lock);
705 DTRACE_PROBE2(nfsauth__debug__cache__refresh,
706 struct exportinfo *, exi,
707 struct auth_cache *, p);
710 * The first caching of the access rights
711 * is done with the netid pulled out of the
712 * request from the client. All subsequent
713 * users of the cache may or may not have
714 * the same netid. It doesn't matter. So
715 * when we refresh, we simply use the netid
716 * of the request which triggered the
717 * refresh attempt.
719 ASSERT(p->auth_netid != NULL);
721 retrieval = nfsauth_retrieve(exi, p->auth_netid,
722 p->auth_flavor, &p->auth_addr, &access,
723 p->auth_clnt_uid, p->auth_clnt_gid,
724 p->auth_clnt_ngids, p->auth_clnt_gids,
725 &p->auth_srv_uid, &p->auth_srv_gid, &ngids, &gids);
728 * This can only be set in one other place
729 * and the state has to be NFS_AUTH_FRESH.
731 kmem_free(p->auth_netid, strlen(p->auth_netid) + 1);
732 p->auth_netid = NULL;
734 mutex_enter(&p->auth_lock);
735 if (p->auth_state == NFS_AUTH_INVALID) {
736 mutex_exit(&p->auth_lock);
737 nfsauth_remove_dead_entry(p);
738 if (retrieval == TRUE)
739 kmem_free(gids, ngids * sizeof (gid_t));
740 } else {
742 * If we got an error, do not reset the
743 * time. This will cause the next access
744 * check for the client to reschedule this
745 * node.
747 if (retrieval == TRUE) {
748 p->auth_access = access;
750 kmem_free(p->auth_srv_gids,
751 p->auth_srv_ngids * sizeof (gid_t));
752 p->auth_srv_ngids = ngids;
753 p->auth_srv_gids = gids;
755 p->auth_freshness = gethrestime_sec();
757 p->auth_state = NFS_AUTH_FRESH;
758 mutex_exit(&p->auth_lock);
762 list_destroy(&ren->ren_authlist);
763 exi_rele(ren->ren_exi);
764 kmem_free(ren, sizeof (refreshq_exi_node_t));
767 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
768 cv_broadcast(&refreshq_cv);
769 CALLB_CPR_EXIT(&cprinfo);
770 zthread_exit();
774 * Get the access information from the cache or callup to the mountd
775 * to get and cache the access information in the kernel.
777 static int
778 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
779 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
781 struct netbuf *taddrmask;
782 struct netbuf addr;
783 struct netbuf *claddr;
784 struct auth_cache **head;
785 struct auth_cache *p;
786 struct auth_cache *prev = NULL;
787 int access;
788 time_t refresh;
790 refreshq_exi_node_t *ren;
791 refreshq_auth_node_t *ran;
793 uid_t tmpuid;
794 gid_t tmpgid;
795 uint_t tmpngids;
796 gid_t *tmpgids;
798 ASSERT(cr != NULL);
801 * Now check whether this client already
802 * has an entry for this flavor in the cache
803 * for this export.
804 * Get the caller's address, mask off the
805 * parts of the address that do not identify
806 * the host (port number, etc), and then hash
807 * it to find the chain of cache entries.
810 claddr = svc_getrpccaller(req->rq_xprt);
811 addr = *claddr;
812 addr.buf = kmem_alloc(addr.len, KM_SLEEP);
813 bcopy(claddr->buf, addr.buf, claddr->len);
814 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
815 ASSERT(taddrmask != NULL);
816 if (taddrmask)
817 addrmask(&addr, taddrmask);
819 rw_enter(&exi->exi_cache_lock, RW_READER);
820 head = &exi->exi_cache[hash(&addr)];
821 for (p = *head; p; p = p->auth_next) {
822 if (EQADDR(&addr, &p->auth_addr) && flavor == p->auth_flavor &&
823 crgetuid(cr) == p->auth_clnt_uid &&
824 crgetgid(cr) == p->auth_clnt_gid)
825 break;
826 prev = p;
829 if (p != NULL) {
831 * In a case the client's supplemental groups changed we need
832 * to discard the auth_cache entry and re-retrieve it.
834 mutex_enter(&p->auth_lock);
835 if (p->auth_clnt_ngids != crgetngroups(cr) ||
836 bcmp(p->auth_clnt_gids, crgetgroups(cr),
837 p->auth_clnt_ngids * sizeof (gid_t))) {
838 auth_state_t prev_state = p->auth_state;
840 p->auth_state = NFS_AUTH_INVALID;
841 mutex_exit(&p->auth_lock);
843 if (prev_state == NFS_AUTH_FRESH) {
844 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
845 struct auth_cache *tmp;
847 rw_exit(&exi->exi_cache_lock);
848 rw_enter(&exi->exi_cache_lock,
849 RW_WRITER);
851 prev = NULL;
852 for (tmp = *head; tmp != NULL;
853 tmp = tmp->auth_next) {
854 if (p == tmp)
855 break;
856 prev = p;
860 if (prev == NULL)
861 exi->exi_cache[hash(&addr)] =
862 p->auth_next;
863 else
864 prev->auth_next = p->auth_next;
866 nfsauth_free_node(p);
869 goto retrieve;
871 mutex_exit(&p->auth_lock);
873 nfsauth_cache_hit++;
875 refresh = gethrestime_sec() - p->auth_freshness;
876 DTRACE_PROBE2(nfsauth__debug__cache__hit,
877 int, nfsauth_cache_hit,
878 time_t, refresh);
880 mutex_enter(&p->auth_lock);
881 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
882 p->auth_state == NFS_AUTH_FRESH) {
883 p->auth_state = NFS_AUTH_STALE;
884 mutex_exit(&p->auth_lock);
886 ASSERT(p->auth_netid == NULL);
887 p->auth_netid =
888 strdup(svc_getnetid(req->rq_xprt));
890 nfsauth_cache_refresh++;
892 DTRACE_PROBE3(nfsauth__debug__cache__stale,
893 struct exportinfo *, exi,
894 struct auth_cache *, p,
895 int, nfsauth_cache_refresh);
897 ran = kmem_alloc(sizeof (refreshq_auth_node_t),
898 KM_SLEEP);
899 ran->ran_auth = p;
901 mutex_enter(&refreshq_lock);
903 * We should not add a work queue
904 * item if the thread is not
905 * accepting them.
907 if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
909 * Is there an existing exi_list?
911 for (ren = list_head(&refreshq_queue);
912 ren != NULL;
913 ren = list_next(&refreshq_queue, ren)) {
914 if (ren->ren_exi == exi) {
915 list_insert_tail(
916 &ren->ren_authlist, ran);
917 break;
921 if (ren == NULL) {
922 ren = kmem_alloc(
923 sizeof (refreshq_exi_node_t),
924 KM_SLEEP);
926 exi_hold(exi);
927 ren->ren_exi = exi;
929 list_create(&ren->ren_authlist,
930 sizeof (refreshq_auth_node_t),
931 offsetof(refreshq_auth_node_t,
932 ran_node));
934 list_insert_tail(&ren->ren_authlist,
935 ran);
936 list_insert_tail(&refreshq_queue, ren);
939 cv_broadcast(&refreshq_cv);
940 } else {
941 kmem_free(ran, sizeof (refreshq_auth_node_t));
944 mutex_exit(&refreshq_lock);
945 } else {
946 mutex_exit(&p->auth_lock);
949 access = p->auth_access;
950 if (uid != NULL)
951 *uid = p->auth_srv_uid;
952 if (gid != NULL)
953 *gid = p->auth_srv_gid;
954 if (ngids != NULL && gids != NULL) {
955 *ngids = p->auth_srv_ngids;
956 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP);
957 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t));
960 p->auth_time = gethrestime_sec();
962 rw_exit(&exi->exi_cache_lock);
963 kmem_free(addr.buf, addr.len);
965 return (access);
968 retrieve:
969 rw_exit(&exi->exi_cache_lock);
971 nfsauth_cache_miss++;
973 if (!nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor,
974 &addr, &access, crgetuid(cr), crgetgid(cr), crgetngroups(cr),
975 crgetgroups(cr), &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
976 kmem_free(addr.buf, addr.len);
977 if (ngids != NULL && gids != NULL) {
978 *ngids = 0;
979 *gids = NULL;
981 return (access);
984 if (uid != NULL)
985 *uid = tmpuid;
986 if (gid != NULL)
987 *gid = tmpgid;
988 if (ngids != NULL && gids != NULL) {
989 *ngids = tmpngids;
990 *gids = tmpgids;
993 * We need a copy of gids for the auth_cache entry
995 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t), KM_NOSLEEP);
996 if (tmpgids != NULL)
997 bcopy(*gids, tmpgids, tmpngids * sizeof (gid_t));
1001 * Now cache the result on the cache chain
1002 * for this export (if there's enough memory)
1004 p = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP);
1005 if (p != NULL)
1006 p->auth_clnt_gids = kmem_alloc(
1007 crgetngroups(cr) * sizeof (gid_t), KM_NOSLEEP);
1008 if (p != NULL && (tmpngids == 0 || tmpgids != NULL) &&
1009 (crgetngroups(cr) == 0 || p->auth_clnt_gids != NULL)) {
1010 p->auth_addr = addr;
1011 p->auth_flavor = flavor;
1012 p->auth_clnt_uid = crgetuid(cr);
1013 p->auth_clnt_gid = crgetgid(cr);
1014 p->auth_clnt_ngids = crgetngroups(cr);
1015 bcopy(crgetgroups(cr), p->auth_clnt_gids,
1016 p->auth_clnt_ngids * sizeof (gid_t));
1017 p->auth_srv_uid = tmpuid;
1018 p->auth_srv_gid = tmpgid;
1019 p->auth_srv_ngids = tmpngids;
1020 p->auth_srv_gids = tmpgids;
1021 p->auth_access = access;
1022 p->auth_time = p->auth_freshness = gethrestime_sec();
1023 p->auth_state = NFS_AUTH_FRESH;
1024 p->auth_netid = NULL;
1025 mutex_init(&p->auth_lock, NULL, MUTEX_DEFAULT, NULL);
1027 rw_enter(&exi->exi_cache_lock, RW_WRITER);
1028 p->auth_next = *head;
1029 *head = p;
1030 rw_exit(&exi->exi_cache_lock);
1031 } else {
1032 kmem_free(addr.buf, addr.len);
1033 if (tmpgids != NULL)
1034 kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1035 if (p != NULL) {
1036 if (p->auth_clnt_gids != NULL)
1037 kmem_free(p->auth_clnt_gids,
1038 crgetngroups(cr) * sizeof (gid_t));
1039 kmem_cache_free(exi_cache_handle, p);
1043 return (access);
1047 * Check if the requesting client has access to the filesystem with
1048 * a given nfs flavor number which is an explicitly shared flavor.
1051 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1052 int flavor, int perm, cred_t *cr)
1054 int access;
1056 if (! (perm & M_4SEC_EXPORTED)) {
1057 return (NFSAUTH_DENIED);
1061 * Optimize if there are no lists
1063 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1064 perm &= ~M_4SEC_EXPORTED;
1065 if (perm == M_RO)
1066 return (NFSAUTH_RO);
1067 if (perm == M_RW)
1068 return (NFSAUTH_RW);
1071 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1072 NULL);
1074 return (access);
1078 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1079 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1081 int access, mapaccess;
1082 struct secinfo *sp;
1083 int i, flavor, perm;
1084 int authnone_entry = -1;
1087 * Get the nfs flavor number from xprt.
1089 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1092 * First check the access restrictions on the filesystem. If
1093 * there are no lists associated with this flavor then there's no
1094 * need to make an expensive call to the nfsauth service or to
1095 * cache anything.
1098 sp = exi->exi_export.ex_secinfo;
1099 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1100 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1101 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1102 authnone_entry = i;
1103 continue;
1105 break;
1108 mapaccess = 0;
1110 if (i >= exi->exi_export.ex_seccnt) {
1112 * Flavor not found, but use AUTH_NONE if it exists
1114 if (authnone_entry == -1)
1115 return (NFSAUTH_DENIED);
1116 flavor = AUTH_NONE;
1117 mapaccess = NFSAUTH_MAPNONE;
1118 i = authnone_entry;
1122 * By default root is mapped to anonymous user.
1123 * This might get overriden later in nfsauth_cache_get().
1125 if (crgetuid(cr) == 0) {
1126 if (uid != NULL)
1127 *uid = exi->exi_export.ex_anon;
1128 if (gid != NULL)
1129 *gid = exi->exi_export.ex_anon;
1130 } else {
1131 if (uid != NULL)
1132 *uid = crgetuid(cr);
1133 if (gid != NULL)
1134 *gid = crgetgid(cr);
1137 if (ngids != NULL)
1138 *ngids = 0;
1139 if (gids != NULL)
1140 *gids = NULL;
1143 * If the flavor is in the ex_secinfo list, but not an explicitly
1144 * shared flavor by the user, it is a result of the nfsv4 server
1145 * namespace setup. We will grant an RO permission similar for
1146 * a pseudo node except that this node is a shared one.
1148 * e.g. flavor in (flavor) indicates that it is not explictly
1149 * shared by the user:
1151 * / (sys, krb5)
1153 * export #share -o sec=sys (krb5)
1155 * secure #share -o sec=krb5
1157 * In this case, when a krb5 request coming in to access
1158 * /export, RO permission is granted.
1160 if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1161 return (mapaccess | NFSAUTH_RO);
1164 * Optimize if there are no lists.
1165 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1167 perm = sp[i].s_flags;
1168 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1169 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1170 perm &= ~M_4SEC_EXPORTED;
1171 if (perm == M_RO)
1172 return (mapaccess | NFSAUTH_RO);
1173 if (perm == M_RW)
1174 return (mapaccess | NFSAUTH_RW);
1177 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1180 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1181 * the supplemental groups.
1183 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1184 if (ngids != NULL && gids != NULL) {
1185 kmem_free(*gids, *ngids * sizeof (gid_t));
1186 *ngids = 0;
1187 *gids = NULL;
1192 * Client's security flavor doesn't match with "ro" or
1193 * "rw" list. Try again using AUTH_NONE if present.
1195 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1197 * Have we already encountered AUTH_NONE ?
1199 if (authnone_entry != -1) {
1200 mapaccess = NFSAUTH_MAPNONE;
1201 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1202 NULL, NULL, NULL, NULL);
1203 } else {
1205 * Check for AUTH_NONE presence.
1207 for (; i < exi->exi_export.ex_seccnt; i++) {
1208 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1209 mapaccess = NFSAUTH_MAPNONE;
1210 access = nfsauth_cache_get(exi, req,
1211 AUTH_NONE, cr, NULL, NULL, NULL,
1212 NULL);
1213 break;
1219 if (access & NFSAUTH_DENIED)
1220 access = NFSAUTH_DENIED;
1222 return (access | mapaccess);
1225 static void
1226 nfsauth_free_node(struct auth_cache *p)
1228 if (p->auth_netid != NULL)
1229 kmem_free(p->auth_netid, strlen(p->auth_netid) + 1);
1230 kmem_free(p->auth_addr.buf, p->auth_addr.len);
1231 kmem_free(p->auth_clnt_gids, p->auth_clnt_ngids * sizeof (gid_t));
1232 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1233 mutex_destroy(&p->auth_lock);
1234 kmem_cache_free(exi_cache_handle, p);
1238 * Remove the dead entry from the refreshq_dead_entries
1239 * list.
1241 static void
1242 nfsauth_remove_dead_entry(struct auth_cache *dead)
1244 struct auth_cache *p;
1245 struct auth_cache *prev;
1246 struct auth_cache *next;
1248 mutex_enter(&refreshq_lock);
1249 prev = NULL;
1250 for (p = refreshq_dead_entries; p != NULL; p = next) {
1251 next = p->auth_next;
1253 if (p == dead) {
1254 if (prev == NULL)
1255 refreshq_dead_entries = next;
1256 else
1257 prev->auth_next = next;
1259 nfsauth_free_node(dead);
1260 break;
1263 prev = p;
1265 mutex_exit(&refreshq_lock);
1269 * Free the nfsauth cache for a given export
1271 void
1272 nfsauth_cache_free(struct exportinfo *exi)
1274 int i;
1275 struct auth_cache *p, *next;
1277 for (i = 0; i < AUTH_TABLESIZE; i++) {
1278 for (p = exi->exi_cache[i]; p; p = next) {
1279 next = p->auth_next;
1282 * The only way we got here
1283 * was with an exi_rele, which
1284 * means that no auth cache entry
1285 * is being refreshed.
1287 nfsauth_free_node(p);
1293 * Called by the kernel memory allocator when
1294 * memory is low. Free unused cache entries.
1295 * If that's not enough, the VM system will
1296 * call again for some more.
1298 /*ARGSUSED*/
1299 void
1300 exi_cache_reclaim(void *cdrarg)
1302 int i;
1303 struct exportinfo *exi;
1305 rw_enter(&exported_lock, RW_READER);
1307 for (i = 0; i < EXPTABLESIZE; i++) {
1308 for (exi = exptable[i]; exi; exi = exi->fid_hash.next) {
1309 exi_cache_trim(exi);
1312 nfsauth_cache_reclaim++;
1314 rw_exit(&exported_lock);
1317 void
1318 exi_cache_trim(struct exportinfo *exi)
1320 struct auth_cache *p;
1321 struct auth_cache *prev, *next;
1322 int i;
1323 time_t stale_time;
1325 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1327 rw_enter(&exi->exi_cache_lock, RW_WRITER);
1329 for (i = 0; i < AUTH_TABLESIZE; i++) {
1332 * Free entries that have not been
1333 * used for NFSAUTH_CACHE_TRIM seconds.
1335 prev = NULL;
1336 for (p = exi->exi_cache[i]; p; p = next) {
1337 next = p->auth_next;
1338 if (p->auth_time > stale_time) {
1339 prev = p;
1340 continue;
1343 mutex_enter(&p->auth_lock);
1344 DTRACE_PROBE1(nfsauth__debug__trim__state,
1345 auth_state_t, p->auth_state);
1347 if (p->auth_state != NFS_AUTH_FRESH) {
1348 p->auth_state = NFS_AUTH_INVALID;
1349 mutex_exit(&p->auth_lock);
1351 mutex_enter(&refreshq_lock);
1352 p->auth_next = refreshq_dead_entries;
1353 refreshq_dead_entries = p;
1354 mutex_exit(&refreshq_lock);
1355 } else {
1356 mutex_exit(&p->auth_lock);
1357 nfsauth_free_node(p);
1360 if (prev == NULL)
1361 exi->exi_cache[i] = next;
1362 else
1363 prev->auth_next = next;
1367 rw_exit(&exi->exi_cache_lock);