6333409 traversal code should be able to issue multiple reads in parallel
[unleashed.git] / usr / src / uts / common / os / vmem.c
blob49c3e91611de385b8b2df7ad8b503c41d772b00f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Big Theory Statement for the virtual memory allocator.
29 * For a more complete description of the main ideas, see:
31 * Jeff Bonwick and Jonathan Adams,
33 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
34 * Arbitrary Resources.
36 * Proceedings of the 2001 Usenix Conference.
37 * Available as http://www.usenix.org/event/usenix01/bonwick.html
40 * 1. General Concepts
41 * -------------------
43 * 1.1 Overview
44 * ------------
45 * We divide the kernel address space into a number of logically distinct
46 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these
47 * arenas we often subdivide further; for example, we use heap addresses
48 * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
49 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
50 * The kernel address space, therefore, is most accurately described as
51 * a tree of arenas in which each node of the tree *imports* some subset
52 * of its parent. The virtual memory allocator manages these arenas and
53 * supports their natural hierarchical structure.
55 * 1.2 Arenas
56 * ----------
57 * An arena is nothing more than a set of integers. These integers most
58 * commonly represent virtual addresses, but in fact they can represent
59 * anything at all. For example, we could use an arena containing the
60 * integers minpid through maxpid to allocate process IDs. vmem_create()
61 * and vmem_destroy() create and destroy vmem arenas. In order to
62 * differentiate between arenas used for adresses and arenas used for
63 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This
64 * prevents identifier exhaustion from being diagnosed as general memory
65 * failure.
67 * 1.3 Spans
68 * ---------
69 * We represent the integers in an arena as a collection of *spans*, or
70 * contiguous ranges of integers. For example, the kernel heap consists
71 * of just one span: [kernelheap, ekernelheap). Spans can be added to an
72 * arena in two ways: explicitly, by vmem_add(), or implicitly, by
73 * importing, as described in Section 1.5 below.
75 * 1.4 Segments
76 * ------------
77 * Spans are subdivided into *segments*, each of which is either allocated
78 * or free. A segment, like a span, is a contiguous range of integers.
79 * Each allocated segment [addr, addr + size) represents exactly one
80 * vmem_alloc(size) that returned addr. Free segments represent the space
81 * between allocated segments. If two free segments are adjacent, we
82 * coalesce them into one larger segment; that is, if segments [a, b) and
83 * [b, c) are both free, we merge them into a single segment [a, c).
84 * The segments within a span are linked together in increasing-address order
85 * so we can easily determine whether coalescing is possible.
87 * Segments never cross span boundaries. When all segments within
88 * an imported span become free, we return the span to its source.
90 * 1.5 Imported Memory
91 * -------------------
92 * As mentioned in the overview, some arenas are logical subsets of
93 * other arenas. For example, kmem_va_arena (a virtual address cache
94 * that satisfies most kmem_slab_create() requests) is just a subset
95 * of heap_arena (the kernel heap) that provides caching for the most
96 * common slab sizes. When kmem_va_arena runs out of virtual memory,
97 * it *imports* more from the heap; we say that heap_arena is the
98 * *vmem source* for kmem_va_arena. vmem_create() allows you to
99 * specify any existing vmem arena as the source for your new arena.
100 * Topologically, since every arena is a child of at most one source,
101 * the set of all arenas forms a collection of trees.
103 * 1.6 Constrained Allocations
104 * ---------------------------
105 * Some vmem clients are quite picky about the kind of address they want.
106 * For example, the DVMA code may need an address that is at a particular
107 * phase with respect to some alignment (to get good cache coloring), or
108 * that lies within certain limits (the addressable range of a device),
109 * or that doesn't cross some boundary (a DMA counter restriction) --
110 * or all of the above. vmem_xalloc() allows the client to specify any
111 * or all of these constraints.
113 * 1.7 The Vmem Quantum
114 * --------------------
115 * Every arena has a notion of 'quantum', specified at vmem_create() time,
116 * that defines the arena's minimum unit of currency. Most commonly the
117 * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
118 * All vmem allocations are guaranteed to be quantum-aligned.
120 * 1.8 Quantum Caching
121 * -------------------
122 * A vmem arena may be so hot (frequently used) that the scalability of vmem
123 * allocation is a significant concern. We address this by allowing the most
124 * common allocation sizes to be serviced by the kernel memory allocator,
125 * which provides low-latency per-cpu caching. The qcache_max argument to
126 * vmem_create() specifies the largest allocation size to cache.
128 * 1.9 Relationship to Kernel Memory Allocator
129 * -------------------------------------------
130 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory
131 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
134 * 2. Implementation
135 * -----------------
137 * 2.1 Segment lists and markers
138 * -----------------------------
139 * The segment structure (vmem_seg_t) contains two doubly-linked lists.
141 * The arena list (vs_anext/vs_aprev) links all segments in the arena.
142 * In addition to the allocated and free segments, the arena contains
143 * special marker segments at span boundaries. Span markers simplify
144 * coalescing and importing logic by making it easy to tell both when
145 * we're at a span boundary (so we don't coalesce across it), and when
146 * a span is completely free (its neighbors will both be span markers).
148 * Imported spans will have vs_import set.
150 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
151 * (1) for allocated segments, vs_knext is the hash chain linkage;
152 * (2) for free segments, vs_knext is the freelist linkage;
153 * (3) for span marker segments, vs_knext is the next span marker.
155 * 2.2 Allocation hashing
156 * ----------------------
157 * We maintain a hash table of all allocated segments, hashed by address.
158 * This allows vmem_free() to discover the target segment in constant time.
159 * vmem_update() periodically resizes hash tables to keep hash chains short.
161 * 2.3 Freelist management
162 * -----------------------
163 * We maintain power-of-2 freelists for free segments, i.e. free segments
164 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time
165 * allocation, vmem_xalloc() looks not in the first freelist that *might*
166 * satisfy the allocation, but in the first freelist that *definitely*
167 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
168 * freelists are empty). For example, a 1000-byte allocation will be
169 * satisfied not from the 512..1023-byte freelist, whose members *might*
170 * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
171 * the first member of which will *definitely* satisfy the allocation.
172 * This ensures that vmem_xalloc() works in constant time.
174 * We maintain a bit map to determine quickly which freelists are non-empty.
175 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
177 * The different freelists are linked together into one large freelist,
178 * with the freelist heads serving as markers. Freelist markers simplify
179 * the maintenance of vm_freemap by making it easy to tell when we're taking
180 * the last member of a freelist (both of its neighbors will be markers).
182 * 2.4 Vmem Locking
183 * ----------------
184 * For simplicity, all arena state is protected by a per-arena lock.
185 * For very hot arenas, use quantum caching for scalability.
187 * 2.5 Vmem Population
188 * -------------------
189 * Any internal vmem routine that might need to allocate new segment
190 * structures must prepare in advance by calling vmem_populate(), which
191 * will preallocate enough vmem_seg_t's to get is through the entire
192 * operation without dropping the arena lock.
194 * 2.6 Auditing
195 * ------------
196 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
197 * Since virtual addresses cannot be scribbled on, there is no equivalent
198 * in vmem to redzone checking, deadbeef, or other kmem debugging features.
199 * Moreover, we do not audit frees because segment coalescing destroys the
200 * association between an address and its segment structure. Auditing is
201 * thus intended primarily to keep track of who's consuming the arena.
202 * Debugging support could certainly be extended in the future if it proves
203 * necessary, but we do so much live checking via the allocation hash table
204 * that even non-DEBUG systems get quite a bit of sanity checking already.
207 #include <sys/vmem_impl.h>
208 #include <sys/kmem.h>
209 #include <sys/kstat.h>
210 #include <sys/param.h>
211 #include <sys/systm.h>
212 #include <sys/atomic.h>
213 #include <sys/bitmap.h>
214 #include <sys/sysmacros.h>
215 #include <sys/cmn_err.h>
216 #include <sys/debug.h>
217 #include <sys/panic.h>
219 #define VMEM_INITIAL 10 /* early vmem arenas */
220 #define VMEM_SEG_INITIAL 200 /* early segments */
223 * Adding a new span to an arena requires two segment structures: one to
224 * represent the span, and one to represent the free segment it contains.
226 #define VMEM_SEGS_PER_SPAN_CREATE 2
229 * Allocating a piece of an existing segment requires 0-2 segment structures
230 * depending on how much of the segment we're allocating.
232 * To allocate the entire segment, no new segment structures are needed; we
233 * simply move the existing segment structure from the freelist to the
234 * allocation hash table.
236 * To allocate a piece from the left or right end of the segment, we must
237 * split the segment into two pieces (allocated part and remainder), so we
238 * need one new segment structure to represent the remainder.
240 * To allocate from the middle of a segment, we need two new segment strucures
241 * to represent the remainders on either side of the allocated part.
243 #define VMEM_SEGS_PER_EXACT_ALLOC 0
244 #define VMEM_SEGS_PER_LEFT_ALLOC 1
245 #define VMEM_SEGS_PER_RIGHT_ALLOC 1
246 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2
249 * vmem_populate() preallocates segment structures for vmem to do its work.
250 * It must preallocate enough for the worst case, which is when we must import
251 * a new span and then allocate from the middle of it.
253 #define VMEM_SEGS_PER_ALLOC_MAX \
254 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
257 * The segment structures themselves are allocated from vmem_seg_arena, so
258 * we have a recursion problem when vmem_seg_arena needs to populate itself.
259 * We address this by working out the maximum number of segment structures
260 * this act will require, and multiplying by the maximum number of threads
261 * that we'll allow to do it simultaneously.
263 * The worst-case segment consumption to populate vmem_seg_arena is as
264 * follows (depicted as a stack trace to indicate why events are occurring):
266 * (In order to lower the fragmentation in the heap_arena, we specify a
267 * minimum import size for the vmem_metadata_arena which is the same size
268 * as the kmem_va quantum cache allocations. This causes the worst-case
269 * allocation from the vmem_metadata_arena to be 3 segments.)
271 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
272 * segkmem_alloc(vmem_metadata_arena)
273 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc)
274 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
275 * page_create()
276 * hat_memload()
277 * kmem_cache_alloc()
278 * kmem_slab_create()
279 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc)
280 * segkmem_alloc(heap_arena)
281 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
282 * page_create()
283 * hat_memload() -> (hat layer won't recurse further)
285 * The worst-case consumption for each arena is 3 segment structures.
286 * Of course, a 3-seg reserve could easily be blown by multiple threads.
287 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
288 * because they're rare). We cannot allow a non-blocking allocation to get
289 * tied up behind a blocking allocation, however, so we use separate locks
290 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations
291 * must not block behind ordinary VM_SLEEPs. In addition, if the system is
292 * panicking then we must keep enough resources for panic_thread to do its
293 * work. Thus we have at most four threads trying to allocate from
294 * vmem_seg_arena, and each thread consumes at most three segment structures,
295 * so we must maintain a 12-seg reserve.
297 #define VMEM_POPULATE_RESERVE 12
300 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
301 * so that it can satisfy the worst-case allocation *and* participate in
302 * worst-case allocation from vmem_seg_arena.
304 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
306 static vmem_t vmem0[VMEM_INITIAL];
307 static vmem_t *vmem_populator[VMEM_INITIAL];
308 static uint32_t vmem_id;
309 static uint32_t vmem_populators;
310 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
311 static vmem_seg_t *vmem_segfree;
312 static kmutex_t vmem_list_lock;
313 static kmutex_t vmem_segfree_lock;
314 static kmutex_t vmem_sleep_lock;
315 static kmutex_t vmem_nosleep_lock;
316 static kmutex_t vmem_pushpage_lock;
317 static kmutex_t vmem_panic_lock;
318 static vmem_t *vmem_list;
319 static vmem_t *vmem_metadata_arena;
320 static vmem_t *vmem_seg_arena;
321 static vmem_t *vmem_hash_arena;
322 static vmem_t *vmem_vmem_arena;
323 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */
324 uint32_t vmem_mtbf; /* mean time between failures [default: off] */
325 size_t vmem_seg_size = sizeof (vmem_seg_t);
327 static vmem_kstat_t vmem_kstat_template = {
328 { "mem_inuse", KSTAT_DATA_UINT64 },
329 { "mem_import", KSTAT_DATA_UINT64 },
330 { "mem_total", KSTAT_DATA_UINT64 },
331 { "vmem_source", KSTAT_DATA_UINT32 },
332 { "alloc", KSTAT_DATA_UINT64 },
333 { "free", KSTAT_DATA_UINT64 },
334 { "wait", KSTAT_DATA_UINT64 },
335 { "fail", KSTAT_DATA_UINT64 },
336 { "lookup", KSTAT_DATA_UINT64 },
337 { "search", KSTAT_DATA_UINT64 },
338 { "populate_wait", KSTAT_DATA_UINT64 },
339 { "populate_fail", KSTAT_DATA_UINT64 },
340 { "contains", KSTAT_DATA_UINT64 },
341 { "contains_search", KSTAT_DATA_UINT64 },
345 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
347 #define VMEM_INSERT(vprev, vsp, type) \
349 vmem_seg_t *vnext = (vprev)->vs_##type##next; \
350 (vsp)->vs_##type##next = (vnext); \
351 (vsp)->vs_##type##prev = (vprev); \
352 (vprev)->vs_##type##next = (vsp); \
353 (vnext)->vs_##type##prev = (vsp); \
356 #define VMEM_DELETE(vsp, type) \
358 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
359 vmem_seg_t *vnext = (vsp)->vs_##type##next; \
360 (vprev)->vs_##type##next = (vnext); \
361 (vnext)->vs_##type##prev = (vprev); \
365 * Get a vmem_seg_t from the global segfree list.
367 static vmem_seg_t *
368 vmem_getseg_global(void)
370 vmem_seg_t *vsp;
372 mutex_enter(&vmem_segfree_lock);
373 if ((vsp = vmem_segfree) != NULL)
374 vmem_segfree = vsp->vs_knext;
375 mutex_exit(&vmem_segfree_lock);
377 return (vsp);
381 * Put a vmem_seg_t on the global segfree list.
383 static void
384 vmem_putseg_global(vmem_seg_t *vsp)
386 mutex_enter(&vmem_segfree_lock);
387 vsp->vs_knext = vmem_segfree;
388 vmem_segfree = vsp;
389 mutex_exit(&vmem_segfree_lock);
393 * Get a vmem_seg_t from vmp's segfree list.
395 static vmem_seg_t *
396 vmem_getseg(vmem_t *vmp)
398 vmem_seg_t *vsp;
400 ASSERT(vmp->vm_nsegfree > 0);
402 vsp = vmp->vm_segfree;
403 vmp->vm_segfree = vsp->vs_knext;
404 vmp->vm_nsegfree--;
406 return (vsp);
410 * Put a vmem_seg_t on vmp's segfree list.
412 static void
413 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
415 vsp->vs_knext = vmp->vm_segfree;
416 vmp->vm_segfree = vsp;
417 vmp->vm_nsegfree++;
421 * Add vsp to the appropriate freelist.
423 static void
424 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
426 vmem_seg_t *vprev;
428 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
430 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
431 vsp->vs_type = VMEM_FREE;
432 vmp->vm_freemap |= VS_SIZE(vprev);
433 VMEM_INSERT(vprev, vsp, k);
435 cv_broadcast(&vmp->vm_cv);
439 * Take vsp from the freelist.
441 static void
442 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
444 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
445 ASSERT(vsp->vs_type == VMEM_FREE);
447 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
449 * The segments on both sides of 'vsp' are freelist heads,
450 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
452 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
453 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
455 VMEM_DELETE(vsp, k);
459 * Add vsp to the allocated-segment hash table and update kstats.
461 static void
462 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
464 vmem_seg_t **bucket;
466 vsp->vs_type = VMEM_ALLOC;
467 bucket = VMEM_HASH(vmp, vsp->vs_start);
468 vsp->vs_knext = *bucket;
469 *bucket = vsp;
471 if (vmem_seg_size == sizeof (vmem_seg_t)) {
472 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
473 VMEM_STACK_DEPTH);
474 vsp->vs_thread = curthread;
475 vsp->vs_timestamp = gethrtime();
476 } else {
477 vsp->vs_depth = 0;
480 vmp->vm_kstat.vk_alloc.value.ui64++;
481 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
485 * Remove vsp from the allocated-segment hash table and update kstats.
487 static vmem_seg_t *
488 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
490 vmem_seg_t *vsp, **prev_vspp;
492 prev_vspp = VMEM_HASH(vmp, addr);
493 while ((vsp = *prev_vspp) != NULL) {
494 if (vsp->vs_start == addr) {
495 *prev_vspp = vsp->vs_knext;
496 break;
498 vmp->vm_kstat.vk_lookup.value.ui64++;
499 prev_vspp = &vsp->vs_knext;
502 if (vsp == NULL)
503 panic("vmem_hash_delete(%p, %lx, %lu): bad free",
504 (void *)vmp, addr, size);
505 if (VS_SIZE(vsp) != size)
506 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
507 (void *)vmp, addr, size, VS_SIZE(vsp));
509 vmp->vm_kstat.vk_free.value.ui64++;
510 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
512 return (vsp);
516 * Create a segment spanning the range [start, end) and add it to the arena.
518 static vmem_seg_t *
519 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
521 vmem_seg_t *newseg = vmem_getseg(vmp);
523 newseg->vs_start = start;
524 newseg->vs_end = end;
525 newseg->vs_type = 0;
526 newseg->vs_import = 0;
528 VMEM_INSERT(vprev, newseg, a);
530 return (newseg);
534 * Remove segment vsp from the arena.
536 static void
537 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
539 ASSERT(vsp->vs_type != VMEM_ROTOR);
540 VMEM_DELETE(vsp, a);
542 vmem_putseg(vmp, vsp);
546 * Add the span [vaddr, vaddr + size) to vmp and update kstats.
548 static vmem_seg_t *
549 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
551 vmem_seg_t *newseg, *span;
552 uintptr_t start = (uintptr_t)vaddr;
553 uintptr_t end = start + size;
555 ASSERT(MUTEX_HELD(&vmp->vm_lock));
557 if ((start | end) & (vmp->vm_quantum - 1))
558 panic("vmem_span_create(%p, %p, %lu): misaligned",
559 (void *)vmp, vaddr, size);
561 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
562 span->vs_type = VMEM_SPAN;
563 span->vs_import = import;
564 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
566 newseg = vmem_seg_create(vmp, span, start, end);
567 vmem_freelist_insert(vmp, newseg);
569 if (import)
570 vmp->vm_kstat.vk_mem_import.value.ui64 += size;
571 vmp->vm_kstat.vk_mem_total.value.ui64 += size;
573 return (newseg);
577 * Remove span vsp from vmp and update kstats.
579 static void
580 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
582 vmem_seg_t *span = vsp->vs_aprev;
583 size_t size = VS_SIZE(vsp);
585 ASSERT(MUTEX_HELD(&vmp->vm_lock));
586 ASSERT(span->vs_type == VMEM_SPAN);
588 if (span->vs_import)
589 vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
590 vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
592 VMEM_DELETE(span, k);
594 vmem_seg_destroy(vmp, vsp);
595 vmem_seg_destroy(vmp, span);
599 * Allocate the subrange [addr, addr + size) from segment vsp.
600 * If there are leftovers on either side, place them on the freelist.
601 * Returns a pointer to the segment representing [addr, addr + size).
603 static vmem_seg_t *
604 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
606 uintptr_t vs_start = vsp->vs_start;
607 uintptr_t vs_end = vsp->vs_end;
608 size_t vs_size = vs_end - vs_start;
609 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
610 uintptr_t addr_end = addr + realsize;
612 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
613 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
614 ASSERT(vsp->vs_type == VMEM_FREE);
615 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
616 ASSERT(addr - 1 <= addr_end - 1);
619 * If we're allocating from the start of the segment, and the
620 * remainder will be on the same freelist, we can save quite
621 * a bit of work.
623 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
624 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
625 vsp->vs_start = addr_end;
626 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
627 vmem_hash_insert(vmp, vsp);
628 return (vsp);
631 vmem_freelist_delete(vmp, vsp);
633 if (vs_end != addr_end)
634 vmem_freelist_insert(vmp,
635 vmem_seg_create(vmp, vsp, addr_end, vs_end));
637 if (vs_start != addr)
638 vmem_freelist_insert(vmp,
639 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
641 vsp->vs_start = addr;
642 vsp->vs_end = addr + size;
644 vmem_hash_insert(vmp, vsp);
645 return (vsp);
649 * Returns 1 if we are populating, 0 otherwise.
650 * Call it if we want to prevent recursion from HAT.
653 vmem_is_populator()
655 return (mutex_owner(&vmem_sleep_lock) == curthread ||
656 mutex_owner(&vmem_nosleep_lock) == curthread ||
657 mutex_owner(&vmem_pushpage_lock) == curthread ||
658 mutex_owner(&vmem_panic_lock) == curthread);
662 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
664 static int
665 vmem_populate(vmem_t *vmp, int vmflag)
667 char *p;
668 vmem_seg_t *vsp;
669 ssize_t nseg;
670 size_t size;
671 kmutex_t *lp;
672 int i;
674 while (vmp->vm_nsegfree < VMEM_MINFREE &&
675 (vsp = vmem_getseg_global()) != NULL)
676 vmem_putseg(vmp, vsp);
678 if (vmp->vm_nsegfree >= VMEM_MINFREE)
679 return (1);
682 * If we're already populating, tap the reserve.
684 if (vmem_is_populator()) {
685 ASSERT(vmp->vm_cflags & VMC_POPULATOR);
686 return (1);
689 mutex_exit(&vmp->vm_lock);
691 if (panic_thread == curthread)
692 lp = &vmem_panic_lock;
693 else if (vmflag & VM_NOSLEEP)
694 lp = &vmem_nosleep_lock;
695 else if (vmflag & VM_PUSHPAGE)
696 lp = &vmem_pushpage_lock;
697 else
698 lp = &vmem_sleep_lock;
700 mutex_enter(lp);
702 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
703 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
704 nseg = size / vmem_seg_size;
707 * The following vmem_alloc() may need to populate vmem_seg_arena
708 * and all the things it imports from. When doing so, it will tap
709 * each arena's reserve to prevent recursion (see the block comment
710 * above the definition of VMEM_POPULATE_RESERVE).
712 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
713 if (p == NULL) {
714 mutex_exit(lp);
715 mutex_enter(&vmp->vm_lock);
716 vmp->vm_kstat.vk_populate_fail.value.ui64++;
717 return (0);
721 * Restock the arenas that may have been depleted during population.
723 for (i = 0; i < vmem_populators; i++) {
724 mutex_enter(&vmem_populator[i]->vm_lock);
725 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
726 vmem_putseg(vmem_populator[i],
727 (vmem_seg_t *)(p + --nseg * vmem_seg_size));
728 mutex_exit(&vmem_populator[i]->vm_lock);
731 mutex_exit(lp);
732 mutex_enter(&vmp->vm_lock);
735 * Now take our own segments.
737 ASSERT(nseg >= VMEM_MINFREE);
738 while (vmp->vm_nsegfree < VMEM_MINFREE)
739 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
742 * Give the remainder to charity.
744 while (nseg > 0)
745 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
747 return (1);
751 * Advance a walker from its previous position to 'afterme'.
752 * Note: may drop and reacquire vmp->vm_lock.
754 static void
755 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
757 vmem_seg_t *vprev = walker->vs_aprev;
758 vmem_seg_t *vnext = walker->vs_anext;
759 vmem_seg_t *vsp = NULL;
761 VMEM_DELETE(walker, a);
763 if (afterme != NULL)
764 VMEM_INSERT(afterme, walker, a);
767 * The walker segment's presence may have prevented its neighbors
768 * from coalescing. If so, coalesce them now.
770 if (vprev->vs_type == VMEM_FREE) {
771 if (vnext->vs_type == VMEM_FREE) {
772 ASSERT(vprev->vs_end == vnext->vs_start);
773 vmem_freelist_delete(vmp, vnext);
774 vmem_freelist_delete(vmp, vprev);
775 vprev->vs_end = vnext->vs_end;
776 vmem_freelist_insert(vmp, vprev);
777 vmem_seg_destroy(vmp, vnext);
779 vsp = vprev;
780 } else if (vnext->vs_type == VMEM_FREE) {
781 vsp = vnext;
785 * vsp could represent a complete imported span,
786 * in which case we must return it to the source.
788 if (vsp != NULL && vsp->vs_aprev->vs_import &&
789 vmp->vm_source_free != NULL &&
790 vsp->vs_aprev->vs_type == VMEM_SPAN &&
791 vsp->vs_anext->vs_type == VMEM_SPAN) {
792 void *vaddr = (void *)vsp->vs_start;
793 size_t size = VS_SIZE(vsp);
794 ASSERT(size == VS_SIZE(vsp->vs_aprev));
795 vmem_freelist_delete(vmp, vsp);
796 vmem_span_destroy(vmp, vsp);
797 mutex_exit(&vmp->vm_lock);
798 vmp->vm_source_free(vmp->vm_source, vaddr, size);
799 mutex_enter(&vmp->vm_lock);
804 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
805 * in an arena, so that we avoid reusing addresses for as long as possible.
806 * This helps to catch used-after-freed bugs. It's also the perfect policy
807 * for allocating things like process IDs, where we want to cycle through
808 * all values in order.
810 static void *
811 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
813 vmem_seg_t *vsp, *rotor;
814 uintptr_t addr;
815 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
816 size_t vs_size;
818 mutex_enter(&vmp->vm_lock);
820 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
821 mutex_exit(&vmp->vm_lock);
822 return (NULL);
826 * The common case is that the segment right after the rotor is free,
827 * and large enough that extracting 'size' bytes won't change which
828 * freelist it's on. In this case we can avoid a *lot* of work.
829 * Instead of the normal vmem_seg_alloc(), we just advance the start
830 * address of the victim segment. Instead of moving the rotor, we
831 * create the new segment structure *behind the rotor*, which has
832 * the same effect. And finally, we know we don't have to coalesce
833 * the rotor's neighbors because the new segment lies between them.
835 rotor = &vmp->vm_rotor;
836 vsp = rotor->vs_anext;
837 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
838 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
839 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
840 addr = vsp->vs_start;
841 vsp->vs_start = addr + realsize;
842 vmem_hash_insert(vmp,
843 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
844 mutex_exit(&vmp->vm_lock);
845 return ((void *)addr);
849 * Starting at the rotor, look for a segment large enough to
850 * satisfy the allocation.
852 for (;;) {
853 vmp->vm_kstat.vk_search.value.ui64++;
854 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
855 break;
856 vsp = vsp->vs_anext;
857 if (vsp == rotor) {
859 * We've come full circle. One possibility is that the
860 * there's actually enough space, but the rotor itself
861 * is preventing the allocation from succeeding because
862 * it's sitting between two free segments. Therefore,
863 * we advance the rotor and see if that liberates a
864 * suitable segment.
866 vmem_advance(vmp, rotor, rotor->vs_anext);
867 vsp = rotor->vs_aprev;
868 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
869 break;
871 * If there's a lower arena we can import from, or it's
872 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
873 * Otherwise, wait until another thread frees something.
875 if (vmp->vm_source_alloc != NULL ||
876 (vmflag & VM_NOSLEEP)) {
877 mutex_exit(&vmp->vm_lock);
878 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
879 0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
881 vmp->vm_kstat.vk_wait.value.ui64++;
882 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
883 vsp = rotor->vs_anext;
888 * We found a segment. Extract enough space to satisfy the allocation.
890 addr = vsp->vs_start;
891 vsp = vmem_seg_alloc(vmp, vsp, addr, size);
892 ASSERT(vsp->vs_type == VMEM_ALLOC &&
893 vsp->vs_start == addr && vsp->vs_end == addr + size);
896 * Advance the rotor to right after the newly-allocated segment.
897 * That's where the next VM_NEXTFIT allocation will begin searching.
899 vmem_advance(vmp, rotor, vsp);
900 mutex_exit(&vmp->vm_lock);
901 return ((void *)addr);
905 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
906 * freelist. If size is not a power-of-2, it can return a false-negative.
908 * Used to decide if a newly imported span is superfluous after re-acquiring
909 * the arena lock.
911 static int
912 vmem_canalloc(vmem_t *vmp, size_t size)
914 int hb;
915 int flist = 0;
916 ASSERT(MUTEX_HELD(&vmp->vm_lock));
918 if ((size & (size - 1)) == 0)
919 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
920 else if ((hb = highbit(size)) < VMEM_FREELISTS)
921 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
923 return (flist);
927 * Allocate size bytes at offset phase from an align boundary such that the
928 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
929 * that does not straddle a nocross-aligned boundary.
931 void *
932 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
933 size_t nocross, void *minaddr, void *maxaddr, int vmflag)
935 vmem_seg_t *vsp;
936 vmem_seg_t *vbest = NULL;
937 uintptr_t addr, taddr, start, end;
938 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
939 void *vaddr, *xvaddr = NULL;
940 size_t xsize;
941 int hb, flist, resv;
942 uint32_t mtbf;
944 if ((align | phase | nocross) & (vmp->vm_quantum - 1))
945 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
946 "parameters not vm_quantum aligned",
947 (void *)vmp, size, align_arg, phase, nocross,
948 minaddr, maxaddr, vmflag);
950 if (nocross != 0 &&
951 (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
952 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
953 "overconstrained allocation",
954 (void *)vmp, size, align_arg, phase, nocross,
955 minaddr, maxaddr, vmflag);
957 if (phase >= align || (align & (align - 1)) != 0 ||
958 (nocross & (nocross - 1)) != 0)
959 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
960 "parameters inconsistent or invalid",
961 (void *)vmp, size, align_arg, phase, nocross,
962 minaddr, maxaddr, vmflag);
964 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
965 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
966 return (NULL);
968 mutex_enter(&vmp->vm_lock);
969 for (;;) {
970 if (vmp->vm_nsegfree < VMEM_MINFREE &&
971 !vmem_populate(vmp, vmflag))
972 break;
973 do_alloc:
975 * highbit() returns the highest bit + 1, which is exactly
976 * what we want: we want to search the first freelist whose
977 * members are *definitely* large enough to satisfy our
978 * allocation. However, there are certain cases in which we
979 * want to look at the next-smallest freelist (which *might*
980 * be able to satisfy the allocation):
982 * (1) The size is exactly a power of 2, in which case
983 * the smaller freelist is always big enough;
985 * (2) All other freelists are empty;
987 * (3) We're in the highest possible freelist, which is
988 * always empty (e.g. the 4GB freelist on 32-bit systems);
990 * (4) We're doing a best-fit or first-fit allocation.
992 if ((size & (size - 1)) == 0) {
993 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
994 } else {
995 hb = highbit(size);
996 if ((vmp->vm_freemap >> hb) == 0 ||
997 hb == VMEM_FREELISTS ||
998 (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
999 hb--;
1000 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1003 for (vbest = NULL, vsp = (flist == 0) ? NULL :
1004 vmp->vm_freelist[flist - 1].vs_knext;
1005 vsp != NULL; vsp = vsp->vs_knext) {
1006 vmp->vm_kstat.vk_search.value.ui64++;
1007 if (vsp->vs_start == 0) {
1009 * We're moving up to a larger freelist,
1010 * so if we've already found a candidate,
1011 * the fit can't possibly get any better.
1013 if (vbest != NULL)
1014 break;
1016 * Find the next non-empty freelist.
1018 flist = lowbit(P2ALIGN(vmp->vm_freemap,
1019 VS_SIZE(vsp)));
1020 if (flist-- == 0)
1021 break;
1022 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1023 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1024 continue;
1026 if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1027 continue;
1028 if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1029 continue;
1030 start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1031 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1032 taddr = P2PHASEUP(start, align, phase);
1033 if (P2BOUNDARY(taddr, size, nocross))
1034 taddr +=
1035 P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1036 if ((taddr - start) + size > end - start ||
1037 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1038 continue;
1039 vbest = vsp;
1040 addr = taddr;
1041 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1042 break;
1044 if (vbest != NULL)
1045 break;
1046 ASSERT(xvaddr == NULL);
1047 if (size == 0)
1048 panic("vmem_xalloc(): size == 0");
1049 if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1050 minaddr == NULL && maxaddr == NULL) {
1051 size_t aneeded, asize;
1052 size_t aquantum = MAX(vmp->vm_quantum,
1053 vmp->vm_source->vm_quantum);
1054 size_t aphase = phase;
1055 if ((align > aquantum) &&
1056 !(vmp->vm_cflags & VMC_XALIGN)) {
1057 aphase = (P2PHASE(phase, aquantum) != 0) ?
1058 align - vmp->vm_quantum : align - aquantum;
1059 ASSERT(aphase >= phase);
1061 aneeded = MAX(size + aphase, vmp->vm_min_import);
1062 asize = P2ROUNDUP(aneeded, aquantum);
1065 * Determine how many segment structures we'll consume.
1066 * The calculation must be precise because if we're
1067 * here on behalf of vmem_populate(), we are taking
1068 * segments from a very limited reserve.
1070 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1071 resv = VMEM_SEGS_PER_SPAN_CREATE +
1072 VMEM_SEGS_PER_EXACT_ALLOC;
1073 else if (phase == 0 &&
1074 align <= vmp->vm_source->vm_quantum)
1075 resv = VMEM_SEGS_PER_SPAN_CREATE +
1076 VMEM_SEGS_PER_LEFT_ALLOC;
1077 else
1078 resv = VMEM_SEGS_PER_ALLOC_MAX;
1080 ASSERT(vmp->vm_nsegfree >= resv);
1081 vmp->vm_nsegfree -= resv; /* reserve our segs */
1082 mutex_exit(&vmp->vm_lock);
1083 if (vmp->vm_cflags & VMC_XALLOC) {
1084 size_t oasize = asize;
1085 vaddr = ((vmem_ximport_t *)
1086 vmp->vm_source_alloc)(vmp->vm_source,
1087 &asize, align, vmflag & VM_KMFLAGS);
1088 ASSERT(asize >= oasize);
1089 ASSERT(P2PHASE(asize,
1090 vmp->vm_source->vm_quantum) == 0);
1091 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) ||
1092 IS_P2ALIGNED(vaddr, align));
1093 } else {
1094 vaddr = vmp->vm_source_alloc(vmp->vm_source,
1095 asize, vmflag & VM_KMFLAGS);
1097 mutex_enter(&vmp->vm_lock);
1098 vmp->vm_nsegfree += resv; /* claim reservation */
1099 aneeded = size + align - vmp->vm_quantum;
1100 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1101 if (vaddr != NULL) {
1103 * Since we dropped the vmem lock while
1104 * calling the import function, other
1105 * threads could have imported space
1106 * and made our import unnecessary. In
1107 * order to save space, we return
1108 * excess imports immediately.
1110 if (asize > aneeded &&
1111 vmp->vm_source_free != NULL &&
1112 vmem_canalloc(vmp, aneeded)) {
1113 ASSERT(resv >=
1114 VMEM_SEGS_PER_MIDDLE_ALLOC);
1115 xvaddr = vaddr;
1116 xsize = asize;
1117 goto do_alloc;
1119 vbest = vmem_span_create(vmp, vaddr, asize, 1);
1120 addr = P2PHASEUP(vbest->vs_start, align, phase);
1121 break;
1122 } else if (vmem_canalloc(vmp, aneeded)) {
1124 * Our import failed, but another thread
1125 * added sufficient free memory to the arena
1126 * to satisfy our request. Go back and
1127 * grab it.
1129 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1130 goto do_alloc;
1135 * If the requestor chooses to fail the allocation attempt
1136 * rather than reap wait and retry - get out of the loop.
1138 if (vmflag & VM_ABORT)
1139 break;
1140 mutex_exit(&vmp->vm_lock);
1141 if (vmp->vm_cflags & VMC_IDENTIFIER)
1142 kmem_reap_idspace();
1143 else
1144 kmem_reap();
1145 mutex_enter(&vmp->vm_lock);
1146 if (vmflag & VM_NOSLEEP)
1147 break;
1148 vmp->vm_kstat.vk_wait.value.ui64++;
1149 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1151 if (vbest != NULL) {
1152 ASSERT(vbest->vs_type == VMEM_FREE);
1153 ASSERT(vbest->vs_knext != vbest);
1154 (void) vmem_seg_alloc(vmp, vbest, addr, size);
1155 mutex_exit(&vmp->vm_lock);
1156 if (xvaddr)
1157 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1158 ASSERT(P2PHASE(addr, align) == phase);
1159 ASSERT(!P2BOUNDARY(addr, size, nocross));
1160 ASSERT(addr >= (uintptr_t)minaddr);
1161 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1162 return ((void *)addr);
1164 vmp->vm_kstat.vk_fail.value.ui64++;
1165 mutex_exit(&vmp->vm_lock);
1166 if (vmflag & VM_PANIC)
1167 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1168 "cannot satisfy mandatory allocation",
1169 (void *)vmp, size, align_arg, phase, nocross,
1170 minaddr, maxaddr, vmflag);
1171 ASSERT(xvaddr == NULL);
1172 return (NULL);
1176 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1177 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because
1178 * both routines bypass the quantum caches.
1180 void
1181 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1183 vmem_seg_t *vsp, *vnext, *vprev;
1185 mutex_enter(&vmp->vm_lock);
1187 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1188 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1191 * Attempt to coalesce with the next segment.
1193 vnext = vsp->vs_anext;
1194 if (vnext->vs_type == VMEM_FREE) {
1195 ASSERT(vsp->vs_end == vnext->vs_start);
1196 vmem_freelist_delete(vmp, vnext);
1197 vsp->vs_end = vnext->vs_end;
1198 vmem_seg_destroy(vmp, vnext);
1202 * Attempt to coalesce with the previous segment.
1204 vprev = vsp->vs_aprev;
1205 if (vprev->vs_type == VMEM_FREE) {
1206 ASSERT(vprev->vs_end == vsp->vs_start);
1207 vmem_freelist_delete(vmp, vprev);
1208 vprev->vs_end = vsp->vs_end;
1209 vmem_seg_destroy(vmp, vsp);
1210 vsp = vprev;
1214 * If the entire span is free, return it to the source.
1216 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1217 vsp->vs_aprev->vs_type == VMEM_SPAN &&
1218 vsp->vs_anext->vs_type == VMEM_SPAN) {
1219 vaddr = (void *)vsp->vs_start;
1220 size = VS_SIZE(vsp);
1221 ASSERT(size == VS_SIZE(vsp->vs_aprev));
1222 vmem_span_destroy(vmp, vsp);
1223 mutex_exit(&vmp->vm_lock);
1224 vmp->vm_source_free(vmp->vm_source, vaddr, size);
1225 } else {
1226 vmem_freelist_insert(vmp, vsp);
1227 mutex_exit(&vmp->vm_lock);
1232 * Allocate size bytes from arena vmp. Returns the allocated address
1233 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
1234 * and may also specify best-fit, first-fit, or next-fit allocation policy
1235 * instead of the default instant-fit policy. VM_SLEEP allocations are
1236 * guaranteed to succeed.
1238 void *
1239 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1241 vmem_seg_t *vsp;
1242 uintptr_t addr;
1243 int hb;
1244 int flist = 0;
1245 uint32_t mtbf;
1247 if (size - 1 < vmp->vm_qcache_max)
1248 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1249 vmp->vm_qshift], vmflag & VM_KMFLAGS));
1251 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1252 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1253 return (NULL);
1255 if (vmflag & VM_NEXTFIT)
1256 return (vmem_nextfit_alloc(vmp, size, vmflag));
1258 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1259 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1260 NULL, NULL, vmflag));
1263 * Unconstrained instant-fit allocation from the segment list.
1265 mutex_enter(&vmp->vm_lock);
1267 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1268 if ((size & (size - 1)) == 0)
1269 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1270 else if ((hb = highbit(size)) < VMEM_FREELISTS)
1271 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1274 if (flist-- == 0) {
1275 mutex_exit(&vmp->vm_lock);
1276 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1277 0, 0, NULL, NULL, vmflag));
1280 ASSERT(size <= (1UL << flist));
1281 vsp = vmp->vm_freelist[flist].vs_knext;
1282 addr = vsp->vs_start;
1283 (void) vmem_seg_alloc(vmp, vsp, addr, size);
1284 mutex_exit(&vmp->vm_lock);
1285 return ((void *)addr);
1289 * Free the segment [vaddr, vaddr + size).
1291 void
1292 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1294 if (size - 1 < vmp->vm_qcache_max)
1295 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1296 vaddr);
1297 else
1298 vmem_xfree(vmp, vaddr, size);
1302 * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1305 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1307 uintptr_t start = (uintptr_t)vaddr;
1308 uintptr_t end = start + size;
1309 vmem_seg_t *vsp;
1310 vmem_seg_t *seg0 = &vmp->vm_seg0;
1312 mutex_enter(&vmp->vm_lock);
1313 vmp->vm_kstat.vk_contains.value.ui64++;
1314 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1315 vmp->vm_kstat.vk_contains_search.value.ui64++;
1316 ASSERT(vsp->vs_type == VMEM_SPAN);
1317 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1318 break;
1320 mutex_exit(&vmp->vm_lock);
1321 return (vsp != seg0);
1325 * Add the span [vaddr, vaddr + size) to arena vmp.
1327 void *
1328 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1330 if (vaddr == NULL || size == 0)
1331 panic("vmem_add(%p, %p, %lu): bad arguments",
1332 (void *)vmp, vaddr, size);
1334 ASSERT(!vmem_contains(vmp, vaddr, size));
1336 mutex_enter(&vmp->vm_lock);
1337 if (vmem_populate(vmp, vmflag))
1338 (void) vmem_span_create(vmp, vaddr, size, 0);
1339 else
1340 vaddr = NULL;
1341 mutex_exit(&vmp->vm_lock);
1342 return (vaddr);
1346 * Walk the vmp arena, applying func to each segment matching typemask.
1347 * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1348 * call to func(); otherwise, it is held for the duration of vmem_walk()
1349 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
1350 * are *not* necessarily consistent, so they may only be used when a hint
1351 * is adequate.
1353 void
1354 vmem_walk(vmem_t *vmp, int typemask,
1355 void (*func)(void *, void *, size_t), void *arg)
1357 vmem_seg_t *vsp;
1358 vmem_seg_t *seg0 = &vmp->vm_seg0;
1359 vmem_seg_t walker;
1361 if (typemask & VMEM_WALKER)
1362 return;
1364 bzero(&walker, sizeof (walker));
1365 walker.vs_type = VMEM_WALKER;
1367 mutex_enter(&vmp->vm_lock);
1368 VMEM_INSERT(seg0, &walker, a);
1369 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1370 if (vsp->vs_type & typemask) {
1371 void *start = (void *)vsp->vs_start;
1372 size_t size = VS_SIZE(vsp);
1373 if (typemask & VMEM_REENTRANT) {
1374 vmem_advance(vmp, &walker, vsp);
1375 mutex_exit(&vmp->vm_lock);
1376 func(arg, start, size);
1377 mutex_enter(&vmp->vm_lock);
1378 vsp = &walker;
1379 } else {
1380 func(arg, start, size);
1384 vmem_advance(vmp, &walker, NULL);
1385 mutex_exit(&vmp->vm_lock);
1389 * Return the total amount of memory whose type matches typemask. Thus:
1391 * typemask VMEM_ALLOC yields total memory allocated (in use).
1392 * typemask VMEM_FREE yields total memory free (available).
1393 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1395 size_t
1396 vmem_size(vmem_t *vmp, int typemask)
1398 uint64_t size = 0;
1400 if (typemask & VMEM_ALLOC)
1401 size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1402 if (typemask & VMEM_FREE)
1403 size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1404 vmp->vm_kstat.vk_mem_inuse.value.ui64;
1405 return ((size_t)size);
1409 * Create an arena called name whose initial span is [base, base + size).
1410 * The arena's natural unit of currency is quantum, so vmem_alloc()
1411 * guarantees quantum-aligned results. The arena may import new spans
1412 * by invoking afunc() on source, and may return those spans by invoking
1413 * ffunc() on source. To make small allocations fast and scalable,
1414 * the arena offers high-performance caching for each integer multiple
1415 * of quantum up to qcache_max.
1417 static vmem_t *
1418 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1419 void *(*afunc)(vmem_t *, size_t, int),
1420 void (*ffunc)(vmem_t *, void *, size_t),
1421 vmem_t *source, size_t qcache_max, int vmflag)
1423 int i;
1424 size_t nqcache;
1425 vmem_t *vmp, *cur, **vmpp;
1426 vmem_seg_t *vsp;
1427 vmem_freelist_t *vfp;
1428 uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1430 if (vmem_vmem_arena != NULL) {
1431 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1432 vmflag & VM_KMFLAGS);
1433 } else {
1434 ASSERT(id <= VMEM_INITIAL);
1435 vmp = &vmem0[id - 1];
1438 /* An identifier arena must inherit from another identifier arena */
1439 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1440 (vmflag & VMC_IDENTIFIER)));
1442 if (vmp == NULL)
1443 return (NULL);
1444 bzero(vmp, sizeof (vmem_t));
1446 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1447 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1448 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1449 vmp->vm_cflags = vmflag;
1450 vmflag &= VM_KMFLAGS;
1452 vmp->vm_quantum = quantum;
1453 vmp->vm_qshift = highbit(quantum) - 1;
1454 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1456 for (i = 0; i <= VMEM_FREELISTS; i++) {
1457 vfp = &vmp->vm_freelist[i];
1458 vfp->vs_end = 1UL << i;
1459 vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1460 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1463 vmp->vm_freelist[0].vs_kprev = NULL;
1464 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1465 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1466 vmp->vm_hash_table = vmp->vm_hash0;
1467 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1468 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1470 vsp = &vmp->vm_seg0;
1471 vsp->vs_anext = vsp;
1472 vsp->vs_aprev = vsp;
1473 vsp->vs_knext = vsp;
1474 vsp->vs_kprev = vsp;
1475 vsp->vs_type = VMEM_SPAN;
1477 vsp = &vmp->vm_rotor;
1478 vsp->vs_type = VMEM_ROTOR;
1479 VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1481 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1483 vmp->vm_id = id;
1484 if (source != NULL)
1485 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1486 vmp->vm_source = source;
1487 vmp->vm_source_alloc = afunc;
1488 vmp->vm_source_free = ffunc;
1491 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1492 * use quantum caching to lower fragmentation. Instead, we
1493 * increase their imports, giving a similar effect.
1495 if (vmp->vm_cflags & VMC_NO_QCACHE) {
1496 vmp->vm_min_import =
1497 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1498 nqcache = 0;
1501 if (nqcache != 0) {
1502 ASSERT(!(vmflag & VM_NOSLEEP));
1503 vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1504 for (i = 0; i < nqcache; i++) {
1505 char buf[VMEM_NAMELEN + 21];
1506 (void) sprintf(buf, "%s_%lu", vmp->vm_name,
1507 (i + 1) * quantum);
1508 vmp->vm_qcache[i] = kmem_cache_create(buf,
1509 (i + 1) * quantum, quantum, NULL, NULL, NULL,
1510 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1514 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1515 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1516 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1517 vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1518 kstat_install(vmp->vm_ksp);
1521 mutex_enter(&vmem_list_lock);
1522 vmpp = &vmem_list;
1523 while ((cur = *vmpp) != NULL)
1524 vmpp = &cur->vm_next;
1525 *vmpp = vmp;
1526 mutex_exit(&vmem_list_lock);
1528 if (vmp->vm_cflags & VMC_POPULATOR) {
1529 ASSERT(vmem_populators < VMEM_INITIAL);
1530 vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp;
1531 mutex_enter(&vmp->vm_lock);
1532 (void) vmem_populate(vmp, vmflag | VM_PANIC);
1533 mutex_exit(&vmp->vm_lock);
1536 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1537 vmem_destroy(vmp);
1538 return (NULL);
1541 return (vmp);
1544 vmem_t *
1545 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1546 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1547 size_t qcache_max, int vmflag)
1549 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1550 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1552 return (vmem_create_common(name, base, size, quantum,
1553 (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1554 vmflag | VMC_XALLOC));
1557 vmem_t *
1558 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1559 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1560 size_t qcache_max, int vmflag)
1562 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN)));
1563 vmflag &= ~(VMC_XALLOC | VMC_XALIGN);
1565 return (vmem_create_common(name, base, size, quantum,
1566 afunc, ffunc, source, qcache_max, vmflag));
1570 * Destroy arena vmp.
1572 void
1573 vmem_destroy(vmem_t *vmp)
1575 vmem_t *cur, **vmpp;
1576 vmem_seg_t *seg0 = &vmp->vm_seg0;
1577 vmem_seg_t *vsp;
1578 size_t leaked;
1579 int i;
1581 mutex_enter(&vmem_list_lock);
1582 vmpp = &vmem_list;
1583 while ((cur = *vmpp) != vmp)
1584 vmpp = &cur->vm_next;
1585 *vmpp = vmp->vm_next;
1586 mutex_exit(&vmem_list_lock);
1588 for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1589 if (vmp->vm_qcache[i])
1590 kmem_cache_destroy(vmp->vm_qcache[i]);
1592 leaked = vmem_size(vmp, VMEM_ALLOC);
1593 if (leaked != 0)
1594 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1595 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1596 "identifiers" : "bytes");
1598 if (vmp->vm_hash_table != vmp->vm_hash0)
1599 vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1600 (vmp->vm_hash_mask + 1) * sizeof (void *));
1603 * Give back the segment structures for anything that's left in the
1604 * arena, e.g. the primary spans and their free segments.
1606 VMEM_DELETE(&vmp->vm_rotor, a);
1607 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
1608 vmem_putseg_global(vsp);
1610 while (vmp->vm_nsegfree > 0)
1611 vmem_putseg_global(vmem_getseg(vmp));
1613 kstat_delete(vmp->vm_ksp);
1615 mutex_destroy(&vmp->vm_lock);
1616 cv_destroy(&vmp->vm_cv);
1617 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1621 * Resize vmp's hash table to keep the average lookup depth near 1.0.
1623 static void
1624 vmem_hash_rescale(vmem_t *vmp)
1626 vmem_seg_t **old_table, **new_table, *vsp;
1627 size_t old_size, new_size, h, nseg;
1629 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1630 vmp->vm_kstat.vk_free.value.ui64);
1632 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1633 old_size = vmp->vm_hash_mask + 1;
1635 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1636 return;
1638 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1639 VM_NOSLEEP);
1640 if (new_table == NULL)
1641 return;
1642 bzero(new_table, new_size * sizeof (void *));
1644 mutex_enter(&vmp->vm_lock);
1646 old_size = vmp->vm_hash_mask + 1;
1647 old_table = vmp->vm_hash_table;
1649 vmp->vm_hash_mask = new_size - 1;
1650 vmp->vm_hash_table = new_table;
1651 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1653 for (h = 0; h < old_size; h++) {
1654 vsp = old_table[h];
1655 while (vsp != NULL) {
1656 uintptr_t addr = vsp->vs_start;
1657 vmem_seg_t *next_vsp = vsp->vs_knext;
1658 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1659 vsp->vs_knext = *hash_bucket;
1660 *hash_bucket = vsp;
1661 vsp = next_vsp;
1665 mutex_exit(&vmp->vm_lock);
1667 if (old_table != vmp->vm_hash0)
1668 vmem_free(vmem_hash_arena, old_table,
1669 old_size * sizeof (void *));
1673 * Perform periodic maintenance on all vmem arenas.
1675 void
1676 vmem_update(void *dummy)
1678 vmem_t *vmp;
1680 mutex_enter(&vmem_list_lock);
1681 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1683 * If threads are waiting for resources, wake them up
1684 * periodically so they can issue another kmem_reap()
1685 * to reclaim resources cached by the slab allocator.
1687 cv_broadcast(&vmp->vm_cv);
1690 * Rescale the hash table to keep the hash chains short.
1692 vmem_hash_rescale(vmp);
1694 mutex_exit(&vmem_list_lock);
1696 (void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1700 * Prepare vmem for use.
1702 vmem_t *
1703 vmem_init(const char *heap_name,
1704 void *heap_start, size_t heap_size, size_t heap_quantum,
1705 void *(*heap_alloc)(vmem_t *, size_t, int),
1706 void (*heap_free)(vmem_t *, void *, size_t))
1708 uint32_t id;
1709 int nseg = VMEM_SEG_INITIAL;
1710 vmem_t *heap;
1712 while (--nseg >= 0)
1713 vmem_putseg_global(&vmem_seg0[nseg]);
1715 heap = vmem_create(heap_name,
1716 heap_start, heap_size, heap_quantum,
1717 NULL, NULL, NULL, 0,
1718 VM_SLEEP | VMC_POPULATOR);
1720 vmem_metadata_arena = vmem_create("vmem_metadata",
1721 NULL, 0, heap_quantum,
1722 vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1723 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1725 vmem_seg_arena = vmem_create("vmem_seg",
1726 NULL, 0, heap_quantum,
1727 heap_alloc, heap_free, vmem_metadata_arena, 0,
1728 VM_SLEEP | VMC_POPULATOR);
1730 vmem_hash_arena = vmem_create("vmem_hash",
1731 NULL, 0, 8,
1732 heap_alloc, heap_free, vmem_metadata_arena, 0,
1733 VM_SLEEP);
1735 vmem_vmem_arena = vmem_create("vmem_vmem",
1736 vmem0, sizeof (vmem0), 1,
1737 heap_alloc, heap_free, vmem_metadata_arena, 0,
1738 VM_SLEEP);
1740 for (id = 0; id < vmem_id; id++)
1741 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1742 1, 0, 0, &vmem0[id], &vmem0[id + 1],
1743 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1745 return (heap);