6333409 traversal code should be able to issue multiple reads in parallel
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blob3420dc2fb43e68ae4ad7caf688cfce925949ea4b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
66 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
67 /* ISSUE INTR */
68 { 1, 1 }, /* ZIO_TYPE_NULL */
69 { 1, 8 }, /* ZIO_TYPE_READ */
70 { 8, 1 }, /* ZIO_TYPE_WRITE */
71 { 1, 1 }, /* ZIO_TYPE_FREE */
72 { 1, 1 }, /* ZIO_TYPE_CLAIM */
73 { 1, 1 }, /* ZIO_TYPE_IOCTL */
76 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
77 static boolean_t spa_has_active_shared_spare(spa_t *spa);
80 * ==========================================================================
81 * SPA properties routines
82 * ==========================================================================
86 * Add a (source=src, propname=propval) list to an nvlist.
88 static void
89 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
90 uint64_t intval, zprop_source_t src)
92 const char *propname = zpool_prop_to_name(prop);
93 nvlist_t *propval;
95 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
96 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
98 if (strval != NULL)
99 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
100 else
101 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
103 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
104 nvlist_free(propval);
108 * Get property values from the spa configuration.
110 static void
111 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
113 uint64_t size = spa_get_space(spa);
114 uint64_t used = spa_get_alloc(spa);
115 uint64_t cap, version;
116 zprop_source_t src = ZPROP_SRC_NONE;
117 spa_config_dirent_t *dp;
119 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
122 * readonly properties
124 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
125 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
126 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
127 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
129 cap = (size == 0) ? 0 : (used * 100 / size);
130 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
132 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
133 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
134 spa->spa_root_vdev->vdev_state, src);
137 * settable properties that are not stored in the pool property object.
139 version = spa_version(spa);
140 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
141 src = ZPROP_SRC_DEFAULT;
142 else
143 src = ZPROP_SRC_LOCAL;
144 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
146 if (spa->spa_root != NULL)
147 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
148 0, ZPROP_SRC_LOCAL);
150 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
151 if (dp->scd_path == NULL) {
152 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
153 "none", 0, ZPROP_SRC_LOCAL);
154 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
155 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
156 dp->scd_path, 0, ZPROP_SRC_LOCAL);
162 * Get zpool property values.
165 spa_prop_get(spa_t *spa, nvlist_t **nvp)
167 zap_cursor_t zc;
168 zap_attribute_t za;
169 objset_t *mos = spa->spa_meta_objset;
170 int err;
172 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
174 mutex_enter(&spa->spa_props_lock);
177 * Get properties from the spa config.
179 spa_prop_get_config(spa, nvp);
181 /* If no pool property object, no more prop to get. */
182 if (spa->spa_pool_props_object == 0) {
183 mutex_exit(&spa->spa_props_lock);
184 return (0);
188 * Get properties from the MOS pool property object.
190 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
191 (err = zap_cursor_retrieve(&zc, &za)) == 0;
192 zap_cursor_advance(&zc)) {
193 uint64_t intval = 0;
194 char *strval = NULL;
195 zprop_source_t src = ZPROP_SRC_DEFAULT;
196 zpool_prop_t prop;
198 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
199 continue;
201 switch (za.za_integer_length) {
202 case 8:
203 /* integer property */
204 if (za.za_first_integer !=
205 zpool_prop_default_numeric(prop))
206 src = ZPROP_SRC_LOCAL;
208 if (prop == ZPOOL_PROP_BOOTFS) {
209 dsl_pool_t *dp;
210 dsl_dataset_t *ds = NULL;
212 dp = spa_get_dsl(spa);
213 rw_enter(&dp->dp_config_rwlock, RW_READER);
214 if (err = dsl_dataset_hold_obj(dp,
215 za.za_first_integer, FTAG, &ds)) {
216 rw_exit(&dp->dp_config_rwlock);
217 break;
220 strval = kmem_alloc(
221 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
222 KM_SLEEP);
223 dsl_dataset_name(ds, strval);
224 dsl_dataset_rele(ds, FTAG);
225 rw_exit(&dp->dp_config_rwlock);
226 } else {
227 strval = NULL;
228 intval = za.za_first_integer;
231 spa_prop_add_list(*nvp, prop, strval, intval, src);
233 if (strval != NULL)
234 kmem_free(strval,
235 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
237 break;
239 case 1:
240 /* string property */
241 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
242 err = zap_lookup(mos, spa->spa_pool_props_object,
243 za.za_name, 1, za.za_num_integers, strval);
244 if (err) {
245 kmem_free(strval, za.za_num_integers);
246 break;
248 spa_prop_add_list(*nvp, prop, strval, 0, src);
249 kmem_free(strval, za.za_num_integers);
250 break;
252 default:
253 break;
256 zap_cursor_fini(&zc);
257 mutex_exit(&spa->spa_props_lock);
258 out:
259 if (err && err != ENOENT) {
260 nvlist_free(*nvp);
261 *nvp = NULL;
262 return (err);
265 return (0);
269 * Validate the given pool properties nvlist and modify the list
270 * for the property values to be set.
272 static int
273 spa_prop_validate(spa_t *spa, nvlist_t *props)
275 nvpair_t *elem;
276 int error = 0, reset_bootfs = 0;
277 uint64_t objnum;
279 elem = NULL;
280 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
281 zpool_prop_t prop;
282 char *propname, *strval;
283 uint64_t intval;
284 objset_t *os;
285 char *slash;
287 propname = nvpair_name(elem);
289 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
290 return (EINVAL);
292 switch (prop) {
293 case ZPOOL_PROP_VERSION:
294 error = nvpair_value_uint64(elem, &intval);
295 if (!error &&
296 (intval < spa_version(spa) || intval > SPA_VERSION))
297 error = EINVAL;
298 break;
300 case ZPOOL_PROP_DELEGATION:
301 case ZPOOL_PROP_AUTOREPLACE:
302 case ZPOOL_PROP_LISTSNAPS:
303 error = nvpair_value_uint64(elem, &intval);
304 if (!error && intval > 1)
305 error = EINVAL;
306 break;
308 case ZPOOL_PROP_BOOTFS:
309 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
310 error = ENOTSUP;
311 break;
315 * Make sure the vdev config is bootable
317 if (!vdev_is_bootable(spa->spa_root_vdev)) {
318 error = ENOTSUP;
319 break;
322 reset_bootfs = 1;
324 error = nvpair_value_string(elem, &strval);
326 if (!error) {
327 uint64_t compress;
329 if (strval == NULL || strval[0] == '\0') {
330 objnum = zpool_prop_default_numeric(
331 ZPOOL_PROP_BOOTFS);
332 break;
335 if (error = dmu_objset_open(strval, DMU_OST_ZFS,
336 DS_MODE_USER | DS_MODE_READONLY, &os))
337 break;
339 /* We don't support gzip bootable datasets */
340 if ((error = dsl_prop_get_integer(strval,
341 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
342 &compress, NULL)) == 0 &&
343 !BOOTFS_COMPRESS_VALID(compress)) {
344 error = ENOTSUP;
345 } else {
346 objnum = dmu_objset_id(os);
348 dmu_objset_close(os);
350 break;
352 case ZPOOL_PROP_FAILUREMODE:
353 error = nvpair_value_uint64(elem, &intval);
354 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
355 intval > ZIO_FAILURE_MODE_PANIC))
356 error = EINVAL;
359 * This is a special case which only occurs when
360 * the pool has completely failed. This allows
361 * the user to change the in-core failmode property
362 * without syncing it out to disk (I/Os might
363 * currently be blocked). We do this by returning
364 * EIO to the caller (spa_prop_set) to trick it
365 * into thinking we encountered a property validation
366 * error.
368 if (!error && spa_suspended(spa)) {
369 spa->spa_failmode = intval;
370 error = EIO;
372 break;
374 case ZPOOL_PROP_CACHEFILE:
375 if ((error = nvpair_value_string(elem, &strval)) != 0)
376 break;
378 if (strval[0] == '\0')
379 break;
381 if (strcmp(strval, "none") == 0)
382 break;
384 if (strval[0] != '/') {
385 error = EINVAL;
386 break;
389 slash = strrchr(strval, '/');
390 ASSERT(slash != NULL);
392 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
393 strcmp(slash, "/..") == 0)
394 error = EINVAL;
395 break;
398 if (error)
399 break;
402 if (!error && reset_bootfs) {
403 error = nvlist_remove(props,
404 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
406 if (!error) {
407 error = nvlist_add_uint64(props,
408 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
412 return (error);
416 spa_prop_set(spa_t *spa, nvlist_t *nvp)
418 int error;
420 if ((error = spa_prop_validate(spa, nvp)) != 0)
421 return (error);
423 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
424 spa, nvp, 3));
428 * If the bootfs property value is dsobj, clear it.
430 void
431 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
433 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
434 VERIFY(zap_remove(spa->spa_meta_objset,
435 spa->spa_pool_props_object,
436 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
437 spa->spa_bootfs = 0;
442 * ==========================================================================
443 * SPA state manipulation (open/create/destroy/import/export)
444 * ==========================================================================
447 static int
448 spa_error_entry_compare(const void *a, const void *b)
450 spa_error_entry_t *sa = (spa_error_entry_t *)a;
451 spa_error_entry_t *sb = (spa_error_entry_t *)b;
452 int ret;
454 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
455 sizeof (zbookmark_t));
457 if (ret < 0)
458 return (-1);
459 else if (ret > 0)
460 return (1);
461 else
462 return (0);
466 * Utility function which retrieves copies of the current logs and
467 * re-initializes them in the process.
469 void
470 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
472 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
474 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
475 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
477 avl_create(&spa->spa_errlist_scrub,
478 spa_error_entry_compare, sizeof (spa_error_entry_t),
479 offsetof(spa_error_entry_t, se_avl));
480 avl_create(&spa->spa_errlist_last,
481 spa_error_entry_compare, sizeof (spa_error_entry_t),
482 offsetof(spa_error_entry_t, se_avl));
486 * Activate an uninitialized pool.
488 static void
489 spa_activate(spa_t *spa)
491 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
493 spa->spa_state = POOL_STATE_ACTIVE;
495 spa->spa_normal_class = metaslab_class_create();
496 spa->spa_log_class = metaslab_class_create();
498 for (int t = 0; t < ZIO_TYPES; t++) {
499 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
500 spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
501 zio_taskq_threads[t][q], maxclsyspri, 50,
502 INT_MAX, TASKQ_PREPOPULATE);
506 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
507 offsetof(vdev_t, vdev_config_dirty_node));
508 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
509 offsetof(vdev_t, vdev_state_dirty_node));
511 txg_list_create(&spa->spa_vdev_txg_list,
512 offsetof(struct vdev, vdev_txg_node));
514 avl_create(&spa->spa_errlist_scrub,
515 spa_error_entry_compare, sizeof (spa_error_entry_t),
516 offsetof(spa_error_entry_t, se_avl));
517 avl_create(&spa->spa_errlist_last,
518 spa_error_entry_compare, sizeof (spa_error_entry_t),
519 offsetof(spa_error_entry_t, se_avl));
523 * Opposite of spa_activate().
525 static void
526 spa_deactivate(spa_t *spa)
528 ASSERT(spa->spa_sync_on == B_FALSE);
529 ASSERT(spa->spa_dsl_pool == NULL);
530 ASSERT(spa->spa_root_vdev == NULL);
532 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
534 txg_list_destroy(&spa->spa_vdev_txg_list);
536 list_destroy(&spa->spa_config_dirty_list);
537 list_destroy(&spa->spa_state_dirty_list);
539 for (int t = 0; t < ZIO_TYPES; t++) {
540 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
541 taskq_destroy(spa->spa_zio_taskq[t][q]);
542 spa->spa_zio_taskq[t][q] = NULL;
546 metaslab_class_destroy(spa->spa_normal_class);
547 spa->spa_normal_class = NULL;
549 metaslab_class_destroy(spa->spa_log_class);
550 spa->spa_log_class = NULL;
553 * If this was part of an import or the open otherwise failed, we may
554 * still have errors left in the queues. Empty them just in case.
556 spa_errlog_drain(spa);
558 avl_destroy(&spa->spa_errlist_scrub);
559 avl_destroy(&spa->spa_errlist_last);
561 spa->spa_state = POOL_STATE_UNINITIALIZED;
565 * Verify a pool configuration, and construct the vdev tree appropriately. This
566 * will create all the necessary vdevs in the appropriate layout, with each vdev
567 * in the CLOSED state. This will prep the pool before open/creation/import.
568 * All vdev validation is done by the vdev_alloc() routine.
570 static int
571 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
572 uint_t id, int atype)
574 nvlist_t **child;
575 uint_t c, children;
576 int error;
578 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
579 return (error);
581 if ((*vdp)->vdev_ops->vdev_op_leaf)
582 return (0);
584 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
585 &child, &children);
587 if (error == ENOENT)
588 return (0);
590 if (error) {
591 vdev_free(*vdp);
592 *vdp = NULL;
593 return (EINVAL);
596 for (c = 0; c < children; c++) {
597 vdev_t *vd;
598 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
599 atype)) != 0) {
600 vdev_free(*vdp);
601 *vdp = NULL;
602 return (error);
606 ASSERT(*vdp != NULL);
608 return (0);
612 * Opposite of spa_load().
614 static void
615 spa_unload(spa_t *spa)
617 int i;
619 ASSERT(MUTEX_HELD(&spa_namespace_lock));
622 * Stop async tasks.
624 spa_async_suspend(spa);
627 * Stop syncing.
629 if (spa->spa_sync_on) {
630 txg_sync_stop(spa->spa_dsl_pool);
631 spa->spa_sync_on = B_FALSE;
635 * Wait for any outstanding async I/O to complete.
637 mutex_enter(&spa->spa_async_root_lock);
638 while (spa->spa_async_root_count != 0)
639 cv_wait(&spa->spa_async_root_cv, &spa->spa_async_root_lock);
640 mutex_exit(&spa->spa_async_root_lock);
643 * Drop and purge level 2 cache
645 spa_l2cache_drop(spa);
648 * Close the dsl pool.
650 if (spa->spa_dsl_pool) {
651 dsl_pool_close(spa->spa_dsl_pool);
652 spa->spa_dsl_pool = NULL;
656 * Close all vdevs.
658 if (spa->spa_root_vdev)
659 vdev_free(spa->spa_root_vdev);
660 ASSERT(spa->spa_root_vdev == NULL);
662 for (i = 0; i < spa->spa_spares.sav_count; i++)
663 vdev_free(spa->spa_spares.sav_vdevs[i]);
664 if (spa->spa_spares.sav_vdevs) {
665 kmem_free(spa->spa_spares.sav_vdevs,
666 spa->spa_spares.sav_count * sizeof (void *));
667 spa->spa_spares.sav_vdevs = NULL;
669 if (spa->spa_spares.sav_config) {
670 nvlist_free(spa->spa_spares.sav_config);
671 spa->spa_spares.sav_config = NULL;
673 spa->spa_spares.sav_count = 0;
675 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
676 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
677 if (spa->spa_l2cache.sav_vdevs) {
678 kmem_free(spa->spa_l2cache.sav_vdevs,
679 spa->spa_l2cache.sav_count * sizeof (void *));
680 spa->spa_l2cache.sav_vdevs = NULL;
682 if (spa->spa_l2cache.sav_config) {
683 nvlist_free(spa->spa_l2cache.sav_config);
684 spa->spa_l2cache.sav_config = NULL;
686 spa->spa_l2cache.sav_count = 0;
688 spa->spa_async_suspended = 0;
692 * Load (or re-load) the current list of vdevs describing the active spares for
693 * this pool. When this is called, we have some form of basic information in
694 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
695 * then re-generate a more complete list including status information.
697 static void
698 spa_load_spares(spa_t *spa)
700 nvlist_t **spares;
701 uint_t nspares;
702 int i;
703 vdev_t *vd, *tvd;
705 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
708 * First, close and free any existing spare vdevs.
710 for (i = 0; i < spa->spa_spares.sav_count; i++) {
711 vd = spa->spa_spares.sav_vdevs[i];
713 /* Undo the call to spa_activate() below */
714 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
715 B_FALSE)) != NULL && tvd->vdev_isspare)
716 spa_spare_remove(tvd);
717 vdev_close(vd);
718 vdev_free(vd);
721 if (spa->spa_spares.sav_vdevs)
722 kmem_free(spa->spa_spares.sav_vdevs,
723 spa->spa_spares.sav_count * sizeof (void *));
725 if (spa->spa_spares.sav_config == NULL)
726 nspares = 0;
727 else
728 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
729 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
731 spa->spa_spares.sav_count = (int)nspares;
732 spa->spa_spares.sav_vdevs = NULL;
734 if (nspares == 0)
735 return;
738 * Construct the array of vdevs, opening them to get status in the
739 * process. For each spare, there is potentially two different vdev_t
740 * structures associated with it: one in the list of spares (used only
741 * for basic validation purposes) and one in the active vdev
742 * configuration (if it's spared in). During this phase we open and
743 * validate each vdev on the spare list. If the vdev also exists in the
744 * active configuration, then we also mark this vdev as an active spare.
746 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
747 KM_SLEEP);
748 for (i = 0; i < spa->spa_spares.sav_count; i++) {
749 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
750 VDEV_ALLOC_SPARE) == 0);
751 ASSERT(vd != NULL);
753 spa->spa_spares.sav_vdevs[i] = vd;
755 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
756 B_FALSE)) != NULL) {
757 if (!tvd->vdev_isspare)
758 spa_spare_add(tvd);
761 * We only mark the spare active if we were successfully
762 * able to load the vdev. Otherwise, importing a pool
763 * with a bad active spare would result in strange
764 * behavior, because multiple pool would think the spare
765 * is actively in use.
767 * There is a vulnerability here to an equally bizarre
768 * circumstance, where a dead active spare is later
769 * brought back to life (onlined or otherwise). Given
770 * the rarity of this scenario, and the extra complexity
771 * it adds, we ignore the possibility.
773 if (!vdev_is_dead(tvd))
774 spa_spare_activate(tvd);
777 vd->vdev_top = vd;
779 if (vdev_open(vd) != 0)
780 continue;
782 if (vdev_validate_aux(vd) == 0)
783 spa_spare_add(vd);
787 * Recompute the stashed list of spares, with status information
788 * this time.
790 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
791 DATA_TYPE_NVLIST_ARRAY) == 0);
793 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
794 KM_SLEEP);
795 for (i = 0; i < spa->spa_spares.sav_count; i++)
796 spares[i] = vdev_config_generate(spa,
797 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
798 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
799 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
800 for (i = 0; i < spa->spa_spares.sav_count; i++)
801 nvlist_free(spares[i]);
802 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
806 * Load (or re-load) the current list of vdevs describing the active l2cache for
807 * this pool. When this is called, we have some form of basic information in
808 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
809 * then re-generate a more complete list including status information.
810 * Devices which are already active have their details maintained, and are
811 * not re-opened.
813 static void
814 spa_load_l2cache(spa_t *spa)
816 nvlist_t **l2cache;
817 uint_t nl2cache;
818 int i, j, oldnvdevs;
819 uint64_t guid, size;
820 vdev_t *vd, **oldvdevs, **newvdevs;
821 spa_aux_vdev_t *sav = &spa->spa_l2cache;
823 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
825 if (sav->sav_config != NULL) {
826 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
827 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
828 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
829 } else {
830 nl2cache = 0;
833 oldvdevs = sav->sav_vdevs;
834 oldnvdevs = sav->sav_count;
835 sav->sav_vdevs = NULL;
836 sav->sav_count = 0;
839 * Process new nvlist of vdevs.
841 for (i = 0; i < nl2cache; i++) {
842 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
843 &guid) == 0);
845 newvdevs[i] = NULL;
846 for (j = 0; j < oldnvdevs; j++) {
847 vd = oldvdevs[j];
848 if (vd != NULL && guid == vd->vdev_guid) {
850 * Retain previous vdev for add/remove ops.
852 newvdevs[i] = vd;
853 oldvdevs[j] = NULL;
854 break;
858 if (newvdevs[i] == NULL) {
860 * Create new vdev
862 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
863 VDEV_ALLOC_L2CACHE) == 0);
864 ASSERT(vd != NULL);
865 newvdevs[i] = vd;
868 * Commit this vdev as an l2cache device,
869 * even if it fails to open.
871 spa_l2cache_add(vd);
873 vd->vdev_top = vd;
874 vd->vdev_aux = sav;
876 spa_l2cache_activate(vd);
878 if (vdev_open(vd) != 0)
879 continue;
881 (void) vdev_validate_aux(vd);
883 if (!vdev_is_dead(vd)) {
884 size = vdev_get_rsize(vd);
885 l2arc_add_vdev(spa, vd,
886 VDEV_LABEL_START_SIZE,
887 size - VDEV_LABEL_START_SIZE);
893 * Purge vdevs that were dropped
895 for (i = 0; i < oldnvdevs; i++) {
896 uint64_t pool;
898 vd = oldvdevs[i];
899 if (vd != NULL) {
900 if ((spa_mode & FWRITE) &&
901 spa_l2cache_exists(vd->vdev_guid, &pool) &&
902 pool != 0ULL &&
903 l2arc_vdev_present(vd)) {
904 l2arc_remove_vdev(vd);
906 (void) vdev_close(vd);
907 spa_l2cache_remove(vd);
911 if (oldvdevs)
912 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
914 if (sav->sav_config == NULL)
915 goto out;
917 sav->sav_vdevs = newvdevs;
918 sav->sav_count = (int)nl2cache;
921 * Recompute the stashed list of l2cache devices, with status
922 * information this time.
924 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
925 DATA_TYPE_NVLIST_ARRAY) == 0);
927 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
928 for (i = 0; i < sav->sav_count; i++)
929 l2cache[i] = vdev_config_generate(spa,
930 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
931 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
932 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
933 out:
934 for (i = 0; i < sav->sav_count; i++)
935 nvlist_free(l2cache[i]);
936 if (sav->sav_count)
937 kmem_free(l2cache, sav->sav_count * sizeof (void *));
940 static int
941 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
943 dmu_buf_t *db;
944 char *packed = NULL;
945 size_t nvsize = 0;
946 int error;
947 *value = NULL;
949 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
950 nvsize = *(uint64_t *)db->db_data;
951 dmu_buf_rele(db, FTAG);
953 packed = kmem_alloc(nvsize, KM_SLEEP);
954 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
955 if (error == 0)
956 error = nvlist_unpack(packed, nvsize, value, 0);
957 kmem_free(packed, nvsize);
959 return (error);
963 * Checks to see if the given vdev could not be opened, in which case we post a
964 * sysevent to notify the autoreplace code that the device has been removed.
966 static void
967 spa_check_removed(vdev_t *vd)
969 int c;
971 for (c = 0; c < vd->vdev_children; c++)
972 spa_check_removed(vd->vdev_child[c]);
974 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
975 zfs_post_autoreplace(vd->vdev_spa, vd);
976 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
981 * Check for missing log devices
984 spa_check_logs(spa_t *spa)
986 switch (spa->spa_log_state) {
987 case SPA_LOG_MISSING:
988 /* need to recheck in case slog has been restored */
989 case SPA_LOG_UNKNOWN:
990 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
991 DS_FIND_CHILDREN)) {
992 spa->spa_log_state = SPA_LOG_MISSING;
993 return (1);
995 break;
997 case SPA_LOG_CLEAR:
998 (void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
999 DS_FIND_CHILDREN);
1000 break;
1002 spa->spa_log_state = SPA_LOG_GOOD;
1003 return (0);
1007 * Load an existing storage pool, using the pool's builtin spa_config as a
1008 * source of configuration information.
1010 static int
1011 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1013 int error = 0;
1014 nvlist_t *nvroot = NULL;
1015 vdev_t *rvd;
1016 uberblock_t *ub = &spa->spa_uberblock;
1017 uint64_t config_cache_txg = spa->spa_config_txg;
1018 uint64_t pool_guid;
1019 uint64_t version;
1020 uint64_t autoreplace = 0;
1021 char *ereport = FM_EREPORT_ZFS_POOL;
1023 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1025 spa->spa_load_state = state;
1027 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1028 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1029 error = EINVAL;
1030 goto out;
1034 * Versioning wasn't explicitly added to the label until later, so if
1035 * it's not present treat it as the initial version.
1037 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1038 version = SPA_VERSION_INITIAL;
1040 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1041 &spa->spa_config_txg);
1043 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1044 spa_guid_exists(pool_guid, 0)) {
1045 error = EEXIST;
1046 goto out;
1049 spa->spa_load_guid = pool_guid;
1052 * Parse the configuration into a vdev tree. We explicitly set the
1053 * value that will be returned by spa_version() since parsing the
1054 * configuration requires knowing the version number.
1056 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1057 spa->spa_ubsync.ub_version = version;
1058 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1059 spa_config_exit(spa, SCL_ALL, FTAG);
1061 if (error != 0)
1062 goto out;
1064 ASSERT(spa->spa_root_vdev == rvd);
1065 ASSERT(spa_guid(spa) == pool_guid);
1068 * Try to open all vdevs, loading each label in the process.
1070 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1071 error = vdev_open(rvd);
1072 spa_config_exit(spa, SCL_ALL, FTAG);
1073 if (error != 0)
1074 goto out;
1077 * Validate the labels for all leaf vdevs. We need to grab the config
1078 * lock because all label I/O is done with ZIO_FLAG_CONFIG_WRITER.
1080 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1081 error = vdev_validate(rvd);
1082 spa_config_exit(spa, SCL_ALL, FTAG);
1084 if (error != 0)
1085 goto out;
1087 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1088 error = ENXIO;
1089 goto out;
1093 * Find the best uberblock.
1095 vdev_uberblock_load(NULL, rvd, ub);
1098 * If we weren't able to find a single valid uberblock, return failure.
1100 if (ub->ub_txg == 0) {
1101 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1102 VDEV_AUX_CORRUPT_DATA);
1103 error = ENXIO;
1104 goto out;
1108 * If the pool is newer than the code, we can't open it.
1110 if (ub->ub_version > SPA_VERSION) {
1111 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112 VDEV_AUX_VERSION_NEWER);
1113 error = ENOTSUP;
1114 goto out;
1118 * If the vdev guid sum doesn't match the uberblock, we have an
1119 * incomplete configuration.
1121 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1122 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1123 VDEV_AUX_BAD_GUID_SUM);
1124 error = ENXIO;
1125 goto out;
1129 * Initialize internal SPA structures.
1131 spa->spa_state = POOL_STATE_ACTIVE;
1132 spa->spa_ubsync = spa->spa_uberblock;
1133 spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1134 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1135 if (error) {
1136 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1137 VDEV_AUX_CORRUPT_DATA);
1138 goto out;
1140 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1142 if (zap_lookup(spa->spa_meta_objset,
1143 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1144 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1145 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1146 VDEV_AUX_CORRUPT_DATA);
1147 error = EIO;
1148 goto out;
1151 if (!mosconfig) {
1152 nvlist_t *newconfig;
1153 uint64_t hostid;
1155 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1156 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1157 VDEV_AUX_CORRUPT_DATA);
1158 error = EIO;
1159 goto out;
1162 if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1163 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1164 char *hostname;
1165 unsigned long myhostid = 0;
1167 VERIFY(nvlist_lookup_string(newconfig,
1168 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1170 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1171 if (hostid != 0 && myhostid != 0 &&
1172 (unsigned long)hostid != myhostid) {
1173 cmn_err(CE_WARN, "pool '%s' could not be "
1174 "loaded as it was last accessed by "
1175 "another system (host: %s hostid: 0x%lx). "
1176 "See: http://www.sun.com/msg/ZFS-8000-EY",
1177 spa_name(spa), hostname,
1178 (unsigned long)hostid);
1179 error = EBADF;
1180 goto out;
1184 spa_config_set(spa, newconfig);
1185 spa_unload(spa);
1186 spa_deactivate(spa);
1187 spa_activate(spa);
1189 return (spa_load(spa, newconfig, state, B_TRUE));
1192 if (zap_lookup(spa->spa_meta_objset,
1193 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1194 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1195 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1196 VDEV_AUX_CORRUPT_DATA);
1197 error = EIO;
1198 goto out;
1202 * Load the bit that tells us to use the new accounting function
1203 * (raid-z deflation). If we have an older pool, this will not
1204 * be present.
1206 error = zap_lookup(spa->spa_meta_objset,
1207 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1208 sizeof (uint64_t), 1, &spa->spa_deflate);
1209 if (error != 0 && error != ENOENT) {
1210 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1211 VDEV_AUX_CORRUPT_DATA);
1212 error = EIO;
1213 goto out;
1217 * Load the persistent error log. If we have an older pool, this will
1218 * not be present.
1220 error = zap_lookup(spa->spa_meta_objset,
1221 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1222 sizeof (uint64_t), 1, &spa->spa_errlog_last);
1223 if (error != 0 && error != ENOENT) {
1224 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 VDEV_AUX_CORRUPT_DATA);
1226 error = EIO;
1227 goto out;
1230 error = zap_lookup(spa->spa_meta_objset,
1231 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1232 sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1233 if (error != 0 && error != ENOENT) {
1234 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 VDEV_AUX_CORRUPT_DATA);
1236 error = EIO;
1237 goto out;
1241 * Load the history object. If we have an older pool, this
1242 * will not be present.
1244 error = zap_lookup(spa->spa_meta_objset,
1245 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1246 sizeof (uint64_t), 1, &spa->spa_history);
1247 if (error != 0 && error != ENOENT) {
1248 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249 VDEV_AUX_CORRUPT_DATA);
1250 error = EIO;
1251 goto out;
1255 * Load any hot spares for this pool.
1257 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1258 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1259 if (error != 0 && error != ENOENT) {
1260 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1261 VDEV_AUX_CORRUPT_DATA);
1262 error = EIO;
1263 goto out;
1265 if (error == 0) {
1266 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1267 if (load_nvlist(spa, spa->spa_spares.sav_object,
1268 &spa->spa_spares.sav_config) != 0) {
1269 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270 VDEV_AUX_CORRUPT_DATA);
1271 error = EIO;
1272 goto out;
1275 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1276 spa_load_spares(spa);
1277 spa_config_exit(spa, SCL_ALL, FTAG);
1281 * Load any level 2 ARC devices for this pool.
1283 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1284 DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1285 &spa->spa_l2cache.sav_object);
1286 if (error != 0 && error != ENOENT) {
1287 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288 VDEV_AUX_CORRUPT_DATA);
1289 error = EIO;
1290 goto out;
1292 if (error == 0) {
1293 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1294 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1295 &spa->spa_l2cache.sav_config) != 0) {
1296 vdev_set_state(rvd, B_TRUE,
1297 VDEV_STATE_CANT_OPEN,
1298 VDEV_AUX_CORRUPT_DATA);
1299 error = EIO;
1300 goto out;
1303 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1304 spa_load_l2cache(spa);
1305 spa_config_exit(spa, SCL_ALL, FTAG);
1308 if (spa_check_logs(spa)) {
1309 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1310 VDEV_AUX_BAD_LOG);
1311 error = ENXIO;
1312 ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1313 goto out;
1317 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1319 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1320 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1322 if (error && error != ENOENT) {
1323 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1324 VDEV_AUX_CORRUPT_DATA);
1325 error = EIO;
1326 goto out;
1329 if (error == 0) {
1330 (void) zap_lookup(spa->spa_meta_objset,
1331 spa->spa_pool_props_object,
1332 zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1333 sizeof (uint64_t), 1, &spa->spa_bootfs);
1334 (void) zap_lookup(spa->spa_meta_objset,
1335 spa->spa_pool_props_object,
1336 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1337 sizeof (uint64_t), 1, &autoreplace);
1338 (void) zap_lookup(spa->spa_meta_objset,
1339 spa->spa_pool_props_object,
1340 zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1341 sizeof (uint64_t), 1, &spa->spa_delegation);
1342 (void) zap_lookup(spa->spa_meta_objset,
1343 spa->spa_pool_props_object,
1344 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1345 sizeof (uint64_t), 1, &spa->spa_failmode);
1349 * If the 'autoreplace' property is set, then post a resource notifying
1350 * the ZFS DE that it should not issue any faults for unopenable
1351 * devices. We also iterate over the vdevs, and post a sysevent for any
1352 * unopenable vdevs so that the normal autoreplace handler can take
1353 * over.
1355 if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1356 spa_check_removed(spa->spa_root_vdev);
1359 * Load the vdev state for all toplevel vdevs.
1361 vdev_load(rvd);
1364 * Propagate the leaf DTLs we just loaded all the way up the tree.
1366 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1367 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1368 spa_config_exit(spa, SCL_ALL, FTAG);
1371 * Check the state of the root vdev. If it can't be opened, it
1372 * indicates one or more toplevel vdevs are faulted.
1374 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1375 error = ENXIO;
1376 goto out;
1379 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1380 dmu_tx_t *tx;
1381 int need_update = B_FALSE;
1382 int c;
1385 * Claim log blocks that haven't been committed yet.
1386 * This must all happen in a single txg.
1388 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1389 spa_first_txg(spa));
1390 (void) dmu_objset_find(spa_name(spa),
1391 zil_claim, tx, DS_FIND_CHILDREN);
1392 dmu_tx_commit(tx);
1394 spa->spa_sync_on = B_TRUE;
1395 txg_sync_start(spa->spa_dsl_pool);
1398 * Wait for all claims to sync.
1400 txg_wait_synced(spa->spa_dsl_pool, 0);
1403 * If the config cache is stale, or we have uninitialized
1404 * metaslabs (see spa_vdev_add()), then update the config.
1406 if (config_cache_txg != spa->spa_config_txg ||
1407 state == SPA_LOAD_IMPORT)
1408 need_update = B_TRUE;
1410 for (c = 0; c < rvd->vdev_children; c++)
1411 if (rvd->vdev_child[c]->vdev_ms_array == 0)
1412 need_update = B_TRUE;
1415 * Update the config cache asychronously in case we're the
1416 * root pool, in which case the config cache isn't writable yet.
1418 if (need_update)
1419 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1422 error = 0;
1423 out:
1424 spa->spa_minref = refcount_count(&spa->spa_refcount);
1425 if (error && error != EBADF)
1426 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1427 spa->spa_load_state = SPA_LOAD_NONE;
1428 spa->spa_ena = 0;
1430 return (error);
1434 * Pool Open/Import
1436 * The import case is identical to an open except that the configuration is sent
1437 * down from userland, instead of grabbed from the configuration cache. For the
1438 * case of an open, the pool configuration will exist in the
1439 * POOL_STATE_UNINITIALIZED state.
1441 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1442 * the same time open the pool, without having to keep around the spa_t in some
1443 * ambiguous state.
1445 static int
1446 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1448 spa_t *spa;
1449 int error;
1450 int locked = B_FALSE;
1452 *spapp = NULL;
1455 * As disgusting as this is, we need to support recursive calls to this
1456 * function because dsl_dir_open() is called during spa_load(), and ends
1457 * up calling spa_open() again. The real fix is to figure out how to
1458 * avoid dsl_dir_open() calling this in the first place.
1460 if (mutex_owner(&spa_namespace_lock) != curthread) {
1461 mutex_enter(&spa_namespace_lock);
1462 locked = B_TRUE;
1465 if ((spa = spa_lookup(pool)) == NULL) {
1466 if (locked)
1467 mutex_exit(&spa_namespace_lock);
1468 return (ENOENT);
1470 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1472 spa_activate(spa);
1474 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1476 if (error == EBADF) {
1478 * If vdev_validate() returns failure (indicated by
1479 * EBADF), it indicates that one of the vdevs indicates
1480 * that the pool has been exported or destroyed. If
1481 * this is the case, the config cache is out of sync and
1482 * we should remove the pool from the namespace.
1484 spa_unload(spa);
1485 spa_deactivate(spa);
1486 spa_config_sync(spa, B_TRUE, B_TRUE);
1487 spa_remove(spa);
1488 if (locked)
1489 mutex_exit(&spa_namespace_lock);
1490 return (ENOENT);
1493 if (error) {
1495 * We can't open the pool, but we still have useful
1496 * information: the state of each vdev after the
1497 * attempted vdev_open(). Return this to the user.
1499 if (config != NULL && spa->spa_root_vdev != NULL)
1500 *config = spa_config_generate(spa, NULL, -1ULL,
1501 B_TRUE);
1502 spa_unload(spa);
1503 spa_deactivate(spa);
1504 spa->spa_last_open_failed = B_TRUE;
1505 if (locked)
1506 mutex_exit(&spa_namespace_lock);
1507 *spapp = NULL;
1508 return (error);
1509 } else {
1510 spa->spa_last_open_failed = B_FALSE;
1514 spa_open_ref(spa, tag);
1516 if (locked)
1517 mutex_exit(&spa_namespace_lock);
1519 *spapp = spa;
1521 if (config != NULL)
1522 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1524 return (0);
1528 spa_open(const char *name, spa_t **spapp, void *tag)
1530 return (spa_open_common(name, spapp, tag, NULL));
1534 * Lookup the given spa_t, incrementing the inject count in the process,
1535 * preventing it from being exported or destroyed.
1537 spa_t *
1538 spa_inject_addref(char *name)
1540 spa_t *spa;
1542 mutex_enter(&spa_namespace_lock);
1543 if ((spa = spa_lookup(name)) == NULL) {
1544 mutex_exit(&spa_namespace_lock);
1545 return (NULL);
1547 spa->spa_inject_ref++;
1548 mutex_exit(&spa_namespace_lock);
1550 return (spa);
1553 void
1554 spa_inject_delref(spa_t *spa)
1556 mutex_enter(&spa_namespace_lock);
1557 spa->spa_inject_ref--;
1558 mutex_exit(&spa_namespace_lock);
1562 * Add spares device information to the nvlist.
1564 static void
1565 spa_add_spares(spa_t *spa, nvlist_t *config)
1567 nvlist_t **spares;
1568 uint_t i, nspares;
1569 nvlist_t *nvroot;
1570 uint64_t guid;
1571 vdev_stat_t *vs;
1572 uint_t vsc;
1573 uint64_t pool;
1575 if (spa->spa_spares.sav_count == 0)
1576 return;
1578 VERIFY(nvlist_lookup_nvlist(config,
1579 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1580 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1581 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1582 if (nspares != 0) {
1583 VERIFY(nvlist_add_nvlist_array(nvroot,
1584 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1585 VERIFY(nvlist_lookup_nvlist_array(nvroot,
1586 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1589 * Go through and find any spares which have since been
1590 * repurposed as an active spare. If this is the case, update
1591 * their status appropriately.
1593 for (i = 0; i < nspares; i++) {
1594 VERIFY(nvlist_lookup_uint64(spares[i],
1595 ZPOOL_CONFIG_GUID, &guid) == 0);
1596 if (spa_spare_exists(guid, &pool, NULL) &&
1597 pool != 0ULL) {
1598 VERIFY(nvlist_lookup_uint64_array(
1599 spares[i], ZPOOL_CONFIG_STATS,
1600 (uint64_t **)&vs, &vsc) == 0);
1601 vs->vs_state = VDEV_STATE_CANT_OPEN;
1602 vs->vs_aux = VDEV_AUX_SPARED;
1609 * Add l2cache device information to the nvlist, including vdev stats.
1611 static void
1612 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1614 nvlist_t **l2cache;
1615 uint_t i, j, nl2cache;
1616 nvlist_t *nvroot;
1617 uint64_t guid;
1618 vdev_t *vd;
1619 vdev_stat_t *vs;
1620 uint_t vsc;
1622 if (spa->spa_l2cache.sav_count == 0)
1623 return;
1625 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1627 VERIFY(nvlist_lookup_nvlist(config,
1628 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1629 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1630 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1631 if (nl2cache != 0) {
1632 VERIFY(nvlist_add_nvlist_array(nvroot,
1633 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1634 VERIFY(nvlist_lookup_nvlist_array(nvroot,
1635 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1638 * Update level 2 cache device stats.
1641 for (i = 0; i < nl2cache; i++) {
1642 VERIFY(nvlist_lookup_uint64(l2cache[i],
1643 ZPOOL_CONFIG_GUID, &guid) == 0);
1645 vd = NULL;
1646 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1647 if (guid ==
1648 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1649 vd = spa->spa_l2cache.sav_vdevs[j];
1650 break;
1653 ASSERT(vd != NULL);
1655 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1656 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1657 vdev_get_stats(vd, vs);
1661 spa_config_exit(spa, SCL_CONFIG, FTAG);
1665 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1667 int error;
1668 spa_t *spa;
1670 *config = NULL;
1671 error = spa_open_common(name, &spa, FTAG, config);
1673 if (spa && *config != NULL) {
1674 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1675 spa_get_errlog_size(spa)) == 0);
1677 if (spa_suspended(spa))
1678 VERIFY(nvlist_add_uint64(*config,
1679 ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0);
1681 spa_add_spares(spa, *config);
1682 spa_add_l2cache(spa, *config);
1686 * We want to get the alternate root even for faulted pools, so we cheat
1687 * and call spa_lookup() directly.
1689 if (altroot) {
1690 if (spa == NULL) {
1691 mutex_enter(&spa_namespace_lock);
1692 spa = spa_lookup(name);
1693 if (spa)
1694 spa_altroot(spa, altroot, buflen);
1695 else
1696 altroot[0] = '\0';
1697 spa = NULL;
1698 mutex_exit(&spa_namespace_lock);
1699 } else {
1700 spa_altroot(spa, altroot, buflen);
1704 if (spa != NULL)
1705 spa_close(spa, FTAG);
1707 return (error);
1711 * Validate that the auxiliary device array is well formed. We must have an
1712 * array of nvlists, each which describes a valid leaf vdev. If this is an
1713 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1714 * specified, as long as they are well-formed.
1716 static int
1717 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1718 spa_aux_vdev_t *sav, const char *config, uint64_t version,
1719 vdev_labeltype_t label)
1721 nvlist_t **dev;
1722 uint_t i, ndev;
1723 vdev_t *vd;
1724 int error;
1726 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1729 * It's acceptable to have no devs specified.
1731 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1732 return (0);
1734 if (ndev == 0)
1735 return (EINVAL);
1738 * Make sure the pool is formatted with a version that supports this
1739 * device type.
1741 if (spa_version(spa) < version)
1742 return (ENOTSUP);
1745 * Set the pending device list so we correctly handle device in-use
1746 * checking.
1748 sav->sav_pending = dev;
1749 sav->sav_npending = ndev;
1751 for (i = 0; i < ndev; i++) {
1752 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1753 mode)) != 0)
1754 goto out;
1756 if (!vd->vdev_ops->vdev_op_leaf) {
1757 vdev_free(vd);
1758 error = EINVAL;
1759 goto out;
1763 * The L2ARC currently only supports disk devices in
1764 * kernel context. For user-level testing, we allow it.
1766 #ifdef _KERNEL
1767 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1768 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1769 error = ENOTBLK;
1770 goto out;
1772 #endif
1773 vd->vdev_top = vd;
1775 if ((error = vdev_open(vd)) == 0 &&
1776 (error = vdev_label_init(vd, crtxg, label)) == 0) {
1777 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1778 vd->vdev_guid) == 0);
1781 vdev_free(vd);
1783 if (error &&
1784 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1785 goto out;
1786 else
1787 error = 0;
1790 out:
1791 sav->sav_pending = NULL;
1792 sav->sav_npending = 0;
1793 return (error);
1796 static int
1797 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1799 int error;
1801 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1803 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1804 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1805 VDEV_LABEL_SPARE)) != 0) {
1806 return (error);
1809 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1810 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1811 VDEV_LABEL_L2CACHE));
1814 static void
1815 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1816 const char *config)
1818 int i;
1820 if (sav->sav_config != NULL) {
1821 nvlist_t **olddevs;
1822 uint_t oldndevs;
1823 nvlist_t **newdevs;
1826 * Generate new dev list by concatentating with the
1827 * current dev list.
1829 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1830 &olddevs, &oldndevs) == 0);
1832 newdevs = kmem_alloc(sizeof (void *) *
1833 (ndevs + oldndevs), KM_SLEEP);
1834 for (i = 0; i < oldndevs; i++)
1835 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1836 KM_SLEEP) == 0);
1837 for (i = 0; i < ndevs; i++)
1838 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1839 KM_SLEEP) == 0);
1841 VERIFY(nvlist_remove(sav->sav_config, config,
1842 DATA_TYPE_NVLIST_ARRAY) == 0);
1844 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1845 config, newdevs, ndevs + oldndevs) == 0);
1846 for (i = 0; i < oldndevs + ndevs; i++)
1847 nvlist_free(newdevs[i]);
1848 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1849 } else {
1851 * Generate a new dev list.
1853 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1854 KM_SLEEP) == 0);
1855 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1856 devs, ndevs) == 0);
1861 * Stop and drop level 2 ARC devices
1863 void
1864 spa_l2cache_drop(spa_t *spa)
1866 vdev_t *vd;
1867 int i;
1868 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1870 for (i = 0; i < sav->sav_count; i++) {
1871 uint64_t pool;
1873 vd = sav->sav_vdevs[i];
1874 ASSERT(vd != NULL);
1876 if ((spa_mode & FWRITE) &&
1877 spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1878 l2arc_vdev_present(vd)) {
1879 l2arc_remove_vdev(vd);
1881 if (vd->vdev_isl2cache)
1882 spa_l2cache_remove(vd);
1883 vdev_clear_stats(vd);
1884 (void) vdev_close(vd);
1889 * Pool Creation
1892 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1893 const char *history_str, nvlist_t *zplprops)
1895 spa_t *spa;
1896 char *altroot = NULL;
1897 vdev_t *rvd;
1898 dsl_pool_t *dp;
1899 dmu_tx_t *tx;
1900 int c, error = 0;
1901 uint64_t txg = TXG_INITIAL;
1902 nvlist_t **spares, **l2cache;
1903 uint_t nspares, nl2cache;
1904 uint64_t version;
1907 * If this pool already exists, return failure.
1909 mutex_enter(&spa_namespace_lock);
1910 if (spa_lookup(pool) != NULL) {
1911 mutex_exit(&spa_namespace_lock);
1912 return (EEXIST);
1916 * Allocate a new spa_t structure.
1918 (void) nvlist_lookup_string(props,
1919 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1920 spa = spa_add(pool, altroot);
1921 spa_activate(spa);
1923 spa->spa_uberblock.ub_txg = txg - 1;
1925 if (props && (error = spa_prop_validate(spa, props))) {
1926 spa_unload(spa);
1927 spa_deactivate(spa);
1928 spa_remove(spa);
1929 mutex_exit(&spa_namespace_lock);
1930 return (error);
1933 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1934 &version) != 0)
1935 version = SPA_VERSION;
1936 ASSERT(version <= SPA_VERSION);
1937 spa->spa_uberblock.ub_version = version;
1938 spa->spa_ubsync = spa->spa_uberblock;
1941 * Create the root vdev.
1943 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1945 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1947 ASSERT(error != 0 || rvd != NULL);
1948 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1950 if (error == 0 && !zfs_allocatable_devs(nvroot))
1951 error = EINVAL;
1953 if (error == 0 &&
1954 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1955 (error = spa_validate_aux(spa, nvroot, txg,
1956 VDEV_ALLOC_ADD)) == 0) {
1957 for (c = 0; c < rvd->vdev_children; c++)
1958 vdev_init(rvd->vdev_child[c], txg);
1959 vdev_config_dirty(rvd);
1962 spa_config_exit(spa, SCL_ALL, FTAG);
1964 if (error != 0) {
1965 spa_unload(spa);
1966 spa_deactivate(spa);
1967 spa_remove(spa);
1968 mutex_exit(&spa_namespace_lock);
1969 return (error);
1973 * Get the list of spares, if specified.
1975 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1976 &spares, &nspares) == 0) {
1977 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1978 KM_SLEEP) == 0);
1979 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1980 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1981 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1982 spa_load_spares(spa);
1983 spa_config_exit(spa, SCL_ALL, FTAG);
1984 spa->spa_spares.sav_sync = B_TRUE;
1988 * Get the list of level 2 cache devices, if specified.
1990 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1991 &l2cache, &nl2cache) == 0) {
1992 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1993 NV_UNIQUE_NAME, KM_SLEEP) == 0);
1994 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1995 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1996 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1997 spa_load_l2cache(spa);
1998 spa_config_exit(spa, SCL_ALL, FTAG);
1999 spa->spa_l2cache.sav_sync = B_TRUE;
2002 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2003 spa->spa_meta_objset = dp->dp_meta_objset;
2005 tx = dmu_tx_create_assigned(dp, txg);
2008 * Create the pool config object.
2010 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2011 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2012 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2014 if (zap_add(spa->spa_meta_objset,
2015 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2016 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2017 cmn_err(CE_PANIC, "failed to add pool config");
2020 /* Newly created pools with the right version are always deflated. */
2021 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2022 spa->spa_deflate = TRUE;
2023 if (zap_add(spa->spa_meta_objset,
2024 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2025 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2026 cmn_err(CE_PANIC, "failed to add deflate");
2031 * Create the deferred-free bplist object. Turn off compression
2032 * because sync-to-convergence takes longer if the blocksize
2033 * keeps changing.
2035 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2036 1 << 14, tx);
2037 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2038 ZIO_COMPRESS_OFF, tx);
2040 if (zap_add(spa->spa_meta_objset,
2041 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2042 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2043 cmn_err(CE_PANIC, "failed to add bplist");
2047 * Create the pool's history object.
2049 if (version >= SPA_VERSION_ZPOOL_HISTORY)
2050 spa_history_create_obj(spa, tx);
2053 * Set pool properties.
2055 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2056 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2057 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2058 if (props)
2059 spa_sync_props(spa, props, CRED(), tx);
2061 dmu_tx_commit(tx);
2063 spa->spa_sync_on = B_TRUE;
2064 txg_sync_start(spa->spa_dsl_pool);
2067 * We explicitly wait for the first transaction to complete so that our
2068 * bean counters are appropriately updated.
2070 txg_wait_synced(spa->spa_dsl_pool, txg);
2072 spa_config_sync(spa, B_FALSE, B_TRUE);
2074 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2075 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2077 mutex_exit(&spa_namespace_lock);
2079 spa->spa_minref = refcount_count(&spa->spa_refcount);
2081 return (0);
2085 * Import the given pool into the system. We set up the necessary spa_t and
2086 * then call spa_load() to do the dirty work.
2088 static int
2089 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2090 boolean_t isroot, boolean_t allowfaulted)
2092 spa_t *spa;
2093 char *altroot = NULL;
2094 int error, loaderr;
2095 nvlist_t *nvroot;
2096 nvlist_t **spares, **l2cache;
2097 uint_t nspares, nl2cache;
2100 * If a pool with this name exists, return failure.
2102 mutex_enter(&spa_namespace_lock);
2103 if (spa_lookup(pool) != NULL) {
2104 mutex_exit(&spa_namespace_lock);
2105 return (EEXIST);
2109 * Create and initialize the spa structure.
2111 (void) nvlist_lookup_string(props,
2112 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2113 spa = spa_add(pool, altroot);
2114 spa_activate(spa);
2116 if (allowfaulted)
2117 spa->spa_import_faulted = B_TRUE;
2118 spa->spa_is_root = isroot;
2121 * Pass off the heavy lifting to spa_load().
2122 * Pass TRUE for mosconfig (unless this is a root pool) because
2123 * the user-supplied config is actually the one to trust when
2124 * doing an import.
2126 loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2128 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2130 * Toss any existing sparelist, as it doesn't have any validity anymore,
2131 * and conflicts with spa_has_spare().
2133 if (!isroot && spa->spa_spares.sav_config) {
2134 nvlist_free(spa->spa_spares.sav_config);
2135 spa->spa_spares.sav_config = NULL;
2136 spa_load_spares(spa);
2138 if (!isroot && spa->spa_l2cache.sav_config) {
2139 nvlist_free(spa->spa_l2cache.sav_config);
2140 spa->spa_l2cache.sav_config = NULL;
2141 spa_load_l2cache(spa);
2144 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2145 &nvroot) == 0);
2146 if (error == 0)
2147 error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2148 if (error == 0)
2149 error = spa_validate_aux(spa, nvroot, -1ULL,
2150 VDEV_ALLOC_L2CACHE);
2151 spa_config_exit(spa, SCL_ALL, FTAG);
2153 if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2154 if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2156 * If we failed to load the pool, but 'allowfaulted' is
2157 * set, then manually set the config as if the config
2158 * passed in was specified in the cache file.
2160 error = 0;
2161 spa->spa_import_faulted = B_FALSE;
2162 if (spa->spa_config == NULL)
2163 spa->spa_config = spa_config_generate(spa,
2164 NULL, -1ULL, B_TRUE);
2165 spa_unload(spa);
2166 spa_deactivate(spa);
2167 spa_config_sync(spa, B_FALSE, B_TRUE);
2168 } else {
2169 spa_unload(spa);
2170 spa_deactivate(spa);
2171 spa_remove(spa);
2173 mutex_exit(&spa_namespace_lock);
2174 return (error);
2178 * Override any spares and level 2 cache devices as specified by
2179 * the user, as these may have correct device names/devids, etc.
2181 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2182 &spares, &nspares) == 0) {
2183 if (spa->spa_spares.sav_config)
2184 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2185 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2186 else
2187 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2188 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2189 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2190 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2191 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2192 spa_load_spares(spa);
2193 spa_config_exit(spa, SCL_ALL, FTAG);
2194 spa->spa_spares.sav_sync = B_TRUE;
2196 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2197 &l2cache, &nl2cache) == 0) {
2198 if (spa->spa_l2cache.sav_config)
2199 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2200 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2201 else
2202 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2203 NV_UNIQUE_NAME, KM_SLEEP) == 0);
2204 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2205 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2206 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207 spa_load_l2cache(spa);
2208 spa_config_exit(spa, SCL_ALL, FTAG);
2209 spa->spa_l2cache.sav_sync = B_TRUE;
2212 if (spa_mode & FWRITE) {
2214 * Update the config cache to include the newly-imported pool.
2216 spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2219 spa->spa_import_faulted = B_FALSE;
2220 mutex_exit(&spa_namespace_lock);
2222 return (0);
2225 #ifdef _KERNEL
2227 * Build a "root" vdev for a top level vdev read in from a rootpool
2228 * device label.
2230 static void
2231 spa_build_rootpool_config(nvlist_t *config)
2233 nvlist_t *nvtop, *nvroot;
2234 uint64_t pgid;
2237 * Add this top-level vdev to the child array.
2239 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2240 == 0);
2241 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2242 == 0);
2245 * Put this pool's top-level vdevs into a root vdev.
2247 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2248 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2249 == 0);
2250 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2251 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2252 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2253 &nvtop, 1) == 0);
2256 * Replace the existing vdev_tree with the new root vdev in
2257 * this pool's configuration (remove the old, add the new).
2259 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2260 nvlist_free(nvroot);
2264 * Get the root pool information from the root disk, then import the root pool
2265 * during the system boot up time.
2267 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2270 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2271 uint64_t *besttxg)
2273 nvlist_t *config;
2274 uint64_t txg;
2275 int error;
2277 if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2278 return (error);
2280 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2282 if (bestconf != NULL)
2283 *bestconf = config;
2284 else
2285 nvlist_free(config);
2286 *besttxg = txg;
2287 return (0);
2290 boolean_t
2291 spa_rootdev_validate(nvlist_t *nv)
2293 uint64_t ival;
2295 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2296 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2297 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2298 return (B_FALSE);
2300 return (B_TRUE);
2305 * Given the boot device's physical path or devid, check if the device
2306 * is in a valid state. If so, return the configuration from the vdev
2307 * label.
2310 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2312 nvlist_t *conf = NULL;
2313 uint64_t txg = 0;
2314 nvlist_t *nvtop, **child;
2315 char *type;
2316 char *bootpath = NULL;
2317 uint_t children, c;
2318 char *tmp;
2319 int error;
2321 if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2322 *tmp = '\0';
2323 if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2324 cmn_err(CE_NOTE, "error reading device label");
2325 return (error);
2327 if (txg == 0) {
2328 cmn_err(CE_NOTE, "this device is detached");
2329 nvlist_free(conf);
2330 return (EINVAL);
2333 VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2334 &nvtop) == 0);
2335 VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2337 if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2338 if (spa_rootdev_validate(nvtop)) {
2339 goto out;
2340 } else {
2341 nvlist_free(conf);
2342 return (EINVAL);
2346 ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2348 VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2349 &child, &children) == 0);
2352 * Go thru vdevs in the mirror to see if the given device
2353 * has the most recent txg. Only the device with the most
2354 * recent txg has valid information and should be booted.
2356 for (c = 0; c < children; c++) {
2357 char *cdevid, *cpath;
2358 uint64_t tmptxg;
2360 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2361 &cpath) != 0)
2362 return (EINVAL);
2363 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2364 &cdevid) != 0)
2365 return (EINVAL);
2366 if ((spa_check_rootconf(cpath, cdevid, NULL,
2367 &tmptxg) == 0) && (tmptxg > txg)) {
2368 txg = tmptxg;
2369 VERIFY(nvlist_lookup_string(child[c],
2370 ZPOOL_CONFIG_PATH, &bootpath) == 0);
2374 /* Does the best device match the one we've booted from? */
2375 if (bootpath) {
2376 cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2377 return (EINVAL);
2379 out:
2380 *bestconf = conf;
2381 return (0);
2385 * Import a root pool.
2387 * For x86. devpath_list will consist of devid and/or physpath name of
2388 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2389 * The GRUB "findroot" command will return the vdev we should boot.
2391 * For Sparc, devpath_list consists the physpath name of the booting device
2392 * no matter the rootpool is a single device pool or a mirrored pool.
2393 * e.g.
2394 * "/pci@1f,0/ide@d/disk@0,0:a"
2397 spa_import_rootpool(char *devpath, char *devid)
2399 nvlist_t *conf = NULL;
2400 char *pname;
2401 int error;
2404 * Get the vdev pathname and configuation from the most
2405 * recently updated vdev (highest txg).
2407 if (error = spa_get_rootconf(devpath, devid, &conf))
2408 goto msg_out;
2411 * Add type "root" vdev to the config.
2413 spa_build_rootpool_config(conf);
2415 VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2418 * We specify 'allowfaulted' for this to be treated like spa_open()
2419 * instead of spa_import(). This prevents us from marking vdevs as
2420 * persistently unavailable, and generates FMA ereports as if it were a
2421 * pool open, not import.
2423 error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2424 if (error == EEXIST)
2425 error = 0;
2427 nvlist_free(conf);
2428 return (error);
2430 msg_out:
2431 cmn_err(CE_NOTE, "\n"
2432 " *************************************************** \n"
2433 " * This device is not bootable! * \n"
2434 " * It is either offlined or detached or faulted. * \n"
2435 " * Please try to boot from a different device. * \n"
2436 " *************************************************** ");
2438 return (error);
2440 #endif
2443 * Import a non-root pool into the system.
2446 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2448 return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2452 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2454 return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2459 * This (illegal) pool name is used when temporarily importing a spa_t in order
2460 * to get the vdev stats associated with the imported devices.
2462 #define TRYIMPORT_NAME "$import"
2464 nvlist_t *
2465 spa_tryimport(nvlist_t *tryconfig)
2467 nvlist_t *config = NULL;
2468 char *poolname;
2469 spa_t *spa;
2470 uint64_t state;
2472 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2473 return (NULL);
2475 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2476 return (NULL);
2479 * Create and initialize the spa structure.
2481 mutex_enter(&spa_namespace_lock);
2482 spa = spa_add(TRYIMPORT_NAME, NULL);
2483 spa_activate(spa);
2486 * Pass off the heavy lifting to spa_load().
2487 * Pass TRUE for mosconfig because the user-supplied config
2488 * is actually the one to trust when doing an import.
2490 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2493 * If 'tryconfig' was at least parsable, return the current config.
2495 if (spa->spa_root_vdev != NULL) {
2496 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2497 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2498 poolname) == 0);
2499 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2500 state) == 0);
2501 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2502 spa->spa_uberblock.ub_timestamp) == 0);
2505 * If the bootfs property exists on this pool then we
2506 * copy it out so that external consumers can tell which
2507 * pools are bootable.
2509 if (spa->spa_bootfs) {
2510 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2513 * We have to play games with the name since the
2514 * pool was opened as TRYIMPORT_NAME.
2516 if (dsl_dsobj_to_dsname(spa_name(spa),
2517 spa->spa_bootfs, tmpname) == 0) {
2518 char *cp;
2519 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2521 cp = strchr(tmpname, '/');
2522 if (cp == NULL) {
2523 (void) strlcpy(dsname, tmpname,
2524 MAXPATHLEN);
2525 } else {
2526 (void) snprintf(dsname, MAXPATHLEN,
2527 "%s/%s", poolname, ++cp);
2529 VERIFY(nvlist_add_string(config,
2530 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2531 kmem_free(dsname, MAXPATHLEN);
2533 kmem_free(tmpname, MAXPATHLEN);
2537 * Add the list of hot spares and level 2 cache devices.
2539 spa_add_spares(spa, config);
2540 spa_add_l2cache(spa, config);
2543 spa_unload(spa);
2544 spa_deactivate(spa);
2545 spa_remove(spa);
2546 mutex_exit(&spa_namespace_lock);
2548 return (config);
2552 * Pool export/destroy
2554 * The act of destroying or exporting a pool is very simple. We make sure there
2555 * is no more pending I/O and any references to the pool are gone. Then, we
2556 * update the pool state and sync all the labels to disk, removing the
2557 * configuration from the cache afterwards.
2559 static int
2560 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2561 boolean_t force)
2563 spa_t *spa;
2565 if (oldconfig)
2566 *oldconfig = NULL;
2568 if (!(spa_mode & FWRITE))
2569 return (EROFS);
2571 mutex_enter(&spa_namespace_lock);
2572 if ((spa = spa_lookup(pool)) == NULL) {
2573 mutex_exit(&spa_namespace_lock);
2574 return (ENOENT);
2578 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2579 * reacquire the namespace lock, and see if we can export.
2581 spa_open_ref(spa, FTAG);
2582 mutex_exit(&spa_namespace_lock);
2583 spa_async_suspend(spa);
2584 mutex_enter(&spa_namespace_lock);
2585 spa_close(spa, FTAG);
2588 * The pool will be in core if it's openable,
2589 * in which case we can modify its state.
2591 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2593 * Objsets may be open only because they're dirty, so we
2594 * have to force it to sync before checking spa_refcnt.
2596 txg_wait_synced(spa->spa_dsl_pool, 0);
2599 * A pool cannot be exported or destroyed if there are active
2600 * references. If we are resetting a pool, allow references by
2601 * fault injection handlers.
2603 if (!spa_refcount_zero(spa) ||
2604 (spa->spa_inject_ref != 0 &&
2605 new_state != POOL_STATE_UNINITIALIZED)) {
2606 spa_async_resume(spa);
2607 mutex_exit(&spa_namespace_lock);
2608 return (EBUSY);
2612 * A pool cannot be exported if it has an active shared spare.
2613 * This is to prevent other pools stealing the active spare
2614 * from an exported pool. At user's own will, such pool can
2615 * be forcedly exported.
2617 if (!force && new_state == POOL_STATE_EXPORTED &&
2618 spa_has_active_shared_spare(spa)) {
2619 spa_async_resume(spa);
2620 mutex_exit(&spa_namespace_lock);
2621 return (EXDEV);
2625 * We want this to be reflected on every label,
2626 * so mark them all dirty. spa_unload() will do the
2627 * final sync that pushes these changes out.
2629 if (new_state != POOL_STATE_UNINITIALIZED) {
2630 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2631 spa->spa_state = new_state;
2632 spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2633 vdev_config_dirty(spa->spa_root_vdev);
2634 spa_config_exit(spa, SCL_ALL, FTAG);
2638 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2640 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2641 spa_unload(spa);
2642 spa_deactivate(spa);
2645 if (oldconfig && spa->spa_config)
2646 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2648 if (new_state != POOL_STATE_UNINITIALIZED) {
2649 spa_config_sync(spa, B_TRUE, B_TRUE);
2650 spa_remove(spa);
2652 mutex_exit(&spa_namespace_lock);
2654 return (0);
2658 * Destroy a storage pool.
2661 spa_destroy(char *pool)
2663 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2667 * Export a storage pool.
2670 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2672 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2676 * Similar to spa_export(), this unloads the spa_t without actually removing it
2677 * from the namespace in any way.
2680 spa_reset(char *pool)
2682 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2683 B_FALSE));
2687 * ==========================================================================
2688 * Device manipulation
2689 * ==========================================================================
2693 * Add a device to a storage pool.
2696 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2698 uint64_t txg;
2699 int c, error;
2700 vdev_t *rvd = spa->spa_root_vdev;
2701 vdev_t *vd, *tvd;
2702 nvlist_t **spares, **l2cache;
2703 uint_t nspares, nl2cache;
2705 txg = spa_vdev_enter(spa);
2707 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2708 VDEV_ALLOC_ADD)) != 0)
2709 return (spa_vdev_exit(spa, NULL, txg, error));
2711 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
2713 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2714 &nspares) != 0)
2715 nspares = 0;
2717 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2718 &nl2cache) != 0)
2719 nl2cache = 0;
2721 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2722 return (spa_vdev_exit(spa, vd, txg, EINVAL));
2724 if (vd->vdev_children != 0 &&
2725 (error = vdev_create(vd, txg, B_FALSE)) != 0)
2726 return (spa_vdev_exit(spa, vd, txg, error));
2729 * We must validate the spares and l2cache devices after checking the
2730 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
2732 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2733 return (spa_vdev_exit(spa, vd, txg, error));
2736 * Transfer each new top-level vdev from vd to rvd.
2738 for (c = 0; c < vd->vdev_children; c++) {
2739 tvd = vd->vdev_child[c];
2740 vdev_remove_child(vd, tvd);
2741 tvd->vdev_id = rvd->vdev_children;
2742 vdev_add_child(rvd, tvd);
2743 vdev_config_dirty(tvd);
2746 if (nspares != 0) {
2747 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2748 ZPOOL_CONFIG_SPARES);
2749 spa_load_spares(spa);
2750 spa->spa_spares.sav_sync = B_TRUE;
2753 if (nl2cache != 0) {
2754 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2755 ZPOOL_CONFIG_L2CACHE);
2756 spa_load_l2cache(spa);
2757 spa->spa_l2cache.sav_sync = B_TRUE;
2761 * We have to be careful when adding new vdevs to an existing pool.
2762 * If other threads start allocating from these vdevs before we
2763 * sync the config cache, and we lose power, then upon reboot we may
2764 * fail to open the pool because there are DVAs that the config cache
2765 * can't translate. Therefore, we first add the vdevs without
2766 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2767 * and then let spa_config_update() initialize the new metaslabs.
2769 * spa_load() checks for added-but-not-initialized vdevs, so that
2770 * if we lose power at any point in this sequence, the remaining
2771 * steps will be completed the next time we load the pool.
2773 (void) spa_vdev_exit(spa, vd, txg, 0);
2775 mutex_enter(&spa_namespace_lock);
2776 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2777 mutex_exit(&spa_namespace_lock);
2779 return (0);
2783 * Attach a device to a mirror. The arguments are the path to any device
2784 * in the mirror, and the nvroot for the new device. If the path specifies
2785 * a device that is not mirrored, we automatically insert the mirror vdev.
2787 * If 'replacing' is specified, the new device is intended to replace the
2788 * existing device; in this case the two devices are made into their own
2789 * mirror using the 'replacing' vdev, which is functionally identical to
2790 * the mirror vdev (it actually reuses all the same ops) but has a few
2791 * extra rules: you can't attach to it after it's been created, and upon
2792 * completion of resilvering, the first disk (the one being replaced)
2793 * is automatically detached.
2796 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2798 uint64_t txg, open_txg;
2799 vdev_t *rvd = spa->spa_root_vdev;
2800 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2801 vdev_ops_t *pvops;
2802 dmu_tx_t *tx;
2803 char *oldvdpath, *newvdpath;
2804 int newvd_isspare;
2805 int error;
2807 txg = spa_vdev_enter(spa);
2809 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2811 if (oldvd == NULL)
2812 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2814 if (!oldvd->vdev_ops->vdev_op_leaf)
2815 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2817 pvd = oldvd->vdev_parent;
2819 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2820 VDEV_ALLOC_ADD)) != 0)
2821 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2823 if (newrootvd->vdev_children != 1)
2824 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2826 newvd = newrootvd->vdev_child[0];
2828 if (!newvd->vdev_ops->vdev_op_leaf)
2829 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2831 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2832 return (spa_vdev_exit(spa, newrootvd, txg, error));
2835 * Spares can't replace logs
2837 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2838 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2840 if (!replacing) {
2842 * For attach, the only allowable parent is a mirror or the root
2843 * vdev.
2845 if (pvd->vdev_ops != &vdev_mirror_ops &&
2846 pvd->vdev_ops != &vdev_root_ops)
2847 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2849 pvops = &vdev_mirror_ops;
2850 } else {
2852 * Active hot spares can only be replaced by inactive hot
2853 * spares.
2855 if (pvd->vdev_ops == &vdev_spare_ops &&
2856 pvd->vdev_child[1] == oldvd &&
2857 !spa_has_spare(spa, newvd->vdev_guid))
2858 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2861 * If the source is a hot spare, and the parent isn't already a
2862 * spare, then we want to create a new hot spare. Otherwise, we
2863 * want to create a replacing vdev. The user is not allowed to
2864 * attach to a spared vdev child unless the 'isspare' state is
2865 * the same (spare replaces spare, non-spare replaces
2866 * non-spare).
2868 if (pvd->vdev_ops == &vdev_replacing_ops)
2869 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2870 else if (pvd->vdev_ops == &vdev_spare_ops &&
2871 newvd->vdev_isspare != oldvd->vdev_isspare)
2872 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2873 else if (pvd->vdev_ops != &vdev_spare_ops &&
2874 newvd->vdev_isspare)
2875 pvops = &vdev_spare_ops;
2876 else
2877 pvops = &vdev_replacing_ops;
2881 * Compare the new device size with the replaceable/attachable
2882 * device size.
2884 if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2885 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2888 * The new device cannot have a higher alignment requirement
2889 * than the top-level vdev.
2891 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2892 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2895 * If this is an in-place replacement, update oldvd's path and devid
2896 * to make it distinguishable from newvd, and unopenable from now on.
2898 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2899 spa_strfree(oldvd->vdev_path);
2900 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2901 KM_SLEEP);
2902 (void) sprintf(oldvd->vdev_path, "%s/%s",
2903 newvd->vdev_path, "old");
2904 if (oldvd->vdev_devid != NULL) {
2905 spa_strfree(oldvd->vdev_devid);
2906 oldvd->vdev_devid = NULL;
2911 * If the parent is not a mirror, or if we're replacing, insert the new
2912 * mirror/replacing/spare vdev above oldvd.
2914 if (pvd->vdev_ops != pvops)
2915 pvd = vdev_add_parent(oldvd, pvops);
2917 ASSERT(pvd->vdev_top->vdev_parent == rvd);
2918 ASSERT(pvd->vdev_ops == pvops);
2919 ASSERT(oldvd->vdev_parent == pvd);
2922 * Extract the new device from its root and add it to pvd.
2924 vdev_remove_child(newrootvd, newvd);
2925 newvd->vdev_id = pvd->vdev_children;
2926 vdev_add_child(pvd, newvd);
2929 * If newvd is smaller than oldvd, but larger than its rsize,
2930 * the addition of newvd may have decreased our parent's asize.
2932 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2934 tvd = newvd->vdev_top;
2935 ASSERT(pvd->vdev_top == tvd);
2936 ASSERT(tvd->vdev_parent == rvd);
2938 vdev_config_dirty(tvd);
2941 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
2942 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2944 open_txg = txg + TXG_CONCURRENT_STATES - 1;
2946 mutex_enter(&newvd->vdev_dtl_lock);
2947 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2948 open_txg - TXG_INITIAL + 1);
2949 mutex_exit(&newvd->vdev_dtl_lock);
2951 if (newvd->vdev_isspare)
2952 spa_spare_activate(newvd);
2953 oldvdpath = spa_strdup(oldvd->vdev_path);
2954 newvdpath = spa_strdup(newvd->vdev_path);
2955 newvd_isspare = newvd->vdev_isspare;
2958 * Mark newvd's DTL dirty in this txg.
2960 vdev_dirty(tvd, VDD_DTL, newvd, txg);
2962 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2964 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2965 if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
2966 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
2967 CRED(), "%s vdev=%s %s vdev=%s",
2968 replacing && newvd_isspare ? "spare in" :
2969 replacing ? "replace" : "attach", newvdpath,
2970 replacing ? "for" : "to", oldvdpath);
2971 dmu_tx_commit(tx);
2972 } else {
2973 dmu_tx_abort(tx);
2976 spa_strfree(oldvdpath);
2977 spa_strfree(newvdpath);
2980 * Kick off a resilver to update newvd.
2982 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2984 return (0);
2988 * Detach a device from a mirror or replacing vdev.
2989 * If 'replace_done' is specified, only detach if the parent
2990 * is a replacing vdev.
2993 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2995 uint64_t txg;
2996 int c, t, error;
2997 vdev_t *rvd = spa->spa_root_vdev;
2998 vdev_t *vd, *pvd, *cvd, *tvd;
2999 boolean_t unspare = B_FALSE;
3000 uint64_t unspare_guid;
3001 size_t len;
3003 txg = spa_vdev_enter(spa);
3005 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3007 if (vd == NULL)
3008 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3010 if (!vd->vdev_ops->vdev_op_leaf)
3011 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3013 pvd = vd->vdev_parent;
3016 * If replace_done is specified, only remove this device if it's
3017 * the first child of a replacing vdev. For the 'spare' vdev, either
3018 * disk can be removed.
3020 if (replace_done) {
3021 if (pvd->vdev_ops == &vdev_replacing_ops) {
3022 if (vd->vdev_id != 0)
3023 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3024 } else if (pvd->vdev_ops != &vdev_spare_ops) {
3025 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3029 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3030 spa_version(spa) >= SPA_VERSION_SPARES);
3033 * Only mirror, replacing, and spare vdevs support detach.
3035 if (pvd->vdev_ops != &vdev_replacing_ops &&
3036 pvd->vdev_ops != &vdev_mirror_ops &&
3037 pvd->vdev_ops != &vdev_spare_ops)
3038 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3041 * If there's only one replica, you can't detach it.
3043 if (pvd->vdev_children <= 1)
3044 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3047 * If all siblings have non-empty DTLs, this device may have the only
3048 * valid copy of the data, which means we cannot safely detach it.
3050 * XXX -- as in the vdev_offline() case, we really want a more
3051 * precise DTL check.
3053 for (c = 0; c < pvd->vdev_children; c++) {
3054 uint64_t dirty;
3056 cvd = pvd->vdev_child[c];
3057 if (cvd == vd)
3058 continue;
3059 if (vdev_is_dead(cvd))
3060 continue;
3061 mutex_enter(&cvd->vdev_dtl_lock);
3062 dirty = cvd->vdev_dtl_map.sm_space |
3063 cvd->vdev_dtl_scrub.sm_space;
3064 mutex_exit(&cvd->vdev_dtl_lock);
3065 if (!dirty)
3066 break;
3069 if (c == pvd->vdev_children)
3070 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3073 * If we are detaching the second disk from a replacing vdev, then
3074 * check to see if we changed the original vdev's path to have "/old"
3075 * at the end in spa_vdev_attach(). If so, undo that change now.
3077 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3078 pvd->vdev_child[0]->vdev_path != NULL &&
3079 pvd->vdev_child[1]->vdev_path != NULL) {
3080 ASSERT(pvd->vdev_child[1] == vd);
3081 cvd = pvd->vdev_child[0];
3082 len = strlen(vd->vdev_path);
3083 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3084 strcmp(cvd->vdev_path + len, "/old") == 0) {
3085 spa_strfree(cvd->vdev_path);
3086 cvd->vdev_path = spa_strdup(vd->vdev_path);
3091 * If we are detaching the original disk from a spare, then it implies
3092 * that the spare should become a real disk, and be removed from the
3093 * active spare list for the pool.
3095 if (pvd->vdev_ops == &vdev_spare_ops &&
3096 vd->vdev_id == 0)
3097 unspare = B_TRUE;
3100 * Erase the disk labels so the disk can be used for other things.
3101 * This must be done after all other error cases are handled,
3102 * but before we disembowel vd (so we can still do I/O to it).
3103 * But if we can't do it, don't treat the error as fatal --
3104 * it may be that the unwritability of the disk is the reason
3105 * it's being detached!
3107 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3110 * Remove vd from its parent and compact the parent's children.
3112 vdev_remove_child(pvd, vd);
3113 vdev_compact_children(pvd);
3116 * Remember one of the remaining children so we can get tvd below.
3118 cvd = pvd->vdev_child[0];
3121 * If we need to remove the remaining child from the list of hot spares,
3122 * do it now, marking the vdev as no longer a spare in the process. We
3123 * must do this before vdev_remove_parent(), because that can change the
3124 * GUID if it creates a new toplevel GUID.
3126 if (unspare) {
3127 ASSERT(cvd->vdev_isspare);
3128 spa_spare_remove(cvd);
3129 unspare_guid = cvd->vdev_guid;
3133 * If the parent mirror/replacing vdev only has one child,
3134 * the parent is no longer needed. Remove it from the tree.
3136 if (pvd->vdev_children == 1)
3137 vdev_remove_parent(cvd);
3140 * We don't set tvd until now because the parent we just removed
3141 * may have been the previous top-level vdev.
3143 tvd = cvd->vdev_top;
3144 ASSERT(tvd->vdev_parent == rvd);
3147 * Reevaluate the parent vdev state.
3149 vdev_propagate_state(cvd);
3152 * If the device we just detached was smaller than the others, it may be
3153 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init()
3154 * can't fail because the existing metaslabs are already in core, so
3155 * there's nothing to read from disk.
3157 VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3159 vdev_config_dirty(tvd);
3162 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
3163 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3164 * But first make sure we're not on any *other* txg's DTL list, to
3165 * prevent vd from being accessed after it's freed.
3167 for (t = 0; t < TXG_SIZE; t++)
3168 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3169 vd->vdev_detached = B_TRUE;
3170 vdev_dirty(tvd, VDD_DTL, vd, txg);
3172 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3174 error = spa_vdev_exit(spa, vd, txg, 0);
3177 * If this was the removal of the original device in a hot spare vdev,
3178 * then we want to go through and remove the device from the hot spare
3179 * list of every other pool.
3181 if (unspare) {
3182 spa = NULL;
3183 mutex_enter(&spa_namespace_lock);
3184 while ((spa = spa_next(spa)) != NULL) {
3185 if (spa->spa_state != POOL_STATE_ACTIVE)
3186 continue;
3187 spa_open_ref(spa, FTAG);
3188 mutex_exit(&spa_namespace_lock);
3189 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3190 mutex_enter(&spa_namespace_lock);
3191 spa_close(spa, FTAG);
3193 mutex_exit(&spa_namespace_lock);
3196 return (error);
3199 static nvlist_t *
3200 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3202 for (int i = 0; i < count; i++) {
3203 uint64_t guid;
3205 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3206 &guid) == 0);
3208 if (guid == target_guid)
3209 return (nvpp[i]);
3212 return (NULL);
3215 static void
3216 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3217 nvlist_t *dev_to_remove)
3219 nvlist_t **newdev = NULL;
3221 if (count > 1)
3222 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3224 for (int i = 0, j = 0; i < count; i++) {
3225 if (dev[i] == dev_to_remove)
3226 continue;
3227 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3230 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3231 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3233 for (int i = 0; i < count - 1; i++)
3234 nvlist_free(newdev[i]);
3236 if (count > 1)
3237 kmem_free(newdev, (count - 1) * sizeof (void *));
3241 * Remove a device from the pool. Currently, this supports removing only hot
3242 * spares and level 2 ARC devices.
3245 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3247 vdev_t *vd;
3248 nvlist_t **spares, **l2cache, *nv;
3249 uint_t nspares, nl2cache;
3250 uint64_t txg;
3251 int error = 0;
3253 txg = spa_vdev_enter(spa);
3255 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3257 if (spa->spa_spares.sav_vdevs != NULL &&
3258 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3259 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3260 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3262 * Only remove the hot spare if it's not currently in use
3263 * in this pool.
3265 if (vd == NULL || unspare) {
3266 spa_vdev_remove_aux(spa->spa_spares.sav_config,
3267 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3268 spa_load_spares(spa);
3269 spa->spa_spares.sav_sync = B_TRUE;
3270 } else {
3271 error = EBUSY;
3273 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
3274 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3275 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3276 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3278 * Cache devices can always be removed.
3280 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3281 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3282 spa_load_l2cache(spa);
3283 spa->spa_l2cache.sav_sync = B_TRUE;
3284 } else if (vd != NULL) {
3286 * Normal vdevs cannot be removed (yet).
3288 error = ENOTSUP;
3289 } else {
3291 * There is no vdev of any kind with the specified guid.
3293 error = ENOENT;
3296 return (spa_vdev_exit(spa, NULL, txg, error));
3300 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3301 * current spared, so we can detach it.
3303 static vdev_t *
3304 spa_vdev_resilver_done_hunt(vdev_t *vd)
3306 vdev_t *newvd, *oldvd;
3307 int c;
3309 for (c = 0; c < vd->vdev_children; c++) {
3310 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3311 if (oldvd != NULL)
3312 return (oldvd);
3316 * Check for a completed replacement.
3318 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3319 oldvd = vd->vdev_child[0];
3320 newvd = vd->vdev_child[1];
3322 mutex_enter(&newvd->vdev_dtl_lock);
3323 if (newvd->vdev_dtl_map.sm_space == 0 &&
3324 newvd->vdev_dtl_scrub.sm_space == 0) {
3325 mutex_exit(&newvd->vdev_dtl_lock);
3326 return (oldvd);
3328 mutex_exit(&newvd->vdev_dtl_lock);
3332 * Check for a completed resilver with the 'unspare' flag set.
3334 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3335 newvd = vd->vdev_child[0];
3336 oldvd = vd->vdev_child[1];
3338 mutex_enter(&newvd->vdev_dtl_lock);
3339 if (newvd->vdev_unspare &&
3340 newvd->vdev_dtl_map.sm_space == 0 &&
3341 newvd->vdev_dtl_scrub.sm_space == 0) {
3342 newvd->vdev_unspare = 0;
3343 mutex_exit(&newvd->vdev_dtl_lock);
3344 return (oldvd);
3346 mutex_exit(&newvd->vdev_dtl_lock);
3349 return (NULL);
3352 static void
3353 spa_vdev_resilver_done(spa_t *spa)
3355 vdev_t *vd;
3356 vdev_t *pvd;
3357 uint64_t guid;
3358 uint64_t pguid = 0;
3360 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3362 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3363 guid = vd->vdev_guid;
3365 * If we have just finished replacing a hot spared device, then
3366 * we need to detach the parent's first child (the original hot
3367 * spare) as well.
3369 pvd = vd->vdev_parent;
3370 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3371 pvd->vdev_id == 0) {
3372 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3373 ASSERT(pvd->vdev_parent->vdev_children == 2);
3374 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3376 spa_config_exit(spa, SCL_CONFIG, FTAG);
3377 if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3378 return;
3379 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3380 return;
3381 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3384 spa_config_exit(spa, SCL_CONFIG, FTAG);
3388 * Update the stored path for this vdev. Dirty the vdev configuration, relying
3389 * on spa_vdev_enter/exit() to synchronize the labels and cache.
3392 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3394 vdev_t *vd;
3395 uint64_t txg;
3397 txg = spa_vdev_enter(spa);
3399 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3401 * Determine if this is a reference to a hot spare device. If
3402 * it is, update the path manually as there is no associated
3403 * vdev_t that can be synced to disk.
3405 nvlist_t **spares;
3406 uint_t i, nspares;
3408 if (spa->spa_spares.sav_config != NULL) {
3409 VERIFY(nvlist_lookup_nvlist_array(
3410 spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3411 &spares, &nspares) == 0);
3412 for (i = 0; i < nspares; i++) {
3413 uint64_t theguid;
3414 VERIFY(nvlist_lookup_uint64(spares[i],
3415 ZPOOL_CONFIG_GUID, &theguid) == 0);
3416 if (theguid == guid) {
3417 VERIFY(nvlist_add_string(spares[i],
3418 ZPOOL_CONFIG_PATH, newpath) == 0);
3419 spa_load_spares(spa);
3420 spa->spa_spares.sav_sync = B_TRUE;
3421 return (spa_vdev_exit(spa, NULL, txg,
3422 0));
3427 return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3430 if (!vd->vdev_ops->vdev_op_leaf)
3431 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3433 spa_strfree(vd->vdev_path);
3434 vd->vdev_path = spa_strdup(newpath);
3436 vdev_config_dirty(vd->vdev_top);
3438 return (spa_vdev_exit(spa, NULL, txg, 0));
3442 * ==========================================================================
3443 * SPA Scrubbing
3444 * ==========================================================================
3448 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3450 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3452 if ((uint_t)type >= POOL_SCRUB_TYPES)
3453 return (ENOTSUP);
3456 * If a resilver was requested, but there is no DTL on a
3457 * writeable leaf device, we have nothing to do.
3459 if (type == POOL_SCRUB_RESILVER &&
3460 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3461 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3462 return (0);
3465 if (type == POOL_SCRUB_EVERYTHING &&
3466 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3467 spa->spa_dsl_pool->dp_scrub_isresilver)
3468 return (EBUSY);
3470 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3471 return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3472 } else if (type == POOL_SCRUB_NONE) {
3473 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3474 } else {
3475 return (EINVAL);
3480 * ==========================================================================
3481 * SPA async task processing
3482 * ==========================================================================
3485 static void
3486 spa_async_remove(spa_t *spa, vdev_t *vd)
3488 if (vd->vdev_remove_wanted) {
3489 vd->vdev_remove_wanted = 0;
3490 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3491 vdev_clear(spa, vd);
3492 vdev_state_dirty(vd->vdev_top);
3495 for (int c = 0; c < vd->vdev_children; c++)
3496 spa_async_remove(spa, vd->vdev_child[c]);
3499 static void
3500 spa_async_probe(spa_t *spa, vdev_t *vd)
3502 if (vd->vdev_probe_wanted) {
3503 vd->vdev_probe_wanted = 0;
3504 vdev_reopen(vd); /* vdev_open() does the actual probe */
3507 for (int c = 0; c < vd->vdev_children; c++)
3508 spa_async_probe(spa, vd->vdev_child[c]);
3511 static void
3512 spa_async_thread(spa_t *spa)
3514 int tasks;
3516 ASSERT(spa->spa_sync_on);
3518 mutex_enter(&spa->spa_async_lock);
3519 tasks = spa->spa_async_tasks;
3520 spa->spa_async_tasks = 0;
3521 mutex_exit(&spa->spa_async_lock);
3524 * See if the config needs to be updated.
3526 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3527 mutex_enter(&spa_namespace_lock);
3528 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3529 mutex_exit(&spa_namespace_lock);
3533 * See if any devices need to be marked REMOVED.
3535 if (tasks & SPA_ASYNC_REMOVE) {
3536 spa_vdev_state_enter(spa);
3537 spa_async_remove(spa, spa->spa_root_vdev);
3538 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3539 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3540 for (int i = 0; i < spa->spa_spares.sav_count; i++)
3541 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3542 (void) spa_vdev_state_exit(spa, NULL, 0);
3546 * See if any devices need to be probed.
3548 if (tasks & SPA_ASYNC_PROBE) {
3549 spa_vdev_state_enter(spa);
3550 spa_async_probe(spa, spa->spa_root_vdev);
3551 (void) spa_vdev_state_exit(spa, NULL, 0);
3555 * If any devices are done replacing, detach them.
3557 if (tasks & SPA_ASYNC_RESILVER_DONE)
3558 spa_vdev_resilver_done(spa);
3561 * Kick off a resilver.
3563 if (tasks & SPA_ASYNC_RESILVER)
3564 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3567 * Let the world know that we're done.
3569 mutex_enter(&spa->spa_async_lock);
3570 spa->spa_async_thread = NULL;
3571 cv_broadcast(&spa->spa_async_cv);
3572 mutex_exit(&spa->spa_async_lock);
3573 thread_exit();
3576 void
3577 spa_async_suspend(spa_t *spa)
3579 mutex_enter(&spa->spa_async_lock);
3580 spa->spa_async_suspended++;
3581 while (spa->spa_async_thread != NULL)
3582 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3583 mutex_exit(&spa->spa_async_lock);
3586 void
3587 spa_async_resume(spa_t *spa)
3589 mutex_enter(&spa->spa_async_lock);
3590 ASSERT(spa->spa_async_suspended != 0);
3591 spa->spa_async_suspended--;
3592 mutex_exit(&spa->spa_async_lock);
3595 static void
3596 spa_async_dispatch(spa_t *spa)
3598 mutex_enter(&spa->spa_async_lock);
3599 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3600 spa->spa_async_thread == NULL &&
3601 rootdir != NULL && !vn_is_readonly(rootdir))
3602 spa->spa_async_thread = thread_create(NULL, 0,
3603 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3604 mutex_exit(&spa->spa_async_lock);
3607 void
3608 spa_async_request(spa_t *spa, int task)
3610 mutex_enter(&spa->spa_async_lock);
3611 spa->spa_async_tasks |= task;
3612 mutex_exit(&spa->spa_async_lock);
3616 * ==========================================================================
3617 * SPA syncing routines
3618 * ==========================================================================
3621 static void
3622 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3624 bplist_t *bpl = &spa->spa_sync_bplist;
3625 dmu_tx_t *tx;
3626 blkptr_t blk;
3627 uint64_t itor = 0;
3628 zio_t *zio;
3629 int error;
3630 uint8_t c = 1;
3632 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3634 while (bplist_iterate(bpl, &itor, &blk) == 0) {
3635 ASSERT(blk.blk_birth < txg);
3636 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3637 ZIO_FLAG_MUSTSUCCEED));
3640 error = zio_wait(zio);
3641 ASSERT3U(error, ==, 0);
3643 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3644 bplist_vacate(bpl, tx);
3647 * Pre-dirty the first block so we sync to convergence faster.
3648 * (Usually only the first block is needed.)
3650 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3651 dmu_tx_commit(tx);
3654 static void
3655 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3657 char *packed = NULL;
3658 size_t bufsize;
3659 size_t nvsize = 0;
3660 dmu_buf_t *db;
3662 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3665 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3666 * information. This avoids the dbuf_will_dirty() path and
3667 * saves us a pre-read to get data we don't actually care about.
3669 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3670 packed = kmem_alloc(bufsize, KM_SLEEP);
3672 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3673 KM_SLEEP) == 0);
3674 bzero(packed + nvsize, bufsize - nvsize);
3676 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3678 kmem_free(packed, bufsize);
3680 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3681 dmu_buf_will_dirty(db, tx);
3682 *(uint64_t *)db->db_data = nvsize;
3683 dmu_buf_rele(db, FTAG);
3686 static void
3687 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3688 const char *config, const char *entry)
3690 nvlist_t *nvroot;
3691 nvlist_t **list;
3692 int i;
3694 if (!sav->sav_sync)
3695 return;
3698 * Update the MOS nvlist describing the list of available devices.
3699 * spa_validate_aux() will have already made sure this nvlist is
3700 * valid and the vdevs are labeled appropriately.
3702 if (sav->sav_object == 0) {
3703 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3704 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3705 sizeof (uint64_t), tx);
3706 VERIFY(zap_update(spa->spa_meta_objset,
3707 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3708 &sav->sav_object, tx) == 0);
3711 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3712 if (sav->sav_count == 0) {
3713 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3714 } else {
3715 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3716 for (i = 0; i < sav->sav_count; i++)
3717 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3718 B_FALSE, B_FALSE, B_TRUE);
3719 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3720 sav->sav_count) == 0);
3721 for (i = 0; i < sav->sav_count; i++)
3722 nvlist_free(list[i]);
3723 kmem_free(list, sav->sav_count * sizeof (void *));
3726 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3727 nvlist_free(nvroot);
3729 sav->sav_sync = B_FALSE;
3732 static void
3733 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3735 nvlist_t *config;
3737 if (list_is_empty(&spa->spa_config_dirty_list))
3738 return;
3740 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3742 config = spa_config_generate(spa, spa->spa_root_vdev,
3743 dmu_tx_get_txg(tx), B_FALSE);
3745 spa_config_exit(spa, SCL_STATE, FTAG);
3747 if (spa->spa_config_syncing)
3748 nvlist_free(spa->spa_config_syncing);
3749 spa->spa_config_syncing = config;
3751 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3755 * Set zpool properties.
3757 static void
3758 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3760 spa_t *spa = arg1;
3761 objset_t *mos = spa->spa_meta_objset;
3762 nvlist_t *nvp = arg2;
3763 nvpair_t *elem;
3764 uint64_t intval;
3765 char *strval;
3766 zpool_prop_t prop;
3767 const char *propname;
3768 zprop_type_t proptype;
3769 spa_config_dirent_t *dp;
3771 mutex_enter(&spa->spa_props_lock);
3773 elem = NULL;
3774 while ((elem = nvlist_next_nvpair(nvp, elem))) {
3775 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3776 case ZPOOL_PROP_VERSION:
3778 * Only set version for non-zpool-creation cases
3779 * (set/import). spa_create() needs special care
3780 * for version setting.
3782 if (tx->tx_txg != TXG_INITIAL) {
3783 VERIFY(nvpair_value_uint64(elem,
3784 &intval) == 0);
3785 ASSERT(intval <= SPA_VERSION);
3786 ASSERT(intval >= spa_version(spa));
3787 spa->spa_uberblock.ub_version = intval;
3788 vdev_config_dirty(spa->spa_root_vdev);
3790 break;
3792 case ZPOOL_PROP_ALTROOT:
3794 * 'altroot' is a non-persistent property. It should
3795 * have been set temporarily at creation or import time.
3797 ASSERT(spa->spa_root != NULL);
3798 break;
3800 case ZPOOL_PROP_CACHEFILE:
3802 * 'cachefile' is a non-persistent property, but note
3803 * an async request that the config cache needs to be
3804 * udpated.
3806 VERIFY(nvpair_value_string(elem, &strval) == 0);
3808 dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP);
3810 if (strval[0] == '\0')
3811 dp->scd_path = spa_strdup(spa_config_path);
3812 else if (strcmp(strval, "none") == 0)
3813 dp->scd_path = NULL;
3814 else
3815 dp->scd_path = spa_strdup(strval);
3817 list_insert_head(&spa->spa_config_list, dp);
3818 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3819 break;
3820 default:
3822 * Set pool property values in the poolprops mos object.
3824 if (spa->spa_pool_props_object == 0) {
3825 objset_t *mos = spa->spa_meta_objset;
3827 VERIFY((spa->spa_pool_props_object =
3828 zap_create(mos, DMU_OT_POOL_PROPS,
3829 DMU_OT_NONE, 0, tx)) > 0);
3831 VERIFY(zap_update(mos,
3832 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3833 8, 1, &spa->spa_pool_props_object, tx)
3834 == 0);
3837 /* normalize the property name */
3838 propname = zpool_prop_to_name(prop);
3839 proptype = zpool_prop_get_type(prop);
3841 if (nvpair_type(elem) == DATA_TYPE_STRING) {
3842 ASSERT(proptype == PROP_TYPE_STRING);
3843 VERIFY(nvpair_value_string(elem, &strval) == 0);
3844 VERIFY(zap_update(mos,
3845 spa->spa_pool_props_object, propname,
3846 1, strlen(strval) + 1, strval, tx) == 0);
3848 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3849 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3851 if (proptype == PROP_TYPE_INDEX) {
3852 const char *unused;
3853 VERIFY(zpool_prop_index_to_string(
3854 prop, intval, &unused) == 0);
3856 VERIFY(zap_update(mos,
3857 spa->spa_pool_props_object, propname,
3858 8, 1, &intval, tx) == 0);
3859 } else {
3860 ASSERT(0); /* not allowed */
3863 switch (prop) {
3864 case ZPOOL_PROP_DELEGATION:
3865 spa->spa_delegation = intval;
3866 break;
3867 case ZPOOL_PROP_BOOTFS:
3868 spa->spa_bootfs = intval;
3869 break;
3870 case ZPOOL_PROP_FAILUREMODE:
3871 spa->spa_failmode = intval;
3872 break;
3873 default:
3874 break;
3878 /* log internal history if this is not a zpool create */
3879 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3880 tx->tx_txg != TXG_INITIAL) {
3881 spa_history_internal_log(LOG_POOL_PROPSET,
3882 spa, tx, cr, "%s %lld %s",
3883 nvpair_name(elem), intval, spa_name(spa));
3887 mutex_exit(&spa->spa_props_lock);
3891 * Sync the specified transaction group. New blocks may be dirtied as
3892 * part of the process, so we iterate until it converges.
3894 void
3895 spa_sync(spa_t *spa, uint64_t txg)
3897 dsl_pool_t *dp = spa->spa_dsl_pool;
3898 objset_t *mos = spa->spa_meta_objset;
3899 bplist_t *bpl = &spa->spa_sync_bplist;
3900 vdev_t *rvd = spa->spa_root_vdev;
3901 vdev_t *vd;
3902 dmu_tx_t *tx;
3903 int dirty_vdevs;
3904 int error;
3907 * Lock out configuration changes.
3909 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3911 spa->spa_syncing_txg = txg;
3912 spa->spa_sync_pass = 0;
3915 * If there are any pending vdev state changes, convert them
3916 * into config changes that go out with this transaction group.
3918 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3919 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
3920 vdev_state_clean(vd);
3921 vdev_config_dirty(vd);
3923 spa_config_exit(spa, SCL_STATE, FTAG);
3925 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3927 tx = dmu_tx_create_assigned(dp, txg);
3930 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3931 * set spa_deflate if we have no raid-z vdevs.
3933 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3934 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3935 int i;
3937 for (i = 0; i < rvd->vdev_children; i++) {
3938 vd = rvd->vdev_child[i];
3939 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3940 break;
3942 if (i == rvd->vdev_children) {
3943 spa->spa_deflate = TRUE;
3944 VERIFY(0 == zap_add(spa->spa_meta_objset,
3945 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3946 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3950 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3951 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3952 dsl_pool_create_origin(dp, tx);
3954 /* Keeping the origin open increases spa_minref */
3955 spa->spa_minref += 3;
3958 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3959 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3960 dsl_pool_upgrade_clones(dp, tx);
3964 * If anything has changed in this txg, push the deferred frees
3965 * from the previous txg. If not, leave them alone so that we
3966 * don't generate work on an otherwise idle system.
3968 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3969 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3970 !txg_list_empty(&dp->dp_sync_tasks, txg))
3971 spa_sync_deferred_frees(spa, txg);
3974 * Iterate to convergence.
3976 do {
3977 spa->spa_sync_pass++;
3979 spa_sync_config_object(spa, tx);
3980 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
3981 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
3982 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
3983 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
3984 spa_errlog_sync(spa, txg);
3985 dsl_pool_sync(dp, txg);
3987 dirty_vdevs = 0;
3988 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3989 vdev_sync(vd, txg);
3990 dirty_vdevs++;
3993 bplist_sync(bpl, tx);
3994 } while (dirty_vdevs);
3996 bplist_close(bpl);
3998 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4001 * Rewrite the vdev configuration (which includes the uberblock)
4002 * to commit the transaction group.
4004 * If there are no dirty vdevs, we sync the uberblock to a few
4005 * random top-level vdevs that are known to be visible in the
4006 * config cache (see spa_vdev_add() for a complete description).
4007 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4009 for (;;) {
4011 * We hold SCL_STATE to prevent vdev open/close/etc.
4012 * while we're attempting to write the vdev labels.
4014 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4016 if (list_is_empty(&spa->spa_config_dirty_list)) {
4017 vdev_t *svd[SPA_DVAS_PER_BP];
4018 int svdcount = 0;
4019 int children = rvd->vdev_children;
4020 int c0 = spa_get_random(children);
4021 int c;
4023 for (c = 0; c < children; c++) {
4024 vd = rvd->vdev_child[(c0 + c) % children];
4025 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4026 continue;
4027 svd[svdcount++] = vd;
4028 if (svdcount == SPA_DVAS_PER_BP)
4029 break;
4031 error = vdev_config_sync(svd, svdcount, txg);
4032 } else {
4033 error = vdev_config_sync(rvd->vdev_child,
4034 rvd->vdev_children, txg);
4037 spa_config_exit(spa, SCL_STATE, FTAG);
4039 if (error == 0)
4040 break;
4041 zio_suspend(spa, NULL);
4042 zio_resume_wait(spa);
4044 dmu_tx_commit(tx);
4047 * Clear the dirty config list.
4049 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4050 vdev_config_clean(vd);
4053 * Now that the new config has synced transactionally,
4054 * let it become visible to the config cache.
4056 if (spa->spa_config_syncing != NULL) {
4057 spa_config_set(spa, spa->spa_config_syncing);
4058 spa->spa_config_txg = txg;
4059 spa->spa_config_syncing = NULL;
4062 spa->spa_ubsync = spa->spa_uberblock;
4065 * Clean up the ZIL records for the synced txg.
4067 dsl_pool_zil_clean(dp);
4070 * Update usable space statistics.
4072 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4073 vdev_sync_done(vd, txg);
4076 * It had better be the case that we didn't dirty anything
4077 * since vdev_config_sync().
4079 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4080 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4081 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4082 ASSERT(bpl->bpl_queue == NULL);
4084 spa_config_exit(spa, SCL_CONFIG, FTAG);
4087 * If any async tasks have been requested, kick them off.
4089 spa_async_dispatch(spa);
4093 * Sync all pools. We don't want to hold the namespace lock across these
4094 * operations, so we take a reference on the spa_t and drop the lock during the
4095 * sync.
4097 void
4098 spa_sync_allpools(void)
4100 spa_t *spa = NULL;
4101 mutex_enter(&spa_namespace_lock);
4102 while ((spa = spa_next(spa)) != NULL) {
4103 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4104 continue;
4105 spa_open_ref(spa, FTAG);
4106 mutex_exit(&spa_namespace_lock);
4107 txg_wait_synced(spa_get_dsl(spa), 0);
4108 mutex_enter(&spa_namespace_lock);
4109 spa_close(spa, FTAG);
4111 mutex_exit(&spa_namespace_lock);
4115 * ==========================================================================
4116 * Miscellaneous routines
4117 * ==========================================================================
4121 * Remove all pools in the system.
4123 void
4124 spa_evict_all(void)
4126 spa_t *spa;
4129 * Remove all cached state. All pools should be closed now,
4130 * so every spa in the AVL tree should be unreferenced.
4132 mutex_enter(&spa_namespace_lock);
4133 while ((spa = spa_next(NULL)) != NULL) {
4135 * Stop async tasks. The async thread may need to detach
4136 * a device that's been replaced, which requires grabbing
4137 * spa_namespace_lock, so we must drop it here.
4139 spa_open_ref(spa, FTAG);
4140 mutex_exit(&spa_namespace_lock);
4141 spa_async_suspend(spa);
4142 mutex_enter(&spa_namespace_lock);
4143 spa_close(spa, FTAG);
4145 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4146 spa_unload(spa);
4147 spa_deactivate(spa);
4149 spa_remove(spa);
4151 mutex_exit(&spa_namespace_lock);
4154 vdev_t *
4155 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4157 vdev_t *vd;
4158 int i;
4160 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4161 return (vd);
4163 if (l2cache) {
4164 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4165 vd = spa->spa_l2cache.sav_vdevs[i];
4166 if (vd->vdev_guid == guid)
4167 return (vd);
4171 return (NULL);
4174 void
4175 spa_upgrade(spa_t *spa, uint64_t version)
4177 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4180 * This should only be called for a non-faulted pool, and since a
4181 * future version would result in an unopenable pool, this shouldn't be
4182 * possible.
4184 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4185 ASSERT(version >= spa->spa_uberblock.ub_version);
4187 spa->spa_uberblock.ub_version = version;
4188 vdev_config_dirty(spa->spa_root_vdev);
4190 spa_config_exit(spa, SCL_ALL, FTAG);
4192 txg_wait_synced(spa_get_dsl(spa), 0);
4195 boolean_t
4196 spa_has_spare(spa_t *spa, uint64_t guid)
4198 int i;
4199 uint64_t spareguid;
4200 spa_aux_vdev_t *sav = &spa->spa_spares;
4202 for (i = 0; i < sav->sav_count; i++)
4203 if (sav->sav_vdevs[i]->vdev_guid == guid)
4204 return (B_TRUE);
4206 for (i = 0; i < sav->sav_npending; i++) {
4207 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4208 &spareguid) == 0 && spareguid == guid)
4209 return (B_TRUE);
4212 return (B_FALSE);
4216 * Check if a pool has an active shared spare device.
4217 * Note: reference count of an active spare is 2, as a spare and as a replace
4219 static boolean_t
4220 spa_has_active_shared_spare(spa_t *spa)
4222 int i, refcnt;
4223 uint64_t pool;
4224 spa_aux_vdev_t *sav = &spa->spa_spares;
4226 for (i = 0; i < sav->sav_count; i++) {
4227 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4228 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4229 refcnt > 2)
4230 return (B_TRUE);
4233 return (B_FALSE);
4237 * Post a sysevent corresponding to the given event. The 'name' must be one of
4238 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
4239 * filled in from the spa and (optionally) the vdev. This doesn't do anything
4240 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4241 * or zdb as real changes.
4243 void
4244 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4246 #ifdef _KERNEL
4247 sysevent_t *ev;
4248 sysevent_attr_list_t *attr = NULL;
4249 sysevent_value_t value;
4250 sysevent_id_t eid;
4252 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4253 SE_SLEEP);
4255 value.value_type = SE_DATA_TYPE_STRING;
4256 value.value.sv_string = spa_name(spa);
4257 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4258 goto done;
4260 value.value_type = SE_DATA_TYPE_UINT64;
4261 value.value.sv_uint64 = spa_guid(spa);
4262 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4263 goto done;
4265 if (vd) {
4266 value.value_type = SE_DATA_TYPE_UINT64;
4267 value.value.sv_uint64 = vd->vdev_guid;
4268 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4269 SE_SLEEP) != 0)
4270 goto done;
4272 if (vd->vdev_path) {
4273 value.value_type = SE_DATA_TYPE_STRING;
4274 value.value.sv_string = vd->vdev_path;
4275 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4276 &value, SE_SLEEP) != 0)
4277 goto done;
4281 if (sysevent_attach_attributes(ev, attr) != 0)
4282 goto done;
4283 attr = NULL;
4285 (void) log_sysevent(ev, SE_SLEEP, &eid);
4287 done:
4288 if (attr)
4289 sysevent_free_attr(attr);
4290 sysevent_free(ev);
4291 #endif