2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the elliptic curve math library for binary polynomial field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 * Stephen Fung <fungstep@hotmail.com>, and
25 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
27 * Alternatively, the contents of this file may be used under the terms of
28 * either the GNU General Public License Version 2 or later (the "GPL"), or
29 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30 * in which case the provisions of the GPL or the LGPL are applicable instead
31 * of those above. If you wish to allow use of your version of this file only
32 * under the terms of either the GPL or the LGPL, and not to allow others to
33 * use your version of this file under the terms of the MPL, indicate your
34 * decision by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL or the LGPL. If you do not delete
36 * the provisions above, a recipient may use your version of this file under
37 * the terms of any one of the MPL, the GPL or the LGPL.
39 * ***** END LICENSE BLOCK ***** */
41 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
42 * Use is subject to license terms.
44 * Sun elects to use this software under the MPL license.
47 #pragma ident "%Z%%M% %I% %E% SMI"
51 #include "mp_gf2m-priv.h"
58 /* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
59 * polynomial with terms {163, 7, 6, 3, 0}. */
61 ec_GF2m_163_mod(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
67 MP_CHECKOK(mp_copy(a
, r
));
69 #ifdef ECL_SIXTY_FOUR_BIT
71 MP_CHECKOK(s_mp_pad(r
, 6));
76 /* u[5] only has 6 significant bits */
78 u
[2] ^= (z
<< 36) ^ (z
<< 35) ^ (z
<< 32) ^ (z
<< 29);
80 u
[2] ^= (z
>> 28) ^ (z
>> 29) ^ (z
>> 32) ^ (z
>> 35);
81 u
[1] ^= (z
<< 36) ^ (z
<< 35) ^ (z
<< 32) ^ (z
<< 29);
83 u
[1] ^= (z
>> 28) ^ (z
>> 29) ^ (z
>> 32) ^ (z
>> 35);
84 u
[0] ^= (z
<< 36) ^ (z
<< 35) ^ (z
<< 32) ^ (z
<< 29);
85 z
= u
[2] >> 35; /* z only has 29 significant bits */
86 u
[0] ^= (z
<< 7) ^ (z
<< 6) ^ (z
<< 3) ^ z
;
87 /* clear bits above 163 */
88 u
[5] = u
[4] = u
[3] = 0;
91 if (MP_USED(r
) < 11) {
92 MP_CHECKOK(s_mp_pad(r
, 11));
97 /* u[11] only has 6 significant bits */
99 u
[5] ^= (z
<< 4) ^ (z
<< 3) ^ z
^ (z
>> 3);
102 u
[5] ^= (z
>> 28) ^ (z
>> 29);
103 u
[4] ^= (z
<< 4) ^ (z
<< 3) ^ z
^ (z
>> 3);
106 u
[4] ^= (z
>> 28) ^ (z
>> 29);
107 u
[3] ^= (z
<< 4) ^ (z
<< 3) ^ z
^ (z
>> 3);
110 u
[3] ^= (z
>> 28) ^ (z
>> 29);
111 u
[2] ^= (z
<< 4) ^ (z
<< 3) ^ z
^ (z
>> 3);
114 u
[2] ^= (z
>> 28) ^ (z
>> 29);
115 u
[1] ^= (z
<< 4) ^ (z
<< 3) ^ z
^ (z
>> 3);
117 z
= u
[5] >> 3; /* z only has 29 significant bits */
118 u
[1] ^= (z
>> 25) ^ (z
>> 26);
119 u
[0] ^= (z
<< 7) ^ (z
<< 6) ^ (z
<< 3) ^ z
;
120 /* clear bits above 163 */
121 u
[11] = u
[10] = u
[9] = u
[8] = u
[7] = u
[6] = 0;
130 /* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
131 * polynomial with terms {163, 7, 6, 3, 0}. */
133 ec_GF2m_163_sqr(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
135 mp_err res
= MP_OKAY
;
140 #ifdef ECL_SIXTY_FOUR_BIT
141 if (MP_USED(a
) < 3) {
142 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
144 if (MP_USED(r
) < 6) {
145 MP_CHECKOK(s_mp_pad(r
, 6));
149 if (MP_USED(a
) < 6) {
150 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
152 if (MP_USED(r
) < 12) {
153 MP_CHECKOK(s_mp_pad(r
, 12));
159 #ifdef ECL_THIRTY_TWO_BIT
160 u
[11] = gf2m_SQR1(v
[5]);
161 u
[10] = gf2m_SQR0(v
[5]);
162 u
[9] = gf2m_SQR1(v
[4]);
163 u
[8] = gf2m_SQR0(v
[4]);
164 u
[7] = gf2m_SQR1(v
[3]);
165 u
[6] = gf2m_SQR0(v
[3]);
167 u
[5] = gf2m_SQR1(v
[2]);
168 u
[4] = gf2m_SQR0(v
[2]);
169 u
[3] = gf2m_SQR1(v
[1]);
170 u
[2] = gf2m_SQR0(v
[1]);
171 u
[1] = gf2m_SQR1(v
[0]);
172 u
[0] = gf2m_SQR0(v
[0]);
173 return ec_GF2m_163_mod(r
, r
, meth
);
179 /* Fast multiplication for polynomials over a 163-bit curve. Assumes
180 * reduction polynomial with terms {163, 7, 6, 3, 0}. */
182 ec_GF2m_163_mul(const mp_int
*a
, const mp_int
*b
, mp_int
*r
,
183 const GFMethod
*meth
)
185 mp_err res
= MP_OKAY
;
186 mp_digit a2
= 0, a1
= 0, a0
, b2
= 0, b1
= 0, b0
;
188 #ifdef ECL_THIRTY_TWO_BIT
189 mp_digit a5
= 0, a4
= 0, a3
= 0, b5
= 0, b4
= 0, b3
= 0;
194 return ec_GF2m_163_sqr(a
, r
, meth
);
196 switch (MP_USED(a
)) {
197 #ifdef ECL_THIRTY_TWO_BIT
212 switch (MP_USED(b
)) {
213 #ifdef ECL_THIRTY_TWO_BIT
228 #ifdef ECL_SIXTY_FOUR_BIT
229 MP_CHECKOK(s_mp_pad(r
, 6));
230 s_bmul_3x3(MP_DIGITS(r
), a2
, a1
, a0
, b2
, b1
, b0
);
234 MP_CHECKOK(s_mp_pad(r
, 12));
235 s_bmul_3x3(MP_DIGITS(r
) + 6, a5
, a4
, a3
, b5
, b4
, b3
);
236 s_bmul_3x3(MP_DIGITS(r
), a2
, a1
, a0
, b2
, b1
, b0
);
237 s_bmul_3x3(rm
, a5
^ a2
, a4
^ a1
, a3
^ a0
, b5
^ b2
, b4
^ b1
,
239 rm
[5] ^= MP_DIGIT(r
, 5) ^ MP_DIGIT(r
, 11);
240 rm
[4] ^= MP_DIGIT(r
, 4) ^ MP_DIGIT(r
, 10);
241 rm
[3] ^= MP_DIGIT(r
, 3) ^ MP_DIGIT(r
, 9);
242 rm
[2] ^= MP_DIGIT(r
, 2) ^ MP_DIGIT(r
, 8);
243 rm
[1] ^= MP_DIGIT(r
, 1) ^ MP_DIGIT(r
, 7);
244 rm
[0] ^= MP_DIGIT(r
, 0) ^ MP_DIGIT(r
, 6);
245 MP_DIGIT(r
, 8) ^= rm
[5];
246 MP_DIGIT(r
, 7) ^= rm
[4];
247 MP_DIGIT(r
, 6) ^= rm
[3];
248 MP_DIGIT(r
, 5) ^= rm
[2];
249 MP_DIGIT(r
, 4) ^= rm
[1];
250 MP_DIGIT(r
, 3) ^= rm
[0];
254 return ec_GF2m_163_mod(r
, r
, meth
);
261 /* Wire in fast field arithmetic for 163-bit curves. */
263 ec_group_set_gf2m163(ECGroup
*group
, ECCurveName name
)
265 group
->meth
->field_mod
= &ec_GF2m_163_mod
;
266 group
->meth
->field_mul
= &ec_GF2m_163_mul
;
267 group
->meth
->field_sqr
= &ec_GF2m_163_sqr
;