4245 boot_time kstat for zones should be epoch timestamp of zone boot, not "random...
[unleashed.git] / usr / src / uts / common / os / zone.c
blob826fba8718987d433d9cfb7f2cea1db8e5e63fa7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
27 * Zones
29 * A zone is a named collection of processes, namespace constraints,
30 * and other system resources which comprise a secure and manageable
31 * application containment facility.
33 * Zones (represented by the reference counted zone_t) are tracked in
34 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
35 * (zoneid_t) are used to track zone association. Zone IDs are
36 * dynamically generated when the zone is created; if a persistent
37 * identifier is needed (core files, accounting logs, audit trail,
38 * etc.), the zone name should be used.
41 * Global Zone:
43 * The global zone (zoneid 0) is automatically associated with all
44 * system resources that have not been bound to a user-created zone.
45 * This means that even systems where zones are not in active use
46 * have a global zone, and all processes, mounts, etc. are
47 * associated with that zone. The global zone is generally
48 * unconstrained in terms of privileges and access, though the usual
49 * credential and privilege based restrictions apply.
52 * Zone States:
54 * The states in which a zone may be in and the transitions are as
55 * follows:
57 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
58 * initialized zone is added to the list of active zones on the system but
59 * isn't accessible.
61 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
62 * not yet completed. Not possible to enter the zone, but attributes can
63 * be retrieved.
65 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
66 * ready. The zone is made visible after the ZSD constructor callbacks are
67 * executed. A zone remains in this state until it transitions into
68 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
71 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
72 * state.
74 * ZONE_IS_RUNNING: The zone is open for business: zsched has
75 * successfully started init. A zone remains in this state until
76 * zone_shutdown() is called.
78 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
79 * killing all processes running in the zone. The zone remains
80 * in this state until there are no more user processes running in the zone.
81 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
82 * Since zone_shutdown() is restartable, it may be called successfully
83 * multiple times for the same zone_t. Setting of the zone's state to
84 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
85 * the zone's status without worrying about it being a moving target.
87 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
88 * are no more user processes in the zone. The zone remains in this
89 * state until there are no more kernel threads associated with the
90 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
91 * fail.
93 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
94 * have exited. zone_shutdown() returns. Henceforth it is not possible to
95 * join the zone or create kernel threads therein.
97 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
98 * remains in this state until zsched exits. Calls to zone_find_by_*()
99 * return NULL from now on.
101 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
102 * processes or threads doing work on behalf of the zone. The zone is
103 * removed from the list of active zones. zone_destroy() returns, and
104 * the zone can be recreated.
106 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
107 * callbacks are executed, and all memory associated with the zone is
108 * freed.
110 * Threads can wait for the zone to enter a requested state by using
111 * zone_status_wait() or zone_status_timedwait() with the desired
112 * state passed in as an argument. Zone state transitions are
113 * uni-directional; it is not possible to move back to an earlier state.
116 * Zone-Specific Data:
118 * Subsystems needing to maintain zone-specific data can store that
119 * data using the ZSD mechanism. This provides a zone-specific data
120 * store, similar to thread-specific data (see pthread_getspecific(3C)
121 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
122 * to register callbacks to be invoked when a zone is created, shut
123 * down, or destroyed. This can be used to initialize zone-specific
124 * data for new zones and to clean up when zones go away.
127 * Data Structures:
129 * The per-zone structure (zone_t) is reference counted, and freed
130 * when all references are released. zone_hold and zone_rele can be
131 * used to adjust the reference count. In addition, reference counts
132 * associated with the cred_t structure are tracked separately using
133 * zone_cred_hold and zone_cred_rele.
135 * Pointers to active zone_t's are stored in two hash tables; one
136 * for searching by id, the other for searching by name. Lookups
137 * can be performed on either basis, using zone_find_by_id and
138 * zone_find_by_name. Both return zone_t pointers with the zone
139 * held, so zone_rele should be called when the pointer is no longer
140 * needed. Zones can also be searched by path; zone_find_by_path
141 * returns the zone with which a path name is associated (global
142 * zone if the path is not within some other zone's file system
143 * hierarchy). This currently requires iterating through each zone,
144 * so it is slower than an id or name search via a hash table.
147 * Locking:
149 * zonehash_lock: This is a top-level global lock used to protect the
150 * zone hash tables and lists. Zones cannot be created or destroyed
151 * while this lock is held.
152 * zone_status_lock: This is a global lock protecting zone state.
153 * Zones cannot change state while this lock is held. It also
154 * protects the list of kernel threads associated with a zone.
155 * zone_lock: This is a per-zone lock used to protect several fields of
156 * the zone_t (see <sys/zone.h> for details). In addition, holding
157 * this lock means that the zone cannot go away.
158 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
159 * related to the zone.max-lwps rctl.
160 * zone_mem_lock: This is a per-zone lock used to protect the fields
161 * related to the zone.max-locked-memory and zone.max-swap rctls.
162 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
163 * currently just max_lofi
164 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
165 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
166 * list (a list of zones in the ZONE_IS_DEAD state).
168 * Ordering requirements:
169 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
170 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
172 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176 * Blocking memory allocations are permitted while holding any of the
177 * zone locks.
180 * System Call Interface:
182 * The zone subsystem can be managed and queried from user level with
183 * the following system calls (all subcodes of the primary "zone"
184 * system call):
185 * - zone_create: creates a zone with selected attributes (name,
186 * root path, privileges, resource controls, ZFS datasets)
187 * - zone_enter: allows the current process to enter a zone
188 * - zone_getattr: reports attributes of a zone
189 * - zone_setattr: set attributes of a zone
190 * - zone_boot: set 'init' running for the zone
191 * - zone_list: lists all zones active in the system
192 * - zone_lookup: looks up zone id based on name
193 * - zone_shutdown: initiates shutdown process (see states above)
194 * - zone_destroy: completes shutdown process (see states above)
198 #include <sys/priv_impl.h>
199 #include <sys/cred.h>
200 #include <c2/audit.h>
201 #include <sys/debug.h>
202 #include <sys/file.h>
203 #include <sys/kmem.h>
204 #include <sys/kstat.h>
205 #include <sys/mutex.h>
206 #include <sys/note.h>
207 #include <sys/pathname.h>
208 #include <sys/proc.h>
209 #include <sys/project.h>
210 #include <sys/sysevent.h>
211 #include <sys/task.h>
212 #include <sys/systm.h>
213 #include <sys/types.h>
214 #include <sys/utsname.h>
215 #include <sys/vnode.h>
216 #include <sys/vfs.h>
217 #include <sys/systeminfo.h>
218 #include <sys/policy.h>
219 #include <sys/cred_impl.h>
220 #include <sys/contract_impl.h>
221 #include <sys/contract/process_impl.h>
222 #include <sys/class.h>
223 #include <sys/pool.h>
224 #include <sys/pool_pset.h>
225 #include <sys/pset.h>
226 #include <sys/strlog.h>
227 #include <sys/sysmacros.h>
228 #include <sys/callb.h>
229 #include <sys/vmparam.h>
230 #include <sys/corectl.h>
231 #include <sys/ipc_impl.h>
232 #include <sys/klpd.h>
234 #include <sys/door.h>
235 #include <sys/cpuvar.h>
236 #include <sys/sdt.h>
238 #include <sys/uadmin.h>
239 #include <sys/session.h>
240 #include <sys/cmn_err.h>
241 #include <sys/modhash.h>
242 #include <sys/sunddi.h>
243 #include <sys/nvpair.h>
244 #include <sys/rctl.h>
245 #include <sys/fss.h>
246 #include <sys/brand.h>
247 #include <sys/zone.h>
248 #include <net/if.h>
249 #include <sys/cpucaps.h>
250 #include <vm/seg.h>
251 #include <sys/mac.h>
254 * This constant specifies the number of seconds that threads waiting for
255 * subsystems to release a zone's general-purpose references will wait before
256 * they log the zone's reference counts. The constant's value shouldn't
257 * be so small that reference counts are unnecessarily reported for zones
258 * whose references are slowly released. On the other hand, it shouldn't be so
259 * large that users reboot their systems out of frustration over hung zones
260 * before the system logs the zones' reference counts.
262 #define ZONE_DESTROY_TIMEOUT_SECS 60
264 /* List of data link IDs which are accessible from the zone */
265 typedef struct zone_dl {
266 datalink_id_t zdl_id;
267 nvlist_t *zdl_net;
268 list_node_t zdl_linkage;
269 } zone_dl_t;
272 * cv used to signal that all references to the zone have been released. This
273 * needs to be global since there may be multiple waiters, and the first to
274 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276 static kcondvar_t zone_destroy_cv;
278 * Lock used to serialize access to zone_cv. This could have been per-zone,
279 * but then we'd need another lock for zone_destroy_cv, and why bother?
281 static kmutex_t zone_status_lock;
284 * ZSD-related global variables.
286 static kmutex_t zsd_key_lock; /* protects the following two */
288 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290 static zone_key_t zsd_keyval = 0;
292 * Global list of registered keys. We use this when a new zone is created.
294 static list_t zsd_registered_keys;
296 int zone_hash_size = 256;
297 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
298 static kmutex_t zonehash_lock;
299 static uint_t zonecount;
300 static id_space_t *zoneid_space;
303 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
304 * kernel proper runs, and which manages all other zones.
306 * Although not declared as static, the variable "zone0" should not be used
307 * except for by code that needs to reference the global zone early on in boot,
308 * before it is fully initialized. All other consumers should use
309 * 'global_zone'.
311 zone_t zone0;
312 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
315 * List of active zones, protected by zonehash_lock.
317 static list_t zone_active;
320 * List of destroyed zones that still have outstanding cred references.
321 * Used for debugging. Uses a separate lock to avoid lock ordering
322 * problems in zone_free.
324 static list_t zone_deathrow;
325 static kmutex_t zone_deathrow_lock;
327 /* number of zones is limited by virtual interface limit in IP */
328 uint_t maxzones = 8192;
330 /* Event channel to sent zone state change notifications */
331 evchan_t *zone_event_chan;
334 * This table holds the mapping from kernel zone states to
335 * states visible in the state notification API.
336 * The idea is that we only expose "obvious" states and
337 * do not expose states which are just implementation details.
339 const char *zone_status_table[] = {
340 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
341 ZONE_EVENT_INITIALIZED, /* initialized */
342 ZONE_EVENT_READY, /* ready */
343 ZONE_EVENT_READY, /* booting */
344 ZONE_EVENT_RUNNING, /* running */
345 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
346 ZONE_EVENT_SHUTTING_DOWN, /* empty */
347 ZONE_EVENT_SHUTTING_DOWN, /* down */
348 ZONE_EVENT_SHUTTING_DOWN, /* dying */
349 ZONE_EVENT_UNINITIALIZED, /* dead */
353 * This array contains the names of the subsystems listed in zone_ref_subsys_t
354 * (see sys/zone.h).
356 static char *zone_ref_subsys_names[] = {
357 "NFS", /* ZONE_REF_NFS */
358 "NFSv4", /* ZONE_REF_NFSV4 */
359 "SMBFS", /* ZONE_REF_SMBFS */
360 "MNTFS", /* ZONE_REF_MNTFS */
361 "LOFI", /* ZONE_REF_LOFI */
362 "VFS", /* ZONE_REF_VFS */
363 "IPC" /* ZONE_REF_IPC */
367 * This isn't static so lint doesn't complain.
369 rctl_hndl_t rc_zone_cpu_shares;
370 rctl_hndl_t rc_zone_locked_mem;
371 rctl_hndl_t rc_zone_max_swap;
372 rctl_hndl_t rc_zone_max_lofi;
373 rctl_hndl_t rc_zone_cpu_cap;
374 rctl_hndl_t rc_zone_nlwps;
375 rctl_hndl_t rc_zone_nprocs;
376 rctl_hndl_t rc_zone_shmmax;
377 rctl_hndl_t rc_zone_shmmni;
378 rctl_hndl_t rc_zone_semmni;
379 rctl_hndl_t rc_zone_msgmni;
381 * Synchronization primitives used to synchronize between mounts and zone
382 * creation/destruction.
384 static int mounts_in_progress;
385 static kcondvar_t mount_cv;
386 static kmutex_t mount_lock;
388 const char * const zone_default_initname = "/sbin/init";
389 static char * const zone_prefix = "/zone/";
390 static int zone_shutdown(zoneid_t zoneid);
391 static int zone_add_datalink(zoneid_t, datalink_id_t);
392 static int zone_remove_datalink(zoneid_t, datalink_id_t);
393 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
394 static int zone_set_network(zoneid_t, zone_net_data_t *);
395 static int zone_get_network(zoneid_t, zone_net_data_t *);
397 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
400 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
401 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
402 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
403 zone_key_t);
404 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
405 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
406 kmutex_t *);
407 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
408 kmutex_t *);
411 * Bump this number when you alter the zone syscall interfaces; this is
412 * because we need to have support for previous API versions in libc
413 * to support patching; libc calls into the kernel to determine this number.
415 * Version 1 of the API is the version originally shipped with Solaris 10
416 * Version 2 alters the zone_create system call in order to support more
417 * arguments by moving the args into a structure; and to do better
418 * error reporting when zone_create() fails.
419 * Version 3 alters the zone_create system call in order to support the
420 * import of ZFS datasets to zones.
421 * Version 4 alters the zone_create system call in order to support
422 * Trusted Extensions.
423 * Version 5 alters the zone_boot system call, and converts its old
424 * bootargs parameter to be set by the zone_setattr API instead.
425 * Version 6 adds the flag argument to zone_create.
427 static const int ZONE_SYSCALL_API_VERSION = 6;
430 * Certain filesystems (such as NFS and autofs) need to know which zone
431 * the mount is being placed in. Because of this, we need to be able to
432 * ensure that a zone isn't in the process of being created such that
433 * nfs_mount() thinks it is in the global zone, while by the time it
434 * gets added the list of mounted zones, it ends up on zoneA's mount
435 * list.
437 * The following functions: block_mounts()/resume_mounts() and
438 * mount_in_progress()/mount_completed() are used by zones and the VFS
439 * layer (respectively) to synchronize zone creation and new mounts.
441 * The semantics are like a reader-reader lock such that there may
442 * either be multiple mounts (or zone creations, if that weren't
443 * serialized by zonehash_lock) in progress at the same time, but not
444 * both.
446 * We use cv's so the user can ctrl-C out of the operation if it's
447 * taking too long.
449 * The semantics are such that there is unfair bias towards the
450 * "current" operation. This means that zone creations may starve if
451 * there is a rapid succession of new mounts coming in to the system, or
452 * there is a remote possibility that zones will be created at such a
453 * rate that new mounts will not be able to proceed.
456 * Prevent new mounts from progressing to the point of calling
457 * VFS_MOUNT(). If there are already mounts in this "region", wait for
458 * them to complete.
460 static int
461 block_mounts(void)
463 int retval = 0;
466 * Since it may block for a long time, block_mounts() shouldn't be
467 * called with zonehash_lock held.
469 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
470 mutex_enter(&mount_lock);
471 while (mounts_in_progress > 0) {
472 if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
473 goto signaled;
476 * A negative value of mounts_in_progress indicates that mounts
477 * have been blocked by (-mounts_in_progress) different callers.
479 mounts_in_progress--;
480 retval = 1;
481 signaled:
482 mutex_exit(&mount_lock);
483 return (retval);
487 * The VFS layer may progress with new mounts as far as we're concerned.
488 * Allow them to progress if we were the last obstacle.
490 static void
491 resume_mounts(void)
493 mutex_enter(&mount_lock);
494 if (++mounts_in_progress == 0)
495 cv_broadcast(&mount_cv);
496 mutex_exit(&mount_lock);
500 * The VFS layer is busy with a mount; zones should wait until all
501 * mounts are completed to progress.
503 void
504 mount_in_progress(void)
506 mutex_enter(&mount_lock);
507 while (mounts_in_progress < 0)
508 cv_wait(&mount_cv, &mount_lock);
509 mounts_in_progress++;
510 mutex_exit(&mount_lock);
514 * VFS is done with one mount; wake up any waiting block_mounts()
515 * callers if this is the last mount.
517 void
518 mount_completed(void)
520 mutex_enter(&mount_lock);
521 if (--mounts_in_progress == 0)
522 cv_broadcast(&mount_cv);
523 mutex_exit(&mount_lock);
527 * ZSD routines.
529 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
530 * defined by the pthread_key_create() and related interfaces.
532 * Kernel subsystems may register one or more data items and/or
533 * callbacks to be executed when a zone is created, shutdown, or
534 * destroyed.
536 * Unlike the thread counterpart, destructor callbacks will be executed
537 * even if the data pointer is NULL and/or there are no constructor
538 * callbacks, so it is the responsibility of such callbacks to check for
539 * NULL data values if necessary.
541 * The locking strategy and overall picture is as follows:
543 * When someone calls zone_key_create(), a template ZSD entry is added to the
544 * global list "zsd_registered_keys", protected by zsd_key_lock. While
545 * holding that lock all the existing zones are marked as
546 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
547 * zone_zsd list (protected by zone_lock). The global list is updated first
548 * (under zone_key_lock) to make sure that newly created zones use the
549 * most recent list of keys. Then under zonehash_lock we walk the zones
550 * and mark them. Similar locking is used in zone_key_delete().
552 * The actual create, shutdown, and destroy callbacks are done without
553 * holding any lock. And zsd_flags are used to ensure that the operations
554 * completed so that when zone_key_create (and zone_create) is done, as well as
555 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
556 * are completed.
558 * When new zones are created constructor callbacks for all registered ZSD
559 * entries will be called. That also uses the above two phases of marking
560 * what needs to be done, and then running the callbacks without holding
561 * any locks.
563 * The framework does not provide any locking around zone_getspecific() and
564 * zone_setspecific() apart from that needed for internal consistency, so
565 * callers interested in atomic "test-and-set" semantics will need to provide
566 * their own locking.
570 * Helper function to find the zsd_entry associated with the key in the
571 * given list.
573 static struct zsd_entry *
574 zsd_find(list_t *l, zone_key_t key)
576 struct zsd_entry *zsd;
578 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
579 if (zsd->zsd_key == key) {
580 return (zsd);
583 return (NULL);
587 * Helper function to find the zsd_entry associated with the key in the
588 * given list. Move it to the front of the list.
590 static struct zsd_entry *
591 zsd_find_mru(list_t *l, zone_key_t key)
593 struct zsd_entry *zsd;
595 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
596 if (zsd->zsd_key == key) {
598 * Move to head of list to keep list in MRU order.
600 if (zsd != list_head(l)) {
601 list_remove(l, zsd);
602 list_insert_head(l, zsd);
604 return (zsd);
607 return (NULL);
610 void
611 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
612 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
614 struct zsd_entry *zsdp;
615 struct zsd_entry *t;
616 struct zone *zone;
617 zone_key_t key;
619 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
620 zsdp->zsd_data = NULL;
621 zsdp->zsd_create = create;
622 zsdp->zsd_shutdown = shutdown;
623 zsdp->zsd_destroy = destroy;
626 * Insert in global list of callbacks. Makes future zone creations
627 * see it.
629 mutex_enter(&zsd_key_lock);
630 key = zsdp->zsd_key = ++zsd_keyval;
631 ASSERT(zsd_keyval != 0);
632 list_insert_tail(&zsd_registered_keys, zsdp);
633 mutex_exit(&zsd_key_lock);
636 * Insert for all existing zones and mark them as needing
637 * a create callback.
639 mutex_enter(&zonehash_lock); /* stop the world */
640 for (zone = list_head(&zone_active); zone != NULL;
641 zone = list_next(&zone_active, zone)) {
642 zone_status_t status;
644 mutex_enter(&zone->zone_lock);
646 /* Skip zones that are on the way down or not yet up */
647 status = zone_status_get(zone);
648 if (status >= ZONE_IS_DOWN ||
649 status == ZONE_IS_UNINITIALIZED) {
650 mutex_exit(&zone->zone_lock);
651 continue;
654 t = zsd_find_mru(&zone->zone_zsd, key);
655 if (t != NULL) {
657 * A zsd_configure already inserted it after
658 * we dropped zsd_key_lock above.
660 mutex_exit(&zone->zone_lock);
661 continue;
663 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
664 t->zsd_key = key;
665 t->zsd_create = create;
666 t->zsd_shutdown = shutdown;
667 t->zsd_destroy = destroy;
668 if (create != NULL) {
669 t->zsd_flags = ZSD_CREATE_NEEDED;
670 DTRACE_PROBE2(zsd__create__needed,
671 zone_t *, zone, zone_key_t, key);
673 list_insert_tail(&zone->zone_zsd, t);
674 mutex_exit(&zone->zone_lock);
676 mutex_exit(&zonehash_lock);
678 if (create != NULL) {
679 /* Now call the create callback for this key */
680 zsd_apply_all_zones(zsd_apply_create, key);
683 * It is safe for consumers to use the key now, make it
684 * globally visible. Specifically zone_getspecific() will
685 * always successfully return the zone specific data associated
686 * with the key.
688 *keyp = key;
693 * Function called when a module is being unloaded, or otherwise wishes
694 * to unregister its ZSD key and callbacks.
696 * Remove from the global list and determine the functions that need to
697 * be called under a global lock. Then call the functions without
698 * holding any locks. Finally free up the zone_zsd entries. (The apply
699 * functions need to access the zone_zsd entries to find zsd_data etc.)
702 zone_key_delete(zone_key_t key)
704 struct zsd_entry *zsdp = NULL;
705 zone_t *zone;
707 mutex_enter(&zsd_key_lock);
708 zsdp = zsd_find_mru(&zsd_registered_keys, key);
709 if (zsdp == NULL) {
710 mutex_exit(&zsd_key_lock);
711 return (-1);
713 list_remove(&zsd_registered_keys, zsdp);
714 mutex_exit(&zsd_key_lock);
716 mutex_enter(&zonehash_lock);
717 for (zone = list_head(&zone_active); zone != NULL;
718 zone = list_next(&zone_active, zone)) {
719 struct zsd_entry *del;
721 mutex_enter(&zone->zone_lock);
722 del = zsd_find_mru(&zone->zone_zsd, key);
723 if (del == NULL) {
725 * Somebody else got here first e.g the zone going
726 * away.
728 mutex_exit(&zone->zone_lock);
729 continue;
731 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
732 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
733 if (del->zsd_shutdown != NULL &&
734 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
735 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
736 DTRACE_PROBE2(zsd__shutdown__needed,
737 zone_t *, zone, zone_key_t, key);
739 if (del->zsd_destroy != NULL &&
740 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
741 del->zsd_flags |= ZSD_DESTROY_NEEDED;
742 DTRACE_PROBE2(zsd__destroy__needed,
743 zone_t *, zone, zone_key_t, key);
745 mutex_exit(&zone->zone_lock);
747 mutex_exit(&zonehash_lock);
748 kmem_free(zsdp, sizeof (*zsdp));
750 /* Now call the shutdown and destroy callback for this key */
751 zsd_apply_all_zones(zsd_apply_shutdown, key);
752 zsd_apply_all_zones(zsd_apply_destroy, key);
754 /* Now we can free up the zsdp structures in each zone */
755 mutex_enter(&zonehash_lock);
756 for (zone = list_head(&zone_active); zone != NULL;
757 zone = list_next(&zone_active, zone)) {
758 struct zsd_entry *del;
760 mutex_enter(&zone->zone_lock);
761 del = zsd_find(&zone->zone_zsd, key);
762 if (del != NULL) {
763 list_remove(&zone->zone_zsd, del);
764 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
765 kmem_free(del, sizeof (*del));
767 mutex_exit(&zone->zone_lock);
769 mutex_exit(&zonehash_lock);
771 return (0);
775 * ZSD counterpart of pthread_setspecific().
777 * Since all zsd callbacks, including those with no create function,
778 * have an entry in zone_zsd, if the key is registered it is part of
779 * the zone_zsd list.
780 * Return an error if the key wasn't registerd.
783 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
785 struct zsd_entry *t;
787 mutex_enter(&zone->zone_lock);
788 t = zsd_find_mru(&zone->zone_zsd, key);
789 if (t != NULL) {
791 * Replace old value with new
793 t->zsd_data = (void *)data;
794 mutex_exit(&zone->zone_lock);
795 return (0);
797 mutex_exit(&zone->zone_lock);
798 return (-1);
802 * ZSD counterpart of pthread_getspecific().
804 void *
805 zone_getspecific(zone_key_t key, zone_t *zone)
807 struct zsd_entry *t;
808 void *data;
810 mutex_enter(&zone->zone_lock);
811 t = zsd_find_mru(&zone->zone_zsd, key);
812 data = (t == NULL ? NULL : t->zsd_data);
813 mutex_exit(&zone->zone_lock);
814 return (data);
818 * Function used to initialize a zone's list of ZSD callbacks and data
819 * when the zone is being created. The callbacks are initialized from
820 * the template list (zsd_registered_keys). The constructor callback is
821 * executed later (once the zone exists and with locks dropped).
823 static void
824 zone_zsd_configure(zone_t *zone)
826 struct zsd_entry *zsdp;
827 struct zsd_entry *t;
829 ASSERT(MUTEX_HELD(&zonehash_lock));
830 ASSERT(list_head(&zone->zone_zsd) == NULL);
831 mutex_enter(&zone->zone_lock);
832 mutex_enter(&zsd_key_lock);
833 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
834 zsdp = list_next(&zsd_registered_keys, zsdp)) {
836 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
837 * should not have added anything to it.
839 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
841 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
842 t->zsd_key = zsdp->zsd_key;
843 t->zsd_create = zsdp->zsd_create;
844 t->zsd_shutdown = zsdp->zsd_shutdown;
845 t->zsd_destroy = zsdp->zsd_destroy;
846 if (zsdp->zsd_create != NULL) {
847 t->zsd_flags = ZSD_CREATE_NEEDED;
848 DTRACE_PROBE2(zsd__create__needed,
849 zone_t *, zone, zone_key_t, zsdp->zsd_key);
851 list_insert_tail(&zone->zone_zsd, t);
853 mutex_exit(&zsd_key_lock);
854 mutex_exit(&zone->zone_lock);
857 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
860 * Helper function to execute shutdown or destructor callbacks.
862 static void
863 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
865 struct zsd_entry *t;
867 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
868 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
869 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
872 * Run the callback solely based on what is registered for the zone
873 * in zone_zsd. The global list can change independently of this
874 * as keys are registered and unregistered and we don't register new
875 * callbacks for a zone that is in the process of going away.
877 mutex_enter(&zone->zone_lock);
878 for (t = list_head(&zone->zone_zsd); t != NULL;
879 t = list_next(&zone->zone_zsd, t)) {
880 zone_key_t key = t->zsd_key;
882 /* Skip if no callbacks registered */
884 if (ct == ZSD_SHUTDOWN) {
885 if (t->zsd_shutdown != NULL &&
886 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
887 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
888 DTRACE_PROBE2(zsd__shutdown__needed,
889 zone_t *, zone, zone_key_t, key);
891 } else {
892 if (t->zsd_destroy != NULL &&
893 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
894 t->zsd_flags |= ZSD_DESTROY_NEEDED;
895 DTRACE_PROBE2(zsd__destroy__needed,
896 zone_t *, zone, zone_key_t, key);
900 mutex_exit(&zone->zone_lock);
902 /* Now call the shutdown and destroy callback for this key */
903 zsd_apply_all_keys(zsd_apply_shutdown, zone);
904 zsd_apply_all_keys(zsd_apply_destroy, zone);
909 * Called when the zone is going away; free ZSD-related memory, and
910 * destroy the zone_zsd list.
912 static void
913 zone_free_zsd(zone_t *zone)
915 struct zsd_entry *t, *next;
918 * Free all the zsd_entry's we had on this zone.
920 mutex_enter(&zone->zone_lock);
921 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
922 next = list_next(&zone->zone_zsd, t);
923 list_remove(&zone->zone_zsd, t);
924 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
925 kmem_free(t, sizeof (*t));
927 list_destroy(&zone->zone_zsd);
928 mutex_exit(&zone->zone_lock);
933 * Apply a function to all zones for particular key value.
935 * The applyfn has to drop zonehash_lock if it does some work, and
936 * then reacquire it before it returns.
937 * When the lock is dropped we don't follow list_next even
938 * if it is possible to do so without any hazards. This is
939 * because we want the design to allow for the list of zones
940 * to change in any arbitrary way during the time the
941 * lock was dropped.
943 * It is safe to restart the loop at list_head since the applyfn
944 * changes the zsd_flags as it does work, so a subsequent
945 * pass through will have no effect in applyfn, hence the loop will terminate
946 * in at worst O(N^2).
948 static void
949 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
951 zone_t *zone;
953 mutex_enter(&zonehash_lock);
954 zone = list_head(&zone_active);
955 while (zone != NULL) {
956 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
957 /* Lock dropped - restart at head */
958 zone = list_head(&zone_active);
959 } else {
960 zone = list_next(&zone_active, zone);
963 mutex_exit(&zonehash_lock);
967 * Apply a function to all keys for a particular zone.
969 * The applyfn has to drop zonehash_lock if it does some work, and
970 * then reacquire it before it returns.
971 * When the lock is dropped we don't follow list_next even
972 * if it is possible to do so without any hazards. This is
973 * because we want the design to allow for the list of zsd callbacks
974 * to change in any arbitrary way during the time the
975 * lock was dropped.
977 * It is safe to restart the loop at list_head since the applyfn
978 * changes the zsd_flags as it does work, so a subsequent
979 * pass through will have no effect in applyfn, hence the loop will terminate
980 * in at worst O(N^2).
982 static void
983 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
985 struct zsd_entry *t;
987 mutex_enter(&zone->zone_lock);
988 t = list_head(&zone->zone_zsd);
989 while (t != NULL) {
990 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
991 /* Lock dropped - restart at head */
992 t = list_head(&zone->zone_zsd);
993 } else {
994 t = list_next(&zone->zone_zsd, t);
997 mutex_exit(&zone->zone_lock);
1001 * Call the create function for the zone and key if CREATE_NEEDED
1002 * is set.
1003 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1004 * we wait for that thread to complete so that we can ensure that
1005 * all the callbacks are done when we've looped over all zones/keys.
1007 * When we call the create function, we drop the global held by the
1008 * caller, and return true to tell the caller it needs to re-evalute the
1009 * state.
1010 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1011 * remains held on exit.
1013 static boolean_t
1014 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1015 zone_t *zone, zone_key_t key)
1017 void *result;
1018 struct zsd_entry *t;
1019 boolean_t dropped;
1021 if (lockp != NULL) {
1022 ASSERT(MUTEX_HELD(lockp));
1024 if (zone_lock_held) {
1025 ASSERT(MUTEX_HELD(&zone->zone_lock));
1026 } else {
1027 mutex_enter(&zone->zone_lock);
1030 t = zsd_find(&zone->zone_zsd, key);
1031 if (t == NULL) {
1033 * Somebody else got here first e.g the zone going
1034 * away.
1036 if (!zone_lock_held)
1037 mutex_exit(&zone->zone_lock);
1038 return (B_FALSE);
1040 dropped = B_FALSE;
1041 if (zsd_wait_for_inprogress(zone, t, lockp))
1042 dropped = B_TRUE;
1044 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1045 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1046 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1047 DTRACE_PROBE2(zsd__create__inprogress,
1048 zone_t *, zone, zone_key_t, key);
1049 mutex_exit(&zone->zone_lock);
1050 if (lockp != NULL)
1051 mutex_exit(lockp);
1053 dropped = B_TRUE;
1054 ASSERT(t->zsd_create != NULL);
1055 DTRACE_PROBE2(zsd__create__start,
1056 zone_t *, zone, zone_key_t, key);
1058 result = (*t->zsd_create)(zone->zone_id);
1060 DTRACE_PROBE2(zsd__create__end,
1061 zone_t *, zone, voidn *, result);
1063 ASSERT(result != NULL);
1064 if (lockp != NULL)
1065 mutex_enter(lockp);
1066 mutex_enter(&zone->zone_lock);
1067 t->zsd_data = result;
1068 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1069 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1070 cv_broadcast(&t->zsd_cv);
1071 DTRACE_PROBE2(zsd__create__completed,
1072 zone_t *, zone, zone_key_t, key);
1074 if (!zone_lock_held)
1075 mutex_exit(&zone->zone_lock);
1076 return (dropped);
1080 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1081 * is set.
1082 * If some other thread gets here first and sets *_INPROGRESS, then
1083 * we wait for that thread to complete so that we can ensure that
1084 * all the callbacks are done when we've looped over all zones/keys.
1086 * When we call the shutdown function, we drop the global held by the
1087 * caller, and return true to tell the caller it needs to re-evalute the
1088 * state.
1089 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1090 * remains held on exit.
1092 static boolean_t
1093 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1094 zone_t *zone, zone_key_t key)
1096 struct zsd_entry *t;
1097 void *data;
1098 boolean_t dropped;
1100 if (lockp != NULL) {
1101 ASSERT(MUTEX_HELD(lockp));
1103 if (zone_lock_held) {
1104 ASSERT(MUTEX_HELD(&zone->zone_lock));
1105 } else {
1106 mutex_enter(&zone->zone_lock);
1109 t = zsd_find(&zone->zone_zsd, key);
1110 if (t == NULL) {
1112 * Somebody else got here first e.g the zone going
1113 * away.
1115 if (!zone_lock_held)
1116 mutex_exit(&zone->zone_lock);
1117 return (B_FALSE);
1119 dropped = B_FALSE;
1120 if (zsd_wait_for_creator(zone, t, lockp))
1121 dropped = B_TRUE;
1123 if (zsd_wait_for_inprogress(zone, t, lockp))
1124 dropped = B_TRUE;
1126 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1127 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1128 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1129 DTRACE_PROBE2(zsd__shutdown__inprogress,
1130 zone_t *, zone, zone_key_t, key);
1131 mutex_exit(&zone->zone_lock);
1132 if (lockp != NULL)
1133 mutex_exit(lockp);
1134 dropped = B_TRUE;
1136 ASSERT(t->zsd_shutdown != NULL);
1137 data = t->zsd_data;
1139 DTRACE_PROBE2(zsd__shutdown__start,
1140 zone_t *, zone, zone_key_t, key);
1142 (t->zsd_shutdown)(zone->zone_id, data);
1143 DTRACE_PROBE2(zsd__shutdown__end,
1144 zone_t *, zone, zone_key_t, key);
1146 if (lockp != NULL)
1147 mutex_enter(lockp);
1148 mutex_enter(&zone->zone_lock);
1149 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1150 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1151 cv_broadcast(&t->zsd_cv);
1152 DTRACE_PROBE2(zsd__shutdown__completed,
1153 zone_t *, zone, zone_key_t, key);
1155 if (!zone_lock_held)
1156 mutex_exit(&zone->zone_lock);
1157 return (dropped);
1161 * Call the destroy function for the zone and key if DESTROY_NEEDED
1162 * is set.
1163 * If some other thread gets here first and sets *_INPROGRESS, then
1164 * we wait for that thread to complete so that we can ensure that
1165 * all the callbacks are done when we've looped over all zones/keys.
1167 * When we call the destroy function, we drop the global held by the
1168 * caller, and return true to tell the caller it needs to re-evalute the
1169 * state.
1170 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1171 * remains held on exit.
1173 static boolean_t
1174 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1175 zone_t *zone, zone_key_t key)
1177 struct zsd_entry *t;
1178 void *data;
1179 boolean_t dropped;
1181 if (lockp != NULL) {
1182 ASSERT(MUTEX_HELD(lockp));
1184 if (zone_lock_held) {
1185 ASSERT(MUTEX_HELD(&zone->zone_lock));
1186 } else {
1187 mutex_enter(&zone->zone_lock);
1190 t = zsd_find(&zone->zone_zsd, key);
1191 if (t == NULL) {
1193 * Somebody else got here first e.g the zone going
1194 * away.
1196 if (!zone_lock_held)
1197 mutex_exit(&zone->zone_lock);
1198 return (B_FALSE);
1200 dropped = B_FALSE;
1201 if (zsd_wait_for_creator(zone, t, lockp))
1202 dropped = B_TRUE;
1204 if (zsd_wait_for_inprogress(zone, t, lockp))
1205 dropped = B_TRUE;
1207 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1208 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1209 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1210 DTRACE_PROBE2(zsd__destroy__inprogress,
1211 zone_t *, zone, zone_key_t, key);
1212 mutex_exit(&zone->zone_lock);
1213 if (lockp != NULL)
1214 mutex_exit(lockp);
1215 dropped = B_TRUE;
1217 ASSERT(t->zsd_destroy != NULL);
1218 data = t->zsd_data;
1219 DTRACE_PROBE2(zsd__destroy__start,
1220 zone_t *, zone, zone_key_t, key);
1222 (t->zsd_destroy)(zone->zone_id, data);
1223 DTRACE_PROBE2(zsd__destroy__end,
1224 zone_t *, zone, zone_key_t, key);
1226 if (lockp != NULL)
1227 mutex_enter(lockp);
1228 mutex_enter(&zone->zone_lock);
1229 t->zsd_data = NULL;
1230 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1231 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1232 cv_broadcast(&t->zsd_cv);
1233 DTRACE_PROBE2(zsd__destroy__completed,
1234 zone_t *, zone, zone_key_t, key);
1236 if (!zone_lock_held)
1237 mutex_exit(&zone->zone_lock);
1238 return (dropped);
1242 * Wait for any CREATE_NEEDED flag to be cleared.
1243 * Returns true if lockp was temporarily dropped while waiting.
1245 static boolean_t
1246 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1248 boolean_t dropped = B_FALSE;
1250 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1251 DTRACE_PROBE2(zsd__wait__for__creator,
1252 zone_t *, zone, struct zsd_entry *, t);
1253 if (lockp != NULL) {
1254 dropped = B_TRUE;
1255 mutex_exit(lockp);
1257 cv_wait(&t->zsd_cv, &zone->zone_lock);
1258 if (lockp != NULL) {
1259 /* First drop zone_lock to preserve order */
1260 mutex_exit(&zone->zone_lock);
1261 mutex_enter(lockp);
1262 mutex_enter(&zone->zone_lock);
1265 return (dropped);
1269 * Wait for any INPROGRESS flag to be cleared.
1270 * Returns true if lockp was temporarily dropped while waiting.
1272 static boolean_t
1273 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1275 boolean_t dropped = B_FALSE;
1277 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1278 DTRACE_PROBE2(zsd__wait__for__inprogress,
1279 zone_t *, zone, struct zsd_entry *, t);
1280 if (lockp != NULL) {
1281 dropped = B_TRUE;
1282 mutex_exit(lockp);
1284 cv_wait(&t->zsd_cv, &zone->zone_lock);
1285 if (lockp != NULL) {
1286 /* First drop zone_lock to preserve order */
1287 mutex_exit(&zone->zone_lock);
1288 mutex_enter(lockp);
1289 mutex_enter(&zone->zone_lock);
1292 return (dropped);
1296 * Frees memory associated with the zone dataset list.
1298 static void
1299 zone_free_datasets(zone_t *zone)
1301 zone_dataset_t *t, *next;
1303 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1304 next = list_next(&zone->zone_datasets, t);
1305 list_remove(&zone->zone_datasets, t);
1306 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1307 kmem_free(t, sizeof (*t));
1309 list_destroy(&zone->zone_datasets);
1313 * zone.cpu-shares resource control support.
1315 /*ARGSUSED*/
1316 static rctl_qty_t
1317 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1319 ASSERT(MUTEX_HELD(&p->p_lock));
1320 return (p->p_zone->zone_shares);
1323 /*ARGSUSED*/
1324 static int
1325 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1326 rctl_qty_t nv)
1328 ASSERT(MUTEX_HELD(&p->p_lock));
1329 ASSERT(e->rcep_t == RCENTITY_ZONE);
1330 if (e->rcep_p.zone == NULL)
1331 return (0);
1333 e->rcep_p.zone->zone_shares = nv;
1334 return (0);
1337 static rctl_ops_t zone_cpu_shares_ops = {
1338 rcop_no_action,
1339 zone_cpu_shares_usage,
1340 zone_cpu_shares_set,
1341 rcop_no_test
1345 * zone.cpu-cap resource control support.
1347 /*ARGSUSED*/
1348 static rctl_qty_t
1349 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1351 ASSERT(MUTEX_HELD(&p->p_lock));
1352 return (cpucaps_zone_get(p->p_zone));
1355 /*ARGSUSED*/
1356 static int
1357 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1358 rctl_qty_t nv)
1360 zone_t *zone = e->rcep_p.zone;
1362 ASSERT(MUTEX_HELD(&p->p_lock));
1363 ASSERT(e->rcep_t == RCENTITY_ZONE);
1365 if (zone == NULL)
1366 return (0);
1369 * set cap to the new value.
1371 return (cpucaps_zone_set(zone, nv));
1374 static rctl_ops_t zone_cpu_cap_ops = {
1375 rcop_no_action,
1376 zone_cpu_cap_get,
1377 zone_cpu_cap_set,
1378 rcop_no_test
1381 /*ARGSUSED*/
1382 static rctl_qty_t
1383 zone_lwps_usage(rctl_t *r, proc_t *p)
1385 rctl_qty_t nlwps;
1386 zone_t *zone = p->p_zone;
1388 ASSERT(MUTEX_HELD(&p->p_lock));
1390 mutex_enter(&zone->zone_nlwps_lock);
1391 nlwps = zone->zone_nlwps;
1392 mutex_exit(&zone->zone_nlwps_lock);
1394 return (nlwps);
1397 /*ARGSUSED*/
1398 static int
1399 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1400 rctl_qty_t incr, uint_t flags)
1402 rctl_qty_t nlwps;
1404 ASSERT(MUTEX_HELD(&p->p_lock));
1405 ASSERT(e->rcep_t == RCENTITY_ZONE);
1406 if (e->rcep_p.zone == NULL)
1407 return (0);
1408 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1409 nlwps = e->rcep_p.zone->zone_nlwps;
1411 if (nlwps + incr > rcntl->rcv_value)
1412 return (1);
1414 return (0);
1417 /*ARGSUSED*/
1418 static int
1419 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1421 ASSERT(MUTEX_HELD(&p->p_lock));
1422 ASSERT(e->rcep_t == RCENTITY_ZONE);
1423 if (e->rcep_p.zone == NULL)
1424 return (0);
1425 e->rcep_p.zone->zone_nlwps_ctl = nv;
1426 return (0);
1429 static rctl_ops_t zone_lwps_ops = {
1430 rcop_no_action,
1431 zone_lwps_usage,
1432 zone_lwps_set,
1433 zone_lwps_test,
1436 /*ARGSUSED*/
1437 static rctl_qty_t
1438 zone_procs_usage(rctl_t *r, proc_t *p)
1440 rctl_qty_t nprocs;
1441 zone_t *zone = p->p_zone;
1443 ASSERT(MUTEX_HELD(&p->p_lock));
1445 mutex_enter(&zone->zone_nlwps_lock);
1446 nprocs = zone->zone_nprocs;
1447 mutex_exit(&zone->zone_nlwps_lock);
1449 return (nprocs);
1452 /*ARGSUSED*/
1453 static int
1454 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1455 rctl_qty_t incr, uint_t flags)
1457 rctl_qty_t nprocs;
1459 ASSERT(MUTEX_HELD(&p->p_lock));
1460 ASSERT(e->rcep_t == RCENTITY_ZONE);
1461 if (e->rcep_p.zone == NULL)
1462 return (0);
1463 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1464 nprocs = e->rcep_p.zone->zone_nprocs;
1466 if (nprocs + incr > rcntl->rcv_value)
1467 return (1);
1469 return (0);
1472 /*ARGSUSED*/
1473 static int
1474 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1476 ASSERT(MUTEX_HELD(&p->p_lock));
1477 ASSERT(e->rcep_t == RCENTITY_ZONE);
1478 if (e->rcep_p.zone == NULL)
1479 return (0);
1480 e->rcep_p.zone->zone_nprocs_ctl = nv;
1481 return (0);
1484 static rctl_ops_t zone_procs_ops = {
1485 rcop_no_action,
1486 zone_procs_usage,
1487 zone_procs_set,
1488 zone_procs_test,
1491 /*ARGSUSED*/
1492 static int
1493 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1494 rctl_qty_t incr, uint_t flags)
1496 rctl_qty_t v;
1497 ASSERT(MUTEX_HELD(&p->p_lock));
1498 ASSERT(e->rcep_t == RCENTITY_ZONE);
1499 v = e->rcep_p.zone->zone_shmmax + incr;
1500 if (v > rval->rcv_value)
1501 return (1);
1502 return (0);
1505 static rctl_ops_t zone_shmmax_ops = {
1506 rcop_no_action,
1507 rcop_no_usage,
1508 rcop_no_set,
1509 zone_shmmax_test
1512 /*ARGSUSED*/
1513 static int
1514 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1515 rctl_qty_t incr, uint_t flags)
1517 rctl_qty_t v;
1518 ASSERT(MUTEX_HELD(&p->p_lock));
1519 ASSERT(e->rcep_t == RCENTITY_ZONE);
1520 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1521 if (v > rval->rcv_value)
1522 return (1);
1523 return (0);
1526 static rctl_ops_t zone_shmmni_ops = {
1527 rcop_no_action,
1528 rcop_no_usage,
1529 rcop_no_set,
1530 zone_shmmni_test
1533 /*ARGSUSED*/
1534 static int
1535 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1536 rctl_qty_t incr, uint_t flags)
1538 rctl_qty_t v;
1539 ASSERT(MUTEX_HELD(&p->p_lock));
1540 ASSERT(e->rcep_t == RCENTITY_ZONE);
1541 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1542 if (v > rval->rcv_value)
1543 return (1);
1544 return (0);
1547 static rctl_ops_t zone_semmni_ops = {
1548 rcop_no_action,
1549 rcop_no_usage,
1550 rcop_no_set,
1551 zone_semmni_test
1554 /*ARGSUSED*/
1555 static int
1556 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1557 rctl_qty_t incr, uint_t flags)
1559 rctl_qty_t v;
1560 ASSERT(MUTEX_HELD(&p->p_lock));
1561 ASSERT(e->rcep_t == RCENTITY_ZONE);
1562 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1563 if (v > rval->rcv_value)
1564 return (1);
1565 return (0);
1568 static rctl_ops_t zone_msgmni_ops = {
1569 rcop_no_action,
1570 rcop_no_usage,
1571 rcop_no_set,
1572 zone_msgmni_test
1575 /*ARGSUSED*/
1576 static rctl_qty_t
1577 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1579 rctl_qty_t q;
1580 ASSERT(MUTEX_HELD(&p->p_lock));
1581 mutex_enter(&p->p_zone->zone_mem_lock);
1582 q = p->p_zone->zone_locked_mem;
1583 mutex_exit(&p->p_zone->zone_mem_lock);
1584 return (q);
1587 /*ARGSUSED*/
1588 static int
1589 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1590 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1592 rctl_qty_t q;
1593 zone_t *z;
1595 z = e->rcep_p.zone;
1596 ASSERT(MUTEX_HELD(&p->p_lock));
1597 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1598 q = z->zone_locked_mem;
1599 if (q + incr > rcntl->rcv_value)
1600 return (1);
1601 return (0);
1604 /*ARGSUSED*/
1605 static int
1606 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1607 rctl_qty_t nv)
1609 ASSERT(MUTEX_HELD(&p->p_lock));
1610 ASSERT(e->rcep_t == RCENTITY_ZONE);
1611 if (e->rcep_p.zone == NULL)
1612 return (0);
1613 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1614 return (0);
1617 static rctl_ops_t zone_locked_mem_ops = {
1618 rcop_no_action,
1619 zone_locked_mem_usage,
1620 zone_locked_mem_set,
1621 zone_locked_mem_test
1624 /*ARGSUSED*/
1625 static rctl_qty_t
1626 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1628 rctl_qty_t q;
1629 zone_t *z = p->p_zone;
1631 ASSERT(MUTEX_HELD(&p->p_lock));
1632 mutex_enter(&z->zone_mem_lock);
1633 q = z->zone_max_swap;
1634 mutex_exit(&z->zone_mem_lock);
1635 return (q);
1638 /*ARGSUSED*/
1639 static int
1640 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1641 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1643 rctl_qty_t q;
1644 zone_t *z;
1646 z = e->rcep_p.zone;
1647 ASSERT(MUTEX_HELD(&p->p_lock));
1648 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1649 q = z->zone_max_swap;
1650 if (q + incr > rcntl->rcv_value)
1651 return (1);
1652 return (0);
1655 /*ARGSUSED*/
1656 static int
1657 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1658 rctl_qty_t nv)
1660 ASSERT(MUTEX_HELD(&p->p_lock));
1661 ASSERT(e->rcep_t == RCENTITY_ZONE);
1662 if (e->rcep_p.zone == NULL)
1663 return (0);
1664 e->rcep_p.zone->zone_max_swap_ctl = nv;
1665 return (0);
1668 static rctl_ops_t zone_max_swap_ops = {
1669 rcop_no_action,
1670 zone_max_swap_usage,
1671 zone_max_swap_set,
1672 zone_max_swap_test
1675 /*ARGSUSED*/
1676 static rctl_qty_t
1677 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1679 rctl_qty_t q;
1680 zone_t *z = p->p_zone;
1682 ASSERT(MUTEX_HELD(&p->p_lock));
1683 mutex_enter(&z->zone_rctl_lock);
1684 q = z->zone_max_lofi;
1685 mutex_exit(&z->zone_rctl_lock);
1686 return (q);
1689 /*ARGSUSED*/
1690 static int
1691 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1692 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1694 rctl_qty_t q;
1695 zone_t *z;
1697 z = e->rcep_p.zone;
1698 ASSERT(MUTEX_HELD(&p->p_lock));
1699 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1700 q = z->zone_max_lofi;
1701 if (q + incr > rcntl->rcv_value)
1702 return (1);
1703 return (0);
1706 /*ARGSUSED*/
1707 static int
1708 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1709 rctl_qty_t nv)
1711 ASSERT(MUTEX_HELD(&p->p_lock));
1712 ASSERT(e->rcep_t == RCENTITY_ZONE);
1713 if (e->rcep_p.zone == NULL)
1714 return (0);
1715 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1716 return (0);
1719 static rctl_ops_t zone_max_lofi_ops = {
1720 rcop_no_action,
1721 zone_max_lofi_usage,
1722 zone_max_lofi_set,
1723 zone_max_lofi_test
1727 * Helper function to brand the zone with a unique ID.
1729 static void
1730 zone_uniqid(zone_t *zone)
1732 static uint64_t uniqid = 0;
1734 ASSERT(MUTEX_HELD(&zonehash_lock));
1735 zone->zone_uniqid = uniqid++;
1739 * Returns a held pointer to the "kcred" for the specified zone.
1741 struct cred *
1742 zone_get_kcred(zoneid_t zoneid)
1744 zone_t *zone;
1745 cred_t *cr;
1747 if ((zone = zone_find_by_id(zoneid)) == NULL)
1748 return (NULL);
1749 cr = zone->zone_kcred;
1750 crhold(cr);
1751 zone_rele(zone);
1752 return (cr);
1755 static int
1756 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1758 zone_t *zone = ksp->ks_private;
1759 zone_kstat_t *zk = ksp->ks_data;
1761 if (rw == KSTAT_WRITE)
1762 return (EACCES);
1764 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1765 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1766 return (0);
1769 static int
1770 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1772 zone_t *zone = ksp->ks_private;
1773 zone_kstat_t *zk = ksp->ks_data;
1775 if (rw == KSTAT_WRITE)
1776 return (EACCES);
1778 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1779 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1780 return (0);
1783 static int
1784 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1786 zone_t *zone = ksp->ks_private;
1787 zone_kstat_t *zk = ksp->ks_data;
1789 if (rw == KSTAT_WRITE)
1790 return (EACCES);
1792 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1793 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1794 return (0);
1797 static kstat_t *
1798 zone_kstat_create_common(zone_t *zone, char *name,
1799 int (*updatefunc) (kstat_t *, int))
1801 kstat_t *ksp;
1802 zone_kstat_t *zk;
1804 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1805 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1806 KSTAT_FLAG_VIRTUAL);
1808 if (ksp == NULL)
1809 return (NULL);
1811 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1812 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1813 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1814 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1815 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1816 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1817 ksp->ks_update = updatefunc;
1818 ksp->ks_private = zone;
1819 kstat_install(ksp);
1820 return (ksp);
1823 static void
1824 zone_kstat_create(zone_t *zone)
1826 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1827 "lockedmem", zone_lockedmem_kstat_update);
1828 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1829 "swapresv", zone_swapresv_kstat_update);
1830 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1831 "nprocs", zone_nprocs_kstat_update);
1834 static void
1835 zone_kstat_delete_common(kstat_t **pkstat)
1837 void *data;
1839 if (*pkstat != NULL) {
1840 data = (*pkstat)->ks_data;
1841 kstat_delete(*pkstat);
1842 kmem_free(data, sizeof (zone_kstat_t));
1843 *pkstat = NULL;
1847 static void
1848 zone_kstat_delete(zone_t *zone)
1850 zone_kstat_delete_common(&zone->zone_lockedmem_kstat);
1851 zone_kstat_delete_common(&zone->zone_swapresv_kstat);
1852 zone_kstat_delete_common(&zone->zone_nprocs_kstat);
1856 * Called very early on in boot to initialize the ZSD list so that
1857 * zone_key_create() can be called before zone_init(). It also initializes
1858 * portions of zone0 which may be used before zone_init() is called. The
1859 * variable "global_zone" will be set when zone0 is fully initialized by
1860 * zone_init().
1862 void
1863 zone_zsd_init(void)
1865 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1866 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1867 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1868 offsetof(struct zsd_entry, zsd_linkage));
1869 list_create(&zone_active, sizeof (zone_t),
1870 offsetof(zone_t, zone_linkage));
1871 list_create(&zone_deathrow, sizeof (zone_t),
1872 offsetof(zone_t, zone_linkage));
1874 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1875 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1876 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1877 zone0.zone_shares = 1;
1878 zone0.zone_nlwps = 0;
1879 zone0.zone_nlwps_ctl = INT_MAX;
1880 zone0.zone_nprocs = 0;
1881 zone0.zone_nprocs_ctl = INT_MAX;
1882 zone0.zone_locked_mem = 0;
1883 zone0.zone_locked_mem_ctl = UINT64_MAX;
1884 ASSERT(zone0.zone_max_swap == 0);
1885 zone0.zone_max_swap_ctl = UINT64_MAX;
1886 zone0.zone_max_lofi = 0;
1887 zone0.zone_max_lofi_ctl = UINT64_MAX;
1888 zone0.zone_shmmax = 0;
1889 zone0.zone_ipc.ipcq_shmmni = 0;
1890 zone0.zone_ipc.ipcq_semmni = 0;
1891 zone0.zone_ipc.ipcq_msgmni = 0;
1892 zone0.zone_name = GLOBAL_ZONENAME;
1893 zone0.zone_nodename = utsname.nodename;
1894 zone0.zone_domain = srpc_domain;
1895 zone0.zone_hostid = HW_INVALID_HOSTID;
1896 zone0.zone_fs_allowed = NULL;
1897 zone0.zone_ref = 1;
1898 zone0.zone_id = GLOBAL_ZONEID;
1899 zone0.zone_status = ZONE_IS_RUNNING;
1900 zone0.zone_rootpath = "/";
1901 zone0.zone_rootpathlen = 2;
1902 zone0.zone_psetid = ZONE_PS_INVAL;
1903 zone0.zone_ncpus = 0;
1904 zone0.zone_ncpus_online = 0;
1905 zone0.zone_proc_initpid = 1;
1906 zone0.zone_initname = initname;
1907 zone0.zone_lockedmem_kstat = NULL;
1908 zone0.zone_swapresv_kstat = NULL;
1909 zone0.zone_nprocs_kstat = NULL;
1910 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
1911 offsetof(zone_ref_t, zref_linkage));
1912 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1913 offsetof(struct zsd_entry, zsd_linkage));
1914 list_insert_head(&zone_active, &zone0);
1917 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1918 * to anything meaningful. It is assigned to be 'rootdir' in
1919 * vfs_mountroot().
1921 zone0.zone_rootvp = NULL;
1922 zone0.zone_vfslist = NULL;
1923 zone0.zone_bootargs = initargs;
1924 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
1926 * The global zone has all privileges
1928 priv_fillset(zone0.zone_privset);
1930 * Add p0 to the global zone
1932 zone0.zone_zsched = &p0;
1933 p0.p_zone = &zone0;
1937 * Compute a hash value based on the contents of the label and the DOI. The
1938 * hash algorithm is somewhat arbitrary, but is based on the observation that
1939 * humans will likely pick labels that differ by amounts that work out to be
1940 * multiples of the number of hash chains, and thus stirring in some primes
1941 * should help.
1943 static uint_t
1944 hash_bylabel(void *hdata, mod_hash_key_t key)
1946 const ts_label_t *lab = (ts_label_t *)key;
1947 const uint32_t *up, *ue;
1948 uint_t hash;
1949 int i;
1951 _NOTE(ARGUNUSED(hdata));
1953 hash = lab->tsl_doi + (lab->tsl_doi << 1);
1954 /* we depend on alignment of label, but not representation */
1955 up = (const uint32_t *)&lab->tsl_label;
1956 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
1957 i = 1;
1958 while (up < ue) {
1959 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
1960 hash += *up + (*up << ((i % 16) + 1));
1961 up++;
1962 i++;
1964 return (hash);
1968 * All that mod_hash cares about here is zero (equal) versus non-zero (not
1969 * equal). This may need to be changed if less than / greater than is ever
1970 * needed.
1972 static int
1973 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1975 ts_label_t *lab1 = (ts_label_t *)key1;
1976 ts_label_t *lab2 = (ts_label_t *)key2;
1978 return (label_equal(lab1, lab2) ? 0 : 1);
1982 * Called by main() to initialize the zones framework.
1984 void
1985 zone_init(void)
1987 rctl_dict_entry_t *rde;
1988 rctl_val_t *dval;
1989 rctl_set_t *set;
1990 rctl_alloc_gp_t *gp;
1991 rctl_entity_p_t e;
1992 int res;
1994 ASSERT(curproc == &p0);
1997 * Create ID space for zone IDs. ID 0 is reserved for the
1998 * global zone.
2000 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2003 * Initialize generic zone resource controls, if any.
2005 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2006 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2007 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2008 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2010 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2011 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2012 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2013 RCTL_GLOBAL_INFINITE,
2014 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2016 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2017 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2018 INT_MAX, INT_MAX, &zone_lwps_ops);
2020 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2021 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2022 INT_MAX, INT_MAX, &zone_procs_ops);
2025 * System V IPC resource controls
2027 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2028 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2029 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2031 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2032 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2033 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2035 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2036 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2037 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2039 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2040 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2041 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2044 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2045 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2047 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2048 bzero(dval, sizeof (rctl_val_t));
2049 dval->rcv_value = 1;
2050 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2051 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2052 dval->rcv_action_recip_pid = -1;
2054 rde = rctl_dict_lookup("zone.cpu-shares");
2055 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2057 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2058 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2059 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2060 &zone_locked_mem_ops);
2062 rc_zone_max_swap = rctl_register("zone.max-swap",
2063 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2064 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2065 &zone_max_swap_ops);
2067 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2068 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2069 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2070 &zone_max_lofi_ops);
2073 * Initialize the ``global zone''.
2075 set = rctl_set_create();
2076 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2077 mutex_enter(&p0.p_lock);
2078 e.rcep_p.zone = &zone0;
2079 e.rcep_t = RCENTITY_ZONE;
2080 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2081 gp);
2083 zone0.zone_nlwps = p0.p_lwpcnt;
2084 zone0.zone_nprocs = 1;
2085 zone0.zone_ntasks = 1;
2086 mutex_exit(&p0.p_lock);
2087 zone0.zone_restart_init = B_TRUE;
2088 zone0.zone_brand = &native_brand;
2089 rctl_prealloc_destroy(gp);
2091 * pool_default hasn't been initialized yet, so we let pool_init()
2092 * take care of making sure the global zone is in the default pool.
2096 * Initialize global zone kstats
2098 zone_kstat_create(&zone0);
2101 * Initialize zone label.
2102 * mlp are initialized when tnzonecfg is loaded.
2104 zone0.zone_slabel = l_admin_low;
2105 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2106 label_hold(l_admin_low);
2109 * Initialise the lock for the database structure used by mntfs.
2111 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2113 mutex_enter(&zonehash_lock);
2114 zone_uniqid(&zone0);
2115 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2117 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2118 mod_hash_null_valdtor);
2119 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2120 zone_hash_size, mod_hash_null_valdtor);
2122 * maintain zonehashbylabel only for labeled systems
2124 if (is_system_labeled())
2125 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2126 zone_hash_size, mod_hash_null_keydtor,
2127 mod_hash_null_valdtor, hash_bylabel, NULL,
2128 hash_labelkey_cmp, KM_SLEEP);
2129 zonecount = 1;
2131 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2132 (mod_hash_val_t)&zone0);
2133 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2134 (mod_hash_val_t)&zone0);
2135 if (is_system_labeled()) {
2136 zone0.zone_flags |= ZF_HASHED_LABEL;
2137 (void) mod_hash_insert(zonehashbylabel,
2138 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2140 mutex_exit(&zonehash_lock);
2143 * We avoid setting zone_kcred until now, since kcred is initialized
2144 * sometime after zone_zsd_init() and before zone_init().
2146 zone0.zone_kcred = kcred;
2148 * The global zone is fully initialized (except for zone_rootvp which
2149 * will be set when the root filesystem is mounted).
2151 global_zone = &zone0;
2154 * Setup an event channel to send zone status change notifications on
2156 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2157 EVCH_CREAT);
2159 if (res)
2160 panic("Sysevent_evc_bind failed during zone setup.\n");
2164 static void
2165 zone_free(zone_t *zone)
2167 ASSERT(zone != global_zone);
2168 ASSERT(zone->zone_ntasks == 0);
2169 ASSERT(zone->zone_nlwps == 0);
2170 ASSERT(zone->zone_nprocs == 0);
2171 ASSERT(zone->zone_cred_ref == 0);
2172 ASSERT(zone->zone_kcred == NULL);
2173 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2174 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2175 ASSERT(list_is_empty(&zone->zone_ref_list));
2178 * Remove any zone caps.
2180 cpucaps_zone_remove(zone);
2182 ASSERT(zone->zone_cpucap == NULL);
2184 /* remove from deathrow list */
2185 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2186 ASSERT(zone->zone_ref == 0);
2187 mutex_enter(&zone_deathrow_lock);
2188 list_remove(&zone_deathrow, zone);
2189 mutex_exit(&zone_deathrow_lock);
2192 list_destroy(&zone->zone_ref_list);
2193 zone_free_zsd(zone);
2194 zone_free_datasets(zone);
2195 list_destroy(&zone->zone_dl_list);
2197 if (zone->zone_rootvp != NULL)
2198 VN_RELE(zone->zone_rootvp);
2199 if (zone->zone_rootpath)
2200 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2201 if (zone->zone_name != NULL)
2202 kmem_free(zone->zone_name, ZONENAME_MAX);
2203 if (zone->zone_slabel != NULL)
2204 label_rele(zone->zone_slabel);
2205 if (zone->zone_nodename != NULL)
2206 kmem_free(zone->zone_nodename, _SYS_NMLN);
2207 if (zone->zone_domain != NULL)
2208 kmem_free(zone->zone_domain, _SYS_NMLN);
2209 if (zone->zone_privset != NULL)
2210 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2211 if (zone->zone_rctls != NULL)
2212 rctl_set_free(zone->zone_rctls);
2213 if (zone->zone_bootargs != NULL)
2214 strfree(zone->zone_bootargs);
2215 if (zone->zone_initname != NULL)
2216 strfree(zone->zone_initname);
2217 if (zone->zone_fs_allowed != NULL)
2218 strfree(zone->zone_fs_allowed);
2219 if (zone->zone_pfexecd != NULL)
2220 klpd_freelist(&zone->zone_pfexecd);
2221 id_free(zoneid_space, zone->zone_id);
2222 mutex_destroy(&zone->zone_lock);
2223 cv_destroy(&zone->zone_cv);
2224 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2225 rw_destroy(&zone->zone_mntfs_db_lock);
2226 kmem_free(zone, sizeof (zone_t));
2230 * See block comment at the top of this file for information about zone
2231 * status values.
2234 * Convenience function for setting zone status.
2236 static void
2237 zone_status_set(zone_t *zone, zone_status_t status)
2240 nvlist_t *nvl = NULL;
2241 ASSERT(MUTEX_HELD(&zone_status_lock));
2242 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2243 status >= zone_status_get(zone));
2245 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2246 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2247 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2248 zone_status_table[status]) ||
2249 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2250 zone_status_table[zone->zone_status]) ||
2251 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2252 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2253 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2254 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2255 #ifdef DEBUG
2256 (void) printf(
2257 "Failed to allocate and send zone state change event.\n");
2258 #endif
2260 nvlist_free(nvl);
2262 zone->zone_status = status;
2264 cv_broadcast(&zone->zone_cv);
2268 * Public function to retrieve the zone status. The zone status may
2269 * change after it is retrieved.
2271 zone_status_t
2272 zone_status_get(zone_t *zone)
2274 return (zone->zone_status);
2277 static int
2278 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2280 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2281 int err = 0;
2283 ASSERT(zone != global_zone);
2284 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2285 goto done; /* EFAULT or ENAMETOOLONG */
2287 if (zone->zone_bootargs != NULL)
2288 strfree(zone->zone_bootargs);
2290 zone->zone_bootargs = strdup(buf);
2292 done:
2293 kmem_free(buf, BOOTARGS_MAX);
2294 return (err);
2297 static int
2298 zone_set_brand(zone_t *zone, const char *brand)
2300 struct brand_attr *attrp;
2301 brand_t *bp;
2303 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2304 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2305 kmem_free(attrp, sizeof (struct brand_attr));
2306 return (EFAULT);
2309 bp = brand_register_zone(attrp);
2310 kmem_free(attrp, sizeof (struct brand_attr));
2311 if (bp == NULL)
2312 return (EINVAL);
2315 * This is the only place where a zone can change it's brand.
2316 * We already need to hold zone_status_lock to check the zone
2317 * status, so we'll just use that lock to serialize zone
2318 * branding requests as well.
2320 mutex_enter(&zone_status_lock);
2322 /* Re-Branding is not allowed and the zone can't be booted yet */
2323 if ((ZONE_IS_BRANDED(zone)) ||
2324 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2325 mutex_exit(&zone_status_lock);
2326 brand_unregister_zone(bp);
2327 return (EINVAL);
2330 /* set up the brand specific data */
2331 zone->zone_brand = bp;
2332 ZBROP(zone)->b_init_brand_data(zone);
2334 mutex_exit(&zone_status_lock);
2335 return (0);
2338 static int
2339 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2341 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2342 int err = 0;
2344 ASSERT(zone != global_zone);
2345 if ((err = copyinstr(zone_fs_allowed, buf,
2346 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2347 goto done;
2349 if (zone->zone_fs_allowed != NULL)
2350 strfree(zone->zone_fs_allowed);
2352 zone->zone_fs_allowed = strdup(buf);
2354 done:
2355 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2356 return (err);
2359 static int
2360 zone_set_initname(zone_t *zone, const char *zone_initname)
2362 char initname[INITNAME_SZ];
2363 size_t len;
2364 int err = 0;
2366 ASSERT(zone != global_zone);
2367 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2368 return (err); /* EFAULT or ENAMETOOLONG */
2370 if (zone->zone_initname != NULL)
2371 strfree(zone->zone_initname);
2373 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2374 (void) strcpy(zone->zone_initname, initname);
2375 return (0);
2378 static int
2379 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2381 uint64_t mcap;
2382 int err = 0;
2384 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2385 zone->zone_phys_mcap = mcap;
2387 return (err);
2390 static int
2391 zone_set_sched_class(zone_t *zone, const char *new_class)
2393 char sched_class[PC_CLNMSZ];
2394 id_t classid;
2395 int err;
2397 ASSERT(zone != global_zone);
2398 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2399 return (err); /* EFAULT or ENAMETOOLONG */
2401 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2402 return (set_errno(EINVAL));
2403 zone->zone_defaultcid = classid;
2404 ASSERT(zone->zone_defaultcid > 0 &&
2405 zone->zone_defaultcid < loaded_classes);
2407 return (0);
2411 * Block indefinitely waiting for (zone_status >= status)
2413 void
2414 zone_status_wait(zone_t *zone, zone_status_t status)
2416 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2418 mutex_enter(&zone_status_lock);
2419 while (zone->zone_status < status) {
2420 cv_wait(&zone->zone_cv, &zone_status_lock);
2422 mutex_exit(&zone_status_lock);
2426 * Private CPR-safe version of zone_status_wait().
2428 static void
2429 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2431 callb_cpr_t cprinfo;
2433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2435 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2436 str);
2437 mutex_enter(&zone_status_lock);
2438 while (zone->zone_status < status) {
2439 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2440 cv_wait(&zone->zone_cv, &zone_status_lock);
2441 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2444 * zone_status_lock is implicitly released by the following.
2446 CALLB_CPR_EXIT(&cprinfo);
2450 * Block until zone enters requested state or signal is received. Return (0)
2451 * if signaled, non-zero otherwise.
2454 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2456 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2458 mutex_enter(&zone_status_lock);
2459 while (zone->zone_status < status) {
2460 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2461 mutex_exit(&zone_status_lock);
2462 return (0);
2465 mutex_exit(&zone_status_lock);
2466 return (1);
2470 * Block until the zone enters the requested state or the timeout expires,
2471 * whichever happens first. Return (-1) if operation timed out, time remaining
2472 * otherwise.
2474 clock_t
2475 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2477 clock_t timeleft = 0;
2479 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2481 mutex_enter(&zone_status_lock);
2482 while (zone->zone_status < status && timeleft != -1) {
2483 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2485 mutex_exit(&zone_status_lock);
2486 return (timeleft);
2490 * Block until the zone enters the requested state, the current process is
2491 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2492 * operation timed out, 0 if signaled, time remaining otherwise.
2494 clock_t
2495 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2497 clock_t timeleft = tim - ddi_get_lbolt();
2499 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2501 mutex_enter(&zone_status_lock);
2502 while (zone->zone_status < status) {
2503 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2504 tim);
2505 if (timeleft <= 0)
2506 break;
2508 mutex_exit(&zone_status_lock);
2509 return (timeleft);
2513 * Zones have two reference counts: one for references from credential
2514 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2515 * This is so we can allow a zone to be rebooted while there are still
2516 * outstanding cred references, since certain drivers cache dblks (which
2517 * implicitly results in cached creds). We wait for zone_ref to drop to
2518 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2519 * later freed when the zone_cred_ref drops to 0, though nothing other
2520 * than the zone id and privilege set should be accessed once the zone
2521 * is "dead".
2523 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2524 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2525 * to 0. This can be useful to flush out other sources of cached creds
2526 * that may be less innocuous than the driver case.
2528 * Zones also provide a tracked reference counting mechanism in which zone
2529 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2530 * debuggers determine the sources of leaked zone references. See
2531 * zone_hold_ref() and zone_rele_ref() below for more information.
2534 int zone_wait_for_cred = 0;
2536 static void
2537 zone_hold_locked(zone_t *z)
2539 ASSERT(MUTEX_HELD(&z->zone_lock));
2540 z->zone_ref++;
2541 ASSERT(z->zone_ref != 0);
2545 * Increment the specified zone's reference count. The zone's zone_t structure
2546 * will not be freed as long as the zone's reference count is nonzero.
2547 * Decrement the zone's reference count via zone_rele().
2549 * NOTE: This function should only be used to hold zones for short periods of
2550 * time. Use zone_hold_ref() if the zone must be held for a long time.
2552 void
2553 zone_hold(zone_t *z)
2555 mutex_enter(&z->zone_lock);
2556 zone_hold_locked(z);
2557 mutex_exit(&z->zone_lock);
2561 * If the non-cred ref count drops to 1 and either the cred ref count
2562 * is 0 or we aren't waiting for cred references, the zone is ready to
2563 * be destroyed.
2565 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2566 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2569 * Common zone reference release function invoked by zone_rele() and
2570 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2571 * zone's subsystem-specific reference counters are not affected by the
2572 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2573 * removed from the specified zone's reference list. ref must be non-NULL iff
2574 * subsys is not ZONE_REF_NUM_SUBSYS.
2576 static void
2577 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2579 boolean_t wakeup;
2581 mutex_enter(&z->zone_lock);
2582 ASSERT(z->zone_ref != 0);
2583 z->zone_ref--;
2584 if (subsys != ZONE_REF_NUM_SUBSYS) {
2585 ASSERT(z->zone_subsys_ref[subsys] != 0);
2586 z->zone_subsys_ref[subsys]--;
2587 list_remove(&z->zone_ref_list, ref);
2589 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2590 /* no more refs, free the structure */
2591 mutex_exit(&z->zone_lock);
2592 zone_free(z);
2593 return;
2595 /* signal zone_destroy so the zone can finish halting */
2596 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2597 mutex_exit(&z->zone_lock);
2599 if (wakeup) {
2601 * Grabbing zonehash_lock here effectively synchronizes with
2602 * zone_destroy() to avoid missed signals.
2604 mutex_enter(&zonehash_lock);
2605 cv_broadcast(&zone_destroy_cv);
2606 mutex_exit(&zonehash_lock);
2611 * Decrement the specified zone's reference count. The specified zone will
2612 * cease to exist after this function returns if the reference count drops to
2613 * zero. This function should be paired with zone_hold().
2615 void
2616 zone_rele(zone_t *z)
2618 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2622 * Initialize a zone reference structure. This function must be invoked for
2623 * a reference structure before the structure is passed to zone_hold_ref().
2625 void
2626 zone_init_ref(zone_ref_t *ref)
2628 ref->zref_zone = NULL;
2629 list_link_init(&ref->zref_linkage);
2633 * Acquire a reference to zone z. The caller must specify the
2634 * zone_ref_subsys_t constant associated with its subsystem. The specified
2635 * zone_ref_t structure will represent a reference to the specified zone. Use
2636 * zone_rele_ref() to release the reference.
2638 * The referenced zone_t structure will not be freed as long as the zone_t's
2639 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2640 * references.
2642 * NOTE: The zone_ref_t structure must be initialized before it is used.
2643 * See zone_init_ref() above.
2645 void
2646 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2648 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2651 * Prevent consumers from reusing a reference structure before
2652 * releasing it.
2654 VERIFY(ref->zref_zone == NULL);
2656 ref->zref_zone = z;
2657 mutex_enter(&z->zone_lock);
2658 zone_hold_locked(z);
2659 z->zone_subsys_ref[subsys]++;
2660 ASSERT(z->zone_subsys_ref[subsys] != 0);
2661 list_insert_head(&z->zone_ref_list, ref);
2662 mutex_exit(&z->zone_lock);
2666 * Release the zone reference represented by the specified zone_ref_t.
2667 * The reference is invalid after it's released; however, the zone_ref_t
2668 * structure can be reused without having to invoke zone_init_ref().
2669 * subsys should be the same value that was passed to zone_hold_ref()
2670 * when the reference was acquired.
2672 void
2673 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2675 zone_rele_common(ref->zref_zone, ref, subsys);
2678 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2679 * when consumers dereference the reference. This helps us catch
2680 * consumers who use released references. Furthermore, this lets
2681 * consumers reuse the zone_ref_t structure without having to
2682 * invoke zone_init_ref().
2684 ref->zref_zone = NULL;
2687 void
2688 zone_cred_hold(zone_t *z)
2690 mutex_enter(&z->zone_lock);
2691 z->zone_cred_ref++;
2692 ASSERT(z->zone_cred_ref != 0);
2693 mutex_exit(&z->zone_lock);
2696 void
2697 zone_cred_rele(zone_t *z)
2699 boolean_t wakeup;
2701 mutex_enter(&z->zone_lock);
2702 ASSERT(z->zone_cred_ref != 0);
2703 z->zone_cred_ref--;
2704 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2705 /* no more refs, free the structure */
2706 mutex_exit(&z->zone_lock);
2707 zone_free(z);
2708 return;
2711 * If zone_destroy is waiting for the cred references to drain
2712 * out, and they have, signal it.
2714 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2715 zone_status_get(z) >= ZONE_IS_DEAD);
2716 mutex_exit(&z->zone_lock);
2718 if (wakeup) {
2720 * Grabbing zonehash_lock here effectively synchronizes with
2721 * zone_destroy() to avoid missed signals.
2723 mutex_enter(&zonehash_lock);
2724 cv_broadcast(&zone_destroy_cv);
2725 mutex_exit(&zonehash_lock);
2729 void
2730 zone_task_hold(zone_t *z)
2732 mutex_enter(&z->zone_lock);
2733 z->zone_ntasks++;
2734 ASSERT(z->zone_ntasks != 0);
2735 mutex_exit(&z->zone_lock);
2738 void
2739 zone_task_rele(zone_t *zone)
2741 uint_t refcnt;
2743 mutex_enter(&zone->zone_lock);
2744 ASSERT(zone->zone_ntasks != 0);
2745 refcnt = --zone->zone_ntasks;
2746 if (refcnt > 1) { /* Common case */
2747 mutex_exit(&zone->zone_lock);
2748 return;
2750 zone_hold_locked(zone); /* so we can use the zone_t later */
2751 mutex_exit(&zone->zone_lock);
2752 if (refcnt == 1) {
2754 * See if the zone is shutting down.
2756 mutex_enter(&zone_status_lock);
2757 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2758 goto out;
2762 * Make sure the ntasks didn't change since we
2763 * dropped zone_lock.
2765 mutex_enter(&zone->zone_lock);
2766 if (refcnt != zone->zone_ntasks) {
2767 mutex_exit(&zone->zone_lock);
2768 goto out;
2770 mutex_exit(&zone->zone_lock);
2773 * No more user processes in the zone. The zone is empty.
2775 zone_status_set(zone, ZONE_IS_EMPTY);
2776 goto out;
2779 ASSERT(refcnt == 0);
2781 * zsched has exited; the zone is dead.
2783 zone->zone_zsched = NULL; /* paranoia */
2784 mutex_enter(&zone_status_lock);
2785 zone_status_set(zone, ZONE_IS_DEAD);
2786 out:
2787 mutex_exit(&zone_status_lock);
2788 zone_rele(zone);
2791 zoneid_t
2792 getzoneid(void)
2794 return (curproc->p_zone->zone_id);
2798 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2799 * check the validity of a zone's state.
2801 static zone_t *
2802 zone_find_all_by_id(zoneid_t zoneid)
2804 mod_hash_val_t hv;
2805 zone_t *zone = NULL;
2807 ASSERT(MUTEX_HELD(&zonehash_lock));
2809 if (mod_hash_find(zonehashbyid,
2810 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2811 zone = (zone_t *)hv;
2812 return (zone);
2815 static zone_t *
2816 zone_find_all_by_label(const ts_label_t *label)
2818 mod_hash_val_t hv;
2819 zone_t *zone = NULL;
2821 ASSERT(MUTEX_HELD(&zonehash_lock));
2824 * zonehashbylabel is not maintained for unlabeled systems
2826 if (!is_system_labeled())
2827 return (NULL);
2828 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2829 zone = (zone_t *)hv;
2830 return (zone);
2833 static zone_t *
2834 zone_find_all_by_name(char *name)
2836 mod_hash_val_t hv;
2837 zone_t *zone = NULL;
2839 ASSERT(MUTEX_HELD(&zonehash_lock));
2841 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2842 zone = (zone_t *)hv;
2843 return (zone);
2847 * Public interface for looking up a zone by zoneid. Only returns the zone if
2848 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2849 * Caller must call zone_rele() once it is done with the zone.
2851 * The zone may begin the zone_destroy() sequence immediately after this
2852 * function returns, but may be safely used until zone_rele() is called.
2854 zone_t *
2855 zone_find_by_id(zoneid_t zoneid)
2857 zone_t *zone;
2858 zone_status_t status;
2860 mutex_enter(&zonehash_lock);
2861 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2862 mutex_exit(&zonehash_lock);
2863 return (NULL);
2865 status = zone_status_get(zone);
2866 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2868 * For all practical purposes the zone doesn't exist.
2870 mutex_exit(&zonehash_lock);
2871 return (NULL);
2873 zone_hold(zone);
2874 mutex_exit(&zonehash_lock);
2875 return (zone);
2879 * Similar to zone_find_by_id, but using zone label as the key.
2881 zone_t *
2882 zone_find_by_label(const ts_label_t *label)
2884 zone_t *zone;
2885 zone_status_t status;
2887 mutex_enter(&zonehash_lock);
2888 if ((zone = zone_find_all_by_label(label)) == NULL) {
2889 mutex_exit(&zonehash_lock);
2890 return (NULL);
2893 status = zone_status_get(zone);
2894 if (status > ZONE_IS_DOWN) {
2896 * For all practical purposes the zone doesn't exist.
2898 mutex_exit(&zonehash_lock);
2899 return (NULL);
2901 zone_hold(zone);
2902 mutex_exit(&zonehash_lock);
2903 return (zone);
2907 * Similar to zone_find_by_id, but using zone name as the key.
2909 zone_t *
2910 zone_find_by_name(char *name)
2912 zone_t *zone;
2913 zone_status_t status;
2915 mutex_enter(&zonehash_lock);
2916 if ((zone = zone_find_all_by_name(name)) == NULL) {
2917 mutex_exit(&zonehash_lock);
2918 return (NULL);
2920 status = zone_status_get(zone);
2921 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2923 * For all practical purposes the zone doesn't exist.
2925 mutex_exit(&zonehash_lock);
2926 return (NULL);
2928 zone_hold(zone);
2929 mutex_exit(&zonehash_lock);
2930 return (zone);
2934 * Similar to zone_find_by_id(), using the path as a key. For instance,
2935 * if there is a zone "foo" rooted at /foo/root, and the path argument
2936 * is "/foo/root/proc", it will return the held zone_t corresponding to
2937 * zone "foo".
2939 * zone_find_by_path() always returns a non-NULL value, since at the
2940 * very least every path will be contained in the global zone.
2942 * As with the other zone_find_by_*() functions, the caller is
2943 * responsible for zone_rele()ing the return value of this function.
2945 zone_t *
2946 zone_find_by_path(const char *path)
2948 zone_t *zone;
2949 zone_t *zret = NULL;
2950 zone_status_t status;
2952 if (path == NULL) {
2954 * Call from rootconf().
2956 zone_hold(global_zone);
2957 return (global_zone);
2959 ASSERT(*path == '/');
2960 mutex_enter(&zonehash_lock);
2961 for (zone = list_head(&zone_active); zone != NULL;
2962 zone = list_next(&zone_active, zone)) {
2963 if (ZONE_PATH_VISIBLE(path, zone))
2964 zret = zone;
2966 ASSERT(zret != NULL);
2967 status = zone_status_get(zret);
2968 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2970 * Zone practically doesn't exist.
2972 zret = global_zone;
2974 zone_hold(zret);
2975 mutex_exit(&zonehash_lock);
2976 return (zret);
2980 * Get the number of cpus visible to this zone. The system-wide global
2981 * 'ncpus' is returned if pools are disabled, the caller is in the
2982 * global zone, or a NULL zone argument is passed in.
2985 zone_ncpus_get(zone_t *zone)
2987 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
2989 return (myncpus != 0 ? myncpus : ncpus);
2993 * Get the number of online cpus visible to this zone. The system-wide
2994 * global 'ncpus_online' is returned if pools are disabled, the caller
2995 * is in the global zone, or a NULL zone argument is passed in.
2998 zone_ncpus_online_get(zone_t *zone)
3000 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3002 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3006 * Return the pool to which the zone is currently bound.
3008 pool_t *
3009 zone_pool_get(zone_t *zone)
3011 ASSERT(pool_lock_held());
3013 return (zone->zone_pool);
3017 * Set the zone's pool pointer and update the zone's visibility to match
3018 * the resources in the new pool.
3020 void
3021 zone_pool_set(zone_t *zone, pool_t *pool)
3023 ASSERT(pool_lock_held());
3024 ASSERT(MUTEX_HELD(&cpu_lock));
3026 zone->zone_pool = pool;
3027 zone_pset_set(zone, pool->pool_pset->pset_id);
3031 * Return the cached value of the id of the processor set to which the
3032 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3033 * facility is disabled.
3035 psetid_t
3036 zone_pset_get(zone_t *zone)
3038 ASSERT(MUTEX_HELD(&cpu_lock));
3040 return (zone->zone_psetid);
3044 * Set the cached value of the id of the processor set to which the zone
3045 * is currently bound. Also update the zone's visibility to match the
3046 * resources in the new processor set.
3048 void
3049 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3051 psetid_t oldpsetid;
3053 ASSERT(MUTEX_HELD(&cpu_lock));
3054 oldpsetid = zone_pset_get(zone);
3056 if (oldpsetid == newpsetid)
3057 return;
3059 * Global zone sees all.
3061 if (zone != global_zone) {
3062 zone->zone_psetid = newpsetid;
3063 if (newpsetid != ZONE_PS_INVAL)
3064 pool_pset_visibility_add(newpsetid, zone);
3065 if (oldpsetid != ZONE_PS_INVAL)
3066 pool_pset_visibility_remove(oldpsetid, zone);
3069 * Disabling pools, so we should start using the global values
3070 * for ncpus and ncpus_online.
3072 if (newpsetid == ZONE_PS_INVAL) {
3073 zone->zone_ncpus = 0;
3074 zone->zone_ncpus_online = 0;
3079 * Walk the list of active zones and issue the provided callback for
3080 * each of them.
3082 * Caller must not be holding any locks that may be acquired under
3083 * zonehash_lock. See comment at the beginning of the file for a list of
3084 * common locks and their interactions with zones.
3087 zone_walk(int (*cb)(zone_t *, void *), void *data)
3089 zone_t *zone;
3090 int ret = 0;
3091 zone_status_t status;
3093 mutex_enter(&zonehash_lock);
3094 for (zone = list_head(&zone_active); zone != NULL;
3095 zone = list_next(&zone_active, zone)) {
3097 * Skip zones that shouldn't be externally visible.
3099 status = zone_status_get(zone);
3100 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3101 continue;
3103 * Bail immediately if any callback invocation returns a
3104 * non-zero value.
3106 ret = (*cb)(zone, data);
3107 if (ret != 0)
3108 break;
3110 mutex_exit(&zonehash_lock);
3111 return (ret);
3114 static int
3115 zone_set_root(zone_t *zone, const char *upath)
3117 vnode_t *vp;
3118 int trycount;
3119 int error = 0;
3120 char *path;
3121 struct pathname upn, pn;
3122 size_t pathlen;
3124 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3125 return (error);
3127 pn_alloc(&pn);
3129 /* prevent infinite loop */
3130 trycount = 10;
3131 for (;;) {
3132 if (--trycount <= 0) {
3133 error = ESTALE;
3134 goto out;
3137 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3139 * VOP_ACCESS() may cover 'vp' with a new
3140 * filesystem, if 'vp' is an autoFS vnode.
3141 * Get the new 'vp' if so.
3143 if ((error =
3144 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3145 (!vn_ismntpt(vp) ||
3146 (error = traverse(&vp)) == 0)) {
3147 pathlen = pn.pn_pathlen + 2;
3148 path = kmem_alloc(pathlen, KM_SLEEP);
3149 (void) strncpy(path, pn.pn_path,
3150 pn.pn_pathlen + 1);
3151 path[pathlen - 2] = '/';
3152 path[pathlen - 1] = '\0';
3153 pn_free(&pn);
3154 pn_free(&upn);
3156 /* Success! */
3157 break;
3159 VN_RELE(vp);
3161 if (error != ESTALE)
3162 goto out;
3165 ASSERT(error == 0);
3166 zone->zone_rootvp = vp; /* we hold a reference to vp */
3167 zone->zone_rootpath = path;
3168 zone->zone_rootpathlen = pathlen;
3169 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3170 zone->zone_flags |= ZF_IS_SCRATCH;
3171 return (0);
3173 out:
3174 pn_free(&pn);
3175 pn_free(&upn);
3176 return (error);
3179 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3180 ((c) >= 'a' && (c) <= 'z') || \
3181 ((c) >= 'A' && (c) <= 'Z'))
3183 static int
3184 zone_set_name(zone_t *zone, const char *uname)
3186 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3187 size_t len;
3188 int i, err;
3190 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3191 kmem_free(kname, ZONENAME_MAX);
3192 return (err); /* EFAULT or ENAMETOOLONG */
3195 /* must be less than ZONENAME_MAX */
3196 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3197 kmem_free(kname, ZONENAME_MAX);
3198 return (EINVAL);
3202 * Name must start with an alphanumeric and must contain only
3203 * alphanumerics, '-', '_' and '.'.
3205 if (!isalnum(kname[0])) {
3206 kmem_free(kname, ZONENAME_MAX);
3207 return (EINVAL);
3209 for (i = 1; i < len - 1; i++) {
3210 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3211 kname[i] != '.') {
3212 kmem_free(kname, ZONENAME_MAX);
3213 return (EINVAL);
3217 zone->zone_name = kname;
3218 return (0);
3222 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3223 * is NULL or it points to a zone with no hostid emulation, then the machine's
3224 * hostid (i.e., the global zone's hostid) is returned. This function returns
3225 * zero if neither the zone nor the host machine (global zone) have hostids. It
3226 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3227 * hostid and the machine's hostid is invalid.
3229 uint32_t
3230 zone_get_hostid(zone_t *zonep)
3232 unsigned long machine_hostid;
3234 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3235 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3236 return (HW_INVALID_HOSTID);
3237 return ((uint32_t)machine_hostid);
3239 return (zonep->zone_hostid);
3243 * Similar to thread_create(), but makes sure the thread is in the appropriate
3244 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3246 /*ARGSUSED*/
3247 kthread_t *
3248 zthread_create(
3249 caddr_t stk,
3250 size_t stksize,
3251 void (*proc)(),
3252 void *arg,
3253 size_t len,
3254 pri_t pri)
3256 kthread_t *t;
3257 zone_t *zone = curproc->p_zone;
3258 proc_t *pp = zone->zone_zsched;
3260 zone_hold(zone); /* Reference to be dropped when thread exits */
3263 * No-one should be trying to create threads if the zone is shutting
3264 * down and there aren't any kernel threads around. See comment
3265 * in zthread_exit().
3267 ASSERT(!(zone->zone_kthreads == NULL &&
3268 zone_status_get(zone) >= ZONE_IS_EMPTY));
3270 * Create a thread, but don't let it run until we've finished setting
3271 * things up.
3273 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3274 ASSERT(t->t_forw == NULL);
3275 mutex_enter(&zone_status_lock);
3276 if (zone->zone_kthreads == NULL) {
3277 t->t_forw = t->t_back = t;
3278 } else {
3279 kthread_t *tx = zone->zone_kthreads;
3281 t->t_forw = tx;
3282 t->t_back = tx->t_back;
3283 tx->t_back->t_forw = t;
3284 tx->t_back = t;
3286 zone->zone_kthreads = t;
3287 mutex_exit(&zone_status_lock);
3289 mutex_enter(&pp->p_lock);
3290 t->t_proc_flag |= TP_ZTHREAD;
3291 project_rele(t->t_proj);
3292 t->t_proj = project_hold(pp->p_task->tk_proj);
3295 * Setup complete, let it run.
3297 thread_lock(t);
3298 t->t_schedflag |= TS_ALLSTART;
3299 setrun_locked(t);
3300 thread_unlock(t);
3302 mutex_exit(&pp->p_lock);
3304 return (t);
3308 * Similar to thread_exit(). Must be called by threads created via
3309 * zthread_exit().
3311 void
3312 zthread_exit(void)
3314 kthread_t *t = curthread;
3315 proc_t *pp = curproc;
3316 zone_t *zone = pp->p_zone;
3318 mutex_enter(&zone_status_lock);
3321 * Reparent to p0
3323 kpreempt_disable();
3324 mutex_enter(&pp->p_lock);
3325 t->t_proc_flag &= ~TP_ZTHREAD;
3326 t->t_procp = &p0;
3327 hat_thread_exit(t);
3328 mutex_exit(&pp->p_lock);
3329 kpreempt_enable();
3331 if (t->t_back == t) {
3332 ASSERT(t->t_forw == t);
3334 * If the zone is empty, once the thread count
3335 * goes to zero no further kernel threads can be
3336 * created. This is because if the creator is a process
3337 * in the zone, then it must have exited before the zone
3338 * state could be set to ZONE_IS_EMPTY.
3339 * Otherwise, if the creator is a kernel thread in the
3340 * zone, the thread count is non-zero.
3342 * This really means that non-zone kernel threads should
3343 * not create zone kernel threads.
3345 zone->zone_kthreads = NULL;
3346 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3347 zone_status_set(zone, ZONE_IS_DOWN);
3349 * Remove any CPU caps on this zone.
3351 cpucaps_zone_remove(zone);
3353 } else {
3354 t->t_forw->t_back = t->t_back;
3355 t->t_back->t_forw = t->t_forw;
3356 if (zone->zone_kthreads == t)
3357 zone->zone_kthreads = t->t_forw;
3359 mutex_exit(&zone_status_lock);
3360 zone_rele(zone);
3361 thread_exit();
3362 /* NOTREACHED */
3365 static void
3366 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3368 vnode_t *oldvp;
3370 /* we're going to hold a reference here to the directory */
3371 VN_HOLD(vp);
3373 /* update abs cwd/root path see c2/audit.c */
3374 if (AU_AUDITING())
3375 audit_chdirec(vp, vpp);
3377 mutex_enter(&pp->p_lock);
3378 oldvp = *vpp;
3379 *vpp = vp;
3380 mutex_exit(&pp->p_lock);
3381 if (oldvp != NULL)
3382 VN_RELE(oldvp);
3386 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3388 static int
3389 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3391 nvpair_t *nvp = NULL;
3392 boolean_t priv_set = B_FALSE;
3393 boolean_t limit_set = B_FALSE;
3394 boolean_t action_set = B_FALSE;
3396 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3397 const char *name;
3398 uint64_t ui64;
3400 name = nvpair_name(nvp);
3401 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3402 return (EINVAL);
3403 (void) nvpair_value_uint64(nvp, &ui64);
3404 if (strcmp(name, "privilege") == 0) {
3406 * Currently only privileged values are allowed, but
3407 * this may change in the future.
3409 if (ui64 != RCPRIV_PRIVILEGED)
3410 return (EINVAL);
3411 rv->rcv_privilege = ui64;
3412 priv_set = B_TRUE;
3413 } else if (strcmp(name, "limit") == 0) {
3414 rv->rcv_value = ui64;
3415 limit_set = B_TRUE;
3416 } else if (strcmp(name, "action") == 0) {
3417 if (ui64 != RCTL_LOCAL_NOACTION &&
3418 ui64 != RCTL_LOCAL_DENY)
3419 return (EINVAL);
3420 rv->rcv_flagaction = ui64;
3421 action_set = B_TRUE;
3422 } else {
3423 return (EINVAL);
3427 if (!(priv_set && limit_set && action_set))
3428 return (EINVAL);
3429 rv->rcv_action_signal = 0;
3430 rv->rcv_action_recipient = NULL;
3431 rv->rcv_action_recip_pid = -1;
3432 rv->rcv_firing_time = 0;
3434 return (0);
3438 * Non-global zone version of start_init.
3440 void
3441 zone_start_init(void)
3443 proc_t *p = ttoproc(curthread);
3444 zone_t *z = p->p_zone;
3446 ASSERT(!INGLOBALZONE(curproc));
3449 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3450 * storing just the pid of init is sufficient.
3452 z->zone_proc_initpid = p->p_pid;
3455 * We maintain zone_boot_err so that we can return the cause of the
3456 * failure back to the caller of the zone_boot syscall.
3458 p->p_zone->zone_boot_err = start_init_common();
3461 * We will prevent booting zones from becoming running zones if the
3462 * global zone is shutting down.
3464 mutex_enter(&zone_status_lock);
3465 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3466 ZONE_IS_SHUTTING_DOWN) {
3468 * Make sure we are still in the booting state-- we could have
3469 * raced and already be shutting down, or even further along.
3471 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3472 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3474 mutex_exit(&zone_status_lock);
3475 /* It's gone bad, dispose of the process */
3476 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3477 mutex_enter(&p->p_lock);
3478 ASSERT(p->p_flag & SEXITLWPS);
3479 lwp_exit();
3481 } else {
3482 if (zone_status_get(z) == ZONE_IS_BOOTING)
3483 zone_status_set(z, ZONE_IS_RUNNING);
3484 mutex_exit(&zone_status_lock);
3485 /* cause the process to return to userland. */
3486 lwp_rtt();
3490 struct zsched_arg {
3491 zone_t *zone;
3492 nvlist_t *nvlist;
3496 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3497 * anything to do with scheduling, but rather with the fact that
3498 * per-zone kernel threads are parented to zsched, just like regular
3499 * kernel threads are parented to sched (p0).
3501 * zsched is also responsible for launching init for the zone.
3503 static void
3504 zsched(void *arg)
3506 struct zsched_arg *za = arg;
3507 proc_t *pp = curproc;
3508 proc_t *initp = proc_init;
3509 zone_t *zone = za->zone;
3510 cred_t *cr, *oldcred;
3511 rctl_set_t *set;
3512 rctl_alloc_gp_t *gp;
3513 contract_t *ct = NULL;
3514 task_t *tk, *oldtk;
3515 rctl_entity_p_t e;
3516 kproject_t *pj;
3518 nvlist_t *nvl = za->nvlist;
3519 nvpair_t *nvp = NULL;
3521 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3522 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3523 PTOU(pp)->u_argc = 0;
3524 PTOU(pp)->u_argv = NULL;
3525 PTOU(pp)->u_envp = NULL;
3526 closeall(P_FINFO(pp));
3529 * We are this zone's "zsched" process. As the zone isn't generally
3530 * visible yet we don't need to grab any locks before initializing its
3531 * zone_proc pointer.
3533 zone_hold(zone); /* this hold is released by zone_destroy() */
3534 zone->zone_zsched = pp;
3535 mutex_enter(&pp->p_lock);
3536 pp->p_zone = zone;
3537 mutex_exit(&pp->p_lock);
3540 * Disassociate process from its 'parent'; parent ourselves to init
3541 * (pid 1) and change other values as needed.
3543 sess_create();
3545 mutex_enter(&pidlock);
3546 proc_detach(pp);
3547 pp->p_ppid = 1;
3548 pp->p_flag |= SZONETOP;
3549 pp->p_ancpid = 1;
3550 pp->p_parent = initp;
3551 pp->p_psibling = NULL;
3552 if (initp->p_child)
3553 initp->p_child->p_psibling = pp;
3554 pp->p_sibling = initp->p_child;
3555 initp->p_child = pp;
3557 /* Decrement what newproc() incremented. */
3558 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3560 * Our credentials are about to become kcred-like, so we don't care
3561 * about the caller's ruid.
3563 upcount_inc(crgetruid(kcred), zone->zone_id);
3564 mutex_exit(&pidlock);
3567 * getting out of global zone, so decrement lwp and process counts
3569 pj = pp->p_task->tk_proj;
3570 mutex_enter(&global_zone->zone_nlwps_lock);
3571 pj->kpj_nlwps -= pp->p_lwpcnt;
3572 global_zone->zone_nlwps -= pp->p_lwpcnt;
3573 pj->kpj_nprocs--;
3574 global_zone->zone_nprocs--;
3575 mutex_exit(&global_zone->zone_nlwps_lock);
3578 * Decrement locked memory counts on old zone and project.
3580 mutex_enter(&global_zone->zone_mem_lock);
3581 global_zone->zone_locked_mem -= pp->p_locked_mem;
3582 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3583 mutex_exit(&global_zone->zone_mem_lock);
3586 * Create and join a new task in project '0' of this zone.
3588 * We don't need to call holdlwps() since we know we're the only lwp in
3589 * this process.
3591 * task_join() returns with p_lock held.
3593 tk = task_create(0, zone);
3594 mutex_enter(&cpu_lock);
3595 oldtk = task_join(tk, 0);
3597 pj = pp->p_task->tk_proj;
3599 mutex_enter(&zone->zone_mem_lock);
3600 zone->zone_locked_mem += pp->p_locked_mem;
3601 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3602 mutex_exit(&zone->zone_mem_lock);
3605 * add lwp and process counts to zsched's zone, and increment
3606 * project's task and process count due to the task created in
3607 * the above task_create.
3609 mutex_enter(&zone->zone_nlwps_lock);
3610 pj->kpj_nlwps += pp->p_lwpcnt;
3611 pj->kpj_ntasks += 1;
3612 zone->zone_nlwps += pp->p_lwpcnt;
3613 pj->kpj_nprocs++;
3614 zone->zone_nprocs++;
3615 mutex_exit(&zone->zone_nlwps_lock);
3617 mutex_exit(&curproc->p_lock);
3618 mutex_exit(&cpu_lock);
3619 task_rele(oldtk);
3622 * The process was created by a process in the global zone, hence the
3623 * credentials are wrong. We might as well have kcred-ish credentials.
3625 cr = zone->zone_kcred;
3626 crhold(cr);
3627 mutex_enter(&pp->p_crlock);
3628 oldcred = pp->p_cred;
3629 pp->p_cred = cr;
3630 mutex_exit(&pp->p_crlock);
3631 crfree(oldcred);
3634 * Hold credentials again (for thread)
3636 crhold(cr);
3639 * p_lwpcnt can't change since this is a kernel process.
3641 crset(pp, cr);
3644 * Chroot
3646 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3647 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3650 * Initialize zone's rctl set.
3652 set = rctl_set_create();
3653 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3654 mutex_enter(&pp->p_lock);
3655 e.rcep_p.zone = zone;
3656 e.rcep_t = RCENTITY_ZONE;
3657 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3658 mutex_exit(&pp->p_lock);
3659 rctl_prealloc_destroy(gp);
3662 * Apply the rctls passed in to zone_create(). This is basically a list
3663 * assignment: all of the old values are removed and the new ones
3664 * inserted. That is, if an empty list is passed in, all values are
3665 * removed.
3667 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3668 rctl_dict_entry_t *rde;
3669 rctl_hndl_t hndl;
3670 char *name;
3671 nvlist_t **nvlarray;
3672 uint_t i, nelem;
3673 int error; /* For ASSERT()s */
3675 name = nvpair_name(nvp);
3676 hndl = rctl_hndl_lookup(name);
3677 ASSERT(hndl != -1);
3678 rde = rctl_dict_lookup_hndl(hndl);
3679 ASSERT(rde != NULL);
3681 for (; /* ever */; ) {
3682 rctl_val_t oval;
3684 mutex_enter(&pp->p_lock);
3685 error = rctl_local_get(hndl, NULL, &oval, pp);
3686 mutex_exit(&pp->p_lock);
3687 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3688 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3689 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3690 break;
3691 mutex_enter(&pp->p_lock);
3692 error = rctl_local_delete(hndl, &oval, pp);
3693 mutex_exit(&pp->p_lock);
3694 ASSERT(error == 0);
3696 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3697 ASSERT(error == 0);
3698 for (i = 0; i < nelem; i++) {
3699 rctl_val_t *nvalp;
3701 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3702 error = nvlist2rctlval(nvlarray[i], nvalp);
3703 ASSERT(error == 0);
3705 * rctl_local_insert can fail if the value being
3706 * inserted is a duplicate; this is OK.
3708 mutex_enter(&pp->p_lock);
3709 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3710 kmem_cache_free(rctl_val_cache, nvalp);
3711 mutex_exit(&pp->p_lock);
3715 * Tell the world that we're done setting up.
3717 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3718 * and atomically set the zone's processor set visibility. Once
3719 * we drop pool_lock() this zone will automatically get updated
3720 * to reflect any future changes to the pools configuration.
3722 * Note that after we drop the locks below (zonehash_lock in
3723 * particular) other operations such as a zone_getattr call can
3724 * now proceed and observe the zone. That is the reason for doing a
3725 * state transition to the INITIALIZED state.
3727 pool_lock();
3728 mutex_enter(&cpu_lock);
3729 mutex_enter(&zonehash_lock);
3730 zone_uniqid(zone);
3731 zone_zsd_configure(zone);
3732 if (pool_state == POOL_ENABLED)
3733 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3734 mutex_enter(&zone_status_lock);
3735 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3736 zone_status_set(zone, ZONE_IS_INITIALIZED);
3737 mutex_exit(&zone_status_lock);
3738 mutex_exit(&zonehash_lock);
3739 mutex_exit(&cpu_lock);
3740 pool_unlock();
3742 /* Now call the create callback for this key */
3743 zsd_apply_all_keys(zsd_apply_create, zone);
3745 /* The callbacks are complete. Mark ZONE_IS_READY */
3746 mutex_enter(&zone_status_lock);
3747 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3748 zone_status_set(zone, ZONE_IS_READY);
3749 mutex_exit(&zone_status_lock);
3752 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3753 * we launch init, and set the state to running.
3755 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3757 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3758 id_t cid;
3761 * Ok, this is a little complicated. We need to grab the
3762 * zone's pool's scheduling class ID; note that by now, we
3763 * are already bound to a pool if we need to be (zoneadmd
3764 * will have done that to us while we're in the READY
3765 * state). *But* the scheduling class for the zone's 'init'
3766 * must be explicitly passed to newproc, which doesn't
3767 * respect pool bindings.
3769 * We hold the pool_lock across the call to newproc() to
3770 * close the obvious race: the pool's scheduling class
3771 * could change before we manage to create the LWP with
3772 * classid 'cid'.
3774 pool_lock();
3775 if (zone->zone_defaultcid > 0)
3776 cid = zone->zone_defaultcid;
3777 else
3778 cid = pool_get_class(zone->zone_pool);
3779 if (cid == -1)
3780 cid = defaultcid;
3783 * If this fails, zone_boot will ultimately fail. The
3784 * state of the zone will be set to SHUTTING_DOWN-- userland
3785 * will have to tear down the zone, and fail, or try again.
3787 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3788 minclsyspri - 1, &ct, 0)) != 0) {
3789 mutex_enter(&zone_status_lock);
3790 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3791 mutex_exit(&zone_status_lock);
3792 } else {
3793 zone->zone_boot_time = gethrestime_sec();
3796 pool_unlock();
3800 * Wait for zone_destroy() to be called. This is what we spend
3801 * most of our life doing.
3803 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3805 if (ct)
3807 * At this point the process contract should be empty.
3808 * (Though if it isn't, it's not the end of the world.)
3810 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3813 * Allow kcred to be freed when all referring processes
3814 * (including this one) go away. We can't just do this in
3815 * zone_free because we need to wait for the zone_cred_ref to
3816 * drop to 0 before calling zone_free, and the existence of
3817 * zone_kcred will prevent that. Thus, we call crfree here to
3818 * balance the crdup in zone_create. The crhold calls earlier
3819 * in zsched will be dropped when the thread and process exit.
3821 crfree(zone->zone_kcred);
3822 zone->zone_kcred = NULL;
3824 exit(CLD_EXITED, 0);
3828 * Helper function to determine if there are any submounts of the
3829 * provided path. Used to make sure the zone doesn't "inherit" any
3830 * mounts from before it is created.
3832 static uint_t
3833 zone_mount_count(const char *rootpath)
3835 vfs_t *vfsp;
3836 uint_t count = 0;
3837 size_t rootpathlen = strlen(rootpath);
3840 * Holding zonehash_lock prevents race conditions with
3841 * vfs_list_add()/vfs_list_remove() since we serialize with
3842 * zone_find_by_path().
3844 ASSERT(MUTEX_HELD(&zonehash_lock));
3846 * The rootpath must end with a '/'
3848 ASSERT(rootpath[rootpathlen - 1] == '/');
3851 * This intentionally does not count the rootpath itself if that
3852 * happens to be a mount point.
3854 vfs_list_read_lock();
3855 vfsp = rootvfs;
3856 do {
3857 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
3858 rootpathlen) == 0)
3859 count++;
3860 vfsp = vfsp->vfs_next;
3861 } while (vfsp != rootvfs);
3862 vfs_list_unlock();
3863 return (count);
3867 * Helper function to make sure that a zone created on 'rootpath'
3868 * wouldn't end up containing other zones' rootpaths.
3870 static boolean_t
3871 zone_is_nested(const char *rootpath)
3873 zone_t *zone;
3874 size_t rootpathlen = strlen(rootpath);
3875 size_t len;
3877 ASSERT(MUTEX_HELD(&zonehash_lock));
3880 * zone_set_root() appended '/' and '\0' at the end of rootpath
3882 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
3883 (rootpath[1] == '/') && (rootpath[2] == '\0'))
3884 return (B_TRUE);
3886 for (zone = list_head(&zone_active); zone != NULL;
3887 zone = list_next(&zone_active, zone)) {
3888 if (zone == global_zone)
3889 continue;
3890 len = strlen(zone->zone_rootpath);
3891 if (strncmp(rootpath, zone->zone_rootpath,
3892 MIN(rootpathlen, len)) == 0)
3893 return (B_TRUE);
3895 return (B_FALSE);
3898 static int
3899 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
3900 size_t zone_privssz)
3902 priv_set_t *privs;
3904 if (zone_privssz < sizeof (priv_set_t))
3905 return (ENOMEM);
3907 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
3909 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
3910 kmem_free(privs, sizeof (priv_set_t));
3911 return (EFAULT);
3914 zone->zone_privset = privs;
3915 return (0);
3919 * We make creative use of nvlists to pass in rctls from userland. The list is
3920 * a list of the following structures:
3922 * (name = rctl_name, value = nvpair_list_array)
3924 * Where each element of the nvpair_list_array is of the form:
3926 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
3927 * (name = "limit", value = uint64_t),
3928 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
3930 static int
3931 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
3933 nvpair_t *nvp = NULL;
3934 nvlist_t *nvl = NULL;
3935 char *kbuf;
3936 int error;
3937 rctl_val_t rv;
3939 *nvlp = NULL;
3941 if (buflen == 0)
3942 return (0);
3944 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3945 return (ENOMEM);
3946 if (copyin(ubuf, kbuf, buflen)) {
3947 error = EFAULT;
3948 goto out;
3950 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
3952 * nvl may have been allocated/free'd, but the value set to
3953 * non-NULL, so we reset it here.
3955 nvl = NULL;
3956 error = EINVAL;
3957 goto out;
3959 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3960 rctl_dict_entry_t *rde;
3961 rctl_hndl_t hndl;
3962 nvlist_t **nvlarray;
3963 uint_t i, nelem;
3964 char *name;
3966 error = EINVAL;
3967 name = nvpair_name(nvp);
3968 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
3969 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
3970 goto out;
3972 if ((hndl = rctl_hndl_lookup(name)) == -1) {
3973 goto out;
3975 rde = rctl_dict_lookup_hndl(hndl);
3976 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3977 ASSERT(error == 0);
3978 for (i = 0; i < nelem; i++) {
3979 if (error = nvlist2rctlval(nvlarray[i], &rv))
3980 goto out;
3982 if (rctl_invalid_value(rde, &rv)) {
3983 error = EINVAL;
3984 goto out;
3987 error = 0;
3988 *nvlp = nvl;
3989 out:
3990 kmem_free(kbuf, buflen);
3991 if (error && nvl != NULL)
3992 nvlist_free(nvl);
3993 return (error);
3997 zone_create_error(int er_error, int er_ext, int *er_out) {
3998 if (er_out != NULL) {
3999 if (copyout(&er_ext, er_out, sizeof (int))) {
4000 return (set_errno(EFAULT));
4003 return (set_errno(er_error));
4006 static int
4007 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4009 ts_label_t *tsl;
4010 bslabel_t blab;
4012 /* Get label from user */
4013 if (copyin(lab, &blab, sizeof (blab)) != 0)
4014 return (EFAULT);
4015 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4016 if (tsl == NULL)
4017 return (ENOMEM);
4019 zone->zone_slabel = tsl;
4020 return (0);
4024 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4026 static int
4027 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4029 char *kbuf;
4030 char *dataset, *next;
4031 zone_dataset_t *zd;
4032 size_t len;
4034 if (ubuf == NULL || buflen == 0)
4035 return (0);
4037 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4038 return (ENOMEM);
4040 if (copyin(ubuf, kbuf, buflen) != 0) {
4041 kmem_free(kbuf, buflen);
4042 return (EFAULT);
4045 dataset = next = kbuf;
4046 for (;;) {
4047 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4049 next = strchr(dataset, ',');
4051 if (next == NULL)
4052 len = strlen(dataset);
4053 else
4054 len = next - dataset;
4056 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4057 bcopy(dataset, zd->zd_dataset, len);
4058 zd->zd_dataset[len] = '\0';
4060 list_insert_head(&zone->zone_datasets, zd);
4062 if (next == NULL)
4063 break;
4065 dataset = next + 1;
4068 kmem_free(kbuf, buflen);
4069 return (0);
4073 * System call to create/initialize a new zone named 'zone_name', rooted
4074 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4075 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4076 * with labeling set by 'match', 'doi', and 'label'.
4078 * If extended error is non-null, we may use it to return more detailed
4079 * error information.
4081 static zoneid_t
4082 zone_create(const char *zone_name, const char *zone_root,
4083 const priv_set_t *zone_privs, size_t zone_privssz,
4084 caddr_t rctlbuf, size_t rctlbufsz,
4085 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4086 int match, uint32_t doi, const bslabel_t *label,
4087 int flags)
4089 struct zsched_arg zarg;
4090 nvlist_t *rctls = NULL;
4091 proc_t *pp = curproc;
4092 zone_t *zone, *ztmp;
4093 zoneid_t zoneid;
4094 int error;
4095 int error2 = 0;
4096 char *str;
4097 cred_t *zkcr;
4098 boolean_t insert_label_hash;
4100 if (secpolicy_zone_config(CRED()) != 0)
4101 return (set_errno(EPERM));
4103 /* can't boot zone from within chroot environment */
4104 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4105 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4106 extended_error));
4108 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4109 zoneid = zone->zone_id = id_alloc(zoneid_space);
4110 zone->zone_status = ZONE_IS_UNINITIALIZED;
4111 zone->zone_pool = pool_default;
4112 zone->zone_pool_mod = gethrtime();
4113 zone->zone_psetid = ZONE_PS_INVAL;
4114 zone->zone_ncpus = 0;
4115 zone->zone_ncpus_online = 0;
4116 zone->zone_restart_init = B_TRUE;
4117 zone->zone_brand = &native_brand;
4118 zone->zone_initname = NULL;
4119 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4120 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4121 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4122 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4123 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4124 offsetof(zone_ref_t, zref_linkage));
4125 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4126 offsetof(struct zsd_entry, zsd_linkage));
4127 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4128 offsetof(zone_dataset_t, zd_linkage));
4129 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4130 offsetof(zone_dl_t, zdl_linkage));
4131 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4132 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4134 if (flags & ZCF_NET_EXCL) {
4135 zone->zone_flags |= ZF_NET_EXCL;
4138 if ((error = zone_set_name(zone, zone_name)) != 0) {
4139 zone_free(zone);
4140 return (zone_create_error(error, 0, extended_error));
4143 if ((error = zone_set_root(zone, zone_root)) != 0) {
4144 zone_free(zone);
4145 return (zone_create_error(error, 0, extended_error));
4147 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4148 zone_free(zone);
4149 return (zone_create_error(error, 0, extended_error));
4152 /* initialize node name to be the same as zone name */
4153 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4154 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4155 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4157 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4158 zone->zone_domain[0] = '\0';
4159 zone->zone_hostid = HW_INVALID_HOSTID;
4160 zone->zone_shares = 1;
4161 zone->zone_shmmax = 0;
4162 zone->zone_ipc.ipcq_shmmni = 0;
4163 zone->zone_ipc.ipcq_semmni = 0;
4164 zone->zone_ipc.ipcq_msgmni = 0;
4165 zone->zone_bootargs = NULL;
4166 zone->zone_fs_allowed = NULL;
4167 zone->zone_initname =
4168 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4169 (void) strcpy(zone->zone_initname, zone_default_initname);
4170 zone->zone_nlwps = 0;
4171 zone->zone_nlwps_ctl = INT_MAX;
4172 zone->zone_nprocs = 0;
4173 zone->zone_nprocs_ctl = INT_MAX;
4174 zone->zone_locked_mem = 0;
4175 zone->zone_locked_mem_ctl = UINT64_MAX;
4176 zone->zone_max_swap = 0;
4177 zone->zone_max_swap_ctl = UINT64_MAX;
4178 zone->zone_max_lofi = 0;
4179 zone->zone_max_lofi_ctl = UINT64_MAX;
4180 zone0.zone_lockedmem_kstat = NULL;
4181 zone0.zone_swapresv_kstat = NULL;
4184 * Zsched initializes the rctls.
4186 zone->zone_rctls = NULL;
4188 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4189 zone_free(zone);
4190 return (zone_create_error(error, 0, extended_error));
4193 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4194 zone_free(zone);
4195 return (set_errno(error));
4199 * Read in the trusted system parameters:
4200 * match flag and sensitivity label.
4202 zone->zone_match = match;
4203 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4204 /* Fail if requested to set doi to anything but system's doi */
4205 if (doi != 0 && doi != default_doi) {
4206 zone_free(zone);
4207 return (set_errno(EINVAL));
4209 /* Always apply system's doi to the zone */
4210 error = zone_set_label(zone, label, default_doi);
4211 if (error != 0) {
4212 zone_free(zone);
4213 return (set_errno(error));
4215 insert_label_hash = B_TRUE;
4216 } else {
4217 /* all zones get an admin_low label if system is not labeled */
4218 zone->zone_slabel = l_admin_low;
4219 label_hold(l_admin_low);
4220 insert_label_hash = B_FALSE;
4224 * Stop all lwps since that's what normally happens as part of fork().
4225 * This needs to happen before we grab any locks to avoid deadlock
4226 * (another lwp in the process could be waiting for the held lock).
4228 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4229 zone_free(zone);
4230 if (rctls)
4231 nvlist_free(rctls);
4232 return (zone_create_error(error, 0, extended_error));
4235 if (block_mounts() == 0) {
4236 mutex_enter(&pp->p_lock);
4237 if (curthread != pp->p_agenttp)
4238 continuelwps(pp);
4239 mutex_exit(&pp->p_lock);
4240 zone_free(zone);
4241 if (rctls)
4242 nvlist_free(rctls);
4243 return (zone_create_error(error, 0, extended_error));
4247 * Set up credential for kernel access. After this, any errors
4248 * should go through the dance in errout rather than calling
4249 * zone_free directly.
4251 zone->zone_kcred = crdup(kcred);
4252 crsetzone(zone->zone_kcred, zone);
4253 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4254 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4255 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4256 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4258 mutex_enter(&zonehash_lock);
4260 * Make sure zone doesn't already exist.
4262 * If the system and zone are labeled,
4263 * make sure no other zone exists that has the same label.
4265 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4266 (insert_label_hash &&
4267 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4268 zone_status_t status;
4270 status = zone_status_get(ztmp);
4271 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4272 error = EEXIST;
4273 else
4274 error = EBUSY;
4276 if (insert_label_hash)
4277 error2 = ZE_LABELINUSE;
4279 goto errout;
4283 * Don't allow zone creations which would cause one zone's rootpath to
4284 * be accessible from that of another (non-global) zone.
4286 if (zone_is_nested(zone->zone_rootpath)) {
4287 error = EBUSY;
4288 goto errout;
4291 ASSERT(zonecount != 0); /* check for leaks */
4292 if (zonecount + 1 > maxzones) {
4293 error = ENOMEM;
4294 goto errout;
4297 if (zone_mount_count(zone->zone_rootpath) != 0) {
4298 error = EBUSY;
4299 error2 = ZE_AREMOUNTS;
4300 goto errout;
4304 * Zone is still incomplete, but we need to drop all locks while
4305 * zsched() initializes this zone's kernel process. We
4306 * optimistically add the zone to the hashtable and associated
4307 * lists so a parallel zone_create() doesn't try to create the
4308 * same zone.
4310 zonecount++;
4311 (void) mod_hash_insert(zonehashbyid,
4312 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4313 (mod_hash_val_t)(uintptr_t)zone);
4314 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4315 (void) strcpy(str, zone->zone_name);
4316 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4317 (mod_hash_val_t)(uintptr_t)zone);
4318 if (insert_label_hash) {
4319 (void) mod_hash_insert(zonehashbylabel,
4320 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4321 zone->zone_flags |= ZF_HASHED_LABEL;
4325 * Insert into active list. At this point there are no 'hold's
4326 * on the zone, but everyone else knows not to use it, so we can
4327 * continue to use it. zsched() will do a zone_hold() if the
4328 * newproc() is successful.
4330 list_insert_tail(&zone_active, zone);
4331 mutex_exit(&zonehash_lock);
4333 zarg.zone = zone;
4334 zarg.nvlist = rctls;
4336 * The process, task, and project rctls are probably wrong;
4337 * we need an interface to get the default values of all rctls,
4338 * and initialize zsched appropriately. I'm not sure that that
4339 * makes much of a difference, though.
4341 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4342 if (error != 0) {
4344 * We need to undo all globally visible state.
4346 mutex_enter(&zonehash_lock);
4347 list_remove(&zone_active, zone);
4348 if (zone->zone_flags & ZF_HASHED_LABEL) {
4349 ASSERT(zone->zone_slabel != NULL);
4350 (void) mod_hash_destroy(zonehashbylabel,
4351 (mod_hash_key_t)zone->zone_slabel);
4353 (void) mod_hash_destroy(zonehashbyname,
4354 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4355 (void) mod_hash_destroy(zonehashbyid,
4356 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4357 ASSERT(zonecount > 1);
4358 zonecount--;
4359 goto errout;
4363 * Zone creation can't fail from now on.
4367 * Create zone kstats
4369 zone_kstat_create(zone);
4372 * Let the other lwps continue.
4374 mutex_enter(&pp->p_lock);
4375 if (curthread != pp->p_agenttp)
4376 continuelwps(pp);
4377 mutex_exit(&pp->p_lock);
4380 * Wait for zsched to finish initializing the zone.
4382 zone_status_wait(zone, ZONE_IS_READY);
4384 * The zone is fully visible, so we can let mounts progress.
4386 resume_mounts();
4387 if (rctls)
4388 nvlist_free(rctls);
4390 return (zoneid);
4392 errout:
4393 mutex_exit(&zonehash_lock);
4395 * Let the other lwps continue.
4397 mutex_enter(&pp->p_lock);
4398 if (curthread != pp->p_agenttp)
4399 continuelwps(pp);
4400 mutex_exit(&pp->p_lock);
4402 resume_mounts();
4403 if (rctls)
4404 nvlist_free(rctls);
4406 * There is currently one reference to the zone, a cred_ref from
4407 * zone_kcred. To free the zone, we call crfree, which will call
4408 * zone_cred_rele, which will call zone_free.
4410 ASSERT(zone->zone_cred_ref == 1);
4411 ASSERT(zone->zone_kcred->cr_ref == 1);
4412 ASSERT(zone->zone_ref == 0);
4413 zkcr = zone->zone_kcred;
4414 zone->zone_kcred = NULL;
4415 crfree(zkcr); /* triggers call to zone_free */
4416 return (zone_create_error(error, error2, extended_error));
4420 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4421 * the heavy lifting. initname is the path to the program to launch
4422 * at the "top" of the zone; if this is NULL, we use the system default,
4423 * which is stored at zone_default_initname.
4425 static int
4426 zone_boot(zoneid_t zoneid)
4428 int err;
4429 zone_t *zone;
4431 if (secpolicy_zone_config(CRED()) != 0)
4432 return (set_errno(EPERM));
4433 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4434 return (set_errno(EINVAL));
4436 mutex_enter(&zonehash_lock);
4438 * Look for zone under hash lock to prevent races with calls to
4439 * zone_shutdown, zone_destroy, etc.
4441 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4442 mutex_exit(&zonehash_lock);
4443 return (set_errno(EINVAL));
4446 mutex_enter(&zone_status_lock);
4447 if (zone_status_get(zone) != ZONE_IS_READY) {
4448 mutex_exit(&zone_status_lock);
4449 mutex_exit(&zonehash_lock);
4450 return (set_errno(EINVAL));
4452 zone_status_set(zone, ZONE_IS_BOOTING);
4453 mutex_exit(&zone_status_lock);
4455 zone_hold(zone); /* so we can use the zone_t later */
4456 mutex_exit(&zonehash_lock);
4458 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4459 zone_rele(zone);
4460 return (set_errno(EINTR));
4464 * Boot (starting init) might have failed, in which case the zone
4465 * will go to the SHUTTING_DOWN state; an appropriate errno will
4466 * be placed in zone->zone_boot_err, and so we return that.
4468 err = zone->zone_boot_err;
4469 zone_rele(zone);
4470 return (err ? set_errno(err) : 0);
4474 * Kills all user processes in the zone, waiting for them all to exit
4475 * before returning.
4477 static int
4478 zone_empty(zone_t *zone)
4480 int waitstatus;
4483 * We need to drop zonehash_lock before killing all
4484 * processes, otherwise we'll deadlock with zone_find_*
4485 * which can be called from the exit path.
4487 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4488 while ((waitstatus = zone_status_timedwait_sig(zone,
4489 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4490 killall(zone->zone_id);
4493 * return EINTR if we were signaled
4495 if (waitstatus == 0)
4496 return (EINTR);
4497 return (0);
4501 * This function implements the policy for zone visibility.
4503 * In standard Solaris, a non-global zone can only see itself.
4505 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4506 * it dominates. For this test, the label of the global zone is treated as
4507 * admin_high so it is special-cased instead of being checked for dominance.
4509 * Returns true if zone attributes are viewable, false otherwise.
4511 static boolean_t
4512 zone_list_access(zone_t *zone)
4515 if (curproc->p_zone == global_zone ||
4516 curproc->p_zone == zone) {
4517 return (B_TRUE);
4518 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4519 bslabel_t *curproc_label;
4520 bslabel_t *zone_label;
4522 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4523 zone_label = label2bslabel(zone->zone_slabel);
4525 if (zone->zone_id != GLOBAL_ZONEID &&
4526 bldominates(curproc_label, zone_label)) {
4527 return (B_TRUE);
4528 } else {
4529 return (B_FALSE);
4531 } else {
4532 return (B_FALSE);
4537 * Systemcall to start the zone's halt sequence. By the time this
4538 * function successfully returns, all user processes and kernel threads
4539 * executing in it will have exited, ZSD shutdown callbacks executed,
4540 * and the zone status set to ZONE_IS_DOWN.
4542 * It is possible that the call will interrupt itself if the caller is the
4543 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4545 static int
4546 zone_shutdown(zoneid_t zoneid)
4548 int error;
4549 zone_t *zone;
4550 zone_status_t status;
4552 if (secpolicy_zone_config(CRED()) != 0)
4553 return (set_errno(EPERM));
4554 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4555 return (set_errno(EINVAL));
4558 * Block mounts so that VFS_MOUNT() can get an accurate view of
4559 * the zone's status with regards to ZONE_IS_SHUTTING down.
4561 * e.g. NFS can fail the mount if it determines that the zone
4562 * has already begun the shutdown sequence.
4564 if (block_mounts() == 0)
4565 return (set_errno(EINTR));
4566 mutex_enter(&zonehash_lock);
4568 * Look for zone under hash lock to prevent races with other
4569 * calls to zone_shutdown and zone_destroy.
4571 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4572 mutex_exit(&zonehash_lock);
4573 resume_mounts();
4574 return (set_errno(EINVAL));
4576 mutex_enter(&zone_status_lock);
4577 status = zone_status_get(zone);
4579 * Fail if the zone isn't fully initialized yet.
4581 if (status < ZONE_IS_READY) {
4582 mutex_exit(&zone_status_lock);
4583 mutex_exit(&zonehash_lock);
4584 resume_mounts();
4585 return (set_errno(EINVAL));
4588 * If conditions required for zone_shutdown() to return have been met,
4589 * return success.
4591 if (status >= ZONE_IS_DOWN) {
4592 mutex_exit(&zone_status_lock);
4593 mutex_exit(&zonehash_lock);
4594 resume_mounts();
4595 return (0);
4598 * If zone_shutdown() hasn't been called before, go through the motions.
4599 * If it has, there's nothing to do but wait for the kernel threads to
4600 * drain.
4602 if (status < ZONE_IS_EMPTY) {
4603 uint_t ntasks;
4605 mutex_enter(&zone->zone_lock);
4606 if ((ntasks = zone->zone_ntasks) != 1) {
4608 * There's still stuff running.
4610 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4612 mutex_exit(&zone->zone_lock);
4613 if (ntasks == 1) {
4615 * The only way to create another task is through
4616 * zone_enter(), which will block until we drop
4617 * zonehash_lock. The zone is empty.
4619 if (zone->zone_kthreads == NULL) {
4621 * Skip ahead to ZONE_IS_DOWN
4623 zone_status_set(zone, ZONE_IS_DOWN);
4624 } else {
4625 zone_status_set(zone, ZONE_IS_EMPTY);
4629 zone_hold(zone); /* so we can use the zone_t later */
4630 mutex_exit(&zone_status_lock);
4631 mutex_exit(&zonehash_lock);
4632 resume_mounts();
4634 if (error = zone_empty(zone)) {
4635 zone_rele(zone);
4636 return (set_errno(error));
4639 * After the zone status goes to ZONE_IS_DOWN this zone will no
4640 * longer be notified of changes to the pools configuration, so
4641 * in order to not end up with a stale pool pointer, we point
4642 * ourselves at the default pool and remove all resource
4643 * visibility. This is especially important as the zone_t may
4644 * languish on the deathrow for a very long time waiting for
4645 * cred's to drain out.
4647 * This rebinding of the zone can happen multiple times
4648 * (presumably due to interrupted or parallel systemcalls)
4649 * without any adverse effects.
4651 if (pool_lock_intr() != 0) {
4652 zone_rele(zone);
4653 return (set_errno(EINTR));
4655 if (pool_state == POOL_ENABLED) {
4656 mutex_enter(&cpu_lock);
4657 zone_pool_set(zone, pool_default);
4659 * The zone no longer needs to be able to see any cpus.
4661 zone_pset_set(zone, ZONE_PS_INVAL);
4662 mutex_exit(&cpu_lock);
4664 pool_unlock();
4667 * ZSD shutdown callbacks can be executed multiple times, hence
4668 * it is safe to not be holding any locks across this call.
4670 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4672 mutex_enter(&zone_status_lock);
4673 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4674 zone_status_set(zone, ZONE_IS_DOWN);
4675 mutex_exit(&zone_status_lock);
4678 * Wait for kernel threads to drain.
4680 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4681 zone_rele(zone);
4682 return (set_errno(EINTR));
4686 * Zone can be become down/destroyable even if the above wait
4687 * returns EINTR, so any code added here may never execute.
4688 * (i.e. don't add code here)
4691 zone_rele(zone);
4692 return (0);
4696 * Log the specified zone's reference counts. The caller should not be
4697 * holding the zone's zone_lock.
4699 static void
4700 zone_log_refcounts(zone_t *zone)
4702 char *buffer;
4703 char *buffer_position;
4704 uint32_t buffer_size;
4705 uint32_t index;
4706 uint_t ref;
4707 uint_t cred_ref;
4710 * Construct a string representing the subsystem-specific reference
4711 * counts. The counts are printed in ascending order by index into the
4712 * zone_t::zone_subsys_ref array. The list will be surrounded by
4713 * square brackets [] and will only contain nonzero reference counts.
4715 * The buffer will hold two square bracket characters plus ten digits,
4716 * one colon, one space, one comma, and some characters for a
4717 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4718 * bit integers have at most ten decimal digits.) The last
4719 * reference count's comma is replaced by the closing square
4720 * bracket and a NULL character to terminate the string.
4722 * NOTE: We have to grab the zone's zone_lock to create a consistent
4723 * snapshot of the zone's reference counters.
4725 * First, figure out how much space the string buffer will need.
4726 * The buffer's size is stored in buffer_size.
4728 buffer_size = 2; /* for the square brackets */
4729 mutex_enter(&zone->zone_lock);
4730 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4731 ref = zone->zone_ref;
4732 cred_ref = zone->zone_cred_ref;
4733 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4734 if (zone->zone_subsys_ref[index] != 0)
4735 buffer_size += strlen(zone_ref_subsys_names[index]) +
4737 if (buffer_size == 2) {
4739 * No subsystems had nonzero reference counts. Don't bother
4740 * with allocating a buffer; just log the general-purpose and
4741 * credential reference counts.
4743 mutex_exit(&zone->zone_lock);
4744 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4745 "Zone '%s' (ID: %d) is shutting down, but %u zone "
4746 "references and %u credential references are still extant",
4747 zone->zone_name, zone->zone_id, ref, cred_ref);
4748 return;
4752 * buffer_size contains the exact number of characters that the
4753 * buffer will need. Allocate the buffer and fill it with nonzero
4754 * subsystem-specific reference counts. Surround the results with
4755 * square brackets afterwards.
4757 buffer = kmem_alloc(buffer_size, KM_SLEEP);
4758 buffer_position = &buffer[1];
4759 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4761 * NOTE: The DDI's version of sprintf() returns a pointer to
4762 * the modified buffer rather than the number of bytes written
4763 * (as in snprintf(3C)). This is unfortunate and annoying.
4764 * Therefore, we'll use snprintf() with INT_MAX to get the
4765 * number of bytes written. Using INT_MAX is safe because
4766 * the buffer is perfectly sized for the data: we'll never
4767 * overrun the buffer.
4769 if (zone->zone_subsys_ref[index] != 0)
4770 buffer_position += snprintf(buffer_position, INT_MAX,
4771 "%s: %u,", zone_ref_subsys_names[index],
4772 zone->zone_subsys_ref[index]);
4774 mutex_exit(&zone->zone_lock);
4775 buffer[0] = '[';
4776 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4777 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4778 buffer_position[-1] = ']';
4781 * Log the reference counts and free the message buffer.
4783 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4784 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4785 "%u credential references are still extant %s", zone->zone_name,
4786 zone->zone_id, ref, cred_ref, buffer);
4787 kmem_free(buffer, buffer_size);
4791 * Systemcall entry point to finalize the zone halt process. The caller
4792 * must have already successfully called zone_shutdown().
4794 * Upon successful completion, the zone will have been fully destroyed:
4795 * zsched will have exited, destructor callbacks executed, and the zone
4796 * removed from the list of active zones.
4798 static int
4799 zone_destroy(zoneid_t zoneid)
4801 uint64_t uniqid;
4802 zone_t *zone;
4803 zone_status_t status;
4804 clock_t wait_time;
4805 boolean_t log_refcounts;
4807 if (secpolicy_zone_config(CRED()) != 0)
4808 return (set_errno(EPERM));
4809 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4810 return (set_errno(EINVAL));
4812 mutex_enter(&zonehash_lock);
4814 * Look for zone under hash lock to prevent races with other
4815 * calls to zone_destroy.
4817 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4818 mutex_exit(&zonehash_lock);
4819 return (set_errno(EINVAL));
4822 if (zone_mount_count(zone->zone_rootpath) != 0) {
4823 mutex_exit(&zonehash_lock);
4824 return (set_errno(EBUSY));
4826 mutex_enter(&zone_status_lock);
4827 status = zone_status_get(zone);
4828 if (status < ZONE_IS_DOWN) {
4829 mutex_exit(&zone_status_lock);
4830 mutex_exit(&zonehash_lock);
4831 return (set_errno(EBUSY));
4832 } else if (status == ZONE_IS_DOWN) {
4833 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
4835 mutex_exit(&zone_status_lock);
4836 zone_hold(zone);
4837 mutex_exit(&zonehash_lock);
4840 * wait for zsched to exit
4842 zone_status_wait(zone, ZONE_IS_DEAD);
4843 zone_zsd_callbacks(zone, ZSD_DESTROY);
4844 zone->zone_netstack = NULL;
4845 uniqid = zone->zone_uniqid;
4846 zone_rele(zone);
4847 zone = NULL; /* potentially free'd */
4849 log_refcounts = B_FALSE;
4850 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
4851 mutex_enter(&zonehash_lock);
4852 for (; /* ever */; ) {
4853 boolean_t unref;
4854 boolean_t refs_have_been_logged;
4856 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
4857 zone->zone_uniqid != uniqid) {
4859 * The zone has gone away. Necessary conditions
4860 * are met, so we return success.
4862 mutex_exit(&zonehash_lock);
4863 return (0);
4865 mutex_enter(&zone->zone_lock);
4866 unref = ZONE_IS_UNREF(zone);
4867 refs_have_been_logged = (zone->zone_flags &
4868 ZF_REFCOUNTS_LOGGED);
4869 mutex_exit(&zone->zone_lock);
4870 if (unref) {
4872 * There is only one reference to the zone -- that
4873 * added when the zone was added to the hashtables --
4874 * and things will remain this way until we drop
4875 * zonehash_lock... we can go ahead and cleanup the
4876 * zone.
4878 break;
4882 * Wait for zone_rele_common() or zone_cred_rele() to signal
4883 * zone_destroy_cv. zone_destroy_cv is signaled only when
4884 * some zone's general-purpose reference count reaches one.
4885 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
4886 * on zone_destroy_cv, then log the zone's reference counts and
4887 * continue to wait for zone_rele() and zone_cred_rele().
4889 if (!refs_have_been_logged) {
4890 if (!log_refcounts) {
4892 * This thread hasn't timed out waiting on
4893 * zone_destroy_cv yet. Wait wait_time clock
4894 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
4895 * seconds) for the zone's references to clear.
4897 ASSERT(wait_time > 0);
4898 wait_time = cv_reltimedwait_sig(
4899 &zone_destroy_cv, &zonehash_lock, wait_time,
4900 TR_SEC);
4901 if (wait_time > 0) {
4903 * A thread in zone_rele() or
4904 * zone_cred_rele() signaled
4905 * zone_destroy_cv before this thread's
4906 * wait timed out. The zone might have
4907 * only one reference left; find out!
4909 continue;
4910 } else if (wait_time == 0) {
4911 /* The thread's process was signaled. */
4912 mutex_exit(&zonehash_lock);
4913 return (set_errno(EINTR));
4917 * The thread timed out while waiting on
4918 * zone_destroy_cv. Even though the thread
4919 * timed out, it has to check whether another
4920 * thread woke up from zone_destroy_cv and
4921 * destroyed the zone.
4923 * If the zone still exists and has more than
4924 * one unreleased general-purpose reference,
4925 * then log the zone's reference counts.
4927 log_refcounts = B_TRUE;
4928 continue;
4932 * The thread already timed out on zone_destroy_cv while
4933 * waiting for subsystems to release the zone's last
4934 * general-purpose references. Log the zone's reference
4935 * counts and wait indefinitely on zone_destroy_cv.
4937 zone_log_refcounts(zone);
4939 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
4940 /* The thread's process was signaled. */
4941 mutex_exit(&zonehash_lock);
4942 return (set_errno(EINTR));
4947 * Remove CPU cap for this zone now since we're not going to
4948 * fail below this point.
4950 cpucaps_zone_remove(zone);
4952 /* Get rid of the zone's kstats */
4953 zone_kstat_delete(zone);
4955 /* remove the pfexecd doors */
4956 if (zone->zone_pfexecd != NULL) {
4957 klpd_freelist(&zone->zone_pfexecd);
4958 zone->zone_pfexecd = NULL;
4961 /* free brand specific data */
4962 if (ZONE_IS_BRANDED(zone))
4963 ZBROP(zone)->b_free_brand_data(zone);
4965 /* Say goodbye to brand framework. */
4966 brand_unregister_zone(zone->zone_brand);
4969 * It is now safe to let the zone be recreated; remove it from the
4970 * lists. The memory will not be freed until the last cred
4971 * reference goes away.
4973 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
4974 zonecount--;
4975 /* remove from active list and hash tables */
4976 list_remove(&zone_active, zone);
4977 (void) mod_hash_destroy(zonehashbyname,
4978 (mod_hash_key_t)zone->zone_name);
4979 (void) mod_hash_destroy(zonehashbyid,
4980 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4981 if (zone->zone_flags & ZF_HASHED_LABEL)
4982 (void) mod_hash_destroy(zonehashbylabel,
4983 (mod_hash_key_t)zone->zone_slabel);
4984 mutex_exit(&zonehash_lock);
4987 * Release the root vnode; we're not using it anymore. Nor should any
4988 * other thread that might access it exist.
4990 if (zone->zone_rootvp != NULL) {
4991 VN_RELE(zone->zone_rootvp);
4992 zone->zone_rootvp = NULL;
4995 /* add to deathrow list */
4996 mutex_enter(&zone_deathrow_lock);
4997 list_insert_tail(&zone_deathrow, zone);
4998 mutex_exit(&zone_deathrow_lock);
5001 * Drop last reference (which was added by zsched()), this will
5002 * free the zone unless there are outstanding cred references.
5004 zone_rele(zone);
5005 return (0);
5009 * Systemcall entry point for zone_getattr(2).
5011 static ssize_t
5012 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5014 size_t size;
5015 int error = 0, err;
5016 zone_t *zone;
5017 char *zonepath;
5018 char *outstr;
5019 zone_status_t zone_status;
5020 pid_t initpid;
5021 boolean_t global = (curzone == global_zone);
5022 boolean_t inzone = (curzone->zone_id == zoneid);
5023 ushort_t flags;
5024 zone_net_data_t *zbuf;
5026 mutex_enter(&zonehash_lock);
5027 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5028 mutex_exit(&zonehash_lock);
5029 return (set_errno(EINVAL));
5031 zone_status = zone_status_get(zone);
5032 if (zone_status < ZONE_IS_INITIALIZED) {
5033 mutex_exit(&zonehash_lock);
5034 return (set_errno(EINVAL));
5036 zone_hold(zone);
5037 mutex_exit(&zonehash_lock);
5040 * If not in the global zone, don't show information about other zones,
5041 * unless the system is labeled and the local zone's label dominates
5042 * the other zone.
5044 if (!zone_list_access(zone)) {
5045 zone_rele(zone);
5046 return (set_errno(EINVAL));
5049 switch (attr) {
5050 case ZONE_ATTR_ROOT:
5051 if (global) {
5053 * Copy the path to trim the trailing "/" (except for
5054 * the global zone).
5056 if (zone != global_zone)
5057 size = zone->zone_rootpathlen - 1;
5058 else
5059 size = zone->zone_rootpathlen;
5060 zonepath = kmem_alloc(size, KM_SLEEP);
5061 bcopy(zone->zone_rootpath, zonepath, size);
5062 zonepath[size - 1] = '\0';
5063 } else {
5064 if (inzone || !is_system_labeled()) {
5066 * Caller is not in the global zone.
5067 * if the query is on the current zone
5068 * or the system is not labeled,
5069 * just return faked-up path for current zone.
5071 zonepath = "/";
5072 size = 2;
5073 } else {
5075 * Return related path for current zone.
5077 int prefix_len = strlen(zone_prefix);
5078 int zname_len = strlen(zone->zone_name);
5080 size = prefix_len + zname_len + 1;
5081 zonepath = kmem_alloc(size, KM_SLEEP);
5082 bcopy(zone_prefix, zonepath, prefix_len);
5083 bcopy(zone->zone_name, zonepath +
5084 prefix_len, zname_len);
5085 zonepath[size - 1] = '\0';
5088 if (bufsize > size)
5089 bufsize = size;
5090 if (buf != NULL) {
5091 err = copyoutstr(zonepath, buf, bufsize, NULL);
5092 if (err != 0 && err != ENAMETOOLONG)
5093 error = EFAULT;
5095 if (global || (is_system_labeled() && !inzone))
5096 kmem_free(zonepath, size);
5097 break;
5099 case ZONE_ATTR_NAME:
5100 size = strlen(zone->zone_name) + 1;
5101 if (bufsize > size)
5102 bufsize = size;
5103 if (buf != NULL) {
5104 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5105 if (err != 0 && err != ENAMETOOLONG)
5106 error = EFAULT;
5108 break;
5110 case ZONE_ATTR_STATUS:
5112 * Since we're not holding zonehash_lock, the zone status
5113 * may be anything; leave it up to userland to sort it out.
5115 size = sizeof (zone_status);
5116 if (bufsize > size)
5117 bufsize = size;
5118 zone_status = zone_status_get(zone);
5119 if (buf != NULL &&
5120 copyout(&zone_status, buf, bufsize) != 0)
5121 error = EFAULT;
5122 break;
5123 case ZONE_ATTR_FLAGS:
5124 size = sizeof (zone->zone_flags);
5125 if (bufsize > size)
5126 bufsize = size;
5127 flags = zone->zone_flags;
5128 if (buf != NULL &&
5129 copyout(&flags, buf, bufsize) != 0)
5130 error = EFAULT;
5131 break;
5132 case ZONE_ATTR_PRIVSET:
5133 size = sizeof (priv_set_t);
5134 if (bufsize > size)
5135 bufsize = size;
5136 if (buf != NULL &&
5137 copyout(zone->zone_privset, buf, bufsize) != 0)
5138 error = EFAULT;
5139 break;
5140 case ZONE_ATTR_UNIQID:
5141 size = sizeof (zone->zone_uniqid);
5142 if (bufsize > size)
5143 bufsize = size;
5144 if (buf != NULL &&
5145 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5146 error = EFAULT;
5147 break;
5148 case ZONE_ATTR_POOLID:
5150 pool_t *pool;
5151 poolid_t poolid;
5153 if (pool_lock_intr() != 0) {
5154 error = EINTR;
5155 break;
5157 pool = zone_pool_get(zone);
5158 poolid = pool->pool_id;
5159 pool_unlock();
5160 size = sizeof (poolid);
5161 if (bufsize > size)
5162 bufsize = size;
5163 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5164 error = EFAULT;
5166 break;
5167 case ZONE_ATTR_SLBL:
5168 size = sizeof (bslabel_t);
5169 if (bufsize > size)
5170 bufsize = size;
5171 if (zone->zone_slabel == NULL)
5172 error = EINVAL;
5173 else if (buf != NULL &&
5174 copyout(label2bslabel(zone->zone_slabel), buf,
5175 bufsize) != 0)
5176 error = EFAULT;
5177 break;
5178 case ZONE_ATTR_INITPID:
5179 size = sizeof (initpid);
5180 if (bufsize > size)
5181 bufsize = size;
5182 initpid = zone->zone_proc_initpid;
5183 if (initpid == -1) {
5184 error = ESRCH;
5185 break;
5187 if (buf != NULL &&
5188 copyout(&initpid, buf, bufsize) != 0)
5189 error = EFAULT;
5190 break;
5191 case ZONE_ATTR_BRAND:
5192 size = strlen(zone->zone_brand->b_name) + 1;
5194 if (bufsize > size)
5195 bufsize = size;
5196 if (buf != NULL) {
5197 err = copyoutstr(zone->zone_brand->b_name, buf,
5198 bufsize, NULL);
5199 if (err != 0 && err != ENAMETOOLONG)
5200 error = EFAULT;
5202 break;
5203 case ZONE_ATTR_INITNAME:
5204 size = strlen(zone->zone_initname) + 1;
5205 if (bufsize > size)
5206 bufsize = size;
5207 if (buf != NULL) {
5208 err = copyoutstr(zone->zone_initname, buf, bufsize,
5209 NULL);
5210 if (err != 0 && err != ENAMETOOLONG)
5211 error = EFAULT;
5213 break;
5214 case ZONE_ATTR_BOOTARGS:
5215 if (zone->zone_bootargs == NULL)
5216 outstr = "";
5217 else
5218 outstr = zone->zone_bootargs;
5219 size = strlen(outstr) + 1;
5220 if (bufsize > size)
5221 bufsize = size;
5222 if (buf != NULL) {
5223 err = copyoutstr(outstr, buf, bufsize, NULL);
5224 if (err != 0 && err != ENAMETOOLONG)
5225 error = EFAULT;
5227 break;
5228 case ZONE_ATTR_PHYS_MCAP:
5229 size = sizeof (zone->zone_phys_mcap);
5230 if (bufsize > size)
5231 bufsize = size;
5232 if (buf != NULL &&
5233 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5234 error = EFAULT;
5235 break;
5236 case ZONE_ATTR_SCHED_CLASS:
5237 mutex_enter(&class_lock);
5239 if (zone->zone_defaultcid >= loaded_classes)
5240 outstr = "";
5241 else
5242 outstr = sclass[zone->zone_defaultcid].cl_name;
5243 size = strlen(outstr) + 1;
5244 if (bufsize > size)
5245 bufsize = size;
5246 if (buf != NULL) {
5247 err = copyoutstr(outstr, buf, bufsize, NULL);
5248 if (err != 0 && err != ENAMETOOLONG)
5249 error = EFAULT;
5252 mutex_exit(&class_lock);
5253 break;
5254 case ZONE_ATTR_HOSTID:
5255 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5256 bufsize == sizeof (zone->zone_hostid)) {
5257 size = sizeof (zone->zone_hostid);
5258 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5259 bufsize) != 0)
5260 error = EFAULT;
5261 } else {
5262 error = EINVAL;
5264 break;
5265 case ZONE_ATTR_FS_ALLOWED:
5266 if (zone->zone_fs_allowed == NULL)
5267 outstr = "";
5268 else
5269 outstr = zone->zone_fs_allowed;
5270 size = strlen(outstr) + 1;
5271 if (bufsize > size)
5272 bufsize = size;
5273 if (buf != NULL) {
5274 err = copyoutstr(outstr, buf, bufsize, NULL);
5275 if (err != 0 && err != ENAMETOOLONG)
5276 error = EFAULT;
5278 break;
5279 case ZONE_ATTR_NETWORK:
5280 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5281 if (copyin(buf, zbuf, bufsize) != 0) {
5282 error = EFAULT;
5283 } else {
5284 error = zone_get_network(zoneid, zbuf);
5285 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5286 error = EFAULT;
5288 kmem_free(zbuf, bufsize);
5289 break;
5290 default:
5291 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5292 size = bufsize;
5293 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5294 } else {
5295 error = EINVAL;
5298 zone_rele(zone);
5300 if (error)
5301 return (set_errno(error));
5302 return ((ssize_t)size);
5306 * Systemcall entry point for zone_setattr(2).
5308 /*ARGSUSED*/
5309 static int
5310 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5312 zone_t *zone;
5313 zone_status_t zone_status;
5314 int err = -1;
5315 zone_net_data_t *zbuf;
5317 if (secpolicy_zone_config(CRED()) != 0)
5318 return (set_errno(EPERM));
5321 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5322 * global zone.
5324 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5325 return (set_errno(EINVAL));
5328 mutex_enter(&zonehash_lock);
5329 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5330 mutex_exit(&zonehash_lock);
5331 return (set_errno(EINVAL));
5333 zone_hold(zone);
5334 mutex_exit(&zonehash_lock);
5337 * At present most attributes can only be set on non-running,
5338 * non-global zones.
5340 zone_status = zone_status_get(zone);
5341 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5342 err = EINVAL;
5343 goto done;
5346 switch (attr) {
5347 case ZONE_ATTR_INITNAME:
5348 err = zone_set_initname(zone, (const char *)buf);
5349 break;
5350 case ZONE_ATTR_BOOTARGS:
5351 err = zone_set_bootargs(zone, (const char *)buf);
5352 break;
5353 case ZONE_ATTR_BRAND:
5354 err = zone_set_brand(zone, (const char *)buf);
5355 break;
5356 case ZONE_ATTR_FS_ALLOWED:
5357 err = zone_set_fs_allowed(zone, (const char *)buf);
5358 break;
5359 case ZONE_ATTR_PHYS_MCAP:
5360 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5361 break;
5362 case ZONE_ATTR_SCHED_CLASS:
5363 err = zone_set_sched_class(zone, (const char *)buf);
5364 break;
5365 case ZONE_ATTR_HOSTID:
5366 if (bufsize == sizeof (zone->zone_hostid)) {
5367 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5368 err = 0;
5369 else
5370 err = EFAULT;
5371 } else {
5372 err = EINVAL;
5374 break;
5375 case ZONE_ATTR_NETWORK:
5376 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5377 err = EINVAL;
5378 break;
5380 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5381 if (copyin(buf, zbuf, bufsize) != 0) {
5382 kmem_free(zbuf, bufsize);
5383 err = EFAULT;
5384 break;
5386 err = zone_set_network(zoneid, zbuf);
5387 kmem_free(zbuf, bufsize);
5388 break;
5389 default:
5390 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5391 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5392 else
5393 err = EINVAL;
5396 done:
5397 zone_rele(zone);
5398 ASSERT(err != -1);
5399 return (err != 0 ? set_errno(err) : 0);
5403 * Return zero if the process has at least one vnode mapped in to its
5404 * address space which shouldn't be allowed to change zones.
5406 * Also return zero if the process has any shared mappings which reserve
5407 * swap. This is because the counting for zone.max-swap does not allow swap
5408 * reservation to be shared between zones. zone swap reservation is counted
5409 * on zone->zone_max_swap.
5411 static int
5412 as_can_change_zones(void)
5414 proc_t *pp = curproc;
5415 struct seg *seg;
5416 struct as *as = pp->p_as;
5417 vnode_t *vp;
5418 int allow = 1;
5420 ASSERT(pp->p_as != &kas);
5421 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
5422 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5425 * Cannot enter zone with shared anon memory which
5426 * reserves swap. See comment above.
5428 if (seg_can_change_zones(seg) == B_FALSE) {
5429 allow = 0;
5430 break;
5433 * if we can't get a backing vnode for this segment then skip
5434 * it.
5436 vp = NULL;
5437 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5438 continue;
5439 if (!vn_can_change_zones(vp)) { /* bail on first match */
5440 allow = 0;
5441 break;
5444 AS_LOCK_EXIT(as, &as->a_lock);
5445 return (allow);
5449 * Count swap reserved by curproc's address space
5451 static size_t
5452 as_swresv(void)
5454 proc_t *pp = curproc;
5455 struct seg *seg;
5456 struct as *as = pp->p_as;
5457 size_t swap = 0;
5459 ASSERT(pp->p_as != &kas);
5460 ASSERT(AS_WRITE_HELD(as, &as->a_lock));
5461 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5462 swap += seg_swresv(seg);
5464 return (swap);
5468 * Systemcall entry point for zone_enter().
5470 * The current process is injected into said zone. In the process
5471 * it will change its project membership, privileges, rootdir/cwd,
5472 * zone-wide rctls, and pool association to match those of the zone.
5474 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5475 * state will transition it to ZONE_IS_RUNNING. Processes may only
5476 * enter a zone that is "ready" or "running".
5478 static int
5479 zone_enter(zoneid_t zoneid)
5481 zone_t *zone;
5482 vnode_t *vp;
5483 proc_t *pp = curproc;
5484 contract_t *ct;
5485 cont_process_t *ctp;
5486 task_t *tk, *oldtk;
5487 kproject_t *zone_proj0;
5488 cred_t *cr, *newcr;
5489 pool_t *oldpool, *newpool;
5490 sess_t *sp;
5491 uid_t uid;
5492 zone_status_t status;
5493 int err = 0;
5494 rctl_entity_p_t e;
5495 size_t swap;
5496 kthread_id_t t;
5498 if (secpolicy_zone_config(CRED()) != 0)
5499 return (set_errno(EPERM));
5500 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5501 return (set_errno(EINVAL));
5504 * Stop all lwps so we don't need to hold a lock to look at
5505 * curproc->p_zone. This needs to happen before we grab any
5506 * locks to avoid deadlock (another lwp in the process could
5507 * be waiting for the held lock).
5509 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5510 return (set_errno(EINTR));
5513 * Make sure we're not changing zones with files open or mapped in
5514 * to our address space which shouldn't be changing zones.
5516 if (!files_can_change_zones()) {
5517 err = EBADF;
5518 goto out;
5520 if (!as_can_change_zones()) {
5521 err = EFAULT;
5522 goto out;
5525 mutex_enter(&zonehash_lock);
5526 if (pp->p_zone != global_zone) {
5527 mutex_exit(&zonehash_lock);
5528 err = EINVAL;
5529 goto out;
5532 zone = zone_find_all_by_id(zoneid);
5533 if (zone == NULL) {
5534 mutex_exit(&zonehash_lock);
5535 err = EINVAL;
5536 goto out;
5540 * To prevent processes in a zone from holding contracts on
5541 * extrazonal resources, and to avoid process contract
5542 * memberships which span zones, contract holders and processes
5543 * which aren't the sole members of their encapsulating process
5544 * contracts are not allowed to zone_enter.
5546 ctp = pp->p_ct_process;
5547 ct = &ctp->conp_contract;
5548 mutex_enter(&ct->ct_lock);
5549 mutex_enter(&pp->p_lock);
5550 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5551 mutex_exit(&pp->p_lock);
5552 mutex_exit(&ct->ct_lock);
5553 mutex_exit(&zonehash_lock);
5554 err = EINVAL;
5555 goto out;
5559 * Moreover, we don't allow processes whose encapsulating
5560 * process contracts have inherited extrazonal contracts.
5561 * While it would be easier to eliminate all process contracts
5562 * with inherited contracts, we need to be able to give a
5563 * restarted init (or other zone-penetrating process) its
5564 * predecessor's contracts.
5566 if (ctp->conp_ninherited != 0) {
5567 contract_t *next;
5568 for (next = list_head(&ctp->conp_inherited); next;
5569 next = list_next(&ctp->conp_inherited, next)) {
5570 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5571 mutex_exit(&pp->p_lock);
5572 mutex_exit(&ct->ct_lock);
5573 mutex_exit(&zonehash_lock);
5574 err = EINVAL;
5575 goto out;
5580 mutex_exit(&pp->p_lock);
5581 mutex_exit(&ct->ct_lock);
5583 status = zone_status_get(zone);
5584 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5586 * Can't join
5588 mutex_exit(&zonehash_lock);
5589 err = EINVAL;
5590 goto out;
5594 * Make sure new priv set is within the permitted set for caller
5596 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5597 mutex_exit(&zonehash_lock);
5598 err = EPERM;
5599 goto out;
5602 * We want to momentarily drop zonehash_lock while we optimistically
5603 * bind curproc to the pool it should be running in. This is safe
5604 * since the zone can't disappear (we have a hold on it).
5606 zone_hold(zone);
5607 mutex_exit(&zonehash_lock);
5610 * Grab pool_lock to keep the pools configuration from changing
5611 * and to stop ourselves from getting rebound to another pool
5612 * until we join the zone.
5614 if (pool_lock_intr() != 0) {
5615 zone_rele(zone);
5616 err = EINTR;
5617 goto out;
5619 ASSERT(secpolicy_pool(CRED()) == 0);
5621 * Bind ourselves to the pool currently associated with the zone.
5623 oldpool = curproc->p_pool;
5624 newpool = zone_pool_get(zone);
5625 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5626 (err = pool_do_bind(newpool, P_PID, P_MYID,
5627 POOL_BIND_ALL)) != 0) {
5628 pool_unlock();
5629 zone_rele(zone);
5630 goto out;
5634 * Grab cpu_lock now; we'll need it later when we call
5635 * task_join().
5637 mutex_enter(&cpu_lock);
5638 mutex_enter(&zonehash_lock);
5640 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5642 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5644 * Can't join anymore.
5646 mutex_exit(&zonehash_lock);
5647 mutex_exit(&cpu_lock);
5648 if (pool_state == POOL_ENABLED &&
5649 newpool != oldpool)
5650 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5651 POOL_BIND_ALL);
5652 pool_unlock();
5653 zone_rele(zone);
5654 err = EINVAL;
5655 goto out;
5659 * a_lock must be held while transfering locked memory and swap
5660 * reservation from the global zone to the non global zone because
5661 * asynchronous faults on the processes' address space can lock
5662 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5663 * segments respectively.
5665 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5666 swap = as_swresv();
5667 mutex_enter(&pp->p_lock);
5668 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5669 /* verify that we do not exceed and task or lwp limits */
5670 mutex_enter(&zone->zone_nlwps_lock);
5671 /* add new lwps to zone and zone's proj0 */
5672 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5673 zone->zone_nlwps += pp->p_lwpcnt;
5674 /* add 1 task to zone's proj0 */
5675 zone_proj0->kpj_ntasks += 1;
5677 zone_proj0->kpj_nprocs++;
5678 zone->zone_nprocs++;
5679 mutex_exit(&zone->zone_nlwps_lock);
5681 mutex_enter(&zone->zone_mem_lock);
5682 zone->zone_locked_mem += pp->p_locked_mem;
5683 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5684 zone->zone_max_swap += swap;
5685 mutex_exit(&zone->zone_mem_lock);
5687 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5688 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5689 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5691 /* remove lwps and process from proc's old zone and old project */
5692 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5693 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5694 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5695 pp->p_task->tk_proj->kpj_nprocs--;
5696 pp->p_zone->zone_nprocs--;
5697 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5699 mutex_enter(&pp->p_zone->zone_mem_lock);
5700 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5701 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5702 pp->p_zone->zone_max_swap -= swap;
5703 mutex_exit(&pp->p_zone->zone_mem_lock);
5705 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5706 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5707 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5709 pp->p_flag |= SZONETOP;
5710 pp->p_zone = zone;
5711 mutex_exit(&pp->p_lock);
5712 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5715 * Joining the zone cannot fail from now on.
5717 * This means that a lot of the following code can be commonized and
5718 * shared with zsched().
5722 * If the process contract fmri was inherited, we need to
5723 * flag this so that any contract status will not leak
5724 * extra zone information, svc_fmri in this case
5726 if (ctp->conp_svc_ctid != ct->ct_id) {
5727 mutex_enter(&ct->ct_lock);
5728 ctp->conp_svc_zone_enter = ct->ct_id;
5729 mutex_exit(&ct->ct_lock);
5733 * Reset the encapsulating process contract's zone.
5735 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5736 contract_setzuniqid(ct, zone->zone_uniqid);
5739 * Create a new task and associate the process with the project keyed
5740 * by (projid,zoneid).
5742 * We might as well be in project 0; the global zone's projid doesn't
5743 * make much sense in a zone anyhow.
5745 * This also increments zone_ntasks, and returns with p_lock held.
5747 tk = task_create(0, zone);
5748 oldtk = task_join(tk, 0);
5749 mutex_exit(&cpu_lock);
5752 * call RCTLOP_SET functions on this proc
5754 e.rcep_p.zone = zone;
5755 e.rcep_t = RCENTITY_ZONE;
5756 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5757 RCD_CALLBACK);
5758 mutex_exit(&pp->p_lock);
5761 * We don't need to hold any of zsched's locks here; not only do we know
5762 * the process and zone aren't going away, we know its session isn't
5763 * changing either.
5765 * By joining zsched's session here, we mimic the behavior in the
5766 * global zone of init's sid being the pid of sched. We extend this
5767 * to all zlogin-like zone_enter()'ing processes as well.
5769 mutex_enter(&pidlock);
5770 sp = zone->zone_zsched->p_sessp;
5771 sess_hold(zone->zone_zsched);
5772 mutex_enter(&pp->p_lock);
5773 pgexit(pp);
5774 sess_rele(pp->p_sessp, B_TRUE);
5775 pp->p_sessp = sp;
5776 pgjoin(pp, zone->zone_zsched->p_pidp);
5779 * If any threads are scheduled to be placed on zone wait queue they
5780 * should abandon the idea since the wait queue is changing.
5781 * We need to be holding pidlock & p_lock to do this.
5783 if ((t = pp->p_tlist) != NULL) {
5784 do {
5785 thread_lock(t);
5787 * Kick this thread so that he doesn't sit
5788 * on a wrong wait queue.
5790 if (ISWAITING(t))
5791 setrun_locked(t);
5793 if (t->t_schedflag & TS_ANYWAITQ)
5794 t->t_schedflag &= ~ TS_ANYWAITQ;
5796 thread_unlock(t);
5797 } while ((t = t->t_forw) != pp->p_tlist);
5801 * If there is a default scheduling class for the zone and it is not
5802 * the class we are currently in, change all of the threads in the
5803 * process to the new class. We need to be holding pidlock & p_lock
5804 * when we call parmsset so this is a good place to do it.
5806 if (zone->zone_defaultcid > 0 &&
5807 zone->zone_defaultcid != curthread->t_cid) {
5808 pcparms_t pcparms;
5810 pcparms.pc_cid = zone->zone_defaultcid;
5811 pcparms.pc_clparms[0] = 0;
5814 * If setting the class fails, we still want to enter the zone.
5816 if ((t = pp->p_tlist) != NULL) {
5817 do {
5818 (void) parmsset(&pcparms, t);
5819 } while ((t = t->t_forw) != pp->p_tlist);
5823 mutex_exit(&pp->p_lock);
5824 mutex_exit(&pidlock);
5826 mutex_exit(&zonehash_lock);
5828 * We're firmly in the zone; let pools progress.
5830 pool_unlock();
5831 task_rele(oldtk);
5833 * We don't need to retain a hold on the zone since we already
5834 * incremented zone_ntasks, so the zone isn't going anywhere.
5836 zone_rele(zone);
5839 * Chroot
5841 vp = zone->zone_rootvp;
5842 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
5843 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
5846 * Change process credentials
5848 newcr = cralloc();
5849 mutex_enter(&pp->p_crlock);
5850 cr = pp->p_cred;
5851 crcopy_to(cr, newcr);
5852 crsetzone(newcr, zone);
5853 pp->p_cred = newcr;
5856 * Restrict all process privilege sets to zone limit
5858 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
5859 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
5860 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
5861 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
5862 mutex_exit(&pp->p_crlock);
5863 crset(pp, newcr);
5866 * Adjust upcount to reflect zone entry.
5868 uid = crgetruid(newcr);
5869 mutex_enter(&pidlock);
5870 upcount_dec(uid, GLOBAL_ZONEID);
5871 upcount_inc(uid, zoneid);
5872 mutex_exit(&pidlock);
5875 * Set up core file path and content.
5877 set_core_defaults();
5879 out:
5881 * Let the other lwps continue.
5883 mutex_enter(&pp->p_lock);
5884 if (curthread != pp->p_agenttp)
5885 continuelwps(pp);
5886 mutex_exit(&pp->p_lock);
5888 return (err != 0 ? set_errno(err) : 0);
5892 * Systemcall entry point for zone_list(2).
5894 * Processes running in a (non-global) zone only see themselves.
5895 * On labeled systems, they see all zones whose label they dominate.
5897 static int
5898 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
5900 zoneid_t *zoneids;
5901 zone_t *zone, *myzone;
5902 uint_t user_nzones, real_nzones;
5903 uint_t domi_nzones;
5904 int error;
5906 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
5907 return (set_errno(EFAULT));
5909 myzone = curproc->p_zone;
5910 if (myzone != global_zone) {
5911 bslabel_t *mybslab;
5913 if (!is_system_labeled()) {
5914 /* just return current zone */
5915 real_nzones = domi_nzones = 1;
5916 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
5917 zoneids[0] = myzone->zone_id;
5918 } else {
5919 /* return all zones that are dominated */
5920 mutex_enter(&zonehash_lock);
5921 real_nzones = zonecount;
5922 domi_nzones = 0;
5923 if (real_nzones > 0) {
5924 zoneids = kmem_alloc(real_nzones *
5925 sizeof (zoneid_t), KM_SLEEP);
5926 mybslab = label2bslabel(myzone->zone_slabel);
5927 for (zone = list_head(&zone_active);
5928 zone != NULL;
5929 zone = list_next(&zone_active, zone)) {
5930 if (zone->zone_id == GLOBAL_ZONEID)
5931 continue;
5932 if (zone != myzone &&
5933 (zone->zone_flags & ZF_IS_SCRATCH))
5934 continue;
5936 * Note that a label always dominates
5937 * itself, so myzone is always included
5938 * in the list.
5940 if (bldominates(mybslab,
5941 label2bslabel(zone->zone_slabel))) {
5942 zoneids[domi_nzones++] =
5943 zone->zone_id;
5947 mutex_exit(&zonehash_lock);
5949 } else {
5950 mutex_enter(&zonehash_lock);
5951 real_nzones = zonecount;
5952 domi_nzones = 0;
5953 if (real_nzones > 0) {
5954 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
5955 KM_SLEEP);
5956 for (zone = list_head(&zone_active); zone != NULL;
5957 zone = list_next(&zone_active, zone))
5958 zoneids[domi_nzones++] = zone->zone_id;
5959 ASSERT(domi_nzones == real_nzones);
5961 mutex_exit(&zonehash_lock);
5965 * If user has allocated space for fewer entries than we found, then
5966 * return only up to his limit. Either way, tell him exactly how many
5967 * we found.
5969 if (domi_nzones < user_nzones)
5970 user_nzones = domi_nzones;
5971 error = 0;
5972 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
5973 error = EFAULT;
5974 } else if (zoneidlist != NULL && user_nzones != 0) {
5975 if (copyout(zoneids, zoneidlist,
5976 user_nzones * sizeof (zoneid_t)) != 0)
5977 error = EFAULT;
5980 if (real_nzones > 0)
5981 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
5983 if (error != 0)
5984 return (set_errno(error));
5985 else
5986 return (0);
5990 * Systemcall entry point for zone_lookup(2).
5992 * Non-global zones are only able to see themselves and (on labeled systems)
5993 * the zones they dominate.
5995 static zoneid_t
5996 zone_lookup(const char *zone_name)
5998 char *kname;
5999 zone_t *zone;
6000 zoneid_t zoneid;
6001 int err;
6003 if (zone_name == NULL) {
6004 /* return caller's zone id */
6005 return (getzoneid());
6008 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6009 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6010 kmem_free(kname, ZONENAME_MAX);
6011 return (set_errno(err));
6014 mutex_enter(&zonehash_lock);
6015 zone = zone_find_all_by_name(kname);
6016 kmem_free(kname, ZONENAME_MAX);
6018 * In a non-global zone, can only lookup global and own name.
6019 * In Trusted Extensions zone label dominance rules apply.
6021 if (zone == NULL ||
6022 zone_status_get(zone) < ZONE_IS_READY ||
6023 !zone_list_access(zone)) {
6024 mutex_exit(&zonehash_lock);
6025 return (set_errno(EINVAL));
6026 } else {
6027 zoneid = zone->zone_id;
6028 mutex_exit(&zonehash_lock);
6029 return (zoneid);
6033 static int
6034 zone_version(int *version_arg)
6036 int version = ZONE_SYSCALL_API_VERSION;
6038 if (copyout(&version, version_arg, sizeof (int)) != 0)
6039 return (set_errno(EFAULT));
6040 return (0);
6043 /* ARGSUSED */
6044 long
6045 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6047 zone_def zs;
6048 int err;
6050 switch (cmd) {
6051 case ZONE_CREATE:
6052 if (get_udatamodel() == DATAMODEL_NATIVE) {
6053 if (copyin(arg1, &zs, sizeof (zone_def))) {
6054 return (set_errno(EFAULT));
6056 } else {
6057 #ifdef _SYSCALL32_IMPL
6058 zone_def32 zs32;
6060 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6061 return (set_errno(EFAULT));
6063 zs.zone_name =
6064 (const char *)(unsigned long)zs32.zone_name;
6065 zs.zone_root =
6066 (const char *)(unsigned long)zs32.zone_root;
6067 zs.zone_privs =
6068 (const struct priv_set *)
6069 (unsigned long)zs32.zone_privs;
6070 zs.zone_privssz = zs32.zone_privssz;
6071 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6072 zs.rctlbufsz = zs32.rctlbufsz;
6073 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6074 zs.zfsbufsz = zs32.zfsbufsz;
6075 zs.extended_error =
6076 (int *)(unsigned long)zs32.extended_error;
6077 zs.match = zs32.match;
6078 zs.doi = zs32.doi;
6079 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6080 zs.flags = zs32.flags;
6081 #else
6082 panic("get_udatamodel() returned bogus result\n");
6083 #endif
6086 return (zone_create(zs.zone_name, zs.zone_root,
6087 zs.zone_privs, zs.zone_privssz,
6088 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6089 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6090 zs.extended_error, zs.match, zs.doi,
6091 zs.label, zs.flags));
6092 case ZONE_BOOT:
6093 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6094 case ZONE_DESTROY:
6095 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6096 case ZONE_GETATTR:
6097 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6098 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6099 case ZONE_SETATTR:
6100 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6101 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6102 case ZONE_ENTER:
6103 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6104 case ZONE_LIST:
6105 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6106 case ZONE_SHUTDOWN:
6107 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6108 case ZONE_LOOKUP:
6109 return (zone_lookup((const char *)arg1));
6110 case ZONE_VERSION:
6111 return (zone_version((int *)arg1));
6112 case ZONE_ADD_DATALINK:
6113 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6114 (datalink_id_t)(uintptr_t)arg2));
6115 case ZONE_DEL_DATALINK:
6116 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6117 (datalink_id_t)(uintptr_t)arg2));
6118 case ZONE_CHECK_DATALINK: {
6119 zoneid_t zoneid;
6120 boolean_t need_copyout;
6122 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6123 return (EFAULT);
6124 need_copyout = (zoneid == ALL_ZONES);
6125 err = zone_check_datalink(&zoneid,
6126 (datalink_id_t)(uintptr_t)arg2);
6127 if (err == 0 && need_copyout) {
6128 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6129 err = EFAULT;
6131 return (err == 0 ? 0 : set_errno(err));
6133 case ZONE_LIST_DATALINK:
6134 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6135 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6136 default:
6137 return (set_errno(EINVAL));
6141 struct zarg {
6142 zone_t *zone;
6143 zone_cmd_arg_t arg;
6146 static int
6147 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6149 char *buf;
6150 size_t buflen;
6151 int error;
6153 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6154 buf = kmem_alloc(buflen, KM_SLEEP);
6155 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6156 error = door_ki_open(buf, doorp);
6157 kmem_free(buf, buflen);
6158 return (error);
6161 static void
6162 zone_release_door(door_handle_t *doorp)
6164 door_ki_rele(*doorp);
6165 *doorp = NULL;
6168 static void
6169 zone_ki_call_zoneadmd(struct zarg *zargp)
6171 door_handle_t door = NULL;
6172 door_arg_t darg, save_arg;
6173 char *zone_name;
6174 size_t zone_namelen;
6175 zoneid_t zoneid;
6176 zone_t *zone;
6177 zone_cmd_arg_t arg;
6178 uint64_t uniqid;
6179 size_t size;
6180 int error;
6181 int retry;
6183 zone = zargp->zone;
6184 arg = zargp->arg;
6185 kmem_free(zargp, sizeof (*zargp));
6187 zone_namelen = strlen(zone->zone_name) + 1;
6188 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6189 bcopy(zone->zone_name, zone_name, zone_namelen);
6190 zoneid = zone->zone_id;
6191 uniqid = zone->zone_uniqid;
6193 * zoneadmd may be down, but at least we can empty out the zone.
6194 * We can ignore the return value of zone_empty() since we're called
6195 * from a kernel thread and know we won't be delivered any signals.
6197 ASSERT(curproc == &p0);
6198 (void) zone_empty(zone);
6199 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6200 zone_rele(zone);
6202 size = sizeof (arg);
6203 darg.rbuf = (char *)&arg;
6204 darg.data_ptr = (char *)&arg;
6205 darg.rsize = size;
6206 darg.data_size = size;
6207 darg.desc_ptr = NULL;
6208 darg.desc_num = 0;
6210 save_arg = darg;
6212 * Since we're not holding a reference to the zone, any number of
6213 * things can go wrong, including the zone disappearing before we get a
6214 * chance to talk to zoneadmd.
6216 for (retry = 0; /* forever */; retry++) {
6217 if (door == NULL &&
6218 (error = zone_lookup_door(zone_name, &door)) != 0) {
6219 goto next;
6221 ASSERT(door != NULL);
6223 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6224 SIZE_MAX, 0)) == 0) {
6225 break;
6227 switch (error) {
6228 case EINTR:
6229 /* FALLTHROUGH */
6230 case EAGAIN: /* process may be forking */
6232 * Back off for a bit
6234 break;
6235 case EBADF:
6236 zone_release_door(&door);
6237 if (zone_lookup_door(zone_name, &door) != 0) {
6239 * zoneadmd may be dead, but it may come back to
6240 * life later.
6242 break;
6244 break;
6245 default:
6246 cmn_err(CE_WARN,
6247 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6248 error);
6249 goto out;
6251 next:
6253 * If this isn't the same zone_t that we originally had in mind,
6254 * then this is the same as if two kadmin requests come in at
6255 * the same time: the first one wins. This means we lose, so we
6256 * bail.
6258 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6260 * Problem is solved.
6262 break;
6264 if (zone->zone_uniqid != uniqid) {
6266 * zoneid recycled
6268 zone_rele(zone);
6269 break;
6272 * We could zone_status_timedwait(), but there doesn't seem to
6273 * be much point in doing that (plus, it would mean that
6274 * zone_free() isn't called until this thread exits).
6276 zone_rele(zone);
6277 delay(hz);
6278 darg = save_arg;
6280 out:
6281 if (door != NULL) {
6282 zone_release_door(&door);
6284 kmem_free(zone_name, zone_namelen);
6285 thread_exit();
6289 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6290 * kadmin(). The caller is a process in the zone.
6292 * In order to shutdown the zone, we will hand off control to zoneadmd
6293 * (running in the global zone) via a door. We do a half-hearted job at
6294 * killing all processes in the zone, create a kernel thread to contact
6295 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6296 * a form of generation number used to let zoneadmd (as well as
6297 * zone_destroy()) know exactly which zone they're re talking about.
6300 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6302 struct zarg *zargp;
6303 zone_cmd_t zcmd;
6304 zone_t *zone;
6306 zone = curproc->p_zone;
6307 ASSERT(getzoneid() != GLOBAL_ZONEID);
6309 switch (cmd) {
6310 case A_SHUTDOWN:
6311 switch (fcn) {
6312 case AD_HALT:
6313 case AD_POWEROFF:
6314 zcmd = Z_HALT;
6315 break;
6316 case AD_BOOT:
6317 zcmd = Z_REBOOT;
6318 break;
6319 case AD_IBOOT:
6320 case AD_SBOOT:
6321 case AD_SIBOOT:
6322 case AD_NOSYNC:
6323 return (ENOTSUP);
6324 default:
6325 return (EINVAL);
6327 break;
6328 case A_REBOOT:
6329 zcmd = Z_REBOOT;
6330 break;
6331 case A_FTRACE:
6332 case A_REMOUNT:
6333 case A_FREEZE:
6334 case A_DUMP:
6335 case A_CONFIG:
6336 return (ENOTSUP);
6337 default:
6338 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6339 return (EINVAL);
6342 if (secpolicy_zone_admin(credp, B_FALSE))
6343 return (EPERM);
6344 mutex_enter(&zone_status_lock);
6347 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6348 * is in the zone.
6350 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6351 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6353 * This zone is already on its way down.
6355 mutex_exit(&zone_status_lock);
6356 return (0);
6359 * Prevent future zone_enter()s
6361 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6362 mutex_exit(&zone_status_lock);
6365 * Kill everyone now and call zoneadmd later.
6366 * zone_ki_call_zoneadmd() will do a more thorough job of this
6367 * later.
6369 killall(zone->zone_id);
6371 * Now, create the thread to contact zoneadmd and do the rest of the
6372 * work. This thread can't be created in our zone otherwise
6373 * zone_destroy() would deadlock.
6375 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6376 zargp->arg.cmd = zcmd;
6377 zargp->arg.uniqid = zone->zone_uniqid;
6378 zargp->zone = zone;
6379 (void) strcpy(zargp->arg.locale, "C");
6380 /* mdep was already copied in for us by uadmin */
6381 if (mdep != NULL)
6382 (void) strlcpy(zargp->arg.bootbuf, mdep,
6383 sizeof (zargp->arg.bootbuf));
6384 zone_hold(zone);
6386 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6387 TS_RUN, minclsyspri);
6388 exit(CLD_EXITED, 0);
6390 return (EINVAL);
6394 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6395 * status to ZONE_IS_SHUTTING_DOWN.
6397 * This function also shuts down all running zones to ensure that they won't
6398 * fork new processes.
6400 void
6401 zone_shutdown_global(void)
6403 zone_t *current_zonep;
6405 ASSERT(INGLOBALZONE(curproc));
6406 mutex_enter(&zonehash_lock);
6407 mutex_enter(&zone_status_lock);
6409 /* Modify the global zone's status first. */
6410 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6411 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6414 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6415 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6416 * could cause assertions to fail (e.g., assertions about a zone's
6417 * state during initialization, readying, or booting) or produce races.
6418 * We'll let threads continue to initialize and ready new zones: they'll
6419 * fail to boot the new zones when they see that the global zone is
6420 * shutting down.
6422 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6423 current_zonep = list_next(&zone_active, current_zonep)) {
6424 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6425 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6427 mutex_exit(&zone_status_lock);
6428 mutex_exit(&zonehash_lock);
6432 * Returns true if the named dataset is visible in the current zone.
6433 * The 'write' parameter is set to 1 if the dataset is also writable.
6436 zone_dataset_visible(const char *dataset, int *write)
6438 static int zfstype = -1;
6439 zone_dataset_t *zd;
6440 size_t len;
6441 zone_t *zone = curproc->p_zone;
6442 const char *name = NULL;
6443 vfs_t *vfsp = NULL;
6445 if (dataset[0] == '\0')
6446 return (0);
6449 * Walk the list once, looking for datasets which match exactly, or
6450 * specify a dataset underneath an exported dataset. If found, return
6451 * true and note that it is writable.
6453 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6454 zd = list_next(&zone->zone_datasets, zd)) {
6456 len = strlen(zd->zd_dataset);
6457 if (strlen(dataset) >= len &&
6458 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6459 (dataset[len] == '\0' || dataset[len] == '/' ||
6460 dataset[len] == '@')) {
6461 if (write)
6462 *write = 1;
6463 return (1);
6468 * Walk the list a second time, searching for datasets which are parents
6469 * of exported datasets. These should be visible, but read-only.
6471 * Note that we also have to support forms such as 'pool/dataset/', with
6472 * a trailing slash.
6474 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6475 zd = list_next(&zone->zone_datasets, zd)) {
6477 len = strlen(dataset);
6478 if (dataset[len - 1] == '/')
6479 len--; /* Ignore trailing slash */
6480 if (len < strlen(zd->zd_dataset) &&
6481 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6482 zd->zd_dataset[len] == '/') {
6483 if (write)
6484 *write = 0;
6485 return (1);
6490 * We reach here if the given dataset is not found in the zone_dataset
6491 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6492 * instead of delegation. For this we search for the dataset in the
6493 * zone_vfslist of this zone. If found, return true and note that it is
6494 * not writable.
6498 * Initialize zfstype if it is not initialized yet.
6500 if (zfstype == -1) {
6501 struct vfssw *vswp = vfs_getvfssw("zfs");
6502 zfstype = vswp - vfssw;
6503 vfs_unrefvfssw(vswp);
6506 vfs_list_read_lock();
6507 vfsp = zone->zone_vfslist;
6508 do {
6509 ASSERT(vfsp);
6510 if (vfsp->vfs_fstype == zfstype) {
6511 name = refstr_value(vfsp->vfs_resource);
6514 * Check if we have an exact match.
6516 if (strcmp(dataset, name) == 0) {
6517 vfs_list_unlock();
6518 if (write)
6519 *write = 0;
6520 return (1);
6523 * We need to check if we are looking for parents of
6524 * a dataset. These should be visible, but read-only.
6526 len = strlen(dataset);
6527 if (dataset[len - 1] == '/')
6528 len--;
6530 if (len < strlen(name) &&
6531 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6532 vfs_list_unlock();
6533 if (write)
6534 *write = 0;
6535 return (1);
6538 vfsp = vfsp->vfs_zone_next;
6539 } while (vfsp != zone->zone_vfslist);
6541 vfs_list_unlock();
6542 return (0);
6546 * zone_find_by_any_path() -
6548 * kernel-private routine similar to zone_find_by_path(), but which
6549 * effectively compares against zone paths rather than zonerootpath
6550 * (i.e., the last component of zonerootpaths, which should be "root/",
6551 * are not compared.) This is done in order to accurately identify all
6552 * paths, whether zone-visible or not, including those which are parallel
6553 * to /root/, such as /dev/, /home/, etc...
6555 * If the specified path does not fall under any zone path then global
6556 * zone is returned.
6558 * The treat_abs parameter indicates whether the path should be treated as
6559 * an absolute path although it does not begin with "/". (This supports
6560 * nfs mount syntax such as host:any/path.)
6562 * The caller is responsible for zone_rele of the returned zone.
6564 zone_t *
6565 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6567 zone_t *zone;
6568 int path_offset = 0;
6570 if (path == NULL) {
6571 zone_hold(global_zone);
6572 return (global_zone);
6575 if (*path != '/') {
6576 ASSERT(treat_abs);
6577 path_offset = 1;
6580 mutex_enter(&zonehash_lock);
6581 for (zone = list_head(&zone_active); zone != NULL;
6582 zone = list_next(&zone_active, zone)) {
6583 char *c;
6584 size_t pathlen;
6585 char *rootpath_start;
6587 if (zone == global_zone) /* skip global zone */
6588 continue;
6590 /* scan backwards to find start of last component */
6591 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6592 do {
6593 c--;
6594 } while (*c != '/');
6596 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6597 rootpath_start = (zone->zone_rootpath + path_offset);
6598 if (strncmp(path, rootpath_start, pathlen) == 0)
6599 break;
6601 if (zone == NULL)
6602 zone = global_zone;
6603 zone_hold(zone);
6604 mutex_exit(&zonehash_lock);
6605 return (zone);
6609 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6610 * zone_dl_t pointer if found, and NULL otherwise.
6612 static zone_dl_t *
6613 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6615 zone_dl_t *zdl;
6617 ASSERT(mutex_owned(&zone->zone_lock));
6618 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6619 zdl = list_next(&zone->zone_dl_list, zdl)) {
6620 if (zdl->zdl_id == linkid)
6621 break;
6623 return (zdl);
6626 static boolean_t
6627 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6629 boolean_t exists;
6631 mutex_enter(&zone->zone_lock);
6632 exists = (zone_find_dl(zone, linkid) != NULL);
6633 mutex_exit(&zone->zone_lock);
6634 return (exists);
6638 * Add an data link name for the zone.
6640 static int
6641 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6643 zone_dl_t *zdl;
6644 zone_t *zone;
6645 zone_t *thiszone;
6647 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6648 return (set_errno(ENXIO));
6650 /* Verify that the datalink ID doesn't already belong to a zone. */
6651 mutex_enter(&zonehash_lock);
6652 for (zone = list_head(&zone_active); zone != NULL;
6653 zone = list_next(&zone_active, zone)) {
6654 if (zone_dl_exists(zone, linkid)) {
6655 mutex_exit(&zonehash_lock);
6656 zone_rele(thiszone);
6657 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6661 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6662 zdl->zdl_id = linkid;
6663 zdl->zdl_net = NULL;
6664 mutex_enter(&thiszone->zone_lock);
6665 list_insert_head(&thiszone->zone_dl_list, zdl);
6666 mutex_exit(&thiszone->zone_lock);
6667 mutex_exit(&zonehash_lock);
6668 zone_rele(thiszone);
6669 return (0);
6672 static int
6673 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6675 zone_dl_t *zdl;
6676 zone_t *zone;
6677 int err = 0;
6679 if ((zone = zone_find_by_id(zoneid)) == NULL)
6680 return (set_errno(EINVAL));
6682 mutex_enter(&zone->zone_lock);
6683 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6684 err = ENXIO;
6685 } else {
6686 list_remove(&zone->zone_dl_list, zdl);
6687 if (zdl->zdl_net != NULL)
6688 nvlist_free(zdl->zdl_net);
6689 kmem_free(zdl, sizeof (zone_dl_t));
6691 mutex_exit(&zone->zone_lock);
6692 zone_rele(zone);
6693 return (err == 0 ? 0 : set_errno(err));
6697 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6698 * the linkid. Otherwise we just check if the specified zoneidp has been
6699 * assigned the supplied linkid.
6702 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6704 zone_t *zone;
6705 int err = ENXIO;
6707 if (*zoneidp != ALL_ZONES) {
6708 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6709 if (zone_dl_exists(zone, linkid))
6710 err = 0;
6711 zone_rele(zone);
6713 return (err);
6716 mutex_enter(&zonehash_lock);
6717 for (zone = list_head(&zone_active); zone != NULL;
6718 zone = list_next(&zone_active, zone)) {
6719 if (zone_dl_exists(zone, linkid)) {
6720 *zoneidp = zone->zone_id;
6721 err = 0;
6722 break;
6725 mutex_exit(&zonehash_lock);
6726 return (err);
6730 * Get the list of datalink IDs assigned to a zone.
6732 * On input, *nump is the number of datalink IDs that can fit in the supplied
6733 * idarray. Upon return, *nump is either set to the number of datalink IDs
6734 * that were placed in the array if the array was large enough, or to the
6735 * number of datalink IDs that the function needs to place in the array if the
6736 * array is too small.
6738 static int
6739 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6741 uint_t num, dlcount;
6742 zone_t *zone;
6743 zone_dl_t *zdl;
6744 datalink_id_t *idptr = idarray;
6746 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6747 return (set_errno(EFAULT));
6748 if ((zone = zone_find_by_id(zoneid)) == NULL)
6749 return (set_errno(ENXIO));
6751 num = 0;
6752 mutex_enter(&zone->zone_lock);
6753 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6754 zdl = list_next(&zone->zone_dl_list, zdl)) {
6756 * If the list is bigger than what the caller supplied, just
6757 * count, don't do copyout.
6759 if (++num > dlcount)
6760 continue;
6761 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6762 mutex_exit(&zone->zone_lock);
6763 zone_rele(zone);
6764 return (set_errno(EFAULT));
6766 idptr++;
6768 mutex_exit(&zone->zone_lock);
6769 zone_rele(zone);
6771 /* Increased or decreased, caller should be notified. */
6772 if (num != dlcount) {
6773 if (copyout(&num, nump, sizeof (num)) != 0)
6774 return (set_errno(EFAULT));
6776 return (0);
6780 * Public interface for looking up a zone by zoneid. It's a customized version
6781 * for netstack_zone_create(). It can only be called from the zsd create
6782 * callbacks, since it doesn't have reference on the zone structure hence if
6783 * it is called elsewhere the zone could disappear after the zonehash_lock
6784 * is dropped.
6786 * Furthermore it
6787 * 1. Doesn't check the status of the zone.
6788 * 2. It will be called even before zone_init is called, in that case the
6789 * address of zone0 is returned directly, and netstack_zone_create()
6790 * will only assign a value to zone0.zone_netstack, won't break anything.
6791 * 3. Returns without the zone being held.
6793 zone_t *
6794 zone_find_by_id_nolock(zoneid_t zoneid)
6796 zone_t *zone;
6798 mutex_enter(&zonehash_lock);
6799 if (zonehashbyid == NULL)
6800 zone = &zone0;
6801 else
6802 zone = zone_find_all_by_id(zoneid);
6803 mutex_exit(&zonehash_lock);
6804 return (zone);
6808 * Walk the datalinks for a given zone
6811 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6812 void *data)
6814 zone_t *zone;
6815 zone_dl_t *zdl;
6816 datalink_id_t *idarray;
6817 uint_t idcount = 0;
6818 int i, ret = 0;
6820 if ((zone = zone_find_by_id(zoneid)) == NULL)
6821 return (ENOENT);
6824 * We first build an array of linkid's so that we can walk these and
6825 * execute the callback with the zone_lock dropped.
6827 mutex_enter(&zone->zone_lock);
6828 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6829 zdl = list_next(&zone->zone_dl_list, zdl)) {
6830 idcount++;
6833 if (idcount == 0) {
6834 mutex_exit(&zone->zone_lock);
6835 zone_rele(zone);
6836 return (0);
6839 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
6840 if (idarray == NULL) {
6841 mutex_exit(&zone->zone_lock);
6842 zone_rele(zone);
6843 return (ENOMEM);
6846 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6847 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
6848 idarray[i] = zdl->zdl_id;
6851 mutex_exit(&zone->zone_lock);
6853 for (i = 0; i < idcount && ret == 0; i++) {
6854 if ((ret = (*cb)(idarray[i], data)) != 0)
6855 break;
6858 zone_rele(zone);
6859 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
6860 return (ret);
6863 static char *
6864 zone_net_type2name(int type)
6866 switch (type) {
6867 case ZONE_NETWORK_ADDRESS:
6868 return (ZONE_NET_ADDRNAME);
6869 case ZONE_NETWORK_DEFROUTER:
6870 return (ZONE_NET_RTRNAME);
6871 default:
6872 return (NULL);
6876 static int
6877 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
6879 zone_t *zone;
6880 zone_dl_t *zdl;
6881 nvlist_t *nvl;
6882 int err = 0;
6883 uint8_t *new = NULL;
6884 char *nvname;
6885 int bufsize;
6886 datalink_id_t linkid = znbuf->zn_linkid;
6888 if (secpolicy_zone_config(CRED()) != 0)
6889 return (set_errno(EPERM));
6891 if (zoneid == GLOBAL_ZONEID)
6892 return (set_errno(EINVAL));
6894 nvname = zone_net_type2name(znbuf->zn_type);
6895 bufsize = znbuf->zn_len;
6896 new = znbuf->zn_val;
6897 if (nvname == NULL)
6898 return (set_errno(EINVAL));
6900 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6901 return (set_errno(EINVAL));
6904 mutex_enter(&zone->zone_lock);
6905 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6906 err = ENXIO;
6907 goto done;
6909 if ((nvl = zdl->zdl_net) == NULL) {
6910 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
6911 err = ENOMEM;
6912 goto done;
6913 } else {
6914 zdl->zdl_net = nvl;
6917 if (nvlist_exists(nvl, nvname)) {
6918 err = EINVAL;
6919 goto done;
6921 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
6922 ASSERT(err == 0);
6923 done:
6924 mutex_exit(&zone->zone_lock);
6925 zone_rele(zone);
6926 if (err != 0)
6927 return (set_errno(err));
6928 else
6929 return (0);
6932 static int
6933 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
6935 zone_t *zone;
6936 zone_dl_t *zdl;
6937 nvlist_t *nvl;
6938 uint8_t *ptr;
6939 uint_t psize;
6940 int err = 0;
6941 char *nvname;
6942 int bufsize;
6943 void *buf;
6944 datalink_id_t linkid = znbuf->zn_linkid;
6946 if (zoneid == GLOBAL_ZONEID)
6947 return (set_errno(EINVAL));
6949 nvname = zone_net_type2name(znbuf->zn_type);
6950 bufsize = znbuf->zn_len;
6951 buf = znbuf->zn_val;
6953 if (nvname == NULL)
6954 return (set_errno(EINVAL));
6955 if ((zone = zone_find_by_id(zoneid)) == NULL)
6956 return (set_errno(EINVAL));
6958 mutex_enter(&zone->zone_lock);
6959 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6960 err = ENXIO;
6961 goto done;
6963 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
6964 err = ENOENT;
6965 goto done;
6967 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
6968 ASSERT(err == 0);
6970 if (psize > bufsize) {
6971 err = ENOBUFS;
6972 goto done;
6974 znbuf->zn_len = psize;
6975 bcopy(ptr, buf, psize);
6976 done:
6977 mutex_exit(&zone->zone_lock);
6978 zone_rele(zone);
6979 if (err != 0)
6980 return (set_errno(err));
6981 else
6982 return (0);