9166 zfs storage pool checkpoint
[unleashed.git] / usr / src / uts / common / fs / zfs / metaslab.c
blob54c4394ffc5f262efb30b4d3a6f5ba9512d0725e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
40 #define GANG_ALLOCATION(flags) \
41 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
43 uint64_t metaslab_aliquot = 512ULL << 10;
44 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
47 * Since we can touch multiple metaslabs (and their respective space maps)
48 * with each transaction group, we benefit from having a smaller space map
49 * block size since it allows us to issue more I/O operations scattered
50 * around the disk.
52 int zfs_metaslab_sm_blksz = (1 << 12);
55 * The in-core space map representation is more compact than its on-disk form.
56 * The zfs_condense_pct determines how much more compact the in-core
57 * space map representation must be before we compact it on-disk.
58 * Values should be greater than or equal to 100.
60 int zfs_condense_pct = 200;
63 * Condensing a metaslab is not guaranteed to actually reduce the amount of
64 * space used on disk. In particular, a space map uses data in increments of
65 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
66 * same number of blocks after condensing. Since the goal of condensing is to
67 * reduce the number of IOPs required to read the space map, we only want to
68 * condense when we can be sure we will reduce the number of blocks used by the
69 * space map. Unfortunately, we cannot precisely compute whether or not this is
70 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
71 * we apply the following heuristic: do not condense a spacemap unless the
72 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
73 * blocks.
75 int zfs_metaslab_condense_block_threshold = 4;
78 * The zfs_mg_noalloc_threshold defines which metaslab groups should
79 * be eligible for allocation. The value is defined as a percentage of
80 * free space. Metaslab groups that have more free space than
81 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
82 * a metaslab group's free space is less than or equal to the
83 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
84 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
85 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
86 * groups are allowed to accept allocations. Gang blocks are always
87 * eligible to allocate on any metaslab group. The default value of 0 means
88 * no metaslab group will be excluded based on this criterion.
90 int zfs_mg_noalloc_threshold = 0;
93 * Metaslab groups are considered eligible for allocations if their
94 * fragmenation metric (measured as a percentage) is less than or equal to
95 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
96 * then it will be skipped unless all metaslab groups within the metaslab
97 * class have also crossed this threshold.
99 int zfs_mg_fragmentation_threshold = 85;
102 * Allow metaslabs to keep their active state as long as their fragmentation
103 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
104 * active metaslab that exceeds this threshold will no longer keep its active
105 * status allowing better metaslabs to be selected.
107 int zfs_metaslab_fragmentation_threshold = 70;
110 * When set will load all metaslabs when pool is first opened.
112 int metaslab_debug_load = 0;
115 * When set will prevent metaslabs from being unloaded.
117 int metaslab_debug_unload = 0;
120 * Minimum size which forces the dynamic allocator to change
121 * it's allocation strategy. Once the space map cannot satisfy
122 * an allocation of this size then it switches to using more
123 * aggressive strategy (i.e search by size rather than offset).
125 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
128 * The minimum free space, in percent, which must be available
129 * in a space map to continue allocations in a first-fit fashion.
130 * Once the space map's free space drops below this level we dynamically
131 * switch to using best-fit allocations.
133 int metaslab_df_free_pct = 4;
136 * A metaslab is considered "free" if it contains a contiguous
137 * segment which is greater than metaslab_min_alloc_size.
139 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
142 * Percentage of all cpus that can be used by the metaslab taskq.
144 int metaslab_load_pct = 50;
147 * Determines how many txgs a metaslab may remain loaded without having any
148 * allocations from it. As long as a metaslab continues to be used we will
149 * keep it loaded.
151 int metaslab_unload_delay = TXG_SIZE * 2;
154 * Max number of metaslabs per group to preload.
156 int metaslab_preload_limit = SPA_DVAS_PER_BP;
159 * Enable/disable preloading of metaslab.
161 boolean_t metaslab_preload_enabled = B_TRUE;
164 * Enable/disable fragmentation weighting on metaslabs.
166 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
169 * Enable/disable lba weighting (i.e. outer tracks are given preference).
171 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
174 * Enable/disable metaslab group biasing.
176 boolean_t metaslab_bias_enabled = B_TRUE;
179 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
181 boolean_t zfs_remap_blkptr_enable = B_TRUE;
184 * Enable/disable segment-based metaslab selection.
186 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
189 * When using segment-based metaslab selection, we will continue
190 * allocating from the active metaslab until we have exhausted
191 * zfs_metaslab_switch_threshold of its buckets.
193 int zfs_metaslab_switch_threshold = 2;
196 * Internal switch to enable/disable the metaslab allocation tracing
197 * facility.
199 boolean_t metaslab_trace_enabled = B_TRUE;
202 * Maximum entries that the metaslab allocation tracing facility will keep
203 * in a given list when running in non-debug mode. We limit the number
204 * of entries in non-debug mode to prevent us from using up too much memory.
205 * The limit should be sufficiently large that we don't expect any allocation
206 * to every exceed this value. In debug mode, the system will panic if this
207 * limit is ever reached allowing for further investigation.
209 uint64_t metaslab_trace_max_entries = 5000;
211 static uint64_t metaslab_weight(metaslab_t *);
212 static void metaslab_set_fragmentation(metaslab_t *);
213 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
214 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
216 kmem_cache_t *metaslab_alloc_trace_cache;
219 * ==========================================================================
220 * Metaslab classes
221 * ==========================================================================
223 metaslab_class_t *
224 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
226 metaslab_class_t *mc;
228 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
230 mc->mc_spa = spa;
231 mc->mc_rotor = NULL;
232 mc->mc_ops = ops;
233 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
234 refcount_create_tracked(&mc->mc_alloc_slots);
236 return (mc);
239 void
240 metaslab_class_destroy(metaslab_class_t *mc)
242 ASSERT(mc->mc_rotor == NULL);
243 ASSERT(mc->mc_alloc == 0);
244 ASSERT(mc->mc_deferred == 0);
245 ASSERT(mc->mc_space == 0);
246 ASSERT(mc->mc_dspace == 0);
248 refcount_destroy(&mc->mc_alloc_slots);
249 mutex_destroy(&mc->mc_lock);
250 kmem_free(mc, sizeof (metaslab_class_t));
254 metaslab_class_validate(metaslab_class_t *mc)
256 metaslab_group_t *mg;
257 vdev_t *vd;
260 * Must hold one of the spa_config locks.
262 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
263 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
265 if ((mg = mc->mc_rotor) == NULL)
266 return (0);
268 do {
269 vd = mg->mg_vd;
270 ASSERT(vd->vdev_mg != NULL);
271 ASSERT3P(vd->vdev_top, ==, vd);
272 ASSERT3P(mg->mg_class, ==, mc);
273 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
274 } while ((mg = mg->mg_next) != mc->mc_rotor);
276 return (0);
279 void
280 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
281 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
283 atomic_add_64(&mc->mc_alloc, alloc_delta);
284 atomic_add_64(&mc->mc_deferred, defer_delta);
285 atomic_add_64(&mc->mc_space, space_delta);
286 atomic_add_64(&mc->mc_dspace, dspace_delta);
289 uint64_t
290 metaslab_class_get_alloc(metaslab_class_t *mc)
292 return (mc->mc_alloc);
295 uint64_t
296 metaslab_class_get_deferred(metaslab_class_t *mc)
298 return (mc->mc_deferred);
301 uint64_t
302 metaslab_class_get_space(metaslab_class_t *mc)
304 return (mc->mc_space);
307 uint64_t
308 metaslab_class_get_dspace(metaslab_class_t *mc)
310 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
313 void
314 metaslab_class_histogram_verify(metaslab_class_t *mc)
316 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
317 uint64_t *mc_hist;
318 int i;
320 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
321 return;
323 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
324 KM_SLEEP);
326 for (int c = 0; c < rvd->vdev_children; c++) {
327 vdev_t *tvd = rvd->vdev_child[c];
328 metaslab_group_t *mg = tvd->vdev_mg;
331 * Skip any holes, uninitialized top-levels, or
332 * vdevs that are not in this metalab class.
334 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
335 mg->mg_class != mc) {
336 continue;
339 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
340 mc_hist[i] += mg->mg_histogram[i];
343 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
344 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
346 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
350 * Calculate the metaslab class's fragmentation metric. The metric
351 * is weighted based on the space contribution of each metaslab group.
352 * The return value will be a number between 0 and 100 (inclusive), or
353 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
354 * zfs_frag_table for more information about the metric.
356 uint64_t
357 metaslab_class_fragmentation(metaslab_class_t *mc)
359 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
360 uint64_t fragmentation = 0;
362 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
364 for (int c = 0; c < rvd->vdev_children; c++) {
365 vdev_t *tvd = rvd->vdev_child[c];
366 metaslab_group_t *mg = tvd->vdev_mg;
369 * Skip any holes, uninitialized top-levels,
370 * or vdevs that are not in this metalab class.
372 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
373 mg->mg_class != mc) {
374 continue;
378 * If a metaslab group does not contain a fragmentation
379 * metric then just bail out.
381 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
382 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
383 return (ZFS_FRAG_INVALID);
387 * Determine how much this metaslab_group is contributing
388 * to the overall pool fragmentation metric.
390 fragmentation += mg->mg_fragmentation *
391 metaslab_group_get_space(mg);
393 fragmentation /= metaslab_class_get_space(mc);
395 ASSERT3U(fragmentation, <=, 100);
396 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
397 return (fragmentation);
401 * Calculate the amount of expandable space that is available in
402 * this metaslab class. If a device is expanded then its expandable
403 * space will be the amount of allocatable space that is currently not
404 * part of this metaslab class.
406 uint64_t
407 metaslab_class_expandable_space(metaslab_class_t *mc)
409 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
410 uint64_t space = 0;
412 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
413 for (int c = 0; c < rvd->vdev_children; c++) {
414 uint64_t tspace;
415 vdev_t *tvd = rvd->vdev_child[c];
416 metaslab_group_t *mg = tvd->vdev_mg;
418 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
419 mg->mg_class != mc) {
420 continue;
424 * Calculate if we have enough space to add additional
425 * metaslabs. We report the expandable space in terms
426 * of the metaslab size since that's the unit of expansion.
427 * Adjust by efi system partition size.
429 tspace = tvd->vdev_max_asize - tvd->vdev_asize;
430 if (tspace > mc->mc_spa->spa_bootsize) {
431 tspace -= mc->mc_spa->spa_bootsize;
433 space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
435 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
436 return (space);
439 static int
440 metaslab_compare(const void *x1, const void *x2)
442 const metaslab_t *m1 = x1;
443 const metaslab_t *m2 = x2;
445 if (m1->ms_weight < m2->ms_weight)
446 return (1);
447 if (m1->ms_weight > m2->ms_weight)
448 return (-1);
451 * If the weights are identical, use the offset to force uniqueness.
453 if (m1->ms_start < m2->ms_start)
454 return (-1);
455 if (m1->ms_start > m2->ms_start)
456 return (1);
458 ASSERT3P(m1, ==, m2);
460 return (0);
464 * Verify that the space accounting on disk matches the in-core range_trees.
466 void
467 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
469 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
470 uint64_t allocated = 0;
471 uint64_t sm_free_space, msp_free_space;
473 ASSERT(MUTEX_HELD(&msp->ms_lock));
475 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
476 return;
479 * We can only verify the metaslab space when we're called
480 * from syncing context with a loaded metaslab that has an allocated
481 * space map. Calling this in non-syncing context does not
482 * provide a consistent view of the metaslab since we're performing
483 * allocations in the future.
485 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
486 !msp->ms_loaded)
487 return;
489 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
490 space_map_alloc_delta(msp->ms_sm);
493 * Account for future allocations since we would have already
494 * deducted that space from the ms_freetree.
496 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
497 allocated +=
498 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
501 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
502 msp->ms_deferspace + range_tree_space(msp->ms_freed);
504 VERIFY3U(sm_free_space, ==, msp_free_space);
508 * ==========================================================================
509 * Metaslab groups
510 * ==========================================================================
513 * Update the allocatable flag and the metaslab group's capacity.
514 * The allocatable flag is set to true if the capacity is below
515 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
516 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
517 * transitions from allocatable to non-allocatable or vice versa then the
518 * metaslab group's class is updated to reflect the transition.
520 static void
521 metaslab_group_alloc_update(metaslab_group_t *mg)
523 vdev_t *vd = mg->mg_vd;
524 metaslab_class_t *mc = mg->mg_class;
525 vdev_stat_t *vs = &vd->vdev_stat;
526 boolean_t was_allocatable;
527 boolean_t was_initialized;
529 ASSERT(vd == vd->vdev_top);
530 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
531 SCL_ALLOC);
533 mutex_enter(&mg->mg_lock);
534 was_allocatable = mg->mg_allocatable;
535 was_initialized = mg->mg_initialized;
537 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
538 (vs->vs_space + 1);
540 mutex_enter(&mc->mc_lock);
543 * If the metaslab group was just added then it won't
544 * have any space until we finish syncing out this txg.
545 * At that point we will consider it initialized and available
546 * for allocations. We also don't consider non-activated
547 * metaslab groups (e.g. vdevs that are in the middle of being removed)
548 * to be initialized, because they can't be used for allocation.
550 mg->mg_initialized = metaslab_group_initialized(mg);
551 if (!was_initialized && mg->mg_initialized) {
552 mc->mc_groups++;
553 } else if (was_initialized && !mg->mg_initialized) {
554 ASSERT3U(mc->mc_groups, >, 0);
555 mc->mc_groups--;
557 if (mg->mg_initialized)
558 mg->mg_no_free_space = B_FALSE;
561 * A metaslab group is considered allocatable if it has plenty
562 * of free space or is not heavily fragmented. We only take
563 * fragmentation into account if the metaslab group has a valid
564 * fragmentation metric (i.e. a value between 0 and 100).
566 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
567 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
568 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
569 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
572 * The mc_alloc_groups maintains a count of the number of
573 * groups in this metaslab class that are still above the
574 * zfs_mg_noalloc_threshold. This is used by the allocating
575 * threads to determine if they should avoid allocations to
576 * a given group. The allocator will avoid allocations to a group
577 * if that group has reached or is below the zfs_mg_noalloc_threshold
578 * and there are still other groups that are above the threshold.
579 * When a group transitions from allocatable to non-allocatable or
580 * vice versa we update the metaslab class to reflect that change.
581 * When the mc_alloc_groups value drops to 0 that means that all
582 * groups have reached the zfs_mg_noalloc_threshold making all groups
583 * eligible for allocations. This effectively means that all devices
584 * are balanced again.
586 if (was_allocatable && !mg->mg_allocatable)
587 mc->mc_alloc_groups--;
588 else if (!was_allocatable && mg->mg_allocatable)
589 mc->mc_alloc_groups++;
590 mutex_exit(&mc->mc_lock);
592 mutex_exit(&mg->mg_lock);
595 metaslab_group_t *
596 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
598 metaslab_group_t *mg;
600 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
601 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
602 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
603 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
604 mg->mg_vd = vd;
605 mg->mg_class = mc;
606 mg->mg_activation_count = 0;
607 mg->mg_initialized = B_FALSE;
608 mg->mg_no_free_space = B_TRUE;
609 refcount_create_tracked(&mg->mg_alloc_queue_depth);
611 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
612 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
614 return (mg);
617 void
618 metaslab_group_destroy(metaslab_group_t *mg)
620 ASSERT(mg->mg_prev == NULL);
621 ASSERT(mg->mg_next == NULL);
623 * We may have gone below zero with the activation count
624 * either because we never activated in the first place or
625 * because we're done, and possibly removing the vdev.
627 ASSERT(mg->mg_activation_count <= 0);
629 taskq_destroy(mg->mg_taskq);
630 avl_destroy(&mg->mg_metaslab_tree);
631 mutex_destroy(&mg->mg_lock);
632 refcount_destroy(&mg->mg_alloc_queue_depth);
633 kmem_free(mg, sizeof (metaslab_group_t));
636 void
637 metaslab_group_activate(metaslab_group_t *mg)
639 metaslab_class_t *mc = mg->mg_class;
640 metaslab_group_t *mgprev, *mgnext;
642 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
644 ASSERT(mc->mc_rotor != mg);
645 ASSERT(mg->mg_prev == NULL);
646 ASSERT(mg->mg_next == NULL);
647 ASSERT(mg->mg_activation_count <= 0);
649 if (++mg->mg_activation_count <= 0)
650 return;
652 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
653 metaslab_group_alloc_update(mg);
655 if ((mgprev = mc->mc_rotor) == NULL) {
656 mg->mg_prev = mg;
657 mg->mg_next = mg;
658 } else {
659 mgnext = mgprev->mg_next;
660 mg->mg_prev = mgprev;
661 mg->mg_next = mgnext;
662 mgprev->mg_next = mg;
663 mgnext->mg_prev = mg;
665 mc->mc_rotor = mg;
669 * Passivate a metaslab group and remove it from the allocation rotor.
670 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
671 * a metaslab group. This function will momentarily drop spa_config_locks
672 * that are lower than the SCL_ALLOC lock (see comment below).
674 void
675 metaslab_group_passivate(metaslab_group_t *mg)
677 metaslab_class_t *mc = mg->mg_class;
678 spa_t *spa = mc->mc_spa;
679 metaslab_group_t *mgprev, *mgnext;
680 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
682 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
683 (SCL_ALLOC | SCL_ZIO));
685 if (--mg->mg_activation_count != 0) {
686 ASSERT(mc->mc_rotor != mg);
687 ASSERT(mg->mg_prev == NULL);
688 ASSERT(mg->mg_next == NULL);
689 ASSERT(mg->mg_activation_count < 0);
690 return;
694 * The spa_config_lock is an array of rwlocks, ordered as
695 * follows (from highest to lowest):
696 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
697 * SCL_ZIO > SCL_FREE > SCL_VDEV
698 * (For more information about the spa_config_lock see spa_misc.c)
699 * The higher the lock, the broader its coverage. When we passivate
700 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
701 * config locks. However, the metaslab group's taskq might be trying
702 * to preload metaslabs so we must drop the SCL_ZIO lock and any
703 * lower locks to allow the I/O to complete. At a minimum,
704 * we continue to hold the SCL_ALLOC lock, which prevents any future
705 * allocations from taking place and any changes to the vdev tree.
707 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
708 taskq_wait(mg->mg_taskq);
709 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
710 metaslab_group_alloc_update(mg);
712 mgprev = mg->mg_prev;
713 mgnext = mg->mg_next;
715 if (mg == mgnext) {
716 mc->mc_rotor = NULL;
717 } else {
718 mc->mc_rotor = mgnext;
719 mgprev->mg_next = mgnext;
720 mgnext->mg_prev = mgprev;
723 mg->mg_prev = NULL;
724 mg->mg_next = NULL;
727 boolean_t
728 metaslab_group_initialized(metaslab_group_t *mg)
730 vdev_t *vd = mg->mg_vd;
731 vdev_stat_t *vs = &vd->vdev_stat;
733 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
736 uint64_t
737 metaslab_group_get_space(metaslab_group_t *mg)
739 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
742 void
743 metaslab_group_histogram_verify(metaslab_group_t *mg)
745 uint64_t *mg_hist;
746 vdev_t *vd = mg->mg_vd;
747 uint64_t ashift = vd->vdev_ashift;
748 int i;
750 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
751 return;
753 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
754 KM_SLEEP);
756 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
757 SPACE_MAP_HISTOGRAM_SIZE + ashift);
759 for (int m = 0; m < vd->vdev_ms_count; m++) {
760 metaslab_t *msp = vd->vdev_ms[m];
762 if (msp->ms_sm == NULL)
763 continue;
765 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
766 mg_hist[i + ashift] +=
767 msp->ms_sm->sm_phys->smp_histogram[i];
770 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
771 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
773 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
776 static void
777 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
779 metaslab_class_t *mc = mg->mg_class;
780 uint64_t ashift = mg->mg_vd->vdev_ashift;
782 ASSERT(MUTEX_HELD(&msp->ms_lock));
783 if (msp->ms_sm == NULL)
784 return;
786 mutex_enter(&mg->mg_lock);
787 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
788 mg->mg_histogram[i + ashift] +=
789 msp->ms_sm->sm_phys->smp_histogram[i];
790 mc->mc_histogram[i + ashift] +=
791 msp->ms_sm->sm_phys->smp_histogram[i];
793 mutex_exit(&mg->mg_lock);
796 void
797 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
799 metaslab_class_t *mc = mg->mg_class;
800 uint64_t ashift = mg->mg_vd->vdev_ashift;
802 ASSERT(MUTEX_HELD(&msp->ms_lock));
803 if (msp->ms_sm == NULL)
804 return;
806 mutex_enter(&mg->mg_lock);
807 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
808 ASSERT3U(mg->mg_histogram[i + ashift], >=,
809 msp->ms_sm->sm_phys->smp_histogram[i]);
810 ASSERT3U(mc->mc_histogram[i + ashift], >=,
811 msp->ms_sm->sm_phys->smp_histogram[i]);
813 mg->mg_histogram[i + ashift] -=
814 msp->ms_sm->sm_phys->smp_histogram[i];
815 mc->mc_histogram[i + ashift] -=
816 msp->ms_sm->sm_phys->smp_histogram[i];
818 mutex_exit(&mg->mg_lock);
821 static void
822 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
824 ASSERT(msp->ms_group == NULL);
825 mutex_enter(&mg->mg_lock);
826 msp->ms_group = mg;
827 msp->ms_weight = 0;
828 avl_add(&mg->mg_metaslab_tree, msp);
829 mutex_exit(&mg->mg_lock);
831 mutex_enter(&msp->ms_lock);
832 metaslab_group_histogram_add(mg, msp);
833 mutex_exit(&msp->ms_lock);
836 static void
837 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
839 mutex_enter(&msp->ms_lock);
840 metaslab_group_histogram_remove(mg, msp);
841 mutex_exit(&msp->ms_lock);
843 mutex_enter(&mg->mg_lock);
844 ASSERT(msp->ms_group == mg);
845 avl_remove(&mg->mg_metaslab_tree, msp);
846 msp->ms_group = NULL;
847 mutex_exit(&mg->mg_lock);
850 static void
851 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
854 * Although in principle the weight can be any value, in
855 * practice we do not use values in the range [1, 511].
857 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
858 ASSERT(MUTEX_HELD(&msp->ms_lock));
860 mutex_enter(&mg->mg_lock);
861 ASSERT(msp->ms_group == mg);
862 avl_remove(&mg->mg_metaslab_tree, msp);
863 msp->ms_weight = weight;
864 avl_add(&mg->mg_metaslab_tree, msp);
865 mutex_exit(&mg->mg_lock);
869 * Calculate the fragmentation for a given metaslab group. We can use
870 * a simple average here since all metaslabs within the group must have
871 * the same size. The return value will be a value between 0 and 100
872 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
873 * group have a fragmentation metric.
875 uint64_t
876 metaslab_group_fragmentation(metaslab_group_t *mg)
878 vdev_t *vd = mg->mg_vd;
879 uint64_t fragmentation = 0;
880 uint64_t valid_ms = 0;
882 for (int m = 0; m < vd->vdev_ms_count; m++) {
883 metaslab_t *msp = vd->vdev_ms[m];
885 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
886 continue;
888 valid_ms++;
889 fragmentation += msp->ms_fragmentation;
892 if (valid_ms <= vd->vdev_ms_count / 2)
893 return (ZFS_FRAG_INVALID);
895 fragmentation /= valid_ms;
896 ASSERT3U(fragmentation, <=, 100);
897 return (fragmentation);
901 * Determine if a given metaslab group should skip allocations. A metaslab
902 * group should avoid allocations if its free capacity is less than the
903 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
904 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
905 * that can still handle allocations. If the allocation throttle is enabled
906 * then we skip allocations to devices that have reached their maximum
907 * allocation queue depth unless the selected metaslab group is the only
908 * eligible group remaining.
910 static boolean_t
911 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
912 uint64_t psize)
914 spa_t *spa = mg->mg_vd->vdev_spa;
915 metaslab_class_t *mc = mg->mg_class;
918 * We can only consider skipping this metaslab group if it's
919 * in the normal metaslab class and there are other metaslab
920 * groups to select from. Otherwise, we always consider it eligible
921 * for allocations.
923 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
924 return (B_TRUE);
927 * If the metaslab group's mg_allocatable flag is set (see comments
928 * in metaslab_group_alloc_update() for more information) and
929 * the allocation throttle is disabled then allow allocations to this
930 * device. However, if the allocation throttle is enabled then
931 * check if we have reached our allocation limit (mg_alloc_queue_depth)
932 * to determine if we should allow allocations to this metaslab group.
933 * If all metaslab groups are no longer considered allocatable
934 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
935 * gang block size then we allow allocations on this metaslab group
936 * regardless of the mg_allocatable or throttle settings.
938 if (mg->mg_allocatable) {
939 metaslab_group_t *mgp;
940 int64_t qdepth;
941 uint64_t qmax = mg->mg_max_alloc_queue_depth;
943 if (!mc->mc_alloc_throttle_enabled)
944 return (B_TRUE);
947 * If this metaslab group does not have any free space, then
948 * there is no point in looking further.
950 if (mg->mg_no_free_space)
951 return (B_FALSE);
953 qdepth = refcount_count(&mg->mg_alloc_queue_depth);
956 * If this metaslab group is below its qmax or it's
957 * the only allocatable metasable group, then attempt
958 * to allocate from it.
960 if (qdepth < qmax || mc->mc_alloc_groups == 1)
961 return (B_TRUE);
962 ASSERT3U(mc->mc_alloc_groups, >, 1);
965 * Since this metaslab group is at or over its qmax, we
966 * need to determine if there are metaslab groups after this
967 * one that might be able to handle this allocation. This is
968 * racy since we can't hold the locks for all metaslab
969 * groups at the same time when we make this check.
971 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
972 qmax = mgp->mg_max_alloc_queue_depth;
974 qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
977 * If there is another metaslab group that
978 * might be able to handle the allocation, then
979 * we return false so that we skip this group.
981 if (qdepth < qmax && !mgp->mg_no_free_space)
982 return (B_FALSE);
986 * We didn't find another group to handle the allocation
987 * so we can't skip this metaslab group even though
988 * we are at or over our qmax.
990 return (B_TRUE);
992 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
993 return (B_TRUE);
995 return (B_FALSE);
999 * ==========================================================================
1000 * Range tree callbacks
1001 * ==========================================================================
1005 * Comparison function for the private size-ordered tree. Tree is sorted
1006 * by size, larger sizes at the end of the tree.
1008 static int
1009 metaslab_rangesize_compare(const void *x1, const void *x2)
1011 const range_seg_t *r1 = x1;
1012 const range_seg_t *r2 = x2;
1013 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1014 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1016 if (rs_size1 < rs_size2)
1017 return (-1);
1018 if (rs_size1 > rs_size2)
1019 return (1);
1021 if (r1->rs_start < r2->rs_start)
1022 return (-1);
1024 if (r1->rs_start > r2->rs_start)
1025 return (1);
1027 return (0);
1031 * Create any block allocator specific components. The current allocators
1032 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1034 static void
1035 metaslab_rt_create(range_tree_t *rt, void *arg)
1037 metaslab_t *msp = arg;
1039 ASSERT3P(rt->rt_arg, ==, msp);
1040 ASSERT(msp->ms_allocatable == NULL);
1042 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1043 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1047 * Destroy the block allocator specific components.
1049 static void
1050 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1052 metaslab_t *msp = arg;
1054 ASSERT3P(rt->rt_arg, ==, msp);
1055 ASSERT3P(msp->ms_allocatable, ==, rt);
1056 ASSERT0(avl_numnodes(&msp->ms_allocatable_by_size));
1058 avl_destroy(&msp->ms_allocatable_by_size);
1061 static void
1062 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1064 metaslab_t *msp = arg;
1066 ASSERT3P(rt->rt_arg, ==, msp);
1067 ASSERT3P(msp->ms_allocatable, ==, rt);
1068 VERIFY(!msp->ms_condensing);
1069 avl_add(&msp->ms_allocatable_by_size, rs);
1072 static void
1073 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1075 metaslab_t *msp = arg;
1077 ASSERT3P(rt->rt_arg, ==, msp);
1078 ASSERT3P(msp->ms_allocatable, ==, rt);
1079 VERIFY(!msp->ms_condensing);
1080 avl_remove(&msp->ms_allocatable_by_size, rs);
1083 static void
1084 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1086 metaslab_t *msp = arg;
1088 ASSERT3P(rt->rt_arg, ==, msp);
1089 ASSERT3P(msp->ms_allocatable, ==, rt);
1092 * Normally one would walk the tree freeing nodes along the way.
1093 * Since the nodes are shared with the range trees we can avoid
1094 * walking all nodes and just reinitialize the avl tree. The nodes
1095 * will be freed by the range tree, so we don't want to free them here.
1097 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare,
1098 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1101 static range_tree_ops_t metaslab_rt_ops = {
1102 metaslab_rt_create,
1103 metaslab_rt_destroy,
1104 metaslab_rt_add,
1105 metaslab_rt_remove,
1106 metaslab_rt_vacate
1110 * ==========================================================================
1111 * Common allocator routines
1112 * ==========================================================================
1116 * Return the maximum contiguous segment within the metaslab.
1118 uint64_t
1119 metaslab_block_maxsize(metaslab_t *msp)
1121 avl_tree_t *t = &msp->ms_allocatable_by_size;
1122 range_seg_t *rs;
1124 if (t == NULL || (rs = avl_last(t)) == NULL)
1125 return (0ULL);
1127 return (rs->rs_end - rs->rs_start);
1130 static range_seg_t *
1131 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1133 range_seg_t *rs, rsearch;
1134 avl_index_t where;
1136 rsearch.rs_start = start;
1137 rsearch.rs_end = start + size;
1139 rs = avl_find(t, &rsearch, &where);
1140 if (rs == NULL) {
1141 rs = avl_nearest(t, where, AVL_AFTER);
1144 return (rs);
1148 * This is a helper function that can be used by the allocator to find
1149 * a suitable block to allocate. This will search the specified AVL
1150 * tree looking for a block that matches the specified criteria.
1152 static uint64_t
1153 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1154 uint64_t align)
1156 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1158 while (rs != NULL) {
1159 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1161 if (offset + size <= rs->rs_end) {
1162 *cursor = offset + size;
1163 return (offset);
1165 rs = AVL_NEXT(t, rs);
1169 * If we know we've searched the whole map (*cursor == 0), give up.
1170 * Otherwise, reset the cursor to the beginning and try again.
1172 if (*cursor == 0)
1173 return (-1ULL);
1175 *cursor = 0;
1176 return (metaslab_block_picker(t, cursor, size, align));
1180 * ==========================================================================
1181 * The first-fit block allocator
1182 * ==========================================================================
1184 static uint64_t
1185 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1188 * Find the largest power of 2 block size that evenly divides the
1189 * requested size. This is used to try to allocate blocks with similar
1190 * alignment from the same area of the metaslab (i.e. same cursor
1191 * bucket) but it does not guarantee that other allocations sizes
1192 * may exist in the same region.
1194 uint64_t align = size & -size;
1195 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1196 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1198 return (metaslab_block_picker(t, cursor, size, align));
1201 static metaslab_ops_t metaslab_ff_ops = {
1202 metaslab_ff_alloc
1206 * ==========================================================================
1207 * Dynamic block allocator -
1208 * Uses the first fit allocation scheme until space get low and then
1209 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1210 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1211 * ==========================================================================
1213 static uint64_t
1214 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1217 * Find the largest power of 2 block size that evenly divides the
1218 * requested size. This is used to try to allocate blocks with similar
1219 * alignment from the same area of the metaslab (i.e. same cursor
1220 * bucket) but it does not guarantee that other allocations sizes
1221 * may exist in the same region.
1223 uint64_t align = size & -size;
1224 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1225 range_tree_t *rt = msp->ms_allocatable;
1226 avl_tree_t *t = &rt->rt_root;
1227 uint64_t max_size = metaslab_block_maxsize(msp);
1228 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1230 ASSERT(MUTEX_HELD(&msp->ms_lock));
1231 ASSERT3U(avl_numnodes(t), ==,
1232 avl_numnodes(&msp->ms_allocatable_by_size));
1234 if (max_size < size)
1235 return (-1ULL);
1238 * If we're running low on space switch to using the size
1239 * sorted AVL tree (best-fit).
1241 if (max_size < metaslab_df_alloc_threshold ||
1242 free_pct < metaslab_df_free_pct) {
1243 t = &msp->ms_allocatable_by_size;
1244 *cursor = 0;
1247 return (metaslab_block_picker(t, cursor, size, 1ULL));
1250 static metaslab_ops_t metaslab_df_ops = {
1251 metaslab_df_alloc
1255 * ==========================================================================
1256 * Cursor fit block allocator -
1257 * Select the largest region in the metaslab, set the cursor to the beginning
1258 * of the range and the cursor_end to the end of the range. As allocations
1259 * are made advance the cursor. Continue allocating from the cursor until
1260 * the range is exhausted and then find a new range.
1261 * ==========================================================================
1263 static uint64_t
1264 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1266 range_tree_t *rt = msp->ms_allocatable;
1267 avl_tree_t *t = &msp->ms_allocatable_by_size;
1268 uint64_t *cursor = &msp->ms_lbas[0];
1269 uint64_t *cursor_end = &msp->ms_lbas[1];
1270 uint64_t offset = 0;
1272 ASSERT(MUTEX_HELD(&msp->ms_lock));
1273 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1275 ASSERT3U(*cursor_end, >=, *cursor);
1277 if ((*cursor + size) > *cursor_end) {
1278 range_seg_t *rs;
1280 rs = avl_last(&msp->ms_allocatable_by_size);
1281 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1282 return (-1ULL);
1284 *cursor = rs->rs_start;
1285 *cursor_end = rs->rs_end;
1288 offset = *cursor;
1289 *cursor += size;
1291 return (offset);
1294 static metaslab_ops_t metaslab_cf_ops = {
1295 metaslab_cf_alloc
1299 * ==========================================================================
1300 * New dynamic fit allocator -
1301 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1302 * contiguous blocks. If no region is found then just use the largest segment
1303 * that remains.
1304 * ==========================================================================
1308 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1309 * to request from the allocator.
1311 uint64_t metaslab_ndf_clump_shift = 4;
1313 static uint64_t
1314 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1316 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1317 avl_index_t where;
1318 range_seg_t *rs, rsearch;
1319 uint64_t hbit = highbit64(size);
1320 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1321 uint64_t max_size = metaslab_block_maxsize(msp);
1323 ASSERT(MUTEX_HELD(&msp->ms_lock));
1324 ASSERT3U(avl_numnodes(t), ==,
1325 avl_numnodes(&msp->ms_allocatable_by_size));
1327 if (max_size < size)
1328 return (-1ULL);
1330 rsearch.rs_start = *cursor;
1331 rsearch.rs_end = *cursor + size;
1333 rs = avl_find(t, &rsearch, &where);
1334 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1335 t = &msp->ms_allocatable_by_size;
1337 rsearch.rs_start = 0;
1338 rsearch.rs_end = MIN(max_size,
1339 1ULL << (hbit + metaslab_ndf_clump_shift));
1340 rs = avl_find(t, &rsearch, &where);
1341 if (rs == NULL)
1342 rs = avl_nearest(t, where, AVL_AFTER);
1343 ASSERT(rs != NULL);
1346 if ((rs->rs_end - rs->rs_start) >= size) {
1347 *cursor = rs->rs_start + size;
1348 return (rs->rs_start);
1350 return (-1ULL);
1353 static metaslab_ops_t metaslab_ndf_ops = {
1354 metaslab_ndf_alloc
1357 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1360 * ==========================================================================
1361 * Metaslabs
1362 * ==========================================================================
1366 * Wait for any in-progress metaslab loads to complete.
1368 void
1369 metaslab_load_wait(metaslab_t *msp)
1371 ASSERT(MUTEX_HELD(&msp->ms_lock));
1373 while (msp->ms_loading) {
1374 ASSERT(!msp->ms_loaded);
1375 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1380 metaslab_load(metaslab_t *msp)
1382 int error = 0;
1383 boolean_t success = B_FALSE;
1385 ASSERT(MUTEX_HELD(&msp->ms_lock));
1386 ASSERT(!msp->ms_loaded);
1387 ASSERT(!msp->ms_loading);
1389 msp->ms_loading = B_TRUE;
1391 * Nobody else can manipulate a loading metaslab, so it's now safe
1392 * to drop the lock. This way we don't have to hold the lock while
1393 * reading the spacemap from disk.
1395 mutex_exit(&msp->ms_lock);
1398 * If the space map has not been allocated yet, then treat
1399 * all the space in the metaslab as free and add it to ms_allocatable.
1401 if (msp->ms_sm != NULL) {
1402 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1403 SM_FREE);
1404 } else {
1405 range_tree_add(msp->ms_allocatable,
1406 msp->ms_start, msp->ms_size);
1409 success = (error == 0);
1411 mutex_enter(&msp->ms_lock);
1412 msp->ms_loading = B_FALSE;
1414 if (success) {
1415 ASSERT3P(msp->ms_group, !=, NULL);
1416 msp->ms_loaded = B_TRUE;
1419 * If the metaslab already has a spacemap, then we need to
1420 * remove all segments from the defer tree; otherwise, the
1421 * metaslab is completely empty and we can skip this.
1423 if (msp->ms_sm != NULL) {
1424 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1425 range_tree_walk(msp->ms_defer[t],
1426 range_tree_remove, msp->ms_allocatable);
1429 msp->ms_max_size = metaslab_block_maxsize(msp);
1431 cv_broadcast(&msp->ms_load_cv);
1432 return (error);
1435 void
1436 metaslab_unload(metaslab_t *msp)
1438 ASSERT(MUTEX_HELD(&msp->ms_lock));
1439 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1440 msp->ms_loaded = B_FALSE;
1441 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1442 msp->ms_max_size = 0;
1446 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1447 metaslab_t **msp)
1449 vdev_t *vd = mg->mg_vd;
1450 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1451 metaslab_t *ms;
1452 int error;
1454 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1455 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1456 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1457 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1458 ms->ms_id = id;
1459 ms->ms_start = id << vd->vdev_ms_shift;
1460 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1463 * We only open space map objects that already exist. All others
1464 * will be opened when we finally allocate an object for it.
1466 if (object != 0) {
1467 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1468 ms->ms_size, vd->vdev_ashift);
1470 if (error != 0) {
1471 kmem_free(ms, sizeof (metaslab_t));
1472 return (error);
1475 ASSERT(ms->ms_sm != NULL);
1479 * We create the main range tree here, but we don't create the
1480 * other range trees until metaslab_sync_done(). This serves
1481 * two purposes: it allows metaslab_sync_done() to detect the
1482 * addition of new space; and for debugging, it ensures that we'd
1483 * data fault on any attempt to use this metaslab before it's ready.
1485 ms->ms_allocatable = range_tree_create(&metaslab_rt_ops, ms);
1486 metaslab_group_add(mg, ms);
1488 metaslab_set_fragmentation(ms);
1491 * If we're opening an existing pool (txg == 0) or creating
1492 * a new one (txg == TXG_INITIAL), all space is available now.
1493 * If we're adding space to an existing pool, the new space
1494 * does not become available until after this txg has synced.
1495 * The metaslab's weight will also be initialized when we sync
1496 * out this txg. This ensures that we don't attempt to allocate
1497 * from it before we have initialized it completely.
1499 if (txg <= TXG_INITIAL)
1500 metaslab_sync_done(ms, 0);
1503 * If metaslab_debug_load is set and we're initializing a metaslab
1504 * that has an allocated space map object then load the its space
1505 * map so that can verify frees.
1507 if (metaslab_debug_load && ms->ms_sm != NULL) {
1508 mutex_enter(&ms->ms_lock);
1509 VERIFY0(metaslab_load(ms));
1510 mutex_exit(&ms->ms_lock);
1513 if (txg != 0) {
1514 vdev_dirty(vd, 0, NULL, txg);
1515 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1518 *msp = ms;
1520 return (0);
1523 void
1524 metaslab_fini(metaslab_t *msp)
1526 metaslab_group_t *mg = msp->ms_group;
1528 metaslab_group_remove(mg, msp);
1530 mutex_enter(&msp->ms_lock);
1531 VERIFY(msp->ms_group == NULL);
1532 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1533 0, -msp->ms_size);
1534 space_map_close(msp->ms_sm);
1536 metaslab_unload(msp);
1537 range_tree_destroy(msp->ms_allocatable);
1538 range_tree_destroy(msp->ms_freeing);
1539 range_tree_destroy(msp->ms_freed);
1541 for (int t = 0; t < TXG_SIZE; t++) {
1542 range_tree_destroy(msp->ms_allocating[t]);
1545 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1546 range_tree_destroy(msp->ms_defer[t]);
1548 ASSERT0(msp->ms_deferspace);
1550 range_tree_destroy(msp->ms_checkpointing);
1552 mutex_exit(&msp->ms_lock);
1553 cv_destroy(&msp->ms_load_cv);
1554 mutex_destroy(&msp->ms_lock);
1555 mutex_destroy(&msp->ms_sync_lock);
1557 kmem_free(msp, sizeof (metaslab_t));
1560 #define FRAGMENTATION_TABLE_SIZE 17
1563 * This table defines a segment size based fragmentation metric that will
1564 * allow each metaslab to derive its own fragmentation value. This is done
1565 * by calculating the space in each bucket of the spacemap histogram and
1566 * multiplying that by the fragmetation metric in this table. Doing
1567 * this for all buckets and dividing it by the total amount of free
1568 * space in this metaslab (i.e. the total free space in all buckets) gives
1569 * us the fragmentation metric. This means that a high fragmentation metric
1570 * equates to most of the free space being comprised of small segments.
1571 * Conversely, if the metric is low, then most of the free space is in
1572 * large segments. A 10% change in fragmentation equates to approximately
1573 * double the number of segments.
1575 * This table defines 0% fragmented space using 16MB segments. Testing has
1576 * shown that segments that are greater than or equal to 16MB do not suffer
1577 * from drastic performance problems. Using this value, we derive the rest
1578 * of the table. Since the fragmentation value is never stored on disk, it
1579 * is possible to change these calculations in the future.
1581 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1582 100, /* 512B */
1583 100, /* 1K */
1584 98, /* 2K */
1585 95, /* 4K */
1586 90, /* 8K */
1587 80, /* 16K */
1588 70, /* 32K */
1589 60, /* 64K */
1590 50, /* 128K */
1591 40, /* 256K */
1592 30, /* 512K */
1593 20, /* 1M */
1594 15, /* 2M */
1595 10, /* 4M */
1596 5, /* 8M */
1597 0 /* 16M */
1601 * Calclate the metaslab's fragmentation metric. A return value
1602 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1603 * not support this metric. Otherwise, the return value should be in the
1604 * range [0, 100].
1606 static void
1607 metaslab_set_fragmentation(metaslab_t *msp)
1609 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1610 uint64_t fragmentation = 0;
1611 uint64_t total = 0;
1612 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1613 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1615 if (!feature_enabled) {
1616 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1617 return;
1621 * A null space map means that the entire metaslab is free
1622 * and thus is not fragmented.
1624 if (msp->ms_sm == NULL) {
1625 msp->ms_fragmentation = 0;
1626 return;
1630 * If this metaslab's space map has not been upgraded, flag it
1631 * so that we upgrade next time we encounter it.
1633 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1634 uint64_t txg = spa_syncing_txg(spa);
1635 vdev_t *vd = msp->ms_group->mg_vd;
1638 * If we've reached the final dirty txg, then we must
1639 * be shutting down the pool. We don't want to dirty
1640 * any data past this point so skip setting the condense
1641 * flag. We can retry this action the next time the pool
1642 * is imported.
1644 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1645 msp->ms_condense_wanted = B_TRUE;
1646 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1647 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1648 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1649 vd->vdev_id);
1651 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1652 return;
1655 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1656 uint64_t space = 0;
1657 uint8_t shift = msp->ms_sm->sm_shift;
1659 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1660 FRAGMENTATION_TABLE_SIZE - 1);
1662 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1663 continue;
1665 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1666 total += space;
1668 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1669 fragmentation += space * zfs_frag_table[idx];
1672 if (total > 0)
1673 fragmentation /= total;
1674 ASSERT3U(fragmentation, <=, 100);
1676 msp->ms_fragmentation = fragmentation;
1680 * Compute a weight -- a selection preference value -- for the given metaslab.
1681 * This is based on the amount of free space, the level of fragmentation,
1682 * the LBA range, and whether the metaslab is loaded.
1684 static uint64_t
1685 metaslab_space_weight(metaslab_t *msp)
1687 metaslab_group_t *mg = msp->ms_group;
1688 vdev_t *vd = mg->mg_vd;
1689 uint64_t weight, space;
1691 ASSERT(MUTEX_HELD(&msp->ms_lock));
1692 ASSERT(!vd->vdev_removing);
1695 * The baseline weight is the metaslab's free space.
1697 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1699 if (metaslab_fragmentation_factor_enabled &&
1700 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1702 * Use the fragmentation information to inversely scale
1703 * down the baseline weight. We need to ensure that we
1704 * don't exclude this metaslab completely when it's 100%
1705 * fragmented. To avoid this we reduce the fragmented value
1706 * by 1.
1708 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1711 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1712 * this metaslab again. The fragmentation metric may have
1713 * decreased the space to something smaller than
1714 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1715 * so that we can consume any remaining space.
1717 if (space > 0 && space < SPA_MINBLOCKSIZE)
1718 space = SPA_MINBLOCKSIZE;
1720 weight = space;
1723 * Modern disks have uniform bit density and constant angular velocity.
1724 * Therefore, the outer recording zones are faster (higher bandwidth)
1725 * than the inner zones by the ratio of outer to inner track diameter,
1726 * which is typically around 2:1. We account for this by assigning
1727 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1728 * In effect, this means that we'll select the metaslab with the most
1729 * free bandwidth rather than simply the one with the most free space.
1731 if (metaslab_lba_weighting_enabled) {
1732 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1733 ASSERT(weight >= space && weight <= 2 * space);
1737 * If this metaslab is one we're actively using, adjust its
1738 * weight to make it preferable to any inactive metaslab so
1739 * we'll polish it off. If the fragmentation on this metaslab
1740 * has exceed our threshold, then don't mark it active.
1742 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1743 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1744 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1747 WEIGHT_SET_SPACEBASED(weight);
1748 return (weight);
1752 * Return the weight of the specified metaslab, according to the segment-based
1753 * weighting algorithm. The metaslab must be loaded. This function can
1754 * be called within a sync pass since it relies only on the metaslab's
1755 * range tree which is always accurate when the metaslab is loaded.
1757 static uint64_t
1758 metaslab_weight_from_range_tree(metaslab_t *msp)
1760 uint64_t weight = 0;
1761 uint32_t segments = 0;
1763 ASSERT(msp->ms_loaded);
1765 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1766 i--) {
1767 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1768 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1770 segments <<= 1;
1771 segments += msp->ms_allocatable->rt_histogram[i];
1774 * The range tree provides more precision than the space map
1775 * and must be downgraded so that all values fit within the
1776 * space map's histogram. This allows us to compare loaded
1777 * vs. unloaded metaslabs to determine which metaslab is
1778 * considered "best".
1780 if (i > max_idx)
1781 continue;
1783 if (segments != 0) {
1784 WEIGHT_SET_COUNT(weight, segments);
1785 WEIGHT_SET_INDEX(weight, i);
1786 WEIGHT_SET_ACTIVE(weight, 0);
1787 break;
1790 return (weight);
1794 * Calculate the weight based on the on-disk histogram. This should only
1795 * be called after a sync pass has completely finished since the on-disk
1796 * information is updated in metaslab_sync().
1798 static uint64_t
1799 metaslab_weight_from_spacemap(metaslab_t *msp)
1801 uint64_t weight = 0;
1803 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1804 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1805 WEIGHT_SET_COUNT(weight,
1806 msp->ms_sm->sm_phys->smp_histogram[i]);
1807 WEIGHT_SET_INDEX(weight, i +
1808 msp->ms_sm->sm_shift);
1809 WEIGHT_SET_ACTIVE(weight, 0);
1810 break;
1813 return (weight);
1817 * Compute a segment-based weight for the specified metaslab. The weight
1818 * is determined by highest bucket in the histogram. The information
1819 * for the highest bucket is encoded into the weight value.
1821 static uint64_t
1822 metaslab_segment_weight(metaslab_t *msp)
1824 metaslab_group_t *mg = msp->ms_group;
1825 uint64_t weight = 0;
1826 uint8_t shift = mg->mg_vd->vdev_ashift;
1828 ASSERT(MUTEX_HELD(&msp->ms_lock));
1831 * The metaslab is completely free.
1833 if (space_map_allocated(msp->ms_sm) == 0) {
1834 int idx = highbit64(msp->ms_size) - 1;
1835 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1837 if (idx < max_idx) {
1838 WEIGHT_SET_COUNT(weight, 1ULL);
1839 WEIGHT_SET_INDEX(weight, idx);
1840 } else {
1841 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1842 WEIGHT_SET_INDEX(weight, max_idx);
1844 WEIGHT_SET_ACTIVE(weight, 0);
1845 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1847 return (weight);
1850 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1853 * If the metaslab is fully allocated then just make the weight 0.
1855 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1856 return (0);
1858 * If the metaslab is already loaded, then use the range tree to
1859 * determine the weight. Otherwise, we rely on the space map information
1860 * to generate the weight.
1862 if (msp->ms_loaded) {
1863 weight = metaslab_weight_from_range_tree(msp);
1864 } else {
1865 weight = metaslab_weight_from_spacemap(msp);
1869 * If the metaslab was active the last time we calculated its weight
1870 * then keep it active. We want to consume the entire region that
1871 * is associated with this weight.
1873 if (msp->ms_activation_weight != 0 && weight != 0)
1874 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1875 return (weight);
1879 * Determine if we should attempt to allocate from this metaslab. If the
1880 * metaslab has a maximum size then we can quickly determine if the desired
1881 * allocation size can be satisfied. Otherwise, if we're using segment-based
1882 * weighting then we can determine the maximum allocation that this metaslab
1883 * can accommodate based on the index encoded in the weight. If we're using
1884 * space-based weights then rely on the entire weight (excluding the weight
1885 * type bit).
1887 boolean_t
1888 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1890 boolean_t should_allocate;
1892 if (msp->ms_max_size != 0)
1893 return (msp->ms_max_size >= asize);
1895 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1897 * The metaslab segment weight indicates segments in the
1898 * range [2^i, 2^(i+1)), where i is the index in the weight.
1899 * Since the asize might be in the middle of the range, we
1900 * should attempt the allocation if asize < 2^(i+1).
1902 should_allocate = (asize <
1903 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1904 } else {
1905 should_allocate = (asize <=
1906 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1908 return (should_allocate);
1911 static uint64_t
1912 metaslab_weight(metaslab_t *msp)
1914 vdev_t *vd = msp->ms_group->mg_vd;
1915 spa_t *spa = vd->vdev_spa;
1916 uint64_t weight;
1918 ASSERT(MUTEX_HELD(&msp->ms_lock));
1921 * If this vdev is in the process of being removed, there is nothing
1922 * for us to do here.
1924 if (vd->vdev_removing)
1925 return (0);
1927 metaslab_set_fragmentation(msp);
1930 * Update the maximum size if the metaslab is loaded. This will
1931 * ensure that we get an accurate maximum size if newly freed space
1932 * has been added back into the free tree.
1934 if (msp->ms_loaded)
1935 msp->ms_max_size = metaslab_block_maxsize(msp);
1938 * Segment-based weighting requires space map histogram support.
1940 if (zfs_metaslab_segment_weight_enabled &&
1941 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1942 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1943 sizeof (space_map_phys_t))) {
1944 weight = metaslab_segment_weight(msp);
1945 } else {
1946 weight = metaslab_space_weight(msp);
1948 return (weight);
1951 static int
1952 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1954 ASSERT(MUTEX_HELD(&msp->ms_lock));
1956 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1957 metaslab_load_wait(msp);
1958 if (!msp->ms_loaded) {
1959 int error = metaslab_load(msp);
1960 if (error) {
1961 metaslab_group_sort(msp->ms_group, msp, 0);
1962 return (error);
1966 msp->ms_activation_weight = msp->ms_weight;
1967 metaslab_group_sort(msp->ms_group, msp,
1968 msp->ms_weight | activation_weight);
1970 ASSERT(msp->ms_loaded);
1971 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1973 return (0);
1976 static void
1977 metaslab_passivate(metaslab_t *msp, uint64_t weight)
1979 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
1982 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1983 * this metaslab again. In that case, it had better be empty,
1984 * or we would be leaving space on the table.
1986 ASSERT(size >= SPA_MINBLOCKSIZE ||
1987 range_tree_is_empty(msp->ms_allocatable));
1988 ASSERT0(weight & METASLAB_ACTIVE_MASK);
1990 msp->ms_activation_weight = 0;
1991 metaslab_group_sort(msp->ms_group, msp, weight);
1992 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1996 * Segment-based metaslabs are activated once and remain active until
1997 * we either fail an allocation attempt (similar to space-based metaslabs)
1998 * or have exhausted the free space in zfs_metaslab_switch_threshold
1999 * buckets since the metaslab was activated. This function checks to see
2000 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2001 * metaslab and passivates it proactively. This will allow us to select a
2002 * metaslabs with larger contiguous region if any remaining within this
2003 * metaslab group. If we're in sync pass > 1, then we continue using this
2004 * metaslab so that we don't dirty more block and cause more sync passes.
2006 void
2007 metaslab_segment_may_passivate(metaslab_t *msp)
2009 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2011 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2012 return;
2015 * Since we are in the middle of a sync pass, the most accurate
2016 * information that is accessible to us is the in-core range tree
2017 * histogram; calculate the new weight based on that information.
2019 uint64_t weight = metaslab_weight_from_range_tree(msp);
2020 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2021 int current_idx = WEIGHT_GET_INDEX(weight);
2023 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2024 metaslab_passivate(msp, weight);
2027 static void
2028 metaslab_preload(void *arg)
2030 metaslab_t *msp = arg;
2031 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2033 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2035 mutex_enter(&msp->ms_lock);
2036 metaslab_load_wait(msp);
2037 if (!msp->ms_loaded)
2038 (void) metaslab_load(msp);
2039 msp->ms_selected_txg = spa_syncing_txg(spa);
2040 mutex_exit(&msp->ms_lock);
2043 static void
2044 metaslab_group_preload(metaslab_group_t *mg)
2046 spa_t *spa = mg->mg_vd->vdev_spa;
2047 metaslab_t *msp;
2048 avl_tree_t *t = &mg->mg_metaslab_tree;
2049 int m = 0;
2051 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2052 taskq_wait(mg->mg_taskq);
2053 return;
2056 mutex_enter(&mg->mg_lock);
2059 * Load the next potential metaslabs
2061 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2062 ASSERT3P(msp->ms_group, ==, mg);
2065 * We preload only the maximum number of metaslabs specified
2066 * by metaslab_preload_limit. If a metaslab is being forced
2067 * to condense then we preload it too. This will ensure
2068 * that force condensing happens in the next txg.
2070 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2071 continue;
2074 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2075 msp, TQ_SLEEP) != NULL);
2077 mutex_exit(&mg->mg_lock);
2081 * Determine if the space map's on-disk footprint is past our tolerance
2082 * for inefficiency. We would like to use the following criteria to make
2083 * our decision:
2085 * 1. The size of the space map object should not dramatically increase as a
2086 * result of writing out the free space range tree.
2088 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2089 * times the size than the free space range tree representation
2090 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2092 * 3. The on-disk size of the space map should actually decrease.
2094 * Checking the first condition is tricky since we don't want to walk
2095 * the entire AVL tree calculating the estimated on-disk size. Instead we
2096 * use the size-ordered range tree in the metaslab and calculate the
2097 * size required to write out the largest segment in our free tree. If the
2098 * size required to represent that segment on disk is larger than the space
2099 * map object then we avoid condensing this map.
2101 * To determine the second criterion we use a best-case estimate and assume
2102 * each segment can be represented on-disk as a single 64-bit entry. We refer
2103 * to this best-case estimate as the space map's minimal form.
2105 * Unfortunately, we cannot compute the on-disk size of the space map in this
2106 * context because we cannot accurately compute the effects of compression, etc.
2107 * Instead, we apply the heuristic described in the block comment for
2108 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2109 * is greater than a threshold number of blocks.
2111 static boolean_t
2112 metaslab_should_condense(metaslab_t *msp)
2114 space_map_t *sm = msp->ms_sm;
2115 range_seg_t *rs;
2116 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
2117 dmu_object_info_t doi;
2118 vdev_t *vd = msp->ms_group->mg_vd;
2119 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2120 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2122 ASSERT(MUTEX_HELD(&msp->ms_lock));
2123 ASSERT(msp->ms_loaded);
2126 * Allocations and frees in early passes are generally more space
2127 * efficient (in terms of blocks described in space map entries)
2128 * than the ones in later passes (e.g. we don't compress after
2129 * sync pass 5) and condensing a metaslab multiple times in a txg
2130 * could degrade performance.
2132 * Thus we prefer condensing each metaslab at most once every txg at
2133 * the earliest sync pass possible. If a metaslab is eligible for
2134 * condensing again after being considered for condensing within the
2135 * same txg, it will hopefully be dirty in the next txg where it will
2136 * be condensed at an earlier pass.
2138 if (msp->ms_condense_checked_txg == current_txg)
2139 return (B_FALSE);
2140 msp->ms_condense_checked_txg = current_txg;
2143 * Use the ms_allocatable_by_size range tree, which is ordered by
2144 * size, to obtain the largest segment in the free tree. We always
2145 * condense metaslabs that are empty and metaslabs for which a
2146 * condense request has been made.
2148 rs = avl_last(&msp->ms_allocatable_by_size);
2149 if (rs == NULL || msp->ms_condense_wanted)
2150 return (B_TRUE);
2153 * Calculate the number of 64-bit entries this segment would
2154 * require when written to disk. If this single segment would be
2155 * larger on-disk than the entire current on-disk structure, then
2156 * clearly condensing will increase the on-disk structure size.
2158 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
2159 entries = size / (MIN(size, SM_RUN_MAX));
2160 segsz = entries * sizeof (uint64_t);
2162 optimal_size =
2163 sizeof (uint64_t) * avl_numnodes(&msp->ms_allocatable->rt_root);
2164 object_size = space_map_length(msp->ms_sm);
2166 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2167 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2169 return (segsz <= object_size &&
2170 object_size >= (optimal_size * zfs_condense_pct / 100) &&
2171 object_size > zfs_metaslab_condense_block_threshold * record_size);
2175 * Condense the on-disk space map representation to its minimized form.
2176 * The minimized form consists of a small number of allocations followed by
2177 * the entries of the free range tree.
2179 static void
2180 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2182 range_tree_t *condense_tree;
2183 space_map_t *sm = msp->ms_sm;
2185 ASSERT(MUTEX_HELD(&msp->ms_lock));
2186 ASSERT(msp->ms_loaded);
2188 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2189 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2190 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2191 msp->ms_group->mg_vd->vdev_spa->spa_name,
2192 space_map_length(msp->ms_sm),
2193 avl_numnodes(&msp->ms_allocatable->rt_root),
2194 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2196 msp->ms_condense_wanted = B_FALSE;
2199 * Create an range tree that is 100% allocated. We remove segments
2200 * that have been freed in this txg, any deferred frees that exist,
2201 * and any allocation in the future. Removing segments should be
2202 * a relatively inexpensive operation since we expect these trees to
2203 * have a small number of nodes.
2205 condense_tree = range_tree_create(NULL, NULL);
2206 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2208 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2209 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2211 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2212 range_tree_walk(msp->ms_defer[t],
2213 range_tree_remove, condense_tree);
2216 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2217 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2218 range_tree_remove, condense_tree);
2222 * We're about to drop the metaslab's lock thus allowing
2223 * other consumers to change it's content. Set the
2224 * metaslab's ms_condensing flag to ensure that
2225 * allocations on this metaslab do not occur while we're
2226 * in the middle of committing it to disk. This is only critical
2227 * for ms_allocatable as all other range trees use per txg
2228 * views of their content.
2230 msp->ms_condensing = B_TRUE;
2232 mutex_exit(&msp->ms_lock);
2233 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2236 * While we would ideally like to create a space map representation
2237 * that consists only of allocation records, doing so can be
2238 * prohibitively expensive because the in-core free tree can be
2239 * large, and therefore computationally expensive to subtract
2240 * from the condense_tree. Instead we sync out two trees, a cheap
2241 * allocation only tree followed by the in-core free tree. While not
2242 * optimal, this is typically close to optimal, and much cheaper to
2243 * compute.
2245 space_map_write(sm, condense_tree, SM_ALLOC, tx);
2246 range_tree_vacate(condense_tree, NULL, NULL);
2247 range_tree_destroy(condense_tree);
2249 space_map_write(sm, msp->ms_allocatable, SM_FREE, tx);
2250 mutex_enter(&msp->ms_lock);
2251 msp->ms_condensing = B_FALSE;
2255 * Write a metaslab to disk in the context of the specified transaction group.
2257 void
2258 metaslab_sync(metaslab_t *msp, uint64_t txg)
2260 metaslab_group_t *mg = msp->ms_group;
2261 vdev_t *vd = mg->mg_vd;
2262 spa_t *spa = vd->vdev_spa;
2263 objset_t *mos = spa_meta_objset(spa);
2264 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2265 dmu_tx_t *tx;
2266 uint64_t object = space_map_object(msp->ms_sm);
2268 ASSERT(!vd->vdev_ishole);
2271 * This metaslab has just been added so there's no work to do now.
2273 if (msp->ms_freeing == NULL) {
2274 ASSERT3P(alloctree, ==, NULL);
2275 return;
2278 ASSERT3P(alloctree, !=, NULL);
2279 ASSERT3P(msp->ms_freeing, !=, NULL);
2280 ASSERT3P(msp->ms_freed, !=, NULL);
2281 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2284 * Normally, we don't want to process a metaslab if there are no
2285 * allocations or frees to perform. However, if the metaslab is being
2286 * forced to condense and it's loaded, we need to let it through.
2288 if (range_tree_is_empty(alloctree) &&
2289 range_tree_is_empty(msp->ms_freeing) &&
2290 range_tree_is_empty(msp->ms_checkpointing) &&
2291 !(msp->ms_loaded && msp->ms_condense_wanted))
2292 return;
2295 VERIFY(txg <= spa_final_dirty_txg(spa));
2298 * The only state that can actually be changing concurrently with
2299 * metaslab_sync() is the metaslab's ms_allocatable. No other
2300 * thread can be modifying this txg's alloc, freeing,
2301 * freed, or space_map_phys_t. We drop ms_lock whenever we
2302 * could call into the DMU, because the DMU can call down to us
2303 * (e.g. via zio_free()) at any time.
2305 * The spa_vdev_remove_thread() can be reading metaslab state
2306 * concurrently, and it is locked out by the ms_sync_lock. Note
2307 * that the ms_lock is insufficient for this, because it is dropped
2308 * by space_map_write().
2310 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2312 if (msp->ms_sm == NULL) {
2313 uint64_t new_object;
2315 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2316 VERIFY3U(new_object, !=, 0);
2318 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2319 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2320 ASSERT(msp->ms_sm != NULL);
2323 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2324 vd->vdev_checkpoint_sm == NULL) {
2325 ASSERT(spa_has_checkpoint(spa));
2327 uint64_t new_object = space_map_alloc(mos,
2328 vdev_standard_sm_blksz, tx);
2329 VERIFY3U(new_object, !=, 0);
2331 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2332 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2333 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2336 * We save the space map object as an entry in vdev_top_zap
2337 * so it can be retrieved when the pool is reopened after an
2338 * export or through zdb.
2340 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2341 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2342 sizeof (new_object), 1, &new_object, tx));
2345 mutex_enter(&msp->ms_sync_lock);
2346 mutex_enter(&msp->ms_lock);
2349 * Note: metaslab_condense() clears the space map's histogram.
2350 * Therefore we must verify and remove this histogram before
2351 * condensing.
2353 metaslab_group_histogram_verify(mg);
2354 metaslab_class_histogram_verify(mg->mg_class);
2355 metaslab_group_histogram_remove(mg, msp);
2357 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2358 metaslab_condense(msp, txg, tx);
2359 } else {
2360 mutex_exit(&msp->ms_lock);
2361 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
2362 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, tx);
2363 mutex_enter(&msp->ms_lock);
2366 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2367 ASSERT(spa_has_checkpoint(spa));
2368 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2371 * Since we are doing writes to disk and the ms_checkpointing
2372 * tree won't be changing during that time, we drop the
2373 * ms_lock while writing to the checkpoint space map.
2375 mutex_exit(&msp->ms_lock);
2376 space_map_write(vd->vdev_checkpoint_sm,
2377 msp->ms_checkpointing, SM_FREE, tx);
2378 mutex_enter(&msp->ms_lock);
2379 space_map_update(vd->vdev_checkpoint_sm);
2381 spa->spa_checkpoint_info.sci_dspace +=
2382 range_tree_space(msp->ms_checkpointing);
2383 vd->vdev_stat.vs_checkpoint_space +=
2384 range_tree_space(msp->ms_checkpointing);
2385 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2386 -vd->vdev_checkpoint_sm->sm_alloc);
2388 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2391 if (msp->ms_loaded) {
2393 * When the space map is loaded, we have an accurate
2394 * histogram in the range tree. This gives us an opportunity
2395 * to bring the space map's histogram up-to-date so we clear
2396 * it first before updating it.
2398 space_map_histogram_clear(msp->ms_sm);
2399 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2402 * Since we've cleared the histogram we need to add back
2403 * any free space that has already been processed, plus
2404 * any deferred space. This allows the on-disk histogram
2405 * to accurately reflect all free space even if some space
2406 * is not yet available for allocation (i.e. deferred).
2408 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2411 * Add back any deferred free space that has not been
2412 * added back into the in-core free tree yet. This will
2413 * ensure that we don't end up with a space map histogram
2414 * that is completely empty unless the metaslab is fully
2415 * allocated.
2417 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2418 space_map_histogram_add(msp->ms_sm,
2419 msp->ms_defer[t], tx);
2424 * Always add the free space from this sync pass to the space
2425 * map histogram. We want to make sure that the on-disk histogram
2426 * accounts for all free space. If the space map is not loaded,
2427 * then we will lose some accuracy but will correct it the next
2428 * time we load the space map.
2430 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2432 metaslab_group_histogram_add(mg, msp);
2433 metaslab_group_histogram_verify(mg);
2434 metaslab_class_histogram_verify(mg->mg_class);
2437 * For sync pass 1, we avoid traversing this txg's free range tree
2438 * and instead will just swap the pointers for freeing and
2439 * freed. We can safely do this since the freed_tree is
2440 * guaranteed to be empty on the initial pass.
2442 if (spa_sync_pass(spa) == 1) {
2443 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2444 } else {
2445 range_tree_vacate(msp->ms_freeing,
2446 range_tree_add, msp->ms_freed);
2448 range_tree_vacate(alloctree, NULL, NULL);
2450 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2451 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2452 & TXG_MASK]));
2453 ASSERT0(range_tree_space(msp->ms_freeing));
2454 ASSERT0(range_tree_space(msp->ms_checkpointing));
2456 mutex_exit(&msp->ms_lock);
2458 if (object != space_map_object(msp->ms_sm)) {
2459 object = space_map_object(msp->ms_sm);
2460 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2461 msp->ms_id, sizeof (uint64_t), &object, tx);
2463 mutex_exit(&msp->ms_sync_lock);
2464 dmu_tx_commit(tx);
2468 * Called after a transaction group has completely synced to mark
2469 * all of the metaslab's free space as usable.
2471 void
2472 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2474 metaslab_group_t *mg = msp->ms_group;
2475 vdev_t *vd = mg->mg_vd;
2476 spa_t *spa = vd->vdev_spa;
2477 range_tree_t **defer_tree;
2478 int64_t alloc_delta, defer_delta;
2479 boolean_t defer_allowed = B_TRUE;
2481 ASSERT(!vd->vdev_ishole);
2483 mutex_enter(&msp->ms_lock);
2486 * If this metaslab is just becoming available, initialize its
2487 * range trees and add its capacity to the vdev.
2489 if (msp->ms_freed == NULL) {
2490 for (int t = 0; t < TXG_SIZE; t++) {
2491 ASSERT(msp->ms_allocating[t] == NULL);
2493 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2496 ASSERT3P(msp->ms_freeing, ==, NULL);
2497 msp->ms_freeing = range_tree_create(NULL, NULL);
2499 ASSERT3P(msp->ms_freed, ==, NULL);
2500 msp->ms_freed = range_tree_create(NULL, NULL);
2502 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2503 ASSERT(msp->ms_defer[t] == NULL);
2505 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2508 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2509 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2511 vdev_space_update(vd, 0, 0, msp->ms_size);
2513 ASSERT0(range_tree_space(msp->ms_freeing));
2514 ASSERT0(range_tree_space(msp->ms_checkpointing));
2516 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2518 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2519 metaslab_class_get_alloc(spa_normal_class(spa));
2520 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2521 defer_allowed = B_FALSE;
2524 defer_delta = 0;
2525 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2526 if (defer_allowed) {
2527 defer_delta = range_tree_space(msp->ms_freed) -
2528 range_tree_space(*defer_tree);
2529 } else {
2530 defer_delta -= range_tree_space(*defer_tree);
2533 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2536 * If there's a metaslab_load() in progress, wait for it to complete
2537 * so that we have a consistent view of the in-core space map.
2539 metaslab_load_wait(msp);
2542 * Move the frees from the defer_tree back to the free
2543 * range tree (if it's loaded). Swap the freed_tree and
2544 * the defer_tree -- this is safe to do because we've
2545 * just emptied out the defer_tree.
2547 range_tree_vacate(*defer_tree,
2548 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2549 if (defer_allowed) {
2550 range_tree_swap(&msp->ms_freed, defer_tree);
2551 } else {
2552 range_tree_vacate(msp->ms_freed,
2553 msp->ms_loaded ? range_tree_add : NULL,
2554 msp->ms_allocatable);
2556 space_map_update(msp->ms_sm);
2558 msp->ms_deferspace += defer_delta;
2559 ASSERT3S(msp->ms_deferspace, >=, 0);
2560 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2561 if (msp->ms_deferspace != 0) {
2563 * Keep syncing this metaslab until all deferred frees
2564 * are back in circulation.
2566 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2570 * Calculate the new weights before unloading any metaslabs.
2571 * This will give us the most accurate weighting.
2573 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2576 * If the metaslab is loaded and we've not tried to load or allocate
2577 * from it in 'metaslab_unload_delay' txgs, then unload it.
2579 if (msp->ms_loaded &&
2580 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2581 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2582 VERIFY0(range_tree_space(
2583 msp->ms_allocating[(txg + t) & TXG_MASK]));
2586 if (!metaslab_debug_unload)
2587 metaslab_unload(msp);
2590 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2591 ASSERT0(range_tree_space(msp->ms_freeing));
2592 ASSERT0(range_tree_space(msp->ms_freed));
2593 ASSERT0(range_tree_space(msp->ms_checkpointing));
2595 mutex_exit(&msp->ms_lock);
2598 void
2599 metaslab_sync_reassess(metaslab_group_t *mg)
2601 spa_t *spa = mg->mg_class->mc_spa;
2603 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2604 metaslab_group_alloc_update(mg);
2605 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2608 * Preload the next potential metaslabs but only on active
2609 * metaslab groups. We can get into a state where the metaslab
2610 * is no longer active since we dirty metaslabs as we remove a
2611 * a device, thus potentially making the metaslab group eligible
2612 * for preloading.
2614 if (mg->mg_activation_count > 0) {
2615 metaslab_group_preload(mg);
2617 spa_config_exit(spa, SCL_ALLOC, FTAG);
2620 static uint64_t
2621 metaslab_distance(metaslab_t *msp, dva_t *dva)
2623 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2624 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2625 uint64_t start = msp->ms_id;
2627 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2628 return (1ULL << 63);
2630 if (offset < start)
2631 return ((start - offset) << ms_shift);
2632 if (offset > start)
2633 return ((offset - start) << ms_shift);
2634 return (0);
2638 * ==========================================================================
2639 * Metaslab allocation tracing facility
2640 * ==========================================================================
2642 kstat_t *metaslab_trace_ksp;
2643 kstat_named_t metaslab_trace_over_limit;
2645 void
2646 metaslab_alloc_trace_init(void)
2648 ASSERT(metaslab_alloc_trace_cache == NULL);
2649 metaslab_alloc_trace_cache = kmem_cache_create(
2650 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2651 0, NULL, NULL, NULL, NULL, NULL, 0);
2652 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2653 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2654 if (metaslab_trace_ksp != NULL) {
2655 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2656 kstat_named_init(&metaslab_trace_over_limit,
2657 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2658 kstat_install(metaslab_trace_ksp);
2662 void
2663 metaslab_alloc_trace_fini(void)
2665 if (metaslab_trace_ksp != NULL) {
2666 kstat_delete(metaslab_trace_ksp);
2667 metaslab_trace_ksp = NULL;
2669 kmem_cache_destroy(metaslab_alloc_trace_cache);
2670 metaslab_alloc_trace_cache = NULL;
2674 * Add an allocation trace element to the allocation tracing list.
2676 static void
2677 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2678 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
2680 if (!metaslab_trace_enabled)
2681 return;
2684 * When the tracing list reaches its maximum we remove
2685 * the second element in the list before adding a new one.
2686 * By removing the second element we preserve the original
2687 * entry as a clue to what allocations steps have already been
2688 * performed.
2690 if (zal->zal_size == metaslab_trace_max_entries) {
2691 metaslab_alloc_trace_t *mat_next;
2692 #ifdef DEBUG
2693 panic("too many entries in allocation list");
2694 #endif
2695 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2696 zal->zal_size--;
2697 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2698 list_remove(&zal->zal_list, mat_next);
2699 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2702 metaslab_alloc_trace_t *mat =
2703 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2704 list_link_init(&mat->mat_list_node);
2705 mat->mat_mg = mg;
2706 mat->mat_msp = msp;
2707 mat->mat_size = psize;
2708 mat->mat_dva_id = dva_id;
2709 mat->mat_offset = offset;
2710 mat->mat_weight = 0;
2712 if (msp != NULL)
2713 mat->mat_weight = msp->ms_weight;
2716 * The list is part of the zio so locking is not required. Only
2717 * a single thread will perform allocations for a given zio.
2719 list_insert_tail(&zal->zal_list, mat);
2720 zal->zal_size++;
2722 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2725 void
2726 metaslab_trace_init(zio_alloc_list_t *zal)
2728 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2729 offsetof(metaslab_alloc_trace_t, mat_list_node));
2730 zal->zal_size = 0;
2733 void
2734 metaslab_trace_fini(zio_alloc_list_t *zal)
2736 metaslab_alloc_trace_t *mat;
2738 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2739 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2740 list_destroy(&zal->zal_list);
2741 zal->zal_size = 0;
2745 * ==========================================================================
2746 * Metaslab block operations
2747 * ==========================================================================
2750 static void
2751 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2753 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2754 flags & METASLAB_DONT_THROTTLE)
2755 return;
2757 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2758 if (!mg->mg_class->mc_alloc_throttle_enabled)
2759 return;
2761 (void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2764 void
2765 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2767 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2768 flags & METASLAB_DONT_THROTTLE)
2769 return;
2771 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2772 if (!mg->mg_class->mc_alloc_throttle_enabled)
2773 return;
2775 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2778 void
2779 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2781 #ifdef ZFS_DEBUG
2782 const dva_t *dva = bp->blk_dva;
2783 int ndvas = BP_GET_NDVAS(bp);
2785 for (int d = 0; d < ndvas; d++) {
2786 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2787 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2788 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2790 #endif
2793 static uint64_t
2794 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2796 uint64_t start;
2797 range_tree_t *rt = msp->ms_allocatable;
2798 metaslab_class_t *mc = msp->ms_group->mg_class;
2800 VERIFY(!msp->ms_condensing);
2802 start = mc->mc_ops->msop_alloc(msp, size);
2803 if (start != -1ULL) {
2804 metaslab_group_t *mg = msp->ms_group;
2805 vdev_t *vd = mg->mg_vd;
2807 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2808 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2809 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2810 range_tree_remove(rt, start, size);
2812 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
2813 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2815 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
2817 /* Track the last successful allocation */
2818 msp->ms_alloc_txg = txg;
2819 metaslab_verify_space(msp, txg);
2823 * Now that we've attempted the allocation we need to update the
2824 * metaslab's maximum block size since it may have changed.
2826 msp->ms_max_size = metaslab_block_maxsize(msp);
2827 return (start);
2830 static uint64_t
2831 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
2832 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2834 metaslab_t *msp = NULL;
2835 uint64_t offset = -1ULL;
2836 uint64_t activation_weight;
2837 uint64_t target_distance;
2838 int i;
2840 activation_weight = METASLAB_WEIGHT_PRIMARY;
2841 for (i = 0; i < d; i++) {
2842 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2843 activation_weight = METASLAB_WEIGHT_SECONDARY;
2844 break;
2848 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
2849 search->ms_weight = UINT64_MAX;
2850 search->ms_start = 0;
2851 for (;;) {
2852 boolean_t was_active;
2853 avl_tree_t *t = &mg->mg_metaslab_tree;
2854 avl_index_t idx;
2856 mutex_enter(&mg->mg_lock);
2859 * Find the metaslab with the highest weight that is less
2860 * than what we've already tried. In the common case, this
2861 * means that we will examine each metaslab at most once.
2862 * Note that concurrent callers could reorder metaslabs
2863 * by activation/passivation once we have dropped the mg_lock.
2864 * If a metaslab is activated by another thread, and we fail
2865 * to allocate from the metaslab we have selected, we may
2866 * not try the newly-activated metaslab, and instead activate
2867 * another metaslab. This is not optimal, but generally
2868 * does not cause any problems (a possible exception being
2869 * if every metaslab is completely full except for the
2870 * the newly-activated metaslab which we fail to examine).
2872 msp = avl_find(t, search, &idx);
2873 if (msp == NULL)
2874 msp = avl_nearest(t, idx, AVL_AFTER);
2875 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2877 if (!metaslab_should_allocate(msp, asize)) {
2878 metaslab_trace_add(zal, mg, msp, asize, d,
2879 TRACE_TOO_SMALL);
2880 continue;
2884 * If the selected metaslab is condensing, skip it.
2886 if (msp->ms_condensing)
2887 continue;
2889 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2890 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2891 break;
2893 target_distance = min_distance +
2894 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2895 min_distance >> 1);
2897 for (i = 0; i < d; i++) {
2898 if (metaslab_distance(msp, &dva[i]) <
2899 target_distance)
2900 break;
2902 if (i == d)
2903 break;
2905 mutex_exit(&mg->mg_lock);
2906 if (msp == NULL) {
2907 kmem_free(search, sizeof (*search));
2908 return (-1ULL);
2910 search->ms_weight = msp->ms_weight;
2911 search->ms_start = msp->ms_start + 1;
2913 mutex_enter(&msp->ms_lock);
2916 * Ensure that the metaslab we have selected is still
2917 * capable of handling our request. It's possible that
2918 * another thread may have changed the weight while we
2919 * were blocked on the metaslab lock. We check the
2920 * active status first to see if we need to reselect
2921 * a new metaslab.
2923 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
2924 mutex_exit(&msp->ms_lock);
2925 continue;
2928 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2929 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2930 metaslab_passivate(msp,
2931 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2932 mutex_exit(&msp->ms_lock);
2933 continue;
2936 if (metaslab_activate(msp, activation_weight) != 0) {
2937 mutex_exit(&msp->ms_lock);
2938 continue;
2940 msp->ms_selected_txg = txg;
2943 * Now that we have the lock, recheck to see if we should
2944 * continue to use this metaslab for this allocation. The
2945 * the metaslab is now loaded so metaslab_should_allocate() can
2946 * accurately determine if the allocation attempt should
2947 * proceed.
2949 if (!metaslab_should_allocate(msp, asize)) {
2950 /* Passivate this metaslab and select a new one. */
2951 metaslab_trace_add(zal, mg, msp, asize, d,
2952 TRACE_TOO_SMALL);
2953 goto next;
2957 * If this metaslab is currently condensing then pick again as
2958 * we can't manipulate this metaslab until it's committed
2959 * to disk.
2961 if (msp->ms_condensing) {
2962 metaslab_trace_add(zal, mg, msp, asize, d,
2963 TRACE_CONDENSING);
2964 mutex_exit(&msp->ms_lock);
2965 continue;
2968 offset = metaslab_block_alloc(msp, asize, txg);
2969 metaslab_trace_add(zal, mg, msp, asize, d, offset);
2971 if (offset != -1ULL) {
2972 /* Proactively passivate the metaslab, if needed */
2973 metaslab_segment_may_passivate(msp);
2974 break;
2976 next:
2977 ASSERT(msp->ms_loaded);
2980 * We were unable to allocate from this metaslab so determine
2981 * a new weight for this metaslab. Now that we have loaded
2982 * the metaslab we can provide a better hint to the metaslab
2983 * selector.
2985 * For space-based metaslabs, we use the maximum block size.
2986 * This information is only available when the metaslab
2987 * is loaded and is more accurate than the generic free
2988 * space weight that was calculated by metaslab_weight().
2989 * This information allows us to quickly compare the maximum
2990 * available allocation in the metaslab to the allocation
2991 * size being requested.
2993 * For segment-based metaslabs, determine the new weight
2994 * based on the highest bucket in the range tree. We
2995 * explicitly use the loaded segment weight (i.e. the range
2996 * tree histogram) since it contains the space that is
2997 * currently available for allocation and is accurate
2998 * even within a sync pass.
3000 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3001 uint64_t weight = metaslab_block_maxsize(msp);
3002 WEIGHT_SET_SPACEBASED(weight);
3003 metaslab_passivate(msp, weight);
3004 } else {
3005 metaslab_passivate(msp,
3006 metaslab_weight_from_range_tree(msp));
3010 * We have just failed an allocation attempt, check
3011 * that metaslab_should_allocate() agrees. Otherwise,
3012 * we may end up in an infinite loop retrying the same
3013 * metaslab.
3015 ASSERT(!metaslab_should_allocate(msp, asize));
3016 mutex_exit(&msp->ms_lock);
3018 mutex_exit(&msp->ms_lock);
3019 kmem_free(search, sizeof (*search));
3020 return (offset);
3023 static uint64_t
3024 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3025 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
3027 uint64_t offset;
3028 ASSERT(mg->mg_initialized);
3030 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
3031 min_distance, dva, d);
3033 mutex_enter(&mg->mg_lock);
3034 if (offset == -1ULL) {
3035 mg->mg_failed_allocations++;
3036 metaslab_trace_add(zal, mg, NULL, asize, d,
3037 TRACE_GROUP_FAILURE);
3038 if (asize == SPA_GANGBLOCKSIZE) {
3040 * This metaslab group was unable to allocate
3041 * the minimum gang block size so it must be out of
3042 * space. We must notify the allocation throttle
3043 * to start skipping allocation attempts to this
3044 * metaslab group until more space becomes available.
3045 * Note: this failure cannot be caused by the
3046 * allocation throttle since the allocation throttle
3047 * is only responsible for skipping devices and
3048 * not failing block allocations.
3050 mg->mg_no_free_space = B_TRUE;
3053 mg->mg_allocations++;
3054 mutex_exit(&mg->mg_lock);
3055 return (offset);
3059 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
3060 * on the same vdev as an existing DVA of this BP, then try to allocate it
3061 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
3062 * existing DVAs.
3064 int ditto_same_vdev_distance_shift = 3;
3067 * Allocate a block for the specified i/o.
3070 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3071 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3072 zio_alloc_list_t *zal)
3074 metaslab_group_t *mg, *rotor;
3075 vdev_t *vd;
3076 boolean_t try_hard = B_FALSE;
3078 ASSERT(!DVA_IS_VALID(&dva[d]));
3081 * For testing, make some blocks above a certain size be gang blocks.
3083 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
3084 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
3085 return (SET_ERROR(ENOSPC));
3089 * Start at the rotor and loop through all mgs until we find something.
3090 * Note that there's no locking on mc_rotor or mc_aliquot because
3091 * nothing actually breaks if we miss a few updates -- we just won't
3092 * allocate quite as evenly. It all balances out over time.
3094 * If we are doing ditto or log blocks, try to spread them across
3095 * consecutive vdevs. If we're forced to reuse a vdev before we've
3096 * allocated all of our ditto blocks, then try and spread them out on
3097 * that vdev as much as possible. If it turns out to not be possible,
3098 * gradually lower our standards until anything becomes acceptable.
3099 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3100 * gives us hope of containing our fault domains to something we're
3101 * able to reason about. Otherwise, any two top-level vdev failures
3102 * will guarantee the loss of data. With consecutive allocation,
3103 * only two adjacent top-level vdev failures will result in data loss.
3105 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3106 * ourselves on the same vdev as our gang block header. That
3107 * way, we can hope for locality in vdev_cache, plus it makes our
3108 * fault domains something tractable.
3110 if (hintdva) {
3111 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3114 * It's possible the vdev we're using as the hint no
3115 * longer exists or its mg has been closed (e.g. by
3116 * device removal). Consult the rotor when
3117 * all else fails.
3119 if (vd != NULL && vd->vdev_mg != NULL) {
3120 mg = vd->vdev_mg;
3122 if (flags & METASLAB_HINTBP_AVOID &&
3123 mg->mg_next != NULL)
3124 mg = mg->mg_next;
3125 } else {
3126 mg = mc->mc_rotor;
3128 } else if (d != 0) {
3129 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3130 mg = vd->vdev_mg->mg_next;
3131 } else {
3132 mg = mc->mc_rotor;
3136 * If the hint put us into the wrong metaslab class, or into a
3137 * metaslab group that has been passivated, just follow the rotor.
3139 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3140 mg = mc->mc_rotor;
3142 rotor = mg;
3143 top:
3144 do {
3145 boolean_t allocatable;
3147 ASSERT(mg->mg_activation_count == 1);
3148 vd = mg->mg_vd;
3151 * Don't allocate from faulted devices.
3153 if (try_hard) {
3154 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3155 allocatable = vdev_allocatable(vd);
3156 spa_config_exit(spa, SCL_ZIO, FTAG);
3157 } else {
3158 allocatable = vdev_allocatable(vd);
3162 * Determine if the selected metaslab group is eligible
3163 * for allocations. If we're ganging then don't allow
3164 * this metaslab group to skip allocations since that would
3165 * inadvertently return ENOSPC and suspend the pool
3166 * even though space is still available.
3168 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3169 allocatable = metaslab_group_allocatable(mg, rotor,
3170 psize);
3173 if (!allocatable) {
3174 metaslab_trace_add(zal, mg, NULL, psize, d,
3175 TRACE_NOT_ALLOCATABLE);
3176 goto next;
3179 ASSERT(mg->mg_initialized);
3182 * Avoid writing single-copy data to a failing,
3183 * non-redundant vdev, unless we've already tried all
3184 * other vdevs.
3186 if ((vd->vdev_stat.vs_write_errors > 0 ||
3187 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3188 d == 0 && !try_hard && vd->vdev_children == 0) {
3189 metaslab_trace_add(zal, mg, NULL, psize, d,
3190 TRACE_VDEV_ERROR);
3191 goto next;
3194 ASSERT(mg->mg_class == mc);
3197 * If we don't need to try hard, then require that the
3198 * block be 1/8th of the device away from any other DVAs
3199 * in this BP. If we are trying hard, allow any offset
3200 * to be used (distance=0).
3202 uint64_t distance = 0;
3203 if (!try_hard) {
3204 distance = vd->vdev_asize >>
3205 ditto_same_vdev_distance_shift;
3206 if (distance <= (1ULL << vd->vdev_ms_shift))
3207 distance = 0;
3210 uint64_t asize = vdev_psize_to_asize(vd, psize);
3211 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3213 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3214 distance, dva, d);
3216 if (offset != -1ULL) {
3218 * If we've just selected this metaslab group,
3219 * figure out whether the corresponding vdev is
3220 * over- or under-used relative to the pool,
3221 * and set an allocation bias to even it out.
3223 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3224 vdev_stat_t *vs = &vd->vdev_stat;
3225 int64_t vu, cu;
3227 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
3228 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
3231 * Calculate how much more or less we should
3232 * try to allocate from this device during
3233 * this iteration around the rotor.
3234 * For example, if a device is 80% full
3235 * and the pool is 20% full then we should
3236 * reduce allocations by 60% on this device.
3238 * mg_bias = (20 - 80) * 512K / 100 = -307K
3240 * This reduces allocations by 307K for this
3241 * iteration.
3243 mg->mg_bias = ((cu - vu) *
3244 (int64_t)mg->mg_aliquot) / 100;
3245 } else if (!metaslab_bias_enabled) {
3246 mg->mg_bias = 0;
3249 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3250 mg->mg_aliquot + mg->mg_bias) {
3251 mc->mc_rotor = mg->mg_next;
3252 mc->mc_aliquot = 0;
3255 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3256 DVA_SET_OFFSET(&dva[d], offset);
3257 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
3258 DVA_SET_ASIZE(&dva[d], asize);
3260 return (0);
3262 next:
3263 mc->mc_rotor = mg->mg_next;
3264 mc->mc_aliquot = 0;
3265 } while ((mg = mg->mg_next) != rotor);
3268 * If we haven't tried hard, do so now.
3270 if (!try_hard) {
3271 try_hard = B_TRUE;
3272 goto top;
3275 bzero(&dva[d], sizeof (dva_t));
3277 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
3278 return (SET_ERROR(ENOSPC));
3281 void
3282 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3283 boolean_t checkpoint)
3285 metaslab_t *msp;
3286 spa_t *spa = vd->vdev_spa;
3288 ASSERT(vdev_is_concrete(vd));
3289 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3290 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3292 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3294 VERIFY(!msp->ms_condensing);
3295 VERIFY3U(offset, >=, msp->ms_start);
3296 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3297 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3298 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3300 metaslab_check_free_impl(vd, offset, asize);
3302 mutex_enter(&msp->ms_lock);
3303 if (range_tree_is_empty(msp->ms_freeing) &&
3304 range_tree_is_empty(msp->ms_checkpointing)) {
3305 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3308 if (checkpoint) {
3309 ASSERT(spa_has_checkpoint(spa));
3310 range_tree_add(msp->ms_checkpointing, offset, asize);
3311 } else {
3312 range_tree_add(msp->ms_freeing, offset, asize);
3314 mutex_exit(&msp->ms_lock);
3317 /* ARGSUSED */
3318 void
3319 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3320 uint64_t size, void *arg)
3322 boolean_t *checkpoint = arg;
3324 ASSERT3P(checkpoint, !=, NULL);
3326 if (vd->vdev_ops->vdev_op_remap != NULL)
3327 vdev_indirect_mark_obsolete(vd, offset, size);
3328 else
3329 metaslab_free_impl(vd, offset, size, *checkpoint);
3332 static void
3333 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3334 boolean_t checkpoint)
3336 spa_t *spa = vd->vdev_spa;
3338 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3340 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3341 return;
3343 if (spa->spa_vdev_removal != NULL &&
3344 spa->spa_vdev_removal->svr_vdev == vd &&
3345 vdev_is_concrete(vd)) {
3347 * Note: we check if the vdev is concrete because when
3348 * we complete the removal, we first change the vdev to be
3349 * an indirect vdev (in open context), and then (in syncing
3350 * context) clear spa_vdev_removal.
3352 free_from_removing_vdev(vd, offset, size);
3353 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3354 vdev_indirect_mark_obsolete(vd, offset, size);
3355 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3356 metaslab_free_impl_cb, &checkpoint);
3357 } else {
3358 metaslab_free_concrete(vd, offset, size, checkpoint);
3362 typedef struct remap_blkptr_cb_arg {
3363 blkptr_t *rbca_bp;
3364 spa_remap_cb_t rbca_cb;
3365 vdev_t *rbca_remap_vd;
3366 uint64_t rbca_remap_offset;
3367 void *rbca_cb_arg;
3368 } remap_blkptr_cb_arg_t;
3370 void
3371 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3372 uint64_t size, void *arg)
3374 remap_blkptr_cb_arg_t *rbca = arg;
3375 blkptr_t *bp = rbca->rbca_bp;
3377 /* We can not remap split blocks. */
3378 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3379 return;
3380 ASSERT0(inner_offset);
3382 if (rbca->rbca_cb != NULL) {
3384 * At this point we know that we are not handling split
3385 * blocks and we invoke the callback on the previous
3386 * vdev which must be indirect.
3388 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3390 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3391 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3393 /* set up remap_blkptr_cb_arg for the next call */
3394 rbca->rbca_remap_vd = vd;
3395 rbca->rbca_remap_offset = offset;
3399 * The phys birth time is that of dva[0]. This ensures that we know
3400 * when each dva was written, so that resilver can determine which
3401 * blocks need to be scrubbed (i.e. those written during the time
3402 * the vdev was offline). It also ensures that the key used in
3403 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3404 * we didn't change the phys_birth, a lookup in the ARC for a
3405 * remapped BP could find the data that was previously stored at
3406 * this vdev + offset.
3408 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3409 DVA_GET_VDEV(&bp->blk_dva[0]));
3410 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3411 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3412 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3414 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3415 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3419 * If the block pointer contains any indirect DVAs, modify them to refer to
3420 * concrete DVAs. Note that this will sometimes not be possible, leaving
3421 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3422 * segments in the mapping (i.e. it is a "split block").
3424 * If the BP was remapped, calls the callback on the original dva (note the
3425 * callback can be called multiple times if the original indirect DVA refers
3426 * to another indirect DVA, etc).
3428 * Returns TRUE if the BP was remapped.
3430 boolean_t
3431 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3433 remap_blkptr_cb_arg_t rbca;
3435 if (!zfs_remap_blkptr_enable)
3436 return (B_FALSE);
3438 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3439 return (B_FALSE);
3442 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3443 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3445 if (BP_GET_DEDUP(bp))
3446 return (B_FALSE);
3449 * Gang blocks can not be remapped, because
3450 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3451 * the BP used to read the gang block header (GBH) being the same
3452 * as the DVA[0] that we allocated for the GBH.
3454 if (BP_IS_GANG(bp))
3455 return (B_FALSE);
3458 * Embedded BP's have no DVA to remap.
3460 if (BP_GET_NDVAS(bp) < 1)
3461 return (B_FALSE);
3464 * Note: we only remap dva[0]. If we remapped other dvas, we
3465 * would no longer know what their phys birth txg is.
3467 dva_t *dva = &bp->blk_dva[0];
3469 uint64_t offset = DVA_GET_OFFSET(dva);
3470 uint64_t size = DVA_GET_ASIZE(dva);
3471 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3473 if (vd->vdev_ops->vdev_op_remap == NULL)
3474 return (B_FALSE);
3476 rbca.rbca_bp = bp;
3477 rbca.rbca_cb = callback;
3478 rbca.rbca_remap_vd = vd;
3479 rbca.rbca_remap_offset = offset;
3480 rbca.rbca_cb_arg = arg;
3483 * remap_blkptr_cb() will be called in order for each level of
3484 * indirection, until a concrete vdev is reached or a split block is
3485 * encountered. old_vd and old_offset are updated within the callback
3486 * as we go from the one indirect vdev to the next one (either concrete
3487 * or indirect again) in that order.
3489 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3491 /* Check if the DVA wasn't remapped because it is a split block */
3492 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3493 return (B_FALSE);
3495 return (B_TRUE);
3499 * Undo the allocation of a DVA which happened in the given transaction group.
3501 void
3502 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3504 metaslab_t *msp;
3505 vdev_t *vd;
3506 uint64_t vdev = DVA_GET_VDEV(dva);
3507 uint64_t offset = DVA_GET_OFFSET(dva);
3508 uint64_t size = DVA_GET_ASIZE(dva);
3510 ASSERT(DVA_IS_VALID(dva));
3511 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3513 if (txg > spa_freeze_txg(spa))
3514 return;
3516 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3517 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3518 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
3519 (u_longlong_t)vdev, (u_longlong_t)offset);
3520 ASSERT(0);
3521 return;
3524 ASSERT(!vd->vdev_removing);
3525 ASSERT(vdev_is_concrete(vd));
3526 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3527 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3529 if (DVA_GET_GANG(dva))
3530 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3532 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3534 mutex_enter(&msp->ms_lock);
3535 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3536 offset, size);
3538 VERIFY(!msp->ms_condensing);
3539 VERIFY3U(offset, >=, msp->ms_start);
3540 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3541 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3542 msp->ms_size);
3543 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3544 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3545 range_tree_add(msp->ms_allocatable, offset, size);
3546 mutex_exit(&msp->ms_lock);
3550 * Free the block represented by the given DVA.
3552 void
3553 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3555 uint64_t vdev = DVA_GET_VDEV(dva);
3556 uint64_t offset = DVA_GET_OFFSET(dva);
3557 uint64_t size = DVA_GET_ASIZE(dva);
3558 vdev_t *vd = vdev_lookup_top(spa, vdev);
3560 ASSERT(DVA_IS_VALID(dva));
3561 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3563 if (DVA_GET_GANG(dva)) {
3564 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3567 metaslab_free_impl(vd, offset, size, checkpoint);
3571 * Reserve some allocation slots. The reservation system must be called
3572 * before we call into the allocator. If there aren't any available slots
3573 * then the I/O will be throttled until an I/O completes and its slots are
3574 * freed up. The function returns true if it was successful in placing
3575 * the reservation.
3577 boolean_t
3578 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
3579 int flags)
3581 uint64_t available_slots = 0;
3582 boolean_t slot_reserved = B_FALSE;
3584 ASSERT(mc->mc_alloc_throttle_enabled);
3585 mutex_enter(&mc->mc_lock);
3587 uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots);
3588 if (reserved_slots < mc->mc_alloc_max_slots)
3589 available_slots = mc->mc_alloc_max_slots - reserved_slots;
3591 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3593 * We reserve the slots individually so that we can unreserve
3594 * them individually when an I/O completes.
3596 for (int d = 0; d < slots; d++) {
3597 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
3599 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3600 slot_reserved = B_TRUE;
3603 mutex_exit(&mc->mc_lock);
3604 return (slot_reserved);
3607 void
3608 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
3610 ASSERT(mc->mc_alloc_throttle_enabled);
3611 mutex_enter(&mc->mc_lock);
3612 for (int d = 0; d < slots; d++) {
3613 (void) refcount_remove(&mc->mc_alloc_slots, zio);
3615 mutex_exit(&mc->mc_lock);
3618 static int
3619 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3620 uint64_t txg)
3622 metaslab_t *msp;
3623 spa_t *spa = vd->vdev_spa;
3624 int error = 0;
3626 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3627 return (ENXIO);
3629 ASSERT3P(vd->vdev_ms, !=, NULL);
3630 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3632 mutex_enter(&msp->ms_lock);
3634 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3635 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
3637 if (error == 0 &&
3638 !range_tree_contains(msp->ms_allocatable, offset, size))
3639 error = SET_ERROR(ENOENT);
3641 if (error || txg == 0) { /* txg == 0 indicates dry run */
3642 mutex_exit(&msp->ms_lock);
3643 return (error);
3646 VERIFY(!msp->ms_condensing);
3647 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3648 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3649 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3650 msp->ms_size);
3651 range_tree_remove(msp->ms_allocatable, offset, size);
3653 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3654 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3655 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3656 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3657 offset, size);
3660 mutex_exit(&msp->ms_lock);
3662 return (0);
3665 typedef struct metaslab_claim_cb_arg_t {
3666 uint64_t mcca_txg;
3667 int mcca_error;
3668 } metaslab_claim_cb_arg_t;
3670 /* ARGSUSED */
3671 static void
3672 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3673 uint64_t size, void *arg)
3675 metaslab_claim_cb_arg_t *mcca_arg = arg;
3677 if (mcca_arg->mcca_error == 0) {
3678 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3679 size, mcca_arg->mcca_txg);
3684 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3686 if (vd->vdev_ops->vdev_op_remap != NULL) {
3687 metaslab_claim_cb_arg_t arg;
3690 * Only zdb(1M) can claim on indirect vdevs. This is used
3691 * to detect leaks of mapped space (that are not accounted
3692 * for in the obsolete counts, spacemap, or bpobj).
3694 ASSERT(!spa_writeable(vd->vdev_spa));
3695 arg.mcca_error = 0;
3696 arg.mcca_txg = txg;
3698 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3699 metaslab_claim_impl_cb, &arg);
3701 if (arg.mcca_error == 0) {
3702 arg.mcca_error = metaslab_claim_concrete(vd,
3703 offset, size, txg);
3705 return (arg.mcca_error);
3706 } else {
3707 return (metaslab_claim_concrete(vd, offset, size, txg));
3712 * Intent log support: upon opening the pool after a crash, notify the SPA
3713 * of blocks that the intent log has allocated for immediate write, but
3714 * which are still considered free by the SPA because the last transaction
3715 * group didn't commit yet.
3717 static int
3718 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3720 uint64_t vdev = DVA_GET_VDEV(dva);
3721 uint64_t offset = DVA_GET_OFFSET(dva);
3722 uint64_t size = DVA_GET_ASIZE(dva);
3723 vdev_t *vd;
3725 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
3726 return (SET_ERROR(ENXIO));
3729 ASSERT(DVA_IS_VALID(dva));
3731 if (DVA_GET_GANG(dva))
3732 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3734 return (metaslab_claim_impl(vd, offset, size, txg));
3738 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3739 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3740 zio_alloc_list_t *zal, zio_t *zio)
3742 dva_t *dva = bp->blk_dva;
3743 dva_t *hintdva = hintbp->blk_dva;
3744 int error = 0;
3746 ASSERT(bp->blk_birth == 0);
3747 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
3749 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3751 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3752 spa_config_exit(spa, SCL_ALLOC, FTAG);
3753 return (SET_ERROR(ENOSPC));
3756 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3757 ASSERT(BP_GET_NDVAS(bp) == 0);
3758 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
3759 ASSERT3P(zal, !=, NULL);
3761 for (int d = 0; d < ndvas; d++) {
3762 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
3763 txg, flags, zal);
3764 if (error != 0) {
3765 for (d--; d >= 0; d--) {
3766 metaslab_unalloc_dva(spa, &dva[d], txg);
3767 metaslab_group_alloc_decrement(spa,
3768 DVA_GET_VDEV(&dva[d]), zio, flags);
3769 bzero(&dva[d], sizeof (dva_t));
3771 spa_config_exit(spa, SCL_ALLOC, FTAG);
3772 return (error);
3773 } else {
3775 * Update the metaslab group's queue depth
3776 * based on the newly allocated dva.
3778 metaslab_group_alloc_increment(spa,
3779 DVA_GET_VDEV(&dva[d]), zio, flags);
3783 ASSERT(error == 0);
3784 ASSERT(BP_GET_NDVAS(bp) == ndvas);
3786 spa_config_exit(spa, SCL_ALLOC, FTAG);
3788 BP_SET_BIRTH(bp, txg, txg);
3790 return (0);
3793 void
3794 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
3796 const dva_t *dva = bp->blk_dva;
3797 int ndvas = BP_GET_NDVAS(bp);
3799 ASSERT(!BP_IS_HOLE(bp));
3800 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
3803 * If we have a checkpoint for the pool we need to make sure that
3804 * the blocks that we free that are part of the checkpoint won't be
3805 * reused until the checkpoint is discarded or we revert to it.
3807 * The checkpoint flag is passed down the metaslab_free code path
3808 * and is set whenever we want to add a block to the checkpoint's
3809 * accounting. That is, we "checkpoint" blocks that existed at the
3810 * time the checkpoint was created and are therefore referenced by
3811 * the checkpointed uberblock.
3813 * Note that, we don't checkpoint any blocks if the current
3814 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
3815 * normally as they will be referenced by the checkpointed uberblock.
3817 boolean_t checkpoint = B_FALSE;
3818 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
3819 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
3821 * At this point, if the block is part of the checkpoint
3822 * there is no way it was created in the current txg.
3824 ASSERT(!now);
3825 ASSERT3U(spa_syncing_txg(spa), ==, txg);
3826 checkpoint = B_TRUE;
3829 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
3831 for (int d = 0; d < ndvas; d++) {
3832 if (now) {
3833 metaslab_unalloc_dva(spa, &dva[d], txg);
3834 } else {
3835 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3836 metaslab_free_dva(spa, &dva[d], checkpoint);
3840 spa_config_exit(spa, SCL_FREE, FTAG);
3844 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
3846 const dva_t *dva = bp->blk_dva;
3847 int ndvas = BP_GET_NDVAS(bp);
3848 int error = 0;
3850 ASSERT(!BP_IS_HOLE(bp));
3852 if (txg != 0) {
3854 * First do a dry run to make sure all DVAs are claimable,
3855 * so we don't have to unwind from partial failures below.
3857 if ((error = metaslab_claim(spa, bp, 0)) != 0)
3858 return (error);
3861 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3863 for (int d = 0; d < ndvas; d++)
3864 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
3865 break;
3867 spa_config_exit(spa, SCL_ALLOC, FTAG);
3869 ASSERT(error == 0 || txg == 0);
3871 return (error);
3874 /* ARGSUSED */
3875 static void
3876 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
3877 uint64_t size, void *arg)
3879 if (vd->vdev_ops == &vdev_indirect_ops)
3880 return;
3882 metaslab_check_free_impl(vd, offset, size);
3885 static void
3886 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
3888 metaslab_t *msp;
3889 spa_t *spa = vd->vdev_spa;
3891 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3892 return;
3894 if (vd->vdev_ops->vdev_op_remap != NULL) {
3895 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3896 metaslab_check_free_impl_cb, NULL);
3897 return;
3900 ASSERT(vdev_is_concrete(vd));
3901 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3902 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3904 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3906 mutex_enter(&msp->ms_lock);
3907 if (msp->ms_loaded)
3908 range_tree_verify(msp->ms_allocatable, offset, size);
3910 range_tree_verify(msp->ms_freeing, offset, size);
3911 range_tree_verify(msp->ms_checkpointing, offset, size);
3912 range_tree_verify(msp->ms_freed, offset, size);
3913 for (int j = 0; j < TXG_DEFER_SIZE; j++)
3914 range_tree_verify(msp->ms_defer[j], offset, size);
3915 mutex_exit(&msp->ms_lock);
3918 void
3919 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
3921 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3922 return;
3924 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3925 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3926 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
3927 vdev_t *vd = vdev_lookup_top(spa, vdev);
3928 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
3929 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
3931 if (DVA_GET_GANG(&bp->blk_dva[i]))
3932 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3934 ASSERT3P(vd, !=, NULL);
3936 metaslab_check_free_impl(vd, offset, size);
3938 spa_config_exit(spa, SCL_VDEV, FTAG);