5818 zfs {ref}compressratio is incorrect with 4k sector size
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blobe9d2432a81791e75ad2f8b41fe99c9da9d345454
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * SPA: Storage Pool Allocator
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
84 * The interval, in seconds, at which failed configuration cache file writes
85 * should be retried.
87 static int zfs_ccw_retry_interval = 300;
89 typedef enum zti_modes {
90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
100 #define ZTI_N(n) ZTI_P(n, 1)
101 #define ZTI_ONE ZTI_N(1)
103 typedef struct zio_taskq_info {
104 zti_modes_t zti_mode;
105 uint_t zti_value;
106 uint_t zti_count;
107 } zio_taskq_info_t;
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 "issue", "issue_high", "intr", "intr_high"
114 * This table defines the taskq settings for each ZFS I/O type. When
115 * initializing a pool, we use this table to create an appropriately sized
116 * taskq. Some operations are low volume and therefore have a small, static
117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118 * macros. Other operations process a large amount of data; the ZTI_BATCH
119 * macro causes us to create a taskq oriented for throughput. Some operations
120 * are so high frequency and short-lived that the taskq itself can become a a
121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122 * additional degree of parallelism specified by the number of threads per-
123 * taskq and the number of taskqs; when dispatching an event in this case, the
124 * particular taskq is chosen at random.
126 * The different taskq priorities are to handle the different contexts (issue
127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128 * need to be handled with minimum delay.
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145 char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
149 id_t zio_taskq_psrset_bind = PS_NONE;
150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
151 uint_t zio_taskq_basedc = 80; /* base duty cycle */
153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
154 extern int zfs_sync_pass_deferred_free;
157 * This (illegal) pool name is used when temporarily importing a spa_t in order
158 * to get the vdev stats associated with the imported devices.
160 #define TRYIMPORT_NAME "$import"
163 * ==========================================================================
164 * SPA properties routines
165 * ==========================================================================
169 * Add a (source=src, propname=propval) list to an nvlist.
171 static void
172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173 uint64_t intval, zprop_source_t src)
175 const char *propname = zpool_prop_to_name(prop);
176 nvlist_t *propval;
178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
181 if (strval != NULL)
182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 else
184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 nvlist_free(propval);
191 * Get property values from the spa configuration.
193 static void
194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
196 vdev_t *rvd = spa->spa_root_vdev;
197 dsl_pool_t *pool = spa->spa_dsl_pool;
198 uint64_t size, alloc, cap, version;
199 zprop_source_t src = ZPROP_SRC_NONE;
200 spa_config_dirent_t *dp;
201 metaslab_class_t *mc = spa_normal_class(spa);
203 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 if (rvd != NULL) {
206 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 size = metaslab_class_get_space(spa_normal_class(spa));
208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 size - alloc, src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 metaslab_class_fragmentation(mc), src);
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 metaslab_class_expandable_space(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 (spa_mode(spa) == FREAD), src);
221 cap = (size == 0) ? 0 : (alloc * 100 / size);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 ddt_get_pool_dedup_ratio(spa), src);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 rvd->vdev_state, src);
230 version = spa_version(spa);
231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 src = ZPROP_SRC_DEFAULT;
233 else
234 src = ZPROP_SRC_LOCAL;
235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 if (pool != NULL) {
240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 * when opening pools before this version freedir will be NULL.
243 if (pool->dp_free_dir != NULL) {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
252 if (pool->dp_leak_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 NULL, 0, src);
262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
264 if (spa->spa_comment != NULL) {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 0, ZPROP_SRC_LOCAL);
269 if (spa->spa_root != NULL)
270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 0, ZPROP_SRC_LOCAL);
273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 } else {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 if (dp->scd_path == NULL) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 "none", 0, ZPROP_SRC_LOCAL);
285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 dp->scd_path, 0, ZPROP_SRC_LOCAL);
293 * Get zpool property values.
296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
298 objset_t *mos = spa->spa_meta_objset;
299 zap_cursor_t zc;
300 zap_attribute_t za;
301 int err;
303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
305 mutex_enter(&spa->spa_props_lock);
308 * Get properties from the spa config.
310 spa_prop_get_config(spa, nvp);
312 /* If no pool property object, no more prop to get. */
313 if (mos == NULL || spa->spa_pool_props_object == 0) {
314 mutex_exit(&spa->spa_props_lock);
315 return (0);
319 * Get properties from the MOS pool property object.
321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 zap_cursor_advance(&zc)) {
324 uint64_t intval = 0;
325 char *strval = NULL;
326 zprop_source_t src = ZPROP_SRC_DEFAULT;
327 zpool_prop_t prop;
329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 continue;
332 switch (za.za_integer_length) {
333 case 8:
334 /* integer property */
335 if (za.za_first_integer !=
336 zpool_prop_default_numeric(prop))
337 src = ZPROP_SRC_LOCAL;
339 if (prop == ZPOOL_PROP_BOOTFS) {
340 dsl_pool_t *dp;
341 dsl_dataset_t *ds = NULL;
343 dp = spa_get_dsl(spa);
344 dsl_pool_config_enter(dp, FTAG);
345 if (err = dsl_dataset_hold_obj(dp,
346 za.za_first_integer, FTAG, &ds)) {
347 dsl_pool_config_exit(dp, FTAG);
348 break;
351 strval = kmem_alloc(
352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
353 KM_SLEEP);
354 dsl_dataset_name(ds, strval);
355 dsl_dataset_rele(ds, FTAG);
356 dsl_pool_config_exit(dp, FTAG);
357 } else {
358 strval = NULL;
359 intval = za.za_first_integer;
362 spa_prop_add_list(*nvp, prop, strval, intval, src);
364 if (strval != NULL)
365 kmem_free(strval,
366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
368 break;
370 case 1:
371 /* string property */
372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 err = zap_lookup(mos, spa->spa_pool_props_object,
374 za.za_name, 1, za.za_num_integers, strval);
375 if (err) {
376 kmem_free(strval, za.za_num_integers);
377 break;
379 spa_prop_add_list(*nvp, prop, strval, 0, src);
380 kmem_free(strval, za.za_num_integers);
381 break;
383 default:
384 break;
387 zap_cursor_fini(&zc);
388 mutex_exit(&spa->spa_props_lock);
389 out:
390 if (err && err != ENOENT) {
391 nvlist_free(*nvp);
392 *nvp = NULL;
393 return (err);
396 return (0);
400 * Validate the given pool properties nvlist and modify the list
401 * for the property values to be set.
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
406 nvpair_t *elem;
407 int error = 0, reset_bootfs = 0;
408 uint64_t objnum = 0;
409 boolean_t has_feature = B_FALSE;
411 elem = NULL;
412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 uint64_t intval;
414 char *strval, *slash, *check, *fname;
415 const char *propname = nvpair_name(elem);
416 zpool_prop_t prop = zpool_name_to_prop(propname);
418 switch (prop) {
419 case ZPROP_INVAL:
420 if (!zpool_prop_feature(propname)) {
421 error = SET_ERROR(EINVAL);
422 break;
426 * Sanitize the input.
428 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 error = SET_ERROR(EINVAL);
430 break;
433 if (nvpair_value_uint64(elem, &intval) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
438 if (intval != 0) {
439 error = SET_ERROR(EINVAL);
440 break;
443 fname = strchr(propname, '@') + 1;
444 if (zfeature_lookup_name(fname, NULL) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
449 has_feature = B_TRUE;
450 break;
452 case ZPOOL_PROP_VERSION:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error &&
455 (intval < spa_version(spa) ||
456 intval > SPA_VERSION_BEFORE_FEATURES ||
457 has_feature))
458 error = SET_ERROR(EINVAL);
459 break;
461 case ZPOOL_PROP_DELEGATION:
462 case ZPOOL_PROP_AUTOREPLACE:
463 case ZPOOL_PROP_LISTSNAPS:
464 case ZPOOL_PROP_AUTOEXPAND:
465 error = nvpair_value_uint64(elem, &intval);
466 if (!error && intval > 1)
467 error = SET_ERROR(EINVAL);
468 break;
470 case ZPOOL_PROP_BOOTFS:
472 * If the pool version is less than SPA_VERSION_BOOTFS,
473 * or the pool is still being created (version == 0),
474 * the bootfs property cannot be set.
476 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 error = SET_ERROR(ENOTSUP);
478 break;
482 * Make sure the vdev config is bootable
484 if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 error = SET_ERROR(ENOTSUP);
486 break;
489 reset_bootfs = 1;
491 error = nvpair_value_string(elem, &strval);
493 if (!error) {
494 objset_t *os;
495 uint64_t propval;
497 if (strval == NULL || strval[0] == '\0') {
498 objnum = zpool_prop_default_numeric(
499 ZPOOL_PROP_BOOTFS);
500 break;
503 if (error = dmu_objset_hold(strval, FTAG, &os))
504 break;
507 * Must be ZPL, and its property settings
508 * must be supported by GRUB (compression
509 * is not gzip, and large blocks are not used).
512 if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 error = SET_ERROR(ENOTSUP);
514 } else if ((error =
515 dsl_prop_get_int_ds(dmu_objset_ds(os),
516 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 &propval)) == 0 &&
518 !BOOTFS_COMPRESS_VALID(propval)) {
519 error = SET_ERROR(ENOTSUP);
520 } else if ((error =
521 dsl_prop_get_int_ds(dmu_objset_ds(os),
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 &propval)) == 0 &&
524 propval > SPA_OLD_MAXBLOCKSIZE) {
525 error = SET_ERROR(ENOTSUP);
526 } else {
527 objnum = dmu_objset_id(os);
529 dmu_objset_rele(os, FTAG);
531 break;
533 case ZPOOL_PROP_FAILUREMODE:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 intval > ZIO_FAILURE_MODE_PANIC))
537 error = SET_ERROR(EINVAL);
540 * This is a special case which only occurs when
541 * the pool has completely failed. This allows
542 * the user to change the in-core failmode property
543 * without syncing it out to disk (I/Os might
544 * currently be blocked). We do this by returning
545 * EIO to the caller (spa_prop_set) to trick it
546 * into thinking we encountered a property validation
547 * error.
549 if (!error && spa_suspended(spa)) {
550 spa->spa_failmode = intval;
551 error = SET_ERROR(EIO);
553 break;
555 case ZPOOL_PROP_CACHEFILE:
556 if ((error = nvpair_value_string(elem, &strval)) != 0)
557 break;
559 if (strval[0] == '\0')
560 break;
562 if (strcmp(strval, "none") == 0)
563 break;
565 if (strval[0] != '/') {
566 error = SET_ERROR(EINVAL);
567 break;
570 slash = strrchr(strval, '/');
571 ASSERT(slash != NULL);
573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 strcmp(slash, "/..") == 0)
575 error = SET_ERROR(EINVAL);
576 break;
578 case ZPOOL_PROP_COMMENT:
579 if ((error = nvpair_value_string(elem, &strval)) != 0)
580 break;
581 for (check = strval; *check != '\0'; check++) {
583 * The kernel doesn't have an easy isprint()
584 * check. For this kernel check, we merely
585 * check ASCII apart from DEL. Fix this if
586 * there is an easy-to-use kernel isprint().
588 if (*check >= 0x7f) {
589 error = SET_ERROR(EINVAL);
590 break;
592 check++;
594 if (strlen(strval) > ZPROP_MAX_COMMENT)
595 error = E2BIG;
596 break;
598 case ZPOOL_PROP_DEDUPDITTO:
599 if (spa_version(spa) < SPA_VERSION_DEDUP)
600 error = SET_ERROR(ENOTSUP);
601 else
602 error = nvpair_value_uint64(elem, &intval);
603 if (error == 0 &&
604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 error = SET_ERROR(EINVAL);
606 break;
609 if (error)
610 break;
613 if (!error && reset_bootfs) {
614 error = nvlist_remove(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617 if (!error) {
618 error = nvlist_add_uint64(props,
619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
623 return (error);
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629 char *cachefile;
630 spa_config_dirent_t *dp;
632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 &cachefile) != 0)
634 return;
636 dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 KM_SLEEP);
639 if (cachefile[0] == '\0')
640 dp->scd_path = spa_strdup(spa_config_path);
641 else if (strcmp(cachefile, "none") == 0)
642 dp->scd_path = NULL;
643 else
644 dp->scd_path = spa_strdup(cachefile);
646 list_insert_head(&spa->spa_config_list, dp);
647 if (need_sync)
648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
654 int error;
655 nvpair_t *elem = NULL;
656 boolean_t need_sync = B_FALSE;
658 if ((error = spa_prop_validate(spa, nvp)) != 0)
659 return (error);
661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664 if (prop == ZPOOL_PROP_CACHEFILE ||
665 prop == ZPOOL_PROP_ALTROOT ||
666 prop == ZPOOL_PROP_READONLY)
667 continue;
669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 uint64_t ver;
672 if (prop == ZPOOL_PROP_VERSION) {
673 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 } else {
675 ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 ver = SPA_VERSION_FEATURES;
677 need_sync = B_TRUE;
680 /* Save time if the version is already set. */
681 if (ver == spa_version(spa))
682 continue;
685 * In addition to the pool directory object, we might
686 * create the pool properties object, the features for
687 * read object, the features for write object, or the
688 * feature descriptions object.
690 error = dsl_sync_task(spa->spa_name, NULL,
691 spa_sync_version, &ver,
692 6, ZFS_SPACE_CHECK_RESERVED);
693 if (error)
694 return (error);
695 continue;
698 need_sync = B_TRUE;
699 break;
702 if (need_sync) {
703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
707 return (0);
711 * If the bootfs property value is dsobj, clear it.
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 VERIFY(zap_remove(spa->spa_meta_objset,
718 spa->spa_pool_props_object,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 spa->spa_bootfs = 0;
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 vdev_t *rvd = spa->spa_root_vdev;
731 uint64_t vdev_state;
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 vdev_state = rvd->vdev_state;
735 spa_config_exit(spa, SCL_STATE, FTAG);
737 if (vdev_state != VDEV_STATE_HEALTHY)
738 return (SET_ERROR(ENXIO));
740 ASSERT3U(spa_guid(spa), !=, *newguid);
742 return (0);
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
748 uint64_t *newguid = arg;
749 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 uint64_t oldguid;
751 vdev_t *rvd = spa->spa_root_vdev;
753 oldguid = spa_guid(spa);
755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 rvd->vdev_guid = *newguid;
757 rvd->vdev_guid_sum += (*newguid - oldguid);
758 vdev_config_dirty(rvd);
759 spa_config_exit(spa, SCL_STATE, FTAG);
761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 oldguid, *newguid);
766 * Change the GUID for the pool. This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs. We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty. Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool. We are also going to issue a
772 * sysevent to update any watchers.
775 spa_change_guid(spa_t *spa)
777 int error;
778 uint64_t guid;
780 mutex_enter(&spa->spa_vdev_top_lock);
781 mutex_enter(&spa_namespace_lock);
782 guid = spa_generate_guid(NULL);
784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
787 if (error == 0) {
788 spa_config_sync(spa, B_FALSE, B_TRUE);
789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
792 mutex_exit(&spa_namespace_lock);
793 mutex_exit(&spa->spa_vdev_top_lock);
795 return (error);
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
807 spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 int ret;
811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 sizeof (zbookmark_phys_t));
814 if (ret < 0)
815 return (-1);
816 else if (ret > 0)
817 return (1);
818 else
819 return (0);
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
834 avl_create(&spa->spa_errlist_scrub,
835 spa_error_entry_compare, sizeof (spa_error_entry_t),
836 offsetof(spa_error_entry_t, se_avl));
837 avl_create(&spa->spa_errlist_last,
838 spa_error_entry_compare, sizeof (spa_error_entry_t),
839 offsetof(spa_error_entry_t, se_avl));
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 uint_t count = ztip->zti_count;
849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 char name[32];
851 uint_t flags = 0;
852 boolean_t batch = B_FALSE;
854 if (mode == ZTI_MODE_NULL) {
855 tqs->stqs_count = 0;
856 tqs->stqs_taskq = NULL;
857 return;
860 ASSERT3U(count, >, 0);
862 tqs->stqs_count = count;
863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
865 switch (mode) {
866 case ZTI_MODE_FIXED:
867 ASSERT3U(value, >=, 1);
868 value = MAX(value, 1);
869 break;
871 case ZTI_MODE_BATCH:
872 batch = B_TRUE;
873 flags |= TASKQ_THREADS_CPU_PCT;
874 value = zio_taskq_batch_pct;
875 break;
877 default:
878 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 "spa_activate()",
880 zio_type_name[t], zio_taskq_types[q], mode, value);
881 break;
884 for (uint_t i = 0; i < count; i++) {
885 taskq_t *tq;
887 if (count > 1) {
888 (void) snprintf(name, sizeof (name), "%s_%s_%u",
889 zio_type_name[t], zio_taskq_types[q], i);
890 } else {
891 (void) snprintf(name, sizeof (name), "%s_%s",
892 zio_type_name[t], zio_taskq_types[q]);
895 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 if (batch)
897 flags |= TASKQ_DC_BATCH;
899 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 spa->spa_proc, zio_taskq_basedc, flags);
901 } else {
902 pri_t pri = maxclsyspri;
904 * The write issue taskq can be extremely CPU
905 * intensive. Run it at slightly lower priority
906 * than the other taskqs.
908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 pri--;
911 tq = taskq_create_proc(name, value, pri, 50,
912 INT_MAX, spa->spa_proc, flags);
915 tqs->stqs_taskq[i] = tq;
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 if (tqs->stqs_taskq == NULL) {
925 ASSERT0(tqs->stqs_count);
926 return;
929 for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 taskq_destroy(tqs->stqs_taskq[i]);
934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 tqs->stqs_taskq = NULL;
939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940 * Note that a type may have multiple discrete taskqs to avoid lock contention
941 * on the taskq itself. In that case we choose which taskq at random by using
942 * the low bits of gethrtime().
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 taskq_t *tq;
951 ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 ASSERT3U(tqs->stqs_count, !=, 0);
954 if (tqs->stqs_count == 1) {
955 tq = tqs->stqs_taskq[0];
956 } else {
957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
960 taskq_dispatch_ent(tq, func, arg, flags, ent);
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
966 for (int t = 0; t < ZIO_TYPES; t++) {
967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 spa_taskqs_init(spa, t, q);
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
977 callb_cpr_t cprinfo;
979 spa_t *spa = arg;
980 user_t *pu = PTOU(curproc);
982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 spa->spa_name);
985 ASSERT(curproc != &p0);
986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 "zpool-%s", spa->spa_name);
988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
990 /* bind this thread to the requested psrset */
991 if (zio_taskq_psrset_bind != PS_NONE) {
992 pool_lock();
993 mutex_enter(&cpu_lock);
994 mutex_enter(&pidlock);
995 mutex_enter(&curproc->p_lock);
997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 0, NULL, NULL) == 0) {
999 curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 } else {
1001 cmn_err(CE_WARN,
1002 "Couldn't bind process for zfs pool \"%s\" to "
1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1006 mutex_exit(&curproc->p_lock);
1007 mutex_exit(&pidlock);
1008 mutex_exit(&cpu_lock);
1009 pool_unlock();
1012 if (zio_taskq_sysdc) {
1013 sysdc_thread_enter(curthread, 100, 0);
1016 spa->spa_proc = curproc;
1017 spa->spa_did = curthread->t_did;
1019 spa_create_zio_taskqs(spa);
1021 mutex_enter(&spa->spa_proc_lock);
1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1024 spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 cv_broadcast(&spa->spa_proc_cv);
1027 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 spa->spa_proc_state = SPA_PROC_GONE;
1034 spa->spa_proc = &p0;
1035 cv_broadcast(&spa->spa_proc_cv);
1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1038 mutex_enter(&curproc->p_lock);
1039 lwp_exit();
1041 #endif
1044 * Activate an uninitialized pool.
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1051 spa->spa_state = POOL_STATE_ACTIVE;
1052 spa->spa_mode = mode;
1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 /* Try to create a covering process */
1058 mutex_enter(&spa->spa_proc_lock);
1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 ASSERT(spa->spa_proc == &p0);
1061 spa->spa_did = 0;
1063 /* Only create a process if we're going to be around a while. */
1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 NULL, 0) == 0) {
1067 spa->spa_proc_state = SPA_PROC_CREATED;
1068 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 cv_wait(&spa->spa_proc_cv,
1070 &spa->spa_proc_lock);
1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 ASSERT(spa->spa_proc != &p0);
1074 ASSERT(spa->spa_did != 0);
1075 } else {
1076 #ifdef _KERNEL
1077 cmn_err(CE_WARN,
1078 "Couldn't create process for zfs pool \"%s\"\n",
1079 spa->spa_name);
1080 #endif
1083 mutex_exit(&spa->spa_proc_lock);
1085 /* If we didn't create a process, we need to create our taskqs. */
1086 if (spa->spa_proc == &p0) {
1087 spa_create_zio_taskqs(spa);
1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 offsetof(vdev_t, vdev_config_dirty_node));
1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 offsetof(objset_t, os_evicting_node));
1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_state_dirty_node));
1097 txg_list_create(&spa->spa_vdev_txg_list,
1098 offsetof(struct vdev, vdev_txg_node));
1100 avl_create(&spa->spa_errlist_scrub,
1101 spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 offsetof(spa_error_entry_t, se_avl));
1103 avl_create(&spa->spa_errlist_last,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1109 * Opposite of spa_activate().
1111 static void
1112 spa_deactivate(spa_t *spa)
1114 ASSERT(spa->spa_sync_on == B_FALSE);
1115 ASSERT(spa->spa_dsl_pool == NULL);
1116 ASSERT(spa->spa_root_vdev == NULL);
1117 ASSERT(spa->spa_async_zio_root == NULL);
1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1120 spa_evicting_os_wait(spa);
1122 txg_list_destroy(&spa->spa_vdev_txg_list);
1124 list_destroy(&spa->spa_config_dirty_list);
1125 list_destroy(&spa->spa_evicting_os_list);
1126 list_destroy(&spa->spa_state_dirty_list);
1128 for (int t = 0; t < ZIO_TYPES; t++) {
1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 spa_taskqs_fini(spa, t, q);
1134 metaslab_class_destroy(spa->spa_normal_class);
1135 spa->spa_normal_class = NULL;
1137 metaslab_class_destroy(spa->spa_log_class);
1138 spa->spa_log_class = NULL;
1141 * If this was part of an import or the open otherwise failed, we may
1142 * still have errors left in the queues. Empty them just in case.
1144 spa_errlog_drain(spa);
1146 avl_destroy(&spa->spa_errlist_scrub);
1147 avl_destroy(&spa->spa_errlist_last);
1149 spa->spa_state = POOL_STATE_UNINITIALIZED;
1151 mutex_enter(&spa->spa_proc_lock);
1152 if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 ASSERT(spa->spa_proc != &p0);
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 spa->spa_proc_state = SPA_PROC_NONE;
1163 ASSERT(spa->spa_proc == &p0);
1164 mutex_exit(&spa->spa_proc_lock);
1167 * We want to make sure spa_thread() has actually exited the ZFS
1168 * module, so that the module can't be unloaded out from underneath
1169 * it.
1171 if (spa->spa_did != 0) {
1172 thread_join(spa->spa_did);
1173 spa->spa_did = 0;
1178 * Verify a pool configuration, and construct the vdev tree appropriately. This
1179 * will create all the necessary vdevs in the appropriate layout, with each vdev
1180 * in the CLOSED state. This will prep the pool before open/creation/import.
1181 * All vdev validation is done by the vdev_alloc() routine.
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185 uint_t id, int atype)
1187 nvlist_t **child;
1188 uint_t children;
1189 int error;
1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 return (error);
1194 if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 return (0);
1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 &child, &children);
1200 if (error == ENOENT)
1201 return (0);
1203 if (error) {
1204 vdev_free(*vdp);
1205 *vdp = NULL;
1206 return (SET_ERROR(EINVAL));
1209 for (int c = 0; c < children; c++) {
1210 vdev_t *vd;
1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 atype)) != 0) {
1213 vdev_free(*vdp);
1214 *vdp = NULL;
1215 return (error);
1219 ASSERT(*vdp != NULL);
1221 return (0);
1225 * Opposite of spa_load().
1227 static void
1228 spa_unload(spa_t *spa)
1230 int i;
1232 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1235 * Stop async tasks.
1237 spa_async_suspend(spa);
1240 * Stop syncing.
1242 if (spa->spa_sync_on) {
1243 txg_sync_stop(spa->spa_dsl_pool);
1244 spa->spa_sync_on = B_FALSE;
1248 * Wait for any outstanding async I/O to complete.
1250 if (spa->spa_async_zio_root != NULL) {
1251 for (int i = 0; i < max_ncpus; i++)
1252 (void) zio_wait(spa->spa_async_zio_root[i]);
1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 spa->spa_async_zio_root = NULL;
1257 bpobj_close(&spa->spa_deferred_bpobj);
1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1262 * Close all vdevs.
1264 if (spa->spa_root_vdev)
1265 vdev_free(spa->spa_root_vdev);
1266 ASSERT(spa->spa_root_vdev == NULL);
1269 * Close the dsl pool.
1271 if (spa->spa_dsl_pool) {
1272 dsl_pool_close(spa->spa_dsl_pool);
1273 spa->spa_dsl_pool = NULL;
1274 spa->spa_meta_objset = NULL;
1277 ddt_unload(spa);
1281 * Drop and purge level 2 cache
1283 spa_l2cache_drop(spa);
1285 for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 if (spa->spa_spares.sav_vdevs) {
1288 kmem_free(spa->spa_spares.sav_vdevs,
1289 spa->spa_spares.sav_count * sizeof (void *));
1290 spa->spa_spares.sav_vdevs = NULL;
1292 if (spa->spa_spares.sav_config) {
1293 nvlist_free(spa->spa_spares.sav_config);
1294 spa->spa_spares.sav_config = NULL;
1296 spa->spa_spares.sav_count = 0;
1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1302 if (spa->spa_l2cache.sav_vdevs) {
1303 kmem_free(spa->spa_l2cache.sav_vdevs,
1304 spa->spa_l2cache.sav_count * sizeof (void *));
1305 spa->spa_l2cache.sav_vdevs = NULL;
1307 if (spa->spa_l2cache.sav_config) {
1308 nvlist_free(spa->spa_l2cache.sav_config);
1309 spa->spa_l2cache.sav_config = NULL;
1311 spa->spa_l2cache.sav_count = 0;
1313 spa->spa_async_suspended = 0;
1315 if (spa->spa_comment != NULL) {
1316 spa_strfree(spa->spa_comment);
1317 spa->spa_comment = NULL;
1320 spa_config_exit(spa, SCL_ALL, FTAG);
1324 * Load (or re-load) the current list of vdevs describing the active spares for
1325 * this pool. When this is called, we have some form of basic information in
1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1327 * then re-generate a more complete list including status information.
1329 static void
1330 spa_load_spares(spa_t *spa)
1332 nvlist_t **spares;
1333 uint_t nspares;
1334 int i;
1335 vdev_t *vd, *tvd;
1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1340 * First, close and free any existing spare vdevs.
1342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 vd = spa->spa_spares.sav_vdevs[i];
1345 /* Undo the call to spa_activate() below */
1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 B_FALSE)) != NULL && tvd->vdev_isspare)
1348 spa_spare_remove(tvd);
1349 vdev_close(vd);
1350 vdev_free(vd);
1353 if (spa->spa_spares.sav_vdevs)
1354 kmem_free(spa->spa_spares.sav_vdevs,
1355 spa->spa_spares.sav_count * sizeof (void *));
1357 if (spa->spa_spares.sav_config == NULL)
1358 nspares = 0;
1359 else
1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1363 spa->spa_spares.sav_count = (int)nspares;
1364 spa->spa_spares.sav_vdevs = NULL;
1366 if (nspares == 0)
1367 return;
1370 * Construct the array of vdevs, opening them to get status in the
1371 * process. For each spare, there is potentially two different vdev_t
1372 * structures associated with it: one in the list of spares (used only
1373 * for basic validation purposes) and one in the active vdev
1374 * configuration (if it's spared in). During this phase we open and
1375 * validate each vdev on the spare list. If the vdev also exists in the
1376 * active configuration, then we also mark this vdev as an active spare.
1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 KM_SLEEP);
1380 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 VDEV_ALLOC_SPARE) == 0);
1383 ASSERT(vd != NULL);
1385 spa->spa_spares.sav_vdevs[i] = vd;
1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 B_FALSE)) != NULL) {
1389 if (!tvd->vdev_isspare)
1390 spa_spare_add(tvd);
1393 * We only mark the spare active if we were successfully
1394 * able to load the vdev. Otherwise, importing a pool
1395 * with a bad active spare would result in strange
1396 * behavior, because multiple pool would think the spare
1397 * is actively in use.
1399 * There is a vulnerability here to an equally bizarre
1400 * circumstance, where a dead active spare is later
1401 * brought back to life (onlined or otherwise). Given
1402 * the rarity of this scenario, and the extra complexity
1403 * it adds, we ignore the possibility.
1405 if (!vdev_is_dead(tvd))
1406 spa_spare_activate(tvd);
1409 vd->vdev_top = vd;
1410 vd->vdev_aux = &spa->spa_spares;
1412 if (vdev_open(vd) != 0)
1413 continue;
1415 if (vdev_validate_aux(vd) == 0)
1416 spa_spare_add(vd);
1420 * Recompute the stashed list of spares, with status information
1421 * this time.
1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 DATA_TYPE_NVLIST_ARRAY) == 0);
1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 KM_SLEEP);
1428 for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 spares[i] = vdev_config_generate(spa,
1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 nvlist_free(spares[i]);
1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1439 * Load (or re-load) the current list of vdevs describing the active l2cache for
1440 * this pool. When this is called, we have some form of basic information in
1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1442 * then re-generate a more complete list including status information.
1443 * Devices which are already active have their details maintained, and are
1444 * not re-opened.
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1449 nvlist_t **l2cache;
1450 uint_t nl2cache;
1451 int i, j, oldnvdevs;
1452 uint64_t guid;
1453 vdev_t *vd, **oldvdevs, **newvdevs;
1454 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1458 if (sav->sav_config != NULL) {
1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 } else {
1463 nl2cache = 0;
1464 newvdevs = NULL;
1467 oldvdevs = sav->sav_vdevs;
1468 oldnvdevs = sav->sav_count;
1469 sav->sav_vdevs = NULL;
1470 sav->sav_count = 0;
1473 * Process new nvlist of vdevs.
1475 for (i = 0; i < nl2cache; i++) {
1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 &guid) == 0);
1479 newvdevs[i] = NULL;
1480 for (j = 0; j < oldnvdevs; j++) {
1481 vd = oldvdevs[j];
1482 if (vd != NULL && guid == vd->vdev_guid) {
1484 * Retain previous vdev for add/remove ops.
1486 newvdevs[i] = vd;
1487 oldvdevs[j] = NULL;
1488 break;
1492 if (newvdevs[i] == NULL) {
1494 * Create new vdev
1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 VDEV_ALLOC_L2CACHE) == 0);
1498 ASSERT(vd != NULL);
1499 newvdevs[i] = vd;
1502 * Commit this vdev as an l2cache device,
1503 * even if it fails to open.
1505 spa_l2cache_add(vd);
1507 vd->vdev_top = vd;
1508 vd->vdev_aux = sav;
1510 spa_l2cache_activate(vd);
1512 if (vdev_open(vd) != 0)
1513 continue;
1515 (void) vdev_validate_aux(vd);
1517 if (!vdev_is_dead(vd))
1518 l2arc_add_vdev(spa, vd);
1523 * Purge vdevs that were dropped
1525 for (i = 0; i < oldnvdevs; i++) {
1526 uint64_t pool;
1528 vd = oldvdevs[i];
1529 if (vd != NULL) {
1530 ASSERT(vd->vdev_isl2cache);
1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 pool != 0ULL && l2arc_vdev_present(vd))
1534 l2arc_remove_vdev(vd);
1535 vdev_clear_stats(vd);
1536 vdev_free(vd);
1540 if (oldvdevs)
1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1543 if (sav->sav_config == NULL)
1544 goto out;
1546 sav->sav_vdevs = newvdevs;
1547 sav->sav_count = (int)nl2cache;
1550 * Recompute the stashed list of l2cache devices, with status
1551 * information this time.
1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 DATA_TYPE_NVLIST_ARRAY) == 0);
1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 for (i = 0; i < sav->sav_count; i++)
1558 l2cache[i] = vdev_config_generate(spa,
1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 for (i = 0; i < sav->sav_count; i++)
1564 nvlist_free(l2cache[i]);
1565 if (sav->sav_count)
1566 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1572 dmu_buf_t *db;
1573 char *packed = NULL;
1574 size_t nvsize = 0;
1575 int error;
1576 *value = NULL;
1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579 if (error != 0)
1580 return (error);
1582 nvsize = *(uint64_t *)db->db_data;
1583 dmu_buf_rele(db, FTAG);
1585 packed = kmem_alloc(nvsize, KM_SLEEP);
1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587 DMU_READ_PREFETCH);
1588 if (error == 0)
1589 error = nvlist_unpack(packed, nvsize, value, 0);
1590 kmem_free(packed, nvsize);
1592 return (error);
1596 * Checks to see if the given vdev could not be opened, in which case we post a
1597 * sysevent to notify the autoreplace code that the device has been removed.
1599 static void
1600 spa_check_removed(vdev_t *vd)
1602 for (int c = 0; c < vd->vdev_children; c++)
1603 spa_check_removed(vd->vdev_child[c]);
1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606 !vd->vdev_ishole) {
1607 zfs_post_autoreplace(vd->vdev_spa, vd);
1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1613 * Validate the current config against the MOS config
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619 nvlist_t *nv;
1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1629 * If we're doing a normal import, then build up any additional
1630 * diagnostic information about missing devices in this config.
1631 * We'll pass this up to the user for further processing.
1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634 nvlist_t **child, *nv;
1635 uint64_t idx = 0;
1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638 KM_SLEEP);
1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1641 for (int c = 0; c < rvd->vdev_children; c++) {
1642 vdev_t *tvd = rvd->vdev_child[c];
1643 vdev_t *mtvd = mrvd->vdev_child[c];
1645 if (tvd->vdev_ops == &vdev_missing_ops &&
1646 mtvd->vdev_ops != &vdev_missing_ops &&
1647 mtvd->vdev_islog)
1648 child[idx++] = vdev_config_generate(spa, mtvd,
1649 B_FALSE, 0);
1652 if (idx) {
1653 VERIFY(nvlist_add_nvlist_array(nv,
1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1658 for (int i = 0; i < idx; i++)
1659 nvlist_free(child[i]);
1661 nvlist_free(nv);
1662 kmem_free(child, rvd->vdev_children * sizeof (char **));
1666 * Compare the root vdev tree with the information we have
1667 * from the MOS config (mrvd). Check each top-level vdev
1668 * with the corresponding MOS config top-level (mtvd).
1670 for (int c = 0; c < rvd->vdev_children; c++) {
1671 vdev_t *tvd = rvd->vdev_child[c];
1672 vdev_t *mtvd = mrvd->vdev_child[c];
1675 * Resolve any "missing" vdevs in the current configuration.
1676 * If we find that the MOS config has more accurate information
1677 * about the top-level vdev then use that vdev instead.
1679 if (tvd->vdev_ops == &vdev_missing_ops &&
1680 mtvd->vdev_ops != &vdev_missing_ops) {
1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683 continue;
1686 * Device specific actions.
1688 if (mtvd->vdev_islog) {
1689 spa_set_log_state(spa, SPA_LOG_CLEAR);
1690 } else {
1692 * XXX - once we have 'readonly' pool
1693 * support we should be able to handle
1694 * missing data devices by transitioning
1695 * the pool to readonly.
1697 continue;
1701 * Swap the missing vdev with the data we were
1702 * able to obtain from the MOS config.
1704 vdev_remove_child(rvd, tvd);
1705 vdev_remove_child(mrvd, mtvd);
1707 vdev_add_child(rvd, mtvd);
1708 vdev_add_child(mrvd, tvd);
1710 spa_config_exit(spa, SCL_ALL, FTAG);
1711 vdev_load(mtvd);
1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1714 vdev_reopen(rvd);
1715 } else if (mtvd->vdev_islog) {
1717 * Load the slog device's state from the MOS config
1718 * since it's possible that the label does not
1719 * contain the most up-to-date information.
1721 vdev_load_log_state(tvd, mtvd);
1722 vdev_reopen(tvd);
1725 vdev_free(mrvd);
1726 spa_config_exit(spa, SCL_ALL, FTAG);
1729 * Ensure we were able to validate the config.
1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1735 * Check for missing log devices
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1740 boolean_t rv = B_FALSE;
1741 dsl_pool_t *dp = spa_get_dsl(spa);
1743 switch (spa->spa_log_state) {
1744 case SPA_LOG_MISSING:
1745 /* need to recheck in case slog has been restored */
1746 case SPA_LOG_UNKNOWN:
1747 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1748 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1749 if (rv)
1750 spa_set_log_state(spa, SPA_LOG_MISSING);
1751 break;
1753 return (rv);
1756 static boolean_t
1757 spa_passivate_log(spa_t *spa)
1759 vdev_t *rvd = spa->spa_root_vdev;
1760 boolean_t slog_found = B_FALSE;
1762 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1764 if (!spa_has_slogs(spa))
1765 return (B_FALSE);
1767 for (int c = 0; c < rvd->vdev_children; c++) {
1768 vdev_t *tvd = rvd->vdev_child[c];
1769 metaslab_group_t *mg = tvd->vdev_mg;
1771 if (tvd->vdev_islog) {
1772 metaslab_group_passivate(mg);
1773 slog_found = B_TRUE;
1777 return (slog_found);
1780 static void
1781 spa_activate_log(spa_t *spa)
1783 vdev_t *rvd = spa->spa_root_vdev;
1785 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1787 for (int c = 0; c < rvd->vdev_children; c++) {
1788 vdev_t *tvd = rvd->vdev_child[c];
1789 metaslab_group_t *mg = tvd->vdev_mg;
1791 if (tvd->vdev_islog)
1792 metaslab_group_activate(mg);
1797 spa_offline_log(spa_t *spa)
1799 int error;
1801 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1802 NULL, DS_FIND_CHILDREN);
1803 if (error == 0) {
1805 * We successfully offlined the log device, sync out the
1806 * current txg so that the "stubby" block can be removed
1807 * by zil_sync().
1809 txg_wait_synced(spa->spa_dsl_pool, 0);
1811 return (error);
1814 static void
1815 spa_aux_check_removed(spa_aux_vdev_t *sav)
1817 for (int i = 0; i < sav->sav_count; i++)
1818 spa_check_removed(sav->sav_vdevs[i]);
1821 void
1822 spa_claim_notify(zio_t *zio)
1824 spa_t *spa = zio->io_spa;
1826 if (zio->io_error)
1827 return;
1829 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1830 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1831 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1832 mutex_exit(&spa->spa_props_lock);
1835 typedef struct spa_load_error {
1836 uint64_t sle_meta_count;
1837 uint64_t sle_data_count;
1838 } spa_load_error_t;
1840 static void
1841 spa_load_verify_done(zio_t *zio)
1843 blkptr_t *bp = zio->io_bp;
1844 spa_load_error_t *sle = zio->io_private;
1845 dmu_object_type_t type = BP_GET_TYPE(bp);
1846 int error = zio->io_error;
1847 spa_t *spa = zio->io_spa;
1849 if (error) {
1850 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1851 type != DMU_OT_INTENT_LOG)
1852 atomic_inc_64(&sle->sle_meta_count);
1853 else
1854 atomic_inc_64(&sle->sle_data_count);
1856 zio_data_buf_free(zio->io_data, zio->io_size);
1858 mutex_enter(&spa->spa_scrub_lock);
1859 spa->spa_scrub_inflight--;
1860 cv_broadcast(&spa->spa_scrub_io_cv);
1861 mutex_exit(&spa->spa_scrub_lock);
1865 * Maximum number of concurrent scrub i/os to create while verifying
1866 * a pool while importing it.
1868 int spa_load_verify_maxinflight = 10000;
1869 boolean_t spa_load_verify_metadata = B_TRUE;
1870 boolean_t spa_load_verify_data = B_TRUE;
1872 /*ARGSUSED*/
1873 static int
1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1875 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1877 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1878 return (0);
1880 * Note: normally this routine will not be called if
1881 * spa_load_verify_metadata is not set. However, it may be useful
1882 * to manually set the flag after the traversal has begun.
1884 if (!spa_load_verify_metadata)
1885 return (0);
1886 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1887 return (0);
1889 zio_t *rio = arg;
1890 size_t size = BP_GET_PSIZE(bp);
1891 void *data = zio_data_buf_alloc(size);
1893 mutex_enter(&spa->spa_scrub_lock);
1894 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1895 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1896 spa->spa_scrub_inflight++;
1897 mutex_exit(&spa->spa_scrub_lock);
1899 zio_nowait(zio_read(rio, spa, bp, data, size,
1900 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1901 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1902 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1903 return (0);
1906 static int
1907 spa_load_verify(spa_t *spa)
1909 zio_t *rio;
1910 spa_load_error_t sle = { 0 };
1911 zpool_rewind_policy_t policy;
1912 boolean_t verify_ok = B_FALSE;
1913 int error = 0;
1915 zpool_get_rewind_policy(spa->spa_config, &policy);
1917 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1918 return (0);
1920 rio = zio_root(spa, NULL, &sle,
1921 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1923 if (spa_load_verify_metadata) {
1924 error = traverse_pool(spa, spa->spa_verify_min_txg,
1925 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1926 spa_load_verify_cb, rio);
1929 (void) zio_wait(rio);
1931 spa->spa_load_meta_errors = sle.sle_meta_count;
1932 spa->spa_load_data_errors = sle.sle_data_count;
1934 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1935 sle.sle_data_count <= policy.zrp_maxdata) {
1936 int64_t loss = 0;
1938 verify_ok = B_TRUE;
1939 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1940 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1942 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1943 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1945 VERIFY(nvlist_add_int64(spa->spa_load_info,
1946 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1947 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1948 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1949 } else {
1950 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1953 if (error) {
1954 if (error != ENXIO && error != EIO)
1955 error = SET_ERROR(EIO);
1956 return (error);
1959 return (verify_ok ? 0 : EIO);
1963 * Find a value in the pool props object.
1965 static void
1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1968 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1969 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1973 * Find a value in the pool directory object.
1975 static int
1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1978 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1979 name, sizeof (uint64_t), 1, val));
1982 static int
1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1985 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1986 return (err);
1990 * Fix up config after a partly-completed split. This is done with the
1991 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1992 * pool have that entry in their config, but only the splitting one contains
1993 * a list of all the guids of the vdevs that are being split off.
1995 * This function determines what to do with that list: either rejoin
1996 * all the disks to the pool, or complete the splitting process. To attempt
1997 * the rejoin, each disk that is offlined is marked online again, and
1998 * we do a reopen() call. If the vdev label for every disk that was
1999 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2000 * then we call vdev_split() on each disk, and complete the split.
2002 * Otherwise we leave the config alone, with all the vdevs in place in
2003 * the original pool.
2005 static void
2006 spa_try_repair(spa_t *spa, nvlist_t *config)
2008 uint_t extracted;
2009 uint64_t *glist;
2010 uint_t i, gcount;
2011 nvlist_t *nvl;
2012 vdev_t **vd;
2013 boolean_t attempt_reopen;
2015 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2016 return;
2018 /* check that the config is complete */
2019 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2020 &glist, &gcount) != 0)
2021 return;
2023 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2025 /* attempt to online all the vdevs & validate */
2026 attempt_reopen = B_TRUE;
2027 for (i = 0; i < gcount; i++) {
2028 if (glist[i] == 0) /* vdev is hole */
2029 continue;
2031 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2032 if (vd[i] == NULL) {
2034 * Don't bother attempting to reopen the disks;
2035 * just do the split.
2037 attempt_reopen = B_FALSE;
2038 } else {
2039 /* attempt to re-online it */
2040 vd[i]->vdev_offline = B_FALSE;
2044 if (attempt_reopen) {
2045 vdev_reopen(spa->spa_root_vdev);
2047 /* check each device to see what state it's in */
2048 for (extracted = 0, i = 0; i < gcount; i++) {
2049 if (vd[i] != NULL &&
2050 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2051 break;
2052 ++extracted;
2057 * If every disk has been moved to the new pool, or if we never
2058 * even attempted to look at them, then we split them off for
2059 * good.
2061 if (!attempt_reopen || gcount == extracted) {
2062 for (i = 0; i < gcount; i++)
2063 if (vd[i] != NULL)
2064 vdev_split(vd[i]);
2065 vdev_reopen(spa->spa_root_vdev);
2068 kmem_free(vd, gcount * sizeof (vdev_t *));
2071 static int
2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2073 boolean_t mosconfig)
2075 nvlist_t *config = spa->spa_config;
2076 char *ereport = FM_EREPORT_ZFS_POOL;
2077 char *comment;
2078 int error;
2079 uint64_t pool_guid;
2080 nvlist_t *nvl;
2082 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2083 return (SET_ERROR(EINVAL));
2085 ASSERT(spa->spa_comment == NULL);
2086 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2087 spa->spa_comment = spa_strdup(comment);
2090 * Versioning wasn't explicitly added to the label until later, so if
2091 * it's not present treat it as the initial version.
2093 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2094 &spa->spa_ubsync.ub_version) != 0)
2095 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2097 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2098 &spa->spa_config_txg);
2100 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2101 spa_guid_exists(pool_guid, 0)) {
2102 error = SET_ERROR(EEXIST);
2103 } else {
2104 spa->spa_config_guid = pool_guid;
2106 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2107 &nvl) == 0) {
2108 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2109 KM_SLEEP) == 0);
2112 nvlist_free(spa->spa_load_info);
2113 spa->spa_load_info = fnvlist_alloc();
2115 gethrestime(&spa->spa_loaded_ts);
2116 error = spa_load_impl(spa, pool_guid, config, state, type,
2117 mosconfig, &ereport);
2121 * Don't count references from objsets that are already closed
2122 * and are making their way through the eviction process.
2124 spa_evicting_os_wait(spa);
2125 spa->spa_minref = refcount_count(&spa->spa_refcount);
2126 if (error) {
2127 if (error != EEXIST) {
2128 spa->spa_loaded_ts.tv_sec = 0;
2129 spa->spa_loaded_ts.tv_nsec = 0;
2131 if (error != EBADF) {
2132 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2135 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2136 spa->spa_ena = 0;
2138 return (error);
2142 * Load an existing storage pool, using the pool's builtin spa_config as a
2143 * source of configuration information.
2145 static int
2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2148 char **ereport)
2150 int error = 0;
2151 nvlist_t *nvroot = NULL;
2152 nvlist_t *label;
2153 vdev_t *rvd;
2154 uberblock_t *ub = &spa->spa_uberblock;
2155 uint64_t children, config_cache_txg = spa->spa_config_txg;
2156 int orig_mode = spa->spa_mode;
2157 int parse;
2158 uint64_t obj;
2159 boolean_t missing_feat_write = B_FALSE;
2162 * If this is an untrusted config, access the pool in read-only mode.
2163 * This prevents things like resilvering recently removed devices.
2165 if (!mosconfig)
2166 spa->spa_mode = FREAD;
2168 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2170 spa->spa_load_state = state;
2172 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2173 return (SET_ERROR(EINVAL));
2175 parse = (type == SPA_IMPORT_EXISTING ?
2176 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2179 * Create "The Godfather" zio to hold all async IOs
2181 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2182 KM_SLEEP);
2183 for (int i = 0; i < max_ncpus; i++) {
2184 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2185 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2186 ZIO_FLAG_GODFATHER);
2190 * Parse the configuration into a vdev tree. We explicitly set the
2191 * value that will be returned by spa_version() since parsing the
2192 * configuration requires knowing the version number.
2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2196 spa_config_exit(spa, SCL_ALL, FTAG);
2198 if (error != 0)
2199 return (error);
2201 ASSERT(spa->spa_root_vdev == rvd);
2202 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2203 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2205 if (type != SPA_IMPORT_ASSEMBLE) {
2206 ASSERT(spa_guid(spa) == pool_guid);
2210 * Try to open all vdevs, loading each label in the process.
2212 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2213 error = vdev_open(rvd);
2214 spa_config_exit(spa, SCL_ALL, FTAG);
2215 if (error != 0)
2216 return (error);
2219 * We need to validate the vdev labels against the configuration that
2220 * we have in hand, which is dependent on the setting of mosconfig. If
2221 * mosconfig is true then we're validating the vdev labels based on
2222 * that config. Otherwise, we're validating against the cached config
2223 * (zpool.cache) that was read when we loaded the zfs module, and then
2224 * later we will recursively call spa_load() and validate against
2225 * the vdev config.
2227 * If we're assembling a new pool that's been split off from an
2228 * existing pool, the labels haven't yet been updated so we skip
2229 * validation for now.
2231 if (type != SPA_IMPORT_ASSEMBLE) {
2232 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2233 error = vdev_validate(rvd, mosconfig);
2234 spa_config_exit(spa, SCL_ALL, FTAG);
2236 if (error != 0)
2237 return (error);
2239 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2240 return (SET_ERROR(ENXIO));
2244 * Find the best uberblock.
2246 vdev_uberblock_load(rvd, ub, &label);
2249 * If we weren't able to find a single valid uberblock, return failure.
2251 if (ub->ub_txg == 0) {
2252 nvlist_free(label);
2253 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2257 * If the pool has an unsupported version we can't open it.
2259 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2260 nvlist_free(label);
2261 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2264 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2265 nvlist_t *features;
2268 * If we weren't able to find what's necessary for reading the
2269 * MOS in the label, return failure.
2271 if (label == NULL || nvlist_lookup_nvlist(label,
2272 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2273 nvlist_free(label);
2274 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2275 ENXIO));
2279 * Update our in-core representation with the definitive values
2280 * from the label.
2282 nvlist_free(spa->spa_label_features);
2283 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2286 nvlist_free(label);
2289 * Look through entries in the label nvlist's features_for_read. If
2290 * there is a feature listed there which we don't understand then we
2291 * cannot open a pool.
2293 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2294 nvlist_t *unsup_feat;
2296 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2299 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2300 NULL); nvp != NULL;
2301 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2302 if (!zfeature_is_supported(nvpair_name(nvp))) {
2303 VERIFY(nvlist_add_string(unsup_feat,
2304 nvpair_name(nvp), "") == 0);
2308 if (!nvlist_empty(unsup_feat)) {
2309 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2310 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2311 nvlist_free(unsup_feat);
2312 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2313 ENOTSUP));
2316 nvlist_free(unsup_feat);
2320 * If the vdev guid sum doesn't match the uberblock, we have an
2321 * incomplete configuration. We first check to see if the pool
2322 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2323 * If it is, defer the vdev_guid_sum check till later so we
2324 * can handle missing vdevs.
2326 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2327 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2328 rvd->vdev_guid_sum != ub->ub_guid_sum)
2329 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2331 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2332 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2333 spa_try_repair(spa, config);
2334 spa_config_exit(spa, SCL_ALL, FTAG);
2335 nvlist_free(spa->spa_config_splitting);
2336 spa->spa_config_splitting = NULL;
2340 * Initialize internal SPA structures.
2342 spa->spa_state = POOL_STATE_ACTIVE;
2343 spa->spa_ubsync = spa->spa_uberblock;
2344 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2345 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2346 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2347 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2348 spa->spa_claim_max_txg = spa->spa_first_txg;
2349 spa->spa_prev_software_version = ub->ub_software_version;
2351 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2352 if (error)
2353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2354 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2356 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2360 boolean_t missing_feat_read = B_FALSE;
2361 nvlist_t *unsup_feat, *enabled_feat;
2363 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2364 &spa->spa_feat_for_read_obj) != 0) {
2365 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2368 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2369 &spa->spa_feat_for_write_obj) != 0) {
2370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2373 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2374 &spa->spa_feat_desc_obj) != 0) {
2375 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2378 enabled_feat = fnvlist_alloc();
2379 unsup_feat = fnvlist_alloc();
2381 if (!spa_features_check(spa, B_FALSE,
2382 unsup_feat, enabled_feat))
2383 missing_feat_read = B_TRUE;
2385 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2386 if (!spa_features_check(spa, B_TRUE,
2387 unsup_feat, enabled_feat)) {
2388 missing_feat_write = B_TRUE;
2392 fnvlist_add_nvlist(spa->spa_load_info,
2393 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2395 if (!nvlist_empty(unsup_feat)) {
2396 fnvlist_add_nvlist(spa->spa_load_info,
2397 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2400 fnvlist_free(enabled_feat);
2401 fnvlist_free(unsup_feat);
2403 if (!missing_feat_read) {
2404 fnvlist_add_boolean(spa->spa_load_info,
2405 ZPOOL_CONFIG_CAN_RDONLY);
2409 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2410 * twofold: to determine whether the pool is available for
2411 * import in read-write mode and (if it is not) whether the
2412 * pool is available for import in read-only mode. If the pool
2413 * is available for import in read-write mode, it is displayed
2414 * as available in userland; if it is not available for import
2415 * in read-only mode, it is displayed as unavailable in
2416 * userland. If the pool is available for import in read-only
2417 * mode but not read-write mode, it is displayed as unavailable
2418 * in userland with a special note that the pool is actually
2419 * available for open in read-only mode.
2421 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2422 * missing a feature for write, we must first determine whether
2423 * the pool can be opened read-only before returning to
2424 * userland in order to know whether to display the
2425 * abovementioned note.
2427 if (missing_feat_read || (missing_feat_write &&
2428 spa_writeable(spa))) {
2429 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2430 ENOTSUP));
2434 * Load refcounts for ZFS features from disk into an in-memory
2435 * cache during SPA initialization.
2437 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2438 uint64_t refcount;
2440 error = feature_get_refcount_from_disk(spa,
2441 &spa_feature_table[i], &refcount);
2442 if (error == 0) {
2443 spa->spa_feat_refcount_cache[i] = refcount;
2444 } else if (error == ENOTSUP) {
2445 spa->spa_feat_refcount_cache[i] =
2446 SPA_FEATURE_DISABLED;
2447 } else {
2448 return (spa_vdev_err(rvd,
2449 VDEV_AUX_CORRUPT_DATA, EIO));
2454 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2455 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2456 &spa->spa_feat_enabled_txg_obj) != 0)
2457 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460 spa->spa_is_initializing = B_TRUE;
2461 error = dsl_pool_open(spa->spa_dsl_pool);
2462 spa->spa_is_initializing = B_FALSE;
2463 if (error != 0)
2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 if (!mosconfig) {
2467 uint64_t hostid;
2468 nvlist_t *policy = NULL, *nvconfig;
2470 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2473 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2474 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2475 char *hostname;
2476 unsigned long myhostid = 0;
2478 VERIFY(nvlist_lookup_string(nvconfig,
2479 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2481 #ifdef _KERNEL
2482 myhostid = zone_get_hostid(NULL);
2483 #else /* _KERNEL */
2485 * We're emulating the system's hostid in userland, so
2486 * we can't use zone_get_hostid().
2488 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2489 #endif /* _KERNEL */
2490 if (hostid != 0 && myhostid != 0 &&
2491 hostid != myhostid) {
2492 nvlist_free(nvconfig);
2493 cmn_err(CE_WARN, "pool '%s' could not be "
2494 "loaded as it was last accessed by "
2495 "another system (host: %s hostid: 0x%lx). "
2496 "See: http://illumos.org/msg/ZFS-8000-EY",
2497 spa_name(spa), hostname,
2498 (unsigned long)hostid);
2499 return (SET_ERROR(EBADF));
2502 if (nvlist_lookup_nvlist(spa->spa_config,
2503 ZPOOL_REWIND_POLICY, &policy) == 0)
2504 VERIFY(nvlist_add_nvlist(nvconfig,
2505 ZPOOL_REWIND_POLICY, policy) == 0);
2507 spa_config_set(spa, nvconfig);
2508 spa_unload(spa);
2509 spa_deactivate(spa);
2510 spa_activate(spa, orig_mode);
2512 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2515 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2518 if (error != 0)
2519 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522 * Load the bit that tells us to use the new accounting function
2523 * (raid-z deflation). If we have an older pool, this will not
2524 * be present.
2526 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2527 if (error != 0 && error != ENOENT)
2528 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2531 &spa->spa_creation_version);
2532 if (error != 0 && error != ENOENT)
2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536 * Load the persistent error log. If we have an older pool, this will
2537 * not be present.
2539 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2540 if (error != 0 && error != ENOENT)
2541 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2544 &spa->spa_errlog_scrub);
2545 if (error != 0 && error != ENOENT)
2546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549 * Load the history object. If we have an older pool, this
2550 * will not be present.
2552 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2553 if (error != 0 && error != ENOENT)
2554 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2557 * If we're assembling the pool from the split-off vdevs of
2558 * an existing pool, we don't want to attach the spares & cache
2559 * devices.
2563 * Load any hot spares for this pool.
2565 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2566 if (error != 0 && error != ENOENT)
2567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2569 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2570 if (load_nvlist(spa, spa->spa_spares.sav_object,
2571 &spa->spa_spares.sav_config) != 0)
2572 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2574 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2575 spa_load_spares(spa);
2576 spa_config_exit(spa, SCL_ALL, FTAG);
2577 } else if (error == 0) {
2578 spa->spa_spares.sav_sync = B_TRUE;
2582 * Load any level 2 ARC devices for this pool.
2584 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2585 &spa->spa_l2cache.sav_object);
2586 if (error != 0 && error != ENOENT)
2587 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2588 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2589 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2590 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2591 &spa->spa_l2cache.sav_config) != 0)
2592 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2594 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2595 spa_load_l2cache(spa);
2596 spa_config_exit(spa, SCL_ALL, FTAG);
2597 } else if (error == 0) {
2598 spa->spa_l2cache.sav_sync = B_TRUE;
2601 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2603 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2604 if (error && error != ENOENT)
2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2607 if (error == 0) {
2608 uint64_t autoreplace;
2610 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2611 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2612 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2613 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2614 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2615 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2616 &spa->spa_dedup_ditto);
2618 spa->spa_autoreplace = (autoreplace != 0);
2622 * If the 'autoreplace' property is set, then post a resource notifying
2623 * the ZFS DE that it should not issue any faults for unopenable
2624 * devices. We also iterate over the vdevs, and post a sysevent for any
2625 * unopenable vdevs so that the normal autoreplace handler can take
2626 * over.
2628 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2629 spa_check_removed(spa->spa_root_vdev);
2631 * For the import case, this is done in spa_import(), because
2632 * at this point we're using the spare definitions from
2633 * the MOS config, not necessarily from the userland config.
2635 if (state != SPA_LOAD_IMPORT) {
2636 spa_aux_check_removed(&spa->spa_spares);
2637 spa_aux_check_removed(&spa->spa_l2cache);
2642 * Load the vdev state for all toplevel vdevs.
2644 vdev_load(rvd);
2647 * Propagate the leaf DTLs we just loaded all the way up the tree.
2649 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2650 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2651 spa_config_exit(spa, SCL_ALL, FTAG);
2654 * Load the DDTs (dedup tables).
2656 error = ddt_load(spa);
2657 if (error != 0)
2658 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2660 spa_update_dspace(spa);
2663 * Validate the config, using the MOS config to fill in any
2664 * information which might be missing. If we fail to validate
2665 * the config then declare the pool unfit for use. If we're
2666 * assembling a pool from a split, the log is not transferred
2667 * over.
2669 if (type != SPA_IMPORT_ASSEMBLE) {
2670 nvlist_t *nvconfig;
2672 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2673 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2675 if (!spa_config_valid(spa, nvconfig)) {
2676 nvlist_free(nvconfig);
2677 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2678 ENXIO));
2680 nvlist_free(nvconfig);
2683 * Now that we've validated the config, check the state of the
2684 * root vdev. If it can't be opened, it indicates one or
2685 * more toplevel vdevs are faulted.
2687 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2688 return (SET_ERROR(ENXIO));
2690 if (spa_writeable(spa) && spa_check_logs(spa)) {
2691 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2692 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2696 if (missing_feat_write) {
2697 ASSERT(state == SPA_LOAD_TRYIMPORT);
2700 * At this point, we know that we can open the pool in
2701 * read-only mode but not read-write mode. We now have enough
2702 * information and can return to userland.
2704 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2708 * We've successfully opened the pool, verify that we're ready
2709 * to start pushing transactions.
2711 if (state != SPA_LOAD_TRYIMPORT) {
2712 if (error = spa_load_verify(spa))
2713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2714 error));
2717 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2718 spa->spa_load_max_txg == UINT64_MAX)) {
2719 dmu_tx_t *tx;
2720 int need_update = B_FALSE;
2721 dsl_pool_t *dp = spa_get_dsl(spa);
2723 ASSERT(state != SPA_LOAD_TRYIMPORT);
2726 * Claim log blocks that haven't been committed yet.
2727 * This must all happen in a single txg.
2728 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2729 * invoked from zil_claim_log_block()'s i/o done callback.
2730 * Price of rollback is that we abandon the log.
2732 spa->spa_claiming = B_TRUE;
2734 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2735 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2736 zil_claim, tx, DS_FIND_CHILDREN);
2737 dmu_tx_commit(tx);
2739 spa->spa_claiming = B_FALSE;
2741 spa_set_log_state(spa, SPA_LOG_GOOD);
2742 spa->spa_sync_on = B_TRUE;
2743 txg_sync_start(spa->spa_dsl_pool);
2746 * Wait for all claims to sync. We sync up to the highest
2747 * claimed log block birth time so that claimed log blocks
2748 * don't appear to be from the future. spa_claim_max_txg
2749 * will have been set for us by either zil_check_log_chain()
2750 * (invoked from spa_check_logs()) or zil_claim() above.
2752 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2755 * If the config cache is stale, or we have uninitialized
2756 * metaslabs (see spa_vdev_add()), then update the config.
2758 * If this is a verbatim import, trust the current
2759 * in-core spa_config and update the disk labels.
2761 if (config_cache_txg != spa->spa_config_txg ||
2762 state == SPA_LOAD_IMPORT ||
2763 state == SPA_LOAD_RECOVER ||
2764 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2765 need_update = B_TRUE;
2767 for (int c = 0; c < rvd->vdev_children; c++)
2768 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2769 need_update = B_TRUE;
2772 * Update the config cache asychronously in case we're the
2773 * root pool, in which case the config cache isn't writable yet.
2775 if (need_update)
2776 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2779 * Check all DTLs to see if anything needs resilvering.
2781 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2782 vdev_resilver_needed(rvd, NULL, NULL))
2783 spa_async_request(spa, SPA_ASYNC_RESILVER);
2786 * Log the fact that we booted up (so that we can detect if
2787 * we rebooted in the middle of an operation).
2789 spa_history_log_version(spa, "open");
2792 * Delete any inconsistent datasets.
2794 (void) dmu_objset_find(spa_name(spa),
2795 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2798 * Clean up any stale temporary dataset userrefs.
2800 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2803 return (0);
2806 static int
2807 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2809 int mode = spa->spa_mode;
2811 spa_unload(spa);
2812 spa_deactivate(spa);
2814 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2816 spa_activate(spa, mode);
2817 spa_async_suspend(spa);
2819 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2823 * If spa_load() fails this function will try loading prior txg's. If
2824 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2825 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2826 * function will not rewind the pool and will return the same error as
2827 * spa_load().
2829 static int
2830 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2831 uint64_t max_request, int rewind_flags)
2833 nvlist_t *loadinfo = NULL;
2834 nvlist_t *config = NULL;
2835 int load_error, rewind_error;
2836 uint64_t safe_rewind_txg;
2837 uint64_t min_txg;
2839 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2840 spa->spa_load_max_txg = spa->spa_load_txg;
2841 spa_set_log_state(spa, SPA_LOG_CLEAR);
2842 } else {
2843 spa->spa_load_max_txg = max_request;
2844 if (max_request != UINT64_MAX)
2845 spa->spa_extreme_rewind = B_TRUE;
2848 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2849 mosconfig);
2850 if (load_error == 0)
2851 return (0);
2853 if (spa->spa_root_vdev != NULL)
2854 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2856 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2857 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2859 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2860 nvlist_free(config);
2861 return (load_error);
2864 if (state == SPA_LOAD_RECOVER) {
2865 /* Price of rolling back is discarding txgs, including log */
2866 spa_set_log_state(spa, SPA_LOG_CLEAR);
2867 } else {
2869 * If we aren't rolling back save the load info from our first
2870 * import attempt so that we can restore it after attempting
2871 * to rewind.
2873 loadinfo = spa->spa_load_info;
2874 spa->spa_load_info = fnvlist_alloc();
2877 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2878 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2879 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2880 TXG_INITIAL : safe_rewind_txg;
2883 * Continue as long as we're finding errors, we're still within
2884 * the acceptable rewind range, and we're still finding uberblocks
2886 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2887 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2888 if (spa->spa_load_max_txg < safe_rewind_txg)
2889 spa->spa_extreme_rewind = B_TRUE;
2890 rewind_error = spa_load_retry(spa, state, mosconfig);
2893 spa->spa_extreme_rewind = B_FALSE;
2894 spa->spa_load_max_txg = UINT64_MAX;
2896 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2897 spa_config_set(spa, config);
2899 if (state == SPA_LOAD_RECOVER) {
2900 ASSERT3P(loadinfo, ==, NULL);
2901 return (rewind_error);
2902 } else {
2903 /* Store the rewind info as part of the initial load info */
2904 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2905 spa->spa_load_info);
2907 /* Restore the initial load info */
2908 fnvlist_free(spa->spa_load_info);
2909 spa->spa_load_info = loadinfo;
2911 return (load_error);
2916 * Pool Open/Import
2918 * The import case is identical to an open except that the configuration is sent
2919 * down from userland, instead of grabbed from the configuration cache. For the
2920 * case of an open, the pool configuration will exist in the
2921 * POOL_STATE_UNINITIALIZED state.
2923 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2924 * the same time open the pool, without having to keep around the spa_t in some
2925 * ambiguous state.
2927 static int
2928 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2929 nvlist_t **config)
2931 spa_t *spa;
2932 spa_load_state_t state = SPA_LOAD_OPEN;
2933 int error;
2934 int locked = B_FALSE;
2936 *spapp = NULL;
2939 * As disgusting as this is, we need to support recursive calls to this
2940 * function because dsl_dir_open() is called during spa_load(), and ends
2941 * up calling spa_open() again. The real fix is to figure out how to
2942 * avoid dsl_dir_open() calling this in the first place.
2944 if (mutex_owner(&spa_namespace_lock) != curthread) {
2945 mutex_enter(&spa_namespace_lock);
2946 locked = B_TRUE;
2949 if ((spa = spa_lookup(pool)) == NULL) {
2950 if (locked)
2951 mutex_exit(&spa_namespace_lock);
2952 return (SET_ERROR(ENOENT));
2955 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2956 zpool_rewind_policy_t policy;
2958 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2959 &policy);
2960 if (policy.zrp_request & ZPOOL_DO_REWIND)
2961 state = SPA_LOAD_RECOVER;
2963 spa_activate(spa, spa_mode_global);
2965 if (state != SPA_LOAD_RECOVER)
2966 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2968 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2969 policy.zrp_request);
2971 if (error == EBADF) {
2973 * If vdev_validate() returns failure (indicated by
2974 * EBADF), it indicates that one of the vdevs indicates
2975 * that the pool has been exported or destroyed. If
2976 * this is the case, the config cache is out of sync and
2977 * we should remove the pool from the namespace.
2979 spa_unload(spa);
2980 spa_deactivate(spa);
2981 spa_config_sync(spa, B_TRUE, B_TRUE);
2982 spa_remove(spa);
2983 if (locked)
2984 mutex_exit(&spa_namespace_lock);
2985 return (SET_ERROR(ENOENT));
2988 if (error) {
2990 * We can't open the pool, but we still have useful
2991 * information: the state of each vdev after the
2992 * attempted vdev_open(). Return this to the user.
2994 if (config != NULL && spa->spa_config) {
2995 VERIFY(nvlist_dup(spa->spa_config, config,
2996 KM_SLEEP) == 0);
2997 VERIFY(nvlist_add_nvlist(*config,
2998 ZPOOL_CONFIG_LOAD_INFO,
2999 spa->spa_load_info) == 0);
3001 spa_unload(spa);
3002 spa_deactivate(spa);
3003 spa->spa_last_open_failed = error;
3004 if (locked)
3005 mutex_exit(&spa_namespace_lock);
3006 *spapp = NULL;
3007 return (error);
3011 spa_open_ref(spa, tag);
3013 if (config != NULL)
3014 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3017 * If we've recovered the pool, pass back any information we
3018 * gathered while doing the load.
3020 if (state == SPA_LOAD_RECOVER) {
3021 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3022 spa->spa_load_info) == 0);
3025 if (locked) {
3026 spa->spa_last_open_failed = 0;
3027 spa->spa_last_ubsync_txg = 0;
3028 spa->spa_load_txg = 0;
3029 mutex_exit(&spa_namespace_lock);
3032 *spapp = spa;
3034 return (0);
3038 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3039 nvlist_t **config)
3041 return (spa_open_common(name, spapp, tag, policy, config));
3045 spa_open(const char *name, spa_t **spapp, void *tag)
3047 return (spa_open_common(name, spapp, tag, NULL, NULL));
3051 * Lookup the given spa_t, incrementing the inject count in the process,
3052 * preventing it from being exported or destroyed.
3054 spa_t *
3055 spa_inject_addref(char *name)
3057 spa_t *spa;
3059 mutex_enter(&spa_namespace_lock);
3060 if ((spa = spa_lookup(name)) == NULL) {
3061 mutex_exit(&spa_namespace_lock);
3062 return (NULL);
3064 spa->spa_inject_ref++;
3065 mutex_exit(&spa_namespace_lock);
3067 return (spa);
3070 void
3071 spa_inject_delref(spa_t *spa)
3073 mutex_enter(&spa_namespace_lock);
3074 spa->spa_inject_ref--;
3075 mutex_exit(&spa_namespace_lock);
3079 * Add spares device information to the nvlist.
3081 static void
3082 spa_add_spares(spa_t *spa, nvlist_t *config)
3084 nvlist_t **spares;
3085 uint_t i, nspares;
3086 nvlist_t *nvroot;
3087 uint64_t guid;
3088 vdev_stat_t *vs;
3089 uint_t vsc;
3090 uint64_t pool;
3092 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3094 if (spa->spa_spares.sav_count == 0)
3095 return;
3097 VERIFY(nvlist_lookup_nvlist(config,
3098 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3099 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3100 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3101 if (nspares != 0) {
3102 VERIFY(nvlist_add_nvlist_array(nvroot,
3103 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3104 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3105 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3108 * Go through and find any spares which have since been
3109 * repurposed as an active spare. If this is the case, update
3110 * their status appropriately.
3112 for (i = 0; i < nspares; i++) {
3113 VERIFY(nvlist_lookup_uint64(spares[i],
3114 ZPOOL_CONFIG_GUID, &guid) == 0);
3115 if (spa_spare_exists(guid, &pool, NULL) &&
3116 pool != 0ULL) {
3117 VERIFY(nvlist_lookup_uint64_array(
3118 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3119 (uint64_t **)&vs, &vsc) == 0);
3120 vs->vs_state = VDEV_STATE_CANT_OPEN;
3121 vs->vs_aux = VDEV_AUX_SPARED;
3128 * Add l2cache device information to the nvlist, including vdev stats.
3130 static void
3131 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3133 nvlist_t **l2cache;
3134 uint_t i, j, nl2cache;
3135 nvlist_t *nvroot;
3136 uint64_t guid;
3137 vdev_t *vd;
3138 vdev_stat_t *vs;
3139 uint_t vsc;
3141 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3143 if (spa->spa_l2cache.sav_count == 0)
3144 return;
3146 VERIFY(nvlist_lookup_nvlist(config,
3147 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3148 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3149 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3150 if (nl2cache != 0) {
3151 VERIFY(nvlist_add_nvlist_array(nvroot,
3152 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3153 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3154 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3157 * Update level 2 cache device stats.
3160 for (i = 0; i < nl2cache; i++) {
3161 VERIFY(nvlist_lookup_uint64(l2cache[i],
3162 ZPOOL_CONFIG_GUID, &guid) == 0);
3164 vd = NULL;
3165 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3166 if (guid ==
3167 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3168 vd = spa->spa_l2cache.sav_vdevs[j];
3169 break;
3172 ASSERT(vd != NULL);
3174 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3175 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3176 == 0);
3177 vdev_get_stats(vd, vs);
3182 static void
3183 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3185 nvlist_t *features;
3186 zap_cursor_t zc;
3187 zap_attribute_t za;
3189 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3190 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3192 if (spa->spa_feat_for_read_obj != 0) {
3193 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3194 spa->spa_feat_for_read_obj);
3195 zap_cursor_retrieve(&zc, &za) == 0;
3196 zap_cursor_advance(&zc)) {
3197 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3198 za.za_num_integers == 1);
3199 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3200 za.za_first_integer));
3202 zap_cursor_fini(&zc);
3205 if (spa->spa_feat_for_write_obj != 0) {
3206 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3207 spa->spa_feat_for_write_obj);
3208 zap_cursor_retrieve(&zc, &za) == 0;
3209 zap_cursor_advance(&zc)) {
3210 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3211 za.za_num_integers == 1);
3212 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3213 za.za_first_integer));
3215 zap_cursor_fini(&zc);
3218 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3219 features) == 0);
3220 nvlist_free(features);
3224 spa_get_stats(const char *name, nvlist_t **config,
3225 char *altroot, size_t buflen)
3227 int error;
3228 spa_t *spa;
3230 *config = NULL;
3231 error = spa_open_common(name, &spa, FTAG, NULL, config);
3233 if (spa != NULL) {
3235 * This still leaves a window of inconsistency where the spares
3236 * or l2cache devices could change and the config would be
3237 * self-inconsistent.
3239 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3241 if (*config != NULL) {
3242 uint64_t loadtimes[2];
3244 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3245 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3246 VERIFY(nvlist_add_uint64_array(*config,
3247 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3249 VERIFY(nvlist_add_uint64(*config,
3250 ZPOOL_CONFIG_ERRCOUNT,
3251 spa_get_errlog_size(spa)) == 0);
3253 if (spa_suspended(spa))
3254 VERIFY(nvlist_add_uint64(*config,
3255 ZPOOL_CONFIG_SUSPENDED,
3256 spa->spa_failmode) == 0);
3258 spa_add_spares(spa, *config);
3259 spa_add_l2cache(spa, *config);
3260 spa_add_feature_stats(spa, *config);
3265 * We want to get the alternate root even for faulted pools, so we cheat
3266 * and call spa_lookup() directly.
3268 if (altroot) {
3269 if (spa == NULL) {
3270 mutex_enter(&spa_namespace_lock);
3271 spa = spa_lookup(name);
3272 if (spa)
3273 spa_altroot(spa, altroot, buflen);
3274 else
3275 altroot[0] = '\0';
3276 spa = NULL;
3277 mutex_exit(&spa_namespace_lock);
3278 } else {
3279 spa_altroot(spa, altroot, buflen);
3283 if (spa != NULL) {
3284 spa_config_exit(spa, SCL_CONFIG, FTAG);
3285 spa_close(spa, FTAG);
3288 return (error);
3292 * Validate that the auxiliary device array is well formed. We must have an
3293 * array of nvlists, each which describes a valid leaf vdev. If this is an
3294 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3295 * specified, as long as they are well-formed.
3297 static int
3298 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3299 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3300 vdev_labeltype_t label)
3302 nvlist_t **dev;
3303 uint_t i, ndev;
3304 vdev_t *vd;
3305 int error;
3307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3310 * It's acceptable to have no devs specified.
3312 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3313 return (0);
3315 if (ndev == 0)
3316 return (SET_ERROR(EINVAL));
3319 * Make sure the pool is formatted with a version that supports this
3320 * device type.
3322 if (spa_version(spa) < version)
3323 return (SET_ERROR(ENOTSUP));
3326 * Set the pending device list so we correctly handle device in-use
3327 * checking.
3329 sav->sav_pending = dev;
3330 sav->sav_npending = ndev;
3332 for (i = 0; i < ndev; i++) {
3333 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3334 mode)) != 0)
3335 goto out;
3337 if (!vd->vdev_ops->vdev_op_leaf) {
3338 vdev_free(vd);
3339 error = SET_ERROR(EINVAL);
3340 goto out;
3344 * The L2ARC currently only supports disk devices in
3345 * kernel context. For user-level testing, we allow it.
3347 #ifdef _KERNEL
3348 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3349 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3350 error = SET_ERROR(ENOTBLK);
3351 vdev_free(vd);
3352 goto out;
3354 #endif
3355 vd->vdev_top = vd;
3357 if ((error = vdev_open(vd)) == 0 &&
3358 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3359 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3360 vd->vdev_guid) == 0);
3363 vdev_free(vd);
3365 if (error &&
3366 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3367 goto out;
3368 else
3369 error = 0;
3372 out:
3373 sav->sav_pending = NULL;
3374 sav->sav_npending = 0;
3375 return (error);
3378 static int
3379 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3381 int error;
3383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3385 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3386 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3387 VDEV_LABEL_SPARE)) != 0) {
3388 return (error);
3391 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3392 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3393 VDEV_LABEL_L2CACHE));
3396 static void
3397 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3398 const char *config)
3400 int i;
3402 if (sav->sav_config != NULL) {
3403 nvlist_t **olddevs;
3404 uint_t oldndevs;
3405 nvlist_t **newdevs;
3408 * Generate new dev list by concatentating with the
3409 * current dev list.
3411 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3412 &olddevs, &oldndevs) == 0);
3414 newdevs = kmem_alloc(sizeof (void *) *
3415 (ndevs + oldndevs), KM_SLEEP);
3416 for (i = 0; i < oldndevs; i++)
3417 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3418 KM_SLEEP) == 0);
3419 for (i = 0; i < ndevs; i++)
3420 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3421 KM_SLEEP) == 0);
3423 VERIFY(nvlist_remove(sav->sav_config, config,
3424 DATA_TYPE_NVLIST_ARRAY) == 0);
3426 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3427 config, newdevs, ndevs + oldndevs) == 0);
3428 for (i = 0; i < oldndevs + ndevs; i++)
3429 nvlist_free(newdevs[i]);
3430 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3431 } else {
3433 * Generate a new dev list.
3435 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3436 KM_SLEEP) == 0);
3437 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3438 devs, ndevs) == 0);
3443 * Stop and drop level 2 ARC devices
3445 void
3446 spa_l2cache_drop(spa_t *spa)
3448 vdev_t *vd;
3449 int i;
3450 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3452 for (i = 0; i < sav->sav_count; i++) {
3453 uint64_t pool;
3455 vd = sav->sav_vdevs[i];
3456 ASSERT(vd != NULL);
3458 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3459 pool != 0ULL && l2arc_vdev_present(vd))
3460 l2arc_remove_vdev(vd);
3465 * Pool Creation
3468 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3469 nvlist_t *zplprops)
3471 spa_t *spa;
3472 char *altroot = NULL;
3473 vdev_t *rvd;
3474 dsl_pool_t *dp;
3475 dmu_tx_t *tx;
3476 int error = 0;
3477 uint64_t txg = TXG_INITIAL;
3478 nvlist_t **spares, **l2cache;
3479 uint_t nspares, nl2cache;
3480 uint64_t version, obj;
3481 boolean_t has_features;
3484 * If this pool already exists, return failure.
3486 mutex_enter(&spa_namespace_lock);
3487 if (spa_lookup(pool) != NULL) {
3488 mutex_exit(&spa_namespace_lock);
3489 return (SET_ERROR(EEXIST));
3493 * Allocate a new spa_t structure.
3495 (void) nvlist_lookup_string(props,
3496 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3497 spa = spa_add(pool, NULL, altroot);
3498 spa_activate(spa, spa_mode_global);
3500 if (props && (error = spa_prop_validate(spa, props))) {
3501 spa_deactivate(spa);
3502 spa_remove(spa);
3503 mutex_exit(&spa_namespace_lock);
3504 return (error);
3507 has_features = B_FALSE;
3508 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3509 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3510 if (zpool_prop_feature(nvpair_name(elem)))
3511 has_features = B_TRUE;
3514 if (has_features || nvlist_lookup_uint64(props,
3515 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3516 version = SPA_VERSION;
3518 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3520 spa->spa_first_txg = txg;
3521 spa->spa_uberblock.ub_txg = txg - 1;
3522 spa->spa_uberblock.ub_version = version;
3523 spa->spa_ubsync = spa->spa_uberblock;
3526 * Create "The Godfather" zio to hold all async IOs
3528 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3529 KM_SLEEP);
3530 for (int i = 0; i < max_ncpus; i++) {
3531 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3532 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3533 ZIO_FLAG_GODFATHER);
3537 * Create the root vdev.
3539 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3541 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3543 ASSERT(error != 0 || rvd != NULL);
3544 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3546 if (error == 0 && !zfs_allocatable_devs(nvroot))
3547 error = SET_ERROR(EINVAL);
3549 if (error == 0 &&
3550 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3551 (error = spa_validate_aux(spa, nvroot, txg,
3552 VDEV_ALLOC_ADD)) == 0) {
3553 for (int c = 0; c < rvd->vdev_children; c++) {
3554 vdev_metaslab_set_size(rvd->vdev_child[c]);
3555 vdev_expand(rvd->vdev_child[c], txg);
3559 spa_config_exit(spa, SCL_ALL, FTAG);
3561 if (error != 0) {
3562 spa_unload(spa);
3563 spa_deactivate(spa);
3564 spa_remove(spa);
3565 mutex_exit(&spa_namespace_lock);
3566 return (error);
3570 * Get the list of spares, if specified.
3572 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3573 &spares, &nspares) == 0) {
3574 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3575 KM_SLEEP) == 0);
3576 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3577 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3579 spa_load_spares(spa);
3580 spa_config_exit(spa, SCL_ALL, FTAG);
3581 spa->spa_spares.sav_sync = B_TRUE;
3585 * Get the list of level 2 cache devices, if specified.
3587 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3588 &l2cache, &nl2cache) == 0) {
3589 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3590 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3591 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3592 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3593 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3594 spa_load_l2cache(spa);
3595 spa_config_exit(spa, SCL_ALL, FTAG);
3596 spa->spa_l2cache.sav_sync = B_TRUE;
3599 spa->spa_is_initializing = B_TRUE;
3600 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3601 spa->spa_meta_objset = dp->dp_meta_objset;
3602 spa->spa_is_initializing = B_FALSE;
3605 * Create DDTs (dedup tables).
3607 ddt_create(spa);
3609 spa_update_dspace(spa);
3611 tx = dmu_tx_create_assigned(dp, txg);
3614 * Create the pool config object.
3616 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3617 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3618 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3620 if (zap_add(spa->spa_meta_objset,
3621 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3622 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3623 cmn_err(CE_PANIC, "failed to add pool config");
3626 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3627 spa_feature_create_zap_objects(spa, tx);
3629 if (zap_add(spa->spa_meta_objset,
3630 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3631 sizeof (uint64_t), 1, &version, tx) != 0) {
3632 cmn_err(CE_PANIC, "failed to add pool version");
3635 /* Newly created pools with the right version are always deflated. */
3636 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3637 spa->spa_deflate = TRUE;
3638 if (zap_add(spa->spa_meta_objset,
3639 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3640 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3641 cmn_err(CE_PANIC, "failed to add deflate");
3646 * Create the deferred-free bpobj. Turn off compression
3647 * because sync-to-convergence takes longer if the blocksize
3648 * keeps changing.
3650 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3651 dmu_object_set_compress(spa->spa_meta_objset, obj,
3652 ZIO_COMPRESS_OFF, tx);
3653 if (zap_add(spa->spa_meta_objset,
3654 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3655 sizeof (uint64_t), 1, &obj, tx) != 0) {
3656 cmn_err(CE_PANIC, "failed to add bpobj");
3658 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3659 spa->spa_meta_objset, obj));
3662 * Create the pool's history object.
3664 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3665 spa_history_create_obj(spa, tx);
3668 * Set pool properties.
3670 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3671 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3672 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3673 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3675 if (props != NULL) {
3676 spa_configfile_set(spa, props, B_FALSE);
3677 spa_sync_props(props, tx);
3680 dmu_tx_commit(tx);
3682 spa->spa_sync_on = B_TRUE;
3683 txg_sync_start(spa->spa_dsl_pool);
3686 * We explicitly wait for the first transaction to complete so that our
3687 * bean counters are appropriately updated.
3689 txg_wait_synced(spa->spa_dsl_pool, txg);
3691 spa_config_sync(spa, B_FALSE, B_TRUE);
3693 spa_history_log_version(spa, "create");
3696 * Don't count references from objsets that are already closed
3697 * and are making their way through the eviction process.
3699 spa_evicting_os_wait(spa);
3700 spa->spa_minref = refcount_count(&spa->spa_refcount);
3702 mutex_exit(&spa_namespace_lock);
3704 return (0);
3707 #ifdef _KERNEL
3709 * Get the root pool information from the root disk, then import the root pool
3710 * during the system boot up time.
3712 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3714 static nvlist_t *
3715 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3717 nvlist_t *config;
3718 nvlist_t *nvtop, *nvroot;
3719 uint64_t pgid;
3721 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3722 return (NULL);
3725 * Add this top-level vdev to the child array.
3727 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3728 &nvtop) == 0);
3729 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3730 &pgid) == 0);
3731 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3734 * Put this pool's top-level vdevs into a root vdev.
3736 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3737 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3738 VDEV_TYPE_ROOT) == 0);
3739 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3740 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3741 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3742 &nvtop, 1) == 0);
3745 * Replace the existing vdev_tree with the new root vdev in
3746 * this pool's configuration (remove the old, add the new).
3748 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3749 nvlist_free(nvroot);
3750 return (config);
3754 * Walk the vdev tree and see if we can find a device with "better"
3755 * configuration. A configuration is "better" if the label on that
3756 * device has a more recent txg.
3758 static void
3759 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3761 for (int c = 0; c < vd->vdev_children; c++)
3762 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3764 if (vd->vdev_ops->vdev_op_leaf) {
3765 nvlist_t *label;
3766 uint64_t label_txg;
3768 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3769 &label) != 0)
3770 return;
3772 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3773 &label_txg) == 0);
3776 * Do we have a better boot device?
3778 if (label_txg > *txg) {
3779 *txg = label_txg;
3780 *avd = vd;
3782 nvlist_free(label);
3787 * Import a root pool.
3789 * For x86. devpath_list will consist of devid and/or physpath name of
3790 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3791 * The GRUB "findroot" command will return the vdev we should boot.
3793 * For Sparc, devpath_list consists the physpath name of the booting device
3794 * no matter the rootpool is a single device pool or a mirrored pool.
3795 * e.g.
3796 * "/pci@1f,0/ide@d/disk@0,0:a"
3799 spa_import_rootpool(char *devpath, char *devid)
3801 spa_t *spa;
3802 vdev_t *rvd, *bvd, *avd = NULL;
3803 nvlist_t *config, *nvtop;
3804 uint64_t guid, txg;
3805 char *pname;
3806 int error;
3809 * Read the label from the boot device and generate a configuration.
3811 config = spa_generate_rootconf(devpath, devid, &guid);
3812 #if defined(_OBP) && defined(_KERNEL)
3813 if (config == NULL) {
3814 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3815 /* iscsi boot */
3816 get_iscsi_bootpath_phy(devpath);
3817 config = spa_generate_rootconf(devpath, devid, &guid);
3820 #endif
3821 if (config == NULL) {
3822 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3823 devpath);
3824 return (SET_ERROR(EIO));
3827 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3828 &pname) == 0);
3829 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3831 mutex_enter(&spa_namespace_lock);
3832 if ((spa = spa_lookup(pname)) != NULL) {
3834 * Remove the existing root pool from the namespace so that we
3835 * can replace it with the correct config we just read in.
3837 spa_remove(spa);
3840 spa = spa_add(pname, config, NULL);
3841 spa->spa_is_root = B_TRUE;
3842 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3845 * Build up a vdev tree based on the boot device's label config.
3847 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3848 &nvtop) == 0);
3849 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3850 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3851 VDEV_ALLOC_ROOTPOOL);
3852 spa_config_exit(spa, SCL_ALL, FTAG);
3853 if (error) {
3854 mutex_exit(&spa_namespace_lock);
3855 nvlist_free(config);
3856 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3857 pname);
3858 return (error);
3862 * Get the boot vdev.
3864 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3865 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3866 (u_longlong_t)guid);
3867 error = SET_ERROR(ENOENT);
3868 goto out;
3872 * Determine if there is a better boot device.
3874 avd = bvd;
3875 spa_alt_rootvdev(rvd, &avd, &txg);
3876 if (avd != bvd) {
3877 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3878 "try booting from '%s'", avd->vdev_path);
3879 error = SET_ERROR(EINVAL);
3880 goto out;
3884 * If the boot device is part of a spare vdev then ensure that
3885 * we're booting off the active spare.
3887 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3888 !bvd->vdev_isspare) {
3889 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3890 "try booting from '%s'",
3891 bvd->vdev_parent->
3892 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3893 error = SET_ERROR(EINVAL);
3894 goto out;
3897 error = 0;
3898 out:
3899 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3900 vdev_free(rvd);
3901 spa_config_exit(spa, SCL_ALL, FTAG);
3902 mutex_exit(&spa_namespace_lock);
3904 nvlist_free(config);
3905 return (error);
3908 #endif
3911 * Import a non-root pool into the system.
3914 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3916 spa_t *spa;
3917 char *altroot = NULL;
3918 spa_load_state_t state = SPA_LOAD_IMPORT;
3919 zpool_rewind_policy_t policy;
3920 uint64_t mode = spa_mode_global;
3921 uint64_t readonly = B_FALSE;
3922 int error;
3923 nvlist_t *nvroot;
3924 nvlist_t **spares, **l2cache;
3925 uint_t nspares, nl2cache;
3928 * If a pool with this name exists, return failure.
3930 mutex_enter(&spa_namespace_lock);
3931 if (spa_lookup(pool) != NULL) {
3932 mutex_exit(&spa_namespace_lock);
3933 return (SET_ERROR(EEXIST));
3937 * Create and initialize the spa structure.
3939 (void) nvlist_lookup_string(props,
3940 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3941 (void) nvlist_lookup_uint64(props,
3942 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3943 if (readonly)
3944 mode = FREAD;
3945 spa = spa_add(pool, config, altroot);
3946 spa->spa_import_flags = flags;
3949 * Verbatim import - Take a pool and insert it into the namespace
3950 * as if it had been loaded at boot.
3952 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3953 if (props != NULL)
3954 spa_configfile_set(spa, props, B_FALSE);
3956 spa_config_sync(spa, B_FALSE, B_TRUE);
3958 mutex_exit(&spa_namespace_lock);
3959 return (0);
3962 spa_activate(spa, mode);
3965 * Don't start async tasks until we know everything is healthy.
3967 spa_async_suspend(spa);
3969 zpool_get_rewind_policy(config, &policy);
3970 if (policy.zrp_request & ZPOOL_DO_REWIND)
3971 state = SPA_LOAD_RECOVER;
3974 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3975 * because the user-supplied config is actually the one to trust when
3976 * doing an import.
3978 if (state != SPA_LOAD_RECOVER)
3979 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3981 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3982 policy.zrp_request);
3985 * Propagate anything learned while loading the pool and pass it
3986 * back to caller (i.e. rewind info, missing devices, etc).
3988 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3989 spa->spa_load_info) == 0);
3991 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3993 * Toss any existing sparelist, as it doesn't have any validity
3994 * anymore, and conflicts with spa_has_spare().
3996 if (spa->spa_spares.sav_config) {
3997 nvlist_free(spa->spa_spares.sav_config);
3998 spa->spa_spares.sav_config = NULL;
3999 spa_load_spares(spa);
4001 if (spa->spa_l2cache.sav_config) {
4002 nvlist_free(spa->spa_l2cache.sav_config);
4003 spa->spa_l2cache.sav_config = NULL;
4004 spa_load_l2cache(spa);
4007 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4008 &nvroot) == 0);
4009 if (error == 0)
4010 error = spa_validate_aux(spa, nvroot, -1ULL,
4011 VDEV_ALLOC_SPARE);
4012 if (error == 0)
4013 error = spa_validate_aux(spa, nvroot, -1ULL,
4014 VDEV_ALLOC_L2CACHE);
4015 spa_config_exit(spa, SCL_ALL, FTAG);
4017 if (props != NULL)
4018 spa_configfile_set(spa, props, B_FALSE);
4020 if (error != 0 || (props && spa_writeable(spa) &&
4021 (error = spa_prop_set(spa, props)))) {
4022 spa_unload(spa);
4023 spa_deactivate(spa);
4024 spa_remove(spa);
4025 mutex_exit(&spa_namespace_lock);
4026 return (error);
4029 spa_async_resume(spa);
4032 * Override any spares and level 2 cache devices as specified by
4033 * the user, as these may have correct device names/devids, etc.
4035 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4036 &spares, &nspares) == 0) {
4037 if (spa->spa_spares.sav_config)
4038 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4039 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4040 else
4041 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4042 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4043 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4044 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4045 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4046 spa_load_spares(spa);
4047 spa_config_exit(spa, SCL_ALL, FTAG);
4048 spa->spa_spares.sav_sync = B_TRUE;
4050 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4051 &l2cache, &nl2cache) == 0) {
4052 if (spa->spa_l2cache.sav_config)
4053 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4054 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4055 else
4056 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4057 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4058 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4059 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4060 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 spa_load_l2cache(spa);
4062 spa_config_exit(spa, SCL_ALL, FTAG);
4063 spa->spa_l2cache.sav_sync = B_TRUE;
4067 * Check for any removed devices.
4069 if (spa->spa_autoreplace) {
4070 spa_aux_check_removed(&spa->spa_spares);
4071 spa_aux_check_removed(&spa->spa_l2cache);
4074 if (spa_writeable(spa)) {
4076 * Update the config cache to include the newly-imported pool.
4078 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4082 * It's possible that the pool was expanded while it was exported.
4083 * We kick off an async task to handle this for us.
4085 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4087 mutex_exit(&spa_namespace_lock);
4088 spa_history_log_version(spa, "import");
4090 return (0);
4093 nvlist_t *
4094 spa_tryimport(nvlist_t *tryconfig)
4096 nvlist_t *config = NULL;
4097 char *poolname;
4098 spa_t *spa;
4099 uint64_t state;
4100 int error;
4102 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4103 return (NULL);
4105 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4106 return (NULL);
4109 * Create and initialize the spa structure.
4111 mutex_enter(&spa_namespace_lock);
4112 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4113 spa_activate(spa, FREAD);
4116 * Pass off the heavy lifting to spa_load().
4117 * Pass TRUE for mosconfig because the user-supplied config
4118 * is actually the one to trust when doing an import.
4120 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4123 * If 'tryconfig' was at least parsable, return the current config.
4125 if (spa->spa_root_vdev != NULL) {
4126 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4127 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4128 poolname) == 0);
4129 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4130 state) == 0);
4131 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4132 spa->spa_uberblock.ub_timestamp) == 0);
4133 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4134 spa->spa_load_info) == 0);
4137 * If the bootfs property exists on this pool then we
4138 * copy it out so that external consumers can tell which
4139 * pools are bootable.
4141 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4142 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4145 * We have to play games with the name since the
4146 * pool was opened as TRYIMPORT_NAME.
4148 if (dsl_dsobj_to_dsname(spa_name(spa),
4149 spa->spa_bootfs, tmpname) == 0) {
4150 char *cp;
4151 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4153 cp = strchr(tmpname, '/');
4154 if (cp == NULL) {
4155 (void) strlcpy(dsname, tmpname,
4156 MAXPATHLEN);
4157 } else {
4158 (void) snprintf(dsname, MAXPATHLEN,
4159 "%s/%s", poolname, ++cp);
4161 VERIFY(nvlist_add_string(config,
4162 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4163 kmem_free(dsname, MAXPATHLEN);
4165 kmem_free(tmpname, MAXPATHLEN);
4169 * Add the list of hot spares and level 2 cache devices.
4171 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4172 spa_add_spares(spa, config);
4173 spa_add_l2cache(spa, config);
4174 spa_config_exit(spa, SCL_CONFIG, FTAG);
4177 spa_unload(spa);
4178 spa_deactivate(spa);
4179 spa_remove(spa);
4180 mutex_exit(&spa_namespace_lock);
4182 return (config);
4186 * Pool export/destroy
4188 * The act of destroying or exporting a pool is very simple. We make sure there
4189 * is no more pending I/O and any references to the pool are gone. Then, we
4190 * update the pool state and sync all the labels to disk, removing the
4191 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4192 * we don't sync the labels or remove the configuration cache.
4194 static int
4195 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4196 boolean_t force, boolean_t hardforce)
4198 spa_t *spa;
4200 if (oldconfig)
4201 *oldconfig = NULL;
4203 if (!(spa_mode_global & FWRITE))
4204 return (SET_ERROR(EROFS));
4206 mutex_enter(&spa_namespace_lock);
4207 if ((spa = spa_lookup(pool)) == NULL) {
4208 mutex_exit(&spa_namespace_lock);
4209 return (SET_ERROR(ENOENT));
4213 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4214 * reacquire the namespace lock, and see if we can export.
4216 spa_open_ref(spa, FTAG);
4217 mutex_exit(&spa_namespace_lock);
4218 spa_async_suspend(spa);
4219 mutex_enter(&spa_namespace_lock);
4220 spa_close(spa, FTAG);
4223 * The pool will be in core if it's openable,
4224 * in which case we can modify its state.
4226 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4228 * Objsets may be open only because they're dirty, so we
4229 * have to force it to sync before checking spa_refcnt.
4231 txg_wait_synced(spa->spa_dsl_pool, 0);
4232 spa_evicting_os_wait(spa);
4235 * A pool cannot be exported or destroyed if there are active
4236 * references. If we are resetting a pool, allow references by
4237 * fault injection handlers.
4239 if (!spa_refcount_zero(spa) ||
4240 (spa->spa_inject_ref != 0 &&
4241 new_state != POOL_STATE_UNINITIALIZED)) {
4242 spa_async_resume(spa);
4243 mutex_exit(&spa_namespace_lock);
4244 return (SET_ERROR(EBUSY));
4248 * A pool cannot be exported if it has an active shared spare.
4249 * This is to prevent other pools stealing the active spare
4250 * from an exported pool. At user's own will, such pool can
4251 * be forcedly exported.
4253 if (!force && new_state == POOL_STATE_EXPORTED &&
4254 spa_has_active_shared_spare(spa)) {
4255 spa_async_resume(spa);
4256 mutex_exit(&spa_namespace_lock);
4257 return (SET_ERROR(EXDEV));
4261 * We want this to be reflected on every label,
4262 * so mark them all dirty. spa_unload() will do the
4263 * final sync that pushes these changes out.
4265 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4267 spa->spa_state = new_state;
4268 spa->spa_final_txg = spa_last_synced_txg(spa) +
4269 TXG_DEFER_SIZE + 1;
4270 vdev_config_dirty(spa->spa_root_vdev);
4271 spa_config_exit(spa, SCL_ALL, FTAG);
4275 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4277 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4278 spa_unload(spa);
4279 spa_deactivate(spa);
4282 if (oldconfig && spa->spa_config)
4283 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4285 if (new_state != POOL_STATE_UNINITIALIZED) {
4286 if (!hardforce)
4287 spa_config_sync(spa, B_TRUE, B_TRUE);
4288 spa_remove(spa);
4290 mutex_exit(&spa_namespace_lock);
4292 return (0);
4296 * Destroy a storage pool.
4299 spa_destroy(char *pool)
4301 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4302 B_FALSE, B_FALSE));
4306 * Export a storage pool.
4309 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4310 boolean_t hardforce)
4312 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4313 force, hardforce));
4317 * Similar to spa_export(), this unloads the spa_t without actually removing it
4318 * from the namespace in any way.
4321 spa_reset(char *pool)
4323 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4324 B_FALSE, B_FALSE));
4328 * ==========================================================================
4329 * Device manipulation
4330 * ==========================================================================
4334 * Add a device to a storage pool.
4337 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4339 uint64_t txg, id;
4340 int error;
4341 vdev_t *rvd = spa->spa_root_vdev;
4342 vdev_t *vd, *tvd;
4343 nvlist_t **spares, **l2cache;
4344 uint_t nspares, nl2cache;
4346 ASSERT(spa_writeable(spa));
4348 txg = spa_vdev_enter(spa);
4350 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4351 VDEV_ALLOC_ADD)) != 0)
4352 return (spa_vdev_exit(spa, NULL, txg, error));
4354 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4356 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4357 &nspares) != 0)
4358 nspares = 0;
4360 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4361 &nl2cache) != 0)
4362 nl2cache = 0;
4364 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4365 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4367 if (vd->vdev_children != 0 &&
4368 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4369 return (spa_vdev_exit(spa, vd, txg, error));
4372 * We must validate the spares and l2cache devices after checking the
4373 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4375 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4376 return (spa_vdev_exit(spa, vd, txg, error));
4379 * Transfer each new top-level vdev from vd to rvd.
4381 for (int c = 0; c < vd->vdev_children; c++) {
4384 * Set the vdev id to the first hole, if one exists.
4386 for (id = 0; id < rvd->vdev_children; id++) {
4387 if (rvd->vdev_child[id]->vdev_ishole) {
4388 vdev_free(rvd->vdev_child[id]);
4389 break;
4392 tvd = vd->vdev_child[c];
4393 vdev_remove_child(vd, tvd);
4394 tvd->vdev_id = id;
4395 vdev_add_child(rvd, tvd);
4396 vdev_config_dirty(tvd);
4399 if (nspares != 0) {
4400 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4401 ZPOOL_CONFIG_SPARES);
4402 spa_load_spares(spa);
4403 spa->spa_spares.sav_sync = B_TRUE;
4406 if (nl2cache != 0) {
4407 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4408 ZPOOL_CONFIG_L2CACHE);
4409 spa_load_l2cache(spa);
4410 spa->spa_l2cache.sav_sync = B_TRUE;
4414 * We have to be careful when adding new vdevs to an existing pool.
4415 * If other threads start allocating from these vdevs before we
4416 * sync the config cache, and we lose power, then upon reboot we may
4417 * fail to open the pool because there are DVAs that the config cache
4418 * can't translate. Therefore, we first add the vdevs without
4419 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4420 * and then let spa_config_update() initialize the new metaslabs.
4422 * spa_load() checks for added-but-not-initialized vdevs, so that
4423 * if we lose power at any point in this sequence, the remaining
4424 * steps will be completed the next time we load the pool.
4426 (void) spa_vdev_exit(spa, vd, txg, 0);
4428 mutex_enter(&spa_namespace_lock);
4429 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4430 mutex_exit(&spa_namespace_lock);
4432 return (0);
4436 * Attach a device to a mirror. The arguments are the path to any device
4437 * in the mirror, and the nvroot for the new device. If the path specifies
4438 * a device that is not mirrored, we automatically insert the mirror vdev.
4440 * If 'replacing' is specified, the new device is intended to replace the
4441 * existing device; in this case the two devices are made into their own
4442 * mirror using the 'replacing' vdev, which is functionally identical to
4443 * the mirror vdev (it actually reuses all the same ops) but has a few
4444 * extra rules: you can't attach to it after it's been created, and upon
4445 * completion of resilvering, the first disk (the one being replaced)
4446 * is automatically detached.
4449 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4451 uint64_t txg, dtl_max_txg;
4452 vdev_t *rvd = spa->spa_root_vdev;
4453 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4454 vdev_ops_t *pvops;
4455 char *oldvdpath, *newvdpath;
4456 int newvd_isspare;
4457 int error;
4459 ASSERT(spa_writeable(spa));
4461 txg = spa_vdev_enter(spa);
4463 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4465 if (oldvd == NULL)
4466 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4468 if (!oldvd->vdev_ops->vdev_op_leaf)
4469 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4471 pvd = oldvd->vdev_parent;
4473 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4474 VDEV_ALLOC_ATTACH)) != 0)
4475 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4477 if (newrootvd->vdev_children != 1)
4478 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4480 newvd = newrootvd->vdev_child[0];
4482 if (!newvd->vdev_ops->vdev_op_leaf)
4483 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4485 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4486 return (spa_vdev_exit(spa, newrootvd, txg, error));
4489 * Spares can't replace logs
4491 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4492 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4494 if (!replacing) {
4496 * For attach, the only allowable parent is a mirror or the root
4497 * vdev.
4499 if (pvd->vdev_ops != &vdev_mirror_ops &&
4500 pvd->vdev_ops != &vdev_root_ops)
4501 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4503 pvops = &vdev_mirror_ops;
4504 } else {
4506 * Active hot spares can only be replaced by inactive hot
4507 * spares.
4509 if (pvd->vdev_ops == &vdev_spare_ops &&
4510 oldvd->vdev_isspare &&
4511 !spa_has_spare(spa, newvd->vdev_guid))
4512 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4515 * If the source is a hot spare, and the parent isn't already a
4516 * spare, then we want to create a new hot spare. Otherwise, we
4517 * want to create a replacing vdev. The user is not allowed to
4518 * attach to a spared vdev child unless the 'isspare' state is
4519 * the same (spare replaces spare, non-spare replaces
4520 * non-spare).
4522 if (pvd->vdev_ops == &vdev_replacing_ops &&
4523 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4524 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4525 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4526 newvd->vdev_isspare != oldvd->vdev_isspare) {
4527 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4530 if (newvd->vdev_isspare)
4531 pvops = &vdev_spare_ops;
4532 else
4533 pvops = &vdev_replacing_ops;
4537 * Make sure the new device is big enough.
4539 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4540 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4543 * The new device cannot have a higher alignment requirement
4544 * than the top-level vdev.
4546 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4547 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4550 * If this is an in-place replacement, update oldvd's path and devid
4551 * to make it distinguishable from newvd, and unopenable from now on.
4553 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4554 spa_strfree(oldvd->vdev_path);
4555 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4556 KM_SLEEP);
4557 (void) sprintf(oldvd->vdev_path, "%s/%s",
4558 newvd->vdev_path, "old");
4559 if (oldvd->vdev_devid != NULL) {
4560 spa_strfree(oldvd->vdev_devid);
4561 oldvd->vdev_devid = NULL;
4565 /* mark the device being resilvered */
4566 newvd->vdev_resilver_txg = txg;
4569 * If the parent is not a mirror, or if we're replacing, insert the new
4570 * mirror/replacing/spare vdev above oldvd.
4572 if (pvd->vdev_ops != pvops)
4573 pvd = vdev_add_parent(oldvd, pvops);
4575 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4576 ASSERT(pvd->vdev_ops == pvops);
4577 ASSERT(oldvd->vdev_parent == pvd);
4580 * Extract the new device from its root and add it to pvd.
4582 vdev_remove_child(newrootvd, newvd);
4583 newvd->vdev_id = pvd->vdev_children;
4584 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4585 vdev_add_child(pvd, newvd);
4587 tvd = newvd->vdev_top;
4588 ASSERT(pvd->vdev_top == tvd);
4589 ASSERT(tvd->vdev_parent == rvd);
4591 vdev_config_dirty(tvd);
4594 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4595 * for any dmu_sync-ed blocks. It will propagate upward when
4596 * spa_vdev_exit() calls vdev_dtl_reassess().
4598 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4600 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4601 dtl_max_txg - TXG_INITIAL);
4603 if (newvd->vdev_isspare) {
4604 spa_spare_activate(newvd);
4605 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4608 oldvdpath = spa_strdup(oldvd->vdev_path);
4609 newvdpath = spa_strdup(newvd->vdev_path);
4610 newvd_isspare = newvd->vdev_isspare;
4613 * Mark newvd's DTL dirty in this txg.
4615 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4618 * Schedule the resilver to restart in the future. We do this to
4619 * ensure that dmu_sync-ed blocks have been stitched into the
4620 * respective datasets.
4622 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4625 * Commit the config
4627 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4629 spa_history_log_internal(spa, "vdev attach", NULL,
4630 "%s vdev=%s %s vdev=%s",
4631 replacing && newvd_isspare ? "spare in" :
4632 replacing ? "replace" : "attach", newvdpath,
4633 replacing ? "for" : "to", oldvdpath);
4635 spa_strfree(oldvdpath);
4636 spa_strfree(newvdpath);
4638 if (spa->spa_bootfs)
4639 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4641 return (0);
4645 * Detach a device from a mirror or replacing vdev.
4647 * If 'replace_done' is specified, only detach if the parent
4648 * is a replacing vdev.
4651 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4653 uint64_t txg;
4654 int error;
4655 vdev_t *rvd = spa->spa_root_vdev;
4656 vdev_t *vd, *pvd, *cvd, *tvd;
4657 boolean_t unspare = B_FALSE;
4658 uint64_t unspare_guid = 0;
4659 char *vdpath;
4661 ASSERT(spa_writeable(spa));
4663 txg = spa_vdev_enter(spa);
4665 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4667 if (vd == NULL)
4668 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4670 if (!vd->vdev_ops->vdev_op_leaf)
4671 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4673 pvd = vd->vdev_parent;
4676 * If the parent/child relationship is not as expected, don't do it.
4677 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4678 * vdev that's replacing B with C. The user's intent in replacing
4679 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4680 * the replace by detaching C, the expected behavior is to end up
4681 * M(A,B). But suppose that right after deciding to detach C,
4682 * the replacement of B completes. We would have M(A,C), and then
4683 * ask to detach C, which would leave us with just A -- not what
4684 * the user wanted. To prevent this, we make sure that the
4685 * parent/child relationship hasn't changed -- in this example,
4686 * that C's parent is still the replacing vdev R.
4688 if (pvd->vdev_guid != pguid && pguid != 0)
4689 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4692 * Only 'replacing' or 'spare' vdevs can be replaced.
4694 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4695 pvd->vdev_ops != &vdev_spare_ops)
4696 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4698 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4699 spa_version(spa) >= SPA_VERSION_SPARES);
4702 * Only mirror, replacing, and spare vdevs support detach.
4704 if (pvd->vdev_ops != &vdev_replacing_ops &&
4705 pvd->vdev_ops != &vdev_mirror_ops &&
4706 pvd->vdev_ops != &vdev_spare_ops)
4707 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4710 * If this device has the only valid copy of some data,
4711 * we cannot safely detach it.
4713 if (vdev_dtl_required(vd))
4714 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4716 ASSERT(pvd->vdev_children >= 2);
4719 * If we are detaching the second disk from a replacing vdev, then
4720 * check to see if we changed the original vdev's path to have "/old"
4721 * at the end in spa_vdev_attach(). If so, undo that change now.
4723 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4724 vd->vdev_path != NULL) {
4725 size_t len = strlen(vd->vdev_path);
4727 for (int c = 0; c < pvd->vdev_children; c++) {
4728 cvd = pvd->vdev_child[c];
4730 if (cvd == vd || cvd->vdev_path == NULL)
4731 continue;
4733 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4734 strcmp(cvd->vdev_path + len, "/old") == 0) {
4735 spa_strfree(cvd->vdev_path);
4736 cvd->vdev_path = spa_strdup(vd->vdev_path);
4737 break;
4743 * If we are detaching the original disk from a spare, then it implies
4744 * that the spare should become a real disk, and be removed from the
4745 * active spare list for the pool.
4747 if (pvd->vdev_ops == &vdev_spare_ops &&
4748 vd->vdev_id == 0 &&
4749 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4750 unspare = B_TRUE;
4753 * Erase the disk labels so the disk can be used for other things.
4754 * This must be done after all other error cases are handled,
4755 * but before we disembowel vd (so we can still do I/O to it).
4756 * But if we can't do it, don't treat the error as fatal --
4757 * it may be that the unwritability of the disk is the reason
4758 * it's being detached!
4760 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4763 * Remove vd from its parent and compact the parent's children.
4765 vdev_remove_child(pvd, vd);
4766 vdev_compact_children(pvd);
4769 * Remember one of the remaining children so we can get tvd below.
4771 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4774 * If we need to remove the remaining child from the list of hot spares,
4775 * do it now, marking the vdev as no longer a spare in the process.
4776 * We must do this before vdev_remove_parent(), because that can
4777 * change the GUID if it creates a new toplevel GUID. For a similar
4778 * reason, we must remove the spare now, in the same txg as the detach;
4779 * otherwise someone could attach a new sibling, change the GUID, and
4780 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4782 if (unspare) {
4783 ASSERT(cvd->vdev_isspare);
4784 spa_spare_remove(cvd);
4785 unspare_guid = cvd->vdev_guid;
4786 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4787 cvd->vdev_unspare = B_TRUE;
4791 * If the parent mirror/replacing vdev only has one child,
4792 * the parent is no longer needed. Remove it from the tree.
4794 if (pvd->vdev_children == 1) {
4795 if (pvd->vdev_ops == &vdev_spare_ops)
4796 cvd->vdev_unspare = B_FALSE;
4797 vdev_remove_parent(cvd);
4802 * We don't set tvd until now because the parent we just removed
4803 * may have been the previous top-level vdev.
4805 tvd = cvd->vdev_top;
4806 ASSERT(tvd->vdev_parent == rvd);
4809 * Reevaluate the parent vdev state.
4811 vdev_propagate_state(cvd);
4814 * If the 'autoexpand' property is set on the pool then automatically
4815 * try to expand the size of the pool. For example if the device we
4816 * just detached was smaller than the others, it may be possible to
4817 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4818 * first so that we can obtain the updated sizes of the leaf vdevs.
4820 if (spa->spa_autoexpand) {
4821 vdev_reopen(tvd);
4822 vdev_expand(tvd, txg);
4825 vdev_config_dirty(tvd);
4828 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4829 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4830 * But first make sure we're not on any *other* txg's DTL list, to
4831 * prevent vd from being accessed after it's freed.
4833 vdpath = spa_strdup(vd->vdev_path);
4834 for (int t = 0; t < TXG_SIZE; t++)
4835 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4836 vd->vdev_detached = B_TRUE;
4837 vdev_dirty(tvd, VDD_DTL, vd, txg);
4839 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4841 /* hang on to the spa before we release the lock */
4842 spa_open_ref(spa, FTAG);
4844 error = spa_vdev_exit(spa, vd, txg, 0);
4846 spa_history_log_internal(spa, "detach", NULL,
4847 "vdev=%s", vdpath);
4848 spa_strfree(vdpath);
4851 * If this was the removal of the original device in a hot spare vdev,
4852 * then we want to go through and remove the device from the hot spare
4853 * list of every other pool.
4855 if (unspare) {
4856 spa_t *altspa = NULL;
4858 mutex_enter(&spa_namespace_lock);
4859 while ((altspa = spa_next(altspa)) != NULL) {
4860 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4861 altspa == spa)
4862 continue;
4864 spa_open_ref(altspa, FTAG);
4865 mutex_exit(&spa_namespace_lock);
4866 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4867 mutex_enter(&spa_namespace_lock);
4868 spa_close(altspa, FTAG);
4870 mutex_exit(&spa_namespace_lock);
4872 /* search the rest of the vdevs for spares to remove */
4873 spa_vdev_resilver_done(spa);
4876 /* all done with the spa; OK to release */
4877 mutex_enter(&spa_namespace_lock);
4878 spa_close(spa, FTAG);
4879 mutex_exit(&spa_namespace_lock);
4881 return (error);
4885 * Split a set of devices from their mirrors, and create a new pool from them.
4888 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4889 nvlist_t *props, boolean_t exp)
4891 int error = 0;
4892 uint64_t txg, *glist;
4893 spa_t *newspa;
4894 uint_t c, children, lastlog;
4895 nvlist_t **child, *nvl, *tmp;
4896 dmu_tx_t *tx;
4897 char *altroot = NULL;
4898 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4899 boolean_t activate_slog;
4901 ASSERT(spa_writeable(spa));
4903 txg = spa_vdev_enter(spa);
4905 /* clear the log and flush everything up to now */
4906 activate_slog = spa_passivate_log(spa);
4907 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4908 error = spa_offline_log(spa);
4909 txg = spa_vdev_config_enter(spa);
4911 if (activate_slog)
4912 spa_activate_log(spa);
4914 if (error != 0)
4915 return (spa_vdev_exit(spa, NULL, txg, error));
4917 /* check new spa name before going any further */
4918 if (spa_lookup(newname) != NULL)
4919 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4922 * scan through all the children to ensure they're all mirrors
4924 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4925 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4926 &children) != 0)
4927 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4929 /* first, check to ensure we've got the right child count */
4930 rvd = spa->spa_root_vdev;
4931 lastlog = 0;
4932 for (c = 0; c < rvd->vdev_children; c++) {
4933 vdev_t *vd = rvd->vdev_child[c];
4935 /* don't count the holes & logs as children */
4936 if (vd->vdev_islog || vd->vdev_ishole) {
4937 if (lastlog == 0)
4938 lastlog = c;
4939 continue;
4942 lastlog = 0;
4944 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4945 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4947 /* next, ensure no spare or cache devices are part of the split */
4948 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4949 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4950 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4952 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4953 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4955 /* then, loop over each vdev and validate it */
4956 for (c = 0; c < children; c++) {
4957 uint64_t is_hole = 0;
4959 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4960 &is_hole);
4962 if (is_hole != 0) {
4963 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4964 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4965 continue;
4966 } else {
4967 error = SET_ERROR(EINVAL);
4968 break;
4972 /* which disk is going to be split? */
4973 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4974 &glist[c]) != 0) {
4975 error = SET_ERROR(EINVAL);
4976 break;
4979 /* look it up in the spa */
4980 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4981 if (vml[c] == NULL) {
4982 error = SET_ERROR(ENODEV);
4983 break;
4986 /* make sure there's nothing stopping the split */
4987 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4988 vml[c]->vdev_islog ||
4989 vml[c]->vdev_ishole ||
4990 vml[c]->vdev_isspare ||
4991 vml[c]->vdev_isl2cache ||
4992 !vdev_writeable(vml[c]) ||
4993 vml[c]->vdev_children != 0 ||
4994 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4995 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4996 error = SET_ERROR(EINVAL);
4997 break;
5000 if (vdev_dtl_required(vml[c])) {
5001 error = SET_ERROR(EBUSY);
5002 break;
5005 /* we need certain info from the top level */
5006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5007 vml[c]->vdev_top->vdev_ms_array) == 0);
5008 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5009 vml[c]->vdev_top->vdev_ms_shift) == 0);
5010 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5011 vml[c]->vdev_top->vdev_asize) == 0);
5012 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5013 vml[c]->vdev_top->vdev_ashift) == 0);
5016 if (error != 0) {
5017 kmem_free(vml, children * sizeof (vdev_t *));
5018 kmem_free(glist, children * sizeof (uint64_t));
5019 return (spa_vdev_exit(spa, NULL, txg, error));
5022 /* stop writers from using the disks */
5023 for (c = 0; c < children; c++) {
5024 if (vml[c] != NULL)
5025 vml[c]->vdev_offline = B_TRUE;
5027 vdev_reopen(spa->spa_root_vdev);
5030 * Temporarily record the splitting vdevs in the spa config. This
5031 * will disappear once the config is regenerated.
5033 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5034 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5035 glist, children) == 0);
5036 kmem_free(glist, children * sizeof (uint64_t));
5038 mutex_enter(&spa->spa_props_lock);
5039 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5040 nvl) == 0);
5041 mutex_exit(&spa->spa_props_lock);
5042 spa->spa_config_splitting = nvl;
5043 vdev_config_dirty(spa->spa_root_vdev);
5045 /* configure and create the new pool */
5046 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5048 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5049 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5050 spa_version(spa)) == 0);
5051 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5052 spa->spa_config_txg) == 0);
5053 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5054 spa_generate_guid(NULL)) == 0);
5055 (void) nvlist_lookup_string(props,
5056 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5058 /* add the new pool to the namespace */
5059 newspa = spa_add(newname, config, altroot);
5060 newspa->spa_config_txg = spa->spa_config_txg;
5061 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5063 /* release the spa config lock, retaining the namespace lock */
5064 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5066 if (zio_injection_enabled)
5067 zio_handle_panic_injection(spa, FTAG, 1);
5069 spa_activate(newspa, spa_mode_global);
5070 spa_async_suspend(newspa);
5072 /* create the new pool from the disks of the original pool */
5073 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5074 if (error)
5075 goto out;
5077 /* if that worked, generate a real config for the new pool */
5078 if (newspa->spa_root_vdev != NULL) {
5079 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5080 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5081 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5082 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5083 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5084 B_TRUE));
5087 /* set the props */
5088 if (props != NULL) {
5089 spa_configfile_set(newspa, props, B_FALSE);
5090 error = spa_prop_set(newspa, props);
5091 if (error)
5092 goto out;
5095 /* flush everything */
5096 txg = spa_vdev_config_enter(newspa);
5097 vdev_config_dirty(newspa->spa_root_vdev);
5098 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5100 if (zio_injection_enabled)
5101 zio_handle_panic_injection(spa, FTAG, 2);
5103 spa_async_resume(newspa);
5105 /* finally, update the original pool's config */
5106 txg = spa_vdev_config_enter(spa);
5107 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5108 error = dmu_tx_assign(tx, TXG_WAIT);
5109 if (error != 0)
5110 dmu_tx_abort(tx);
5111 for (c = 0; c < children; c++) {
5112 if (vml[c] != NULL) {
5113 vdev_split(vml[c]);
5114 if (error == 0)
5115 spa_history_log_internal(spa, "detach", tx,
5116 "vdev=%s", vml[c]->vdev_path);
5117 vdev_free(vml[c]);
5120 vdev_config_dirty(spa->spa_root_vdev);
5121 spa->spa_config_splitting = NULL;
5122 nvlist_free(nvl);
5123 if (error == 0)
5124 dmu_tx_commit(tx);
5125 (void) spa_vdev_exit(spa, NULL, txg, 0);
5127 if (zio_injection_enabled)
5128 zio_handle_panic_injection(spa, FTAG, 3);
5130 /* split is complete; log a history record */
5131 spa_history_log_internal(newspa, "split", NULL,
5132 "from pool %s", spa_name(spa));
5134 kmem_free(vml, children * sizeof (vdev_t *));
5136 /* if we're not going to mount the filesystems in userland, export */
5137 if (exp)
5138 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5139 B_FALSE, B_FALSE);
5141 return (error);
5143 out:
5144 spa_unload(newspa);
5145 spa_deactivate(newspa);
5146 spa_remove(newspa);
5148 txg = spa_vdev_config_enter(spa);
5150 /* re-online all offlined disks */
5151 for (c = 0; c < children; c++) {
5152 if (vml[c] != NULL)
5153 vml[c]->vdev_offline = B_FALSE;
5155 vdev_reopen(spa->spa_root_vdev);
5157 nvlist_free(spa->spa_config_splitting);
5158 spa->spa_config_splitting = NULL;
5159 (void) spa_vdev_exit(spa, NULL, txg, error);
5161 kmem_free(vml, children * sizeof (vdev_t *));
5162 return (error);
5165 static nvlist_t *
5166 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5168 for (int i = 0; i < count; i++) {
5169 uint64_t guid;
5171 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5172 &guid) == 0);
5174 if (guid == target_guid)
5175 return (nvpp[i]);
5178 return (NULL);
5181 static void
5182 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5183 nvlist_t *dev_to_remove)
5185 nvlist_t **newdev = NULL;
5187 if (count > 1)
5188 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5190 for (int i = 0, j = 0; i < count; i++) {
5191 if (dev[i] == dev_to_remove)
5192 continue;
5193 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5196 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5197 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5199 for (int i = 0; i < count - 1; i++)
5200 nvlist_free(newdev[i]);
5202 if (count > 1)
5203 kmem_free(newdev, (count - 1) * sizeof (void *));
5207 * Evacuate the device.
5209 static int
5210 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5212 uint64_t txg;
5213 int error = 0;
5215 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5216 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5217 ASSERT(vd == vd->vdev_top);
5220 * Evacuate the device. We don't hold the config lock as writer
5221 * since we need to do I/O but we do keep the
5222 * spa_namespace_lock held. Once this completes the device
5223 * should no longer have any blocks allocated on it.
5225 if (vd->vdev_islog) {
5226 if (vd->vdev_stat.vs_alloc != 0)
5227 error = spa_offline_log(spa);
5228 } else {
5229 error = SET_ERROR(ENOTSUP);
5232 if (error)
5233 return (error);
5236 * The evacuation succeeded. Remove any remaining MOS metadata
5237 * associated with this vdev, and wait for these changes to sync.
5239 ASSERT0(vd->vdev_stat.vs_alloc);
5240 txg = spa_vdev_config_enter(spa);
5241 vd->vdev_removing = B_TRUE;
5242 vdev_dirty_leaves(vd, VDD_DTL, txg);
5243 vdev_config_dirty(vd);
5244 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5246 return (0);
5250 * Complete the removal by cleaning up the namespace.
5252 static void
5253 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5255 vdev_t *rvd = spa->spa_root_vdev;
5256 uint64_t id = vd->vdev_id;
5257 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5259 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5260 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5261 ASSERT(vd == vd->vdev_top);
5264 * Only remove any devices which are empty.
5266 if (vd->vdev_stat.vs_alloc != 0)
5267 return;
5269 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5271 if (list_link_active(&vd->vdev_state_dirty_node))
5272 vdev_state_clean(vd);
5273 if (list_link_active(&vd->vdev_config_dirty_node))
5274 vdev_config_clean(vd);
5276 vdev_free(vd);
5278 if (last_vdev) {
5279 vdev_compact_children(rvd);
5280 } else {
5281 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5282 vdev_add_child(rvd, vd);
5284 vdev_config_dirty(rvd);
5287 * Reassess the health of our root vdev.
5289 vdev_reopen(rvd);
5293 * Remove a device from the pool -
5295 * Removing a device from the vdev namespace requires several steps
5296 * and can take a significant amount of time. As a result we use
5297 * the spa_vdev_config_[enter/exit] functions which allow us to
5298 * grab and release the spa_config_lock while still holding the namespace
5299 * lock. During each step the configuration is synced out.
5301 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5302 * devices.
5305 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5307 vdev_t *vd;
5308 metaslab_group_t *mg;
5309 nvlist_t **spares, **l2cache, *nv;
5310 uint64_t txg = 0;
5311 uint_t nspares, nl2cache;
5312 int error = 0;
5313 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5315 ASSERT(spa_writeable(spa));
5317 if (!locked)
5318 txg = spa_vdev_enter(spa);
5320 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5322 if (spa->spa_spares.sav_vdevs != NULL &&
5323 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5324 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5325 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5327 * Only remove the hot spare if it's not currently in use
5328 * in this pool.
5330 if (vd == NULL || unspare) {
5331 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5332 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5333 spa_load_spares(spa);
5334 spa->spa_spares.sav_sync = B_TRUE;
5335 } else {
5336 error = SET_ERROR(EBUSY);
5338 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5339 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5340 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5341 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5343 * Cache devices can always be removed.
5345 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5346 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5347 spa_load_l2cache(spa);
5348 spa->spa_l2cache.sav_sync = B_TRUE;
5349 } else if (vd != NULL && vd->vdev_islog) {
5350 ASSERT(!locked);
5351 ASSERT(vd == vd->vdev_top);
5353 mg = vd->vdev_mg;
5356 * Stop allocating from this vdev.
5358 metaslab_group_passivate(mg);
5361 * Wait for the youngest allocations and frees to sync,
5362 * and then wait for the deferral of those frees to finish.
5364 spa_vdev_config_exit(spa, NULL,
5365 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5368 * Attempt to evacuate the vdev.
5370 error = spa_vdev_remove_evacuate(spa, vd);
5372 txg = spa_vdev_config_enter(spa);
5375 * If we couldn't evacuate the vdev, unwind.
5377 if (error) {
5378 metaslab_group_activate(mg);
5379 return (spa_vdev_exit(spa, NULL, txg, error));
5383 * Clean up the vdev namespace.
5385 spa_vdev_remove_from_namespace(spa, vd);
5387 } else if (vd != NULL) {
5389 * Normal vdevs cannot be removed (yet).
5391 error = SET_ERROR(ENOTSUP);
5392 } else {
5394 * There is no vdev of any kind with the specified guid.
5396 error = SET_ERROR(ENOENT);
5399 if (!locked)
5400 return (spa_vdev_exit(spa, NULL, txg, error));
5402 return (error);
5406 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5407 * currently spared, so we can detach it.
5409 static vdev_t *
5410 spa_vdev_resilver_done_hunt(vdev_t *vd)
5412 vdev_t *newvd, *oldvd;
5414 for (int c = 0; c < vd->vdev_children; c++) {
5415 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5416 if (oldvd != NULL)
5417 return (oldvd);
5421 * Check for a completed replacement. We always consider the first
5422 * vdev in the list to be the oldest vdev, and the last one to be
5423 * the newest (see spa_vdev_attach() for how that works). In
5424 * the case where the newest vdev is faulted, we will not automatically
5425 * remove it after a resilver completes. This is OK as it will require
5426 * user intervention to determine which disk the admin wishes to keep.
5428 if (vd->vdev_ops == &vdev_replacing_ops) {
5429 ASSERT(vd->vdev_children > 1);
5431 newvd = vd->vdev_child[vd->vdev_children - 1];
5432 oldvd = vd->vdev_child[0];
5434 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5435 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5436 !vdev_dtl_required(oldvd))
5437 return (oldvd);
5441 * Check for a completed resilver with the 'unspare' flag set.
5443 if (vd->vdev_ops == &vdev_spare_ops) {
5444 vdev_t *first = vd->vdev_child[0];
5445 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5447 if (last->vdev_unspare) {
5448 oldvd = first;
5449 newvd = last;
5450 } else if (first->vdev_unspare) {
5451 oldvd = last;
5452 newvd = first;
5453 } else {
5454 oldvd = NULL;
5457 if (oldvd != NULL &&
5458 vdev_dtl_empty(newvd, DTL_MISSING) &&
5459 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5460 !vdev_dtl_required(oldvd))
5461 return (oldvd);
5464 * If there are more than two spares attached to a disk,
5465 * and those spares are not required, then we want to
5466 * attempt to free them up now so that they can be used
5467 * by other pools. Once we're back down to a single
5468 * disk+spare, we stop removing them.
5470 if (vd->vdev_children > 2) {
5471 newvd = vd->vdev_child[1];
5473 if (newvd->vdev_isspare && last->vdev_isspare &&
5474 vdev_dtl_empty(last, DTL_MISSING) &&
5475 vdev_dtl_empty(last, DTL_OUTAGE) &&
5476 !vdev_dtl_required(newvd))
5477 return (newvd);
5481 return (NULL);
5484 static void
5485 spa_vdev_resilver_done(spa_t *spa)
5487 vdev_t *vd, *pvd, *ppvd;
5488 uint64_t guid, sguid, pguid, ppguid;
5490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5492 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5493 pvd = vd->vdev_parent;
5494 ppvd = pvd->vdev_parent;
5495 guid = vd->vdev_guid;
5496 pguid = pvd->vdev_guid;
5497 ppguid = ppvd->vdev_guid;
5498 sguid = 0;
5500 * If we have just finished replacing a hot spared device, then
5501 * we need to detach the parent's first child (the original hot
5502 * spare) as well.
5504 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5505 ppvd->vdev_children == 2) {
5506 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5507 sguid = ppvd->vdev_child[1]->vdev_guid;
5509 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5511 spa_config_exit(spa, SCL_ALL, FTAG);
5512 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5513 return;
5514 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5515 return;
5516 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5519 spa_config_exit(spa, SCL_ALL, FTAG);
5523 * Update the stored path or FRU for this vdev.
5526 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5527 boolean_t ispath)
5529 vdev_t *vd;
5530 boolean_t sync = B_FALSE;
5532 ASSERT(spa_writeable(spa));
5534 spa_vdev_state_enter(spa, SCL_ALL);
5536 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5537 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5539 if (!vd->vdev_ops->vdev_op_leaf)
5540 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5542 if (ispath) {
5543 if (strcmp(value, vd->vdev_path) != 0) {
5544 spa_strfree(vd->vdev_path);
5545 vd->vdev_path = spa_strdup(value);
5546 sync = B_TRUE;
5548 } else {
5549 if (vd->vdev_fru == NULL) {
5550 vd->vdev_fru = spa_strdup(value);
5551 sync = B_TRUE;
5552 } else if (strcmp(value, vd->vdev_fru) != 0) {
5553 spa_strfree(vd->vdev_fru);
5554 vd->vdev_fru = spa_strdup(value);
5555 sync = B_TRUE;
5559 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5563 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5565 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5569 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5571 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5575 * ==========================================================================
5576 * SPA Scanning
5577 * ==========================================================================
5581 spa_scan_stop(spa_t *spa)
5583 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5584 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5585 return (SET_ERROR(EBUSY));
5586 return (dsl_scan_cancel(spa->spa_dsl_pool));
5590 spa_scan(spa_t *spa, pool_scan_func_t func)
5592 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5594 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5595 return (SET_ERROR(ENOTSUP));
5598 * If a resilver was requested, but there is no DTL on a
5599 * writeable leaf device, we have nothing to do.
5601 if (func == POOL_SCAN_RESILVER &&
5602 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5603 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5604 return (0);
5607 return (dsl_scan(spa->spa_dsl_pool, func));
5611 * ==========================================================================
5612 * SPA async task processing
5613 * ==========================================================================
5616 static void
5617 spa_async_remove(spa_t *spa, vdev_t *vd)
5619 if (vd->vdev_remove_wanted) {
5620 vd->vdev_remove_wanted = B_FALSE;
5621 vd->vdev_delayed_close = B_FALSE;
5622 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5625 * We want to clear the stats, but we don't want to do a full
5626 * vdev_clear() as that will cause us to throw away
5627 * degraded/faulted state as well as attempt to reopen the
5628 * device, all of which is a waste.
5630 vd->vdev_stat.vs_read_errors = 0;
5631 vd->vdev_stat.vs_write_errors = 0;
5632 vd->vdev_stat.vs_checksum_errors = 0;
5634 vdev_state_dirty(vd->vdev_top);
5637 for (int c = 0; c < vd->vdev_children; c++)
5638 spa_async_remove(spa, vd->vdev_child[c]);
5641 static void
5642 spa_async_probe(spa_t *spa, vdev_t *vd)
5644 if (vd->vdev_probe_wanted) {
5645 vd->vdev_probe_wanted = B_FALSE;
5646 vdev_reopen(vd); /* vdev_open() does the actual probe */
5649 for (int c = 0; c < vd->vdev_children; c++)
5650 spa_async_probe(spa, vd->vdev_child[c]);
5653 static void
5654 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5656 sysevent_id_t eid;
5657 nvlist_t *attr;
5658 char *physpath;
5660 if (!spa->spa_autoexpand)
5661 return;
5663 for (int c = 0; c < vd->vdev_children; c++) {
5664 vdev_t *cvd = vd->vdev_child[c];
5665 spa_async_autoexpand(spa, cvd);
5668 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5669 return;
5671 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5672 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5674 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5675 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5677 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5678 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5680 nvlist_free(attr);
5681 kmem_free(physpath, MAXPATHLEN);
5684 static void
5685 spa_async_thread(spa_t *spa)
5687 int tasks;
5689 ASSERT(spa->spa_sync_on);
5691 mutex_enter(&spa->spa_async_lock);
5692 tasks = spa->spa_async_tasks;
5693 spa->spa_async_tasks = 0;
5694 mutex_exit(&spa->spa_async_lock);
5697 * See if the config needs to be updated.
5699 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5700 uint64_t old_space, new_space;
5702 mutex_enter(&spa_namespace_lock);
5703 old_space = metaslab_class_get_space(spa_normal_class(spa));
5704 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5705 new_space = metaslab_class_get_space(spa_normal_class(spa));
5706 mutex_exit(&spa_namespace_lock);
5709 * If the pool grew as a result of the config update,
5710 * then log an internal history event.
5712 if (new_space != old_space) {
5713 spa_history_log_internal(spa, "vdev online", NULL,
5714 "pool '%s' size: %llu(+%llu)",
5715 spa_name(spa), new_space, new_space - old_space);
5720 * See if any devices need to be marked REMOVED.
5722 if (tasks & SPA_ASYNC_REMOVE) {
5723 spa_vdev_state_enter(spa, SCL_NONE);
5724 spa_async_remove(spa, spa->spa_root_vdev);
5725 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5726 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5727 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5728 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5729 (void) spa_vdev_state_exit(spa, NULL, 0);
5732 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5733 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5734 spa_async_autoexpand(spa, spa->spa_root_vdev);
5735 spa_config_exit(spa, SCL_CONFIG, FTAG);
5739 * See if any devices need to be probed.
5741 if (tasks & SPA_ASYNC_PROBE) {
5742 spa_vdev_state_enter(spa, SCL_NONE);
5743 spa_async_probe(spa, spa->spa_root_vdev);
5744 (void) spa_vdev_state_exit(spa, NULL, 0);
5748 * If any devices are done replacing, detach them.
5750 if (tasks & SPA_ASYNC_RESILVER_DONE)
5751 spa_vdev_resilver_done(spa);
5754 * Kick off a resilver.
5756 if (tasks & SPA_ASYNC_RESILVER)
5757 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5760 * Let the world know that we're done.
5762 mutex_enter(&spa->spa_async_lock);
5763 spa->spa_async_thread = NULL;
5764 cv_broadcast(&spa->spa_async_cv);
5765 mutex_exit(&spa->spa_async_lock);
5766 thread_exit();
5769 void
5770 spa_async_suspend(spa_t *spa)
5772 mutex_enter(&spa->spa_async_lock);
5773 spa->spa_async_suspended++;
5774 while (spa->spa_async_thread != NULL)
5775 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5776 mutex_exit(&spa->spa_async_lock);
5779 void
5780 spa_async_resume(spa_t *spa)
5782 mutex_enter(&spa->spa_async_lock);
5783 ASSERT(spa->spa_async_suspended != 0);
5784 spa->spa_async_suspended--;
5785 mutex_exit(&spa->spa_async_lock);
5788 static boolean_t
5789 spa_async_tasks_pending(spa_t *spa)
5791 uint_t non_config_tasks;
5792 uint_t config_task;
5793 boolean_t config_task_suspended;
5795 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5796 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5797 if (spa->spa_ccw_fail_time == 0) {
5798 config_task_suspended = B_FALSE;
5799 } else {
5800 config_task_suspended =
5801 (gethrtime() - spa->spa_ccw_fail_time) <
5802 (zfs_ccw_retry_interval * NANOSEC);
5805 return (non_config_tasks || (config_task && !config_task_suspended));
5808 static void
5809 spa_async_dispatch(spa_t *spa)
5811 mutex_enter(&spa->spa_async_lock);
5812 if (spa_async_tasks_pending(spa) &&
5813 !spa->spa_async_suspended &&
5814 spa->spa_async_thread == NULL &&
5815 rootdir != NULL)
5816 spa->spa_async_thread = thread_create(NULL, 0,
5817 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5818 mutex_exit(&spa->spa_async_lock);
5821 void
5822 spa_async_request(spa_t *spa, int task)
5824 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5825 mutex_enter(&spa->spa_async_lock);
5826 spa->spa_async_tasks |= task;
5827 mutex_exit(&spa->spa_async_lock);
5831 * ==========================================================================
5832 * SPA syncing routines
5833 * ==========================================================================
5836 static int
5837 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5839 bpobj_t *bpo = arg;
5840 bpobj_enqueue(bpo, bp, tx);
5841 return (0);
5844 static int
5845 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5847 zio_t *zio = arg;
5849 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5850 zio->io_flags));
5851 return (0);
5855 * Note: this simple function is not inlined to make it easier to dtrace the
5856 * amount of time spent syncing frees.
5858 static void
5859 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5861 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5862 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5863 VERIFY(zio_wait(zio) == 0);
5867 * Note: this simple function is not inlined to make it easier to dtrace the
5868 * amount of time spent syncing deferred frees.
5870 static void
5871 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5873 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5874 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5875 spa_free_sync_cb, zio, tx), ==, 0);
5876 VERIFY0(zio_wait(zio));
5880 static void
5881 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5883 char *packed = NULL;
5884 size_t bufsize;
5885 size_t nvsize = 0;
5886 dmu_buf_t *db;
5888 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5891 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5892 * information. This avoids the dmu_buf_will_dirty() path and
5893 * saves us a pre-read to get data we don't actually care about.
5895 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5896 packed = kmem_alloc(bufsize, KM_SLEEP);
5898 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5899 KM_SLEEP) == 0);
5900 bzero(packed + nvsize, bufsize - nvsize);
5902 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5904 kmem_free(packed, bufsize);
5906 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5907 dmu_buf_will_dirty(db, tx);
5908 *(uint64_t *)db->db_data = nvsize;
5909 dmu_buf_rele(db, FTAG);
5912 static void
5913 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5914 const char *config, const char *entry)
5916 nvlist_t *nvroot;
5917 nvlist_t **list;
5918 int i;
5920 if (!sav->sav_sync)
5921 return;
5924 * Update the MOS nvlist describing the list of available devices.
5925 * spa_validate_aux() will have already made sure this nvlist is
5926 * valid and the vdevs are labeled appropriately.
5928 if (sav->sav_object == 0) {
5929 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5930 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5931 sizeof (uint64_t), tx);
5932 VERIFY(zap_update(spa->spa_meta_objset,
5933 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5934 &sav->sav_object, tx) == 0);
5937 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5938 if (sav->sav_count == 0) {
5939 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5940 } else {
5941 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5942 for (i = 0; i < sav->sav_count; i++)
5943 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5944 B_FALSE, VDEV_CONFIG_L2CACHE);
5945 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5946 sav->sav_count) == 0);
5947 for (i = 0; i < sav->sav_count; i++)
5948 nvlist_free(list[i]);
5949 kmem_free(list, sav->sav_count * sizeof (void *));
5952 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5953 nvlist_free(nvroot);
5955 sav->sav_sync = B_FALSE;
5958 static void
5959 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5961 nvlist_t *config;
5963 if (list_is_empty(&spa->spa_config_dirty_list))
5964 return;
5966 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5968 config = spa_config_generate(spa, spa->spa_root_vdev,
5969 dmu_tx_get_txg(tx), B_FALSE);
5972 * If we're upgrading the spa version then make sure that
5973 * the config object gets updated with the correct version.
5975 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5976 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5977 spa->spa_uberblock.ub_version);
5979 spa_config_exit(spa, SCL_STATE, FTAG);
5981 if (spa->spa_config_syncing)
5982 nvlist_free(spa->spa_config_syncing);
5983 spa->spa_config_syncing = config;
5985 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5988 static void
5989 spa_sync_version(void *arg, dmu_tx_t *tx)
5991 uint64_t *versionp = arg;
5992 uint64_t version = *versionp;
5993 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5996 * Setting the version is special cased when first creating the pool.
5998 ASSERT(tx->tx_txg != TXG_INITIAL);
6000 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6001 ASSERT(version >= spa_version(spa));
6003 spa->spa_uberblock.ub_version = version;
6004 vdev_config_dirty(spa->spa_root_vdev);
6005 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6009 * Set zpool properties.
6011 static void
6012 spa_sync_props(void *arg, dmu_tx_t *tx)
6014 nvlist_t *nvp = arg;
6015 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6016 objset_t *mos = spa->spa_meta_objset;
6017 nvpair_t *elem = NULL;
6019 mutex_enter(&spa->spa_props_lock);
6021 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6022 uint64_t intval;
6023 char *strval, *fname;
6024 zpool_prop_t prop;
6025 const char *propname;
6026 zprop_type_t proptype;
6027 spa_feature_t fid;
6029 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6030 case ZPROP_INVAL:
6032 * We checked this earlier in spa_prop_validate().
6034 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6036 fname = strchr(nvpair_name(elem), '@') + 1;
6037 VERIFY0(zfeature_lookup_name(fname, &fid));
6039 spa_feature_enable(spa, fid, tx);
6040 spa_history_log_internal(spa, "set", tx,
6041 "%s=enabled", nvpair_name(elem));
6042 break;
6044 case ZPOOL_PROP_VERSION:
6045 intval = fnvpair_value_uint64(elem);
6047 * The version is synced seperatly before other
6048 * properties and should be correct by now.
6050 ASSERT3U(spa_version(spa), >=, intval);
6051 break;
6053 case ZPOOL_PROP_ALTROOT:
6055 * 'altroot' is a non-persistent property. It should
6056 * have been set temporarily at creation or import time.
6058 ASSERT(spa->spa_root != NULL);
6059 break;
6061 case ZPOOL_PROP_READONLY:
6062 case ZPOOL_PROP_CACHEFILE:
6064 * 'readonly' and 'cachefile' are also non-persisitent
6065 * properties.
6067 break;
6068 case ZPOOL_PROP_COMMENT:
6069 strval = fnvpair_value_string(elem);
6070 if (spa->spa_comment != NULL)
6071 spa_strfree(spa->spa_comment);
6072 spa->spa_comment = spa_strdup(strval);
6074 * We need to dirty the configuration on all the vdevs
6075 * so that their labels get updated. It's unnecessary
6076 * to do this for pool creation since the vdev's
6077 * configuratoin has already been dirtied.
6079 if (tx->tx_txg != TXG_INITIAL)
6080 vdev_config_dirty(spa->spa_root_vdev);
6081 spa_history_log_internal(spa, "set", tx,
6082 "%s=%s", nvpair_name(elem), strval);
6083 break;
6084 default:
6086 * Set pool property values in the poolprops mos object.
6088 if (spa->spa_pool_props_object == 0) {
6089 spa->spa_pool_props_object =
6090 zap_create_link(mos, DMU_OT_POOL_PROPS,
6091 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6092 tx);
6095 /* normalize the property name */
6096 propname = zpool_prop_to_name(prop);
6097 proptype = zpool_prop_get_type(prop);
6099 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6100 ASSERT(proptype == PROP_TYPE_STRING);
6101 strval = fnvpair_value_string(elem);
6102 VERIFY0(zap_update(mos,
6103 spa->spa_pool_props_object, propname,
6104 1, strlen(strval) + 1, strval, tx));
6105 spa_history_log_internal(spa, "set", tx,
6106 "%s=%s", nvpair_name(elem), strval);
6107 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6108 intval = fnvpair_value_uint64(elem);
6110 if (proptype == PROP_TYPE_INDEX) {
6111 const char *unused;
6112 VERIFY0(zpool_prop_index_to_string(
6113 prop, intval, &unused));
6115 VERIFY0(zap_update(mos,
6116 spa->spa_pool_props_object, propname,
6117 8, 1, &intval, tx));
6118 spa_history_log_internal(spa, "set", tx,
6119 "%s=%lld", nvpair_name(elem), intval);
6120 } else {
6121 ASSERT(0); /* not allowed */
6124 switch (prop) {
6125 case ZPOOL_PROP_DELEGATION:
6126 spa->spa_delegation = intval;
6127 break;
6128 case ZPOOL_PROP_BOOTFS:
6129 spa->spa_bootfs = intval;
6130 break;
6131 case ZPOOL_PROP_FAILUREMODE:
6132 spa->spa_failmode = intval;
6133 break;
6134 case ZPOOL_PROP_AUTOEXPAND:
6135 spa->spa_autoexpand = intval;
6136 if (tx->tx_txg != TXG_INITIAL)
6137 spa_async_request(spa,
6138 SPA_ASYNC_AUTOEXPAND);
6139 break;
6140 case ZPOOL_PROP_DEDUPDITTO:
6141 spa->spa_dedup_ditto = intval;
6142 break;
6143 default:
6144 break;
6150 mutex_exit(&spa->spa_props_lock);
6154 * Perform one-time upgrade on-disk changes. spa_version() does not
6155 * reflect the new version this txg, so there must be no changes this
6156 * txg to anything that the upgrade code depends on after it executes.
6157 * Therefore this must be called after dsl_pool_sync() does the sync
6158 * tasks.
6160 static void
6161 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6163 dsl_pool_t *dp = spa->spa_dsl_pool;
6165 ASSERT(spa->spa_sync_pass == 1);
6167 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6169 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6170 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6171 dsl_pool_create_origin(dp, tx);
6173 /* Keeping the origin open increases spa_minref */
6174 spa->spa_minref += 3;
6177 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6178 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6179 dsl_pool_upgrade_clones(dp, tx);
6182 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6183 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6184 dsl_pool_upgrade_dir_clones(dp, tx);
6186 /* Keeping the freedir open increases spa_minref */
6187 spa->spa_minref += 3;
6190 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6191 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6192 spa_feature_create_zap_objects(spa, tx);
6196 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6197 * when possibility to use lz4 compression for metadata was added
6198 * Old pools that have this feature enabled must be upgraded to have
6199 * this feature active
6201 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6202 boolean_t lz4_en = spa_feature_is_enabled(spa,
6203 SPA_FEATURE_LZ4_COMPRESS);
6204 boolean_t lz4_ac = spa_feature_is_active(spa,
6205 SPA_FEATURE_LZ4_COMPRESS);
6207 if (lz4_en && !lz4_ac)
6208 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6210 rrw_exit(&dp->dp_config_rwlock, FTAG);
6214 * Sync the specified transaction group. New blocks may be dirtied as
6215 * part of the process, so we iterate until it converges.
6217 void
6218 spa_sync(spa_t *spa, uint64_t txg)
6220 dsl_pool_t *dp = spa->spa_dsl_pool;
6221 objset_t *mos = spa->spa_meta_objset;
6222 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6223 vdev_t *rvd = spa->spa_root_vdev;
6224 vdev_t *vd;
6225 dmu_tx_t *tx;
6226 int error;
6228 VERIFY(spa_writeable(spa));
6231 * Lock out configuration changes.
6233 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6235 spa->spa_syncing_txg = txg;
6236 spa->spa_sync_pass = 0;
6239 * If there are any pending vdev state changes, convert them
6240 * into config changes that go out with this transaction group.
6242 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6243 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6245 * We need the write lock here because, for aux vdevs,
6246 * calling vdev_config_dirty() modifies sav_config.
6247 * This is ugly and will become unnecessary when we
6248 * eliminate the aux vdev wart by integrating all vdevs
6249 * into the root vdev tree.
6251 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6252 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6253 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6254 vdev_state_clean(vd);
6255 vdev_config_dirty(vd);
6257 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6258 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6260 spa_config_exit(spa, SCL_STATE, FTAG);
6262 tx = dmu_tx_create_assigned(dp, txg);
6264 spa->spa_sync_starttime = gethrtime();
6265 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6266 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6269 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6270 * set spa_deflate if we have no raid-z vdevs.
6272 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6273 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6274 int i;
6276 for (i = 0; i < rvd->vdev_children; i++) {
6277 vd = rvd->vdev_child[i];
6278 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6279 break;
6281 if (i == rvd->vdev_children) {
6282 spa->spa_deflate = TRUE;
6283 VERIFY(0 == zap_add(spa->spa_meta_objset,
6284 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6285 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6290 * Iterate to convergence.
6292 do {
6293 int pass = ++spa->spa_sync_pass;
6295 spa_sync_config_object(spa, tx);
6296 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6297 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6298 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6299 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6300 spa_errlog_sync(spa, txg);
6301 dsl_pool_sync(dp, txg);
6303 if (pass < zfs_sync_pass_deferred_free) {
6304 spa_sync_frees(spa, free_bpl, tx);
6305 } else {
6307 * We can not defer frees in pass 1, because
6308 * we sync the deferred frees later in pass 1.
6310 ASSERT3U(pass, >, 1);
6311 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6312 &spa->spa_deferred_bpobj, tx);
6315 ddt_sync(spa, txg);
6316 dsl_scan_sync(dp, tx);
6318 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6319 vdev_sync(vd, txg);
6321 if (pass == 1) {
6322 spa_sync_upgrades(spa, tx);
6323 ASSERT3U(txg, >=,
6324 spa->spa_uberblock.ub_rootbp.blk_birth);
6326 * Note: We need to check if the MOS is dirty
6327 * because we could have marked the MOS dirty
6328 * without updating the uberblock (e.g. if we
6329 * have sync tasks but no dirty user data). We
6330 * need to check the uberblock's rootbp because
6331 * it is updated if we have synced out dirty
6332 * data (though in this case the MOS will most
6333 * likely also be dirty due to second order
6334 * effects, we don't want to rely on that here).
6336 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6337 !dmu_objset_is_dirty(mos, txg)) {
6339 * Nothing changed on the first pass,
6340 * therefore this TXG is a no-op. Avoid
6341 * syncing deferred frees, so that we
6342 * can keep this TXG as a no-op.
6344 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6345 txg));
6346 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6347 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6348 break;
6350 spa_sync_deferred_frees(spa, tx);
6353 } while (dmu_objset_is_dirty(mos, txg));
6356 * Rewrite the vdev configuration (which includes the uberblock)
6357 * to commit the transaction group.
6359 * If there are no dirty vdevs, we sync the uberblock to a few
6360 * random top-level vdevs that are known to be visible in the
6361 * config cache (see spa_vdev_add() for a complete description).
6362 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6364 for (;;) {
6366 * We hold SCL_STATE to prevent vdev open/close/etc.
6367 * while we're attempting to write the vdev labels.
6369 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6371 if (list_is_empty(&spa->spa_config_dirty_list)) {
6372 vdev_t *svd[SPA_DVAS_PER_BP];
6373 int svdcount = 0;
6374 int children = rvd->vdev_children;
6375 int c0 = spa_get_random(children);
6377 for (int c = 0; c < children; c++) {
6378 vd = rvd->vdev_child[(c0 + c) % children];
6379 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6380 continue;
6381 svd[svdcount++] = vd;
6382 if (svdcount == SPA_DVAS_PER_BP)
6383 break;
6385 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6386 if (error != 0)
6387 error = vdev_config_sync(svd, svdcount, txg,
6388 B_TRUE);
6389 } else {
6390 error = vdev_config_sync(rvd->vdev_child,
6391 rvd->vdev_children, txg, B_FALSE);
6392 if (error != 0)
6393 error = vdev_config_sync(rvd->vdev_child,
6394 rvd->vdev_children, txg, B_TRUE);
6397 if (error == 0)
6398 spa->spa_last_synced_guid = rvd->vdev_guid;
6400 spa_config_exit(spa, SCL_STATE, FTAG);
6402 if (error == 0)
6403 break;
6404 zio_suspend(spa, NULL);
6405 zio_resume_wait(spa);
6407 dmu_tx_commit(tx);
6409 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6412 * Clear the dirty config list.
6414 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6415 vdev_config_clean(vd);
6418 * Now that the new config has synced transactionally,
6419 * let it become visible to the config cache.
6421 if (spa->spa_config_syncing != NULL) {
6422 spa_config_set(spa, spa->spa_config_syncing);
6423 spa->spa_config_txg = txg;
6424 spa->spa_config_syncing = NULL;
6427 spa->spa_ubsync = spa->spa_uberblock;
6429 dsl_pool_sync_done(dp, txg);
6432 * Update usable space statistics.
6434 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6435 vdev_sync_done(vd, txg);
6437 spa_update_dspace(spa);
6440 * It had better be the case that we didn't dirty anything
6441 * since vdev_config_sync().
6443 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6444 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6445 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6447 spa->spa_sync_pass = 0;
6449 spa_config_exit(spa, SCL_CONFIG, FTAG);
6451 spa_handle_ignored_writes(spa);
6454 * If any async tasks have been requested, kick them off.
6456 spa_async_dispatch(spa);
6460 * Sync all pools. We don't want to hold the namespace lock across these
6461 * operations, so we take a reference on the spa_t and drop the lock during the
6462 * sync.
6464 void
6465 spa_sync_allpools(void)
6467 spa_t *spa = NULL;
6468 mutex_enter(&spa_namespace_lock);
6469 while ((spa = spa_next(spa)) != NULL) {
6470 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6471 !spa_writeable(spa) || spa_suspended(spa))
6472 continue;
6473 spa_open_ref(spa, FTAG);
6474 mutex_exit(&spa_namespace_lock);
6475 txg_wait_synced(spa_get_dsl(spa), 0);
6476 mutex_enter(&spa_namespace_lock);
6477 spa_close(spa, FTAG);
6479 mutex_exit(&spa_namespace_lock);
6483 * ==========================================================================
6484 * Miscellaneous routines
6485 * ==========================================================================
6489 * Remove all pools in the system.
6491 void
6492 spa_evict_all(void)
6494 spa_t *spa;
6497 * Remove all cached state. All pools should be closed now,
6498 * so every spa in the AVL tree should be unreferenced.
6500 mutex_enter(&spa_namespace_lock);
6501 while ((spa = spa_next(NULL)) != NULL) {
6503 * Stop async tasks. The async thread may need to detach
6504 * a device that's been replaced, which requires grabbing
6505 * spa_namespace_lock, so we must drop it here.
6507 spa_open_ref(spa, FTAG);
6508 mutex_exit(&spa_namespace_lock);
6509 spa_async_suspend(spa);
6510 mutex_enter(&spa_namespace_lock);
6511 spa_close(spa, FTAG);
6513 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6514 spa_unload(spa);
6515 spa_deactivate(spa);
6517 spa_remove(spa);
6519 mutex_exit(&spa_namespace_lock);
6522 vdev_t *
6523 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6525 vdev_t *vd;
6526 int i;
6528 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6529 return (vd);
6531 if (aux) {
6532 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6533 vd = spa->spa_l2cache.sav_vdevs[i];
6534 if (vd->vdev_guid == guid)
6535 return (vd);
6538 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6539 vd = spa->spa_spares.sav_vdevs[i];
6540 if (vd->vdev_guid == guid)
6541 return (vd);
6545 return (NULL);
6548 void
6549 spa_upgrade(spa_t *spa, uint64_t version)
6551 ASSERT(spa_writeable(spa));
6553 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6556 * This should only be called for a non-faulted pool, and since a
6557 * future version would result in an unopenable pool, this shouldn't be
6558 * possible.
6560 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6561 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6563 spa->spa_uberblock.ub_version = version;
6564 vdev_config_dirty(spa->spa_root_vdev);
6566 spa_config_exit(spa, SCL_ALL, FTAG);
6568 txg_wait_synced(spa_get_dsl(spa), 0);
6571 boolean_t
6572 spa_has_spare(spa_t *spa, uint64_t guid)
6574 int i;
6575 uint64_t spareguid;
6576 spa_aux_vdev_t *sav = &spa->spa_spares;
6578 for (i = 0; i < sav->sav_count; i++)
6579 if (sav->sav_vdevs[i]->vdev_guid == guid)
6580 return (B_TRUE);
6582 for (i = 0; i < sav->sav_npending; i++) {
6583 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6584 &spareguid) == 0 && spareguid == guid)
6585 return (B_TRUE);
6588 return (B_FALSE);
6592 * Check if a pool has an active shared spare device.
6593 * Note: reference count of an active spare is 2, as a spare and as a replace
6595 static boolean_t
6596 spa_has_active_shared_spare(spa_t *spa)
6598 int i, refcnt;
6599 uint64_t pool;
6600 spa_aux_vdev_t *sav = &spa->spa_spares;
6602 for (i = 0; i < sav->sav_count; i++) {
6603 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6604 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6605 refcnt > 2)
6606 return (B_TRUE);
6609 return (B_FALSE);
6613 * Post a sysevent corresponding to the given event. The 'name' must be one of
6614 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6615 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6616 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6617 * or zdb as real changes.
6619 void
6620 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6622 #ifdef _KERNEL
6623 sysevent_t *ev;
6624 sysevent_attr_list_t *attr = NULL;
6625 sysevent_value_t value;
6626 sysevent_id_t eid;
6628 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6629 SE_SLEEP);
6631 value.value_type = SE_DATA_TYPE_STRING;
6632 value.value.sv_string = spa_name(spa);
6633 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6634 goto done;
6636 value.value_type = SE_DATA_TYPE_UINT64;
6637 value.value.sv_uint64 = spa_guid(spa);
6638 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6639 goto done;
6641 if (vd) {
6642 value.value_type = SE_DATA_TYPE_UINT64;
6643 value.value.sv_uint64 = vd->vdev_guid;
6644 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6645 SE_SLEEP) != 0)
6646 goto done;
6648 if (vd->vdev_path) {
6649 value.value_type = SE_DATA_TYPE_STRING;
6650 value.value.sv_string = vd->vdev_path;
6651 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6652 &value, SE_SLEEP) != 0)
6653 goto done;
6657 if (sysevent_attach_attributes(ev, attr) != 0)
6658 goto done;
6659 attr = NULL;
6661 (void) log_sysevent(ev, SE_SLEEP, &eid);
6663 done:
6664 if (attr)
6665 sysevent_free_attr(attr);
6666 sysevent_free(ev);
6667 #endif