3236 zio nop-write
[unleashed.git] / usr / src / uts / common / fs / zfs / arc.c
blob860a3b51a3c454264f730ab3c925a828e566048e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * DVA-based Adjustable Replacement Cache
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
73 * The locking model:
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 * - L2ARC buflist creation
115 * - L2ARC buflist eviction
116 * - L2ARC write completion, which walks L2ARC buflists
117 * - ARC header destruction, as it removes from L2ARC buflists
118 * - ARC header release, as it removes from L2ARC buflists
121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>
138 #ifndef _KERNEL
139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
140 boolean_t arc_watch = B_FALSE;
141 int arc_procfd;
142 #endif
144 static kmutex_t arc_reclaim_thr_lock;
145 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
146 static uint8_t arc_thread_exit;
148 extern int zfs_write_limit_shift;
149 extern uint64_t zfs_write_limit_max;
150 extern kmutex_t zfs_write_limit_lock;
152 #define ARC_REDUCE_DNLC_PERCENT 3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
155 typedef enum arc_reclaim_strategy {
156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
160 /* number of seconds before growing cache again */
161 static int arc_grow_retry = 60;
163 /* shift of arc_c for calculating both min and max arc_p */
164 static int arc_p_min_shift = 4;
166 /* log2(fraction of arc to reclaim) */
167 static int arc_shrink_shift = 5;
170 * minimum lifespan of a prefetch block in clock ticks
171 * (initialized in arc_init())
173 static int arc_min_prefetch_lifespan;
175 static int arc_dead;
178 * The arc has filled available memory and has now warmed up.
180 static boolean_t arc_warm;
183 * These tunables are for performance analysis.
185 uint64_t zfs_arc_max;
186 uint64_t zfs_arc_min;
187 uint64_t zfs_arc_meta_limit = 0;
188 int zfs_arc_grow_retry = 0;
189 int zfs_arc_shrink_shift = 0;
190 int zfs_arc_p_min_shift = 0;
191 int zfs_disable_dup_eviction = 0;
194 * Note that buffers can be in one of 6 states:
195 * ARC_anon - anonymous (discussed below)
196 * ARC_mru - recently used, currently cached
197 * ARC_mru_ghost - recentely used, no longer in cache
198 * ARC_mfu - frequently used, currently cached
199 * ARC_mfu_ghost - frequently used, no longer in cache
200 * ARC_l2c_only - exists in L2ARC but not other states
201 * When there are no active references to the buffer, they are
202 * are linked onto a list in one of these arc states. These are
203 * the only buffers that can be evicted or deleted. Within each
204 * state there are multiple lists, one for meta-data and one for
205 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
206 * etc.) is tracked separately so that it can be managed more
207 * explicitly: favored over data, limited explicitly.
209 * Anonymous buffers are buffers that are not associated with
210 * a DVA. These are buffers that hold dirty block copies
211 * before they are written to stable storage. By definition,
212 * they are "ref'd" and are considered part of arc_mru
213 * that cannot be freed. Generally, they will aquire a DVA
214 * as they are written and migrate onto the arc_mru list.
216 * The ARC_l2c_only state is for buffers that are in the second
217 * level ARC but no longer in any of the ARC_m* lists. The second
218 * level ARC itself may also contain buffers that are in any of
219 * the ARC_m* states - meaning that a buffer can exist in two
220 * places. The reason for the ARC_l2c_only state is to keep the
221 * buffer header in the hash table, so that reads that hit the
222 * second level ARC benefit from these fast lookups.
225 typedef struct arc_state {
226 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
227 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
228 uint64_t arcs_size; /* total amount of data in this state */
229 kmutex_t arcs_mtx;
230 } arc_state_t;
232 /* The 6 states: */
233 static arc_state_t ARC_anon;
234 static arc_state_t ARC_mru;
235 static arc_state_t ARC_mru_ghost;
236 static arc_state_t ARC_mfu;
237 static arc_state_t ARC_mfu_ghost;
238 static arc_state_t ARC_l2c_only;
240 typedef struct arc_stats {
241 kstat_named_t arcstat_hits;
242 kstat_named_t arcstat_misses;
243 kstat_named_t arcstat_demand_data_hits;
244 kstat_named_t arcstat_demand_data_misses;
245 kstat_named_t arcstat_demand_metadata_hits;
246 kstat_named_t arcstat_demand_metadata_misses;
247 kstat_named_t arcstat_prefetch_data_hits;
248 kstat_named_t arcstat_prefetch_data_misses;
249 kstat_named_t arcstat_prefetch_metadata_hits;
250 kstat_named_t arcstat_prefetch_metadata_misses;
251 kstat_named_t arcstat_mru_hits;
252 kstat_named_t arcstat_mru_ghost_hits;
253 kstat_named_t arcstat_mfu_hits;
254 kstat_named_t arcstat_mfu_ghost_hits;
255 kstat_named_t arcstat_deleted;
256 kstat_named_t arcstat_recycle_miss;
257 kstat_named_t arcstat_mutex_miss;
258 kstat_named_t arcstat_evict_skip;
259 kstat_named_t arcstat_evict_l2_cached;
260 kstat_named_t arcstat_evict_l2_eligible;
261 kstat_named_t arcstat_evict_l2_ineligible;
262 kstat_named_t arcstat_hash_elements;
263 kstat_named_t arcstat_hash_elements_max;
264 kstat_named_t arcstat_hash_collisions;
265 kstat_named_t arcstat_hash_chains;
266 kstat_named_t arcstat_hash_chain_max;
267 kstat_named_t arcstat_p;
268 kstat_named_t arcstat_c;
269 kstat_named_t arcstat_c_min;
270 kstat_named_t arcstat_c_max;
271 kstat_named_t arcstat_size;
272 kstat_named_t arcstat_hdr_size;
273 kstat_named_t arcstat_data_size;
274 kstat_named_t arcstat_other_size;
275 kstat_named_t arcstat_l2_hits;
276 kstat_named_t arcstat_l2_misses;
277 kstat_named_t arcstat_l2_feeds;
278 kstat_named_t arcstat_l2_rw_clash;
279 kstat_named_t arcstat_l2_read_bytes;
280 kstat_named_t arcstat_l2_write_bytes;
281 kstat_named_t arcstat_l2_writes_sent;
282 kstat_named_t arcstat_l2_writes_done;
283 kstat_named_t arcstat_l2_writes_error;
284 kstat_named_t arcstat_l2_writes_hdr_miss;
285 kstat_named_t arcstat_l2_evict_lock_retry;
286 kstat_named_t arcstat_l2_evict_reading;
287 kstat_named_t arcstat_l2_free_on_write;
288 kstat_named_t arcstat_l2_abort_lowmem;
289 kstat_named_t arcstat_l2_cksum_bad;
290 kstat_named_t arcstat_l2_io_error;
291 kstat_named_t arcstat_l2_size;
292 kstat_named_t arcstat_l2_hdr_size;
293 kstat_named_t arcstat_memory_throttle_count;
294 kstat_named_t arcstat_duplicate_buffers;
295 kstat_named_t arcstat_duplicate_buffers_size;
296 kstat_named_t arcstat_duplicate_reads;
297 } arc_stats_t;
299 static arc_stats_t arc_stats = {
300 { "hits", KSTAT_DATA_UINT64 },
301 { "misses", KSTAT_DATA_UINT64 },
302 { "demand_data_hits", KSTAT_DATA_UINT64 },
303 { "demand_data_misses", KSTAT_DATA_UINT64 },
304 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
305 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
306 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
307 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
308 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
309 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
310 { "mru_hits", KSTAT_DATA_UINT64 },
311 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
312 { "mfu_hits", KSTAT_DATA_UINT64 },
313 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
314 { "deleted", KSTAT_DATA_UINT64 },
315 { "recycle_miss", KSTAT_DATA_UINT64 },
316 { "mutex_miss", KSTAT_DATA_UINT64 },
317 { "evict_skip", KSTAT_DATA_UINT64 },
318 { "evict_l2_cached", KSTAT_DATA_UINT64 },
319 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
320 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
321 { "hash_elements", KSTAT_DATA_UINT64 },
322 { "hash_elements_max", KSTAT_DATA_UINT64 },
323 { "hash_collisions", KSTAT_DATA_UINT64 },
324 { "hash_chains", KSTAT_DATA_UINT64 },
325 { "hash_chain_max", KSTAT_DATA_UINT64 },
326 { "p", KSTAT_DATA_UINT64 },
327 { "c", KSTAT_DATA_UINT64 },
328 { "c_min", KSTAT_DATA_UINT64 },
329 { "c_max", KSTAT_DATA_UINT64 },
330 { "size", KSTAT_DATA_UINT64 },
331 { "hdr_size", KSTAT_DATA_UINT64 },
332 { "data_size", KSTAT_DATA_UINT64 },
333 { "other_size", KSTAT_DATA_UINT64 },
334 { "l2_hits", KSTAT_DATA_UINT64 },
335 { "l2_misses", KSTAT_DATA_UINT64 },
336 { "l2_feeds", KSTAT_DATA_UINT64 },
337 { "l2_rw_clash", KSTAT_DATA_UINT64 },
338 { "l2_read_bytes", KSTAT_DATA_UINT64 },
339 { "l2_write_bytes", KSTAT_DATA_UINT64 },
340 { "l2_writes_sent", KSTAT_DATA_UINT64 },
341 { "l2_writes_done", KSTAT_DATA_UINT64 },
342 { "l2_writes_error", KSTAT_DATA_UINT64 },
343 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
344 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
345 { "l2_evict_reading", KSTAT_DATA_UINT64 },
346 { "l2_free_on_write", KSTAT_DATA_UINT64 },
347 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
348 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
349 { "l2_io_error", KSTAT_DATA_UINT64 },
350 { "l2_size", KSTAT_DATA_UINT64 },
351 { "l2_hdr_size", KSTAT_DATA_UINT64 },
352 { "memory_throttle_count", KSTAT_DATA_UINT64 },
353 { "duplicate_buffers", KSTAT_DATA_UINT64 },
354 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
355 { "duplicate_reads", KSTAT_DATA_UINT64 }
358 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
360 #define ARCSTAT_INCR(stat, val) \
361 atomic_add_64(&arc_stats.stat.value.ui64, (val));
363 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
364 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
366 #define ARCSTAT_MAX(stat, val) { \
367 uint64_t m; \
368 while ((val) > (m = arc_stats.stat.value.ui64) && \
369 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
370 continue; \
373 #define ARCSTAT_MAXSTAT(stat) \
374 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
377 * We define a macro to allow ARC hits/misses to be easily broken down by
378 * two separate conditions, giving a total of four different subtypes for
379 * each of hits and misses (so eight statistics total).
381 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
382 if (cond1) { \
383 if (cond2) { \
384 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
385 } else { \
386 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
388 } else { \
389 if (cond2) { \
390 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
391 } else { \
392 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
396 kstat_t *arc_ksp;
397 static arc_state_t *arc_anon;
398 static arc_state_t *arc_mru;
399 static arc_state_t *arc_mru_ghost;
400 static arc_state_t *arc_mfu;
401 static arc_state_t *arc_mfu_ghost;
402 static arc_state_t *arc_l2c_only;
405 * There are several ARC variables that are critical to export as kstats --
406 * but we don't want to have to grovel around in the kstat whenever we wish to
407 * manipulate them. For these variables, we therefore define them to be in
408 * terms of the statistic variable. This assures that we are not introducing
409 * the possibility of inconsistency by having shadow copies of the variables,
410 * while still allowing the code to be readable.
412 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
413 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
414 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
415 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
416 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
418 static int arc_no_grow; /* Don't try to grow cache size */
419 static uint64_t arc_tempreserve;
420 static uint64_t arc_loaned_bytes;
421 static uint64_t arc_meta_used;
422 static uint64_t arc_meta_limit;
423 static uint64_t arc_meta_max = 0;
425 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
427 typedef struct arc_callback arc_callback_t;
429 struct arc_callback {
430 void *acb_private;
431 arc_done_func_t *acb_done;
432 arc_buf_t *acb_buf;
433 zio_t *acb_zio_dummy;
434 arc_callback_t *acb_next;
437 typedef struct arc_write_callback arc_write_callback_t;
439 struct arc_write_callback {
440 void *awcb_private;
441 arc_done_func_t *awcb_ready;
442 arc_done_func_t *awcb_done;
443 arc_buf_t *awcb_buf;
446 struct arc_buf_hdr {
447 /* protected by hash lock */
448 dva_t b_dva;
449 uint64_t b_birth;
450 uint64_t b_cksum0;
452 kmutex_t b_freeze_lock;
453 zio_cksum_t *b_freeze_cksum;
454 void *b_thawed;
456 arc_buf_hdr_t *b_hash_next;
457 arc_buf_t *b_buf;
458 uint32_t b_flags;
459 uint32_t b_datacnt;
461 arc_callback_t *b_acb;
462 kcondvar_t b_cv;
464 /* immutable */
465 arc_buf_contents_t b_type;
466 uint64_t b_size;
467 uint64_t b_spa;
469 /* protected by arc state mutex */
470 arc_state_t *b_state;
471 list_node_t b_arc_node;
473 /* updated atomically */
474 clock_t b_arc_access;
476 /* self protecting */
477 refcount_t b_refcnt;
479 l2arc_buf_hdr_t *b_l2hdr;
480 list_node_t b_l2node;
483 static arc_buf_t *arc_eviction_list;
484 static kmutex_t arc_eviction_mtx;
485 static arc_buf_hdr_t arc_eviction_hdr;
486 static void arc_get_data_buf(arc_buf_t *buf);
487 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
488 static int arc_evict_needed(arc_buf_contents_t type);
489 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
490 static void arc_buf_watch(arc_buf_t *buf);
492 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
494 #define GHOST_STATE(state) \
495 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
496 (state) == arc_l2c_only)
499 * Private ARC flags. These flags are private ARC only flags that will show up
500 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
501 * be passed in as arc_flags in things like arc_read. However, these flags
502 * should never be passed and should only be set by ARC code. When adding new
503 * public flags, make sure not to smash the private ones.
506 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
507 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
508 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
509 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
510 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
511 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
512 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
513 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
514 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
515 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
517 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
518 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
519 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
520 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
521 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
522 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
523 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
524 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
525 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
526 (hdr)->b_l2hdr != NULL)
527 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
528 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
529 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
532 * Other sizes
535 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
536 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
539 * Hash table routines
542 #define HT_LOCK_PAD 64
544 struct ht_lock {
545 kmutex_t ht_lock;
546 #ifdef _KERNEL
547 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
548 #endif
551 #define BUF_LOCKS 256
552 typedef struct buf_hash_table {
553 uint64_t ht_mask;
554 arc_buf_hdr_t **ht_table;
555 struct ht_lock ht_locks[BUF_LOCKS];
556 } buf_hash_table_t;
558 static buf_hash_table_t buf_hash_table;
560 #define BUF_HASH_INDEX(spa, dva, birth) \
561 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
562 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
563 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
564 #define HDR_LOCK(hdr) \
565 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
567 uint64_t zfs_crc64_table[256];
570 * Level 2 ARC
573 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
574 #define L2ARC_HEADROOM 2 /* num of writes */
575 #define L2ARC_FEED_SECS 1 /* caching interval secs */
576 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
578 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
579 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
582 * L2ARC Performance Tunables
584 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
585 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
586 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
587 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
588 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
589 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
590 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
591 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
594 * L2ARC Internals
596 typedef struct l2arc_dev {
597 vdev_t *l2ad_vdev; /* vdev */
598 spa_t *l2ad_spa; /* spa */
599 uint64_t l2ad_hand; /* next write location */
600 uint64_t l2ad_write; /* desired write size, bytes */
601 uint64_t l2ad_boost; /* warmup write boost, bytes */
602 uint64_t l2ad_start; /* first addr on device */
603 uint64_t l2ad_end; /* last addr on device */
604 uint64_t l2ad_evict; /* last addr eviction reached */
605 boolean_t l2ad_first; /* first sweep through */
606 boolean_t l2ad_writing; /* currently writing */
607 list_t *l2ad_buflist; /* buffer list */
608 list_node_t l2ad_node; /* device list node */
609 } l2arc_dev_t;
611 static list_t L2ARC_dev_list; /* device list */
612 static list_t *l2arc_dev_list; /* device list pointer */
613 static kmutex_t l2arc_dev_mtx; /* device list mutex */
614 static l2arc_dev_t *l2arc_dev_last; /* last device used */
615 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
616 static list_t L2ARC_free_on_write; /* free after write buf list */
617 static list_t *l2arc_free_on_write; /* free after write list ptr */
618 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
619 static uint64_t l2arc_ndev; /* number of devices */
621 typedef struct l2arc_read_callback {
622 arc_buf_t *l2rcb_buf; /* read buffer */
623 spa_t *l2rcb_spa; /* spa */
624 blkptr_t l2rcb_bp; /* original blkptr */
625 zbookmark_t l2rcb_zb; /* original bookmark */
626 int l2rcb_flags; /* original flags */
627 } l2arc_read_callback_t;
629 typedef struct l2arc_write_callback {
630 l2arc_dev_t *l2wcb_dev; /* device info */
631 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
632 } l2arc_write_callback_t;
634 struct l2arc_buf_hdr {
635 /* protected by arc_buf_hdr mutex */
636 l2arc_dev_t *b_dev; /* L2ARC device */
637 uint64_t b_daddr; /* disk address, offset byte */
640 typedef struct l2arc_data_free {
641 /* protected by l2arc_free_on_write_mtx */
642 void *l2df_data;
643 size_t l2df_size;
644 void (*l2df_func)(void *, size_t);
645 list_node_t l2df_list_node;
646 } l2arc_data_free_t;
648 static kmutex_t l2arc_feed_thr_lock;
649 static kcondvar_t l2arc_feed_thr_cv;
650 static uint8_t l2arc_thread_exit;
652 static void l2arc_read_done(zio_t *zio);
653 static void l2arc_hdr_stat_add(void);
654 static void l2arc_hdr_stat_remove(void);
656 static uint64_t
657 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
659 uint8_t *vdva = (uint8_t *)dva;
660 uint64_t crc = -1ULL;
661 int i;
663 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
665 for (i = 0; i < sizeof (dva_t); i++)
666 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
668 crc ^= (spa>>8) ^ birth;
670 return (crc);
673 #define BUF_EMPTY(buf) \
674 ((buf)->b_dva.dva_word[0] == 0 && \
675 (buf)->b_dva.dva_word[1] == 0 && \
676 (buf)->b_birth == 0)
678 #define BUF_EQUAL(spa, dva, birth, buf) \
679 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
680 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
681 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
683 static void
684 buf_discard_identity(arc_buf_hdr_t *hdr)
686 hdr->b_dva.dva_word[0] = 0;
687 hdr->b_dva.dva_word[1] = 0;
688 hdr->b_birth = 0;
689 hdr->b_cksum0 = 0;
692 static arc_buf_hdr_t *
693 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
695 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
696 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
697 arc_buf_hdr_t *buf;
699 mutex_enter(hash_lock);
700 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
701 buf = buf->b_hash_next) {
702 if (BUF_EQUAL(spa, dva, birth, buf)) {
703 *lockp = hash_lock;
704 return (buf);
707 mutex_exit(hash_lock);
708 *lockp = NULL;
709 return (NULL);
713 * Insert an entry into the hash table. If there is already an element
714 * equal to elem in the hash table, then the already existing element
715 * will be returned and the new element will not be inserted.
716 * Otherwise returns NULL.
718 static arc_buf_hdr_t *
719 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
721 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
722 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
723 arc_buf_hdr_t *fbuf;
724 uint32_t i;
726 ASSERT(!HDR_IN_HASH_TABLE(buf));
727 *lockp = hash_lock;
728 mutex_enter(hash_lock);
729 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
730 fbuf = fbuf->b_hash_next, i++) {
731 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
732 return (fbuf);
735 buf->b_hash_next = buf_hash_table.ht_table[idx];
736 buf_hash_table.ht_table[idx] = buf;
737 buf->b_flags |= ARC_IN_HASH_TABLE;
739 /* collect some hash table performance data */
740 if (i > 0) {
741 ARCSTAT_BUMP(arcstat_hash_collisions);
742 if (i == 1)
743 ARCSTAT_BUMP(arcstat_hash_chains);
745 ARCSTAT_MAX(arcstat_hash_chain_max, i);
748 ARCSTAT_BUMP(arcstat_hash_elements);
749 ARCSTAT_MAXSTAT(arcstat_hash_elements);
751 return (NULL);
754 static void
755 buf_hash_remove(arc_buf_hdr_t *buf)
757 arc_buf_hdr_t *fbuf, **bufp;
758 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
760 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
761 ASSERT(HDR_IN_HASH_TABLE(buf));
763 bufp = &buf_hash_table.ht_table[idx];
764 while ((fbuf = *bufp) != buf) {
765 ASSERT(fbuf != NULL);
766 bufp = &fbuf->b_hash_next;
768 *bufp = buf->b_hash_next;
769 buf->b_hash_next = NULL;
770 buf->b_flags &= ~ARC_IN_HASH_TABLE;
772 /* collect some hash table performance data */
773 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
775 if (buf_hash_table.ht_table[idx] &&
776 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
777 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
781 * Global data structures and functions for the buf kmem cache.
783 static kmem_cache_t *hdr_cache;
784 static kmem_cache_t *buf_cache;
786 static void
787 buf_fini(void)
789 int i;
791 kmem_free(buf_hash_table.ht_table,
792 (buf_hash_table.ht_mask + 1) * sizeof (void *));
793 for (i = 0; i < BUF_LOCKS; i++)
794 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
795 kmem_cache_destroy(hdr_cache);
796 kmem_cache_destroy(buf_cache);
800 * Constructor callback - called when the cache is empty
801 * and a new buf is requested.
803 /* ARGSUSED */
804 static int
805 hdr_cons(void *vbuf, void *unused, int kmflag)
807 arc_buf_hdr_t *buf = vbuf;
809 bzero(buf, sizeof (arc_buf_hdr_t));
810 refcount_create(&buf->b_refcnt);
811 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
812 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
813 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
815 return (0);
818 /* ARGSUSED */
819 static int
820 buf_cons(void *vbuf, void *unused, int kmflag)
822 arc_buf_t *buf = vbuf;
824 bzero(buf, sizeof (arc_buf_t));
825 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
826 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
827 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
829 return (0);
833 * Destructor callback - called when a cached buf is
834 * no longer required.
836 /* ARGSUSED */
837 static void
838 hdr_dest(void *vbuf, void *unused)
840 arc_buf_hdr_t *buf = vbuf;
842 ASSERT(BUF_EMPTY(buf));
843 refcount_destroy(&buf->b_refcnt);
844 cv_destroy(&buf->b_cv);
845 mutex_destroy(&buf->b_freeze_lock);
846 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
849 /* ARGSUSED */
850 static void
851 buf_dest(void *vbuf, void *unused)
853 arc_buf_t *buf = vbuf;
855 mutex_destroy(&buf->b_evict_lock);
856 rw_destroy(&buf->b_data_lock);
857 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
861 * Reclaim callback -- invoked when memory is low.
863 /* ARGSUSED */
864 static void
865 hdr_recl(void *unused)
867 dprintf("hdr_recl called\n");
869 * umem calls the reclaim func when we destroy the buf cache,
870 * which is after we do arc_fini().
872 if (!arc_dead)
873 cv_signal(&arc_reclaim_thr_cv);
876 static void
877 buf_init(void)
879 uint64_t *ct;
880 uint64_t hsize = 1ULL << 12;
881 int i, j;
884 * The hash table is big enough to fill all of physical memory
885 * with an average 64K block size. The table will take up
886 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
888 while (hsize * 65536 < physmem * PAGESIZE)
889 hsize <<= 1;
890 retry:
891 buf_hash_table.ht_mask = hsize - 1;
892 buf_hash_table.ht_table =
893 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
894 if (buf_hash_table.ht_table == NULL) {
895 ASSERT(hsize > (1ULL << 8));
896 hsize >>= 1;
897 goto retry;
900 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
901 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
902 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
903 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
905 for (i = 0; i < 256; i++)
906 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
907 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
909 for (i = 0; i < BUF_LOCKS; i++) {
910 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
911 NULL, MUTEX_DEFAULT, NULL);
915 #define ARC_MINTIME (hz>>4) /* 62 ms */
917 static void
918 arc_cksum_verify(arc_buf_t *buf)
920 zio_cksum_t zc;
922 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
923 return;
925 mutex_enter(&buf->b_hdr->b_freeze_lock);
926 if (buf->b_hdr->b_freeze_cksum == NULL ||
927 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
928 mutex_exit(&buf->b_hdr->b_freeze_lock);
929 return;
931 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
932 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
933 panic("buffer modified while frozen!");
934 mutex_exit(&buf->b_hdr->b_freeze_lock);
937 static int
938 arc_cksum_equal(arc_buf_t *buf)
940 zio_cksum_t zc;
941 int equal;
943 mutex_enter(&buf->b_hdr->b_freeze_lock);
944 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
945 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
946 mutex_exit(&buf->b_hdr->b_freeze_lock);
948 return (equal);
951 static void
952 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
954 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
955 return;
957 mutex_enter(&buf->b_hdr->b_freeze_lock);
958 if (buf->b_hdr->b_freeze_cksum != NULL) {
959 mutex_exit(&buf->b_hdr->b_freeze_lock);
960 return;
962 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
963 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
964 buf->b_hdr->b_freeze_cksum);
965 mutex_exit(&buf->b_hdr->b_freeze_lock);
966 arc_buf_watch(buf);
969 #ifndef _KERNEL
970 typedef struct procctl {
971 long cmd;
972 prwatch_t prwatch;
973 } procctl_t;
974 #endif
976 /* ARGSUSED */
977 static void
978 arc_buf_unwatch(arc_buf_t *buf)
980 #ifndef _KERNEL
981 if (arc_watch) {
982 int result;
983 procctl_t ctl;
984 ctl.cmd = PCWATCH;
985 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
986 ctl.prwatch.pr_size = 0;
987 ctl.prwatch.pr_wflags = 0;
988 result = write(arc_procfd, &ctl, sizeof (ctl));
989 ASSERT3U(result, ==, sizeof (ctl));
991 #endif
994 /* ARGSUSED */
995 static void
996 arc_buf_watch(arc_buf_t *buf)
998 #ifndef _KERNEL
999 if (arc_watch) {
1000 int result;
1001 procctl_t ctl;
1002 ctl.cmd = PCWATCH;
1003 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1004 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1005 ctl.prwatch.pr_wflags = WA_WRITE;
1006 result = write(arc_procfd, &ctl, sizeof (ctl));
1007 ASSERT3U(result, ==, sizeof (ctl));
1009 #endif
1012 void
1013 arc_buf_thaw(arc_buf_t *buf)
1015 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1016 if (buf->b_hdr->b_state != arc_anon)
1017 panic("modifying non-anon buffer!");
1018 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1019 panic("modifying buffer while i/o in progress!");
1020 arc_cksum_verify(buf);
1023 mutex_enter(&buf->b_hdr->b_freeze_lock);
1024 if (buf->b_hdr->b_freeze_cksum != NULL) {
1025 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1026 buf->b_hdr->b_freeze_cksum = NULL;
1029 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1030 if (buf->b_hdr->b_thawed)
1031 kmem_free(buf->b_hdr->b_thawed, 1);
1032 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1035 mutex_exit(&buf->b_hdr->b_freeze_lock);
1037 arc_buf_unwatch(buf);
1040 void
1041 arc_buf_freeze(arc_buf_t *buf)
1043 kmutex_t *hash_lock;
1045 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1046 return;
1048 hash_lock = HDR_LOCK(buf->b_hdr);
1049 mutex_enter(hash_lock);
1051 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1052 buf->b_hdr->b_state == arc_anon);
1053 arc_cksum_compute(buf, B_FALSE);
1054 mutex_exit(hash_lock);
1058 static void
1059 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1061 ASSERT(MUTEX_HELD(hash_lock));
1063 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1064 (ab->b_state != arc_anon)) {
1065 uint64_t delta = ab->b_size * ab->b_datacnt;
1066 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1067 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1069 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1070 mutex_enter(&ab->b_state->arcs_mtx);
1071 ASSERT(list_link_active(&ab->b_arc_node));
1072 list_remove(list, ab);
1073 if (GHOST_STATE(ab->b_state)) {
1074 ASSERT0(ab->b_datacnt);
1075 ASSERT3P(ab->b_buf, ==, NULL);
1076 delta = ab->b_size;
1078 ASSERT(delta > 0);
1079 ASSERT3U(*size, >=, delta);
1080 atomic_add_64(size, -delta);
1081 mutex_exit(&ab->b_state->arcs_mtx);
1082 /* remove the prefetch flag if we get a reference */
1083 if (ab->b_flags & ARC_PREFETCH)
1084 ab->b_flags &= ~ARC_PREFETCH;
1088 static int
1089 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1091 int cnt;
1092 arc_state_t *state = ab->b_state;
1094 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1095 ASSERT(!GHOST_STATE(state));
1097 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1098 (state != arc_anon)) {
1099 uint64_t *size = &state->arcs_lsize[ab->b_type];
1101 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1102 mutex_enter(&state->arcs_mtx);
1103 ASSERT(!list_link_active(&ab->b_arc_node));
1104 list_insert_head(&state->arcs_list[ab->b_type], ab);
1105 ASSERT(ab->b_datacnt > 0);
1106 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1107 mutex_exit(&state->arcs_mtx);
1109 return (cnt);
1113 * Move the supplied buffer to the indicated state. The mutex
1114 * for the buffer must be held by the caller.
1116 static void
1117 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1119 arc_state_t *old_state = ab->b_state;
1120 int64_t refcnt = refcount_count(&ab->b_refcnt);
1121 uint64_t from_delta, to_delta;
1123 ASSERT(MUTEX_HELD(hash_lock));
1124 ASSERT(new_state != old_state);
1125 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1126 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1127 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1129 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1132 * If this buffer is evictable, transfer it from the
1133 * old state list to the new state list.
1135 if (refcnt == 0) {
1136 if (old_state != arc_anon) {
1137 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1138 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1140 if (use_mutex)
1141 mutex_enter(&old_state->arcs_mtx);
1143 ASSERT(list_link_active(&ab->b_arc_node));
1144 list_remove(&old_state->arcs_list[ab->b_type], ab);
1147 * If prefetching out of the ghost cache,
1148 * we will have a non-zero datacnt.
1150 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1151 /* ghost elements have a ghost size */
1152 ASSERT(ab->b_buf == NULL);
1153 from_delta = ab->b_size;
1155 ASSERT3U(*size, >=, from_delta);
1156 atomic_add_64(size, -from_delta);
1158 if (use_mutex)
1159 mutex_exit(&old_state->arcs_mtx);
1161 if (new_state != arc_anon) {
1162 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1163 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1165 if (use_mutex)
1166 mutex_enter(&new_state->arcs_mtx);
1168 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1170 /* ghost elements have a ghost size */
1171 if (GHOST_STATE(new_state)) {
1172 ASSERT(ab->b_datacnt == 0);
1173 ASSERT(ab->b_buf == NULL);
1174 to_delta = ab->b_size;
1176 atomic_add_64(size, to_delta);
1178 if (use_mutex)
1179 mutex_exit(&new_state->arcs_mtx);
1183 ASSERT(!BUF_EMPTY(ab));
1184 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1185 buf_hash_remove(ab);
1187 /* adjust state sizes */
1188 if (to_delta)
1189 atomic_add_64(&new_state->arcs_size, to_delta);
1190 if (from_delta) {
1191 ASSERT3U(old_state->arcs_size, >=, from_delta);
1192 atomic_add_64(&old_state->arcs_size, -from_delta);
1194 ab->b_state = new_state;
1196 /* adjust l2arc hdr stats */
1197 if (new_state == arc_l2c_only)
1198 l2arc_hdr_stat_add();
1199 else if (old_state == arc_l2c_only)
1200 l2arc_hdr_stat_remove();
1203 void
1204 arc_space_consume(uint64_t space, arc_space_type_t type)
1206 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1208 switch (type) {
1209 case ARC_SPACE_DATA:
1210 ARCSTAT_INCR(arcstat_data_size, space);
1211 break;
1212 case ARC_SPACE_OTHER:
1213 ARCSTAT_INCR(arcstat_other_size, space);
1214 break;
1215 case ARC_SPACE_HDRS:
1216 ARCSTAT_INCR(arcstat_hdr_size, space);
1217 break;
1218 case ARC_SPACE_L2HDRS:
1219 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1220 break;
1223 atomic_add_64(&arc_meta_used, space);
1224 atomic_add_64(&arc_size, space);
1227 void
1228 arc_space_return(uint64_t space, arc_space_type_t type)
1230 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1232 switch (type) {
1233 case ARC_SPACE_DATA:
1234 ARCSTAT_INCR(arcstat_data_size, -space);
1235 break;
1236 case ARC_SPACE_OTHER:
1237 ARCSTAT_INCR(arcstat_other_size, -space);
1238 break;
1239 case ARC_SPACE_HDRS:
1240 ARCSTAT_INCR(arcstat_hdr_size, -space);
1241 break;
1242 case ARC_SPACE_L2HDRS:
1243 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1244 break;
1247 ASSERT(arc_meta_used >= space);
1248 if (arc_meta_max < arc_meta_used)
1249 arc_meta_max = arc_meta_used;
1250 atomic_add_64(&arc_meta_used, -space);
1251 ASSERT(arc_size >= space);
1252 atomic_add_64(&arc_size, -space);
1255 void *
1256 arc_data_buf_alloc(uint64_t size)
1258 if (arc_evict_needed(ARC_BUFC_DATA))
1259 cv_signal(&arc_reclaim_thr_cv);
1260 atomic_add_64(&arc_size, size);
1261 return (zio_data_buf_alloc(size));
1264 void
1265 arc_data_buf_free(void *buf, uint64_t size)
1267 zio_data_buf_free(buf, size);
1268 ASSERT(arc_size >= size);
1269 atomic_add_64(&arc_size, -size);
1272 arc_buf_t *
1273 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1275 arc_buf_hdr_t *hdr;
1276 arc_buf_t *buf;
1278 ASSERT3U(size, >, 0);
1279 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1280 ASSERT(BUF_EMPTY(hdr));
1281 hdr->b_size = size;
1282 hdr->b_type = type;
1283 hdr->b_spa = spa_load_guid(spa);
1284 hdr->b_state = arc_anon;
1285 hdr->b_arc_access = 0;
1286 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1287 buf->b_hdr = hdr;
1288 buf->b_data = NULL;
1289 buf->b_efunc = NULL;
1290 buf->b_private = NULL;
1291 buf->b_next = NULL;
1292 hdr->b_buf = buf;
1293 arc_get_data_buf(buf);
1294 hdr->b_datacnt = 1;
1295 hdr->b_flags = 0;
1296 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1297 (void) refcount_add(&hdr->b_refcnt, tag);
1299 return (buf);
1302 static char *arc_onloan_tag = "onloan";
1305 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1306 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1307 * buffers must be returned to the arc before they can be used by the DMU or
1308 * freed.
1310 arc_buf_t *
1311 arc_loan_buf(spa_t *spa, int size)
1313 arc_buf_t *buf;
1315 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1317 atomic_add_64(&arc_loaned_bytes, size);
1318 return (buf);
1322 * Return a loaned arc buffer to the arc.
1324 void
1325 arc_return_buf(arc_buf_t *buf, void *tag)
1327 arc_buf_hdr_t *hdr = buf->b_hdr;
1329 ASSERT(buf->b_data != NULL);
1330 (void) refcount_add(&hdr->b_refcnt, tag);
1331 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1333 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1336 /* Detach an arc_buf from a dbuf (tag) */
1337 void
1338 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1340 arc_buf_hdr_t *hdr;
1342 ASSERT(buf->b_data != NULL);
1343 hdr = buf->b_hdr;
1344 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1345 (void) refcount_remove(&hdr->b_refcnt, tag);
1346 buf->b_efunc = NULL;
1347 buf->b_private = NULL;
1349 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1352 static arc_buf_t *
1353 arc_buf_clone(arc_buf_t *from)
1355 arc_buf_t *buf;
1356 arc_buf_hdr_t *hdr = from->b_hdr;
1357 uint64_t size = hdr->b_size;
1359 ASSERT(hdr->b_state != arc_anon);
1361 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1362 buf->b_hdr = hdr;
1363 buf->b_data = NULL;
1364 buf->b_efunc = NULL;
1365 buf->b_private = NULL;
1366 buf->b_next = hdr->b_buf;
1367 hdr->b_buf = buf;
1368 arc_get_data_buf(buf);
1369 bcopy(from->b_data, buf->b_data, size);
1372 * This buffer already exists in the arc so create a duplicate
1373 * copy for the caller. If the buffer is associated with user data
1374 * then track the size and number of duplicates. These stats will be
1375 * updated as duplicate buffers are created and destroyed.
1377 if (hdr->b_type == ARC_BUFC_DATA) {
1378 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1379 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1381 hdr->b_datacnt += 1;
1382 return (buf);
1385 void
1386 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1388 arc_buf_hdr_t *hdr;
1389 kmutex_t *hash_lock;
1392 * Check to see if this buffer is evicted. Callers
1393 * must verify b_data != NULL to know if the add_ref
1394 * was successful.
1396 mutex_enter(&buf->b_evict_lock);
1397 if (buf->b_data == NULL) {
1398 mutex_exit(&buf->b_evict_lock);
1399 return;
1401 hash_lock = HDR_LOCK(buf->b_hdr);
1402 mutex_enter(hash_lock);
1403 hdr = buf->b_hdr;
1404 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1405 mutex_exit(&buf->b_evict_lock);
1407 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1408 add_reference(hdr, hash_lock, tag);
1409 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1410 arc_access(hdr, hash_lock);
1411 mutex_exit(hash_lock);
1412 ARCSTAT_BUMP(arcstat_hits);
1413 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1414 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1415 data, metadata, hits);
1419 * Free the arc data buffer. If it is an l2arc write in progress,
1420 * the buffer is placed on l2arc_free_on_write to be freed later.
1422 static void
1423 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1425 arc_buf_hdr_t *hdr = buf->b_hdr;
1427 if (HDR_L2_WRITING(hdr)) {
1428 l2arc_data_free_t *df;
1429 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1430 df->l2df_data = buf->b_data;
1431 df->l2df_size = hdr->b_size;
1432 df->l2df_func = free_func;
1433 mutex_enter(&l2arc_free_on_write_mtx);
1434 list_insert_head(l2arc_free_on_write, df);
1435 mutex_exit(&l2arc_free_on_write_mtx);
1436 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1437 } else {
1438 free_func(buf->b_data, hdr->b_size);
1442 static void
1443 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1445 arc_buf_t **bufp;
1447 /* free up data associated with the buf */
1448 if (buf->b_data) {
1449 arc_state_t *state = buf->b_hdr->b_state;
1450 uint64_t size = buf->b_hdr->b_size;
1451 arc_buf_contents_t type = buf->b_hdr->b_type;
1453 arc_cksum_verify(buf);
1454 arc_buf_unwatch(buf);
1456 if (!recycle) {
1457 if (type == ARC_BUFC_METADATA) {
1458 arc_buf_data_free(buf, zio_buf_free);
1459 arc_space_return(size, ARC_SPACE_DATA);
1460 } else {
1461 ASSERT(type == ARC_BUFC_DATA);
1462 arc_buf_data_free(buf, zio_data_buf_free);
1463 ARCSTAT_INCR(arcstat_data_size, -size);
1464 atomic_add_64(&arc_size, -size);
1467 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1468 uint64_t *cnt = &state->arcs_lsize[type];
1470 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1471 ASSERT(state != arc_anon);
1473 ASSERT3U(*cnt, >=, size);
1474 atomic_add_64(cnt, -size);
1476 ASSERT3U(state->arcs_size, >=, size);
1477 atomic_add_64(&state->arcs_size, -size);
1478 buf->b_data = NULL;
1481 * If we're destroying a duplicate buffer make sure
1482 * that the appropriate statistics are updated.
1484 if (buf->b_hdr->b_datacnt > 1 &&
1485 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1486 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1487 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1489 ASSERT(buf->b_hdr->b_datacnt > 0);
1490 buf->b_hdr->b_datacnt -= 1;
1493 /* only remove the buf if requested */
1494 if (!all)
1495 return;
1497 /* remove the buf from the hdr list */
1498 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1499 continue;
1500 *bufp = buf->b_next;
1501 buf->b_next = NULL;
1503 ASSERT(buf->b_efunc == NULL);
1505 /* clean up the buf */
1506 buf->b_hdr = NULL;
1507 kmem_cache_free(buf_cache, buf);
1510 static void
1511 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1513 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1514 ASSERT3P(hdr->b_state, ==, arc_anon);
1515 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1516 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1518 if (l2hdr != NULL) {
1519 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1521 * To prevent arc_free() and l2arc_evict() from
1522 * attempting to free the same buffer at the same time,
1523 * a FREE_IN_PROGRESS flag is given to arc_free() to
1524 * give it priority. l2arc_evict() can't destroy this
1525 * header while we are waiting on l2arc_buflist_mtx.
1527 * The hdr may be removed from l2ad_buflist before we
1528 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1530 if (!buflist_held) {
1531 mutex_enter(&l2arc_buflist_mtx);
1532 l2hdr = hdr->b_l2hdr;
1535 if (l2hdr != NULL) {
1536 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1537 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1538 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1539 if (hdr->b_state == arc_l2c_only)
1540 l2arc_hdr_stat_remove();
1541 hdr->b_l2hdr = NULL;
1544 if (!buflist_held)
1545 mutex_exit(&l2arc_buflist_mtx);
1548 if (!BUF_EMPTY(hdr)) {
1549 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1550 buf_discard_identity(hdr);
1552 while (hdr->b_buf) {
1553 arc_buf_t *buf = hdr->b_buf;
1555 if (buf->b_efunc) {
1556 mutex_enter(&arc_eviction_mtx);
1557 mutex_enter(&buf->b_evict_lock);
1558 ASSERT(buf->b_hdr != NULL);
1559 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1560 hdr->b_buf = buf->b_next;
1561 buf->b_hdr = &arc_eviction_hdr;
1562 buf->b_next = arc_eviction_list;
1563 arc_eviction_list = buf;
1564 mutex_exit(&buf->b_evict_lock);
1565 mutex_exit(&arc_eviction_mtx);
1566 } else {
1567 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1570 if (hdr->b_freeze_cksum != NULL) {
1571 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1572 hdr->b_freeze_cksum = NULL;
1574 if (hdr->b_thawed) {
1575 kmem_free(hdr->b_thawed, 1);
1576 hdr->b_thawed = NULL;
1579 ASSERT(!list_link_active(&hdr->b_arc_node));
1580 ASSERT3P(hdr->b_hash_next, ==, NULL);
1581 ASSERT3P(hdr->b_acb, ==, NULL);
1582 kmem_cache_free(hdr_cache, hdr);
1585 void
1586 arc_buf_free(arc_buf_t *buf, void *tag)
1588 arc_buf_hdr_t *hdr = buf->b_hdr;
1589 int hashed = hdr->b_state != arc_anon;
1591 ASSERT(buf->b_efunc == NULL);
1592 ASSERT(buf->b_data != NULL);
1594 if (hashed) {
1595 kmutex_t *hash_lock = HDR_LOCK(hdr);
1597 mutex_enter(hash_lock);
1598 hdr = buf->b_hdr;
1599 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1601 (void) remove_reference(hdr, hash_lock, tag);
1602 if (hdr->b_datacnt > 1) {
1603 arc_buf_destroy(buf, FALSE, TRUE);
1604 } else {
1605 ASSERT(buf == hdr->b_buf);
1606 ASSERT(buf->b_efunc == NULL);
1607 hdr->b_flags |= ARC_BUF_AVAILABLE;
1609 mutex_exit(hash_lock);
1610 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1611 int destroy_hdr;
1613 * We are in the middle of an async write. Don't destroy
1614 * this buffer unless the write completes before we finish
1615 * decrementing the reference count.
1617 mutex_enter(&arc_eviction_mtx);
1618 (void) remove_reference(hdr, NULL, tag);
1619 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1620 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1621 mutex_exit(&arc_eviction_mtx);
1622 if (destroy_hdr)
1623 arc_hdr_destroy(hdr);
1624 } else {
1625 if (remove_reference(hdr, NULL, tag) > 0)
1626 arc_buf_destroy(buf, FALSE, TRUE);
1627 else
1628 arc_hdr_destroy(hdr);
1633 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1635 arc_buf_hdr_t *hdr = buf->b_hdr;
1636 kmutex_t *hash_lock = HDR_LOCK(hdr);
1637 int no_callback = (buf->b_efunc == NULL);
1639 if (hdr->b_state == arc_anon) {
1640 ASSERT(hdr->b_datacnt == 1);
1641 arc_buf_free(buf, tag);
1642 return (no_callback);
1645 mutex_enter(hash_lock);
1646 hdr = buf->b_hdr;
1647 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1648 ASSERT(hdr->b_state != arc_anon);
1649 ASSERT(buf->b_data != NULL);
1651 (void) remove_reference(hdr, hash_lock, tag);
1652 if (hdr->b_datacnt > 1) {
1653 if (no_callback)
1654 arc_buf_destroy(buf, FALSE, TRUE);
1655 } else if (no_callback) {
1656 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1657 ASSERT(buf->b_efunc == NULL);
1658 hdr->b_flags |= ARC_BUF_AVAILABLE;
1660 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1661 refcount_is_zero(&hdr->b_refcnt));
1662 mutex_exit(hash_lock);
1663 return (no_callback);
1667 arc_buf_size(arc_buf_t *buf)
1669 return (buf->b_hdr->b_size);
1673 * Called from the DMU to determine if the current buffer should be
1674 * evicted. In order to ensure proper locking, the eviction must be initiated
1675 * from the DMU. Return true if the buffer is associated with user data and
1676 * duplicate buffers still exist.
1678 boolean_t
1679 arc_buf_eviction_needed(arc_buf_t *buf)
1681 arc_buf_hdr_t *hdr;
1682 boolean_t evict_needed = B_FALSE;
1684 if (zfs_disable_dup_eviction)
1685 return (B_FALSE);
1687 mutex_enter(&buf->b_evict_lock);
1688 hdr = buf->b_hdr;
1689 if (hdr == NULL) {
1691 * We are in arc_do_user_evicts(); let that function
1692 * perform the eviction.
1694 ASSERT(buf->b_data == NULL);
1695 mutex_exit(&buf->b_evict_lock);
1696 return (B_FALSE);
1697 } else if (buf->b_data == NULL) {
1699 * We have already been added to the arc eviction list;
1700 * recommend eviction.
1702 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1703 mutex_exit(&buf->b_evict_lock);
1704 return (B_TRUE);
1707 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1708 evict_needed = B_TRUE;
1710 mutex_exit(&buf->b_evict_lock);
1711 return (evict_needed);
1715 * Evict buffers from list until we've removed the specified number of
1716 * bytes. Move the removed buffers to the appropriate evict state.
1717 * If the recycle flag is set, then attempt to "recycle" a buffer:
1718 * - look for a buffer to evict that is `bytes' long.
1719 * - return the data block from this buffer rather than freeing it.
1720 * This flag is used by callers that are trying to make space for a
1721 * new buffer in a full arc cache.
1723 * This function makes a "best effort". It skips over any buffers
1724 * it can't get a hash_lock on, and so may not catch all candidates.
1725 * It may also return without evicting as much space as requested.
1727 static void *
1728 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1729 arc_buf_contents_t type)
1731 arc_state_t *evicted_state;
1732 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1733 arc_buf_hdr_t *ab, *ab_prev = NULL;
1734 list_t *list = &state->arcs_list[type];
1735 kmutex_t *hash_lock;
1736 boolean_t have_lock;
1737 void *stolen = NULL;
1739 ASSERT(state == arc_mru || state == arc_mfu);
1741 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1743 mutex_enter(&state->arcs_mtx);
1744 mutex_enter(&evicted_state->arcs_mtx);
1746 for (ab = list_tail(list); ab; ab = ab_prev) {
1747 ab_prev = list_prev(list, ab);
1748 /* prefetch buffers have a minimum lifespan */
1749 if (HDR_IO_IN_PROGRESS(ab) ||
1750 (spa && ab->b_spa != spa) ||
1751 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1752 ddi_get_lbolt() - ab->b_arc_access <
1753 arc_min_prefetch_lifespan)) {
1754 skipped++;
1755 continue;
1757 /* "lookahead" for better eviction candidate */
1758 if (recycle && ab->b_size != bytes &&
1759 ab_prev && ab_prev->b_size == bytes)
1760 continue;
1761 hash_lock = HDR_LOCK(ab);
1762 have_lock = MUTEX_HELD(hash_lock);
1763 if (have_lock || mutex_tryenter(hash_lock)) {
1764 ASSERT0(refcount_count(&ab->b_refcnt));
1765 ASSERT(ab->b_datacnt > 0);
1766 while (ab->b_buf) {
1767 arc_buf_t *buf = ab->b_buf;
1768 if (!mutex_tryenter(&buf->b_evict_lock)) {
1769 missed += 1;
1770 break;
1772 if (buf->b_data) {
1773 bytes_evicted += ab->b_size;
1774 if (recycle && ab->b_type == type &&
1775 ab->b_size == bytes &&
1776 !HDR_L2_WRITING(ab)) {
1777 stolen = buf->b_data;
1778 recycle = FALSE;
1781 if (buf->b_efunc) {
1782 mutex_enter(&arc_eviction_mtx);
1783 arc_buf_destroy(buf,
1784 buf->b_data == stolen, FALSE);
1785 ab->b_buf = buf->b_next;
1786 buf->b_hdr = &arc_eviction_hdr;
1787 buf->b_next = arc_eviction_list;
1788 arc_eviction_list = buf;
1789 mutex_exit(&arc_eviction_mtx);
1790 mutex_exit(&buf->b_evict_lock);
1791 } else {
1792 mutex_exit(&buf->b_evict_lock);
1793 arc_buf_destroy(buf,
1794 buf->b_data == stolen, TRUE);
1798 if (ab->b_l2hdr) {
1799 ARCSTAT_INCR(arcstat_evict_l2_cached,
1800 ab->b_size);
1801 } else {
1802 if (l2arc_write_eligible(ab->b_spa, ab)) {
1803 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1804 ab->b_size);
1805 } else {
1806 ARCSTAT_INCR(
1807 arcstat_evict_l2_ineligible,
1808 ab->b_size);
1812 if (ab->b_datacnt == 0) {
1813 arc_change_state(evicted_state, ab, hash_lock);
1814 ASSERT(HDR_IN_HASH_TABLE(ab));
1815 ab->b_flags |= ARC_IN_HASH_TABLE;
1816 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1817 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1819 if (!have_lock)
1820 mutex_exit(hash_lock);
1821 if (bytes >= 0 && bytes_evicted >= bytes)
1822 break;
1823 } else {
1824 missed += 1;
1828 mutex_exit(&evicted_state->arcs_mtx);
1829 mutex_exit(&state->arcs_mtx);
1831 if (bytes_evicted < bytes)
1832 dprintf("only evicted %lld bytes from %x",
1833 (longlong_t)bytes_evicted, state);
1835 if (skipped)
1836 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1838 if (missed)
1839 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1842 * We have just evicted some date into the ghost state, make
1843 * sure we also adjust the ghost state size if necessary.
1845 if (arc_no_grow &&
1846 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1847 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1848 arc_mru_ghost->arcs_size - arc_c;
1850 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1851 int64_t todelete =
1852 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1853 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1854 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1855 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1856 arc_mru_ghost->arcs_size +
1857 arc_mfu_ghost->arcs_size - arc_c);
1858 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1862 return (stolen);
1866 * Remove buffers from list until we've removed the specified number of
1867 * bytes. Destroy the buffers that are removed.
1869 static void
1870 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1872 arc_buf_hdr_t *ab, *ab_prev;
1873 arc_buf_hdr_t marker = { 0 };
1874 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1875 kmutex_t *hash_lock;
1876 uint64_t bytes_deleted = 0;
1877 uint64_t bufs_skipped = 0;
1879 ASSERT(GHOST_STATE(state));
1880 top:
1881 mutex_enter(&state->arcs_mtx);
1882 for (ab = list_tail(list); ab; ab = ab_prev) {
1883 ab_prev = list_prev(list, ab);
1884 if (spa && ab->b_spa != spa)
1885 continue;
1887 /* ignore markers */
1888 if (ab->b_spa == 0)
1889 continue;
1891 hash_lock = HDR_LOCK(ab);
1892 /* caller may be trying to modify this buffer, skip it */
1893 if (MUTEX_HELD(hash_lock))
1894 continue;
1895 if (mutex_tryenter(hash_lock)) {
1896 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1897 ASSERT(ab->b_buf == NULL);
1898 ARCSTAT_BUMP(arcstat_deleted);
1899 bytes_deleted += ab->b_size;
1901 if (ab->b_l2hdr != NULL) {
1903 * This buffer is cached on the 2nd Level ARC;
1904 * don't destroy the header.
1906 arc_change_state(arc_l2c_only, ab, hash_lock);
1907 mutex_exit(hash_lock);
1908 } else {
1909 arc_change_state(arc_anon, ab, hash_lock);
1910 mutex_exit(hash_lock);
1911 arc_hdr_destroy(ab);
1914 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1915 if (bytes >= 0 && bytes_deleted >= bytes)
1916 break;
1917 } else if (bytes < 0) {
1919 * Insert a list marker and then wait for the
1920 * hash lock to become available. Once its
1921 * available, restart from where we left off.
1923 list_insert_after(list, ab, &marker);
1924 mutex_exit(&state->arcs_mtx);
1925 mutex_enter(hash_lock);
1926 mutex_exit(hash_lock);
1927 mutex_enter(&state->arcs_mtx);
1928 ab_prev = list_prev(list, &marker);
1929 list_remove(list, &marker);
1930 } else
1931 bufs_skipped += 1;
1933 mutex_exit(&state->arcs_mtx);
1935 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1936 (bytes < 0 || bytes_deleted < bytes)) {
1937 list = &state->arcs_list[ARC_BUFC_METADATA];
1938 goto top;
1941 if (bufs_skipped) {
1942 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1943 ASSERT(bytes >= 0);
1946 if (bytes_deleted < bytes)
1947 dprintf("only deleted %lld bytes from %p",
1948 (longlong_t)bytes_deleted, state);
1951 static void
1952 arc_adjust(void)
1954 int64_t adjustment, delta;
1957 * Adjust MRU size
1960 adjustment = MIN((int64_t)(arc_size - arc_c),
1961 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1962 arc_p));
1964 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1965 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1966 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1967 adjustment -= delta;
1970 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1971 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1972 (void) arc_evict(arc_mru, NULL, delta, FALSE,
1973 ARC_BUFC_METADATA);
1977 * Adjust MFU size
1980 adjustment = arc_size - arc_c;
1982 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1983 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1984 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1985 adjustment -= delta;
1988 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1989 int64_t delta = MIN(adjustment,
1990 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1991 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
1992 ARC_BUFC_METADATA);
1996 * Adjust ghost lists
1999 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2001 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2002 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2003 arc_evict_ghost(arc_mru_ghost, NULL, delta);
2006 adjustment =
2007 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2009 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2010 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2011 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2015 static void
2016 arc_do_user_evicts(void)
2018 mutex_enter(&arc_eviction_mtx);
2019 while (arc_eviction_list != NULL) {
2020 arc_buf_t *buf = arc_eviction_list;
2021 arc_eviction_list = buf->b_next;
2022 mutex_enter(&buf->b_evict_lock);
2023 buf->b_hdr = NULL;
2024 mutex_exit(&buf->b_evict_lock);
2025 mutex_exit(&arc_eviction_mtx);
2027 if (buf->b_efunc != NULL)
2028 VERIFY(buf->b_efunc(buf) == 0);
2030 buf->b_efunc = NULL;
2031 buf->b_private = NULL;
2032 kmem_cache_free(buf_cache, buf);
2033 mutex_enter(&arc_eviction_mtx);
2035 mutex_exit(&arc_eviction_mtx);
2039 * Flush all *evictable* data from the cache for the given spa.
2040 * NOTE: this will not touch "active" (i.e. referenced) data.
2042 void
2043 arc_flush(spa_t *spa)
2045 uint64_t guid = 0;
2047 if (spa)
2048 guid = spa_load_guid(spa);
2050 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2051 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2052 if (spa)
2053 break;
2055 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2056 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2057 if (spa)
2058 break;
2060 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2061 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2062 if (spa)
2063 break;
2065 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2066 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2067 if (spa)
2068 break;
2071 arc_evict_ghost(arc_mru_ghost, guid, -1);
2072 arc_evict_ghost(arc_mfu_ghost, guid, -1);
2074 mutex_enter(&arc_reclaim_thr_lock);
2075 arc_do_user_evicts();
2076 mutex_exit(&arc_reclaim_thr_lock);
2077 ASSERT(spa || arc_eviction_list == NULL);
2080 void
2081 arc_shrink(void)
2083 if (arc_c > arc_c_min) {
2084 uint64_t to_free;
2086 #ifdef _KERNEL
2087 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2088 #else
2089 to_free = arc_c >> arc_shrink_shift;
2090 #endif
2091 if (arc_c > arc_c_min + to_free)
2092 atomic_add_64(&arc_c, -to_free);
2093 else
2094 arc_c = arc_c_min;
2096 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2097 if (arc_c > arc_size)
2098 arc_c = MAX(arc_size, arc_c_min);
2099 if (arc_p > arc_c)
2100 arc_p = (arc_c >> 1);
2101 ASSERT(arc_c >= arc_c_min);
2102 ASSERT((int64_t)arc_p >= 0);
2105 if (arc_size > arc_c)
2106 arc_adjust();
2110 * Determine if the system is under memory pressure and is asking
2111 * to reclaim memory. A return value of 1 indicates that the system
2112 * is under memory pressure and that the arc should adjust accordingly.
2114 static int
2115 arc_reclaim_needed(void)
2117 uint64_t extra;
2119 #ifdef _KERNEL
2121 if (needfree)
2122 return (1);
2125 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2127 extra = desfree;
2130 * check that we're out of range of the pageout scanner. It starts to
2131 * schedule paging if freemem is less than lotsfree and needfree.
2132 * lotsfree is the high-water mark for pageout, and needfree is the
2133 * number of needed free pages. We add extra pages here to make sure
2134 * the scanner doesn't start up while we're freeing memory.
2136 if (freemem < lotsfree + needfree + extra)
2137 return (1);
2140 * check to make sure that swapfs has enough space so that anon
2141 * reservations can still succeed. anon_resvmem() checks that the
2142 * availrmem is greater than swapfs_minfree, and the number of reserved
2143 * swap pages. We also add a bit of extra here just to prevent
2144 * circumstances from getting really dire.
2146 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2147 return (1);
2149 #if defined(__i386)
2151 * If we're on an i386 platform, it's possible that we'll exhaust the
2152 * kernel heap space before we ever run out of available physical
2153 * memory. Most checks of the size of the heap_area compare against
2154 * tune.t_minarmem, which is the minimum available real memory that we
2155 * can have in the system. However, this is generally fixed at 25 pages
2156 * which is so low that it's useless. In this comparison, we seek to
2157 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2158 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2159 * free)
2161 if (vmem_size(heap_arena, VMEM_FREE) <
2162 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2163 return (1);
2164 #endif
2167 * If zio data pages are being allocated out of a separate heap segment,
2168 * then enforce that the size of available vmem for this arena remains
2169 * above about 1/16th free.
2171 * Note: The 1/16th arena free requirement was put in place
2172 * to aggressively evict memory from the arc in order to avoid
2173 * memory fragmentation issues.
2175 if (zio_arena != NULL &&
2176 vmem_size(zio_arena, VMEM_FREE) <
2177 (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2178 return (1);
2179 #else
2180 if (spa_get_random(100) == 0)
2181 return (1);
2182 #endif
2183 return (0);
2186 static void
2187 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2189 size_t i;
2190 kmem_cache_t *prev_cache = NULL;
2191 kmem_cache_t *prev_data_cache = NULL;
2192 extern kmem_cache_t *zio_buf_cache[];
2193 extern kmem_cache_t *zio_data_buf_cache[];
2195 #ifdef _KERNEL
2196 if (arc_meta_used >= arc_meta_limit) {
2198 * We are exceeding our meta-data cache limit.
2199 * Purge some DNLC entries to release holds on meta-data.
2201 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2203 #if defined(__i386)
2205 * Reclaim unused memory from all kmem caches.
2207 kmem_reap();
2208 #endif
2209 #endif
2212 * An aggressive reclamation will shrink the cache size as well as
2213 * reap free buffers from the arc kmem caches.
2215 if (strat == ARC_RECLAIM_AGGR)
2216 arc_shrink();
2218 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2219 if (zio_buf_cache[i] != prev_cache) {
2220 prev_cache = zio_buf_cache[i];
2221 kmem_cache_reap_now(zio_buf_cache[i]);
2223 if (zio_data_buf_cache[i] != prev_data_cache) {
2224 prev_data_cache = zio_data_buf_cache[i];
2225 kmem_cache_reap_now(zio_data_buf_cache[i]);
2228 kmem_cache_reap_now(buf_cache);
2229 kmem_cache_reap_now(hdr_cache);
2232 * Ask the vmem areana to reclaim unused memory from its
2233 * quantum caches.
2235 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2236 vmem_qcache_reap(zio_arena);
2239 static void
2240 arc_reclaim_thread(void)
2242 clock_t growtime = 0;
2243 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2244 callb_cpr_t cpr;
2246 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2248 mutex_enter(&arc_reclaim_thr_lock);
2249 while (arc_thread_exit == 0) {
2250 if (arc_reclaim_needed()) {
2252 if (arc_no_grow) {
2253 if (last_reclaim == ARC_RECLAIM_CONS) {
2254 last_reclaim = ARC_RECLAIM_AGGR;
2255 } else {
2256 last_reclaim = ARC_RECLAIM_CONS;
2258 } else {
2259 arc_no_grow = TRUE;
2260 last_reclaim = ARC_RECLAIM_AGGR;
2261 membar_producer();
2264 /* reset the growth delay for every reclaim */
2265 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2267 arc_kmem_reap_now(last_reclaim);
2268 arc_warm = B_TRUE;
2270 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2271 arc_no_grow = FALSE;
2274 arc_adjust();
2276 if (arc_eviction_list != NULL)
2277 arc_do_user_evicts();
2279 /* block until needed, or one second, whichever is shorter */
2280 CALLB_CPR_SAFE_BEGIN(&cpr);
2281 (void) cv_timedwait(&arc_reclaim_thr_cv,
2282 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2283 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2286 arc_thread_exit = 0;
2287 cv_broadcast(&arc_reclaim_thr_cv);
2288 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2289 thread_exit();
2293 * Adapt arc info given the number of bytes we are trying to add and
2294 * the state that we are comming from. This function is only called
2295 * when we are adding new content to the cache.
2297 static void
2298 arc_adapt(int bytes, arc_state_t *state)
2300 int mult;
2301 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2303 if (state == arc_l2c_only)
2304 return;
2306 ASSERT(bytes > 0);
2308 * Adapt the target size of the MRU list:
2309 * - if we just hit in the MRU ghost list, then increase
2310 * the target size of the MRU list.
2311 * - if we just hit in the MFU ghost list, then increase
2312 * the target size of the MFU list by decreasing the
2313 * target size of the MRU list.
2315 if (state == arc_mru_ghost) {
2316 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2317 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2318 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2320 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2321 } else if (state == arc_mfu_ghost) {
2322 uint64_t delta;
2324 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2325 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2326 mult = MIN(mult, 10);
2328 delta = MIN(bytes * mult, arc_p);
2329 arc_p = MAX(arc_p_min, arc_p - delta);
2331 ASSERT((int64_t)arc_p >= 0);
2333 if (arc_reclaim_needed()) {
2334 cv_signal(&arc_reclaim_thr_cv);
2335 return;
2338 if (arc_no_grow)
2339 return;
2341 if (arc_c >= arc_c_max)
2342 return;
2345 * If we're within (2 * maxblocksize) bytes of the target
2346 * cache size, increment the target cache size
2348 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2349 atomic_add_64(&arc_c, (int64_t)bytes);
2350 if (arc_c > arc_c_max)
2351 arc_c = arc_c_max;
2352 else if (state == arc_anon)
2353 atomic_add_64(&arc_p, (int64_t)bytes);
2354 if (arc_p > arc_c)
2355 arc_p = arc_c;
2357 ASSERT((int64_t)arc_p >= 0);
2361 * Check if the cache has reached its limits and eviction is required
2362 * prior to insert.
2364 static int
2365 arc_evict_needed(arc_buf_contents_t type)
2367 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2368 return (1);
2370 if (arc_reclaim_needed())
2371 return (1);
2373 return (arc_size > arc_c);
2377 * The buffer, supplied as the first argument, needs a data block.
2378 * So, if we are at cache max, determine which cache should be victimized.
2379 * We have the following cases:
2381 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2382 * In this situation if we're out of space, but the resident size of the MFU is
2383 * under the limit, victimize the MFU cache to satisfy this insertion request.
2385 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2386 * Here, we've used up all of the available space for the MRU, so we need to
2387 * evict from our own cache instead. Evict from the set of resident MRU
2388 * entries.
2390 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2391 * c minus p represents the MFU space in the cache, since p is the size of the
2392 * cache that is dedicated to the MRU. In this situation there's still space on
2393 * the MFU side, so the MRU side needs to be victimized.
2395 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2396 * MFU's resident set is consuming more space than it has been allotted. In
2397 * this situation, we must victimize our own cache, the MFU, for this insertion.
2399 static void
2400 arc_get_data_buf(arc_buf_t *buf)
2402 arc_state_t *state = buf->b_hdr->b_state;
2403 uint64_t size = buf->b_hdr->b_size;
2404 arc_buf_contents_t type = buf->b_hdr->b_type;
2406 arc_adapt(size, state);
2409 * We have not yet reached cache maximum size,
2410 * just allocate a new buffer.
2412 if (!arc_evict_needed(type)) {
2413 if (type == ARC_BUFC_METADATA) {
2414 buf->b_data = zio_buf_alloc(size);
2415 arc_space_consume(size, ARC_SPACE_DATA);
2416 } else {
2417 ASSERT(type == ARC_BUFC_DATA);
2418 buf->b_data = zio_data_buf_alloc(size);
2419 ARCSTAT_INCR(arcstat_data_size, size);
2420 atomic_add_64(&arc_size, size);
2422 goto out;
2426 * If we are prefetching from the mfu ghost list, this buffer
2427 * will end up on the mru list; so steal space from there.
2429 if (state == arc_mfu_ghost)
2430 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2431 else if (state == arc_mru_ghost)
2432 state = arc_mru;
2434 if (state == arc_mru || state == arc_anon) {
2435 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2436 state = (arc_mfu->arcs_lsize[type] >= size &&
2437 arc_p > mru_used) ? arc_mfu : arc_mru;
2438 } else {
2439 /* MFU cases */
2440 uint64_t mfu_space = arc_c - arc_p;
2441 state = (arc_mru->arcs_lsize[type] >= size &&
2442 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2444 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2445 if (type == ARC_BUFC_METADATA) {
2446 buf->b_data = zio_buf_alloc(size);
2447 arc_space_consume(size, ARC_SPACE_DATA);
2448 } else {
2449 ASSERT(type == ARC_BUFC_DATA);
2450 buf->b_data = zio_data_buf_alloc(size);
2451 ARCSTAT_INCR(arcstat_data_size, size);
2452 atomic_add_64(&arc_size, size);
2454 ARCSTAT_BUMP(arcstat_recycle_miss);
2456 ASSERT(buf->b_data != NULL);
2457 out:
2459 * Update the state size. Note that ghost states have a
2460 * "ghost size" and so don't need to be updated.
2462 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2463 arc_buf_hdr_t *hdr = buf->b_hdr;
2465 atomic_add_64(&hdr->b_state->arcs_size, size);
2466 if (list_link_active(&hdr->b_arc_node)) {
2467 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2468 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2471 * If we are growing the cache, and we are adding anonymous
2472 * data, and we have outgrown arc_p, update arc_p
2474 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2475 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2476 arc_p = MIN(arc_c, arc_p + size);
2481 * This routine is called whenever a buffer is accessed.
2482 * NOTE: the hash lock is dropped in this function.
2484 static void
2485 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2487 clock_t now;
2489 ASSERT(MUTEX_HELD(hash_lock));
2491 if (buf->b_state == arc_anon) {
2493 * This buffer is not in the cache, and does not
2494 * appear in our "ghost" list. Add the new buffer
2495 * to the MRU state.
2498 ASSERT(buf->b_arc_access == 0);
2499 buf->b_arc_access = ddi_get_lbolt();
2500 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2501 arc_change_state(arc_mru, buf, hash_lock);
2503 } else if (buf->b_state == arc_mru) {
2504 now = ddi_get_lbolt();
2507 * If this buffer is here because of a prefetch, then either:
2508 * - clear the flag if this is a "referencing" read
2509 * (any subsequent access will bump this into the MFU state).
2510 * or
2511 * - move the buffer to the head of the list if this is
2512 * another prefetch (to make it less likely to be evicted).
2514 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2515 if (refcount_count(&buf->b_refcnt) == 0) {
2516 ASSERT(list_link_active(&buf->b_arc_node));
2517 } else {
2518 buf->b_flags &= ~ARC_PREFETCH;
2519 ARCSTAT_BUMP(arcstat_mru_hits);
2521 buf->b_arc_access = now;
2522 return;
2526 * This buffer has been "accessed" only once so far,
2527 * but it is still in the cache. Move it to the MFU
2528 * state.
2530 if (now > buf->b_arc_access + ARC_MINTIME) {
2532 * More than 125ms have passed since we
2533 * instantiated this buffer. Move it to the
2534 * most frequently used state.
2536 buf->b_arc_access = now;
2537 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2538 arc_change_state(arc_mfu, buf, hash_lock);
2540 ARCSTAT_BUMP(arcstat_mru_hits);
2541 } else if (buf->b_state == arc_mru_ghost) {
2542 arc_state_t *new_state;
2544 * This buffer has been "accessed" recently, but
2545 * was evicted from the cache. Move it to the
2546 * MFU state.
2549 if (buf->b_flags & ARC_PREFETCH) {
2550 new_state = arc_mru;
2551 if (refcount_count(&buf->b_refcnt) > 0)
2552 buf->b_flags &= ~ARC_PREFETCH;
2553 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2554 } else {
2555 new_state = arc_mfu;
2556 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2559 buf->b_arc_access = ddi_get_lbolt();
2560 arc_change_state(new_state, buf, hash_lock);
2562 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2563 } else if (buf->b_state == arc_mfu) {
2565 * This buffer has been accessed more than once and is
2566 * still in the cache. Keep it in the MFU state.
2568 * NOTE: an add_reference() that occurred when we did
2569 * the arc_read() will have kicked this off the list.
2570 * If it was a prefetch, we will explicitly move it to
2571 * the head of the list now.
2573 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2574 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2575 ASSERT(list_link_active(&buf->b_arc_node));
2577 ARCSTAT_BUMP(arcstat_mfu_hits);
2578 buf->b_arc_access = ddi_get_lbolt();
2579 } else if (buf->b_state == arc_mfu_ghost) {
2580 arc_state_t *new_state = arc_mfu;
2582 * This buffer has been accessed more than once but has
2583 * been evicted from the cache. Move it back to the
2584 * MFU state.
2587 if (buf->b_flags & ARC_PREFETCH) {
2589 * This is a prefetch access...
2590 * move this block back to the MRU state.
2592 ASSERT0(refcount_count(&buf->b_refcnt));
2593 new_state = arc_mru;
2596 buf->b_arc_access = ddi_get_lbolt();
2597 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2598 arc_change_state(new_state, buf, hash_lock);
2600 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2601 } else if (buf->b_state == arc_l2c_only) {
2603 * This buffer is on the 2nd Level ARC.
2606 buf->b_arc_access = ddi_get_lbolt();
2607 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2608 arc_change_state(arc_mfu, buf, hash_lock);
2609 } else {
2610 ASSERT(!"invalid arc state");
2614 /* a generic arc_done_func_t which you can use */
2615 /* ARGSUSED */
2616 void
2617 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2619 if (zio == NULL || zio->io_error == 0)
2620 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2621 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2624 /* a generic arc_done_func_t */
2625 void
2626 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2628 arc_buf_t **bufp = arg;
2629 if (zio && zio->io_error) {
2630 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2631 *bufp = NULL;
2632 } else {
2633 *bufp = buf;
2634 ASSERT(buf->b_data);
2638 static void
2639 arc_read_done(zio_t *zio)
2641 arc_buf_hdr_t *hdr, *found;
2642 arc_buf_t *buf;
2643 arc_buf_t *abuf; /* buffer we're assigning to callback */
2644 kmutex_t *hash_lock;
2645 arc_callback_t *callback_list, *acb;
2646 int freeable = FALSE;
2648 buf = zio->io_private;
2649 hdr = buf->b_hdr;
2652 * The hdr was inserted into hash-table and removed from lists
2653 * prior to starting I/O. We should find this header, since
2654 * it's in the hash table, and it should be legit since it's
2655 * not possible to evict it during the I/O. The only possible
2656 * reason for it not to be found is if we were freed during the
2657 * read.
2659 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2660 &hash_lock);
2662 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2663 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2664 (found == hdr && HDR_L2_READING(hdr)));
2666 hdr->b_flags &= ~ARC_L2_EVICTED;
2667 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2668 hdr->b_flags &= ~ARC_L2CACHE;
2670 /* byteswap if necessary */
2671 callback_list = hdr->b_acb;
2672 ASSERT(callback_list != NULL);
2673 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2674 dmu_object_byteswap_t bswap =
2675 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2676 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2677 byteswap_uint64_array :
2678 dmu_ot_byteswap[bswap].ob_func;
2679 func(buf->b_data, hdr->b_size);
2682 arc_cksum_compute(buf, B_FALSE);
2683 arc_buf_watch(buf);
2685 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2687 * Only call arc_access on anonymous buffers. This is because
2688 * if we've issued an I/O for an evicted buffer, we've already
2689 * called arc_access (to prevent any simultaneous readers from
2690 * getting confused).
2692 arc_access(hdr, hash_lock);
2695 /* create copies of the data buffer for the callers */
2696 abuf = buf;
2697 for (acb = callback_list; acb; acb = acb->acb_next) {
2698 if (acb->acb_done) {
2699 if (abuf == NULL) {
2700 ARCSTAT_BUMP(arcstat_duplicate_reads);
2701 abuf = arc_buf_clone(buf);
2703 acb->acb_buf = abuf;
2704 abuf = NULL;
2707 hdr->b_acb = NULL;
2708 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2709 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2710 if (abuf == buf) {
2711 ASSERT(buf->b_efunc == NULL);
2712 ASSERT(hdr->b_datacnt == 1);
2713 hdr->b_flags |= ARC_BUF_AVAILABLE;
2716 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2718 if (zio->io_error != 0) {
2719 hdr->b_flags |= ARC_IO_ERROR;
2720 if (hdr->b_state != arc_anon)
2721 arc_change_state(arc_anon, hdr, hash_lock);
2722 if (HDR_IN_HASH_TABLE(hdr))
2723 buf_hash_remove(hdr);
2724 freeable = refcount_is_zero(&hdr->b_refcnt);
2728 * Broadcast before we drop the hash_lock to avoid the possibility
2729 * that the hdr (and hence the cv) might be freed before we get to
2730 * the cv_broadcast().
2732 cv_broadcast(&hdr->b_cv);
2734 if (hash_lock) {
2735 mutex_exit(hash_lock);
2736 } else {
2738 * This block was freed while we waited for the read to
2739 * complete. It has been removed from the hash table and
2740 * moved to the anonymous state (so that it won't show up
2741 * in the cache).
2743 ASSERT3P(hdr->b_state, ==, arc_anon);
2744 freeable = refcount_is_zero(&hdr->b_refcnt);
2747 /* execute each callback and free its structure */
2748 while ((acb = callback_list) != NULL) {
2749 if (acb->acb_done)
2750 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2752 if (acb->acb_zio_dummy != NULL) {
2753 acb->acb_zio_dummy->io_error = zio->io_error;
2754 zio_nowait(acb->acb_zio_dummy);
2757 callback_list = acb->acb_next;
2758 kmem_free(acb, sizeof (arc_callback_t));
2761 if (freeable)
2762 arc_hdr_destroy(hdr);
2766 * "Read" the block at the specified DVA (in bp) via the
2767 * cache. If the block is found in the cache, invoke the provided
2768 * callback immediately and return. Note that the `zio' parameter
2769 * in the callback will be NULL in this case, since no IO was
2770 * required. If the block is not in the cache pass the read request
2771 * on to the spa with a substitute callback function, so that the
2772 * requested block will be added to the cache.
2774 * If a read request arrives for a block that has a read in-progress,
2775 * either wait for the in-progress read to complete (and return the
2776 * results); or, if this is a read with a "done" func, add a record
2777 * to the read to invoke the "done" func when the read completes,
2778 * and return; or just return.
2780 * arc_read_done() will invoke all the requested "done" functions
2781 * for readers of this block.
2783 * Normal callers should use arc_read and pass the arc buffer and offset
2784 * for the bp. But if you know you don't need locking, you can use
2785 * arc_read_bp.
2788 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2789 arc_done_func_t *done, void *private, int priority, int zio_flags,
2790 uint32_t *arc_flags, const zbookmark_t *zb)
2792 int err;
2794 if (pbuf == NULL) {
2796 * XXX This happens from traverse callback funcs, for
2797 * the objset_phys_t block.
2799 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2800 zio_flags, arc_flags, zb));
2803 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2804 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2805 rw_enter(&pbuf->b_data_lock, RW_READER);
2807 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2808 zio_flags, arc_flags, zb);
2809 rw_exit(&pbuf->b_data_lock);
2811 return (err);
2815 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2816 arc_done_func_t *done, void *private, int priority, int zio_flags,
2817 uint32_t *arc_flags, const zbookmark_t *zb)
2819 arc_buf_hdr_t *hdr;
2820 arc_buf_t *buf;
2821 kmutex_t *hash_lock;
2822 zio_t *rzio;
2823 uint64_t guid = spa_load_guid(spa);
2825 top:
2826 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2827 &hash_lock);
2828 if (hdr && hdr->b_datacnt > 0) {
2830 *arc_flags |= ARC_CACHED;
2832 if (HDR_IO_IN_PROGRESS(hdr)) {
2834 if (*arc_flags & ARC_WAIT) {
2835 cv_wait(&hdr->b_cv, hash_lock);
2836 mutex_exit(hash_lock);
2837 goto top;
2839 ASSERT(*arc_flags & ARC_NOWAIT);
2841 if (done) {
2842 arc_callback_t *acb = NULL;
2844 acb = kmem_zalloc(sizeof (arc_callback_t),
2845 KM_SLEEP);
2846 acb->acb_done = done;
2847 acb->acb_private = private;
2848 if (pio != NULL)
2849 acb->acb_zio_dummy = zio_null(pio,
2850 spa, NULL, NULL, NULL, zio_flags);
2852 ASSERT(acb->acb_done != NULL);
2853 acb->acb_next = hdr->b_acb;
2854 hdr->b_acb = acb;
2855 add_reference(hdr, hash_lock, private);
2856 mutex_exit(hash_lock);
2857 return (0);
2859 mutex_exit(hash_lock);
2860 return (0);
2863 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2865 if (done) {
2866 add_reference(hdr, hash_lock, private);
2868 * If this block is already in use, create a new
2869 * copy of the data so that we will be guaranteed
2870 * that arc_release() will always succeed.
2872 buf = hdr->b_buf;
2873 ASSERT(buf);
2874 ASSERT(buf->b_data);
2875 if (HDR_BUF_AVAILABLE(hdr)) {
2876 ASSERT(buf->b_efunc == NULL);
2877 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2878 } else {
2879 buf = arc_buf_clone(buf);
2882 } else if (*arc_flags & ARC_PREFETCH &&
2883 refcount_count(&hdr->b_refcnt) == 0) {
2884 hdr->b_flags |= ARC_PREFETCH;
2886 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2887 arc_access(hdr, hash_lock);
2888 if (*arc_flags & ARC_L2CACHE)
2889 hdr->b_flags |= ARC_L2CACHE;
2890 mutex_exit(hash_lock);
2891 ARCSTAT_BUMP(arcstat_hits);
2892 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2893 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2894 data, metadata, hits);
2896 if (done)
2897 done(NULL, buf, private);
2898 } else {
2899 uint64_t size = BP_GET_LSIZE(bp);
2900 arc_callback_t *acb;
2901 vdev_t *vd = NULL;
2902 uint64_t addr;
2903 boolean_t devw = B_FALSE;
2905 if (hdr == NULL) {
2906 /* this block is not in the cache */
2907 arc_buf_hdr_t *exists;
2908 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2909 buf = arc_buf_alloc(spa, size, private, type);
2910 hdr = buf->b_hdr;
2911 hdr->b_dva = *BP_IDENTITY(bp);
2912 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2913 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2914 exists = buf_hash_insert(hdr, &hash_lock);
2915 if (exists) {
2916 /* somebody beat us to the hash insert */
2917 mutex_exit(hash_lock);
2918 buf_discard_identity(hdr);
2919 (void) arc_buf_remove_ref(buf, private);
2920 goto top; /* restart the IO request */
2922 /* if this is a prefetch, we don't have a reference */
2923 if (*arc_flags & ARC_PREFETCH) {
2924 (void) remove_reference(hdr, hash_lock,
2925 private);
2926 hdr->b_flags |= ARC_PREFETCH;
2928 if (*arc_flags & ARC_L2CACHE)
2929 hdr->b_flags |= ARC_L2CACHE;
2930 if (BP_GET_LEVEL(bp) > 0)
2931 hdr->b_flags |= ARC_INDIRECT;
2932 } else {
2933 /* this block is in the ghost cache */
2934 ASSERT(GHOST_STATE(hdr->b_state));
2935 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2936 ASSERT0(refcount_count(&hdr->b_refcnt));
2937 ASSERT(hdr->b_buf == NULL);
2939 /* if this is a prefetch, we don't have a reference */
2940 if (*arc_flags & ARC_PREFETCH)
2941 hdr->b_flags |= ARC_PREFETCH;
2942 else
2943 add_reference(hdr, hash_lock, private);
2944 if (*arc_flags & ARC_L2CACHE)
2945 hdr->b_flags |= ARC_L2CACHE;
2946 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2947 buf->b_hdr = hdr;
2948 buf->b_data = NULL;
2949 buf->b_efunc = NULL;
2950 buf->b_private = NULL;
2951 buf->b_next = NULL;
2952 hdr->b_buf = buf;
2953 ASSERT(hdr->b_datacnt == 0);
2954 hdr->b_datacnt = 1;
2955 arc_get_data_buf(buf);
2956 arc_access(hdr, hash_lock);
2959 ASSERT(!GHOST_STATE(hdr->b_state));
2961 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2962 acb->acb_done = done;
2963 acb->acb_private = private;
2965 ASSERT(hdr->b_acb == NULL);
2966 hdr->b_acb = acb;
2967 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2969 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2970 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2971 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2972 addr = hdr->b_l2hdr->b_daddr;
2974 * Lock out device removal.
2976 if (vdev_is_dead(vd) ||
2977 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2978 vd = NULL;
2981 mutex_exit(hash_lock);
2983 ASSERT3U(hdr->b_size, ==, size);
2984 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2985 uint64_t, size, zbookmark_t *, zb);
2986 ARCSTAT_BUMP(arcstat_misses);
2987 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2988 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2989 data, metadata, misses);
2991 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2993 * Read from the L2ARC if the following are true:
2994 * 1. The L2ARC vdev was previously cached.
2995 * 2. This buffer still has L2ARC metadata.
2996 * 3. This buffer isn't currently writing to the L2ARC.
2997 * 4. The L2ARC entry wasn't evicted, which may
2998 * also have invalidated the vdev.
2999 * 5. This isn't prefetch and l2arc_noprefetch is set.
3001 if (hdr->b_l2hdr != NULL &&
3002 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3003 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3004 l2arc_read_callback_t *cb;
3006 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3007 ARCSTAT_BUMP(arcstat_l2_hits);
3009 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3010 KM_SLEEP);
3011 cb->l2rcb_buf = buf;
3012 cb->l2rcb_spa = spa;
3013 cb->l2rcb_bp = *bp;
3014 cb->l2rcb_zb = *zb;
3015 cb->l2rcb_flags = zio_flags;
3018 * l2arc read. The SCL_L2ARC lock will be
3019 * released by l2arc_read_done().
3021 rzio = zio_read_phys(pio, vd, addr, size,
3022 buf->b_data, ZIO_CHECKSUM_OFF,
3023 l2arc_read_done, cb, priority, zio_flags |
3024 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3025 ZIO_FLAG_DONT_PROPAGATE |
3026 ZIO_FLAG_DONT_RETRY, B_FALSE);
3027 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3028 zio_t *, rzio);
3029 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3031 if (*arc_flags & ARC_NOWAIT) {
3032 zio_nowait(rzio);
3033 return (0);
3036 ASSERT(*arc_flags & ARC_WAIT);
3037 if (zio_wait(rzio) == 0)
3038 return (0);
3040 /* l2arc read error; goto zio_read() */
3041 } else {
3042 DTRACE_PROBE1(l2arc__miss,
3043 arc_buf_hdr_t *, hdr);
3044 ARCSTAT_BUMP(arcstat_l2_misses);
3045 if (HDR_L2_WRITING(hdr))
3046 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3047 spa_config_exit(spa, SCL_L2ARC, vd);
3049 } else {
3050 if (vd != NULL)
3051 spa_config_exit(spa, SCL_L2ARC, vd);
3052 if (l2arc_ndev != 0) {
3053 DTRACE_PROBE1(l2arc__miss,
3054 arc_buf_hdr_t *, hdr);
3055 ARCSTAT_BUMP(arcstat_l2_misses);
3059 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3060 arc_read_done, buf, priority, zio_flags, zb);
3062 if (*arc_flags & ARC_WAIT)
3063 return (zio_wait(rzio));
3065 ASSERT(*arc_flags & ARC_NOWAIT);
3066 zio_nowait(rzio);
3068 return (0);
3071 void
3072 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3074 ASSERT(buf->b_hdr != NULL);
3075 ASSERT(buf->b_hdr->b_state != arc_anon);
3076 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3077 ASSERT(buf->b_efunc == NULL);
3078 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3080 buf->b_efunc = func;
3081 buf->b_private = private;
3085 * This is used by the DMU to let the ARC know that a buffer is
3086 * being evicted, so the ARC should clean up. If this arc buf
3087 * is not yet in the evicted state, it will be put there.
3090 arc_buf_evict(arc_buf_t *buf)
3092 arc_buf_hdr_t *hdr;
3093 kmutex_t *hash_lock;
3094 arc_buf_t **bufp;
3096 mutex_enter(&buf->b_evict_lock);
3097 hdr = buf->b_hdr;
3098 if (hdr == NULL) {
3100 * We are in arc_do_user_evicts().
3102 ASSERT(buf->b_data == NULL);
3103 mutex_exit(&buf->b_evict_lock);
3104 return (0);
3105 } else if (buf->b_data == NULL) {
3106 arc_buf_t copy = *buf; /* structure assignment */
3108 * We are on the eviction list; process this buffer now
3109 * but let arc_do_user_evicts() do the reaping.
3111 buf->b_efunc = NULL;
3112 mutex_exit(&buf->b_evict_lock);
3113 VERIFY(copy.b_efunc(&copy) == 0);
3114 return (1);
3116 hash_lock = HDR_LOCK(hdr);
3117 mutex_enter(hash_lock);
3118 hdr = buf->b_hdr;
3119 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3121 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3122 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3125 * Pull this buffer off of the hdr
3127 bufp = &hdr->b_buf;
3128 while (*bufp != buf)
3129 bufp = &(*bufp)->b_next;
3130 *bufp = buf->b_next;
3132 ASSERT(buf->b_data != NULL);
3133 arc_buf_destroy(buf, FALSE, FALSE);
3135 if (hdr->b_datacnt == 0) {
3136 arc_state_t *old_state = hdr->b_state;
3137 arc_state_t *evicted_state;
3139 ASSERT(hdr->b_buf == NULL);
3140 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3142 evicted_state =
3143 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3145 mutex_enter(&old_state->arcs_mtx);
3146 mutex_enter(&evicted_state->arcs_mtx);
3148 arc_change_state(evicted_state, hdr, hash_lock);
3149 ASSERT(HDR_IN_HASH_TABLE(hdr));
3150 hdr->b_flags |= ARC_IN_HASH_TABLE;
3151 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3153 mutex_exit(&evicted_state->arcs_mtx);
3154 mutex_exit(&old_state->arcs_mtx);
3156 mutex_exit(hash_lock);
3157 mutex_exit(&buf->b_evict_lock);
3159 VERIFY(buf->b_efunc(buf) == 0);
3160 buf->b_efunc = NULL;
3161 buf->b_private = NULL;
3162 buf->b_hdr = NULL;
3163 buf->b_next = NULL;
3164 kmem_cache_free(buf_cache, buf);
3165 return (1);
3169 * Release this buffer from the cache. This must be done
3170 * after a read and prior to modifying the buffer contents.
3171 * If the buffer has more than one reference, we must make
3172 * a new hdr for the buffer.
3174 void
3175 arc_release(arc_buf_t *buf, void *tag)
3177 arc_buf_hdr_t *hdr;
3178 kmutex_t *hash_lock = NULL;
3179 l2arc_buf_hdr_t *l2hdr;
3180 uint64_t buf_size;
3183 * It would be nice to assert that if it's DMU metadata (level >
3184 * 0 || it's the dnode file), then it must be syncing context.
3185 * But we don't know that information at this level.
3188 mutex_enter(&buf->b_evict_lock);
3189 hdr = buf->b_hdr;
3191 /* this buffer is not on any list */
3192 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3194 if (hdr->b_state == arc_anon) {
3195 /* this buffer is already released */
3196 ASSERT(buf->b_efunc == NULL);
3197 } else {
3198 hash_lock = HDR_LOCK(hdr);
3199 mutex_enter(hash_lock);
3200 hdr = buf->b_hdr;
3201 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3204 l2hdr = hdr->b_l2hdr;
3205 if (l2hdr) {
3206 mutex_enter(&l2arc_buflist_mtx);
3207 hdr->b_l2hdr = NULL;
3208 buf_size = hdr->b_size;
3212 * Do we have more than one buf?
3214 if (hdr->b_datacnt > 1) {
3215 arc_buf_hdr_t *nhdr;
3216 arc_buf_t **bufp;
3217 uint64_t blksz = hdr->b_size;
3218 uint64_t spa = hdr->b_spa;
3219 arc_buf_contents_t type = hdr->b_type;
3220 uint32_t flags = hdr->b_flags;
3222 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3224 * Pull the data off of this hdr and attach it to
3225 * a new anonymous hdr.
3227 (void) remove_reference(hdr, hash_lock, tag);
3228 bufp = &hdr->b_buf;
3229 while (*bufp != buf)
3230 bufp = &(*bufp)->b_next;
3231 *bufp = buf->b_next;
3232 buf->b_next = NULL;
3234 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3235 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3236 if (refcount_is_zero(&hdr->b_refcnt)) {
3237 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3238 ASSERT3U(*size, >=, hdr->b_size);
3239 atomic_add_64(size, -hdr->b_size);
3243 * We're releasing a duplicate user data buffer, update
3244 * our statistics accordingly.
3246 if (hdr->b_type == ARC_BUFC_DATA) {
3247 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3248 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3249 -hdr->b_size);
3251 hdr->b_datacnt -= 1;
3252 arc_cksum_verify(buf);
3253 arc_buf_unwatch(buf);
3255 mutex_exit(hash_lock);
3257 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3258 nhdr->b_size = blksz;
3259 nhdr->b_spa = spa;
3260 nhdr->b_type = type;
3261 nhdr->b_buf = buf;
3262 nhdr->b_state = arc_anon;
3263 nhdr->b_arc_access = 0;
3264 nhdr->b_flags = flags & ARC_L2_WRITING;
3265 nhdr->b_l2hdr = NULL;
3266 nhdr->b_datacnt = 1;
3267 nhdr->b_freeze_cksum = NULL;
3268 (void) refcount_add(&nhdr->b_refcnt, tag);
3269 buf->b_hdr = nhdr;
3270 mutex_exit(&buf->b_evict_lock);
3271 atomic_add_64(&arc_anon->arcs_size, blksz);
3272 } else {
3273 mutex_exit(&buf->b_evict_lock);
3274 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3275 ASSERT(!list_link_active(&hdr->b_arc_node));
3276 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3277 if (hdr->b_state != arc_anon)
3278 arc_change_state(arc_anon, hdr, hash_lock);
3279 hdr->b_arc_access = 0;
3280 if (hash_lock)
3281 mutex_exit(hash_lock);
3283 buf_discard_identity(hdr);
3284 arc_buf_thaw(buf);
3286 buf->b_efunc = NULL;
3287 buf->b_private = NULL;
3289 if (l2hdr) {
3290 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3291 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3292 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3293 mutex_exit(&l2arc_buflist_mtx);
3298 * Release this buffer. If it does not match the provided BP, fill it
3299 * with that block's contents.
3301 /* ARGSUSED */
3303 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3304 zbookmark_t *zb)
3306 arc_release(buf, tag);
3307 return (0);
3311 arc_released(arc_buf_t *buf)
3313 int released;
3315 mutex_enter(&buf->b_evict_lock);
3316 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3317 mutex_exit(&buf->b_evict_lock);
3318 return (released);
3322 arc_has_callback(arc_buf_t *buf)
3324 int callback;
3326 mutex_enter(&buf->b_evict_lock);
3327 callback = (buf->b_efunc != NULL);
3328 mutex_exit(&buf->b_evict_lock);
3329 return (callback);
3332 #ifdef ZFS_DEBUG
3334 arc_referenced(arc_buf_t *buf)
3336 int referenced;
3338 mutex_enter(&buf->b_evict_lock);
3339 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3340 mutex_exit(&buf->b_evict_lock);
3341 return (referenced);
3343 #endif
3345 static void
3346 arc_write_ready(zio_t *zio)
3348 arc_write_callback_t *callback = zio->io_private;
3349 arc_buf_t *buf = callback->awcb_buf;
3350 arc_buf_hdr_t *hdr = buf->b_hdr;
3352 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3353 callback->awcb_ready(zio, buf, callback->awcb_private);
3356 * If the IO is already in progress, then this is a re-write
3357 * attempt, so we need to thaw and re-compute the cksum.
3358 * It is the responsibility of the callback to handle the
3359 * accounting for any re-write attempt.
3361 if (HDR_IO_IN_PROGRESS(hdr)) {
3362 mutex_enter(&hdr->b_freeze_lock);
3363 if (hdr->b_freeze_cksum != NULL) {
3364 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3365 hdr->b_freeze_cksum = NULL;
3367 mutex_exit(&hdr->b_freeze_lock);
3369 arc_cksum_compute(buf, B_FALSE);
3370 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3373 static void
3374 arc_write_done(zio_t *zio)
3376 arc_write_callback_t *callback = zio->io_private;
3377 arc_buf_t *buf = callback->awcb_buf;
3378 arc_buf_hdr_t *hdr = buf->b_hdr;
3380 ASSERT(hdr->b_acb == NULL);
3382 if (zio->io_error == 0) {
3383 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3384 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3385 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3386 } else {
3387 ASSERT(BUF_EMPTY(hdr));
3391 * If the block to be written was all-zero, we may have
3392 * compressed it away. In this case no write was performed
3393 * so there will be no dva/birth/checksum. The buffer must
3394 * therefore remain anonymous (and uncached).
3396 if (!BUF_EMPTY(hdr)) {
3397 arc_buf_hdr_t *exists;
3398 kmutex_t *hash_lock;
3400 ASSERT(zio->io_error == 0);
3402 arc_cksum_verify(buf);
3404 exists = buf_hash_insert(hdr, &hash_lock);
3405 if (exists) {
3407 * This can only happen if we overwrite for
3408 * sync-to-convergence, because we remove
3409 * buffers from the hash table when we arc_free().
3411 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3412 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3413 panic("bad overwrite, hdr=%p exists=%p",
3414 (void *)hdr, (void *)exists);
3415 ASSERT(refcount_is_zero(&exists->b_refcnt));
3416 arc_change_state(arc_anon, exists, hash_lock);
3417 mutex_exit(hash_lock);
3418 arc_hdr_destroy(exists);
3419 exists = buf_hash_insert(hdr, &hash_lock);
3420 ASSERT3P(exists, ==, NULL);
3421 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3422 /* nopwrite */
3423 ASSERT(zio->io_prop.zp_nopwrite);
3424 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3425 panic("bad nopwrite, hdr=%p exists=%p",
3426 (void *)hdr, (void *)exists);
3427 } else {
3428 /* Dedup */
3429 ASSERT(hdr->b_datacnt == 1);
3430 ASSERT(hdr->b_state == arc_anon);
3431 ASSERT(BP_GET_DEDUP(zio->io_bp));
3432 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3435 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3436 /* if it's not anon, we are doing a scrub */
3437 if (!exists && hdr->b_state == arc_anon)
3438 arc_access(hdr, hash_lock);
3439 mutex_exit(hash_lock);
3440 } else {
3441 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3444 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3445 callback->awcb_done(zio, buf, callback->awcb_private);
3447 kmem_free(callback, sizeof (arc_write_callback_t));
3450 zio_t *
3451 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3452 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3453 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3454 int priority, int zio_flags, const zbookmark_t *zb)
3456 arc_buf_hdr_t *hdr = buf->b_hdr;
3457 arc_write_callback_t *callback;
3458 zio_t *zio;
3460 ASSERT(ready != NULL);
3461 ASSERT(done != NULL);
3462 ASSERT(!HDR_IO_ERROR(hdr));
3463 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3464 ASSERT(hdr->b_acb == NULL);
3465 if (l2arc)
3466 hdr->b_flags |= ARC_L2CACHE;
3467 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3468 callback->awcb_ready = ready;
3469 callback->awcb_done = done;
3470 callback->awcb_private = private;
3471 callback->awcb_buf = buf;
3473 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3474 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3476 return (zio);
3479 static int
3480 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3482 #ifdef _KERNEL
3483 uint64_t available_memory = ptob(freemem);
3484 static uint64_t page_load = 0;
3485 static uint64_t last_txg = 0;
3487 #if defined(__i386)
3488 available_memory =
3489 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3490 #endif
3491 if (available_memory >= zfs_write_limit_max)
3492 return (0);
3494 if (txg > last_txg) {
3495 last_txg = txg;
3496 page_load = 0;
3499 * If we are in pageout, we know that memory is already tight,
3500 * the arc is already going to be evicting, so we just want to
3501 * continue to let page writes occur as quickly as possible.
3503 if (curproc == proc_pageout) {
3504 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3505 return (ERESTART);
3506 /* Note: reserve is inflated, so we deflate */
3507 page_load += reserve / 8;
3508 return (0);
3509 } else if (page_load > 0 && arc_reclaim_needed()) {
3510 /* memory is low, delay before restarting */
3511 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3512 return (EAGAIN);
3514 page_load = 0;
3516 if (arc_size > arc_c_min) {
3517 uint64_t evictable_memory =
3518 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3519 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3520 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3521 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3522 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3525 if (inflight_data > available_memory / 4) {
3526 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3527 return (ERESTART);
3529 #endif
3530 return (0);
3533 void
3534 arc_tempreserve_clear(uint64_t reserve)
3536 atomic_add_64(&arc_tempreserve, -reserve);
3537 ASSERT((int64_t)arc_tempreserve >= 0);
3541 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3543 int error;
3544 uint64_t anon_size;
3546 #ifdef ZFS_DEBUG
3548 * Once in a while, fail for no reason. Everything should cope.
3550 if (spa_get_random(10000) == 0) {
3551 dprintf("forcing random failure\n");
3552 return (ERESTART);
3554 #endif
3555 if (reserve > arc_c/4 && !arc_no_grow)
3556 arc_c = MIN(arc_c_max, reserve * 4);
3557 if (reserve > arc_c)
3558 return (ENOMEM);
3561 * Don't count loaned bufs as in flight dirty data to prevent long
3562 * network delays from blocking transactions that are ready to be
3563 * assigned to a txg.
3565 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3568 * Writes will, almost always, require additional memory allocations
3569 * in order to compress/encrypt/etc the data. We therefor need to
3570 * make sure that there is sufficient available memory for this.
3572 if (error = arc_memory_throttle(reserve, anon_size, txg))
3573 return (error);
3576 * Throttle writes when the amount of dirty data in the cache
3577 * gets too large. We try to keep the cache less than half full
3578 * of dirty blocks so that our sync times don't grow too large.
3579 * Note: if two requests come in concurrently, we might let them
3580 * both succeed, when one of them should fail. Not a huge deal.
3583 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3584 anon_size > arc_c / 4) {
3585 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3586 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3587 arc_tempreserve>>10,
3588 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3589 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3590 reserve>>10, arc_c>>10);
3591 return (ERESTART);
3593 atomic_add_64(&arc_tempreserve, reserve);
3594 return (0);
3597 void
3598 arc_init(void)
3600 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3601 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3603 /* Convert seconds to clock ticks */
3604 arc_min_prefetch_lifespan = 1 * hz;
3606 /* Start out with 1/8 of all memory */
3607 arc_c = physmem * PAGESIZE / 8;
3609 #ifdef _KERNEL
3611 * On architectures where the physical memory can be larger
3612 * than the addressable space (intel in 32-bit mode), we may
3613 * need to limit the cache to 1/8 of VM size.
3615 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3616 #endif
3618 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3619 arc_c_min = MAX(arc_c / 4, 64<<20);
3620 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3621 if (arc_c * 8 >= 1<<30)
3622 arc_c_max = (arc_c * 8) - (1<<30);
3623 else
3624 arc_c_max = arc_c_min;
3625 arc_c_max = MAX(arc_c * 6, arc_c_max);
3628 * Allow the tunables to override our calculations if they are
3629 * reasonable (ie. over 64MB)
3631 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3632 arc_c_max = zfs_arc_max;
3633 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3634 arc_c_min = zfs_arc_min;
3636 arc_c = arc_c_max;
3637 arc_p = (arc_c >> 1);
3639 /* limit meta-data to 1/4 of the arc capacity */
3640 arc_meta_limit = arc_c_max / 4;
3642 /* Allow the tunable to override if it is reasonable */
3643 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3644 arc_meta_limit = zfs_arc_meta_limit;
3646 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3647 arc_c_min = arc_meta_limit / 2;
3649 if (zfs_arc_grow_retry > 0)
3650 arc_grow_retry = zfs_arc_grow_retry;
3652 if (zfs_arc_shrink_shift > 0)
3653 arc_shrink_shift = zfs_arc_shrink_shift;
3655 if (zfs_arc_p_min_shift > 0)
3656 arc_p_min_shift = zfs_arc_p_min_shift;
3658 /* if kmem_flags are set, lets try to use less memory */
3659 if (kmem_debugging())
3660 arc_c = arc_c / 2;
3661 if (arc_c < arc_c_min)
3662 arc_c = arc_c_min;
3664 arc_anon = &ARC_anon;
3665 arc_mru = &ARC_mru;
3666 arc_mru_ghost = &ARC_mru_ghost;
3667 arc_mfu = &ARC_mfu;
3668 arc_mfu_ghost = &ARC_mfu_ghost;
3669 arc_l2c_only = &ARC_l2c_only;
3670 arc_size = 0;
3672 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3673 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3674 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3675 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3676 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3677 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3679 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3680 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3681 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3682 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3683 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3684 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3685 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3686 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3687 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3688 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3689 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3690 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3691 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3692 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3693 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3694 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3695 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3696 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3697 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3698 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3700 buf_init();
3702 arc_thread_exit = 0;
3703 arc_eviction_list = NULL;
3704 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3705 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3707 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3708 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3710 if (arc_ksp != NULL) {
3711 arc_ksp->ks_data = &arc_stats;
3712 kstat_install(arc_ksp);
3715 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3716 TS_RUN, minclsyspri);
3718 arc_dead = FALSE;
3719 arc_warm = B_FALSE;
3721 if (zfs_write_limit_max == 0)
3722 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3723 else
3724 zfs_write_limit_shift = 0;
3725 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3728 void
3729 arc_fini(void)
3731 mutex_enter(&arc_reclaim_thr_lock);
3732 arc_thread_exit = 1;
3733 while (arc_thread_exit != 0)
3734 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3735 mutex_exit(&arc_reclaim_thr_lock);
3737 arc_flush(NULL);
3739 arc_dead = TRUE;
3741 if (arc_ksp != NULL) {
3742 kstat_delete(arc_ksp);
3743 arc_ksp = NULL;
3746 mutex_destroy(&arc_eviction_mtx);
3747 mutex_destroy(&arc_reclaim_thr_lock);
3748 cv_destroy(&arc_reclaim_thr_cv);
3750 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3751 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3752 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3753 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3754 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3755 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3756 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3757 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3759 mutex_destroy(&arc_anon->arcs_mtx);
3760 mutex_destroy(&arc_mru->arcs_mtx);
3761 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3762 mutex_destroy(&arc_mfu->arcs_mtx);
3763 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3764 mutex_destroy(&arc_l2c_only->arcs_mtx);
3766 mutex_destroy(&zfs_write_limit_lock);
3768 buf_fini();
3770 ASSERT(arc_loaned_bytes == 0);
3774 * Level 2 ARC
3776 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3777 * It uses dedicated storage devices to hold cached data, which are populated
3778 * using large infrequent writes. The main role of this cache is to boost
3779 * the performance of random read workloads. The intended L2ARC devices
3780 * include short-stroked disks, solid state disks, and other media with
3781 * substantially faster read latency than disk.
3783 * +-----------------------+
3784 * | ARC |
3785 * +-----------------------+
3786 * | ^ ^
3787 * | | |
3788 * l2arc_feed_thread() arc_read()
3789 * | | |
3790 * | l2arc read |
3791 * V | |
3792 * +---------------+ |
3793 * | L2ARC | |
3794 * +---------------+ |
3795 * | ^ |
3796 * l2arc_write() | |
3797 * | | |
3798 * V | |
3799 * +-------+ +-------+
3800 * | vdev | | vdev |
3801 * | cache | | cache |
3802 * +-------+ +-------+
3803 * +=========+ .-----.
3804 * : L2ARC : |-_____-|
3805 * : devices : | Disks |
3806 * +=========+ `-_____-'
3808 * Read requests are satisfied from the following sources, in order:
3810 * 1) ARC
3811 * 2) vdev cache of L2ARC devices
3812 * 3) L2ARC devices
3813 * 4) vdev cache of disks
3814 * 5) disks
3816 * Some L2ARC device types exhibit extremely slow write performance.
3817 * To accommodate for this there are some significant differences between
3818 * the L2ARC and traditional cache design:
3820 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3821 * the ARC behave as usual, freeing buffers and placing headers on ghost
3822 * lists. The ARC does not send buffers to the L2ARC during eviction as
3823 * this would add inflated write latencies for all ARC memory pressure.
3825 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3826 * It does this by periodically scanning buffers from the eviction-end of
3827 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3828 * not already there. It scans until a headroom of buffers is satisfied,
3829 * which itself is a buffer for ARC eviction. The thread that does this is
3830 * l2arc_feed_thread(), illustrated below; example sizes are included to
3831 * provide a better sense of ratio than this diagram:
3833 * head --> tail
3834 * +---------------------+----------+
3835 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3836 * +---------------------+----------+ | o L2ARC eligible
3837 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3838 * +---------------------+----------+ |
3839 * 15.9 Gbytes ^ 32 Mbytes |
3840 * headroom |
3841 * l2arc_feed_thread()
3843 * l2arc write hand <--[oooo]--'
3844 * | 8 Mbyte
3845 * | write max
3847 * +==============================+
3848 * L2ARC dev |####|#|###|###| |####| ... |
3849 * +==============================+
3850 * 32 Gbytes
3852 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3853 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3854 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3855 * safe to say that this is an uncommon case, since buffers at the end of
3856 * the ARC lists have moved there due to inactivity.
3858 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3859 * then the L2ARC simply misses copying some buffers. This serves as a
3860 * pressure valve to prevent heavy read workloads from both stalling the ARC
3861 * with waits and clogging the L2ARC with writes. This also helps prevent
3862 * the potential for the L2ARC to churn if it attempts to cache content too
3863 * quickly, such as during backups of the entire pool.
3865 * 5. After system boot and before the ARC has filled main memory, there are
3866 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3867 * lists can remain mostly static. Instead of searching from tail of these
3868 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3869 * for eligible buffers, greatly increasing its chance of finding them.
3871 * The L2ARC device write speed is also boosted during this time so that
3872 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3873 * there are no L2ARC reads, and no fear of degrading read performance
3874 * through increased writes.
3876 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3877 * the vdev queue can aggregate them into larger and fewer writes. Each
3878 * device is written to in a rotor fashion, sweeping writes through
3879 * available space then repeating.
3881 * 7. The L2ARC does not store dirty content. It never needs to flush
3882 * write buffers back to disk based storage.
3884 * 8. If an ARC buffer is written (and dirtied) which also exists in the
3885 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3887 * The performance of the L2ARC can be tweaked by a number of tunables, which
3888 * may be necessary for different workloads:
3890 * l2arc_write_max max write bytes per interval
3891 * l2arc_write_boost extra write bytes during device warmup
3892 * l2arc_noprefetch skip caching prefetched buffers
3893 * l2arc_headroom number of max device writes to precache
3894 * l2arc_feed_secs seconds between L2ARC writing
3896 * Tunables may be removed or added as future performance improvements are
3897 * integrated, and also may become zpool properties.
3899 * There are three key functions that control how the L2ARC warms up:
3901 * l2arc_write_eligible() check if a buffer is eligible to cache
3902 * l2arc_write_size() calculate how much to write
3903 * l2arc_write_interval() calculate sleep delay between writes
3905 * These three functions determine what to write, how much, and how quickly
3906 * to send writes.
3909 static boolean_t
3910 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3913 * A buffer is *not* eligible for the L2ARC if it:
3914 * 1. belongs to a different spa.
3915 * 2. is already cached on the L2ARC.
3916 * 3. has an I/O in progress (it may be an incomplete read).
3917 * 4. is flagged not eligible (zfs property).
3919 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3920 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3921 return (B_FALSE);
3923 return (B_TRUE);
3926 static uint64_t
3927 l2arc_write_size(l2arc_dev_t *dev)
3929 uint64_t size;
3931 size = dev->l2ad_write;
3933 if (arc_warm == B_FALSE)
3934 size += dev->l2ad_boost;
3936 return (size);
3940 static clock_t
3941 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3943 clock_t interval, next, now;
3946 * If the ARC lists are busy, increase our write rate; if the
3947 * lists are stale, idle back. This is achieved by checking
3948 * how much we previously wrote - if it was more than half of
3949 * what we wanted, schedule the next write much sooner.
3951 if (l2arc_feed_again && wrote > (wanted / 2))
3952 interval = (hz * l2arc_feed_min_ms) / 1000;
3953 else
3954 interval = hz * l2arc_feed_secs;
3956 now = ddi_get_lbolt();
3957 next = MAX(now, MIN(now + interval, began + interval));
3959 return (next);
3962 static void
3963 l2arc_hdr_stat_add(void)
3965 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3966 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3969 static void
3970 l2arc_hdr_stat_remove(void)
3972 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3973 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3977 * Cycle through L2ARC devices. This is how L2ARC load balances.
3978 * If a device is returned, this also returns holding the spa config lock.
3980 static l2arc_dev_t *
3981 l2arc_dev_get_next(void)
3983 l2arc_dev_t *first, *next = NULL;
3986 * Lock out the removal of spas (spa_namespace_lock), then removal
3987 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3988 * both locks will be dropped and a spa config lock held instead.
3990 mutex_enter(&spa_namespace_lock);
3991 mutex_enter(&l2arc_dev_mtx);
3993 /* if there are no vdevs, there is nothing to do */
3994 if (l2arc_ndev == 0)
3995 goto out;
3997 first = NULL;
3998 next = l2arc_dev_last;
3999 do {
4000 /* loop around the list looking for a non-faulted vdev */
4001 if (next == NULL) {
4002 next = list_head(l2arc_dev_list);
4003 } else {
4004 next = list_next(l2arc_dev_list, next);
4005 if (next == NULL)
4006 next = list_head(l2arc_dev_list);
4009 /* if we have come back to the start, bail out */
4010 if (first == NULL)
4011 first = next;
4012 else if (next == first)
4013 break;
4015 } while (vdev_is_dead(next->l2ad_vdev));
4017 /* if we were unable to find any usable vdevs, return NULL */
4018 if (vdev_is_dead(next->l2ad_vdev))
4019 next = NULL;
4021 l2arc_dev_last = next;
4023 out:
4024 mutex_exit(&l2arc_dev_mtx);
4027 * Grab the config lock to prevent the 'next' device from being
4028 * removed while we are writing to it.
4030 if (next != NULL)
4031 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4032 mutex_exit(&spa_namespace_lock);
4034 return (next);
4038 * Free buffers that were tagged for destruction.
4040 static void
4041 l2arc_do_free_on_write()
4043 list_t *buflist;
4044 l2arc_data_free_t *df, *df_prev;
4046 mutex_enter(&l2arc_free_on_write_mtx);
4047 buflist = l2arc_free_on_write;
4049 for (df = list_tail(buflist); df; df = df_prev) {
4050 df_prev = list_prev(buflist, df);
4051 ASSERT(df->l2df_data != NULL);
4052 ASSERT(df->l2df_func != NULL);
4053 df->l2df_func(df->l2df_data, df->l2df_size);
4054 list_remove(buflist, df);
4055 kmem_free(df, sizeof (l2arc_data_free_t));
4058 mutex_exit(&l2arc_free_on_write_mtx);
4062 * A write to a cache device has completed. Update all headers to allow
4063 * reads from these buffers to begin.
4065 static void
4066 l2arc_write_done(zio_t *zio)
4068 l2arc_write_callback_t *cb;
4069 l2arc_dev_t *dev;
4070 list_t *buflist;
4071 arc_buf_hdr_t *head, *ab, *ab_prev;
4072 l2arc_buf_hdr_t *abl2;
4073 kmutex_t *hash_lock;
4075 cb = zio->io_private;
4076 ASSERT(cb != NULL);
4077 dev = cb->l2wcb_dev;
4078 ASSERT(dev != NULL);
4079 head = cb->l2wcb_head;
4080 ASSERT(head != NULL);
4081 buflist = dev->l2ad_buflist;
4082 ASSERT(buflist != NULL);
4083 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4084 l2arc_write_callback_t *, cb);
4086 if (zio->io_error != 0)
4087 ARCSTAT_BUMP(arcstat_l2_writes_error);
4089 mutex_enter(&l2arc_buflist_mtx);
4092 * All writes completed, or an error was hit.
4094 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4095 ab_prev = list_prev(buflist, ab);
4097 hash_lock = HDR_LOCK(ab);
4098 if (!mutex_tryenter(hash_lock)) {
4100 * This buffer misses out. It may be in a stage
4101 * of eviction. Its ARC_L2_WRITING flag will be
4102 * left set, denying reads to this buffer.
4104 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4105 continue;
4108 if (zio->io_error != 0) {
4110 * Error - drop L2ARC entry.
4112 list_remove(buflist, ab);
4113 abl2 = ab->b_l2hdr;
4114 ab->b_l2hdr = NULL;
4115 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4116 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4120 * Allow ARC to begin reads to this L2ARC entry.
4122 ab->b_flags &= ~ARC_L2_WRITING;
4124 mutex_exit(hash_lock);
4127 atomic_inc_64(&l2arc_writes_done);
4128 list_remove(buflist, head);
4129 kmem_cache_free(hdr_cache, head);
4130 mutex_exit(&l2arc_buflist_mtx);
4132 l2arc_do_free_on_write();
4134 kmem_free(cb, sizeof (l2arc_write_callback_t));
4138 * A read to a cache device completed. Validate buffer contents before
4139 * handing over to the regular ARC routines.
4141 static void
4142 l2arc_read_done(zio_t *zio)
4144 l2arc_read_callback_t *cb;
4145 arc_buf_hdr_t *hdr;
4146 arc_buf_t *buf;
4147 kmutex_t *hash_lock;
4148 int equal;
4150 ASSERT(zio->io_vd != NULL);
4151 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4153 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4155 cb = zio->io_private;
4156 ASSERT(cb != NULL);
4157 buf = cb->l2rcb_buf;
4158 ASSERT(buf != NULL);
4160 hash_lock = HDR_LOCK(buf->b_hdr);
4161 mutex_enter(hash_lock);
4162 hdr = buf->b_hdr;
4163 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4166 * Check this survived the L2ARC journey.
4168 equal = arc_cksum_equal(buf);
4169 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4170 mutex_exit(hash_lock);
4171 zio->io_private = buf;
4172 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4173 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4174 arc_read_done(zio);
4175 } else {
4176 mutex_exit(hash_lock);
4178 * Buffer didn't survive caching. Increment stats and
4179 * reissue to the original storage device.
4181 if (zio->io_error != 0) {
4182 ARCSTAT_BUMP(arcstat_l2_io_error);
4183 } else {
4184 zio->io_error = EIO;
4186 if (!equal)
4187 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4190 * If there's no waiter, issue an async i/o to the primary
4191 * storage now. If there *is* a waiter, the caller must
4192 * issue the i/o in a context where it's OK to block.
4194 if (zio->io_waiter == NULL) {
4195 zio_t *pio = zio_unique_parent(zio);
4197 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4199 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4200 buf->b_data, zio->io_size, arc_read_done, buf,
4201 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4205 kmem_free(cb, sizeof (l2arc_read_callback_t));
4209 * This is the list priority from which the L2ARC will search for pages to
4210 * cache. This is used within loops (0..3) to cycle through lists in the
4211 * desired order. This order can have a significant effect on cache
4212 * performance.
4214 * Currently the metadata lists are hit first, MFU then MRU, followed by
4215 * the data lists. This function returns a locked list, and also returns
4216 * the lock pointer.
4218 static list_t *
4219 l2arc_list_locked(int list_num, kmutex_t **lock)
4221 list_t *list;
4223 ASSERT(list_num >= 0 && list_num <= 3);
4225 switch (list_num) {
4226 case 0:
4227 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4228 *lock = &arc_mfu->arcs_mtx;
4229 break;
4230 case 1:
4231 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4232 *lock = &arc_mru->arcs_mtx;
4233 break;
4234 case 2:
4235 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4236 *lock = &arc_mfu->arcs_mtx;
4237 break;
4238 case 3:
4239 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4240 *lock = &arc_mru->arcs_mtx;
4241 break;
4244 ASSERT(!(MUTEX_HELD(*lock)));
4245 mutex_enter(*lock);
4246 return (list);
4250 * Evict buffers from the device write hand to the distance specified in
4251 * bytes. This distance may span populated buffers, it may span nothing.
4252 * This is clearing a region on the L2ARC device ready for writing.
4253 * If the 'all' boolean is set, every buffer is evicted.
4255 static void
4256 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4258 list_t *buflist;
4259 l2arc_buf_hdr_t *abl2;
4260 arc_buf_hdr_t *ab, *ab_prev;
4261 kmutex_t *hash_lock;
4262 uint64_t taddr;
4264 buflist = dev->l2ad_buflist;
4266 if (buflist == NULL)
4267 return;
4269 if (!all && dev->l2ad_first) {
4271 * This is the first sweep through the device. There is
4272 * nothing to evict.
4274 return;
4277 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4279 * When nearing the end of the device, evict to the end
4280 * before the device write hand jumps to the start.
4282 taddr = dev->l2ad_end;
4283 } else {
4284 taddr = dev->l2ad_hand + distance;
4286 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4287 uint64_t, taddr, boolean_t, all);
4289 top:
4290 mutex_enter(&l2arc_buflist_mtx);
4291 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4292 ab_prev = list_prev(buflist, ab);
4294 hash_lock = HDR_LOCK(ab);
4295 if (!mutex_tryenter(hash_lock)) {
4297 * Missed the hash lock. Retry.
4299 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4300 mutex_exit(&l2arc_buflist_mtx);
4301 mutex_enter(hash_lock);
4302 mutex_exit(hash_lock);
4303 goto top;
4306 if (HDR_L2_WRITE_HEAD(ab)) {
4308 * We hit a write head node. Leave it for
4309 * l2arc_write_done().
4311 list_remove(buflist, ab);
4312 mutex_exit(hash_lock);
4313 continue;
4316 if (!all && ab->b_l2hdr != NULL &&
4317 (ab->b_l2hdr->b_daddr > taddr ||
4318 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4320 * We've evicted to the target address,
4321 * or the end of the device.
4323 mutex_exit(hash_lock);
4324 break;
4327 if (HDR_FREE_IN_PROGRESS(ab)) {
4329 * Already on the path to destruction.
4331 mutex_exit(hash_lock);
4332 continue;
4335 if (ab->b_state == arc_l2c_only) {
4336 ASSERT(!HDR_L2_READING(ab));
4338 * This doesn't exist in the ARC. Destroy.
4339 * arc_hdr_destroy() will call list_remove()
4340 * and decrement arcstat_l2_size.
4342 arc_change_state(arc_anon, ab, hash_lock);
4343 arc_hdr_destroy(ab);
4344 } else {
4346 * Invalidate issued or about to be issued
4347 * reads, since we may be about to write
4348 * over this location.
4350 if (HDR_L2_READING(ab)) {
4351 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4352 ab->b_flags |= ARC_L2_EVICTED;
4356 * Tell ARC this no longer exists in L2ARC.
4358 if (ab->b_l2hdr != NULL) {
4359 abl2 = ab->b_l2hdr;
4360 ab->b_l2hdr = NULL;
4361 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4362 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4364 list_remove(buflist, ab);
4367 * This may have been leftover after a
4368 * failed write.
4370 ab->b_flags &= ~ARC_L2_WRITING;
4372 mutex_exit(hash_lock);
4374 mutex_exit(&l2arc_buflist_mtx);
4376 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4377 dev->l2ad_evict = taddr;
4381 * Find and write ARC buffers to the L2ARC device.
4383 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4384 * for reading until they have completed writing.
4386 static uint64_t
4387 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4389 arc_buf_hdr_t *ab, *ab_prev, *head;
4390 l2arc_buf_hdr_t *hdrl2;
4391 list_t *list;
4392 uint64_t passed_sz, write_sz, buf_sz, headroom;
4393 void *buf_data;
4394 kmutex_t *hash_lock, *list_lock;
4395 boolean_t have_lock, full;
4396 l2arc_write_callback_t *cb;
4397 zio_t *pio, *wzio;
4398 uint64_t guid = spa_load_guid(spa);
4400 ASSERT(dev->l2ad_vdev != NULL);
4402 pio = NULL;
4403 write_sz = 0;
4404 full = B_FALSE;
4405 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4406 head->b_flags |= ARC_L2_WRITE_HEAD;
4409 * Copy buffers for L2ARC writing.
4411 mutex_enter(&l2arc_buflist_mtx);
4412 for (int try = 0; try <= 3; try++) {
4413 list = l2arc_list_locked(try, &list_lock);
4414 passed_sz = 0;
4417 * L2ARC fast warmup.
4419 * Until the ARC is warm and starts to evict, read from the
4420 * head of the ARC lists rather than the tail.
4422 headroom = target_sz * l2arc_headroom;
4423 if (arc_warm == B_FALSE)
4424 ab = list_head(list);
4425 else
4426 ab = list_tail(list);
4428 for (; ab; ab = ab_prev) {
4429 if (arc_warm == B_FALSE)
4430 ab_prev = list_next(list, ab);
4431 else
4432 ab_prev = list_prev(list, ab);
4434 hash_lock = HDR_LOCK(ab);
4435 have_lock = MUTEX_HELD(hash_lock);
4436 if (!have_lock && !mutex_tryenter(hash_lock)) {
4438 * Skip this buffer rather than waiting.
4440 continue;
4443 passed_sz += ab->b_size;
4444 if (passed_sz > headroom) {
4446 * Searched too far.
4448 mutex_exit(hash_lock);
4449 break;
4452 if (!l2arc_write_eligible(guid, ab)) {
4453 mutex_exit(hash_lock);
4454 continue;
4457 if ((write_sz + ab->b_size) > target_sz) {
4458 full = B_TRUE;
4459 mutex_exit(hash_lock);
4460 break;
4463 if (pio == NULL) {
4465 * Insert a dummy header on the buflist so
4466 * l2arc_write_done() can find where the
4467 * write buffers begin without searching.
4469 list_insert_head(dev->l2ad_buflist, head);
4471 cb = kmem_alloc(
4472 sizeof (l2arc_write_callback_t), KM_SLEEP);
4473 cb->l2wcb_dev = dev;
4474 cb->l2wcb_head = head;
4475 pio = zio_root(spa, l2arc_write_done, cb,
4476 ZIO_FLAG_CANFAIL);
4480 * Create and add a new L2ARC header.
4482 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4483 hdrl2->b_dev = dev;
4484 hdrl2->b_daddr = dev->l2ad_hand;
4486 ab->b_flags |= ARC_L2_WRITING;
4487 ab->b_l2hdr = hdrl2;
4488 list_insert_head(dev->l2ad_buflist, ab);
4489 buf_data = ab->b_buf->b_data;
4490 buf_sz = ab->b_size;
4493 * Compute and store the buffer cksum before
4494 * writing. On debug the cksum is verified first.
4496 arc_cksum_verify(ab->b_buf);
4497 arc_cksum_compute(ab->b_buf, B_TRUE);
4499 mutex_exit(hash_lock);
4501 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4502 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4503 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4504 ZIO_FLAG_CANFAIL, B_FALSE);
4506 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4507 zio_t *, wzio);
4508 (void) zio_nowait(wzio);
4511 * Keep the clock hand suitably device-aligned.
4513 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4515 write_sz += buf_sz;
4516 dev->l2ad_hand += buf_sz;
4519 mutex_exit(list_lock);
4521 if (full == B_TRUE)
4522 break;
4524 mutex_exit(&l2arc_buflist_mtx);
4526 if (pio == NULL) {
4527 ASSERT0(write_sz);
4528 kmem_cache_free(hdr_cache, head);
4529 return (0);
4532 ASSERT3U(write_sz, <=, target_sz);
4533 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4534 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4535 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4536 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4539 * Bump device hand to the device start if it is approaching the end.
4540 * l2arc_evict() will already have evicted ahead for this case.
4542 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4543 vdev_space_update(dev->l2ad_vdev,
4544 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4545 dev->l2ad_hand = dev->l2ad_start;
4546 dev->l2ad_evict = dev->l2ad_start;
4547 dev->l2ad_first = B_FALSE;
4550 dev->l2ad_writing = B_TRUE;
4551 (void) zio_wait(pio);
4552 dev->l2ad_writing = B_FALSE;
4554 return (write_sz);
4558 * This thread feeds the L2ARC at regular intervals. This is the beating
4559 * heart of the L2ARC.
4561 static void
4562 l2arc_feed_thread(void)
4564 callb_cpr_t cpr;
4565 l2arc_dev_t *dev;
4566 spa_t *spa;
4567 uint64_t size, wrote;
4568 clock_t begin, next = ddi_get_lbolt();
4570 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4572 mutex_enter(&l2arc_feed_thr_lock);
4574 while (l2arc_thread_exit == 0) {
4575 CALLB_CPR_SAFE_BEGIN(&cpr);
4576 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4577 next);
4578 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4579 next = ddi_get_lbolt() + hz;
4582 * Quick check for L2ARC devices.
4584 mutex_enter(&l2arc_dev_mtx);
4585 if (l2arc_ndev == 0) {
4586 mutex_exit(&l2arc_dev_mtx);
4587 continue;
4589 mutex_exit(&l2arc_dev_mtx);
4590 begin = ddi_get_lbolt();
4593 * This selects the next l2arc device to write to, and in
4594 * doing so the next spa to feed from: dev->l2ad_spa. This
4595 * will return NULL if there are now no l2arc devices or if
4596 * they are all faulted.
4598 * If a device is returned, its spa's config lock is also
4599 * held to prevent device removal. l2arc_dev_get_next()
4600 * will grab and release l2arc_dev_mtx.
4602 if ((dev = l2arc_dev_get_next()) == NULL)
4603 continue;
4605 spa = dev->l2ad_spa;
4606 ASSERT(spa != NULL);
4609 * If the pool is read-only then force the feed thread to
4610 * sleep a little longer.
4612 if (!spa_writeable(spa)) {
4613 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4614 spa_config_exit(spa, SCL_L2ARC, dev);
4615 continue;
4619 * Avoid contributing to memory pressure.
4621 if (arc_reclaim_needed()) {
4622 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4623 spa_config_exit(spa, SCL_L2ARC, dev);
4624 continue;
4627 ARCSTAT_BUMP(arcstat_l2_feeds);
4629 size = l2arc_write_size(dev);
4632 * Evict L2ARC buffers that will be overwritten.
4634 l2arc_evict(dev, size, B_FALSE);
4637 * Write ARC buffers.
4639 wrote = l2arc_write_buffers(spa, dev, size);
4642 * Calculate interval between writes.
4644 next = l2arc_write_interval(begin, size, wrote);
4645 spa_config_exit(spa, SCL_L2ARC, dev);
4648 l2arc_thread_exit = 0;
4649 cv_broadcast(&l2arc_feed_thr_cv);
4650 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4651 thread_exit();
4654 boolean_t
4655 l2arc_vdev_present(vdev_t *vd)
4657 l2arc_dev_t *dev;
4659 mutex_enter(&l2arc_dev_mtx);
4660 for (dev = list_head(l2arc_dev_list); dev != NULL;
4661 dev = list_next(l2arc_dev_list, dev)) {
4662 if (dev->l2ad_vdev == vd)
4663 break;
4665 mutex_exit(&l2arc_dev_mtx);
4667 return (dev != NULL);
4671 * Add a vdev for use by the L2ARC. By this point the spa has already
4672 * validated the vdev and opened it.
4674 void
4675 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4677 l2arc_dev_t *adddev;
4679 ASSERT(!l2arc_vdev_present(vd));
4682 * Create a new l2arc device entry.
4684 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4685 adddev->l2ad_spa = spa;
4686 adddev->l2ad_vdev = vd;
4687 adddev->l2ad_write = l2arc_write_max;
4688 adddev->l2ad_boost = l2arc_write_boost;
4689 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4690 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4691 adddev->l2ad_hand = adddev->l2ad_start;
4692 adddev->l2ad_evict = adddev->l2ad_start;
4693 adddev->l2ad_first = B_TRUE;
4694 adddev->l2ad_writing = B_FALSE;
4695 ASSERT3U(adddev->l2ad_write, >, 0);
4698 * This is a list of all ARC buffers that are still valid on the
4699 * device.
4701 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4702 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4703 offsetof(arc_buf_hdr_t, b_l2node));
4705 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4708 * Add device to global list
4710 mutex_enter(&l2arc_dev_mtx);
4711 list_insert_head(l2arc_dev_list, adddev);
4712 atomic_inc_64(&l2arc_ndev);
4713 mutex_exit(&l2arc_dev_mtx);
4717 * Remove a vdev from the L2ARC.
4719 void
4720 l2arc_remove_vdev(vdev_t *vd)
4722 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4725 * Find the device by vdev
4727 mutex_enter(&l2arc_dev_mtx);
4728 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4729 nextdev = list_next(l2arc_dev_list, dev);
4730 if (vd == dev->l2ad_vdev) {
4731 remdev = dev;
4732 break;
4735 ASSERT(remdev != NULL);
4738 * Remove device from global list
4740 list_remove(l2arc_dev_list, remdev);
4741 l2arc_dev_last = NULL; /* may have been invalidated */
4742 atomic_dec_64(&l2arc_ndev);
4743 mutex_exit(&l2arc_dev_mtx);
4746 * Clear all buflists and ARC references. L2ARC device flush.
4748 l2arc_evict(remdev, 0, B_TRUE);
4749 list_destroy(remdev->l2ad_buflist);
4750 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4751 kmem_free(remdev, sizeof (l2arc_dev_t));
4754 void
4755 l2arc_init(void)
4757 l2arc_thread_exit = 0;
4758 l2arc_ndev = 0;
4759 l2arc_writes_sent = 0;
4760 l2arc_writes_done = 0;
4762 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4763 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4764 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4765 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4766 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4768 l2arc_dev_list = &L2ARC_dev_list;
4769 l2arc_free_on_write = &L2ARC_free_on_write;
4770 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4771 offsetof(l2arc_dev_t, l2ad_node));
4772 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4773 offsetof(l2arc_data_free_t, l2df_list_node));
4776 void
4777 l2arc_fini(void)
4780 * This is called from dmu_fini(), which is called from spa_fini();
4781 * Because of this, we can assume that all l2arc devices have
4782 * already been removed when the pools themselves were removed.
4785 l2arc_do_free_on_write();
4787 mutex_destroy(&l2arc_feed_thr_lock);
4788 cv_destroy(&l2arc_feed_thr_cv);
4789 mutex_destroy(&l2arc_dev_mtx);
4790 mutex_destroy(&l2arc_buflist_mtx);
4791 mutex_destroy(&l2arc_free_on_write_mtx);
4793 list_destroy(l2arc_dev_list);
4794 list_destroy(l2arc_free_on_write);
4797 void
4798 l2arc_start(void)
4800 if (!(spa_mode_global & FWRITE))
4801 return;
4803 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4804 TS_RUN, minclsyspri);
4807 void
4808 l2arc_stop(void)
4810 if (!(spa_mode_global & FWRITE))
4811 return;
4813 mutex_enter(&l2arc_feed_thr_lock);
4814 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4815 l2arc_thread_exit = 1;
4816 while (l2arc_thread_exit != 0)
4817 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4818 mutex_exit(&l2arc_feed_thr_lock);