5369 arc flags should be an enum
[unleashed.git] / usr / src / uts / common / fs / zfs / zio.c
blobd0a42e9af13b7012ac48d4073ebe3520b069c4d5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
44 * ==========================================================================
45 * I/O type descriptions
46 * ==========================================================================
48 const char *zio_type_name[ZIO_TYPES] = {
49 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
50 "zio_ioctl"
54 * ==========================================================================
55 * I/O kmem caches
56 * ==========================================================================
58 kmem_cache_t *zio_cache;
59 kmem_cache_t *zio_link_cache;
60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
63 #ifdef _KERNEL
64 extern vmem_t *zio_alloc_arena;
65 #endif
67 #define ZIO_PIPELINE_CONTINUE 0x100
68 #define ZIO_PIPELINE_STOP 0x101
71 * The following actions directly effect the spa's sync-to-convergence logic.
72 * The values below define the sync pass when we start performing the action.
73 * Care should be taken when changing these values as they directly impact
74 * spa_sync() performance. Tuning these values may introduce subtle performance
75 * pathologies and should only be done in the context of performance analysis.
76 * These tunables will eventually be removed and replaced with #defines once
77 * enough analysis has been done to determine optimal values.
79 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
80 * regular blocks are not deferred.
82 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
83 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
84 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
87 * An allocating zio is one that either currently has the DVA allocate
88 * stage set or will have it later in its lifetime.
90 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
92 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
94 #ifdef ZFS_DEBUG
95 int zio_buf_debug_limit = 16384;
96 #else
97 int zio_buf_debug_limit = 0;
98 #endif
100 void
101 zio_init(void)
103 size_t c;
104 vmem_t *data_alloc_arena = NULL;
106 #ifdef _KERNEL
107 data_alloc_arena = zio_alloc_arena;
108 #endif
109 zio_cache = kmem_cache_create("zio_cache",
110 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
111 zio_link_cache = kmem_cache_create("zio_link_cache",
112 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
115 * For small buffers, we want a cache for each multiple of
116 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
117 * for each quarter-power of 2.
119 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
120 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
121 size_t p2 = size;
122 size_t align = 0;
123 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
125 while (!ISP2(p2))
126 p2 &= p2 - 1;
128 #ifndef _KERNEL
130 * If we are using watchpoints, put each buffer on its own page,
131 * to eliminate the performance overhead of trapping to the
132 * kernel when modifying a non-watched buffer that shares the
133 * page with a watched buffer.
135 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
136 continue;
137 #endif
138 if (size <= 4 * SPA_MINBLOCKSIZE) {
139 align = SPA_MINBLOCKSIZE;
140 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
141 align = MIN(p2 >> 2, PAGESIZE);
144 if (align != 0) {
145 char name[36];
146 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
147 zio_buf_cache[c] = kmem_cache_create(name, size,
148 align, NULL, NULL, NULL, NULL, NULL, cflags);
151 * Since zio_data bufs do not appear in crash dumps, we
152 * pass KMC_NOTOUCH so that no allocator metadata is
153 * stored with the buffers.
155 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
156 zio_data_buf_cache[c] = kmem_cache_create(name, size,
157 align, NULL, NULL, NULL, NULL, data_alloc_arena,
158 cflags | KMC_NOTOUCH);
162 while (--c != 0) {
163 ASSERT(zio_buf_cache[c] != NULL);
164 if (zio_buf_cache[c - 1] == NULL)
165 zio_buf_cache[c - 1] = zio_buf_cache[c];
167 ASSERT(zio_data_buf_cache[c] != NULL);
168 if (zio_data_buf_cache[c - 1] == NULL)
169 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
172 zio_inject_init();
175 void
176 zio_fini(void)
178 size_t c;
179 kmem_cache_t *last_cache = NULL;
180 kmem_cache_t *last_data_cache = NULL;
182 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
183 if (zio_buf_cache[c] != last_cache) {
184 last_cache = zio_buf_cache[c];
185 kmem_cache_destroy(zio_buf_cache[c]);
187 zio_buf_cache[c] = NULL;
189 if (zio_data_buf_cache[c] != last_data_cache) {
190 last_data_cache = zio_data_buf_cache[c];
191 kmem_cache_destroy(zio_data_buf_cache[c]);
193 zio_data_buf_cache[c] = NULL;
196 kmem_cache_destroy(zio_link_cache);
197 kmem_cache_destroy(zio_cache);
199 zio_inject_fini();
203 * ==========================================================================
204 * Allocate and free I/O buffers
205 * ==========================================================================
209 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
210 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
211 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
212 * excess / transient data in-core during a crashdump.
214 void *
215 zio_buf_alloc(size_t size)
217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
219 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
221 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
225 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
226 * crashdump if the kernel panics. This exists so that we will limit the amount
227 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
228 * of kernel heap dumped to disk when the kernel panics)
230 void *
231 zio_data_buf_alloc(size_t size)
233 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
235 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
237 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
240 void
241 zio_buf_free(void *buf, size_t size)
243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 kmem_cache_free(zio_buf_cache[c], buf);
250 void
251 zio_data_buf_free(void *buf, size_t size)
253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 kmem_cache_free(zio_data_buf_cache[c], buf);
261 * ==========================================================================
262 * Push and pop I/O transform buffers
263 * ==========================================================================
265 static void
266 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
267 zio_transform_func_t *transform)
269 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
271 zt->zt_orig_data = zio->io_data;
272 zt->zt_orig_size = zio->io_size;
273 zt->zt_bufsize = bufsize;
274 zt->zt_transform = transform;
276 zt->zt_next = zio->io_transform_stack;
277 zio->io_transform_stack = zt;
279 zio->io_data = data;
280 zio->io_size = size;
283 static void
284 zio_pop_transforms(zio_t *zio)
286 zio_transform_t *zt;
288 while ((zt = zio->io_transform_stack) != NULL) {
289 if (zt->zt_transform != NULL)
290 zt->zt_transform(zio,
291 zt->zt_orig_data, zt->zt_orig_size);
293 if (zt->zt_bufsize != 0)
294 zio_buf_free(zio->io_data, zt->zt_bufsize);
296 zio->io_data = zt->zt_orig_data;
297 zio->io_size = zt->zt_orig_size;
298 zio->io_transform_stack = zt->zt_next;
300 kmem_free(zt, sizeof (zio_transform_t));
305 * ==========================================================================
306 * I/O transform callbacks for subblocks and decompression
307 * ==========================================================================
309 static void
310 zio_subblock(zio_t *zio, void *data, uint64_t size)
312 ASSERT(zio->io_size > size);
314 if (zio->io_type == ZIO_TYPE_READ)
315 bcopy(zio->io_data, data, size);
318 static void
319 zio_decompress(zio_t *zio, void *data, uint64_t size)
321 if (zio->io_error == 0 &&
322 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
323 zio->io_data, data, zio->io_size, size) != 0)
324 zio->io_error = SET_ERROR(EIO);
328 * ==========================================================================
329 * I/O parent/child relationships and pipeline interlocks
330 * ==========================================================================
333 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
334 * continue calling these functions until they return NULL.
335 * Otherwise, the next caller will pick up the list walk in
336 * some indeterminate state. (Otherwise every caller would
337 * have to pass in a cookie to keep the state represented by
338 * io_walk_link, which gets annoying.)
340 zio_t *
341 zio_walk_parents(zio_t *cio)
343 zio_link_t *zl = cio->io_walk_link;
344 list_t *pl = &cio->io_parent_list;
346 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
347 cio->io_walk_link = zl;
349 if (zl == NULL)
350 return (NULL);
352 ASSERT(zl->zl_child == cio);
353 return (zl->zl_parent);
356 zio_t *
357 zio_walk_children(zio_t *pio)
359 zio_link_t *zl = pio->io_walk_link;
360 list_t *cl = &pio->io_child_list;
362 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
363 pio->io_walk_link = zl;
365 if (zl == NULL)
366 return (NULL);
368 ASSERT(zl->zl_parent == pio);
369 return (zl->zl_child);
372 zio_t *
373 zio_unique_parent(zio_t *cio)
375 zio_t *pio = zio_walk_parents(cio);
377 VERIFY(zio_walk_parents(cio) == NULL);
378 return (pio);
381 void
382 zio_add_child(zio_t *pio, zio_t *cio)
384 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
387 * Logical I/Os can have logical, gang, or vdev children.
388 * Gang I/Os can have gang or vdev children.
389 * Vdev I/Os can only have vdev children.
390 * The following ASSERT captures all of these constraints.
392 ASSERT(cio->io_child_type <= pio->io_child_type);
394 zl->zl_parent = pio;
395 zl->zl_child = cio;
397 mutex_enter(&cio->io_lock);
398 mutex_enter(&pio->io_lock);
400 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
402 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
403 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
405 list_insert_head(&pio->io_child_list, zl);
406 list_insert_head(&cio->io_parent_list, zl);
408 pio->io_child_count++;
409 cio->io_parent_count++;
411 mutex_exit(&pio->io_lock);
412 mutex_exit(&cio->io_lock);
415 static void
416 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
418 ASSERT(zl->zl_parent == pio);
419 ASSERT(zl->zl_child == cio);
421 mutex_enter(&cio->io_lock);
422 mutex_enter(&pio->io_lock);
424 list_remove(&pio->io_child_list, zl);
425 list_remove(&cio->io_parent_list, zl);
427 pio->io_child_count--;
428 cio->io_parent_count--;
430 mutex_exit(&pio->io_lock);
431 mutex_exit(&cio->io_lock);
433 kmem_cache_free(zio_link_cache, zl);
436 static boolean_t
437 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
439 uint64_t *countp = &zio->io_children[child][wait];
440 boolean_t waiting = B_FALSE;
442 mutex_enter(&zio->io_lock);
443 ASSERT(zio->io_stall == NULL);
444 if (*countp != 0) {
445 zio->io_stage >>= 1;
446 zio->io_stall = countp;
447 waiting = B_TRUE;
449 mutex_exit(&zio->io_lock);
451 return (waiting);
454 static void
455 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
457 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
458 int *errorp = &pio->io_child_error[zio->io_child_type];
460 mutex_enter(&pio->io_lock);
461 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
462 *errorp = zio_worst_error(*errorp, zio->io_error);
463 pio->io_reexecute |= zio->io_reexecute;
464 ASSERT3U(*countp, >, 0);
466 (*countp)--;
468 if (*countp == 0 && pio->io_stall == countp) {
469 pio->io_stall = NULL;
470 mutex_exit(&pio->io_lock);
471 zio_execute(pio);
472 } else {
473 mutex_exit(&pio->io_lock);
477 static void
478 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
480 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
481 zio->io_error = zio->io_child_error[c];
485 * ==========================================================================
486 * Create the various types of I/O (read, write, free, etc)
487 * ==========================================================================
489 static zio_t *
490 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
491 void *data, uint64_t size, zio_done_func_t *done, void *private,
492 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
493 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
494 enum zio_stage stage, enum zio_stage pipeline)
496 zio_t *zio;
498 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
499 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
500 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
502 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
503 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
504 ASSERT(vd || stage == ZIO_STAGE_OPEN);
506 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
507 bzero(zio, sizeof (zio_t));
509 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
510 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
512 list_create(&zio->io_parent_list, sizeof (zio_link_t),
513 offsetof(zio_link_t, zl_parent_node));
514 list_create(&zio->io_child_list, sizeof (zio_link_t),
515 offsetof(zio_link_t, zl_child_node));
517 if (vd != NULL)
518 zio->io_child_type = ZIO_CHILD_VDEV;
519 else if (flags & ZIO_FLAG_GANG_CHILD)
520 zio->io_child_type = ZIO_CHILD_GANG;
521 else if (flags & ZIO_FLAG_DDT_CHILD)
522 zio->io_child_type = ZIO_CHILD_DDT;
523 else
524 zio->io_child_type = ZIO_CHILD_LOGICAL;
526 if (bp != NULL) {
527 zio->io_bp = (blkptr_t *)bp;
528 zio->io_bp_copy = *bp;
529 zio->io_bp_orig = *bp;
530 if (type != ZIO_TYPE_WRITE ||
531 zio->io_child_type == ZIO_CHILD_DDT)
532 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
533 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
534 zio->io_logical = zio;
535 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
536 pipeline |= ZIO_GANG_STAGES;
539 zio->io_spa = spa;
540 zio->io_txg = txg;
541 zio->io_done = done;
542 zio->io_private = private;
543 zio->io_type = type;
544 zio->io_priority = priority;
545 zio->io_vd = vd;
546 zio->io_offset = offset;
547 zio->io_orig_data = zio->io_data = data;
548 zio->io_orig_size = zio->io_size = size;
549 zio->io_orig_flags = zio->io_flags = flags;
550 zio->io_orig_stage = zio->io_stage = stage;
551 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
553 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
554 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
556 if (zb != NULL)
557 zio->io_bookmark = *zb;
559 if (pio != NULL) {
560 if (zio->io_logical == NULL)
561 zio->io_logical = pio->io_logical;
562 if (zio->io_child_type == ZIO_CHILD_GANG)
563 zio->io_gang_leader = pio->io_gang_leader;
564 zio_add_child(pio, zio);
567 return (zio);
570 static void
571 zio_destroy(zio_t *zio)
573 list_destroy(&zio->io_parent_list);
574 list_destroy(&zio->io_child_list);
575 mutex_destroy(&zio->io_lock);
576 cv_destroy(&zio->io_cv);
577 kmem_cache_free(zio_cache, zio);
580 zio_t *
581 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
582 void *private, enum zio_flag flags)
584 zio_t *zio;
586 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
587 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
588 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
590 return (zio);
593 zio_t *
594 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
596 return (zio_null(NULL, spa, NULL, done, private, flags));
599 void
600 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
602 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
603 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
604 bp, (longlong_t)BP_GET_TYPE(bp));
606 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
607 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
608 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
609 bp, (longlong_t)BP_GET_CHECKSUM(bp));
611 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
612 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
613 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
614 bp, (longlong_t)BP_GET_COMPRESS(bp));
616 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
617 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
618 bp, (longlong_t)BP_GET_LSIZE(bp));
620 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
621 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
622 bp, (longlong_t)BP_GET_PSIZE(bp));
625 if (BP_IS_EMBEDDED(bp)) {
626 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
627 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
628 bp, (longlong_t)BPE_GET_ETYPE(bp));
633 * Pool-specific checks.
635 * Note: it would be nice to verify that the blk_birth and
636 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
637 * allows the birth time of log blocks (and dmu_sync()-ed blocks
638 * that are in the log) to be arbitrarily large.
640 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
641 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
642 if (vdevid >= spa->spa_root_vdev->vdev_children) {
643 zfs_panic_recover("blkptr at %p DVA %u has invalid "
644 "VDEV %llu",
645 bp, i, (longlong_t)vdevid);
647 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
648 if (vd == NULL) {
649 zfs_panic_recover("blkptr at %p DVA %u has invalid "
650 "VDEV %llu",
651 bp, i, (longlong_t)vdevid);
653 if (vd->vdev_ops == &vdev_hole_ops) {
654 zfs_panic_recover("blkptr at %p DVA %u has hole "
655 "VDEV %llu",
656 bp, i, (longlong_t)vdevid);
659 if (vd->vdev_ops == &vdev_missing_ops) {
661 * "missing" vdevs are valid during import, but we
662 * don't have their detailed info (e.g. asize), so
663 * we can't perform any more checks on them.
665 continue;
667 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
668 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
669 if (BP_IS_GANG(bp))
670 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
671 if (offset + asize > vd->vdev_asize) {
672 zfs_panic_recover("blkptr at %p DVA %u has invalid "
673 "OFFSET %llu",
674 bp, i, (longlong_t)offset);
679 zio_t *
680 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
681 void *data, uint64_t size, zio_done_func_t *done, void *private,
682 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
684 zio_t *zio;
686 zfs_blkptr_verify(spa, bp);
688 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
689 data, size, done, private,
690 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
691 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
692 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
694 return (zio);
697 zio_t *
698 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
699 void *data, uint64_t size, const zio_prop_t *zp,
700 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
701 void *private,
702 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
704 zio_t *zio;
706 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
707 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
708 zp->zp_compress >= ZIO_COMPRESS_OFF &&
709 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
710 DMU_OT_IS_VALID(zp->zp_type) &&
711 zp->zp_level < 32 &&
712 zp->zp_copies > 0 &&
713 zp->zp_copies <= spa_max_replication(spa));
715 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
716 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
717 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
718 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
720 zio->io_ready = ready;
721 zio->io_physdone = physdone;
722 zio->io_prop = *zp;
725 * Data can be NULL if we are going to call zio_write_override() to
726 * provide the already-allocated BP. But we may need the data to
727 * verify a dedup hit (if requested). In this case, don't try to
728 * dedup (just take the already-allocated BP verbatim).
730 if (data == NULL && zio->io_prop.zp_dedup_verify) {
731 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
734 return (zio);
737 zio_t *
738 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
739 uint64_t size, zio_done_func_t *done, void *private,
740 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
742 zio_t *zio;
744 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
745 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
746 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
748 return (zio);
751 void
752 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
754 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
755 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
756 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
757 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
760 * We must reset the io_prop to match the values that existed
761 * when the bp was first written by dmu_sync() keeping in mind
762 * that nopwrite and dedup are mutually exclusive.
764 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
765 zio->io_prop.zp_nopwrite = nopwrite;
766 zio->io_prop.zp_copies = copies;
767 zio->io_bp_override = bp;
770 void
771 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
775 * The check for EMBEDDED is a performance optimization. We
776 * process the free here (by ignoring it) rather than
777 * putting it on the list and then processing it in zio_free_sync().
779 if (BP_IS_EMBEDDED(bp))
780 return;
781 metaslab_check_free(spa, bp);
784 * Frees that are for the currently-syncing txg, are not going to be
785 * deferred, and which will not need to do a read (i.e. not GANG or
786 * DEDUP), can be processed immediately. Otherwise, put them on the
787 * in-memory list for later processing.
789 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
790 txg != spa->spa_syncing_txg ||
791 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
792 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
793 } else {
794 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
798 zio_t *
799 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
800 enum zio_flag flags)
802 zio_t *zio;
803 enum zio_stage stage = ZIO_FREE_PIPELINE;
805 ASSERT(!BP_IS_HOLE(bp));
806 ASSERT(spa_syncing_txg(spa) == txg);
807 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
809 if (BP_IS_EMBEDDED(bp))
810 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
812 metaslab_check_free(spa, bp);
813 arc_freed(spa, bp);
816 * GANG and DEDUP blocks can induce a read (for the gang block header,
817 * or the DDT), so issue them asynchronously so that this thread is
818 * not tied up.
820 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
821 stage |= ZIO_STAGE_ISSUE_ASYNC;
823 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
824 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
825 NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
827 return (zio);
830 zio_t *
831 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
832 zio_done_func_t *done, void *private, enum zio_flag flags)
834 zio_t *zio;
836 dprintf_bp(bp, "claiming in txg %llu", txg);
838 if (BP_IS_EMBEDDED(bp))
839 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
842 * A claim is an allocation of a specific block. Claims are needed
843 * to support immediate writes in the intent log. The issue is that
844 * immediate writes contain committed data, but in a txg that was
845 * *not* committed. Upon opening the pool after an unclean shutdown,
846 * the intent log claims all blocks that contain immediate write data
847 * so that the SPA knows they're in use.
849 * All claims *must* be resolved in the first txg -- before the SPA
850 * starts allocating blocks -- so that nothing is allocated twice.
851 * If txg == 0 we just verify that the block is claimable.
853 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
854 ASSERT(txg == spa_first_txg(spa) || txg == 0);
855 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
857 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
858 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
859 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
861 return (zio);
864 zio_t *
865 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
866 zio_done_func_t *done, void *private, enum zio_flag flags)
868 zio_t *zio;
869 int c;
871 if (vd->vdev_children == 0) {
872 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
873 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
874 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
876 zio->io_cmd = cmd;
877 } else {
878 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
880 for (c = 0; c < vd->vdev_children; c++)
881 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
882 done, private, flags));
885 return (zio);
888 zio_t *
889 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
890 void *data, int checksum, zio_done_func_t *done, void *private,
891 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
893 zio_t *zio;
895 ASSERT(vd->vdev_children == 0);
896 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
897 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
898 ASSERT3U(offset + size, <=, vd->vdev_psize);
900 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
901 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
902 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
904 zio->io_prop.zp_checksum = checksum;
906 return (zio);
909 zio_t *
910 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
911 void *data, int checksum, zio_done_func_t *done, void *private,
912 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
914 zio_t *zio;
916 ASSERT(vd->vdev_children == 0);
917 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
918 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
919 ASSERT3U(offset + size, <=, vd->vdev_psize);
921 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
922 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
923 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
925 zio->io_prop.zp_checksum = checksum;
927 if (zio_checksum_table[checksum].ci_eck) {
929 * zec checksums are necessarily destructive -- they modify
930 * the end of the write buffer to hold the verifier/checksum.
931 * Therefore, we must make a local copy in case the data is
932 * being written to multiple places in parallel.
934 void *wbuf = zio_buf_alloc(size);
935 bcopy(data, wbuf, size);
936 zio_push_transform(zio, wbuf, size, size, NULL);
939 return (zio);
943 * Create a child I/O to do some work for us.
945 zio_t *
946 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
947 void *data, uint64_t size, int type, zio_priority_t priority,
948 enum zio_flag flags, zio_done_func_t *done, void *private)
950 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
951 zio_t *zio;
953 ASSERT(vd->vdev_parent ==
954 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
956 if (type == ZIO_TYPE_READ && bp != NULL) {
958 * If we have the bp, then the child should perform the
959 * checksum and the parent need not. This pushes error
960 * detection as close to the leaves as possible and
961 * eliminates redundant checksums in the interior nodes.
963 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
964 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
967 if (vd->vdev_children == 0)
968 offset += VDEV_LABEL_START_SIZE;
970 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
973 * If we've decided to do a repair, the write is not speculative --
974 * even if the original read was.
976 if (flags & ZIO_FLAG_IO_REPAIR)
977 flags &= ~ZIO_FLAG_SPECULATIVE;
979 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
980 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
981 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
983 zio->io_physdone = pio->io_physdone;
984 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
985 zio->io_logical->io_phys_children++;
987 return (zio);
990 zio_t *
991 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
992 int type, zio_priority_t priority, enum zio_flag flags,
993 zio_done_func_t *done, void *private)
995 zio_t *zio;
997 ASSERT(vd->vdev_ops->vdev_op_leaf);
999 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1000 data, size, done, private, type, priority,
1001 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1002 vd, offset, NULL,
1003 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1005 return (zio);
1008 void
1009 zio_flush(zio_t *zio, vdev_t *vd)
1011 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1012 NULL, NULL,
1013 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1016 void
1017 zio_shrink(zio_t *zio, uint64_t size)
1019 ASSERT(zio->io_executor == NULL);
1020 ASSERT(zio->io_orig_size == zio->io_size);
1021 ASSERT(size <= zio->io_size);
1024 * We don't shrink for raidz because of problems with the
1025 * reconstruction when reading back less than the block size.
1026 * Note, BP_IS_RAIDZ() assumes no compression.
1028 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1029 if (!BP_IS_RAIDZ(zio->io_bp))
1030 zio->io_orig_size = zio->io_size = size;
1034 * ==========================================================================
1035 * Prepare to read and write logical blocks
1036 * ==========================================================================
1039 static int
1040 zio_read_bp_init(zio_t *zio)
1042 blkptr_t *bp = zio->io_bp;
1044 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1045 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1046 !(zio->io_flags & ZIO_FLAG_RAW)) {
1047 uint64_t psize =
1048 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1049 void *cbuf = zio_buf_alloc(psize);
1051 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1054 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1055 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1056 decode_embedded_bp_compressed(bp, zio->io_data);
1057 } else {
1058 ASSERT(!BP_IS_EMBEDDED(bp));
1061 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1062 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1064 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1065 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1067 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1068 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1070 return (ZIO_PIPELINE_CONTINUE);
1073 static int
1074 zio_write_bp_init(zio_t *zio)
1076 spa_t *spa = zio->io_spa;
1077 zio_prop_t *zp = &zio->io_prop;
1078 enum zio_compress compress = zp->zp_compress;
1079 blkptr_t *bp = zio->io_bp;
1080 uint64_t lsize = zio->io_size;
1081 uint64_t psize = lsize;
1082 int pass = 1;
1085 * If our children haven't all reached the ready stage,
1086 * wait for them and then repeat this pipeline stage.
1088 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1089 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1090 return (ZIO_PIPELINE_STOP);
1092 if (!IO_IS_ALLOCATING(zio))
1093 return (ZIO_PIPELINE_CONTINUE);
1095 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1097 if (zio->io_bp_override) {
1098 ASSERT(bp->blk_birth != zio->io_txg);
1099 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1101 *bp = *zio->io_bp_override;
1102 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1104 if (BP_IS_EMBEDDED(bp))
1105 return (ZIO_PIPELINE_CONTINUE);
1108 * If we've been overridden and nopwrite is set then
1109 * set the flag accordingly to indicate that a nopwrite
1110 * has already occurred.
1112 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1113 ASSERT(!zp->zp_dedup);
1114 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1115 return (ZIO_PIPELINE_CONTINUE);
1118 ASSERT(!zp->zp_nopwrite);
1120 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1121 return (ZIO_PIPELINE_CONTINUE);
1123 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1124 zp->zp_dedup_verify);
1126 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1127 BP_SET_DEDUP(bp, 1);
1128 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1129 return (ZIO_PIPELINE_CONTINUE);
1131 zio->io_bp_override = NULL;
1132 BP_ZERO(bp);
1135 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1137 * We're rewriting an existing block, which means we're
1138 * working on behalf of spa_sync(). For spa_sync() to
1139 * converge, it must eventually be the case that we don't
1140 * have to allocate new blocks. But compression changes
1141 * the blocksize, which forces a reallocate, and makes
1142 * convergence take longer. Therefore, after the first
1143 * few passes, stop compressing to ensure convergence.
1145 pass = spa_sync_pass(spa);
1147 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1148 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1149 ASSERT(!BP_GET_DEDUP(bp));
1151 if (pass >= zfs_sync_pass_dont_compress)
1152 compress = ZIO_COMPRESS_OFF;
1154 /* Make sure someone doesn't change their mind on overwrites */
1155 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1156 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1159 if (compress != ZIO_COMPRESS_OFF) {
1160 void *cbuf = zio_buf_alloc(lsize);
1161 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1162 if (psize == 0 || psize == lsize) {
1163 compress = ZIO_COMPRESS_OFF;
1164 zio_buf_free(cbuf, lsize);
1165 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1166 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1167 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1168 encode_embedded_bp_compressed(bp,
1169 cbuf, compress, lsize, psize);
1170 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1171 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1172 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1173 zio_buf_free(cbuf, lsize);
1174 bp->blk_birth = zio->io_txg;
1175 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1176 ASSERT(spa_feature_is_active(spa,
1177 SPA_FEATURE_EMBEDDED_DATA));
1178 return (ZIO_PIPELINE_CONTINUE);
1179 } else {
1181 * Round up compressed size to MINBLOCKSIZE and
1182 * zero the tail.
1184 size_t rounded =
1185 P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1186 if (rounded > psize) {
1187 bzero((char *)cbuf + psize, rounded - psize);
1188 psize = rounded;
1190 if (psize == lsize) {
1191 compress = ZIO_COMPRESS_OFF;
1192 zio_buf_free(cbuf, lsize);
1193 } else {
1194 zio_push_transform(zio, cbuf,
1195 psize, lsize, NULL);
1201 * The final pass of spa_sync() must be all rewrites, but the first
1202 * few passes offer a trade-off: allocating blocks defers convergence,
1203 * but newly allocated blocks are sequential, so they can be written
1204 * to disk faster. Therefore, we allow the first few passes of
1205 * spa_sync() to allocate new blocks, but force rewrites after that.
1206 * There should only be a handful of blocks after pass 1 in any case.
1208 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1209 BP_GET_PSIZE(bp) == psize &&
1210 pass >= zfs_sync_pass_rewrite) {
1211 ASSERT(psize != 0);
1212 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1213 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1214 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1215 } else {
1216 BP_ZERO(bp);
1217 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1220 if (psize == 0) {
1221 if (zio->io_bp_orig.blk_birth != 0 &&
1222 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1223 BP_SET_LSIZE(bp, lsize);
1224 BP_SET_TYPE(bp, zp->zp_type);
1225 BP_SET_LEVEL(bp, zp->zp_level);
1226 BP_SET_BIRTH(bp, zio->io_txg, 0);
1228 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1229 } else {
1230 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1231 BP_SET_LSIZE(bp, lsize);
1232 BP_SET_TYPE(bp, zp->zp_type);
1233 BP_SET_LEVEL(bp, zp->zp_level);
1234 BP_SET_PSIZE(bp, psize);
1235 BP_SET_COMPRESS(bp, compress);
1236 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1237 BP_SET_DEDUP(bp, zp->zp_dedup);
1238 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1239 if (zp->zp_dedup) {
1240 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1241 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1242 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1244 if (zp->zp_nopwrite) {
1245 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1246 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1247 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1251 return (ZIO_PIPELINE_CONTINUE);
1254 static int
1255 zio_free_bp_init(zio_t *zio)
1257 blkptr_t *bp = zio->io_bp;
1259 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1260 if (BP_GET_DEDUP(bp))
1261 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1264 return (ZIO_PIPELINE_CONTINUE);
1268 * ==========================================================================
1269 * Execute the I/O pipeline
1270 * ==========================================================================
1273 static void
1274 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1276 spa_t *spa = zio->io_spa;
1277 zio_type_t t = zio->io_type;
1278 int flags = (cutinline ? TQ_FRONT : 0);
1281 * If we're a config writer or a probe, the normal issue and
1282 * interrupt threads may all be blocked waiting for the config lock.
1283 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1285 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1286 t = ZIO_TYPE_NULL;
1289 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1291 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1292 t = ZIO_TYPE_NULL;
1295 * If this is a high priority I/O, then use the high priority taskq if
1296 * available.
1298 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1299 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1300 q++;
1302 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1305 * NB: We are assuming that the zio can only be dispatched
1306 * to a single taskq at a time. It would be a grievous error
1307 * to dispatch the zio to another taskq at the same time.
1309 ASSERT(zio->io_tqent.tqent_next == NULL);
1310 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1311 flags, &zio->io_tqent);
1314 static boolean_t
1315 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1317 kthread_t *executor = zio->io_executor;
1318 spa_t *spa = zio->io_spa;
1320 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1321 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1322 uint_t i;
1323 for (i = 0; i < tqs->stqs_count; i++) {
1324 if (taskq_member(tqs->stqs_taskq[i], executor))
1325 return (B_TRUE);
1329 return (B_FALSE);
1332 static int
1333 zio_issue_async(zio_t *zio)
1335 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1337 return (ZIO_PIPELINE_STOP);
1340 void
1341 zio_interrupt(zio_t *zio)
1343 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1347 * Execute the I/O pipeline until one of the following occurs:
1349 * (1) the I/O completes
1350 * (2) the pipeline stalls waiting for dependent child I/Os
1351 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1352 * (4) the I/O is delegated by vdev-level caching or aggregation
1353 * (5) the I/O is deferred due to vdev-level queueing
1354 * (6) the I/O is handed off to another thread.
1356 * In all cases, the pipeline stops whenever there's no CPU work; it never
1357 * burns a thread in cv_wait().
1359 * There's no locking on io_stage because there's no legitimate way
1360 * for multiple threads to be attempting to process the same I/O.
1362 static zio_pipe_stage_t *zio_pipeline[];
1364 void
1365 zio_execute(zio_t *zio)
1367 zio->io_executor = curthread;
1369 while (zio->io_stage < ZIO_STAGE_DONE) {
1370 enum zio_stage pipeline = zio->io_pipeline;
1371 enum zio_stage stage = zio->io_stage;
1372 int rv;
1374 ASSERT(!MUTEX_HELD(&zio->io_lock));
1375 ASSERT(ISP2(stage));
1376 ASSERT(zio->io_stall == NULL);
1378 do {
1379 stage <<= 1;
1380 } while ((stage & pipeline) == 0);
1382 ASSERT(stage <= ZIO_STAGE_DONE);
1385 * If we are in interrupt context and this pipeline stage
1386 * will grab a config lock that is held across I/O,
1387 * or may wait for an I/O that needs an interrupt thread
1388 * to complete, issue async to avoid deadlock.
1390 * For VDEV_IO_START, we cut in line so that the io will
1391 * be sent to disk promptly.
1393 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1394 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1395 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1396 zio_requeue_io_start_cut_in_line : B_FALSE;
1397 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1398 return;
1401 zio->io_stage = stage;
1402 rv = zio_pipeline[highbit64(stage) - 1](zio);
1404 if (rv == ZIO_PIPELINE_STOP)
1405 return;
1407 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1412 * ==========================================================================
1413 * Initiate I/O, either sync or async
1414 * ==========================================================================
1417 zio_wait(zio_t *zio)
1419 int error;
1421 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1422 ASSERT(zio->io_executor == NULL);
1424 zio->io_waiter = curthread;
1426 zio_execute(zio);
1428 mutex_enter(&zio->io_lock);
1429 while (zio->io_executor != NULL)
1430 cv_wait(&zio->io_cv, &zio->io_lock);
1431 mutex_exit(&zio->io_lock);
1433 error = zio->io_error;
1434 zio_destroy(zio);
1436 return (error);
1439 void
1440 zio_nowait(zio_t *zio)
1442 ASSERT(zio->io_executor == NULL);
1444 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1445 zio_unique_parent(zio) == NULL) {
1447 * This is a logical async I/O with no parent to wait for it.
1448 * We add it to the spa_async_root_zio "Godfather" I/O which
1449 * will ensure they complete prior to unloading the pool.
1451 spa_t *spa = zio->io_spa;
1453 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1456 zio_execute(zio);
1460 * ==========================================================================
1461 * Reexecute or suspend/resume failed I/O
1462 * ==========================================================================
1465 static void
1466 zio_reexecute(zio_t *pio)
1468 zio_t *cio, *cio_next;
1470 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1471 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1472 ASSERT(pio->io_gang_leader == NULL);
1473 ASSERT(pio->io_gang_tree == NULL);
1475 pio->io_flags = pio->io_orig_flags;
1476 pio->io_stage = pio->io_orig_stage;
1477 pio->io_pipeline = pio->io_orig_pipeline;
1478 pio->io_reexecute = 0;
1479 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1480 pio->io_error = 0;
1481 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1482 pio->io_state[w] = 0;
1483 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1484 pio->io_child_error[c] = 0;
1486 if (IO_IS_ALLOCATING(pio))
1487 BP_ZERO(pio->io_bp);
1490 * As we reexecute pio's children, new children could be created.
1491 * New children go to the head of pio's io_child_list, however,
1492 * so we will (correctly) not reexecute them. The key is that
1493 * the remainder of pio's io_child_list, from 'cio_next' onward,
1494 * cannot be affected by any side effects of reexecuting 'cio'.
1496 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1497 cio_next = zio_walk_children(pio);
1498 mutex_enter(&pio->io_lock);
1499 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1500 pio->io_children[cio->io_child_type][w]++;
1501 mutex_exit(&pio->io_lock);
1502 zio_reexecute(cio);
1506 * Now that all children have been reexecuted, execute the parent.
1507 * We don't reexecute "The Godfather" I/O here as it's the
1508 * responsibility of the caller to wait on him.
1510 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1511 zio_execute(pio);
1514 void
1515 zio_suspend(spa_t *spa, zio_t *zio)
1517 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1518 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1519 "failure and the failure mode property for this pool "
1520 "is set to panic.", spa_name(spa));
1522 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1524 mutex_enter(&spa->spa_suspend_lock);
1526 if (spa->spa_suspend_zio_root == NULL)
1527 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1528 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1529 ZIO_FLAG_GODFATHER);
1531 spa->spa_suspended = B_TRUE;
1533 if (zio != NULL) {
1534 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1535 ASSERT(zio != spa->spa_suspend_zio_root);
1536 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1537 ASSERT(zio_unique_parent(zio) == NULL);
1538 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1539 zio_add_child(spa->spa_suspend_zio_root, zio);
1542 mutex_exit(&spa->spa_suspend_lock);
1546 zio_resume(spa_t *spa)
1548 zio_t *pio;
1551 * Reexecute all previously suspended i/o.
1553 mutex_enter(&spa->spa_suspend_lock);
1554 spa->spa_suspended = B_FALSE;
1555 cv_broadcast(&spa->spa_suspend_cv);
1556 pio = spa->spa_suspend_zio_root;
1557 spa->spa_suspend_zio_root = NULL;
1558 mutex_exit(&spa->spa_suspend_lock);
1560 if (pio == NULL)
1561 return (0);
1563 zio_reexecute(pio);
1564 return (zio_wait(pio));
1567 void
1568 zio_resume_wait(spa_t *spa)
1570 mutex_enter(&spa->spa_suspend_lock);
1571 while (spa_suspended(spa))
1572 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1573 mutex_exit(&spa->spa_suspend_lock);
1577 * ==========================================================================
1578 * Gang blocks.
1580 * A gang block is a collection of small blocks that looks to the DMU
1581 * like one large block. When zio_dva_allocate() cannot find a block
1582 * of the requested size, due to either severe fragmentation or the pool
1583 * being nearly full, it calls zio_write_gang_block() to construct the
1584 * block from smaller fragments.
1586 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1587 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1588 * an indirect block: it's an array of block pointers. It consumes
1589 * only one sector and hence is allocatable regardless of fragmentation.
1590 * The gang header's bps point to its gang members, which hold the data.
1592 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1593 * as the verifier to ensure uniqueness of the SHA256 checksum.
1594 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1595 * not the gang header. This ensures that data block signatures (needed for
1596 * deduplication) are independent of how the block is physically stored.
1598 * Gang blocks can be nested: a gang member may itself be a gang block.
1599 * Thus every gang block is a tree in which root and all interior nodes are
1600 * gang headers, and the leaves are normal blocks that contain user data.
1601 * The root of the gang tree is called the gang leader.
1603 * To perform any operation (read, rewrite, free, claim) on a gang block,
1604 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1605 * in the io_gang_tree field of the original logical i/o by recursively
1606 * reading the gang leader and all gang headers below it. This yields
1607 * an in-core tree containing the contents of every gang header and the
1608 * bps for every constituent of the gang block.
1610 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1611 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1612 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1613 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1614 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1615 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1616 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1617 * of the gang header plus zio_checksum_compute() of the data to update the
1618 * gang header's blk_cksum as described above.
1620 * The two-phase assemble/issue model solves the problem of partial failure --
1621 * what if you'd freed part of a gang block but then couldn't read the
1622 * gang header for another part? Assembling the entire gang tree first
1623 * ensures that all the necessary gang header I/O has succeeded before
1624 * starting the actual work of free, claim, or write. Once the gang tree
1625 * is assembled, free and claim are in-memory operations that cannot fail.
1627 * In the event that a gang write fails, zio_dva_unallocate() walks the
1628 * gang tree to immediately free (i.e. insert back into the space map)
1629 * everything we've allocated. This ensures that we don't get ENOSPC
1630 * errors during repeated suspend/resume cycles due to a flaky device.
1632 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1633 * the gang tree, we won't modify the block, so we can safely defer the free
1634 * (knowing that the block is still intact). If we *can* assemble the gang
1635 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1636 * each constituent bp and we can allocate a new block on the next sync pass.
1638 * In all cases, the gang tree allows complete recovery from partial failure.
1639 * ==========================================================================
1642 static zio_t *
1643 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1645 if (gn != NULL)
1646 return (pio);
1648 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1649 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1650 &pio->io_bookmark));
1653 zio_t *
1654 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1656 zio_t *zio;
1658 if (gn != NULL) {
1659 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1660 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1661 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1663 * As we rewrite each gang header, the pipeline will compute
1664 * a new gang block header checksum for it; but no one will
1665 * compute a new data checksum, so we do that here. The one
1666 * exception is the gang leader: the pipeline already computed
1667 * its data checksum because that stage precedes gang assembly.
1668 * (Presently, nothing actually uses interior data checksums;
1669 * this is just good hygiene.)
1671 if (gn != pio->io_gang_leader->io_gang_tree) {
1672 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1673 data, BP_GET_PSIZE(bp));
1676 * If we are here to damage data for testing purposes,
1677 * leave the GBH alone so that we can detect the damage.
1679 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1680 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1681 } else {
1682 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1683 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1684 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1687 return (zio);
1690 /* ARGSUSED */
1691 zio_t *
1692 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1694 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1695 ZIO_GANG_CHILD_FLAGS(pio)));
1698 /* ARGSUSED */
1699 zio_t *
1700 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1702 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1703 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1706 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1707 NULL,
1708 zio_read_gang,
1709 zio_rewrite_gang,
1710 zio_free_gang,
1711 zio_claim_gang,
1712 NULL
1715 static void zio_gang_tree_assemble_done(zio_t *zio);
1717 static zio_gang_node_t *
1718 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1720 zio_gang_node_t *gn;
1722 ASSERT(*gnpp == NULL);
1724 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1725 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1726 *gnpp = gn;
1728 return (gn);
1731 static void
1732 zio_gang_node_free(zio_gang_node_t **gnpp)
1734 zio_gang_node_t *gn = *gnpp;
1736 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1737 ASSERT(gn->gn_child[g] == NULL);
1739 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1740 kmem_free(gn, sizeof (*gn));
1741 *gnpp = NULL;
1744 static void
1745 zio_gang_tree_free(zio_gang_node_t **gnpp)
1747 zio_gang_node_t *gn = *gnpp;
1749 if (gn == NULL)
1750 return;
1752 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1753 zio_gang_tree_free(&gn->gn_child[g]);
1755 zio_gang_node_free(gnpp);
1758 static void
1759 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1761 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1763 ASSERT(gio->io_gang_leader == gio);
1764 ASSERT(BP_IS_GANG(bp));
1766 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1767 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1768 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1771 static void
1772 zio_gang_tree_assemble_done(zio_t *zio)
1774 zio_t *gio = zio->io_gang_leader;
1775 zio_gang_node_t *gn = zio->io_private;
1776 blkptr_t *bp = zio->io_bp;
1778 ASSERT(gio == zio_unique_parent(zio));
1779 ASSERT(zio->io_child_count == 0);
1781 if (zio->io_error)
1782 return;
1784 if (BP_SHOULD_BYTESWAP(bp))
1785 byteswap_uint64_array(zio->io_data, zio->io_size);
1787 ASSERT(zio->io_data == gn->gn_gbh);
1788 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1789 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1791 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1792 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1793 if (!BP_IS_GANG(gbp))
1794 continue;
1795 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1799 static void
1800 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1802 zio_t *gio = pio->io_gang_leader;
1803 zio_t *zio;
1805 ASSERT(BP_IS_GANG(bp) == !!gn);
1806 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1807 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1810 * If you're a gang header, your data is in gn->gn_gbh.
1811 * If you're a gang member, your data is in 'data' and gn == NULL.
1813 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1815 if (gn != NULL) {
1816 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1818 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1819 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1820 if (BP_IS_HOLE(gbp))
1821 continue;
1822 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1823 data = (char *)data + BP_GET_PSIZE(gbp);
1827 if (gn == gio->io_gang_tree)
1828 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1830 if (zio != pio)
1831 zio_nowait(zio);
1834 static int
1835 zio_gang_assemble(zio_t *zio)
1837 blkptr_t *bp = zio->io_bp;
1839 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1840 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1842 zio->io_gang_leader = zio;
1844 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1846 return (ZIO_PIPELINE_CONTINUE);
1849 static int
1850 zio_gang_issue(zio_t *zio)
1852 blkptr_t *bp = zio->io_bp;
1854 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1855 return (ZIO_PIPELINE_STOP);
1857 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1858 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1860 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1861 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1862 else
1863 zio_gang_tree_free(&zio->io_gang_tree);
1865 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1867 return (ZIO_PIPELINE_CONTINUE);
1870 static void
1871 zio_write_gang_member_ready(zio_t *zio)
1873 zio_t *pio = zio_unique_parent(zio);
1874 zio_t *gio = zio->io_gang_leader;
1875 dva_t *cdva = zio->io_bp->blk_dva;
1876 dva_t *pdva = pio->io_bp->blk_dva;
1877 uint64_t asize;
1879 if (BP_IS_HOLE(zio->io_bp))
1880 return;
1882 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1884 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1885 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1886 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1887 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1888 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1890 mutex_enter(&pio->io_lock);
1891 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1892 ASSERT(DVA_GET_GANG(&pdva[d]));
1893 asize = DVA_GET_ASIZE(&pdva[d]);
1894 asize += DVA_GET_ASIZE(&cdva[d]);
1895 DVA_SET_ASIZE(&pdva[d], asize);
1897 mutex_exit(&pio->io_lock);
1900 static int
1901 zio_write_gang_block(zio_t *pio)
1903 spa_t *spa = pio->io_spa;
1904 blkptr_t *bp = pio->io_bp;
1905 zio_t *gio = pio->io_gang_leader;
1906 zio_t *zio;
1907 zio_gang_node_t *gn, **gnpp;
1908 zio_gbh_phys_t *gbh;
1909 uint64_t txg = pio->io_txg;
1910 uint64_t resid = pio->io_size;
1911 uint64_t lsize;
1912 int copies = gio->io_prop.zp_copies;
1913 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1914 zio_prop_t zp;
1915 int error;
1917 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1918 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1919 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1920 if (error) {
1921 pio->io_error = error;
1922 return (ZIO_PIPELINE_CONTINUE);
1925 if (pio == gio) {
1926 gnpp = &gio->io_gang_tree;
1927 } else {
1928 gnpp = pio->io_private;
1929 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1932 gn = zio_gang_node_alloc(gnpp);
1933 gbh = gn->gn_gbh;
1934 bzero(gbh, SPA_GANGBLOCKSIZE);
1937 * Create the gang header.
1939 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1940 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1943 * Create and nowait the gang children.
1945 for (int g = 0; resid != 0; resid -= lsize, g++) {
1946 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1947 SPA_MINBLOCKSIZE);
1948 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1950 zp.zp_checksum = gio->io_prop.zp_checksum;
1951 zp.zp_compress = ZIO_COMPRESS_OFF;
1952 zp.zp_type = DMU_OT_NONE;
1953 zp.zp_level = 0;
1954 zp.zp_copies = gio->io_prop.zp_copies;
1955 zp.zp_dedup = B_FALSE;
1956 zp.zp_dedup_verify = B_FALSE;
1957 zp.zp_nopwrite = B_FALSE;
1959 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1960 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1961 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1962 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1963 &pio->io_bookmark));
1967 * Set pio's pipeline to just wait for zio to finish.
1969 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1971 zio_nowait(zio);
1973 return (ZIO_PIPELINE_CONTINUE);
1977 * The zio_nop_write stage in the pipeline determines if allocating
1978 * a new bp is necessary. By leveraging a cryptographically secure checksum,
1979 * such as SHA256, we can compare the checksums of the new data and the old
1980 * to determine if allocating a new block is required. The nopwrite
1981 * feature can handle writes in either syncing or open context (i.e. zil
1982 * writes) and as a result is mutually exclusive with dedup.
1984 static int
1985 zio_nop_write(zio_t *zio)
1987 blkptr_t *bp = zio->io_bp;
1988 blkptr_t *bp_orig = &zio->io_bp_orig;
1989 zio_prop_t *zp = &zio->io_prop;
1991 ASSERT(BP_GET_LEVEL(bp) == 0);
1992 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1993 ASSERT(zp->zp_nopwrite);
1994 ASSERT(!zp->zp_dedup);
1995 ASSERT(zio->io_bp_override == NULL);
1996 ASSERT(IO_IS_ALLOCATING(zio));
1999 * Check to see if the original bp and the new bp have matching
2000 * characteristics (i.e. same checksum, compression algorithms, etc).
2001 * If they don't then just continue with the pipeline which will
2002 * allocate a new bp.
2004 if (BP_IS_HOLE(bp_orig) ||
2005 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2006 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2007 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2008 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2009 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2010 return (ZIO_PIPELINE_CONTINUE);
2013 * If the checksums match then reset the pipeline so that we
2014 * avoid allocating a new bp and issuing any I/O.
2016 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2017 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2018 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2019 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2020 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2021 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2022 sizeof (uint64_t)) == 0);
2024 *bp = *bp_orig;
2025 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2026 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2029 return (ZIO_PIPELINE_CONTINUE);
2033 * ==========================================================================
2034 * Dedup
2035 * ==========================================================================
2037 static void
2038 zio_ddt_child_read_done(zio_t *zio)
2040 blkptr_t *bp = zio->io_bp;
2041 ddt_entry_t *dde = zio->io_private;
2042 ddt_phys_t *ddp;
2043 zio_t *pio = zio_unique_parent(zio);
2045 mutex_enter(&pio->io_lock);
2046 ddp = ddt_phys_select(dde, bp);
2047 if (zio->io_error == 0)
2048 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2049 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2050 dde->dde_repair_data = zio->io_data;
2051 else
2052 zio_buf_free(zio->io_data, zio->io_size);
2053 mutex_exit(&pio->io_lock);
2056 static int
2057 zio_ddt_read_start(zio_t *zio)
2059 blkptr_t *bp = zio->io_bp;
2061 ASSERT(BP_GET_DEDUP(bp));
2062 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2063 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2065 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2066 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2067 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2068 ddt_phys_t *ddp = dde->dde_phys;
2069 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2070 blkptr_t blk;
2072 ASSERT(zio->io_vsd == NULL);
2073 zio->io_vsd = dde;
2075 if (ddp_self == NULL)
2076 return (ZIO_PIPELINE_CONTINUE);
2078 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2079 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2080 continue;
2081 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2082 &blk);
2083 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2084 zio_buf_alloc(zio->io_size), zio->io_size,
2085 zio_ddt_child_read_done, dde, zio->io_priority,
2086 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2087 &zio->io_bookmark));
2089 return (ZIO_PIPELINE_CONTINUE);
2092 zio_nowait(zio_read(zio, zio->io_spa, bp,
2093 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2094 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2096 return (ZIO_PIPELINE_CONTINUE);
2099 static int
2100 zio_ddt_read_done(zio_t *zio)
2102 blkptr_t *bp = zio->io_bp;
2104 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2105 return (ZIO_PIPELINE_STOP);
2107 ASSERT(BP_GET_DEDUP(bp));
2108 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2109 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2111 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2112 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2113 ddt_entry_t *dde = zio->io_vsd;
2114 if (ddt == NULL) {
2115 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2116 return (ZIO_PIPELINE_CONTINUE);
2118 if (dde == NULL) {
2119 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2120 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2121 return (ZIO_PIPELINE_STOP);
2123 if (dde->dde_repair_data != NULL) {
2124 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2125 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2127 ddt_repair_done(ddt, dde);
2128 zio->io_vsd = NULL;
2131 ASSERT(zio->io_vsd == NULL);
2133 return (ZIO_PIPELINE_CONTINUE);
2136 static boolean_t
2137 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2139 spa_t *spa = zio->io_spa;
2142 * Note: we compare the original data, not the transformed data,
2143 * because when zio->io_bp is an override bp, we will not have
2144 * pushed the I/O transforms. That's an important optimization
2145 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2147 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2148 zio_t *lio = dde->dde_lead_zio[p];
2150 if (lio != NULL) {
2151 return (lio->io_orig_size != zio->io_orig_size ||
2152 bcmp(zio->io_orig_data, lio->io_orig_data,
2153 zio->io_orig_size) != 0);
2157 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2158 ddt_phys_t *ddp = &dde->dde_phys[p];
2160 if (ddp->ddp_phys_birth != 0) {
2161 arc_buf_t *abuf = NULL;
2162 arc_flags_t aflags = ARC_FLAG_WAIT;
2163 blkptr_t blk = *zio->io_bp;
2164 int error;
2166 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2168 ddt_exit(ddt);
2170 error = arc_read(NULL, spa, &blk,
2171 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2172 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2173 &aflags, &zio->io_bookmark);
2175 if (error == 0) {
2176 if (arc_buf_size(abuf) != zio->io_orig_size ||
2177 bcmp(abuf->b_data, zio->io_orig_data,
2178 zio->io_orig_size) != 0)
2179 error = SET_ERROR(EEXIST);
2180 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2183 ddt_enter(ddt);
2184 return (error != 0);
2188 return (B_FALSE);
2191 static void
2192 zio_ddt_child_write_ready(zio_t *zio)
2194 int p = zio->io_prop.zp_copies;
2195 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2196 ddt_entry_t *dde = zio->io_private;
2197 ddt_phys_t *ddp = &dde->dde_phys[p];
2198 zio_t *pio;
2200 if (zio->io_error)
2201 return;
2203 ddt_enter(ddt);
2205 ASSERT(dde->dde_lead_zio[p] == zio);
2207 ddt_phys_fill(ddp, zio->io_bp);
2209 while ((pio = zio_walk_parents(zio)) != NULL)
2210 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2212 ddt_exit(ddt);
2215 static void
2216 zio_ddt_child_write_done(zio_t *zio)
2218 int p = zio->io_prop.zp_copies;
2219 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2220 ddt_entry_t *dde = zio->io_private;
2221 ddt_phys_t *ddp = &dde->dde_phys[p];
2223 ddt_enter(ddt);
2225 ASSERT(ddp->ddp_refcnt == 0);
2226 ASSERT(dde->dde_lead_zio[p] == zio);
2227 dde->dde_lead_zio[p] = NULL;
2229 if (zio->io_error == 0) {
2230 while (zio_walk_parents(zio) != NULL)
2231 ddt_phys_addref(ddp);
2232 } else {
2233 ddt_phys_clear(ddp);
2236 ddt_exit(ddt);
2239 static void
2240 zio_ddt_ditto_write_done(zio_t *zio)
2242 int p = DDT_PHYS_DITTO;
2243 zio_prop_t *zp = &zio->io_prop;
2244 blkptr_t *bp = zio->io_bp;
2245 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2246 ddt_entry_t *dde = zio->io_private;
2247 ddt_phys_t *ddp = &dde->dde_phys[p];
2248 ddt_key_t *ddk = &dde->dde_key;
2250 ddt_enter(ddt);
2252 ASSERT(ddp->ddp_refcnt == 0);
2253 ASSERT(dde->dde_lead_zio[p] == zio);
2254 dde->dde_lead_zio[p] = NULL;
2256 if (zio->io_error == 0) {
2257 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2258 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2259 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2260 if (ddp->ddp_phys_birth != 0)
2261 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2262 ddt_phys_fill(ddp, bp);
2265 ddt_exit(ddt);
2268 static int
2269 zio_ddt_write(zio_t *zio)
2271 spa_t *spa = zio->io_spa;
2272 blkptr_t *bp = zio->io_bp;
2273 uint64_t txg = zio->io_txg;
2274 zio_prop_t *zp = &zio->io_prop;
2275 int p = zp->zp_copies;
2276 int ditto_copies;
2277 zio_t *cio = NULL;
2278 zio_t *dio = NULL;
2279 ddt_t *ddt = ddt_select(spa, bp);
2280 ddt_entry_t *dde;
2281 ddt_phys_t *ddp;
2283 ASSERT(BP_GET_DEDUP(bp));
2284 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2285 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2287 ddt_enter(ddt);
2288 dde = ddt_lookup(ddt, bp, B_TRUE);
2289 ddp = &dde->dde_phys[p];
2291 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2293 * If we're using a weak checksum, upgrade to a strong checksum
2294 * and try again. If we're already using a strong checksum,
2295 * we can't resolve it, so just convert to an ordinary write.
2296 * (And automatically e-mail a paper to Nature?)
2298 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2299 zp->zp_checksum = spa_dedup_checksum(spa);
2300 zio_pop_transforms(zio);
2301 zio->io_stage = ZIO_STAGE_OPEN;
2302 BP_ZERO(bp);
2303 } else {
2304 zp->zp_dedup = B_FALSE;
2306 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2307 ddt_exit(ddt);
2308 return (ZIO_PIPELINE_CONTINUE);
2311 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2312 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2314 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2315 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2316 zio_prop_t czp = *zp;
2318 czp.zp_copies = ditto_copies;
2321 * If we arrived here with an override bp, we won't have run
2322 * the transform stack, so we won't have the data we need to
2323 * generate a child i/o. So, toss the override bp and restart.
2324 * This is safe, because using the override bp is just an
2325 * optimization; and it's rare, so the cost doesn't matter.
2327 if (zio->io_bp_override) {
2328 zio_pop_transforms(zio);
2329 zio->io_stage = ZIO_STAGE_OPEN;
2330 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2331 zio->io_bp_override = NULL;
2332 BP_ZERO(bp);
2333 ddt_exit(ddt);
2334 return (ZIO_PIPELINE_CONTINUE);
2337 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2338 zio->io_orig_size, &czp, NULL, NULL,
2339 zio_ddt_ditto_write_done, dde, zio->io_priority,
2340 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2342 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2343 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2346 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2347 if (ddp->ddp_phys_birth != 0)
2348 ddt_bp_fill(ddp, bp, txg);
2349 if (dde->dde_lead_zio[p] != NULL)
2350 zio_add_child(zio, dde->dde_lead_zio[p]);
2351 else
2352 ddt_phys_addref(ddp);
2353 } else if (zio->io_bp_override) {
2354 ASSERT(bp->blk_birth == txg);
2355 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2356 ddt_phys_fill(ddp, bp);
2357 ddt_phys_addref(ddp);
2358 } else {
2359 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2360 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2361 zio_ddt_child_write_done, dde, zio->io_priority,
2362 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2364 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2365 dde->dde_lead_zio[p] = cio;
2368 ddt_exit(ddt);
2370 if (cio)
2371 zio_nowait(cio);
2372 if (dio)
2373 zio_nowait(dio);
2375 return (ZIO_PIPELINE_CONTINUE);
2378 ddt_entry_t *freedde; /* for debugging */
2380 static int
2381 zio_ddt_free(zio_t *zio)
2383 spa_t *spa = zio->io_spa;
2384 blkptr_t *bp = zio->io_bp;
2385 ddt_t *ddt = ddt_select(spa, bp);
2386 ddt_entry_t *dde;
2387 ddt_phys_t *ddp;
2389 ASSERT(BP_GET_DEDUP(bp));
2390 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2392 ddt_enter(ddt);
2393 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2394 ddp = ddt_phys_select(dde, bp);
2395 ddt_phys_decref(ddp);
2396 ddt_exit(ddt);
2398 return (ZIO_PIPELINE_CONTINUE);
2402 * ==========================================================================
2403 * Allocate and free blocks
2404 * ==========================================================================
2406 static int
2407 zio_dva_allocate(zio_t *zio)
2409 spa_t *spa = zio->io_spa;
2410 metaslab_class_t *mc = spa_normal_class(spa);
2411 blkptr_t *bp = zio->io_bp;
2412 int error;
2413 int flags = 0;
2415 if (zio->io_gang_leader == NULL) {
2416 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2417 zio->io_gang_leader = zio;
2420 ASSERT(BP_IS_HOLE(bp));
2421 ASSERT0(BP_GET_NDVAS(bp));
2422 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2423 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2424 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2427 * The dump device does not support gang blocks so allocation on
2428 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2429 * the "fast" gang feature.
2431 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2432 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2433 METASLAB_GANG_CHILD : 0;
2434 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2435 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2437 if (error) {
2438 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2439 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2440 error);
2441 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2442 return (zio_write_gang_block(zio));
2443 zio->io_error = error;
2446 return (ZIO_PIPELINE_CONTINUE);
2449 static int
2450 zio_dva_free(zio_t *zio)
2452 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2454 return (ZIO_PIPELINE_CONTINUE);
2457 static int
2458 zio_dva_claim(zio_t *zio)
2460 int error;
2462 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2463 if (error)
2464 zio->io_error = error;
2466 return (ZIO_PIPELINE_CONTINUE);
2470 * Undo an allocation. This is used by zio_done() when an I/O fails
2471 * and we want to give back the block we just allocated.
2472 * This handles both normal blocks and gang blocks.
2474 static void
2475 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2477 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2478 ASSERT(zio->io_bp_override == NULL);
2480 if (!BP_IS_HOLE(bp))
2481 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2483 if (gn != NULL) {
2484 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2485 zio_dva_unallocate(zio, gn->gn_child[g],
2486 &gn->gn_gbh->zg_blkptr[g]);
2492 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2495 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2496 uint64_t size, boolean_t use_slog)
2498 int error = 1;
2500 ASSERT(txg > spa_syncing_txg(spa));
2503 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2504 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2505 * when allocating them.
2507 if (use_slog) {
2508 error = metaslab_alloc(spa, spa_log_class(spa), size,
2509 new_bp, 1, txg, old_bp,
2510 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2513 if (error) {
2514 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2515 new_bp, 1, txg, old_bp,
2516 METASLAB_HINTBP_AVOID);
2519 if (error == 0) {
2520 BP_SET_LSIZE(new_bp, size);
2521 BP_SET_PSIZE(new_bp, size);
2522 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2523 BP_SET_CHECKSUM(new_bp,
2524 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2525 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2526 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2527 BP_SET_LEVEL(new_bp, 0);
2528 BP_SET_DEDUP(new_bp, 0);
2529 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2532 return (error);
2536 * Free an intent log block.
2538 void
2539 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2541 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2542 ASSERT(!BP_IS_GANG(bp));
2544 zio_free(spa, txg, bp);
2548 * ==========================================================================
2549 * Read and write to physical devices
2550 * ==========================================================================
2555 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2556 * stops after this stage and will resume upon I/O completion.
2557 * However, there are instances where the vdev layer may need to
2558 * continue the pipeline when an I/O was not issued. Since the I/O
2559 * that was sent to the vdev layer might be different than the one
2560 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2561 * force the underlying vdev layers to call either zio_execute() or
2562 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2564 static int
2565 zio_vdev_io_start(zio_t *zio)
2567 vdev_t *vd = zio->io_vd;
2568 uint64_t align;
2569 spa_t *spa = zio->io_spa;
2571 ASSERT(zio->io_error == 0);
2572 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2574 if (vd == NULL) {
2575 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2576 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2579 * The mirror_ops handle multiple DVAs in a single BP.
2581 vdev_mirror_ops.vdev_op_io_start(zio);
2582 return (ZIO_PIPELINE_STOP);
2586 * We keep track of time-sensitive I/Os so that the scan thread
2587 * can quickly react to certain workloads. In particular, we care
2588 * about non-scrubbing, top-level reads and writes with the following
2589 * characteristics:
2590 * - synchronous writes of user data to non-slog devices
2591 * - any reads of user data
2592 * When these conditions are met, adjust the timestamp of spa_last_io
2593 * which allows the scan thread to adjust its workload accordingly.
2595 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2596 vd == vd->vdev_top && !vd->vdev_islog &&
2597 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2598 zio->io_txg != spa_syncing_txg(spa)) {
2599 uint64_t old = spa->spa_last_io;
2600 uint64_t new = ddi_get_lbolt64();
2601 if (old != new)
2602 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2605 align = 1ULL << vd->vdev_top->vdev_ashift;
2607 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2608 P2PHASE(zio->io_size, align) != 0) {
2609 /* Transform logical writes to be a full physical block size. */
2610 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2611 char *abuf = zio_buf_alloc(asize);
2612 ASSERT(vd == vd->vdev_top);
2613 if (zio->io_type == ZIO_TYPE_WRITE) {
2614 bcopy(zio->io_data, abuf, zio->io_size);
2615 bzero(abuf + zio->io_size, asize - zio->io_size);
2617 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2621 * If this is not a physical io, make sure that it is properly aligned
2622 * before proceeding.
2624 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2625 ASSERT0(P2PHASE(zio->io_offset, align));
2626 ASSERT0(P2PHASE(zio->io_size, align));
2627 } else {
2629 * For physical writes, we allow 512b aligned writes and assume
2630 * the device will perform a read-modify-write as necessary.
2632 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2633 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2636 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2639 * If this is a repair I/O, and there's no self-healing involved --
2640 * that is, we're just resilvering what we expect to resilver --
2641 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2642 * This prevents spurious resilvering with nested replication.
2643 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2644 * A is out of date, we'll read from C+D, then use the data to
2645 * resilver A+B -- but we don't actually want to resilver B, just A.
2646 * The top-level mirror has no way to know this, so instead we just
2647 * discard unnecessary repairs as we work our way down the vdev tree.
2648 * The same logic applies to any form of nested replication:
2649 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2651 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2652 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2653 zio->io_txg != 0 && /* not a delegated i/o */
2654 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2655 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2656 zio_vdev_io_bypass(zio);
2657 return (ZIO_PIPELINE_CONTINUE);
2660 if (vd->vdev_ops->vdev_op_leaf &&
2661 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2663 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2664 return (ZIO_PIPELINE_CONTINUE);
2666 if ((zio = vdev_queue_io(zio)) == NULL)
2667 return (ZIO_PIPELINE_STOP);
2669 if (!vdev_accessible(vd, zio)) {
2670 zio->io_error = SET_ERROR(ENXIO);
2671 zio_interrupt(zio);
2672 return (ZIO_PIPELINE_STOP);
2676 vd->vdev_ops->vdev_op_io_start(zio);
2677 return (ZIO_PIPELINE_STOP);
2680 static int
2681 zio_vdev_io_done(zio_t *zio)
2683 vdev_t *vd = zio->io_vd;
2684 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2685 boolean_t unexpected_error = B_FALSE;
2687 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2688 return (ZIO_PIPELINE_STOP);
2690 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2692 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2694 vdev_queue_io_done(zio);
2696 if (zio->io_type == ZIO_TYPE_WRITE)
2697 vdev_cache_write(zio);
2699 if (zio_injection_enabled && zio->io_error == 0)
2700 zio->io_error = zio_handle_device_injection(vd,
2701 zio, EIO);
2703 if (zio_injection_enabled && zio->io_error == 0)
2704 zio->io_error = zio_handle_label_injection(zio, EIO);
2706 if (zio->io_error) {
2707 if (!vdev_accessible(vd, zio)) {
2708 zio->io_error = SET_ERROR(ENXIO);
2709 } else {
2710 unexpected_error = B_TRUE;
2715 ops->vdev_op_io_done(zio);
2717 if (unexpected_error)
2718 VERIFY(vdev_probe(vd, zio) == NULL);
2720 return (ZIO_PIPELINE_CONTINUE);
2724 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2725 * disk, and use that to finish the checksum ereport later.
2727 static void
2728 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2729 const void *good_buf)
2731 /* no processing needed */
2732 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2735 /*ARGSUSED*/
2736 void
2737 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2739 void *buf = zio_buf_alloc(zio->io_size);
2741 bcopy(zio->io_data, buf, zio->io_size);
2743 zcr->zcr_cbinfo = zio->io_size;
2744 zcr->zcr_cbdata = buf;
2745 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2746 zcr->zcr_free = zio_buf_free;
2749 static int
2750 zio_vdev_io_assess(zio_t *zio)
2752 vdev_t *vd = zio->io_vd;
2754 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2755 return (ZIO_PIPELINE_STOP);
2757 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2758 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2760 if (zio->io_vsd != NULL) {
2761 zio->io_vsd_ops->vsd_free(zio);
2762 zio->io_vsd = NULL;
2765 if (zio_injection_enabled && zio->io_error == 0)
2766 zio->io_error = zio_handle_fault_injection(zio, EIO);
2769 * If the I/O failed, determine whether we should attempt to retry it.
2771 * On retry, we cut in line in the issue queue, since we don't want
2772 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2774 if (zio->io_error && vd == NULL &&
2775 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2776 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2777 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2778 zio->io_error = 0;
2779 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2780 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2781 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2782 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2783 zio_requeue_io_start_cut_in_line);
2784 return (ZIO_PIPELINE_STOP);
2788 * If we got an error on a leaf device, convert it to ENXIO
2789 * if the device is not accessible at all.
2791 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2792 !vdev_accessible(vd, zio))
2793 zio->io_error = SET_ERROR(ENXIO);
2796 * If we can't write to an interior vdev (mirror or RAID-Z),
2797 * set vdev_cant_write so that we stop trying to allocate from it.
2799 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2800 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2801 vd->vdev_cant_write = B_TRUE;
2804 if (zio->io_error)
2805 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2807 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2808 zio->io_physdone != NULL) {
2809 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2810 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2811 zio->io_physdone(zio->io_logical);
2814 return (ZIO_PIPELINE_CONTINUE);
2817 void
2818 zio_vdev_io_reissue(zio_t *zio)
2820 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2821 ASSERT(zio->io_error == 0);
2823 zio->io_stage >>= 1;
2826 void
2827 zio_vdev_io_redone(zio_t *zio)
2829 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2831 zio->io_stage >>= 1;
2834 void
2835 zio_vdev_io_bypass(zio_t *zio)
2837 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2838 ASSERT(zio->io_error == 0);
2840 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2841 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2845 * ==========================================================================
2846 * Generate and verify checksums
2847 * ==========================================================================
2849 static int
2850 zio_checksum_generate(zio_t *zio)
2852 blkptr_t *bp = zio->io_bp;
2853 enum zio_checksum checksum;
2855 if (bp == NULL) {
2857 * This is zio_write_phys().
2858 * We're either generating a label checksum, or none at all.
2860 checksum = zio->io_prop.zp_checksum;
2862 if (checksum == ZIO_CHECKSUM_OFF)
2863 return (ZIO_PIPELINE_CONTINUE);
2865 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2866 } else {
2867 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2868 ASSERT(!IO_IS_ALLOCATING(zio));
2869 checksum = ZIO_CHECKSUM_GANG_HEADER;
2870 } else {
2871 checksum = BP_GET_CHECKSUM(bp);
2875 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2877 return (ZIO_PIPELINE_CONTINUE);
2880 static int
2881 zio_checksum_verify(zio_t *zio)
2883 zio_bad_cksum_t info;
2884 blkptr_t *bp = zio->io_bp;
2885 int error;
2887 ASSERT(zio->io_vd != NULL);
2889 if (bp == NULL) {
2891 * This is zio_read_phys().
2892 * We're either verifying a label checksum, or nothing at all.
2894 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2895 return (ZIO_PIPELINE_CONTINUE);
2897 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2900 if ((error = zio_checksum_error(zio, &info)) != 0) {
2901 zio->io_error = error;
2902 if (error == ECKSUM &&
2903 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2904 zfs_ereport_start_checksum(zio->io_spa,
2905 zio->io_vd, zio, zio->io_offset,
2906 zio->io_size, NULL, &info);
2910 return (ZIO_PIPELINE_CONTINUE);
2914 * Called by RAID-Z to ensure we don't compute the checksum twice.
2916 void
2917 zio_checksum_verified(zio_t *zio)
2919 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2923 * ==========================================================================
2924 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2925 * An error of 0 indicates success. ENXIO indicates whole-device failure,
2926 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2927 * indicate errors that are specific to one I/O, and most likely permanent.
2928 * Any other error is presumed to be worse because we weren't expecting it.
2929 * ==========================================================================
2932 zio_worst_error(int e1, int e2)
2934 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2935 int r1, r2;
2937 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2938 if (e1 == zio_error_rank[r1])
2939 break;
2941 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2942 if (e2 == zio_error_rank[r2])
2943 break;
2945 return (r1 > r2 ? e1 : e2);
2949 * ==========================================================================
2950 * I/O completion
2951 * ==========================================================================
2953 static int
2954 zio_ready(zio_t *zio)
2956 blkptr_t *bp = zio->io_bp;
2957 zio_t *pio, *pio_next;
2959 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2960 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2961 return (ZIO_PIPELINE_STOP);
2963 if (zio->io_ready) {
2964 ASSERT(IO_IS_ALLOCATING(zio));
2965 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2966 (zio->io_flags & ZIO_FLAG_NOPWRITE));
2967 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2969 zio->io_ready(zio);
2972 if (bp != NULL && bp != &zio->io_bp_copy)
2973 zio->io_bp_copy = *bp;
2975 if (zio->io_error)
2976 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2978 mutex_enter(&zio->io_lock);
2979 zio->io_state[ZIO_WAIT_READY] = 1;
2980 pio = zio_walk_parents(zio);
2981 mutex_exit(&zio->io_lock);
2984 * As we notify zio's parents, new parents could be added.
2985 * New parents go to the head of zio's io_parent_list, however,
2986 * so we will (correctly) not notify them. The remainder of zio's
2987 * io_parent_list, from 'pio_next' onward, cannot change because
2988 * all parents must wait for us to be done before they can be done.
2990 for (; pio != NULL; pio = pio_next) {
2991 pio_next = zio_walk_parents(zio);
2992 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2995 if (zio->io_flags & ZIO_FLAG_NODATA) {
2996 if (BP_IS_GANG(bp)) {
2997 zio->io_flags &= ~ZIO_FLAG_NODATA;
2998 } else {
2999 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3000 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3004 if (zio_injection_enabled &&
3005 zio->io_spa->spa_syncing_txg == zio->io_txg)
3006 zio_handle_ignored_writes(zio);
3008 return (ZIO_PIPELINE_CONTINUE);
3011 static int
3012 zio_done(zio_t *zio)
3014 spa_t *spa = zio->io_spa;
3015 zio_t *lio = zio->io_logical;
3016 blkptr_t *bp = zio->io_bp;
3017 vdev_t *vd = zio->io_vd;
3018 uint64_t psize = zio->io_size;
3019 zio_t *pio, *pio_next;
3022 * If our children haven't all completed,
3023 * wait for them and then repeat this pipeline stage.
3025 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3026 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3027 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3028 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3029 return (ZIO_PIPELINE_STOP);
3031 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3032 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3033 ASSERT(zio->io_children[c][w] == 0);
3035 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3036 ASSERT(bp->blk_pad[0] == 0);
3037 ASSERT(bp->blk_pad[1] == 0);
3038 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3039 (bp == zio_unique_parent(zio)->io_bp));
3040 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3041 zio->io_bp_override == NULL &&
3042 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3043 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3044 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3045 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3046 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3048 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3049 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3053 * If there were child vdev/gang/ddt errors, they apply to us now.
3055 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3056 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3057 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3060 * If the I/O on the transformed data was successful, generate any
3061 * checksum reports now while we still have the transformed data.
3063 if (zio->io_error == 0) {
3064 while (zio->io_cksum_report != NULL) {
3065 zio_cksum_report_t *zcr = zio->io_cksum_report;
3066 uint64_t align = zcr->zcr_align;
3067 uint64_t asize = P2ROUNDUP(psize, align);
3068 char *abuf = zio->io_data;
3070 if (asize != psize) {
3071 abuf = zio_buf_alloc(asize);
3072 bcopy(zio->io_data, abuf, psize);
3073 bzero(abuf + psize, asize - psize);
3076 zio->io_cksum_report = zcr->zcr_next;
3077 zcr->zcr_next = NULL;
3078 zcr->zcr_finish(zcr, abuf);
3079 zfs_ereport_free_checksum(zcr);
3081 if (asize != psize)
3082 zio_buf_free(abuf, asize);
3086 zio_pop_transforms(zio); /* note: may set zio->io_error */
3088 vdev_stat_update(zio, psize);
3090 if (zio->io_error) {
3092 * If this I/O is attached to a particular vdev,
3093 * generate an error message describing the I/O failure
3094 * at the block level. We ignore these errors if the
3095 * device is currently unavailable.
3097 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3098 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3100 if ((zio->io_error == EIO || !(zio->io_flags &
3101 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3102 zio == lio) {
3104 * For logical I/O requests, tell the SPA to log the
3105 * error and generate a logical data ereport.
3107 spa_log_error(spa, zio);
3108 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3109 0, 0);
3113 if (zio->io_error && zio == lio) {
3115 * Determine whether zio should be reexecuted. This will
3116 * propagate all the way to the root via zio_notify_parent().
3118 ASSERT(vd == NULL && bp != NULL);
3119 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3121 if (IO_IS_ALLOCATING(zio) &&
3122 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3123 if (zio->io_error != ENOSPC)
3124 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3125 else
3126 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3129 if ((zio->io_type == ZIO_TYPE_READ ||
3130 zio->io_type == ZIO_TYPE_FREE) &&
3131 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3132 zio->io_error == ENXIO &&
3133 spa_load_state(spa) == SPA_LOAD_NONE &&
3134 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3135 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3137 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3138 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3141 * Here is a possibly good place to attempt to do
3142 * either combinatorial reconstruction or error correction
3143 * based on checksums. It also might be a good place
3144 * to send out preliminary ereports before we suspend
3145 * processing.
3150 * If there were logical child errors, they apply to us now.
3151 * We defer this until now to avoid conflating logical child
3152 * errors with errors that happened to the zio itself when
3153 * updating vdev stats and reporting FMA events above.
3155 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3157 if ((zio->io_error || zio->io_reexecute) &&
3158 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3159 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3160 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3162 zio_gang_tree_free(&zio->io_gang_tree);
3165 * Godfather I/Os should never suspend.
3167 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3168 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3169 zio->io_reexecute = 0;
3171 if (zio->io_reexecute) {
3173 * This is a logical I/O that wants to reexecute.
3175 * Reexecute is top-down. When an i/o fails, if it's not
3176 * the root, it simply notifies its parent and sticks around.
3177 * The parent, seeing that it still has children in zio_done(),
3178 * does the same. This percolates all the way up to the root.
3179 * The root i/o will reexecute or suspend the entire tree.
3181 * This approach ensures that zio_reexecute() honors
3182 * all the original i/o dependency relationships, e.g.
3183 * parents not executing until children are ready.
3185 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3187 zio->io_gang_leader = NULL;
3189 mutex_enter(&zio->io_lock);
3190 zio->io_state[ZIO_WAIT_DONE] = 1;
3191 mutex_exit(&zio->io_lock);
3194 * "The Godfather" I/O monitors its children but is
3195 * not a true parent to them. It will track them through
3196 * the pipeline but severs its ties whenever they get into
3197 * trouble (e.g. suspended). This allows "The Godfather"
3198 * I/O to return status without blocking.
3200 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3201 zio_link_t *zl = zio->io_walk_link;
3202 pio_next = zio_walk_parents(zio);
3204 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3205 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3206 zio_remove_child(pio, zio, zl);
3207 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3211 if ((pio = zio_unique_parent(zio)) != NULL) {
3213 * We're not a root i/o, so there's nothing to do
3214 * but notify our parent. Don't propagate errors
3215 * upward since we haven't permanently failed yet.
3217 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3218 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3219 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3220 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3222 * We'd fail again if we reexecuted now, so suspend
3223 * until conditions improve (e.g. device comes online).
3225 zio_suspend(spa, zio);
3226 } else {
3228 * Reexecution is potentially a huge amount of work.
3229 * Hand it off to the otherwise-unused claim taskq.
3231 ASSERT(zio->io_tqent.tqent_next == NULL);
3232 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3233 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3234 0, &zio->io_tqent);
3236 return (ZIO_PIPELINE_STOP);
3239 ASSERT(zio->io_child_count == 0);
3240 ASSERT(zio->io_reexecute == 0);
3241 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3244 * Report any checksum errors, since the I/O is complete.
3246 while (zio->io_cksum_report != NULL) {
3247 zio_cksum_report_t *zcr = zio->io_cksum_report;
3248 zio->io_cksum_report = zcr->zcr_next;
3249 zcr->zcr_next = NULL;
3250 zcr->zcr_finish(zcr, NULL);
3251 zfs_ereport_free_checksum(zcr);
3255 * It is the responsibility of the done callback to ensure that this
3256 * particular zio is no longer discoverable for adoption, and as
3257 * such, cannot acquire any new parents.
3259 if (zio->io_done)
3260 zio->io_done(zio);
3262 mutex_enter(&zio->io_lock);
3263 zio->io_state[ZIO_WAIT_DONE] = 1;
3264 mutex_exit(&zio->io_lock);
3266 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3267 zio_link_t *zl = zio->io_walk_link;
3268 pio_next = zio_walk_parents(zio);
3269 zio_remove_child(pio, zio, zl);
3270 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3273 if (zio->io_waiter != NULL) {
3274 mutex_enter(&zio->io_lock);
3275 zio->io_executor = NULL;
3276 cv_broadcast(&zio->io_cv);
3277 mutex_exit(&zio->io_lock);
3278 } else {
3279 zio_destroy(zio);
3282 return (ZIO_PIPELINE_STOP);
3286 * ==========================================================================
3287 * I/O pipeline definition
3288 * ==========================================================================
3290 static zio_pipe_stage_t *zio_pipeline[] = {
3291 NULL,
3292 zio_read_bp_init,
3293 zio_free_bp_init,
3294 zio_issue_async,
3295 zio_write_bp_init,
3296 zio_checksum_generate,
3297 zio_nop_write,
3298 zio_ddt_read_start,
3299 zio_ddt_read_done,
3300 zio_ddt_write,
3301 zio_ddt_free,
3302 zio_gang_assemble,
3303 zio_gang_issue,
3304 zio_dva_allocate,
3305 zio_dva_free,
3306 zio_dva_claim,
3307 zio_ready,
3308 zio_vdev_io_start,
3309 zio_vdev_io_done,
3310 zio_vdev_io_assess,
3311 zio_checksum_verify,
3312 zio_done
3315 /* dnp is the dnode for zb1->zb_object */
3316 boolean_t
3317 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3318 const zbookmark_phys_t *zb2)
3320 uint64_t zb1nextL0, zb2thisobj;
3322 ASSERT(zb1->zb_objset == zb2->zb_objset);
3323 ASSERT(zb2->zb_level == 0);
3325 /* The objset_phys_t isn't before anything. */
3326 if (dnp == NULL)
3327 return (B_FALSE);
3329 zb1nextL0 = (zb1->zb_blkid + 1) <<
3330 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3332 zb2thisobj = zb2->zb_object ? zb2->zb_object :
3333 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3335 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3336 uint64_t nextobj = zb1nextL0 *
3337 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3338 return (nextobj <= zb2thisobj);
3341 if (zb1->zb_object < zb2thisobj)
3342 return (B_TRUE);
3343 if (zb1->zb_object > zb2thisobj)
3344 return (B_FALSE);
3345 if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3346 return (B_FALSE);
3347 return (zb1nextL0 <= zb2->zb_blkid);