4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
43 #include <sys/flock.h>
46 #include <sys/cpuvar.h>
48 #include <sys/cmn_err.h>
49 #include <sys/priocntl.h>
50 #include <sys/procset.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
54 #include <sys/atomic.h>
55 #include <sys/fcntl.h>
58 #include <sys/port_impl.h>
59 #include <sys/dtrace.h>
62 #include <sys/nbmlock.h>
66 static uint32_t afd_maxfd
; /* # of entries in maximum allocated array */
67 static uint32_t afd_alloc
; /* count of kmem_alloc()s */
68 static uint32_t afd_free
; /* count of kmem_free()s */
69 static uint32_t afd_wait
; /* count of waits on non-zero ref count */
70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
71 #define COUNT(x) atomic_inc_32(&x)
80 kmem_cache_t
*file_cache
;
82 static void port_close_fd(portfd_t
*);
85 * File descriptor allocation.
87 * fd_find(fip, minfd) finds the first available descriptor >= minfd.
88 * The most common case is open(2), in which minfd = 0, but we must also
89 * support fcntl(fd, F_DUPFD, minfd).
91 * The algorithm is as follows: we keep all file descriptors in an infix
92 * binary tree in which each node records the number of descriptors
93 * allocated in its right subtree, including itself. Starting at minfd,
94 * we ascend the tree until we find a non-fully allocated right subtree.
95 * We then descend that subtree in a binary search for the smallest fd.
96 * Finally, we ascend the tree again to increment the allocation count
97 * of every subtree containing the newly-allocated fd. Freeing an fd
98 * requires only the last step: we ascend the tree to decrement allocation
99 * counts. Each of these three steps (ascent to find non-full subtree,
100 * descent to find lowest fd, ascent to update allocation counts) is
101 * O(log n), thus the algorithm as a whole is O(log n).
103 * We don't implement the fd tree using the customary left/right/parent
104 * pointers, but instead take advantage of the glorious mathematics of
105 * full infix binary trees. For reference, here's an illustration of the
106 * logical structure of such a tree, rooted at 4 (binary 100), covering
107 * the range 1-7 (binary 001-111). Our canonical trees do not include
108 * fd 0; we'll deal with that later.
117 * We make the following observations, all of which are easily proven by
118 * induction on the depth of the tree:
120 * (T1) The least-significant bit (LSB) of any node is equal to its level
121 * in the tree. In our example, nodes 001, 011, 101 and 111 are at
122 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
124 * (T2) The child size (CSIZE) of node N -- that is, the total number of
125 * right-branch descendants in a child of node N, including itself -- is
126 * given by clearing all but the least significant bit of N. This
127 * follows immediately from (T1). Applying this rule to our example, we
128 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
130 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
131 * ancestor containing node N in its right child -- is given by clearing
132 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100.
133 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
134 * the fact that these are leftmost nodes. Note that this algorithm
135 * automatically skips generations as necessary. For example, the parent
136 * of node 101 is 110, which is a *right* ancestor (not what we want);
137 * but its grandparent is 100, which is a left ancestor. Clearing the LSB
138 * of 101 gets us to 100 directly, skipping right past the uninteresting
141 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
142 * the LSB, we can express LPARENT() nicely in terms of CSIZE():
144 * LPARENT(N) = N - CSIZE(N)
146 * (T4) The nearest right ancestor (RPARENT) of node N is given by:
148 * RPARENT(N) = N + CSIZE(N)
150 * (T5) For every interior node, the children differ from their parent by
151 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary,
152 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
154 * Next, we'll need a few two's-complement math tricks. Suppose a number,
155 * N, has the following form:
159 * That is, the binary representation of N consists of some string of bits,
160 * then a 1, then all zeroes. This amounts to nothing more than saying that
161 * N has a least-significant bit, which is true for any N != 0. If we look
162 * at N and N - 1 together, we see that we can combine them in useful ways:
166 * ------------------------
167 * N & (N - 1) = xxxx000000
168 * N | (N - 1) = xxxx111111
169 * N ^ (N - 1) = 111111
171 * In particular, this suggests several easy ways to clear all but the LSB,
172 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
173 * We'll opt for this formulation:
175 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
177 * Similarly, we have an easy way to determine LPARENT(N), which requires
178 * that we clear the LSB of N:
180 * (L1) LPARENT(N) = N & (N - 1)
182 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
183 * When combined with (T4), this yields an easy way to compute RPARENT(N):
185 * (R1) RPARENT(N) = (N | (N - 1)) + 1
187 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
188 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward,
189 * so there's no need to belabor the algebra; the revised relations become:
191 * (C1a) CSIZE(N) = N ^ (N | (N + 1))
193 * (L1a) LPARENT(N) = (N & (N + 1)) - 1
195 * (R1a) RPARENT(N) = N | (N + 1)
197 * This completes the mathematical framework. We now have all the tools
198 * we need to implement fd_find() and fd_reserve().
200 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
201 * It does not actually allocate the descriptor; that's done by fd_reserve().
202 * fd_find() proceeds in two steps:
204 * (1) Find the leftmost subtree that contains a descriptor >= minfd.
205 * We start at the right subtree rooted at minfd. If this subtree is
206 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
207 * step 1 is done. Otherwise, we know that all fds in this subtree
208 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat
209 * this process until we either find a candidate subtree or exceed
210 * fip->fi_nfiles. We use (C1a) to compute CSIZE().
212 * (2) Find the smallest fd in the subtree discovered by step 1.
213 * Starting at the root of this subtree, we descend to find the
214 * smallest available fd. Since the left children have the smaller
215 * fds, we will descend rightward only when the left child is full.
217 * We begin by comparing the number of allocated fds in the root
218 * to the number of allocated fds in its right child; if they differ
219 * by exactly CSIZE(child), we know the left subtree is full, so we
220 * descend right; that is, the right child becomes the search root.
221 * Otherwise we leave the root alone and start following the right
222 * child's left children. As fortune would have it, this is very
223 * simple computationally: by (T5), the right child of fd is just
224 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,
225 * we find that the right child's left child is fd + size - (size / 2) =
226 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
227 * fd + (size / 4), and so on. In general, fd's right child's
228 * leftmost nth descendant is fd + (size >> n). Thus, to follow
229 * the right child's left descendants, we just halve the size in
230 * each iteration of the search.
232 * When we descend leftward, we must keep track of the number of fds
233 * that were allocated in all the right subtrees we rejected, so we
234 * know how many of the root fd's allocations are in the remaining
235 * (as yet unexplored) leftmost part of its right subtree. When we
236 * encounter a fully-allocated left child -- that is, when we find
237 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
238 * (as described earlier), resetting ralloc to zero.
240 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
241 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends
242 * the leftmost ancestors (see (T3)) and updates the allocation counts.
243 * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
245 * flist_minsize() finds the minimal tree that still covers all
246 * used fds; as long as the allocation count of a root node is zero, we
247 * don't need that node or its right subtree.
249 * flist_nalloc() counts the number of allocated fds in the tree, by starting
250 * at the top of the tree and summing the right-subtree allocation counts as
251 * it descends leftwards.
253 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
254 * 2^n - 1. This ensures that the fd trees are always full, which saves
255 * quite a bit of boundary checking.
258 fd_find(uf_info_t
*fip
, int minfd
)
260 int size
, ralloc
, fd
;
262 ASSERT(MUTEX_HELD(&fip
->fi_lock
));
263 ASSERT((fip
->fi_nfiles
& (fip
->fi_nfiles
+ 1)) == 0);
265 for (fd
= minfd
; (uint_t
)fd
< fip
->fi_nfiles
; fd
|= fd
+ 1) {
266 size
= fd
^ (fd
| (fd
+ 1));
267 if (fip
->fi_list
[fd
].uf_alloc
== size
)
269 for (ralloc
= 0, size
>>= 1; size
!= 0; size
>>= 1) {
270 ralloc
+= fip
->fi_list
[fd
+ size
].uf_alloc
;
271 if (fip
->fi_list
[fd
].uf_alloc
== ralloc
+ size
) {
282 fd_reserve(uf_info_t
*fip
, int fd
, int incr
)
285 uf_entry_t
*ufp
= &fip
->fi_list
[fd
];
287 ASSERT((uint_t
)fd
< fip
->fi_nfiles
);
288 ASSERT((ufp
->uf_busy
== 0 && incr
== 1) ||
289 (ufp
->uf_busy
== 1 && incr
== -1));
290 ASSERT(MUTEX_HELD(&ufp
->uf_lock
));
291 ASSERT(MUTEX_HELD(&fip
->fi_lock
));
293 for (pfd
= fd
; pfd
>= 0; pfd
= (pfd
& (pfd
+ 1)) - 1)
294 fip
->fi_list
[pfd
].uf_alloc
+= incr
;
296 ufp
->uf_busy
+= incr
;
300 flist_minsize(uf_info_t
*fip
)
305 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
306 * by flist_fork(), which relies on other mechanisms for mutual
309 ASSERT((fip
->fi_nfiles
& (fip
->fi_nfiles
+ 1)) == 0);
311 for (fd
= fip
->fi_nfiles
; fd
!= 0; fd
>>= 1)
312 if (fip
->fi_list
[fd
>> 1].uf_alloc
!= 0)
319 flist_nalloc(uf_info_t
*fip
)
324 ASSERT(MUTEX_HELD(&fip
->fi_lock
));
325 ASSERT((fip
->fi_nfiles
& (fip
->fi_nfiles
+ 1)) == 0);
327 for (fd
= fip
->fi_nfiles
; fd
!= 0; fd
>>= 1)
328 nalloc
+= fip
->fi_list
[fd
>> 1].uf_alloc
;
334 * Increase size of the fi_list array to accommodate at least maxfd.
335 * We keep the size of the form 2^n - 1 for benefit of fd_find().
338 flist_grow(int maxfd
)
340 uf_info_t
*fip
= P_FINFO(curproc
);
342 uf_entry_t
*src
, *dst
, *newlist
, *oldlist
, *newend
, *oldend
;
345 for (newcnt
= 1; newcnt
<= maxfd
; newcnt
= (newcnt
<< 1) | 1)
348 newlist
= kmem_zalloc(newcnt
* sizeof (uf_entry_t
), KM_SLEEP
);
350 mutex_enter(&fip
->fi_lock
);
351 oldcnt
= fip
->fi_nfiles
;
352 if (newcnt
<= oldcnt
) {
353 mutex_exit(&fip
->fi_lock
);
354 kmem_free(newlist
, newcnt
* sizeof (uf_entry_t
));
357 ASSERT((newcnt
& (newcnt
+ 1)) == 0);
358 oldlist
= fip
->fi_list
;
359 oldend
= oldlist
+ oldcnt
;
360 newend
= newlist
+ oldcnt
; /* no need to lock beyond old end */
363 * fi_list and fi_nfiles cannot change while any uf_lock is held,
364 * so we must grab all the old locks *and* the new locks up to oldcnt.
365 * (Locks beyond the end of oldcnt aren't visible until we store
366 * the new fi_nfiles, which is the last thing we do before dropping
367 * all the locks, so there's no need to acquire these locks).
368 * Holding the new locks is necessary because when fi_list changes
369 * to point to the new list, fi_nfiles won't have been stored yet.
370 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
371 * could see the new fi_list, grab the new uf_lock, and then see
372 * fi_nfiles change while the lock is held -- in violation of
373 * UF_ENTER() semantics.
375 for (src
= oldlist
; src
< oldend
; src
++)
376 mutex_enter(&src
->uf_lock
);
378 for (dst
= newlist
; dst
< newend
; dst
++)
379 mutex_enter(&dst
->uf_lock
);
381 for (src
= oldlist
, dst
= newlist
; src
< oldend
; src
++, dst
++) {
382 dst
->uf_file
= src
->uf_file
;
383 dst
->uf_fpollinfo
= src
->uf_fpollinfo
;
384 dst
->uf_refcnt
= src
->uf_refcnt
;
385 dst
->uf_alloc
= src
->uf_alloc
;
386 dst
->uf_flag
= src
->uf_flag
;
387 dst
->uf_busy
= src
->uf_busy
;
388 dst
->uf_portfd
= src
->uf_portfd
;
392 * As soon as we store the new flist, future locking operations
393 * will use it. Therefore, we must ensure that all the state
394 * we've just established reaches global visibility before the
398 fip
->fi_list
= newlist
;
401 * Routines like getf() make an optimistic check on the validity
402 * of the supplied file descriptor: if it's less than the current
403 * value of fi_nfiles -- examined without any locks -- then it's
404 * safe to attempt a UF_ENTER() on that fd (which is a valid
405 * assumption because fi_nfiles only increases). Therefore, it
406 * is critical that the new value of fi_nfiles not reach global
407 * visibility until after the new fi_list: if it happened the
408 * other way around, getf() could see the new fi_nfiles and attempt
409 * a UF_ENTER() on the old fi_list, which would write beyond its
410 * end if the fd exceeded the old fi_nfiles.
413 fip
->fi_nfiles
= newcnt
;
416 * The new state is consistent now, so we can drop all the locks.
418 for (dst
= newlist
; dst
< newend
; dst
++)
419 mutex_exit(&dst
->uf_lock
);
421 for (src
= oldlist
; src
< oldend
; src
++) {
423 * If any threads are blocked on the old cvs, wake them.
424 * This will force them to wake up, discover that fi_list
425 * has changed, and go back to sleep on the new cvs.
427 cv_broadcast(&src
->uf_wanted_cv
);
428 cv_broadcast(&src
->uf_closing_cv
);
429 mutex_exit(&src
->uf_lock
);
432 mutex_exit(&fip
->fi_lock
);
435 * Retire the old flist. We can't actually kmem_free() it now
436 * because someone may still have a pointer to it. Instead,
437 * we link it onto a list of retired flists. The new flist
438 * is at least double the size of the previous flist, so the
439 * total size of all retired flists will be less than the size
440 * of the current one (to prove, consider the sum of a geometric
441 * series in powers of 2). exit() frees the retired flists.
443 urp
= kmem_zalloc(sizeof (uf_rlist_t
), KM_SLEEP
);
444 urp
->ur_list
= oldlist
;
445 urp
->ur_nfiles
= oldcnt
;
447 mutex_enter(&fip
->fi_lock
);
448 urp
->ur_next
= fip
->fi_rlist
;
450 mutex_exit(&fip
->fi_lock
);
454 * Utility functions for keeping track of the active file descriptors.
457 clear_stale_fd() /* called from post_syscall() */
459 afd_t
*afd
= &curthread
->t_activefd
;
462 /* uninitialized is ok here, a_nfd is then zero */
463 for (i
= 0; i
< afd
->a_nfd
; i
++) {
464 /* assert that this should not be necessary */
465 ASSERT(afd
->a_fd
[i
] == -1);
472 free_afd(afd_t
*afd
) /* called below and from thread_free() */
476 /* free the buffer if it was kmem_alloc()ed */
477 if (afd
->a_nfd
> sizeof (afd
->a_buf
) / sizeof (afd
->a_buf
[0])) {
479 kmem_free(afd
->a_fd
, afd
->a_nfd
* sizeof (afd
->a_fd
[0]));
482 /* (re)initialize the structure */
483 afd
->a_fd
= &afd
->a_buf
[0];
484 afd
->a_nfd
= sizeof (afd
->a_buf
) / sizeof (afd
->a_buf
[0]);
486 for (i
= 0; i
< afd
->a_nfd
; i
++)
491 set_active_fd(int fd
)
493 afd_t
*afd
= &curthread
->t_activefd
;
500 if (afd
->a_nfd
== 0) { /* first time initialization */
502 mutex_enter(&afd
->a_fdlock
);
504 mutex_exit(&afd
->a_fdlock
);
507 /* insert fd into vacant slot, if any */
508 for (i
= 0; i
< afd
->a_nfd
; i
++) {
509 if (afd
->a_fd
[i
] == -1) {
516 * Reallocate the a_fd[] array to add one more slot.
519 old_nfd
= afd
->a_nfd
;
521 new_nfd
= old_nfd
+ 1;
522 new_fd
= kmem_alloc(new_nfd
* sizeof (afd
->a_fd
[0]), KM_SLEEP
);
526 mutex_enter(&afd
->a_fdlock
);
528 afd
->a_nfd
= new_nfd
;
529 for (i
= 0; i
< old_nfd
; i
++)
530 afd
->a_fd
[i
] = old_fd
[i
];
532 mutex_exit(&afd
->a_fdlock
);
534 if (old_nfd
> sizeof (afd
->a_buf
) / sizeof (afd
->a_buf
[0])) {
536 kmem_free(old_fd
, old_nfd
* sizeof (afd
->a_fd
[0]));
541 clear_active_fd(int fd
) /* called below and from aio.c */
543 afd_t
*afd
= &curthread
->t_activefd
;
546 for (i
= 0; i
< afd
->a_nfd
; i
++) {
547 if (afd
->a_fd
[i
] == fd
) {
552 ASSERT(i
< afd
->a_nfd
); /* not found is not ok */
556 * Does this thread have this fd active?
559 is_active_fd(kthread_t
*t
, int fd
)
561 afd_t
*afd
= &t
->t_activefd
;
564 ASSERT(t
!= curthread
);
565 mutex_enter(&afd
->a_fdlock
);
566 /* uninitialized is ok here, a_nfd is then zero */
567 for (i
= 0; i
< afd
->a_nfd
; i
++) {
568 if (afd
->a_fd
[i
] == fd
) {
569 mutex_exit(&afd
->a_fdlock
);
573 mutex_exit(&afd
->a_fdlock
);
578 * Convert a user supplied file descriptor into a pointer to a file
579 * structure. Only task is to check range of the descriptor (soft
580 * resource limit was enforced at open time and shouldn't be checked
586 uf_info_t
*fip
= P_FINFO(curproc
);
590 if ((uint_t
)fd
>= fip
->fi_nfiles
)
594 * Reserve a slot in the active fd array now so we can call
595 * set_active_fd(fd) for real below, while still inside UF_ENTER().
599 UF_ENTER(ufp
, fip
, fd
);
601 if ((fp
= ufp
->uf_file
) == NULL
) {
604 if (fd
== fip
->fi_badfd
&& fip
->fi_action
> 0)
605 tsignal(curthread
, fip
->fi_action
);
611 set_active_fd(fd
); /* record the active file descriptor */
619 * Close whatever file currently occupies the file descriptor slot
620 * and install the new file, usually NULL, in the file descriptor slot.
621 * The close must complete before we release the file descriptor slot.
622 * If newfp != NULL we only return an error if we can't allocate the
623 * slot so the caller knows that it needs to free the filep;
624 * in the other cases we return the error number from closef().
627 closeandsetf(int fd
, file_t
*newfp
)
630 uf_info_t
*fip
= P_FINFO(p
);
637 if ((uint_t
)fd
>= fip
->fi_nfiles
) {
645 * If ufp is reserved but has no file pointer, it's in the
646 * transition between ufalloc() and setf(). We must wait
647 * for this transition to complete before assigning the
648 * new non-NULL file pointer.
650 mutex_enter(&fip
->fi_lock
);
651 if (fd
== fip
->fi_badfd
) {
652 mutex_exit(&fip
->fi_lock
);
653 if (fip
->fi_action
> 0)
654 tsignal(curthread
, fip
->fi_action
);
657 UF_ENTER(ufp
, fip
, fd
);
658 while (ufp
->uf_busy
&& ufp
->uf_file
== NULL
) {
659 mutex_exit(&fip
->fi_lock
);
660 cv_wait_stop(&ufp
->uf_wanted_cv
, &ufp
->uf_lock
, 250);
662 mutex_enter(&fip
->fi_lock
);
663 UF_ENTER(ufp
, fip
, fd
);
665 if ((fp
= ufp
->uf_file
) == NULL
) {
666 ASSERT(ufp
->uf_fpollinfo
== NULL
);
667 ASSERT(ufp
->uf_flag
== 0);
668 fd_reserve(fip
, fd
, 1);
669 ufp
->uf_file
= newfp
;
671 mutex_exit(&fip
->fi_lock
);
674 mutex_exit(&fip
->fi_lock
);
676 UF_ENTER(ufp
, fip
, fd
);
677 if ((fp
= ufp
->uf_file
) == NULL
) {
683 ASSERT(ufp
->uf_busy
);
688 * If the file descriptor reference count is non-zero, then
689 * some other lwp in the process is performing system call
690 * activity on the file. To avoid blocking here for a long
691 * time (the other lwp might be in a long term sleep in its
692 * system call), we scan all other lwps in the process to
693 * find the ones with this fd as one of their active fds,
694 * set their a_stale flag, and set them running if they
695 * are in an interruptible sleep so they will emerge from
696 * their system calls immediately. post_syscall() will
697 * test the a_stale flag and set errno to EBADF.
699 ASSERT(ufp
->uf_refcnt
== 0 || p
->p_lwpcnt
> 1);
700 if (ufp
->uf_refcnt
> 0) {
704 * We call sprlock_proc(p) to ensure that the thread
705 * list will not change while we are scanning it.
706 * To do this, we must drop ufp->uf_lock and then
707 * reacquire it (so we are not holding both p->p_lock
708 * and ufp->uf_lock at the same time). ufp->uf_lock
709 * must be held for is_active_fd() to be correct
710 * (set_active_fd() is called while holding ufp->uf_lock).
712 * This is a convoluted dance, but it is better than
713 * the old brute-force method of stopping every thread
714 * in the process by calling holdlwps(SHOLDFORK1).
720 mutex_enter(&p
->p_lock
);
722 mutex_exit(&p
->p_lock
);
724 UF_ENTER(ufp
, fip
, fd
);
725 ASSERT(ufp
->uf_file
== NULL
);
727 if (ufp
->uf_refcnt
> 0) {
728 for (t
= curthread
->t_forw
;
731 if (is_active_fd(t
, fd
)) {
733 t
->t_activefd
.a_stale
= 1;
744 mutex_enter(&p
->p_lock
);
747 UF_ENTER(ufp
, fip
, fd
);
748 ASSERT(ufp
->uf_file
== NULL
);
752 * Wait for other lwps to stop using this file descriptor.
754 while (ufp
->uf_refcnt
> 0) {
755 cv_wait_stop(&ufp
->uf_closing_cv
, &ufp
->uf_lock
, 250);
757 * cv_wait_stop() drops ufp->uf_lock, so the file list
758 * can change. Drop the lock on our (possibly) stale
759 * ufp and let UF_ENTER() find and lock the current ufp.
762 UF_ENTER(ufp
, fip
, fd
);
767 * catch a watchfd on device's pollhead list but not on fpollinfo list
769 if (ufp
->uf_fpollinfo
!= NULL
)
770 checkwfdlist(fp
->f_vnode
, ufp
->uf_fpollinfo
);
774 * We may need to cleanup some cached poll states in t_pollstate
775 * before the fd can be reused. It is important that we don't
776 * access a stale thread structure. We will do the cleanup in two
777 * phases to avoid deadlock and holding uf_lock for too long.
778 * In phase 1, hold the uf_lock and call pollblockexit() to set
779 * state in t_pollstate struct so that a thread does not exit on
780 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
782 pfd
= ufp
->uf_portfd
;
783 ufp
->uf_portfd
= NULL
;
784 fpip
= ufp
->uf_fpollinfo
;
785 ufp
->uf_fpollinfo
= NULL
;
790 pollcacheclean(fpip
, fd
);
795 * Keep the file descriptor entry reserved across the closef().
801 /* Only return closef() error when closing is all we do */
802 return (newfp
== NULL
? error
: 0);
806 * Decrement uf_refcnt; wakeup anyone waiting to close the file.
811 uf_info_t
*fip
= P_FINFO(curproc
);
814 UF_ENTER(ufp
, fip
, fd
);
815 ASSERT(ufp
->uf_refcnt
> 0);
816 clear_active_fd(fd
); /* clear the active file descriptor */
817 if (--ufp
->uf_refcnt
== 0)
818 cv_broadcast(&ufp
->uf_closing_cv
);
823 * Identical to releasef() but can be called from another process.
826 areleasef(int fd
, uf_info_t
*fip
)
830 UF_ENTER(ufp
, fip
, fd
);
831 ASSERT(ufp
->uf_refcnt
> 0);
832 if (--ufp
->uf_refcnt
== 0)
833 cv_broadcast(&ufp
->uf_closing_cv
);
838 * Duplicate all file descriptors across a fork.
841 flist_fork(uf_info_t
*pfip
, uf_info_t
*cfip
)
844 uf_entry_t
*pufp
, *cufp
;
846 mutex_init(&cfip
->fi_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
847 cfip
->fi_rlist
= NULL
;
850 * We don't need to hold fi_lock because all other lwp's in the
851 * parent have been held.
853 cfip
->fi_nfiles
= nfiles
= flist_minsize(pfip
);
855 cfip
->fi_list
= kmem_zalloc(nfiles
* sizeof (uf_entry_t
), KM_SLEEP
);
857 for (fd
= 0, pufp
= pfip
->fi_list
, cufp
= cfip
->fi_list
; fd
< nfiles
;
858 fd
++, pufp
++, cufp
++) {
859 cufp
->uf_file
= pufp
->uf_file
;
860 cufp
->uf_alloc
= pufp
->uf_alloc
;
861 cufp
->uf_flag
= pufp
->uf_flag
;
862 cufp
->uf_busy
= pufp
->uf_busy
;
863 if (pufp
->uf_file
== NULL
) {
864 ASSERT(pufp
->uf_flag
== 0);
867 * Grab locks to appease ASSERTs in fd_reserve
869 mutex_enter(&cfip
->fi_lock
);
870 mutex_enter(&cufp
->uf_lock
);
871 fd_reserve(cfip
, fd
, -1);
872 mutex_exit(&cufp
->uf_lock
);
873 mutex_exit(&cfip
->fi_lock
);
880 * Close all open file descriptors for the current process.
881 * This is only called from exit(), which is single-threaded,
882 * so we don't need any locking.
885 closeall(uf_info_t
*fip
)
892 for (fd
= 0; fd
< fip
->fi_nfiles
; fd
++, ufp
++) {
893 if ((fp
= ufp
->uf_file
) != NULL
) {
895 if (ufp
->uf_portfd
!= NULL
) {
897 /* remove event port association */
898 pfd
= ufp
->uf_portfd
;
899 ufp
->uf_portfd
= NULL
;
902 ASSERT(ufp
->uf_fpollinfo
== NULL
);
907 kmem_free(fip
->fi_list
, fip
->fi_nfiles
* sizeof (uf_entry_t
));
910 while (fip
->fi_rlist
!= NULL
) {
911 uf_rlist_t
*urp
= fip
->fi_rlist
;
912 fip
->fi_rlist
= urp
->ur_next
;
913 kmem_free(urp
->ur_list
, urp
->ur_nfiles
* sizeof (uf_entry_t
));
914 kmem_free(urp
, sizeof (uf_rlist_t
));
919 * Internal form of close. Decrement reference count on file
920 * structure. Decrement reference count on the vnode following
921 * removal of the referencing file structure.
933 * audit close of file (may be exit)
937 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc
)->fi_lock
));
939 mutex_enter(&fp
->f_tlock
);
941 ASSERT(fp
->f_count
> 0);
943 count
= fp
->f_count
--;
945 offset
= fp
->f_offset
;
949 error
= VOP_CLOSE(vp
, flag
, count
, offset
, fp
->f_cred
, NULL
);
952 mutex_exit(&fp
->f_tlock
);
955 ASSERT(fp
->f_count
== 0);
956 /* Last reference, remove any OFD style lock for the file_t */
958 mutex_exit(&fp
->f_tlock
);
961 * If DTrace has getf() subroutines active, it will set dtrace_closef
962 * to point to code that implements a barrier with respect to probe
963 * context. This must be called before the file_t is freed (and the
964 * vnode that it refers to is released) -- but it must be after the
965 * file_t has been removed from the uf_entry_t. That is, there must
966 * be no way for a racing getf() in probe context to yield the fp that
967 * we're operating upon.
969 if (dtrace_closef
!= NULL
)
974 * deallocate resources to audit_data
979 kmem_cache_free(file_cache
, fp
);
984 * This is a combination of ufalloc() and setf().
987 ufalloc_file(int start
, file_t
*fp
)
990 uf_info_t
*fip
= P_FINFO(p
);
997 * Assertion is to convince the correctness of the following
998 * assignment for filelimit after casting to int.
1000 ASSERT(p
->p_fno_ctl
<= INT_MAX
);
1001 filelimit
= (int)p
->p_fno_ctl
;
1004 mutex_enter(&fip
->fi_lock
);
1005 fd
= fd_find(fip
, start
);
1006 if (fd
>= 0 && fd
== fip
->fi_badfd
) {
1008 mutex_exit(&fip
->fi_lock
);
1011 if ((uint_t
)fd
< filelimit
)
1013 if (fd
>= filelimit
) {
1014 mutex_exit(&fip
->fi_lock
);
1015 mutex_enter(&p
->p_lock
);
1016 (void) rctl_action(rctlproc_legacy
[RLIMIT_NOFILE
],
1017 p
->p_rctls
, p
, RCA_SAFE
);
1018 mutex_exit(&p
->p_lock
);
1021 /* fd_find() returned -1 */
1022 nfiles
= fip
->fi_nfiles
;
1023 mutex_exit(&fip
->fi_lock
);
1024 flist_grow(MAX(start
, nfiles
));
1027 UF_ENTER(ufp
, fip
, fd
);
1028 fd_reserve(fip
, fd
, 1);
1029 ASSERT(ufp
->uf_file
== NULL
);
1032 mutex_exit(&fip
->fi_lock
);
1037 * Allocate a user file descriptor greater than or equal to "start".
1042 return (ufalloc_file(start
, NULL
));
1046 * Check that a future allocation of count fds on proc p has a good
1047 * chance of succeeding. If not, do rctl processing as if we'd failed
1050 * Our caller must guarantee that p cannot disappear underneath us.
1053 ufcanalloc(proc_t
*p
, uint_t count
)
1055 uf_info_t
*fip
= P_FINFO(p
);
1062 ASSERT(p
->p_fno_ctl
<= INT_MAX
);
1063 filelimit
= (int)p
->p_fno_ctl
;
1065 mutex_enter(&fip
->fi_lock
);
1066 current
= flist_nalloc(fip
); /* # of in-use descriptors */
1067 mutex_exit(&fip
->fi_lock
);
1070 * If count is a positive integer, the worst that can happen is
1071 * an overflow to a negative value, which is caught by the >= 0 check.
1074 if (count
<= INT_MAX
&& current
>= 0 && current
<= filelimit
)
1077 mutex_enter(&p
->p_lock
);
1078 (void) rctl_action(rctlproc_legacy
[RLIMIT_NOFILE
],
1079 p
->p_rctls
, p
, RCA_SAFE
);
1080 mutex_exit(&p
->p_lock
);
1085 * Allocate a user file descriptor and a file structure.
1086 * Initialize the descriptor to point at the file structure.
1087 * If fdp is NULL, the user file descriptor will not be allocated.
1090 falloc(vnode_t
*vp
, int flag
, file_t
**fpp
, int *fdp
)
1096 if ((fd
= ufalloc(0)) == -1)
1099 fp
= kmem_cache_alloc(file_cache
, KM_SLEEP
);
1101 * Note: falloc returns the fp locked
1103 mutex_enter(&fp
->f_tlock
);
1105 fp
->f_flag
= (ushort_t
)flag
;
1106 fp
->f_flag2
= (flag
& (FSEARCH
|FEXEC
)) >> 16;
1109 fp
->f_audit_data
= 0;
1110 crhold(fp
->f_cred
= CRED());
1112 * allocate resources to audit_data
1124 file_cache_constructor(void *buf
, void *cdrarg
, int kmflags
)
1128 mutex_init(&fp
->f_tlock
, NULL
, MUTEX_DEFAULT
, NULL
);
1134 file_cache_destructor(void *buf
, void *cdrarg
)
1138 mutex_destroy(&fp
->f_tlock
);
1144 file_cache
= kmem_cache_create("file_cache", sizeof (file_t
), 0,
1145 file_cache_constructor
, file_cache_destructor
, NULL
, NULL
, NULL
, 0);
1149 unfalloc(file_t
*fp
)
1151 ASSERT(MUTEX_HELD(&fp
->f_tlock
));
1152 if (--fp
->f_count
<= 0) {
1154 * deallocate resources to audit_data
1159 mutex_exit(&fp
->f_tlock
);
1160 kmem_cache_free(file_cache
, fp
);
1162 mutex_exit(&fp
->f_tlock
);
1166 * Given a file descriptor, set the user's
1167 * file pointer to the given parameter.
1170 setf(int fd
, file_t
*fp
)
1172 uf_info_t
*fip
= P_FINFO(curproc
);
1179 mutex_enter(&fip
->fi_lock
);
1180 UF_ENTER(ufp
, fip
, fd
);
1181 fd_reserve(fip
, fd
, -1);
1182 mutex_exit(&fip
->fi_lock
);
1184 UF_ENTER(ufp
, fip
, fd
);
1185 ASSERT(ufp
->uf_busy
);
1187 ASSERT(ufp
->uf_fpollinfo
== NULL
);
1188 ASSERT(ufp
->uf_flag
== 0);
1190 cv_broadcast(&ufp
->uf_wanted_cv
);
1195 * Given a file descriptor, return the file table flags, plus,
1196 * if this is a socket in asynchronous mode, the FASYNC flag.
1197 * getf() may or may not have been called before calling f_getfl().
1200 f_getfl(int fd
, int *flagp
)
1202 uf_info_t
*fip
= P_FINFO(curproc
);
1207 if ((uint_t
)fd
>= fip
->fi_nfiles
)
1210 UF_ENTER(ufp
, fip
, fd
);
1211 if ((fp
= ufp
->uf_file
) == NULL
)
1214 vnode_t
*vp
= fp
->f_vnode
;
1215 int flag
= fp
->f_flag
|
1216 ((fp
->f_flag2
& ~FEPOLLED
) << 16);
1219 * BSD fcntl() FASYNC compatibility.
1221 if (vp
->v_type
== VSOCK
)
1222 flag
|= sock_getfasync(vp
);
1233 * Given a file descriptor, return the user's file flags.
1234 * Force the FD_CLOEXEC flag for writable self-open /proc files.
1235 * getf() may or may not have been called before calling f_getfd_error().
1238 f_getfd_error(int fd
, int *flagp
)
1240 uf_info_t
*fip
= P_FINFO(curproc
);
1246 if ((uint_t
)fd
>= fip
->fi_nfiles
)
1249 UF_ENTER(ufp
, fip
, fd
);
1250 if ((fp
= ufp
->uf_file
) == NULL
)
1253 flag
= ufp
->uf_flag
;
1254 if ((fp
->f_flag
& FWRITE
) && pr_isself(fp
->f_vnode
))
1266 * getf() must have been called before calling f_getfd().
1272 (void) f_getfd_error(fd
, &flag
);
1273 return ((char)flag
);
1277 * Given a file descriptor and file flags, set the user's file flags.
1278 * At present, the only valid flag is FD_CLOEXEC.
1279 * getf() may or may not have been called before calling f_setfd_error().
1282 f_setfd_error(int fd
, int flags
)
1284 uf_info_t
*fip
= P_FINFO(curproc
);
1288 if ((uint_t
)fd
>= fip
->fi_nfiles
)
1291 UF_ENTER(ufp
, fip
, fd
);
1292 if (ufp
->uf_file
== NULL
)
1295 ufp
->uf_flag
= flags
& FD_CLOEXEC
;
1304 f_setfd(int fd
, char flags
)
1306 (void) f_setfd_error(fd
, flags
);
1310 #define BADFD_MAX 255
1313 * Attempt to allocate a file descriptor which is bad and which
1314 * is "poison" to the application. It cannot be closed (except
1315 * on exec), allocated for a different use, etc.
1318 f_badfd(int start
, int *fdp
, int action
)
1322 uf_info_t
*fip
= P_FINFO(curproc
);
1325 /* No restrictions on 64 bit _file */
1326 if (get_udatamodel() != DATAMODEL_ILP32
)
1330 if (start
> BADFD_MAX
|| start
< BADFD_MIN
)
1333 if (action
>= NSIG
|| action
< 0)
1336 mutex_enter(&fip
->fi_lock
);
1337 badfd
= fip
->fi_badfd
;
1338 mutex_exit(&fip
->fi_lock
);
1343 fdr
= ufalloc(start
);
1345 if (fdr
> BADFD_MAX
) {
1352 mutex_enter(&fip
->fi_lock
);
1353 if (fip
->fi_badfd
!= -1) {
1355 mutex_exit(&fip
->fi_lock
);
1359 fip
->fi_action
= action
;
1360 fip
->fi_badfd
= fdr
;
1361 mutex_exit(&fip
->fi_lock
);
1370 * Allocate a file descriptor and assign it to the vnode "*vpp",
1371 * performing the usual open protocol upon it and returning the
1372 * file descriptor allocated. It is the responsibility of the
1373 * caller to dispose of "*vpp" if any error occurs.
1376 fassign(vnode_t
**vpp
, int mode
, int *fdp
)
1382 if (error
= falloc((vnode_t
*)NULL
, mode
, &fp
, &fd
))
1384 if (error
= VOP_OPEN(vpp
, mode
, fp
->f_cred
, NULL
)) {
1390 mutex_exit(&fp
->f_tlock
);
1392 * Fill in the slot falloc reserved.
1400 * When a process forks it must increment the f_count of all file pointers
1401 * since there is a new process pointing at them. fcnt_add(fip, 1) does this.
1402 * Since we are called when there is only 1 active lwp we don't need to
1403 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls
1404 * fcnt_add(fip, -1) to restore the counts.
1407 fcnt_add(uf_info_t
*fip
, int incr
)
1414 for (i
= 0; i
< fip
->fi_nfiles
; i
++, ufp
++) {
1415 if ((fp
= ufp
->uf_file
) != NULL
) {
1416 mutex_enter(&fp
->f_tlock
);
1417 ASSERT((incr
== 1 && fp
->f_count
>= 1) ||
1418 (incr
== -1 && fp
->f_count
>= 2));
1419 fp
->f_count
+= incr
;
1420 mutex_exit(&fp
->f_tlock
);
1426 * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1427 * set and also to close all self-open for write /proc file descriptors.
1430 close_exec(uf_info_t
*fip
)
1439 for (fd
= 0; fd
< fip
->fi_nfiles
; fd
++, ufp
++) {
1440 if ((fp
= ufp
->uf_file
) != NULL
&&
1441 ((ufp
->uf_flag
& FD_CLOEXEC
) ||
1442 ((fp
->f_flag
& FWRITE
) && pr_isself(fp
->f_vnode
)))) {
1443 fpip
= ufp
->uf_fpollinfo
;
1444 mutex_enter(&fip
->fi_lock
);
1445 mutex_enter(&ufp
->uf_lock
);
1446 fd_reserve(fip
, fd
, -1);
1447 mutex_exit(&fip
->fi_lock
);
1448 ufp
->uf_file
= NULL
;
1449 ufp
->uf_fpollinfo
= NULL
;
1452 * We may need to cleanup some cached poll states
1453 * in t_pollstate before the fd can be reused. It
1454 * is important that we don't access a stale thread
1455 * structure. We will do the cleanup in two
1456 * phases to avoid deadlock and holding uf_lock for
1457 * too long. In phase 1, hold the uf_lock and call
1458 * pollblockexit() to set state in t_pollstate struct
1459 * so that a thread does not exit on us. In phase 2,
1460 * we drop the uf_lock and call pollcacheclean().
1462 pfd
= ufp
->uf_portfd
;
1463 ufp
->uf_portfd
= NULL
;
1465 pollblockexit(fpip
);
1466 mutex_exit(&ufp
->uf_lock
);
1468 pollcacheclean(fpip
, fd
);
1477 fip
->fi_action
= -1;
1481 * Utility function called by most of the *at() system call interfaces.
1483 * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1484 * is an open file descriptor for a directory to be used as the starting
1485 * point for the lookup of the relative pathname 'path' (or, if path is
1486 * NULL, generate a vnode pointer for the direct target of the operation).
1488 * If we successfully return a non-NULL startvp, it has been the target
1489 * of VN_HOLD() and the caller must call VN_RELE() on it.
1492 fgetstartvp(int fd
, char *path
, vnode_t
**startvpp
)
1498 if (fd
== AT_FDCWD
&& path
== NULL
)
1501 if (fd
== AT_FDCWD
) {
1503 * Start from the current working directory.
1509 else if (copyin(path
, &startchar
, sizeof (char)))
1512 if (startchar
== '/') {
1514 * 'path' is an absolute pathname.
1519 * 'path' is a relative pathname or we will
1520 * be applying the operation to 'fd' itself.
1522 if ((startfp
= getf(fd
)) == NULL
)
1524 startvp
= startfp
->f_vnode
;
1529 *startvpp
= startvp
;
1534 * Called from fchownat() and fchmodat() to set ownership and mode.
1535 * The contents of *vap must be set before calling here.
1538 fsetattrat(int fd
, char *path
, int flags
, struct vattr
*vap
)
1545 * Since we are never called to set the size of a file, we don't
1546 * need to check for non-blocking locks (via nbl_need_check(vp)).
1548 ASSERT(!(vap
->va_mask
& AT_SIZE
));
1550 if ((error
= fgetstartvp(fd
, path
, &startvp
)) != 0)
1552 if (AU_AUDITING() && startvp
!= NULL
)
1553 audit_setfsat_path(1);
1556 * Do lookup for fchownat/fchmodat when path not NULL
1559 if (error
= lookupnameat(path
, UIO_USERSPACE
,
1560 (flags
== AT_SYMLINK_NOFOLLOW
) ?
1562 NULLVPP
, &vp
, startvp
)) {
1563 if (startvp
!= NULL
)
1573 if (vn_is_readonly(vp
)) {
1576 error
= VOP_SETATTR(vp
, vap
, 0, CRED(), NULL
);
1579 if (startvp
!= NULL
)
1587 * Return true if the given vnode is referenced by any
1588 * entry in the current process's file descriptor table.
1591 fisopen(vnode_t
*vp
)
1596 uf_info_t
*fip
= P_FINFO(curproc
);
1599 mutex_enter(&fip
->fi_lock
);
1600 for (fd
= 0; fd
< fip
->fi_nfiles
; fd
++) {
1601 UF_ENTER(ufp
, fip
, fd
);
1602 if ((fp
= ufp
->uf_file
) != NULL
&&
1603 (ovp
= fp
->f_vnode
) != NULL
&& VN_CMP(vp
, ovp
)) {
1605 mutex_exit(&fip
->fi_lock
);
1610 mutex_exit(&fip
->fi_lock
);
1615 * Return zero if at least one file currently open (by curproc) shouldn't be
1616 * allowed to change zones.
1619 files_can_change_zones(void)
1623 uf_info_t
*fip
= P_FINFO(curproc
);
1626 mutex_enter(&fip
->fi_lock
);
1627 for (fd
= 0; fd
< fip
->fi_nfiles
; fd
++) {
1628 UF_ENTER(ufp
, fip
, fd
);
1629 if ((fp
= ufp
->uf_file
) != NULL
&&
1630 !vn_can_change_zones(fp
->f_vnode
)) {
1632 mutex_exit(&fip
->fi_lock
);
1637 mutex_exit(&fip
->fi_lock
);
1644 * The following functions are only used in ASSERT()s elsewhere.
1645 * They do not modify the state of the system.
1649 * Return true (1) if the current thread is in the fpollinfo
1650 * list for this file descriptor, else false (0).
1653 curthread_in_plist(uf_entry_t
*ufp
)
1657 ASSERT(MUTEX_HELD(&ufp
->uf_lock
));
1658 for (fpip
= ufp
->uf_fpollinfo
; fpip
; fpip
= fpip
->fp_next
)
1659 if (fpip
->fp_thread
== curthread
)
1665 * Sanity check to make sure that after lwp_exit(),
1666 * curthread does not appear on any fd's fpollinfo list.
1669 checkfpollinfo(void)
1672 uf_info_t
*fip
= P_FINFO(curproc
);
1675 mutex_enter(&fip
->fi_lock
);
1676 for (fd
= 0; fd
< fip
->fi_nfiles
; fd
++) {
1677 UF_ENTER(ufp
, fip
, fd
);
1678 ASSERT(!curthread_in_plist(ufp
));
1681 mutex_exit(&fip
->fi_lock
);
1685 * Return true (1) if the current thread is in the fpollinfo
1686 * list for this file descriptor, else false (0).
1687 * This is the same as curthread_in_plist(),
1688 * but is called w/o holding uf_lock.
1693 uf_info_t
*fip
= P_FINFO(curproc
);
1697 UF_ENTER(ufp
, fip
, fd
);
1698 rc
= curthread_in_plist(ufp
);
1706 * Add the curthread to fpollinfo list, meaning this fd is currently in the
1707 * thread's poll cache. Each lwp polling this file descriptor should call
1708 * this routine once.
1711 addfpollinfo(int fd
)
1713 struct uf_entry
*ufp
;
1715 uf_info_t
*fip
= P_FINFO(curproc
);
1717 fpip
= kmem_zalloc(sizeof (fpollinfo_t
), KM_SLEEP
);
1718 fpip
->fp_thread
= curthread
;
1719 UF_ENTER(ufp
, fip
, fd
);
1721 * Assert we are not already on the list, that is, that
1722 * this lwp did not call addfpollinfo twice for the same fd.
1724 ASSERT(!curthread_in_plist(ufp
));
1726 * addfpollinfo is always done inside the getf/releasef pair.
1728 ASSERT(ufp
->uf_refcnt
>= 1);
1729 fpip
->fp_next
= ufp
->uf_fpollinfo
;
1730 ufp
->uf_fpollinfo
= fpip
;
1735 * Delete curthread from fpollinfo list if it is there.
1738 delfpollinfo(int fd
)
1740 struct uf_entry
*ufp
;
1741 struct fpollinfo
*fpip
;
1742 struct fpollinfo
**fpipp
;
1743 uf_info_t
*fip
= P_FINFO(curproc
);
1745 UF_ENTER(ufp
, fip
, fd
);
1746 for (fpipp
= &ufp
->uf_fpollinfo
;
1747 (fpip
= *fpipp
) != NULL
;
1748 fpipp
= &fpip
->fp_next
) {
1749 if (fpip
->fp_thread
== curthread
) {
1750 *fpipp
= fpip
->fp_next
;
1751 kmem_free(fpip
, sizeof (fpollinfo_t
));
1756 * Assert that we are not still on the list, that is, that
1757 * this lwp did not call addfpollinfo twice for the same fd.
1759 ASSERT(!curthread_in_plist(ufp
));
1764 * fd is associated with a port. pfd is a pointer to the fd entry in the
1765 * cache of the port.
1769 addfd_port(int fd
, portfd_t
*pfd
)
1771 struct uf_entry
*ufp
;
1772 uf_info_t
*fip
= P_FINFO(curproc
);
1774 UF_ENTER(ufp
, fip
, fd
);
1776 * addfd_port is always done inside the getf/releasef pair.
1778 ASSERT(ufp
->uf_refcnt
>= 1);
1779 if (ufp
->uf_portfd
== NULL
) {
1781 ufp
->uf_portfd
= pfd
;
1782 pfd
->pfd_next
= NULL
;
1784 pfd
->pfd_next
= ufp
->uf_portfd
;
1785 ufp
->uf_portfd
= pfd
;
1786 pfd
->pfd_next
->pfd_prev
= pfd
;
1792 delfd_port(int fd
, portfd_t
*pfd
)
1794 struct uf_entry
*ufp
;
1795 uf_info_t
*fip
= P_FINFO(curproc
);
1797 UF_ENTER(ufp
, fip
, fd
);
1799 * delfd_port is always done inside the getf/releasef pair.
1801 ASSERT(ufp
->uf_refcnt
>= 1);
1802 if (ufp
->uf_portfd
== pfd
) {
1803 /* remove first entry */
1804 ufp
->uf_portfd
= pfd
->pfd_next
;
1806 pfd
->pfd_prev
->pfd_next
= pfd
->pfd_next
;
1807 if (pfd
->pfd_next
!= NULL
)
1808 pfd
->pfd_next
->pfd_prev
= pfd
->pfd_prev
;
1814 port_close_fd(portfd_t
*pfd
)
1819 * At this point, no other thread should access
1820 * the portfd_t list for this fd. The uf_file, uf_portfd
1821 * pointers in the uf_entry_t struct for this fd would
1824 for (; pfd
!= NULL
; pfd
= pfdn
) {
1825 pfdn
= pfd
->pfd_next
;
1826 port_close_pfd(pfd
);