5887 want bootfs
[unleashed.git] / usr / src / uts / common / fs / vfs.c
blobe179d934ed5dbe70e588c860c2b16c1754f465d1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
40 #include <sys/types.h>
41 #include <sys/t_lock.h>
42 #include <sys/param.h>
43 #include <sys/errno.h>
44 #include <sys/user.h>
45 #include <sys/fstyp.h>
46 #include <sys/kmem.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/fem.h>
53 #include <sys/mntent.h>
54 #include <sys/stat.h>
55 #include <sys/statvfs.h>
56 #include <sys/statfs.h>
57 #include <sys/cred.h>
58 #include <sys/vnode.h>
59 #include <sys/rwstlock.h>
60 #include <sys/dnlc.h>
61 #include <sys/file.h>
62 #include <sys/time.h>
63 #include <sys/atomic.h>
64 #include <sys/cmn_err.h>
65 #include <sys/buf.h>
66 #include <sys/swap.h>
67 #include <sys/debug.h>
68 #include <sys/vnode.h>
69 #include <sys/modctl.h>
70 #include <sys/ddi.h>
71 #include <sys/pathname.h>
72 #include <sys/bootconf.h>
73 #include <sys/dumphdr.h>
74 #include <sys/dc_ki.h>
75 #include <sys/poll.h>
76 #include <sys/sunddi.h>
77 #include <sys/sysmacros.h>
78 #include <sys/zone.h>
79 #include <sys/policy.h>
80 #include <sys/ctfs.h>
81 #include <sys/objfs.h>
82 #include <sys/console.h>
83 #include <sys/reboot.h>
84 #include <sys/attr.h>
85 #include <sys/zio.h>
86 #include <sys/spa.h>
87 #include <sys/lofi.h>
88 #include <sys/bootprops.h>
90 #include <vm/page.h>
92 #include <fs/fs_subr.h>
93 /* Private interfaces to create vopstats-related data structures */
94 extern void initialize_vopstats(vopstats_t *);
95 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
96 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
99 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
100 const char *, int, int);
101 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
102 static void vfs_freemnttab(struct vfs *);
103 static void vfs_freeopt(mntopt_t *);
104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
107 static void vfs_createopttbl_extend(mntopts_t *, const char *,
108 const mntopts_t *);
109 static char **vfs_copycancelopt_extend(char **const, int);
110 static void vfs_freecancelopt(char **);
111 static void getrootfs(char **, char **);
112 static int getmacpath(dev_info_t *, void *);
113 static void vfs_mnttabvp_setup(void);
115 struct ipmnt {
116 struct ipmnt *mip_next;
117 dev_t mip_dev;
118 struct vfs *mip_vfsp;
121 static kmutex_t vfs_miplist_mutex;
122 static struct ipmnt *vfs_miplist = NULL;
123 static struct ipmnt *vfs_miplist_end = NULL;
125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
128 * VFS global data.
130 vnode_t *rootdir; /* pointer to root inode vnode. */
131 vnode_t *devicesdir; /* pointer to inode of devices root */
132 vnode_t *devdir; /* pointer to inode of dev root */
134 char *server_rootpath; /* root path for diskless clients */
135 char *server_hostname; /* hostname of diskless server */
137 static struct vfs root;
138 static struct vfs devices;
139 static struct vfs dev;
140 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
141 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
142 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
143 /* must be power of 2! */
144 timespec_t vfs_mnttab_ctime; /* mnttab created time */
145 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
146 char *vfs_dummyfstype = "\0";
147 struct pollhead vfs_pollhd; /* for mnttab pollers */
148 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
149 int mntfstype; /* will be set once mnt fs is mounted */
152 * Table for generic options recognized in the VFS layer and acted
153 * on at this level before parsing file system specific options.
154 * The nosuid option is stronger than any of the devices and setuid
155 * options, so those are canceled when nosuid is seen.
157 * All options which are added here need to be added to the
158 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
161 * VFS Mount options table
163 static char *ro_cancel[] = { MNTOPT_RW, NULL };
164 static char *rw_cancel[] = { MNTOPT_RO, NULL };
165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
167 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
177 static const mntopt_t mntopts[] = {
179 * option name cancel options default arg flags
181 { MNTOPT_REMOUNT, NULL, NULL,
182 MO_NODISPLAY, (void *)0 },
183 { MNTOPT_RO, ro_cancel, NULL, 0,
184 (void *)0 },
185 { MNTOPT_RW, rw_cancel, NULL, 0,
186 (void *)0 },
187 { MNTOPT_SUID, suid_cancel, NULL, 0,
188 (void *)0 },
189 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
190 (void *)0 },
191 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
192 (void *)0 },
193 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
194 (void *)0 },
195 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
196 (void *)0 },
197 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
198 (void *)0 },
199 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
200 (void *)0 },
201 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
202 (void *)0 },
203 { MNTOPT_EXEC, exec_cancel, NULL, 0,
204 (void *)0 },
205 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
206 (void *)0 },
209 const mntopts_t vfs_mntopts = {
210 sizeof (mntopts) / sizeof (mntopt_t),
211 (mntopt_t *)&mntopts[0]
215 * File system operation dispatch functions.
219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
221 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
227 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
231 fsop_root(vfs_t *vfsp, vnode_t **vpp)
233 refstr_t *mntpt;
234 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
236 * Make sure this root has a path. With lofs, it is possible to have
237 * a NULL mountpoint.
239 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
240 mntpt = vfs_getmntpoint(vfsp);
241 vn_setpath_str(*vpp, refstr_value(mntpt),
242 strlen(refstr_value(mntpt)));
243 refstr_rele(mntpt);
246 return (ret);
250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
252 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
258 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
265 * In order to handle system attribute fids in a manner
266 * transparent to the underlying fs, we embed the fid for
267 * the sysattr parent object in the sysattr fid and tack on
268 * some extra bytes that only the sysattr layer knows about.
270 * This guarantees that sysattr fids are larger than other fids
271 * for this vfs. If the vfs supports the sysattr view interface
272 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
273 * collision with XATTR_FIDSZ.
275 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
276 fidp->fid_len == XATTR_FIDSZ)
277 return (xattr_dir_vget(vfsp, vpp, fidp));
279 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
285 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
288 void
289 fsop_freefs(vfs_t *vfsp)
291 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
297 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
303 ASSERT((fstype >= 0) && (fstype < nfstype));
305 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
306 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
307 else
308 return (ENOTSUP);
312 * File system initialization. vfs_setfsops() must be called from a file
313 * system's init routine.
316 static int
317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
318 int *unused_ops)
320 static const fs_operation_trans_def_t vfs_ops_table[] = {
321 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
322 fs_nosys, fs_nosys,
324 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
325 fs_nosys, fs_nosys,
327 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
328 fs_nosys, fs_nosys,
330 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
331 fs_nosys, fs_nosys,
333 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
334 (fs_generic_func_p) fs_sync,
335 (fs_generic_func_p) fs_sync, /* No errors allowed */
337 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
338 fs_nosys, fs_nosys,
340 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
341 fs_nosys, fs_nosys,
343 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
344 (fs_generic_func_p)fs_freevfs,
345 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */
347 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
348 (fs_generic_func_p)fs_nosys,
349 (fs_generic_func_p)fs_nosys,
351 NULL, 0, NULL, NULL
354 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
357 void
358 zfs_boot_init() {
360 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
361 spa_boot_init();
365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
367 int error;
368 int unused_ops;
371 * Verify that fstype refers to a valid fs. Note that
372 * 0 is valid since it's used to set "stray" ops.
374 if ((fstype < 0) || (fstype >= nfstype))
375 return (EINVAL);
377 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
378 return (EINVAL);
380 /* Set up the operations vector. */
382 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
384 if (error != 0)
385 return (error);
387 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
389 if (actual != NULL)
390 *actual = &vfssw[fstype].vsw_vfsops;
392 #if DEBUG
393 if (unused_ops != 0)
394 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
395 "but not used", vfssw[fstype].vsw_name, unused_ops);
396 #endif
398 return (0);
402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
404 int error;
405 int unused_ops;
407 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
409 error = fs_copyfsops(template, *actual, &unused_ops);
410 if (error != 0) {
411 kmem_free(*actual, sizeof (vfsops_t));
412 *actual = NULL;
413 return (error);
416 return (0);
420 * Free a vfsops structure created as a result of vfs_makefsops().
421 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
422 * vfs_freevfsops_by_type().
424 void
425 vfs_freevfsops(vfsops_t *vfsops)
427 kmem_free(vfsops, sizeof (vfsops_t));
431 * Since the vfsops structure is part of the vfssw table and wasn't
432 * really allocated, we're not really freeing anything. We keep
433 * the name for consistency with vfs_freevfsops(). We do, however,
434 * need to take care of a little bookkeeping.
435 * NOTE: For a vfsops structure created by vfs_setfsops(), use
436 * vfs_freevfsops_by_type().
439 vfs_freevfsops_by_type(int fstype)
442 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
443 if ((fstype <= 0) || (fstype >= nfstype))
444 return (EINVAL);
446 WLOCK_VFSSW();
447 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
448 WUNLOCK_VFSSW();
449 return (EINVAL);
452 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
453 WUNLOCK_VFSSW();
455 return (0);
458 /* Support routines used to reference vfs_op */
460 /* Set the operations vector for a vfs */
461 void
462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
464 vfsops_t *op;
466 ASSERT(vfsp != NULL);
467 ASSERT(vfsops != NULL);
469 op = vfsp->vfs_op;
470 membar_consumer();
471 if (vfsp->vfs_femhead == NULL &&
472 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
473 return;
475 fsem_setvfsops(vfsp, vfsops);
478 /* Retrieve the operations vector for a vfs */
479 vfsops_t *
480 vfs_getops(vfs_t *vfsp)
482 vfsops_t *op;
484 ASSERT(vfsp != NULL);
486 op = vfsp->vfs_op;
487 membar_consumer();
488 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
489 return (op);
490 } else {
491 return (fsem_getvfsops(vfsp));
496 * Returns non-zero (1) if the vfsops matches that of the vfs.
497 * Returns zero (0) if not.
500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
502 return (vfs_getops(vfsp) == vfsops);
506 * Returns non-zero (1) if the file system has installed a non-default,
507 * non-error vfs_sync routine. Returns zero (0) otherwise.
510 vfs_can_sync(vfs_t *vfsp)
512 /* vfs_sync() routine is not the default/error function */
513 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
517 * Initialize a vfs structure.
519 void
520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
522 /* Other initialization has been moved to vfs_alloc() */
523 vfsp->vfs_count = 0;
524 vfsp->vfs_next = vfsp;
525 vfsp->vfs_prev = vfsp;
526 vfsp->vfs_zone_next = vfsp;
527 vfsp->vfs_zone_prev = vfsp;
528 vfsp->vfs_lofi_minor = 0;
529 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
530 vfsimpl_setup(vfsp);
531 vfsp->vfs_data = (data);
532 vfs_setops((vfsp), (op));
536 * Allocate and initialize the vfs implementation private data
537 * structure, vfs_impl_t.
539 void
540 vfsimpl_setup(vfs_t *vfsp)
542 int i;
544 if (vfsp->vfs_implp != NULL) {
545 return;
548 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
549 /* Note that these are #define'd in vfs.h */
550 vfsp->vfs_vskap = NULL;
551 vfsp->vfs_fstypevsp = NULL;
553 /* Set size of counted array, then zero the array */
554 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
555 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
556 vfsp->vfs_featureset[i] = 0;
561 * Release the vfs_impl_t structure, if it exists. Some unbundled
562 * filesystems may not use the newer version of vfs and thus
563 * would not contain this implementation private data structure.
565 void
566 vfsimpl_teardown(vfs_t *vfsp)
568 vfs_impl_t *vip = vfsp->vfs_implp;
570 if (vip == NULL)
571 return;
573 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
574 vfsp->vfs_implp = NULL;
578 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
579 * fstatvfs, and sysfs moved to common/syscall.
583 * Update every mounted file system. We call the vfs_sync operation of
584 * each file system type, passing it a NULL vfsp to indicate that all
585 * mounted file systems of that type should be updated.
587 void
588 vfs_sync(int flag)
590 struct vfssw *vswp;
591 RLOCK_VFSSW();
592 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
593 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
594 vfs_refvfssw(vswp);
595 RUNLOCK_VFSSW();
596 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
597 CRED());
598 vfs_unrefvfssw(vswp);
599 RLOCK_VFSSW();
602 RUNLOCK_VFSSW();
605 void
606 sync(void)
608 vfs_sync(0);
612 * External routines.
615 krwlock_t vfssw_lock; /* lock accesses to vfssw */
618 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
619 * but otherwise should be accessed only via vfs_list_lock() and
620 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
622 static krwlock_t vfslist;
625 * Mount devfs on /devices. This is done right after root is mounted
626 * to provide device access support for the system
628 static void
629 vfs_mountdevices(void)
631 struct vfssw *vsw;
632 struct vnode *mvp;
633 struct mounta mounta = { /* fake mounta for devfs_mount() */
634 NULL,
635 NULL,
636 MS_SYSSPACE,
637 NULL,
638 NULL,
640 NULL,
645 * _init devfs module to fill in the vfssw
647 if (modload("fs", "devfs") == -1)
648 panic("Cannot _init devfs module");
651 * Hold vfs
653 RLOCK_VFSSW();
654 vsw = vfs_getvfsswbyname("devfs");
655 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
656 VFS_HOLD(&devices);
659 * Locate mount point
661 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
662 panic("Cannot find /devices");
665 * Perform the mount of /devices
667 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
668 panic("Cannot mount /devices");
670 RUNLOCK_VFSSW();
673 * Set appropriate members and add to vfs list for mnttab display
675 vfs_setresource(&devices, "/devices", 0);
676 vfs_setmntpoint(&devices, "/devices", 0);
679 * Hold the root of /devices so it won't go away
681 if (VFS_ROOT(&devices, &devicesdir))
682 panic("vfs_mountdevices: not devices root");
684 if (vfs_lock(&devices) != 0) {
685 VN_RELE(devicesdir);
686 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
687 return;
690 if (vn_vfswlock(mvp) != 0) {
691 vfs_unlock(&devices);
692 VN_RELE(devicesdir);
693 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
694 return;
697 vfs_add(mvp, &devices, 0);
698 vn_vfsunlock(mvp);
699 vfs_unlock(&devices);
700 VN_RELE(devicesdir);
704 * mount the first instance of /dev to root and remain mounted
706 static void
707 vfs_mountdev1(void)
709 struct vfssw *vsw;
710 struct vnode *mvp;
711 struct mounta mounta = { /* fake mounta for sdev_mount() */
712 NULL,
713 NULL,
714 MS_SYSSPACE | MS_OVERLAY,
715 NULL,
716 NULL,
718 NULL,
723 * _init dev module to fill in the vfssw
725 if (modload("fs", "dev") == -1)
726 cmn_err(CE_PANIC, "Cannot _init dev module\n");
729 * Hold vfs
731 RLOCK_VFSSW();
732 vsw = vfs_getvfsswbyname("dev");
733 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
734 VFS_HOLD(&dev);
737 * Locate mount point
739 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
740 cmn_err(CE_PANIC, "Cannot find /dev\n");
743 * Perform the mount of /dev
745 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
746 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
748 RUNLOCK_VFSSW();
751 * Set appropriate members and add to vfs list for mnttab display
753 vfs_setresource(&dev, "/dev", 0);
754 vfs_setmntpoint(&dev, "/dev", 0);
757 * Hold the root of /dev so it won't go away
759 if (VFS_ROOT(&dev, &devdir))
760 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
762 if (vfs_lock(&dev) != 0) {
763 VN_RELE(devdir);
764 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
765 return;
768 if (vn_vfswlock(mvp) != 0) {
769 vfs_unlock(&dev);
770 VN_RELE(devdir);
771 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
772 return;
775 vfs_add(mvp, &dev, 0);
776 vn_vfsunlock(mvp);
777 vfs_unlock(&dev);
778 VN_RELE(devdir);
782 * Mount required filesystem. This is done right after root is mounted.
784 static void
785 vfs_mountfs(char *module, char *spec, char *path)
787 struct vnode *mvp;
788 struct mounta mounta;
789 vfs_t *vfsp;
791 mounta.flags = MS_SYSSPACE | MS_DATA;
792 mounta.fstype = module;
793 mounta.spec = spec;
794 mounta.dir = path;
795 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
796 cmn_err(CE_WARN, "Cannot find %s", path);
797 return;
799 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
800 cmn_err(CE_WARN, "Cannot mount %s", path);
801 else
802 VFS_RELE(vfsp);
803 VN_RELE(mvp);
807 * vfs_mountroot is called by main() to mount the root filesystem.
809 void
810 vfs_mountroot(void)
812 struct vnode *rvp = NULL;
813 char *path;
814 size_t plen;
815 struct vfssw *vswp;
816 proc_t *p;
818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
822 * Alloc the vfs hash bucket array and locks
824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
827 * Call machine-dependent routine "rootconf" to choose a root
828 * file system type.
830 if (rootconf())
831 panic("vfs_mountroot: cannot mount root");
833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
834 * to point to it. These are used by lookuppn() so that it
835 * knows where to start from ('/' or '.').
837 vfs_setmntpoint(rootvfs, "/", 0);
838 if (VFS_ROOT(rootvfs, &rootdir))
839 panic("vfs_mountroot: no root vnode");
842 * At this point, the process tree consists of p0 and possibly some
843 * direct children of p0. (i.e. there are no grandchildren)
845 * Walk through them all, setting their current directory.
847 mutex_enter(&pidlock);
848 for (p = practive; p != NULL; p = p->p_next) {
849 ASSERT(p == &p0 || p->p_parent == &p0);
851 PTOU(p)->u_cdir = rootdir;
852 VN_HOLD(PTOU(p)->u_cdir);
853 PTOU(p)->u_rdir = NULL;
855 mutex_exit(&pidlock);
858 * Setup the global zone's rootvp, now that it exists.
860 global_zone->zone_rootvp = rootdir;
861 VN_HOLD(global_zone->zone_rootvp);
864 * Notify the module code that it can begin using the
865 * root filesystem instead of the boot program's services.
867 modrootloaded = 1;
870 * Special handling for a ZFS root file system.
872 zfs_boot_init();
875 * Set up mnttab information for root
877 vfs_setresource(rootvfs, rootfs.bo_name, 0);
880 * Notify cluster software that the root filesystem is available.
882 clboot_mountroot();
884 /* Now that we're all done with the root FS, set up its vopstats */
885 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
886 /* Set flag for statistics collection */
887 if (vswp->vsw_flag & VSW_STATS) {
888 initialize_vopstats(&rootvfs->vfs_vopstats);
889 rootvfs->vfs_flag |= VFS_STATS;
890 rootvfs->vfs_fstypevsp =
891 get_fstype_vopstats(rootvfs, vswp);
892 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
894 vfs_unrefvfssw(vswp);
898 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
899 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
901 vfs_mountdevices();
902 vfs_mountdev1();
904 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
905 vfs_mountfs("proc", "/proc", "/proc");
906 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
907 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
908 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
909 vfs_mountfs("bootfs", "bootfs", "/system/boot");
911 if (getzoneid() == GLOBAL_ZONEID) {
912 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
915 #ifdef __sparc
917 * This bit of magic can go away when we convert sparc to
918 * the new boot architecture based on ramdisk.
920 * Booting off a mirrored root volume:
921 * At this point, we have booted and mounted root on a
922 * single component of the mirror. Complete the boot
923 * by configuring SVM and converting the root to the
924 * dev_t of the mirrored root device. This dev_t conversion
925 * only works because the underlying device doesn't change.
927 if (root_is_svm) {
928 if (svm_rootconf()) {
929 panic("vfs_mountroot: cannot remount root");
933 * mnttab should reflect the new root device
935 vfs_lock_wait(rootvfs);
936 vfs_setresource(rootvfs, rootfs.bo_name, 0);
937 vfs_unlock(rootvfs);
939 #endif /* __sparc */
941 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
943 * Look up the root device via devfs so that a dv_node is
944 * created for it. The vnode is never VN_RELE()ed.
945 * We allocate more than MAXPATHLEN so that the
946 * buffer passed to i_ddi_prompath_to_devfspath() is
947 * exactly MAXPATHLEN (the function expects a buffer
948 * of that length).
950 plen = strlen("/devices");
951 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
952 (void) strcpy(path, "/devices");
954 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
955 != DDI_SUCCESS ||
956 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
958 /* NUL terminate in case "path" has garbage */
959 path[plen + MAXPATHLEN - 1] = '\0';
960 #ifdef DEBUG
961 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
962 path);
963 #endif
965 kmem_free(path, plen + MAXPATHLEN);
968 vfs_mnttabvp_setup();
972 * Check to see if our "block device" is actually a file. If so,
973 * automatically add a lofi device, and keep track of this fact.
975 static int
976 lofi_add(const char *fsname, struct vfs *vfsp,
977 mntopts_t *mntopts, struct mounta *uap)
979 int fromspace = (uap->flags & MS_SYSSPACE) ?
980 UIO_SYSSPACE : UIO_USERSPACE;
981 struct lofi_ioctl *li = NULL;
982 struct vnode *vp = NULL;
983 struct pathname pn = { NULL };
984 ldi_ident_t ldi_id;
985 ldi_handle_t ldi_hdl;
986 vfssw_t *vfssw;
987 int minor;
988 int err = 0;
990 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
991 return (0);
993 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
994 vfs_unrefvfssw(vfssw);
995 return (0);
998 vfs_unrefvfssw(vfssw);
999 vfssw = NULL;
1001 if (pn_get(uap->spec, fromspace, &pn) != 0)
1002 return (0);
1004 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1005 goto out;
1007 if (vp->v_type != VREG)
1008 goto out;
1010 /* OK, this is a lofi mount. */
1012 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1013 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1014 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1015 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1016 err = EINVAL;
1017 goto out;
1020 ldi_id = ldi_ident_from_anon();
1021 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1022 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1024 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1025 &ldi_hdl, ldi_id);
1027 if (err)
1028 goto out2;
1030 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1031 FREAD | FWRITE | FKIOCTL, kcred, &minor);
1033 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1035 if (!err)
1036 vfsp->vfs_lofi_minor = minor;
1038 out2:
1039 ldi_ident_release(ldi_id);
1040 out:
1041 if (li != NULL)
1042 kmem_free(li, sizeof (*li));
1043 if (vp != NULL)
1044 VN_RELE(vp);
1045 pn_free(&pn);
1046 return (err);
1049 static void
1050 lofi_remove(struct vfs *vfsp)
1052 struct lofi_ioctl *li = NULL;
1053 ldi_ident_t ldi_id;
1054 ldi_handle_t ldi_hdl;
1055 int err;
1057 if (vfsp->vfs_lofi_minor == 0)
1058 return;
1060 ldi_id = ldi_ident_from_anon();
1062 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1063 li->li_minor = vfsp->vfs_lofi_minor;
1064 li->li_cleanup = B_TRUE;
1066 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1067 &ldi_hdl, ldi_id);
1069 if (err)
1070 goto out;
1072 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1073 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1075 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1077 if (!err)
1078 vfsp->vfs_lofi_minor = 0;
1080 out:
1081 ldi_ident_release(ldi_id);
1082 if (li != NULL)
1083 kmem_free(li, sizeof (*li));
1087 * Common mount code. Called from the system call entry point, from autofs,
1088 * nfsv4 trigger mounts, and from pxfs.
1090 * Takes the effective file system type, mount arguments, the mount point
1091 * vnode, flags specifying whether the mount is a remount and whether it
1092 * should be entered into the vfs list, and credentials. Fills in its vfspp
1093 * parameter with the mounted file system instance's vfs.
1095 * Note that the effective file system type is specified as a string. It may
1096 * be null, in which case it's determined from the mount arguments, and may
1097 * differ from the type specified in the mount arguments; this is a hook to
1098 * allow interposition when instantiating file system instances.
1100 * The caller is responsible for releasing its own hold on the mount point
1101 * vp (this routine does its own hold when necessary).
1102 * Also note that for remounts, the mount point vp should be the vnode for
1103 * the root of the file system rather than the vnode that the file system
1104 * is mounted on top of.
1107 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1108 struct vfs **vfspp)
1110 struct vfssw *vswp;
1111 vfsops_t *vfsops;
1112 struct vfs *vfsp;
1113 struct vnode *bvp;
1114 dev_t bdev = 0;
1115 mntopts_t mnt_mntopts;
1116 int error = 0;
1117 int copyout_error = 0;
1118 int ovflags;
1119 char *opts = uap->optptr;
1120 char *inargs = opts;
1121 int optlen = uap->optlen;
1122 int remount;
1123 int rdonly;
1124 int nbmand = 0;
1125 int delmip = 0;
1126 int addmip = 0;
1127 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1128 int fromspace = (uap->flags & MS_SYSSPACE) ?
1129 UIO_SYSSPACE : UIO_USERSPACE;
1130 char *resource = NULL, *mountpt = NULL;
1131 refstr_t *oldresource, *oldmntpt;
1132 struct pathname pn, rpn;
1133 vsk_anchor_t *vskap;
1134 char fstname[FSTYPSZ];
1135 zone_t *zone;
1138 * The v_flag value for the mount point vp is permanently set
1139 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1140 * for mount point locking.
1142 mutex_enter(&vp->v_lock);
1143 vp->v_flag |= VVFSLOCK;
1144 mutex_exit(&vp->v_lock);
1146 mnt_mntopts.mo_count = 0;
1148 * Find the ops vector to use to invoke the file system-specific mount
1149 * method. If the fsname argument is non-NULL, use it directly.
1150 * Otherwise, dig the file system type information out of the mount
1151 * arguments.
1153 * A side effect is to hold the vfssw entry.
1155 * Mount arguments can be specified in several ways, which are
1156 * distinguished by flag bit settings. The preferred way is to set
1157 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1158 * type supplied as a character string and the last two arguments
1159 * being a pointer to a character buffer and the size of the buffer.
1160 * On entry, the buffer holds a null terminated list of options; on
1161 * return, the string is the list of options the file system
1162 * recognized. If MS_DATA is set arguments five and six point to a
1163 * block of binary data which the file system interprets.
1164 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1165 * consistently with these conventions. To handle them, we check to
1166 * see whether the pointer to the file system name has a numeric value
1167 * less than 256. If so, we treat it as an index.
1169 if (fsname != NULL) {
1170 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1171 return (EINVAL);
1173 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1174 size_t n;
1175 uint_t fstype;
1177 fsname = fstname;
1179 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1180 RLOCK_VFSSW();
1181 if (fstype == 0 || fstype >= nfstype ||
1182 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1183 RUNLOCK_VFSSW();
1184 return (EINVAL);
1186 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1187 RUNLOCK_VFSSW();
1188 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1189 return (EINVAL);
1190 } else {
1192 * Handle either kernel or user address space.
1194 if (uap->flags & MS_SYSSPACE) {
1195 error = copystr(uap->fstype, fsname,
1196 FSTYPSZ, &n);
1197 } else {
1198 error = copyinstr(uap->fstype, fsname,
1199 FSTYPSZ, &n);
1201 if (error) {
1202 if (error == ENAMETOOLONG)
1203 return (EINVAL);
1204 return (error);
1206 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1207 return (EINVAL);
1209 } else {
1210 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1211 return (EINVAL);
1212 fsname = vswp->vsw_name;
1214 if (!VFS_INSTALLED(vswp))
1215 return (EINVAL);
1217 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1218 vfs_unrefvfssw(vswp);
1219 return (error);
1222 vfsops = &vswp->vsw_vfsops;
1224 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1226 * Fetch mount options and parse them for generic vfs options
1228 if (uap->flags & MS_OPTIONSTR) {
1230 * Limit the buffer size
1232 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1233 error = EINVAL;
1234 goto errout;
1236 if ((uap->flags & MS_SYSSPACE) == 0) {
1237 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1238 inargs[0] = '\0';
1239 if (optlen) {
1240 error = copyinstr(opts, inargs, (size_t)optlen,
1241 NULL);
1242 if (error) {
1243 goto errout;
1247 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1250 * Flag bits override the options string.
1252 if (uap->flags & MS_REMOUNT)
1253 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1254 if (uap->flags & MS_RDONLY)
1255 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1256 if (uap->flags & MS_NOSUID)
1257 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1260 * Check if this is a remount; must be set in the option string and
1261 * the file system must support a remount option.
1263 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1264 MNTOPT_REMOUNT, NULL)) {
1265 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1266 error = ENOTSUP;
1267 goto errout;
1269 uap->flags |= MS_REMOUNT;
1273 * uap->flags and vfs_optionisset() should agree.
1275 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1276 uap->flags |= MS_RDONLY;
1278 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1279 uap->flags |= MS_NOSUID;
1281 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1282 ASSERT(splice || !remount);
1284 * If we are splicing the fs into the namespace,
1285 * perform mount point checks.
1287 * We want to resolve the path for the mount point to eliminate
1288 * '.' and ".." and symlinks in mount points; we can't do the
1289 * same for the resource string, since it would turn
1290 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1291 * this before grabbing vn_vfswlock(), because otherwise we
1292 * would deadlock with lookuppn().
1294 if (splice) {
1295 ASSERT(vp->v_count > 0);
1298 * Pick up mount point and device from appropriate space.
1300 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1301 resource = kmem_alloc(pn.pn_pathlen + 1,
1302 KM_SLEEP);
1303 (void) strcpy(resource, pn.pn_path);
1304 pn_free(&pn);
1307 * Do a lookupname prior to taking the
1308 * writelock. Mark this as completed if
1309 * successful for later cleanup and addition to
1310 * the mount in progress table.
1312 if ((uap->flags & MS_GLOBAL) == 0 &&
1313 lookupname(uap->spec, fromspace,
1314 FOLLOW, NULL, &bvp) == 0) {
1315 addmip = 1;
1318 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1319 pathname_t *pnp;
1321 if (*pn.pn_path != '/') {
1322 error = EINVAL;
1323 pn_free(&pn);
1324 goto errout;
1326 pn_alloc(&rpn);
1328 * Kludge to prevent autofs from deadlocking with
1329 * itself when it calls domount().
1331 * If autofs is calling, it is because it is doing
1332 * (autofs) mounts in the process of an NFS mount. A
1333 * lookuppn() here would cause us to block waiting for
1334 * said NFS mount to complete, which can't since this
1335 * is the thread that was supposed to doing it.
1337 if (fromspace == UIO_USERSPACE) {
1338 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1339 NULL)) == 0) {
1340 pnp = &rpn;
1341 } else {
1343 * The file disappeared or otherwise
1344 * became inaccessible since we opened
1345 * it; might as well fail the mount
1346 * since the mount point is no longer
1347 * accessible.
1349 pn_free(&rpn);
1350 pn_free(&pn);
1351 goto errout;
1353 } else {
1354 pnp = &pn;
1356 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1357 (void) strcpy(mountpt, pnp->pn_path);
1360 * If the addition of the zone's rootpath
1361 * would push us over a total path length
1362 * of MAXPATHLEN, we fail the mount with
1363 * ENAMETOOLONG, which is what we would have
1364 * gotten if we were trying to perform the same
1365 * mount in the global zone.
1367 * strlen() doesn't count the trailing
1368 * '\0', but zone_rootpathlen counts both a
1369 * trailing '/' and the terminating '\0'.
1371 if ((curproc->p_zone->zone_rootpathlen - 1 +
1372 strlen(mountpt)) > MAXPATHLEN ||
1373 (resource != NULL &&
1374 (curproc->p_zone->zone_rootpathlen - 1 +
1375 strlen(resource)) > MAXPATHLEN)) {
1376 error = ENAMETOOLONG;
1379 pn_free(&rpn);
1380 pn_free(&pn);
1383 if (error)
1384 goto errout;
1387 * Prevent path name resolution from proceeding past
1388 * the mount point.
1390 if (vn_vfswlock(vp) != 0) {
1391 error = EBUSY;
1392 goto errout;
1396 * Verify that it's legitimate to establish a mount on
1397 * the prospective mount point.
1399 if (vn_mountedvfs(vp) != NULL) {
1401 * The mount point lock was obtained after some
1402 * other thread raced through and established a mount.
1404 vn_vfsunlock(vp);
1405 error = EBUSY;
1406 goto errout;
1408 if (vp->v_flag & VNOMOUNT) {
1409 vn_vfsunlock(vp);
1410 error = EINVAL;
1411 goto errout;
1414 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1415 uap->dataptr = NULL;
1416 uap->datalen = 0;
1420 * If this is a remount, we don't want to create a new VFS.
1421 * Instead, we pass the existing one with a remount flag.
1423 if (remount) {
1425 * Confirm that the mount point is the root vnode of the
1426 * file system that is being remounted.
1427 * This can happen if the user specifies a different
1428 * mount point directory pathname in the (re)mount command.
1430 * Code below can only be reached if splice is true, so it's
1431 * safe to do vn_vfsunlock() here.
1433 if ((vp->v_flag & VROOT) == 0) {
1434 vn_vfsunlock(vp);
1435 error = ENOENT;
1436 goto errout;
1439 * Disallow making file systems read-only unless file system
1440 * explicitly allows it in its vfssw. Ignore other flags.
1442 if (rdonly && vn_is_readonly(vp) == 0 &&
1443 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1444 vn_vfsunlock(vp);
1445 error = EINVAL;
1446 goto errout;
1449 * Disallow changing the NBMAND disposition of the file
1450 * system on remounts.
1452 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1453 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1454 vn_vfsunlock(vp);
1455 error = EINVAL;
1456 goto errout;
1458 vfsp = vp->v_vfsp;
1459 ovflags = vfsp->vfs_flag;
1460 vfsp->vfs_flag |= VFS_REMOUNT;
1461 vfsp->vfs_flag &= ~VFS_RDONLY;
1462 } else {
1463 vfsp = vfs_alloc(KM_SLEEP);
1464 VFS_INIT(vfsp, vfsops, NULL);
1467 VFS_HOLD(vfsp);
1469 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1470 if (!remount) {
1471 if (splice)
1472 vn_vfsunlock(vp);
1473 vfs_free(vfsp);
1474 } else {
1475 vn_vfsunlock(vp);
1476 VFS_RELE(vfsp);
1478 goto errout;
1482 * PRIV_SYS_MOUNT doesn't mean you can become root.
1484 if (vfsp->vfs_lofi_minor != 0) {
1485 uap->flags |= MS_NOSUID;
1486 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1490 * The vfs_reflock is not used anymore the code below explicitly
1491 * holds it preventing others accesing it directly.
1493 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1494 !(vfsp->vfs_flag & VFS_REMOUNT))
1495 cmn_err(CE_WARN,
1496 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1499 * Lock the vfs. If this is a remount we want to avoid spurious umount
1500 * failures that happen as a side-effect of fsflush() and other mount
1501 * and unmount operations that might be going on simultaneously and
1502 * may have locked the vfs currently. To not return EBUSY immediately
1503 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1505 if (!remount) {
1506 if (error = vfs_lock(vfsp)) {
1507 vfsp->vfs_flag = ovflags;
1509 lofi_remove(vfsp);
1511 if (splice)
1512 vn_vfsunlock(vp);
1513 vfs_free(vfsp);
1514 goto errout;
1516 } else {
1517 vfs_lock_wait(vfsp);
1521 * Add device to mount in progress table, global mounts require special
1522 * handling. It is possible that we have already done the lookupname
1523 * on a spliced, non-global fs. If so, we don't want to do it again
1524 * since we cannot do a lookupname after taking the
1525 * wlock above. This case is for a non-spliced, non-global filesystem.
1527 if (!addmip) {
1528 if ((uap->flags & MS_GLOBAL) == 0 &&
1529 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1530 addmip = 1;
1534 if (addmip) {
1535 vnode_t *lvp = NULL;
1537 error = vfs_get_lofi(vfsp, &lvp);
1538 if (error > 0) {
1539 lofi_remove(vfsp);
1541 if (splice)
1542 vn_vfsunlock(vp);
1543 vfs_unlock(vfsp);
1545 if (remount) {
1546 VFS_RELE(vfsp);
1547 } else {
1548 vfs_free(vfsp);
1551 goto errout;
1552 } else if (error == -1) {
1553 bdev = bvp->v_rdev;
1554 VN_RELE(bvp);
1555 } else {
1556 bdev = lvp->v_rdev;
1557 VN_RELE(lvp);
1558 VN_RELE(bvp);
1561 vfs_addmip(bdev, vfsp);
1562 addmip = 0;
1563 delmip = 1;
1566 * Invalidate cached entry for the mount point.
1568 if (splice)
1569 dnlc_purge_vp(vp);
1572 * If have an option string but the filesystem doesn't supply a
1573 * prototype options table, create a table with the global
1574 * options and sufficient room to accept all the options in the
1575 * string. Then parse the passed in option string
1576 * accepting all the options in the string. This gives us an
1577 * option table with all the proper cancel properties for the
1578 * global options.
1580 * Filesystems that supply a prototype options table are handled
1581 * earlier in this function.
1583 if (uap->flags & MS_OPTIONSTR) {
1584 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1585 mntopts_t tmp_mntopts;
1587 tmp_mntopts.mo_count = 0;
1588 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1589 &mnt_mntopts);
1590 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1591 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1592 vfs_freeopttbl(&tmp_mntopts);
1597 * Serialize with zone state transitions.
1598 * See vfs_list_add; zone mounted into is:
1599 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1600 * not the zone doing the mount (curproc->p_zone), but if we're already
1601 * inside a NGZ, then we know what zone we are.
1603 if (INGLOBALZONE(curproc)) {
1604 zone = zone_find_by_path(mountpt);
1605 ASSERT(zone != NULL);
1606 } else {
1607 zone = curproc->p_zone;
1609 * zone_find_by_path does a hold, so do one here too so that
1610 * we can do a zone_rele after mount_completed.
1612 zone_hold(zone);
1614 mount_in_progress(zone);
1616 * Instantiate (or reinstantiate) the file system. If appropriate,
1617 * splice it into the file system name space.
1619 * We want VFS_MOUNT() to be able to override the vfs_resource
1620 * string if necessary (ie, mntfs), and also for a remount to
1621 * change the same (necessary when remounting '/' during boot).
1622 * So we set up vfs_mntpt and vfs_resource to what we think they
1623 * should be, then hand off control to VFS_MOUNT() which can
1624 * override this.
1626 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1627 * a vfs which is on the vfs list (i.e. during a remount), we must
1628 * never set those fields to NULL. Several bits of code make
1629 * assumptions that the fields are always valid.
1631 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1632 if (remount) {
1633 if ((oldresource = vfsp->vfs_resource) != NULL)
1634 refstr_hold(oldresource);
1635 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1636 refstr_hold(oldmntpt);
1638 vfs_setresource(vfsp, resource, 0);
1639 vfs_setmntpoint(vfsp, mountpt, 0);
1642 * going to mount on this vnode, so notify.
1644 vnevent_mountedover(vp, NULL);
1645 error = VFS_MOUNT(vfsp, vp, uap, credp);
1647 if (uap->flags & MS_RDONLY)
1648 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1649 if (uap->flags & MS_NOSUID)
1650 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1651 if (uap->flags & MS_GLOBAL)
1652 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1654 if (error) {
1655 lofi_remove(vfsp);
1657 if (remount) {
1658 /* put back pre-remount options */
1659 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1660 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1661 VFSSP_VERBATIM);
1662 if (oldmntpt)
1663 refstr_rele(oldmntpt);
1664 vfs_setresource(vfsp, refstr_value(oldresource),
1665 VFSSP_VERBATIM);
1666 if (oldresource)
1667 refstr_rele(oldresource);
1668 vfsp->vfs_flag = ovflags;
1669 vfs_unlock(vfsp);
1670 VFS_RELE(vfsp);
1671 } else {
1672 vfs_unlock(vfsp);
1673 vfs_freemnttab(vfsp);
1674 vfs_free(vfsp);
1676 } else {
1678 * Set the mount time to now
1680 vfsp->vfs_mtime = ddi_get_time();
1681 if (remount) {
1682 vfsp->vfs_flag &= ~VFS_REMOUNT;
1683 if (oldresource)
1684 refstr_rele(oldresource);
1685 if (oldmntpt)
1686 refstr_rele(oldmntpt);
1687 } else if (splice) {
1689 * Link vfsp into the name space at the mount
1690 * point. Vfs_add() is responsible for
1691 * holding the mount point which will be
1692 * released when vfs_remove() is called.
1694 vfs_add(vp, vfsp, uap->flags);
1695 } else {
1697 * Hold the reference to file system which is
1698 * not linked into the name space.
1700 vfsp->vfs_zone = NULL;
1701 VFS_HOLD(vfsp);
1702 vfsp->vfs_vnodecovered = NULL;
1705 * Set flags for global options encountered
1707 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1708 vfsp->vfs_flag |= VFS_RDONLY;
1709 else
1710 vfsp->vfs_flag &= ~VFS_RDONLY;
1711 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1712 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1713 } else {
1714 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1715 vfsp->vfs_flag |= VFS_NODEVICES;
1716 else
1717 vfsp->vfs_flag &= ~VFS_NODEVICES;
1718 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1719 vfsp->vfs_flag |= VFS_NOSETUID;
1720 else
1721 vfsp->vfs_flag &= ~VFS_NOSETUID;
1723 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1724 vfsp->vfs_flag |= VFS_NBMAND;
1725 else
1726 vfsp->vfs_flag &= ~VFS_NBMAND;
1728 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1729 vfsp->vfs_flag |= VFS_XATTR;
1730 else
1731 vfsp->vfs_flag &= ~VFS_XATTR;
1733 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1734 vfsp->vfs_flag |= VFS_NOEXEC;
1735 else
1736 vfsp->vfs_flag &= ~VFS_NOEXEC;
1739 * Now construct the output option string of options
1740 * we recognized.
1742 if (uap->flags & MS_OPTIONSTR) {
1743 vfs_list_read_lock();
1744 copyout_error = vfs_buildoptionstr(
1745 &vfsp->vfs_mntopts, inargs, optlen);
1746 vfs_list_unlock();
1747 if (copyout_error == 0 &&
1748 (uap->flags & MS_SYSSPACE) == 0) {
1749 copyout_error = copyoutstr(inargs, opts,
1750 optlen, NULL);
1755 * If this isn't a remount, set up the vopstats before
1756 * anyone can touch this. We only allow spliced file
1757 * systems (file systems which are in the namespace) to
1758 * have the VFS_STATS flag set.
1759 * NOTE: PxFS mounts the underlying file system with
1760 * MS_NOSPLICE set and copies those vfs_flags to its private
1761 * vfs structure. As a result, PxFS should never have
1762 * the VFS_STATS flag or else we might access the vfs
1763 * statistics-related fields prior to them being
1764 * properly initialized.
1766 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1767 initialize_vopstats(&vfsp->vfs_vopstats);
1769 * We need to set vfs_vskap to NULL because there's
1770 * a chance it won't be set below. This is checked
1771 * in teardown_vopstats() so we can't have garbage.
1773 vfsp->vfs_vskap = NULL;
1774 vfsp->vfs_flag |= VFS_STATS;
1775 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1778 if (vswp->vsw_flag & VSW_XID)
1779 vfsp->vfs_flag |= VFS_XID;
1781 vfs_unlock(vfsp);
1783 mount_completed(zone);
1784 zone_rele(zone);
1785 if (splice)
1786 vn_vfsunlock(vp);
1788 if ((error == 0) && (copyout_error == 0)) {
1789 if (!remount) {
1791 * Don't call get_vskstat_anchor() while holding
1792 * locks since it allocates memory and calls
1793 * VFS_STATVFS(). For NFS, the latter can generate
1794 * an over-the-wire call.
1796 vskap = get_vskstat_anchor(vfsp);
1797 /* Only take the lock if we have something to do */
1798 if (vskap != NULL) {
1799 vfs_lock_wait(vfsp);
1800 if (vfsp->vfs_flag & VFS_STATS) {
1801 vfsp->vfs_vskap = vskap;
1803 vfs_unlock(vfsp);
1806 /* Return vfsp to caller. */
1807 *vfspp = vfsp;
1809 errout:
1810 vfs_freeopttbl(&mnt_mntopts);
1811 if (resource != NULL)
1812 kmem_free(resource, strlen(resource) + 1);
1813 if (mountpt != NULL)
1814 kmem_free(mountpt, strlen(mountpt) + 1);
1816 * It is possible we errored prior to adding to mount in progress
1817 * table. Must free vnode we acquired with successful lookupname.
1819 if (addmip)
1820 VN_RELE(bvp);
1821 if (delmip)
1822 vfs_delmip(vfsp);
1823 ASSERT(vswp != NULL);
1824 vfs_unrefvfssw(vswp);
1825 if (inargs != opts)
1826 kmem_free(inargs, MAX_MNTOPT_STR);
1827 if (copyout_error) {
1828 lofi_remove(vfsp);
1829 VFS_RELE(vfsp);
1830 error = copyout_error;
1832 return (error);
1835 static void
1836 vfs_setpath(
1837 struct vfs *vfsp, /* vfs being updated */
1838 refstr_t **refp, /* Ref-count string to contain the new path */
1839 const char *newpath, /* Path to add to refp (above) */
1840 uint32_t flag) /* flag */
1842 size_t len;
1843 refstr_t *ref;
1844 zone_t *zone = curproc->p_zone;
1845 char *sp;
1846 int have_list_lock = 0;
1848 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1851 * New path must be less than MAXPATHLEN because mntfs
1852 * will only display up to MAXPATHLEN bytes. This is currently
1853 * safe, because domount() uses pn_get(), and other callers
1854 * similarly cap the size to fewer than MAXPATHLEN bytes.
1857 ASSERT(strlen(newpath) < MAXPATHLEN);
1859 /* mntfs requires consistency while vfs list lock is held */
1861 if (VFS_ON_LIST(vfsp)) {
1862 have_list_lock = 1;
1863 vfs_list_lock();
1866 if (*refp != NULL)
1867 refstr_rele(*refp);
1870 * If we are in a non-global zone then we prefix the supplied path,
1871 * newpath, with the zone's root path, with two exceptions. The first
1872 * is where we have been explicitly directed to avoid doing so; this
1873 * will be the case following a failed remount, where the path supplied
1874 * will be a saved version which must now be restored. The second
1875 * exception is where newpath is not a pathname but a descriptive name,
1876 * e.g. "procfs".
1878 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1879 ref = refstr_alloc(newpath);
1880 goto out;
1884 * Truncate the trailing '/' in the zoneroot, and merge
1885 * in the zone's rootpath with the "newpath" (resource
1886 * or mountpoint) passed in.
1888 * The size of the required buffer is thus the size of
1889 * the buffer required for the passed-in newpath
1890 * (strlen(newpath) + 1), plus the size of the buffer
1891 * required to hold zone_rootpath (zone_rootpathlen)
1892 * minus one for one of the now-superfluous NUL
1893 * terminations, minus one for the trailing '/'.
1895 * That gives us:
1897 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1899 * Which is what we have below.
1902 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1903 sp = kmem_alloc(len, KM_SLEEP);
1906 * Copy everything including the trailing slash, which
1907 * we then overwrite with the NUL character.
1910 (void) strcpy(sp, zone->zone_rootpath);
1911 sp[zone->zone_rootpathlen - 2] = '\0';
1912 (void) strcat(sp, newpath);
1914 ref = refstr_alloc(sp);
1915 kmem_free(sp, len);
1916 out:
1917 *refp = ref;
1919 if (have_list_lock) {
1920 vfs_mnttab_modtimeupd();
1921 vfs_list_unlock();
1926 * Record a mounted resource name in a vfs structure.
1927 * If vfsp is already mounted, caller must hold the vfs lock.
1929 void
1930 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1932 if (resource == NULL || resource[0] == '\0')
1933 resource = VFS_NORESOURCE;
1934 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1938 * Record a mount point name in a vfs structure.
1939 * If vfsp is already mounted, caller must hold the vfs lock.
1941 void
1942 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1944 if (mntpt == NULL || mntpt[0] == '\0')
1945 mntpt = VFS_NOMNTPT;
1946 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1949 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1951 refstr_t *
1952 vfs_getresource(const struct vfs *vfsp)
1954 refstr_t *resource;
1956 vfs_list_read_lock();
1957 resource = vfsp->vfs_resource;
1958 refstr_hold(resource);
1959 vfs_list_unlock();
1961 return (resource);
1964 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1966 refstr_t *
1967 vfs_getmntpoint(const struct vfs *vfsp)
1969 refstr_t *mntpt;
1971 vfs_list_read_lock();
1972 mntpt = vfsp->vfs_mntpt;
1973 refstr_hold(mntpt);
1974 vfs_list_unlock();
1976 return (mntpt);
1980 * Create an empty options table with enough empty slots to hold all
1981 * The options in the options string passed as an argument.
1982 * Potentially prepend another options table.
1984 * Note: caller is responsible for locking the vfs list, if needed,
1985 * to protect mops.
1987 static void
1988 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1989 const mntopts_t *mtmpl)
1991 const char *s = opts;
1992 uint_t count;
1994 if (opts == NULL || *opts == '\0') {
1995 count = 0;
1996 } else {
1997 count = 1;
2000 * Count number of options in the string
2002 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2003 count++;
2004 s++;
2007 vfs_copyopttbl_extend(mtmpl, mops, count);
2011 * Create an empty options table with enough empty slots to hold all
2012 * The options in the options string passed as an argument.
2014 * This function is *not* for general use by filesystems.
2016 * Note: caller is responsible for locking the vfs list, if needed,
2017 * to protect mops.
2019 void
2020 vfs_createopttbl(mntopts_t *mops, const char *opts)
2022 vfs_createopttbl_extend(mops, opts, NULL);
2027 * Swap two mount options tables
2029 static void
2030 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2032 uint_t tmpcnt;
2033 mntopt_t *tmplist;
2035 tmpcnt = optbl2->mo_count;
2036 tmplist = optbl2->mo_list;
2037 optbl2->mo_count = optbl1->mo_count;
2038 optbl2->mo_list = optbl1->mo_list;
2039 optbl1->mo_count = tmpcnt;
2040 optbl1->mo_list = tmplist;
2043 static void
2044 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2046 vfs_list_lock();
2047 vfs_swapopttbl_nolock(optbl1, optbl2);
2048 vfs_mnttab_modtimeupd();
2049 vfs_list_unlock();
2052 static char **
2053 vfs_copycancelopt_extend(char **const moc, int extend)
2055 int i = 0;
2056 int j;
2057 char **result;
2059 if (moc != NULL) {
2060 for (; moc[i] != NULL; i++)
2061 /* count number of options to cancel */;
2064 if (i + extend == 0)
2065 return (NULL);
2067 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2069 for (j = 0; j < i; j++) {
2070 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2071 (void) strcpy(result[j], moc[j]);
2073 for (; j <= i + extend; j++)
2074 result[j] = NULL;
2076 return (result);
2079 static void
2080 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2082 char *sp, *dp;
2084 d->mo_flags = s->mo_flags;
2085 d->mo_data = s->mo_data;
2086 sp = s->mo_name;
2087 if (sp != NULL) {
2088 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2089 (void) strcpy(dp, sp);
2090 d->mo_name = dp;
2091 } else {
2092 d->mo_name = NULL; /* should never happen */
2095 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2097 sp = s->mo_arg;
2098 if (sp != NULL) {
2099 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2100 (void) strcpy(dp, sp);
2101 d->mo_arg = dp;
2102 } else {
2103 d->mo_arg = NULL;
2108 * Copy a mount options table, possibly allocating some spare
2109 * slots at the end. It is permissible to copy_extend the NULL table.
2111 static void
2112 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2114 uint_t i, count;
2115 mntopt_t *motbl;
2118 * Clear out any existing stuff in the options table being initialized
2120 vfs_freeopttbl(dmo);
2121 count = (smo == NULL) ? 0 : smo->mo_count;
2122 if ((count + extra) == 0) /* nothing to do */
2123 return;
2124 dmo->mo_count = count + extra;
2125 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2126 dmo->mo_list = motbl;
2127 for (i = 0; i < count; i++) {
2128 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2130 for (i = count; i < count + extra; i++) {
2131 motbl[i].mo_flags = MO_EMPTY;
2136 * Copy a mount options table.
2138 * This function is *not* for general use by filesystems.
2140 * Note: caller is responsible for locking the vfs list, if needed,
2141 * to protect smo and dmo.
2143 void
2144 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2146 vfs_copyopttbl_extend(smo, dmo, 0);
2149 static char **
2150 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2152 int c1 = 0;
2153 int c2 = 0;
2154 char **result;
2155 char **sp1, **sp2, **dp;
2158 * First we count both lists of cancel options.
2159 * If either is NULL or has no elements, we return a copy of
2160 * the other.
2162 if (mop1->mo_cancel != NULL) {
2163 for (; mop1->mo_cancel[c1] != NULL; c1++)
2164 /* count cancel options in mop1 */;
2167 if (c1 == 0)
2168 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2170 if (mop2->mo_cancel != NULL) {
2171 for (; mop2->mo_cancel[c2] != NULL; c2++)
2172 /* count cancel options in mop2 */;
2175 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2177 if (c2 == 0)
2178 return (result);
2181 * When we get here, we've got two sets of cancel options;
2182 * we need to merge the two sets. We know that the result
2183 * array has "c1+c2+1" entries and in the end we might shrink
2184 * it.
2185 * Result now has a copy of the c1 entries from mop1; we'll
2186 * now lookup all the entries of mop2 in mop1 and copy it if
2187 * it is unique.
2188 * This operation is O(n^2) but it's only called once per
2189 * filesystem per duplicate option. This is a situation
2190 * which doesn't arise with the filesystems in ON and
2191 * n is generally 1.
2194 dp = &result[c1];
2195 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2196 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2197 if (strcmp(*sp1, *sp2) == 0)
2198 break;
2200 if (*sp1 == NULL) {
2202 * Option *sp2 not found in mop1, so copy it.
2203 * The calls to vfs_copycancelopt_extend()
2204 * guarantee that there's enough room.
2206 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2207 (void) strcpy(*dp++, *sp2);
2210 if (dp != &result[c1+c2]) {
2211 size_t bytes = (dp - result + 1) * sizeof (char *);
2212 char **nres = kmem_alloc(bytes, KM_SLEEP);
2214 bcopy(result, nres, bytes);
2215 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2216 result = nres;
2218 return (result);
2222 * Merge two mount option tables (outer and inner) into one. This is very
2223 * similar to "merging" global variables and automatic variables in C.
2225 * This isn't (and doesn't have to be) fast.
2227 * This function is *not* for general use by filesystems.
2229 * Note: caller is responsible for locking the vfs list, if needed,
2230 * to protect omo, imo & dmo.
2232 void
2233 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2235 uint_t i, count;
2236 mntopt_t *mop, *motbl;
2237 uint_t freeidx;
2240 * First determine how much space we need to allocate.
2242 count = omo->mo_count;
2243 for (i = 0; i < imo->mo_count; i++) {
2244 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2245 continue;
2246 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2247 count++;
2249 ASSERT(count >= omo->mo_count &&
2250 count <= omo->mo_count + imo->mo_count);
2251 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2252 for (i = 0; i < omo->mo_count; i++)
2253 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2254 freeidx = omo->mo_count;
2255 for (i = 0; i < imo->mo_count; i++) {
2256 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2257 continue;
2258 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2259 char **newcanp;
2260 uint_t index = mop - omo->mo_list;
2262 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2264 vfs_freeopt(&motbl[index]);
2265 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2267 vfs_freecancelopt(motbl[index].mo_cancel);
2268 motbl[index].mo_cancel = newcanp;
2269 } else {
2271 * If it's a new option, just copy it over to the first
2272 * free location.
2274 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2277 dmo->mo_count = count;
2278 dmo->mo_list = motbl;
2282 * Functions to set and clear mount options in a mount options table.
2286 * Clear a mount option, if it exists.
2288 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2289 * the vfs list.
2291 static void
2292 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2294 struct mntopt *mop;
2295 uint_t i, count;
2297 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2299 count = mops->mo_count;
2300 for (i = 0; i < count; i++) {
2301 mop = &mops->mo_list[i];
2303 if (mop->mo_flags & MO_EMPTY)
2304 continue;
2305 if (strcmp(opt, mop->mo_name))
2306 continue;
2307 mop->mo_flags &= ~MO_SET;
2308 if (mop->mo_arg != NULL) {
2309 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2311 mop->mo_arg = NULL;
2312 if (update_mnttab)
2313 vfs_mnttab_modtimeupd();
2314 break;
2318 void
2319 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2321 int gotlock = 0;
2323 if (VFS_ON_LIST(vfsp)) {
2324 gotlock = 1;
2325 vfs_list_lock();
2327 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2328 if (gotlock)
2329 vfs_list_unlock();
2334 * Set a mount option on. If it's not found in the table, it's silently
2335 * ignored. If the option has MO_IGNORE set, it is still set unless the
2336 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2337 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2338 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2339 * MO_EMPTY set is created as the option passed in.
2341 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2342 * the vfs list.
2344 static void
2345 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2346 const char *arg, int flags, int update_mnttab)
2348 mntopt_t *mop;
2349 uint_t i, count;
2350 char *sp;
2352 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2354 if (flags & VFS_CREATEOPT) {
2355 if (vfs_hasopt(mops, opt) != NULL) {
2356 flags &= ~VFS_CREATEOPT;
2359 count = mops->mo_count;
2360 for (i = 0; i < count; i++) {
2361 mop = &mops->mo_list[i];
2363 if (mop->mo_flags & MO_EMPTY) {
2364 if ((flags & VFS_CREATEOPT) == 0)
2365 continue;
2366 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2367 (void) strcpy(sp, opt);
2368 mop->mo_name = sp;
2369 if (arg != NULL)
2370 mop->mo_flags = MO_HASVALUE;
2371 else
2372 mop->mo_flags = 0;
2373 } else if (strcmp(opt, mop->mo_name)) {
2374 continue;
2376 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2377 break;
2378 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2379 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2380 (void) strcpy(sp, arg);
2381 } else {
2382 sp = NULL;
2384 if (mop->mo_arg != NULL)
2385 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2386 mop->mo_arg = sp;
2387 if (flags & VFS_DISPLAY)
2388 mop->mo_flags &= ~MO_NODISPLAY;
2389 if (flags & VFS_NODISPLAY)
2390 mop->mo_flags |= MO_NODISPLAY;
2391 mop->mo_flags |= MO_SET;
2392 if (mop->mo_cancel != NULL) {
2393 char **cp;
2395 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2396 vfs_clearmntopt_nolock(mops, *cp, 0);
2398 if (update_mnttab)
2399 vfs_mnttab_modtimeupd();
2400 break;
2404 void
2405 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2407 int gotlock = 0;
2409 if (VFS_ON_LIST(vfsp)) {
2410 gotlock = 1;
2411 vfs_list_lock();
2413 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2414 if (gotlock)
2415 vfs_list_unlock();
2420 * Add a "tag" option to a mounted file system's options list.
2422 * Note: caller is responsible for locking the vfs list, if needed,
2423 * to protect mops.
2425 static mntopt_t *
2426 vfs_addtag(mntopts_t *mops, const char *tag)
2428 uint_t count;
2429 mntopt_t *mop, *motbl;
2431 count = mops->mo_count + 1;
2432 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2433 if (mops->mo_count) {
2434 size_t len = (count - 1) * sizeof (mntopt_t);
2436 bcopy(mops->mo_list, motbl, len);
2437 kmem_free(mops->mo_list, len);
2439 mops->mo_count = count;
2440 mops->mo_list = motbl;
2441 mop = &motbl[count - 1];
2442 mop->mo_flags = MO_TAG;
2443 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2444 (void) strcpy(mop->mo_name, tag);
2445 return (mop);
2449 * Allow users to set arbitrary "tags" in a vfs's mount options.
2450 * Broader use within the kernel is discouraged.
2453 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2454 cred_t *cr)
2456 vfs_t *vfsp;
2457 mntopts_t *mops;
2458 mntopt_t *mop;
2459 int found = 0;
2460 dev_t dev = makedevice(major, minor);
2461 int err = 0;
2462 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2465 * Find the desired mounted file system
2467 vfs_list_lock();
2468 vfsp = rootvfs;
2469 do {
2470 if (vfsp->vfs_dev == dev &&
2471 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2472 found = 1;
2473 break;
2475 vfsp = vfsp->vfs_next;
2476 } while (vfsp != rootvfs);
2478 if (!found) {
2479 err = EINVAL;
2480 goto out;
2482 err = secpolicy_fs_config(cr, vfsp);
2483 if (err != 0)
2484 goto out;
2486 mops = &vfsp->vfs_mntopts;
2488 * Add tag if it doesn't already exist
2490 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2491 int len;
2493 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2494 len = strlen(buf);
2495 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2496 err = ENAMETOOLONG;
2497 goto out;
2499 mop = vfs_addtag(mops, tag);
2501 if ((mop->mo_flags & MO_TAG) == 0) {
2502 err = EINVAL;
2503 goto out;
2505 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2506 out:
2507 vfs_list_unlock();
2508 kmem_free(buf, MAX_MNTOPT_STR);
2509 return (err);
2513 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2514 * Broader use within the kernel is discouraged.
2517 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2518 cred_t *cr)
2520 vfs_t *vfsp;
2521 mntopt_t *mop;
2522 int found = 0;
2523 dev_t dev = makedevice(major, minor);
2524 int err = 0;
2527 * Find the desired mounted file system
2529 vfs_list_lock();
2530 vfsp = rootvfs;
2531 do {
2532 if (vfsp->vfs_dev == dev &&
2533 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2534 found = 1;
2535 break;
2537 vfsp = vfsp->vfs_next;
2538 } while (vfsp != rootvfs);
2540 if (!found) {
2541 err = EINVAL;
2542 goto out;
2544 err = secpolicy_fs_config(cr, vfsp);
2545 if (err != 0)
2546 goto out;
2548 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2549 err = EINVAL;
2550 goto out;
2552 if ((mop->mo_flags & MO_TAG) == 0) {
2553 err = EINVAL;
2554 goto out;
2556 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2557 out:
2558 vfs_list_unlock();
2559 return (err);
2563 * Function to parse an option string and fill in a mount options table.
2564 * Unknown options are silently ignored. The input option string is modified
2565 * by replacing separators with nulls. If the create flag is set, options
2566 * not found in the table are just added on the fly. The table must have
2567 * an option slot marked MO_EMPTY to add an option on the fly.
2569 * This function is *not* for general use by filesystems.
2571 * Note: caller is responsible for locking the vfs list, if needed,
2572 * to protect mops..
2574 void
2575 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2577 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2578 int setflg = VFS_NOFORCEOPT;
2580 if (osp == NULL)
2581 return;
2582 while (*s != '\0') {
2583 p = strchr(s, ','); /* find next option */
2584 if (p == NULL) {
2585 cp = NULL;
2586 p = s + strlen(s);
2587 } else {
2588 cp = p; /* save location of comma */
2589 *p++ = '\0'; /* mark end and point to next option */
2591 nextop = p;
2592 p = strchr(s, '='); /* look for value */
2593 if (p == NULL) {
2594 valp = NULL; /* no value supplied */
2595 } else {
2596 ep = p; /* save location of equals */
2597 *p++ = '\0'; /* end option and point to value */
2598 valp = p;
2601 * set option into options table
2603 if (create)
2604 setflg |= VFS_CREATEOPT;
2605 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2606 if (cp != NULL)
2607 *cp = ','; /* restore the comma */
2608 if (valp != NULL)
2609 *ep = '='; /* restore the equals */
2610 s = nextop;
2615 * Function to inquire if an option exists in a mount options table.
2616 * Returns a pointer to the option if it exists, else NULL.
2618 * This function is *not* for general use by filesystems.
2620 * Note: caller is responsible for locking the vfs list, if needed,
2621 * to protect mops.
2623 struct mntopt *
2624 vfs_hasopt(const mntopts_t *mops, const char *opt)
2626 struct mntopt *mop;
2627 uint_t i, count;
2629 count = mops->mo_count;
2630 for (i = 0; i < count; i++) {
2631 mop = &mops->mo_list[i];
2633 if (mop->mo_flags & MO_EMPTY)
2634 continue;
2635 if (strcmp(opt, mop->mo_name) == 0)
2636 return (mop);
2638 return (NULL);
2642 * Function to inquire if an option is set in a mount options table.
2643 * Returns non-zero if set and fills in the arg pointer with a pointer to
2644 * the argument string or NULL if there is no argument string.
2646 static int
2647 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2649 struct mntopt *mop;
2650 uint_t i, count;
2652 count = mops->mo_count;
2653 for (i = 0; i < count; i++) {
2654 mop = &mops->mo_list[i];
2656 if (mop->mo_flags & MO_EMPTY)
2657 continue;
2658 if (strcmp(opt, mop->mo_name))
2659 continue;
2660 if ((mop->mo_flags & MO_SET) == 0)
2661 return (0);
2662 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2663 *argp = mop->mo_arg;
2664 return (1);
2666 return (0);
2671 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2673 int ret;
2675 vfs_list_read_lock();
2676 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2677 vfs_list_unlock();
2678 return (ret);
2683 * Construct a comma separated string of the options set in the given
2684 * mount table, return the string in the given buffer. Return non-zero if
2685 * the buffer would overflow.
2687 * This function is *not* for general use by filesystems.
2689 * Note: caller is responsible for locking the vfs list, if needed,
2690 * to protect mp.
2693 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2695 char *cp;
2696 uint_t i;
2698 buf[0] = '\0';
2699 cp = buf;
2700 for (i = 0; i < mp->mo_count; i++) {
2701 struct mntopt *mop;
2703 mop = &mp->mo_list[i];
2704 if (mop->mo_flags & MO_SET) {
2705 int optlen, comma = 0;
2707 if (buf[0] != '\0')
2708 comma = 1;
2709 optlen = strlen(mop->mo_name);
2710 if (strlen(buf) + comma + optlen + 1 > len)
2711 goto err;
2712 if (comma)
2713 *cp++ = ',';
2714 (void) strcpy(cp, mop->mo_name);
2715 cp += optlen;
2717 * Append option value if there is one
2719 if (mop->mo_arg != NULL) {
2720 int arglen;
2722 arglen = strlen(mop->mo_arg);
2723 if (strlen(buf) + arglen + 2 > len)
2724 goto err;
2725 *cp++ = '=';
2726 (void) strcpy(cp, mop->mo_arg);
2727 cp += arglen;
2731 return (0);
2732 err:
2733 return (EOVERFLOW);
2736 static void
2737 vfs_freecancelopt(char **moc)
2739 if (moc != NULL) {
2740 int ccnt = 0;
2741 char **cp;
2743 for (cp = moc; *cp != NULL; cp++) {
2744 kmem_free(*cp, strlen(*cp) + 1);
2745 ccnt++;
2747 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2751 static void
2752 vfs_freeopt(mntopt_t *mop)
2754 if (mop->mo_name != NULL)
2755 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2757 vfs_freecancelopt(mop->mo_cancel);
2759 if (mop->mo_arg != NULL)
2760 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2764 * Free a mount options table
2766 * This function is *not* for general use by filesystems.
2768 * Note: caller is responsible for locking the vfs list, if needed,
2769 * to protect mp.
2771 void
2772 vfs_freeopttbl(mntopts_t *mp)
2774 uint_t i, count;
2776 count = mp->mo_count;
2777 for (i = 0; i < count; i++) {
2778 vfs_freeopt(&mp->mo_list[i]);
2780 if (count) {
2781 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2782 mp->mo_count = 0;
2783 mp->mo_list = NULL;
2788 /* ARGSUSED */
2789 static int
2790 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2791 caller_context_t *ct)
2793 return (0);
2796 /* ARGSUSED */
2797 static int
2798 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2799 caller_context_t *ct)
2801 return (0);
2805 * The dummy vnode is currently used only by file events notification
2806 * module which is just interested in the timestamps.
2808 /* ARGSUSED */
2809 static int
2810 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2811 caller_context_t *ct)
2813 bzero(vap, sizeof (vattr_t));
2814 vap->va_type = VREG;
2815 vap->va_nlink = 1;
2816 vap->va_ctime = vfs_mnttab_ctime;
2818 * it is ok to just copy mtime as the time will be monotonically
2819 * increasing.
2821 vap->va_mtime = vfs_mnttab_mtime;
2822 vap->va_atime = vap->va_mtime;
2823 return (0);
2826 static void
2827 vfs_mnttabvp_setup(void)
2829 vnode_t *tvp;
2830 vnodeops_t *vfs_mntdummyvnops;
2831 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2832 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2833 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2834 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2835 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2836 NULL, NULL
2839 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2840 &vfs_mntdummyvnops) != 0) {
2841 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2842 /* Shouldn't happen, but not bad enough to panic */
2843 return;
2847 * A global dummy vnode is allocated to represent mntfs files.
2848 * The mntfs file (/etc/mnttab) can be monitored for file events
2849 * and receive an event when mnttab changes. Dummy VOP calls
2850 * will be made on this vnode. The file events notification module
2851 * intercepts this vnode and delivers relevant events.
2853 tvp = vn_alloc(KM_SLEEP);
2854 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2855 vn_setops(tvp, vfs_mntdummyvnops);
2856 tvp->v_type = VREG;
2858 * The mnt dummy ops do not reference v_data.
2859 * No other module intercepting this vnode should either.
2860 * Just set it to point to itself.
2862 tvp->v_data = (caddr_t)tvp;
2863 tvp->v_vfsp = rootvfs;
2864 vfs_mntdummyvp = tvp;
2868 * performs fake read/write ops
2870 static void
2871 vfs_mnttab_rwop(int rw)
2873 struct uio uio;
2874 struct iovec iov;
2875 char buf[1];
2877 if (vfs_mntdummyvp == NULL)
2878 return;
2880 bzero(&uio, sizeof (uio));
2881 bzero(&iov, sizeof (iov));
2882 iov.iov_base = buf;
2883 iov.iov_len = 0;
2884 uio.uio_iov = &iov;
2885 uio.uio_iovcnt = 1;
2886 uio.uio_loffset = 0;
2887 uio.uio_segflg = UIO_SYSSPACE;
2888 uio.uio_resid = 0;
2889 if (rw) {
2890 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2891 } else {
2892 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2897 * Generate a write operation.
2899 void
2900 vfs_mnttab_writeop(void)
2902 vfs_mnttab_rwop(1);
2906 * Generate a read operation.
2908 void
2909 vfs_mnttab_readop(void)
2911 vfs_mnttab_rwop(0);
2915 * Free any mnttab information recorded in the vfs struct.
2916 * The vfs must not be on the vfs list.
2918 static void
2919 vfs_freemnttab(struct vfs *vfsp)
2921 ASSERT(!VFS_ON_LIST(vfsp));
2924 * Free device and mount point information
2926 if (vfsp->vfs_mntpt != NULL) {
2927 refstr_rele(vfsp->vfs_mntpt);
2928 vfsp->vfs_mntpt = NULL;
2930 if (vfsp->vfs_resource != NULL) {
2931 refstr_rele(vfsp->vfs_resource);
2932 vfsp->vfs_resource = NULL;
2935 * Now free mount options information
2937 vfs_freeopttbl(&vfsp->vfs_mntopts);
2941 * Return the last mnttab modification time
2943 void
2944 vfs_mnttab_modtime(timespec_t *ts)
2946 ASSERT(RW_LOCK_HELD(&vfslist));
2947 *ts = vfs_mnttab_mtime;
2951 * See if mnttab is changed
2953 void
2954 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2956 int changed;
2958 *phpp = (struct pollhead *)NULL;
2961 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2962 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2963 * to not grab the vfs list lock because tv_sec is monotonically
2964 * increasing.
2967 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2968 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2969 if (!changed) {
2970 *phpp = &vfs_pollhd;
2974 /* Provide a unique and monotonically-increasing timestamp. */
2975 void
2976 vfs_mono_time(timespec_t *ts)
2978 static volatile hrtime_t hrt; /* The saved time. */
2979 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
2980 timespec_t newts;
2983 * Try gethrestime() first, but be prepared to fabricate a sensible
2984 * answer at the first sign of any trouble.
2986 gethrestime(&newts);
2987 newhrt = ts2hrt(&newts);
2988 for (;;) {
2989 oldhrt = hrt;
2990 if (newhrt <= hrt)
2991 newhrt = hrt + 1;
2992 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2993 break;
2995 hrt2ts(newhrt, ts);
2999 * Update the mnttab modification time and wake up any waiters for
3000 * mnttab changes
3002 void
3003 vfs_mnttab_modtimeupd()
3005 hrtime_t oldhrt, newhrt;
3007 ASSERT(RW_WRITE_HELD(&vfslist));
3008 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3009 gethrestime(&vfs_mnttab_mtime);
3010 newhrt = ts2hrt(&vfs_mnttab_mtime);
3011 if (oldhrt == (hrtime_t)0)
3012 vfs_mnttab_ctime = vfs_mnttab_mtime;
3014 * Attempt to provide unique mtime (like uniqtime but not).
3016 if (newhrt == oldhrt) {
3017 newhrt++;
3018 hrt2ts(newhrt, &vfs_mnttab_mtime);
3020 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3021 vfs_mnttab_writeop();
3025 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3027 vnode_t *coveredvp;
3028 int error;
3029 extern void teardown_vopstats(vfs_t *);
3032 * Get covered vnode. This will be NULL if the vfs is not linked
3033 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3035 coveredvp = vfsp->vfs_vnodecovered;
3036 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3039 * Purge all dnlc entries for this vfs.
3041 (void) dnlc_purge_vfsp(vfsp, 0);
3043 /* For forcible umount, skip VFS_SYNC() since it may hang */
3044 if ((flag & MS_FORCE) == 0)
3045 (void) VFS_SYNC(vfsp, 0, cr);
3048 * Lock the vfs to maintain fs status quo during unmount. This
3049 * has to be done after the sync because ufs_update tries to acquire
3050 * the vfs_reflock.
3052 vfs_lock_wait(vfsp);
3054 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3055 vfs_unlock(vfsp);
3056 if (coveredvp != NULL)
3057 vn_vfsunlock(coveredvp);
3058 } else if (coveredvp != NULL) {
3059 teardown_vopstats(vfsp);
3061 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3062 * when it frees vfsp so we do a VN_HOLD() so we can
3063 * continue to use coveredvp afterwards.
3065 VN_HOLD(coveredvp);
3066 vfs_remove(vfsp);
3067 vn_vfsunlock(coveredvp);
3068 VN_RELE(coveredvp);
3069 } else {
3070 teardown_vopstats(vfsp);
3072 * Release the reference to vfs that is not linked
3073 * into the name space.
3075 vfs_unlock(vfsp);
3076 VFS_RELE(vfsp);
3078 return (error);
3083 * Vfs_unmountall() is called by uadmin() to unmount all
3084 * mounted file systems (except the root file system) during shutdown.
3085 * It follows the existing locking protocol when traversing the vfs list
3086 * to sync and unmount vfses. Even though there should be no
3087 * other thread running while the system is shutting down, it is prudent
3088 * to still follow the locking protocol.
3090 void
3091 vfs_unmountall(void)
3093 struct vfs *vfsp;
3094 struct vfs *prev_vfsp = NULL;
3095 int error;
3098 * Toss all dnlc entries now so that the per-vfs sync
3099 * and unmount operations don't have to slog through
3100 * a bunch of uninteresting vnodes over and over again.
3102 dnlc_purge();
3104 vfs_list_lock();
3105 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3106 prev_vfsp = vfsp->vfs_prev;
3108 if (vfs_lock(vfsp) != 0)
3109 continue;
3110 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3111 vfs_unlock(vfsp);
3112 if (error)
3113 continue;
3115 vfs_list_unlock();
3117 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3118 (void) dounmount(vfsp, 0, CRED());
3121 * Since we dropped the vfslist lock above we must
3122 * verify that next_vfsp still exists, else start over.
3124 vfs_list_lock();
3125 for (vfsp = rootvfs->vfs_prev;
3126 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3127 if (vfsp == prev_vfsp)
3128 break;
3129 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3130 prev_vfsp = rootvfs->vfs_prev;
3132 vfs_list_unlock();
3136 * Called to add an entry to the end of the vfs mount in progress list
3138 void
3139 vfs_addmip(dev_t dev, struct vfs *vfsp)
3141 struct ipmnt *mipp;
3143 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3144 mipp->mip_next = NULL;
3145 mipp->mip_dev = dev;
3146 mipp->mip_vfsp = vfsp;
3147 mutex_enter(&vfs_miplist_mutex);
3148 if (vfs_miplist_end != NULL)
3149 vfs_miplist_end->mip_next = mipp;
3150 else
3151 vfs_miplist = mipp;
3152 vfs_miplist_end = mipp;
3153 mutex_exit(&vfs_miplist_mutex);
3157 * Called to remove an entry from the mount in progress list
3158 * Either because the mount completed or it failed.
3160 void
3161 vfs_delmip(struct vfs *vfsp)
3163 struct ipmnt *mipp, *mipprev;
3165 mutex_enter(&vfs_miplist_mutex);
3166 mipprev = NULL;
3167 for (mipp = vfs_miplist;
3168 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3169 mipprev = mipp;
3171 if (mipp == NULL)
3172 return; /* shouldn't happen */
3173 if (mipp == vfs_miplist_end)
3174 vfs_miplist_end = mipprev;
3175 if (mipprev == NULL)
3176 vfs_miplist = mipp->mip_next;
3177 else
3178 mipprev->mip_next = mipp->mip_next;
3179 mutex_exit(&vfs_miplist_mutex);
3180 kmem_free(mipp, sizeof (struct ipmnt));
3184 * vfs_add is called by a specific filesystem's mount routine to add
3185 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3186 * The vfs should already have been locked by the caller.
3188 * coveredvp is NULL if this is the root.
3190 void
3191 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3193 int newflag;
3195 ASSERT(vfs_lock_held(vfsp));
3196 VFS_HOLD(vfsp);
3197 newflag = vfsp->vfs_flag;
3198 if (mflag & MS_RDONLY)
3199 newflag |= VFS_RDONLY;
3200 else
3201 newflag &= ~VFS_RDONLY;
3202 if (mflag & MS_NOSUID)
3203 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3204 else
3205 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3206 if (mflag & MS_NOMNTTAB)
3207 newflag |= VFS_NOMNTTAB;
3208 else
3209 newflag &= ~VFS_NOMNTTAB;
3211 if (coveredvp != NULL) {
3212 ASSERT(vn_vfswlock_held(coveredvp));
3213 coveredvp->v_vfsmountedhere = vfsp;
3214 VN_HOLD(coveredvp);
3216 vfsp->vfs_vnodecovered = coveredvp;
3217 vfsp->vfs_flag = newflag;
3219 vfs_list_add(vfsp);
3223 * Remove a vfs from the vfs list, null out the pointer from the
3224 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3225 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3226 * reference to the vfs and to the covered vnode.
3228 * Called from dounmount after it's confirmed with the file system
3229 * that the unmount is legal.
3231 void
3232 vfs_remove(struct vfs *vfsp)
3234 vnode_t *vp;
3236 ASSERT(vfs_lock_held(vfsp));
3239 * Can't unmount root. Should never happen because fs will
3240 * be busy.
3242 if (vfsp == rootvfs)
3243 panic("vfs_remove: unmounting root");
3245 vfs_list_remove(vfsp);
3248 * Unhook from the file system name space.
3250 vp = vfsp->vfs_vnodecovered;
3251 ASSERT(vn_vfswlock_held(vp));
3252 vp->v_vfsmountedhere = NULL;
3253 vfsp->vfs_vnodecovered = NULL;
3254 VN_RELE(vp);
3257 * Release lock and wakeup anybody waiting.
3259 vfs_unlock(vfsp);
3260 VFS_RELE(vfsp);
3264 * Lock a filesystem to prevent access to it while mounting,
3265 * unmounting and syncing. Return EBUSY immediately if lock
3266 * can't be acquired.
3269 vfs_lock(vfs_t *vfsp)
3271 vn_vfslocks_entry_t *vpvfsentry;
3273 vpvfsentry = vn_vfslocks_getlock(vfsp);
3274 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3275 return (0);
3277 vn_vfslocks_rele(vpvfsentry);
3278 return (EBUSY);
3282 vfs_rlock(vfs_t *vfsp)
3284 vn_vfslocks_entry_t *vpvfsentry;
3286 vpvfsentry = vn_vfslocks_getlock(vfsp);
3288 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3289 return (0);
3291 vn_vfslocks_rele(vpvfsentry);
3292 return (EBUSY);
3295 void
3296 vfs_lock_wait(vfs_t *vfsp)
3298 vn_vfslocks_entry_t *vpvfsentry;
3300 vpvfsentry = vn_vfslocks_getlock(vfsp);
3301 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3304 void
3305 vfs_rlock_wait(vfs_t *vfsp)
3307 vn_vfslocks_entry_t *vpvfsentry;
3309 vpvfsentry = vn_vfslocks_getlock(vfsp);
3310 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3314 * Unlock a locked filesystem.
3316 void
3317 vfs_unlock(vfs_t *vfsp)
3319 vn_vfslocks_entry_t *vpvfsentry;
3322 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3323 * And these changes should remain for the patch changes as it is.
3325 if (panicstr)
3326 return;
3329 * ve_refcount needs to be dropped twice here.
3330 * 1. To release refernce after a call to vfs_locks_getlock()
3331 * 2. To release the reference from the locking routines like
3332 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3335 vpvfsentry = vn_vfslocks_getlock(vfsp);
3336 vn_vfslocks_rele(vpvfsentry);
3338 rwst_exit(&vpvfsentry->ve_lock);
3339 vn_vfslocks_rele(vpvfsentry);
3343 * Utility routine that allows a filesystem to construct its
3344 * fsid in "the usual way" - by munging some underlying dev_t and
3345 * the filesystem type number into the 64-bit fsid. Note that
3346 * this implicitly relies on dev_t persistence to make filesystem
3347 * id's persistent.
3349 * There's nothing to prevent an individual fs from constructing its
3350 * fsid in a different way, and indeed they should.
3352 * Since we want fsids to be 32-bit quantities (so that they can be
3353 * exported identically by either 32-bit or 64-bit APIs, as well as
3354 * the fact that fsid's are "known" to NFS), we compress the device
3355 * number given down to 32-bits, and panic if that isn't possible.
3357 void
3358 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3360 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3361 panic("device number too big for fsid!");
3362 fsi->val[1] = val;
3366 vfs_lock_held(vfs_t *vfsp)
3368 int held;
3369 vn_vfslocks_entry_t *vpvfsentry;
3372 * vfs_lock_held will mimic sema_held behaviour
3373 * if panicstr is set. And these changes should remain
3374 * for the patch changes as it is.
3376 if (panicstr)
3377 return (1);
3379 vpvfsentry = vn_vfslocks_getlock(vfsp);
3380 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3382 vn_vfslocks_rele(vpvfsentry);
3383 return (held);
3386 struct _kthread *
3387 vfs_lock_owner(vfs_t *vfsp)
3389 struct _kthread *owner;
3390 vn_vfslocks_entry_t *vpvfsentry;
3393 * vfs_wlock_held will mimic sema_held behaviour
3394 * if panicstr is set. And these changes should remain
3395 * for the patch changes as it is.
3397 if (panicstr)
3398 return (NULL);
3400 vpvfsentry = vn_vfslocks_getlock(vfsp);
3401 owner = rwst_owner(&vpvfsentry->ve_lock);
3403 vn_vfslocks_rele(vpvfsentry);
3404 return (owner);
3408 * vfs list locking.
3410 * Rather than manipulate the vfslist lock directly, we abstract into lock
3411 * and unlock routines to allow the locking implementation to be changed for
3412 * clustering.
3414 * Whenever the vfs list is modified through its hash links, the overall list
3415 * lock must be obtained before locking the relevant hash bucket. But to see
3416 * whether a given vfs is on the list, it suffices to obtain the lock for the
3417 * hash bucket without getting the overall list lock. (See getvfs() below.)
3420 void
3421 vfs_list_lock()
3423 rw_enter(&vfslist, RW_WRITER);
3426 void
3427 vfs_list_read_lock()
3429 rw_enter(&vfslist, RW_READER);
3432 void
3433 vfs_list_unlock()
3435 rw_exit(&vfslist);
3439 * Low level worker routines for adding entries to and removing entries from
3440 * the vfs list.
3443 static void
3444 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3446 int vhno;
3447 struct vfs **hp;
3448 dev_t dev;
3450 ASSERT(RW_WRITE_HELD(&vfslist));
3452 dev = expldev(vfsp->vfs_fsid.val[0]);
3453 vhno = VFSHASH(getmajor(dev), getminor(dev));
3455 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3458 * Link into the hash table, inserting it at the end, so that LOFS
3459 * with the same fsid as UFS (or other) file systems will not hide the
3460 * UFS.
3462 if (insert_at_head) {
3463 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3464 rvfs_list[vhno].rvfs_head = vfsp;
3465 } else {
3466 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3467 hp = &(*hp)->vfs_hash)
3468 continue;
3470 * hp now contains the address of the pointer to update
3471 * to effect the insertion.
3473 vfsp->vfs_hash = NULL;
3474 *hp = vfsp;
3477 rvfs_list[vhno].rvfs_len++;
3478 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3482 static void
3483 vfs_hash_remove(struct vfs *vfsp)
3485 int vhno;
3486 struct vfs *tvfsp;
3487 dev_t dev;
3489 ASSERT(RW_WRITE_HELD(&vfslist));
3491 dev = expldev(vfsp->vfs_fsid.val[0]);
3492 vhno = VFSHASH(getmajor(dev), getminor(dev));
3494 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3497 * Remove from hash.
3499 if (rvfs_list[vhno].rvfs_head == vfsp) {
3500 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3501 rvfs_list[vhno].rvfs_len--;
3502 goto foundit;
3504 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3505 tvfsp = tvfsp->vfs_hash) {
3506 if (tvfsp->vfs_hash == vfsp) {
3507 tvfsp->vfs_hash = vfsp->vfs_hash;
3508 rvfs_list[vhno].rvfs_len--;
3509 goto foundit;
3512 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3514 foundit:
3516 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3520 void
3521 vfs_list_add(struct vfs *vfsp)
3523 zone_t *zone;
3526 * Typically, the vfs_t will have been created on behalf of the file
3527 * system in vfs_init, where it will have been provided with a
3528 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3529 * by an unbundled file system. We therefore check for such an example
3530 * before stamping the vfs_t with its creation time for the benefit of
3531 * mntfs.
3533 if (vfsp->vfs_implp == NULL)
3534 vfsimpl_setup(vfsp);
3535 vfs_mono_time(&vfsp->vfs_hrctime);
3538 * The zone that owns the mount is the one that performed the mount.
3539 * Note that this isn't necessarily the same as the zone mounted into.
3540 * The corresponding zone_rele_ref() will be done when the vfs_t
3541 * is being free'd.
3543 vfsp->vfs_zone = curproc->p_zone;
3544 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3545 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3546 ZONE_REF_VFS);
3549 * Find the zone mounted into, and put this mount on its vfs list.
3551 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3552 ASSERT(zone != NULL);
3554 * Special casing for the root vfs. This structure is allocated
3555 * statically and hooked onto rootvfs at link time. During the
3556 * vfs_mountroot call at system startup time, the root file system's
3557 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3558 * as argument. The code below must detect and handle this special
3559 * case. The only apparent justification for this special casing is
3560 * to ensure that the root file system appears at the head of the
3561 * list.
3563 * XXX: I'm assuming that it's ok to do normal list locking when
3564 * adding the entry for the root file system (this used to be
3565 * done with no locks held).
3567 vfs_list_lock();
3569 * Link into the vfs list proper.
3571 if (vfsp == &root) {
3573 * Assert: This vfs is already on the list as its first entry.
3574 * Thus, there's nothing to do.
3576 ASSERT(rootvfs == vfsp);
3578 * Add it to the head of the global zone's vfslist.
3580 ASSERT(zone == global_zone);
3581 ASSERT(zone->zone_vfslist == NULL);
3582 zone->zone_vfslist = vfsp;
3583 } else {
3585 * Link to end of list using vfs_prev (as rootvfs is now a
3586 * doubly linked circular list) so list is in mount order for
3587 * mnttab use.
3589 rootvfs->vfs_prev->vfs_next = vfsp;
3590 vfsp->vfs_prev = rootvfs->vfs_prev;
3591 rootvfs->vfs_prev = vfsp;
3592 vfsp->vfs_next = rootvfs;
3595 * Do it again for the zone-private list (which may be NULL).
3597 if (zone->zone_vfslist == NULL) {
3598 ASSERT(zone != global_zone);
3599 zone->zone_vfslist = vfsp;
3600 } else {
3601 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3602 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3603 zone->zone_vfslist->vfs_zone_prev = vfsp;
3604 vfsp->vfs_zone_next = zone->zone_vfslist;
3609 * Link into the hash table, inserting it at the end, so that LOFS
3610 * with the same fsid as UFS (or other) file systems will not hide
3611 * the UFS.
3613 vfs_hash_add(vfsp, 0);
3616 * update the mnttab modification time
3618 vfs_mnttab_modtimeupd();
3619 vfs_list_unlock();
3620 zone_rele(zone);
3623 void
3624 vfs_list_remove(struct vfs *vfsp)
3626 zone_t *zone;
3628 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3629 ASSERT(zone != NULL);
3631 * Callers are responsible for preventing attempts to unmount the
3632 * root.
3634 ASSERT(vfsp != rootvfs);
3636 vfs_list_lock();
3639 * Remove from hash.
3641 vfs_hash_remove(vfsp);
3644 * Remove from vfs list.
3646 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3647 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3648 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3651 * Remove from zone-specific vfs list.
3653 if (zone->zone_vfslist == vfsp)
3654 zone->zone_vfslist = vfsp->vfs_zone_next;
3656 if (vfsp->vfs_zone_next == vfsp) {
3657 ASSERT(vfsp->vfs_zone_prev == vfsp);
3658 ASSERT(zone->zone_vfslist == vfsp);
3659 zone->zone_vfslist = NULL;
3662 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3663 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3664 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3667 * update the mnttab modification time
3669 vfs_mnttab_modtimeupd();
3670 vfs_list_unlock();
3671 zone_rele(zone);
3674 struct vfs *
3675 getvfs(fsid_t *fsid)
3677 struct vfs *vfsp;
3678 int val0 = fsid->val[0];
3679 int val1 = fsid->val[1];
3680 dev_t dev = expldev(val0);
3681 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3682 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3684 mutex_enter(hmp);
3685 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3686 if (vfsp->vfs_fsid.val[0] == val0 &&
3687 vfsp->vfs_fsid.val[1] == val1) {
3688 VFS_HOLD(vfsp);
3689 mutex_exit(hmp);
3690 return (vfsp);
3693 mutex_exit(hmp);
3694 return (NULL);
3698 * Search the vfs mount in progress list for a specified device/vfs entry.
3699 * Returns 0 if the first entry in the list that the device matches has the
3700 * given vfs pointer as well. If the device matches but a different vfs
3701 * pointer is encountered in the list before the given vfs pointer then
3702 * a 1 is returned.
3706 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3708 int retval = 0;
3709 struct ipmnt *mipp;
3711 mutex_enter(&vfs_miplist_mutex);
3712 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3713 if (mipp->mip_dev == dev) {
3714 if (mipp->mip_vfsp != vfsp)
3715 retval = 1;
3716 break;
3719 mutex_exit(&vfs_miplist_mutex);
3720 return (retval);
3724 * Search the vfs list for a specified device. Returns 1, if entry is found
3725 * or 0 if no suitable entry is found.
3729 vfs_devismounted(dev_t dev)
3731 struct vfs *vfsp;
3732 int found;
3734 vfs_list_read_lock();
3735 vfsp = rootvfs;
3736 found = 0;
3737 do {
3738 if (vfsp->vfs_dev == dev) {
3739 found = 1;
3740 break;
3742 vfsp = vfsp->vfs_next;
3743 } while (vfsp != rootvfs);
3745 vfs_list_unlock();
3746 return (found);
3750 * Search the vfs list for a specified device. Returns a pointer to it
3751 * or NULL if no suitable entry is found. The caller of this routine
3752 * is responsible for releasing the returned vfs pointer.
3754 struct vfs *
3755 vfs_dev2vfsp(dev_t dev)
3757 struct vfs *vfsp;
3758 int found;
3760 vfs_list_read_lock();
3761 vfsp = rootvfs;
3762 found = 0;
3763 do {
3765 * The following could be made more efficient by making
3766 * the entire loop use vfs_zone_next if the call is from
3767 * a zone. The only callers, however, ustat(2) and
3768 * umount2(2), don't seem to justify the added
3769 * complexity at present.
3771 if (vfsp->vfs_dev == dev &&
3772 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3773 curproc->p_zone)) {
3774 VFS_HOLD(vfsp);
3775 found = 1;
3776 break;
3778 vfsp = vfsp->vfs_next;
3779 } while (vfsp != rootvfs);
3780 vfs_list_unlock();
3781 return (found ? vfsp: NULL);
3785 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3786 * or NULL if no suitable entry is found. The caller of this routine
3787 * is responsible for releasing the returned vfs pointer.
3789 * Note that if multiple mntpoints match, the last one matching is
3790 * returned in an attempt to return the "top" mount when overlay
3791 * mounts are covering the same mount point. This is accomplished by starting
3792 * at the end of the list and working our way backwards, stopping at the first
3793 * matching mount.
3795 struct vfs *
3796 vfs_mntpoint2vfsp(const char *mp)
3798 struct vfs *vfsp;
3799 struct vfs *retvfsp = NULL;
3800 zone_t *zone = curproc->p_zone;
3801 struct vfs *list;
3803 vfs_list_read_lock();
3804 if (getzoneid() == GLOBAL_ZONEID) {
3806 * The global zone may see filesystems in any zone.
3808 vfsp = rootvfs->vfs_prev;
3809 do {
3810 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3811 retvfsp = vfsp;
3812 break;
3814 vfsp = vfsp->vfs_prev;
3815 } while (vfsp != rootvfs->vfs_prev);
3816 } else if ((list = zone->zone_vfslist) != NULL) {
3817 const char *mntpt;
3819 vfsp = list->vfs_zone_prev;
3820 do {
3821 mntpt = refstr_value(vfsp->vfs_mntpt);
3822 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3823 if (strcmp(mntpt, mp) == 0) {
3824 retvfsp = vfsp;
3825 break;
3827 vfsp = vfsp->vfs_zone_prev;
3828 } while (vfsp != list->vfs_zone_prev);
3830 if (retvfsp)
3831 VFS_HOLD(retvfsp);
3832 vfs_list_unlock();
3833 return (retvfsp);
3837 * Search the vfs list for a specified vfsops.
3838 * if vfs entry is found then return 1, else 0.
3841 vfs_opsinuse(vfsops_t *ops)
3843 struct vfs *vfsp;
3844 int found;
3846 vfs_list_read_lock();
3847 vfsp = rootvfs;
3848 found = 0;
3849 do {
3850 if (vfs_getops(vfsp) == ops) {
3851 found = 1;
3852 break;
3854 vfsp = vfsp->vfs_next;
3855 } while (vfsp != rootvfs);
3856 vfs_list_unlock();
3857 return (found);
3861 * Allocate an entry in vfssw for a file system type
3863 struct vfssw *
3864 allocate_vfssw(const char *type)
3866 struct vfssw *vswp;
3868 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3870 * The vfssw table uses the empty string to identify an
3871 * available entry; we cannot add any type which has
3872 * a leading NUL. The string length is limited to
3873 * the size of the st_fstype array in struct stat.
3875 return (NULL);
3878 ASSERT(VFSSW_WRITE_LOCKED());
3879 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3880 if (!ALLOCATED_VFSSW(vswp)) {
3881 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3882 (void) strcpy(vswp->vsw_name, type);
3883 ASSERT(vswp->vsw_count == 0);
3884 vswp->vsw_count = 1;
3885 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3886 return (vswp);
3888 return (NULL);
3892 * Impose additional layer of translation between vfstype names
3893 * and module names in the filesystem.
3895 static const char *
3896 vfs_to_modname(const char *vfstype)
3898 if (strcmp(vfstype, "proc") == 0) {
3899 vfstype = "procfs";
3900 } else if (strcmp(vfstype, "fd") == 0) {
3901 vfstype = "fdfs";
3902 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3903 vfstype = "nfs";
3906 return (vfstype);
3910 * Find a vfssw entry given a file system type name.
3911 * Try to autoload the filesystem if it's not found.
3912 * If it's installed, return the vfssw locked to prevent unloading.
3914 struct vfssw *
3915 vfs_getvfssw(const char *type)
3917 struct vfssw *vswp;
3918 const char *modname;
3920 RLOCK_VFSSW();
3921 vswp = vfs_getvfsswbyname(type);
3922 modname = vfs_to_modname(type);
3924 if (rootdir == NULL) {
3926 * If we haven't yet loaded the root file system, then our
3927 * _init won't be called until later. Allocate vfssw entry,
3928 * because mod_installfs won't be called.
3930 if (vswp == NULL) {
3931 RUNLOCK_VFSSW();
3932 WLOCK_VFSSW();
3933 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3934 if ((vswp = allocate_vfssw(type)) == NULL) {
3935 WUNLOCK_VFSSW();
3936 return (NULL);
3939 WUNLOCK_VFSSW();
3940 RLOCK_VFSSW();
3942 if (!VFS_INSTALLED(vswp)) {
3943 RUNLOCK_VFSSW();
3944 (void) modloadonly("fs", modname);
3945 } else
3946 RUNLOCK_VFSSW();
3947 return (vswp);
3951 * Try to load the filesystem. Before calling modload(), we drop
3952 * our lock on the VFS switch table, and pick it up after the
3953 * module is loaded. However, there is a potential race: the
3954 * module could be unloaded after the call to modload() completes
3955 * but before we pick up the lock and drive on. Therefore,
3956 * we keep reloading the module until we've loaded the module
3957 * _and_ we have the lock on the VFS switch table.
3959 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3960 RUNLOCK_VFSSW();
3961 if (modload("fs", modname) == -1)
3962 return (NULL);
3963 RLOCK_VFSSW();
3964 if (vswp == NULL)
3965 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3966 break;
3968 RUNLOCK_VFSSW();
3970 return (vswp);
3974 * Find a vfssw entry given a file system type name.
3976 struct vfssw *
3977 vfs_getvfsswbyname(const char *type)
3979 struct vfssw *vswp;
3981 ASSERT(VFSSW_LOCKED());
3982 if (type == NULL || *type == '\0')
3983 return (NULL);
3985 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3986 if (strcmp(type, vswp->vsw_name) == 0) {
3987 vfs_refvfssw(vswp);
3988 return (vswp);
3992 return (NULL);
3996 * Find a vfssw entry given a set of vfsops.
3998 struct vfssw *
3999 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4001 struct vfssw *vswp;
4003 RLOCK_VFSSW();
4004 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4005 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4006 vfs_refvfssw(vswp);
4007 RUNLOCK_VFSSW();
4008 return (vswp);
4011 RUNLOCK_VFSSW();
4013 return (NULL);
4017 * Reference a vfssw entry.
4019 void
4020 vfs_refvfssw(struct vfssw *vswp)
4023 mutex_enter(&vswp->vsw_lock);
4024 vswp->vsw_count++;
4025 mutex_exit(&vswp->vsw_lock);
4029 * Unreference a vfssw entry.
4031 void
4032 vfs_unrefvfssw(struct vfssw *vswp)
4035 mutex_enter(&vswp->vsw_lock);
4036 vswp->vsw_count--;
4037 mutex_exit(&vswp->vsw_lock);
4040 int sync_timeout = 30; /* timeout for syncing a page during panic */
4041 int sync_timeleft; /* portion of sync_timeout remaining */
4043 static int sync_retries = 20; /* number of retries when not making progress */
4044 static int sync_triesleft; /* portion of sync_retries remaining */
4046 static pgcnt_t old_pgcnt, new_pgcnt;
4047 static int new_bufcnt, old_bufcnt;
4050 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4051 * complete. We wait by counting the number of dirty pages and buffers,
4052 * pushing them out using bio_busy() and page_busy(), and then counting again.
4053 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4054 * the SYNC phase of the panic code (see comments in panic.c). It should only
4055 * be used after some higher-level mechanism has quiesced the system so that
4056 * new writes are not being initiated while we are waiting for completion.
4058 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4059 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4060 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4061 * Together these ensure that syncing completes if our i/o paths are stuck.
4062 * The counters are declared above so they can be found easily in the debugger.
4064 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4065 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4066 * pages and buffers. It is decremented and expired by the deadman() cyclic.
4067 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4068 * setting sync_timeleft to zero. This timer guards against vfs_syncall()
4069 * deadlocking or hanging inside of a broken filesystem or driver routine.
4071 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4072 * sync_retries consecutive calls to bio_busy() and page_busy() without
4073 * decreasing either the number of dirty buffers or dirty pages below the
4074 * lowest count we have seen so far, we give up and return from vfs_syncall().
4076 * Each loop iteration ends with a call to delay() one second to allow time for
4077 * i/o completion and to permit the user time to read our progress messages.
4079 void
4080 vfs_syncall(void)
4082 if (rootdir == NULL && !modrootloaded)
4083 return; /* panic during boot - no filesystems yet */
4085 printf("syncing file systems...");
4086 vfs_syncprogress();
4087 sync();
4089 vfs_syncprogress();
4090 sync_triesleft = sync_retries;
4092 old_bufcnt = new_bufcnt = INT_MAX;
4093 old_pgcnt = new_pgcnt = ULONG_MAX;
4095 while (sync_triesleft > 0) {
4096 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4097 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4099 new_bufcnt = bio_busy(B_TRUE);
4100 new_pgcnt = page_busy(B_TRUE);
4101 vfs_syncprogress();
4103 if (new_bufcnt == 0 && new_pgcnt == 0)
4104 break;
4106 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4107 sync_triesleft = sync_retries;
4108 else
4109 sync_triesleft--;
4111 if (new_bufcnt)
4112 printf(" [%d]", new_bufcnt);
4113 if (new_pgcnt)
4114 printf(" %lu", new_pgcnt);
4116 delay(hz);
4119 if (new_bufcnt != 0 || new_pgcnt != 0)
4120 printf(" done (not all i/o completed)\n");
4121 else
4122 printf(" done\n");
4124 sync_timeleft = 0;
4125 delay(hz);
4129 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4130 * sync_timeout to indicate that we are making progress and the deadman()
4131 * omnipresent cyclic should not yet time us out. Note that it is safe to
4132 * store to sync_timeleft here since the deadman() is firing at high-level
4133 * on top of us. If we are racing with the deadman(), either the deadman()
4134 * will decrement the old value and then we will reset it, or we will
4135 * reset it and then the deadman() will immediately decrement it. In either
4136 * case, correct behavior results.
4138 void
4139 vfs_syncprogress(void)
4141 if (panicstr)
4142 sync_timeleft = sync_timeout;
4146 * Map VFS flags to statvfs flags. These shouldn't really be separate
4147 * flags at all.
4149 uint_t
4150 vf_to_stf(uint_t vf)
4152 uint_t stf = 0;
4154 if (vf & VFS_RDONLY)
4155 stf |= ST_RDONLY;
4156 if (vf & VFS_NOSETUID)
4157 stf |= ST_NOSUID;
4158 if (vf & VFS_NOTRUNC)
4159 stf |= ST_NOTRUNC;
4161 return (stf);
4165 * Entries for (illegal) fstype 0.
4167 /* ARGSUSED */
4169 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4171 cmn_err(CE_PANIC, "stray vfs operation");
4172 return (0);
4176 * Entries for (illegal) fstype 0.
4179 vfsstray(void)
4181 cmn_err(CE_PANIC, "stray vfs operation");
4182 return (0);
4186 * Support for dealing with forced UFS unmount and its interaction with
4187 * LOFS. Could be used by any filesystem.
4188 * See bug 1203132.
4191 vfs_EIO(void)
4193 return (EIO);
4197 * We've gotta define the op for sync separately, since the compiler gets
4198 * confused if we mix and match ANSI and normal style prototypes when
4199 * a "short" argument is present and spits out a warning.
4201 /*ARGSUSED*/
4203 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4205 return (EIO);
4208 vfs_t EIO_vfs;
4209 vfsops_t *EIO_vfsops;
4212 * Called from startup() to initialize all loaded vfs's
4214 void
4215 vfsinit(void)
4217 struct vfssw *vswp;
4218 int error;
4219 extern int vopstats_enabled;
4220 extern void vopstats_startup();
4222 static const fs_operation_def_t EIO_vfsops_template[] = {
4223 VFSNAME_MOUNT, { .error = vfs_EIO },
4224 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4225 VFSNAME_ROOT, { .error = vfs_EIO },
4226 VFSNAME_STATVFS, { .error = vfs_EIO },
4227 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4228 VFSNAME_VGET, { .error = vfs_EIO },
4229 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4230 VFSNAME_FREEVFS, { .error = vfs_EIO },
4231 VFSNAME_VNSTATE, { .error = vfs_EIO },
4232 NULL, NULL
4235 static const fs_operation_def_t stray_vfsops_template[] = {
4236 VFSNAME_MOUNT, { .error = vfsstray },
4237 VFSNAME_UNMOUNT, { .error = vfsstray },
4238 VFSNAME_ROOT, { .error = vfsstray },
4239 VFSNAME_STATVFS, { .error = vfsstray },
4240 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4241 VFSNAME_VGET, { .error = vfsstray },
4242 VFSNAME_MOUNTROOT, { .error = vfsstray },
4243 VFSNAME_FREEVFS, { .error = vfsstray },
4244 VFSNAME_VNSTATE, { .error = vfsstray },
4245 NULL, NULL
4248 /* Create vfs cache */
4249 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4250 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4252 /* Initialize the vnode cache (file systems may use it during init). */
4253 vn_create_cache();
4255 /* Setup event monitor framework */
4256 fem_init();
4258 /* Initialize the dummy stray file system type. */
4259 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4261 /* Initialize the dummy EIO file system. */
4262 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4263 if (error != 0) {
4264 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4265 /* Shouldn't happen, but not bad enough to panic */
4268 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4271 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4272 * on this vfs can immediately notice it's invalid.
4274 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4277 * Call the init routines of non-loadable filesystems only.
4278 * Filesystems which are loaded as separate modules will be
4279 * initialized by the module loading code instead.
4282 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4283 RLOCK_VFSSW();
4284 if (vswp->vsw_init != NULL)
4285 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4286 RUNLOCK_VFSSW();
4289 vopstats_startup();
4291 if (vopstats_enabled) {
4292 /* EIO_vfs can collect stats, but we don't retrieve them */
4293 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4294 EIO_vfs.vfs_fstypevsp = NULL;
4295 EIO_vfs.vfs_vskap = NULL;
4296 EIO_vfs.vfs_flag |= VFS_STATS;
4299 xattr_init();
4301 reparse_point_init();
4304 vfs_t *
4305 vfs_alloc(int kmflag)
4307 vfs_t *vfsp;
4309 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4312 * Do the simplest initialization here.
4313 * Everything else gets done in vfs_init()
4315 bzero(vfsp, sizeof (vfs_t));
4316 return (vfsp);
4319 void
4320 vfs_free(vfs_t *vfsp)
4323 * One would be tempted to assert that "vfsp->vfs_count == 0".
4324 * The problem is that this gets called out of domount() with
4325 * a partially initialized vfs and a vfs_count of 1. This is
4326 * also called from vfs_rele() with a vfs_count of 0. We can't
4327 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4328 * returned. This is because VFS_MOUNT() fully initializes the
4329 * vfs structure and its associated data. VFS_RELE() will call
4330 * VFS_FREEVFS() which may panic the system if the data structures
4331 * aren't fully initialized from a successful VFS_MOUNT()).
4334 /* If FEM was in use, make sure everything gets cleaned up */
4335 if (vfsp->vfs_femhead) {
4336 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4337 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4338 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4339 vfsp->vfs_femhead = NULL;
4342 if (vfsp->vfs_implp)
4343 vfsimpl_teardown(vfsp);
4344 sema_destroy(&vfsp->vfs_reflock);
4345 kmem_cache_free(vfs_cache, vfsp);
4349 * Increments the vfs reference count by one atomically.
4351 void
4352 vfs_hold(vfs_t *vfsp)
4354 atomic_inc_32(&vfsp->vfs_count);
4355 ASSERT(vfsp->vfs_count != 0);
4359 * Decrements the vfs reference count by one atomically. When
4360 * vfs reference count becomes zero, it calls the file system
4361 * specific vfs_freevfs() to free up the resources.
4363 void
4364 vfs_rele(vfs_t *vfsp)
4366 ASSERT(vfsp->vfs_count != 0);
4367 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4368 VFS_FREEVFS(vfsp);
4369 lofi_remove(vfsp);
4370 if (vfsp->vfs_zone)
4371 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4372 ZONE_REF_VFS);
4373 vfs_freemnttab(vfsp);
4374 vfs_free(vfsp);
4379 * Generic operations vector support.
4381 * This is used to build operations vectors for both the vfs and vnode.
4382 * It's normally called only when a file system is loaded.
4384 * There are many possible algorithms for this, including the following:
4386 * (1) scan the list of known operations; for each, see if the file system
4387 * includes an entry for it, and fill it in as appropriate.
4389 * (2) set up defaults for all known operations. scan the list of ops
4390 * supplied by the file system; for each which is both supplied and
4391 * known, fill it in.
4393 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4394 * in entries as we go.
4396 * we choose (1) for simplicity, and because performance isn't critical here.
4397 * note that (2) could be sped up using a precomputed hash table on known ops.
4398 * (3) could be faster than either, but only if the lists were very large or
4399 * supplied in sorted order.
4404 fs_build_vector(void *vector, int *unused_ops,
4405 const fs_operation_trans_def_t *translation,
4406 const fs_operation_def_t *operations)
4408 int i, num_trans, num_ops, used;
4411 * Count the number of translations and the number of supplied
4412 * operations.
4416 const fs_operation_trans_def_t *p;
4418 for (num_trans = 0, p = translation;
4419 p->name != NULL;
4420 num_trans++, p++)
4425 const fs_operation_def_t *p;
4427 for (num_ops = 0, p = operations;
4428 p->name != NULL;
4429 num_ops++, p++)
4433 /* Walk through each operation known to our caller. There will be */
4434 /* one entry in the supplied "translation table" for each. */
4436 used = 0;
4438 for (i = 0; i < num_trans; i++) {
4439 int j, found;
4440 char *curname;
4441 fs_generic_func_p result;
4442 fs_generic_func_p *location;
4444 curname = translation[i].name;
4446 /* Look for a matching operation in the list supplied by the */
4447 /* file system. */
4449 found = 0;
4451 for (j = 0; j < num_ops; j++) {
4452 if (strcmp(operations[j].name, curname) == 0) {
4453 used++;
4454 found = 1;
4455 break;
4460 * If the file system is using a "placeholder" for default
4461 * or error functions, grab the appropriate function out of
4462 * the translation table. If the file system didn't supply
4463 * this operation at all, use the default function.
4466 if (found) {
4467 result = operations[j].func.fs_generic;
4468 if (result == fs_default) {
4469 result = translation[i].defaultFunc;
4470 } else if (result == fs_error) {
4471 result = translation[i].errorFunc;
4472 } else if (result == NULL) {
4473 /* Null values are PROHIBITED */
4474 return (EINVAL);
4476 } else {
4477 result = translation[i].defaultFunc;
4480 /* Now store the function into the operations vector. */
4482 location = (fs_generic_func_p *)
4483 (((char *)vector) + translation[i].offset);
4485 *location = result;
4488 *unused_ops = num_ops - used;
4490 return (0);
4493 /* Placeholder functions, should never be called. */
4496 fs_error(void)
4498 cmn_err(CE_PANIC, "fs_error called");
4499 return (0);
4503 fs_default(void)
4505 cmn_err(CE_PANIC, "fs_default called");
4506 return (0);
4509 #ifdef __sparc
4512 * Part of the implementation of booting off a mirrored root
4513 * involves a change of dev_t for the root device. To
4514 * accomplish this, first remove the existing hash table
4515 * entry for the root device, convert to the new dev_t,
4516 * then re-insert in the hash table at the head of the list.
4518 void
4519 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4521 vfs_list_lock();
4523 vfs_hash_remove(vfsp);
4525 vfsp->vfs_dev = ndev;
4526 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4528 vfs_hash_add(vfsp, 1);
4530 vfs_list_unlock();
4533 #else /* x86 NEWBOOT */
4535 #if defined(__x86)
4536 extern int hvmboot_rootconf();
4537 #endif /* __x86 */
4539 extern ib_boot_prop_t *iscsiboot_prop;
4542 rootconf()
4544 int error;
4545 struct vfssw *vsw;
4546 extern void pm_init();
4547 char *fstyp, *fsmod;
4548 int ret = -1;
4550 getrootfs(&fstyp, &fsmod);
4552 #if defined(__x86)
4554 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4555 * which lives in /platform/i86hvm, and hence is only available when
4556 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4557 * is not available then the modstub for this function will return 0.
4558 * If the hvm_bootstrap misc module is available it will be loaded
4559 * and hvmboot_rootconf() will be invoked.
4561 if (error = hvmboot_rootconf())
4562 return (error);
4563 #endif /* __x86 */
4565 if (error = clboot_rootconf())
4566 return (error);
4568 if (modload("fs", fsmod) == -1)
4569 panic("Cannot _init %s module", fsmod);
4571 RLOCK_VFSSW();
4572 vsw = vfs_getvfsswbyname(fstyp);
4573 RUNLOCK_VFSSW();
4574 if (vsw == NULL) {
4575 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4576 return (ENXIO);
4578 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4579 VFS_HOLD(rootvfs);
4581 /* always mount readonly first */
4582 rootvfs->vfs_flag |= VFS_RDONLY;
4584 pm_init();
4586 if (netboot && iscsiboot_prop) {
4587 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4588 " shouldn't happen in the same time");
4589 return (EINVAL);
4592 if (netboot || iscsiboot_prop) {
4593 ret = strplumb();
4594 if (ret != 0) {
4595 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4596 return (EFAULT);
4600 if ((ret == 0) && iscsiboot_prop) {
4601 ret = modload("drv", "iscsi");
4602 /* -1 indicates fail */
4603 if (ret == -1) {
4604 cmn_err(CE_WARN, "Failed to load iscsi module");
4605 iscsi_boot_prop_free();
4606 return (EINVAL);
4607 } else {
4608 if (!i_ddi_attach_pseudo_node("iscsi")) {
4609 cmn_err(CE_WARN,
4610 "Failed to attach iscsi driver");
4611 iscsi_boot_prop_free();
4612 return (ENODEV);
4617 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4618 vfs_unrefvfssw(vsw);
4619 rootdev = rootvfs->vfs_dev;
4621 if (error)
4622 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4623 rootfs.bo_name, fstyp);
4624 else
4625 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4626 rootfs.bo_name, fstyp);
4627 return (error);
4631 * XXX this is called by nfs only and should probably be removed
4632 * If booted with ASKNAME, prompt on the console for a filesystem
4633 * name and return it.
4635 void
4636 getfsname(char *askfor, char *name, size_t namelen)
4638 if (boothowto & RB_ASKNAME) {
4639 printf("%s name: ", askfor);
4640 console_gets(name, namelen);
4645 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4646 * property.
4648 * Filesystem types starting with the prefix "nfs" are diskless clients;
4649 * init the root filename name (rootfs.bo_name), too.
4651 * If we are booting via NFS we currently have these options:
4652 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4653 * nfs2 - force NFS V2
4654 * nfs3 - force NFS V3
4655 * nfs4 - force NFS V4
4656 * Because we need to maintain backward compatibility with the naming
4657 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4658 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4659 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4660 * This is only for root filesystems, all other uses will expect
4661 * that "nfs" == NFS V2.
4663 static void
4664 getrootfs(char **fstypp, char **fsmodp)
4666 extern char *strplumb_get_netdev_path(void);
4667 char *propstr = NULL;
4670 * Check fstype property; for diskless it should be one of "nfs",
4671 * "nfs2", "nfs3" or "nfs4".
4673 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4674 DDI_PROP_DONTPASS, "fstype", &propstr)
4675 == DDI_SUCCESS) {
4676 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4677 ddi_prop_free(propstr);
4680 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4681 * assume the type of this root filesystem is 'zfs'.
4683 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4684 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4685 == DDI_SUCCESS) {
4686 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4687 ddi_prop_free(propstr);
4690 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4691 *fstypp = *fsmodp = rootfs.bo_fstype;
4692 return;
4695 ++netboot;
4697 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4698 (void) strcpy(rootfs.bo_fstype, "nfs");
4699 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4700 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4703 * check if path to network interface is specified in bootpath
4704 * or by a hypervisor domain configuration file.
4705 * XXPV - enable strlumb_get_netdev_path()
4707 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4708 "xpv-nfsroot")) {
4709 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4710 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4711 DDI_PROP_DONTPASS, "bootpath", &propstr)
4712 == DDI_SUCCESS) {
4713 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4714 ddi_prop_free(propstr);
4715 } else {
4716 /* attempt to determine netdev_path via boot_mac address */
4717 netdev_path = strplumb_get_netdev_path();
4718 if (netdev_path == NULL)
4719 panic("cannot find boot network interface");
4720 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4722 *fstypp = rootfs.bo_fstype;
4723 *fsmodp = "nfs";
4725 #endif
4728 * VFS feature routines
4731 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4732 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4734 /* Register a feature in the vfs */
4735 void
4736 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4738 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4739 if (vfsp->vfs_implp == NULL)
4740 return;
4742 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4745 void
4746 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4748 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4749 if (vfsp->vfs_implp == NULL)
4750 return;
4751 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4755 * Query a vfs for a feature.
4756 * Returns 1 if feature is present, 0 if not
4759 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4761 int ret = 0;
4763 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4764 if (vfsp->vfs_implp == NULL)
4765 return (ret);
4767 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4768 ret = 1;
4770 return (ret);
4774 * Propagate feature set from one vfs to another
4776 void
4777 vfs_propagate_features(vfs_t *from, vfs_t *to)
4779 int i;
4781 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4782 return;
4784 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4785 to->vfs_featureset[i] = from->vfs_featureset[i];
4789 #define LOFINODE_PATH "/dev/lofi/%d"
4792 * Return the vnode for the lofi node if there's a lofi mount in place.
4793 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4794 * failure.
4797 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4799 char *path = NULL;
4800 int strsize;
4801 int err;
4803 if (vfsp->vfs_lofi_minor == 0) {
4804 *vpp = NULL;
4805 return (-1);
4808 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4809 path = kmem_alloc(strsize + 1, KM_SLEEP);
4810 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4813 * We may be inside a zone, so we need to use the /dev path, but
4814 * it's created asynchronously, so we wait here.
4816 for (;;) {
4817 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4819 if (err != ENOENT)
4820 break;
4822 if ((err = delay_sig(hz / 8)) == EINTR)
4823 break;
4826 if (err)
4827 *vpp = NULL;
4829 kmem_free(path, strsize + 1);
4830 return (err);