5042 stop using deprecated atomic functions
[unleashed.git] / usr / src / uts / common / vm / seg_vn.c
blob2803f071f79ecf2087d9cdb899f76f4e2bd680ce
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
29 * University Copyright- Copyright (c) 1982, 1986, 1988
30 * The Regents of the University of California
31 * All Rights Reserved
33 * University Acknowledgment- Portions of this document are derived from
34 * software developed by the University of California, Berkeley, and its
35 * contributors.
39 * VM - shared or copy-on-write from a vnode/anonymous memory.
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/t_lock.h>
45 #include <sys/errno.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/debug.h>
49 #include <sys/cred.h>
50 #include <sys/vmsystm.h>
51 #include <sys/tuneable.h>
52 #include <sys/bitmap.h>
53 #include <sys/swap.h>
54 #include <sys/kmem.h>
55 #include <sys/sysmacros.h>
56 #include <sys/vtrace.h>
57 #include <sys/cmn_err.h>
58 #include <sys/callb.h>
59 #include <sys/vm.h>
60 #include <sys/dumphdr.h>
61 #include <sys/lgrp.h>
63 #include <vm/hat.h>
64 #include <vm/as.h>
65 #include <vm/seg.h>
66 #include <vm/seg_vn.h>
67 #include <vm/pvn.h>
68 #include <vm/anon.h>
69 #include <vm/page.h>
70 #include <vm/vpage.h>
71 #include <sys/proc.h>
72 #include <sys/task.h>
73 #include <sys/project.h>
74 #include <sys/zone.h>
75 #include <sys/shm_impl.h>
77 * Private seg op routines.
79 static int segvn_dup(struct seg *seg, struct seg *newseg);
80 static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
81 static void segvn_free(struct seg *seg);
82 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
83 caddr_t addr, size_t len, enum fault_type type,
84 enum seg_rw rw);
85 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
86 static int segvn_setprot(struct seg *seg, caddr_t addr,
87 size_t len, uint_t prot);
88 static int segvn_checkprot(struct seg *seg, caddr_t addr,
89 size_t len, uint_t prot);
90 static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
91 static size_t segvn_swapout(struct seg *seg);
92 static int segvn_sync(struct seg *seg, caddr_t addr, size_t len,
93 int attr, uint_t flags);
94 static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len,
95 char *vec);
96 static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
97 int attr, int op, ulong_t *lockmap, size_t pos);
98 static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
99 uint_t *protv);
100 static u_offset_t segvn_getoffset(struct seg *seg, caddr_t addr);
101 static int segvn_gettype(struct seg *seg, caddr_t addr);
102 static int segvn_getvp(struct seg *seg, caddr_t addr,
103 struct vnode **vpp);
104 static int segvn_advise(struct seg *seg, caddr_t addr, size_t len,
105 uint_t behav);
106 static void segvn_dump(struct seg *seg);
107 static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
108 struct page ***ppp, enum lock_type type, enum seg_rw rw);
109 static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
110 uint_t szc);
111 static int segvn_getmemid(struct seg *seg, caddr_t addr,
112 memid_t *memidp);
113 static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t);
114 static int segvn_capable(struct seg *seg, segcapability_t capable);
116 struct seg_ops segvn_ops = {
117 segvn_dup,
118 segvn_unmap,
119 segvn_free,
120 segvn_fault,
121 segvn_faulta,
122 segvn_setprot,
123 segvn_checkprot,
124 segvn_kluster,
125 segvn_swapout,
126 segvn_sync,
127 segvn_incore,
128 segvn_lockop,
129 segvn_getprot,
130 segvn_getoffset,
131 segvn_gettype,
132 segvn_getvp,
133 segvn_advise,
134 segvn_dump,
135 segvn_pagelock,
136 segvn_setpagesize,
137 segvn_getmemid,
138 segvn_getpolicy,
139 segvn_capable,
143 * Common zfod structures, provided as a shorthand for others to use.
145 static segvn_crargs_t zfod_segvn_crargs =
146 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
147 static segvn_crargs_t kzfod_segvn_crargs =
148 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
149 PROT_ALL & ~PROT_USER);
150 static segvn_crargs_t stack_noexec_crargs =
151 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
153 caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */
154 caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */
155 caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */
156 caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
158 #define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */
160 size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */
162 size_t segvn_pglock_comb_thrshld = (1UL << 16); /* 64K */
163 size_t segvn_pglock_comb_balign = (1UL << 16); /* 64K */
164 uint_t segvn_pglock_comb_bshift;
165 size_t segvn_pglock_comb_palign;
167 static int segvn_concat(struct seg *, struct seg *, int);
168 static int segvn_extend_prev(struct seg *, struct seg *,
169 struct segvn_crargs *, size_t);
170 static int segvn_extend_next(struct seg *, struct seg *,
171 struct segvn_crargs *, size_t);
172 static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
173 static void segvn_pagelist_rele(page_t **);
174 static void segvn_setvnode_mpss(vnode_t *);
175 static void segvn_relocate_pages(page_t **, page_t *);
176 static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
177 static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
178 uint_t, page_t **, page_t **, uint_t *, int *);
179 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
180 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
181 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
182 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
183 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
184 u_offset_t, struct vpage *, page_t **, uint_t,
185 enum fault_type, enum seg_rw, int);
186 static void segvn_vpage(struct seg *);
187 static size_t segvn_count_swap_by_vpages(struct seg *);
189 static void segvn_purge(struct seg *seg);
190 static int segvn_reclaim(void *, caddr_t, size_t, struct page **,
191 enum seg_rw, int);
192 static int shamp_reclaim(void *, caddr_t, size_t, struct page **,
193 enum seg_rw, int);
195 static int sameprot(struct seg *, caddr_t, size_t);
197 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
198 static int segvn_clrszc(struct seg *);
199 static struct seg *segvn_split_seg(struct seg *, caddr_t);
200 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
201 ulong_t, uint_t);
203 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
204 size_t, void *, u_offset_t);
206 static struct kmem_cache *segvn_cache;
207 static struct kmem_cache **segvn_szc_cache;
209 #ifdef VM_STATS
210 static struct segvnvmstats_str {
211 ulong_t fill_vp_pages[31];
212 ulong_t fltvnpages[49];
213 ulong_t fullszcpages[10];
214 ulong_t relocatepages[3];
215 ulong_t fltanpages[17];
216 ulong_t pagelock[2];
217 ulong_t demoterange[3];
218 } segvnvmstats;
219 #endif /* VM_STATS */
221 #define SDR_RANGE 1 /* demote entire range */
222 #define SDR_END 2 /* demote non aligned ends only */
224 #define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \
225 if ((len) != 0) { \
226 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \
227 ASSERT(lpgaddr >= (seg)->s_base); \
228 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \
229 (len)), pgsz); \
230 ASSERT(lpgeaddr > lpgaddr); \
231 ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \
232 } else { \
233 lpgeaddr = lpgaddr = (addr); \
237 /*ARGSUSED*/
238 static int
239 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
241 struct segvn_data *svd = buf;
243 rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
244 mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
245 svd->svn_trnext = svd->svn_trprev = NULL;
246 return (0);
249 /*ARGSUSED1*/
250 static void
251 segvn_cache_destructor(void *buf, void *cdrarg)
253 struct segvn_data *svd = buf;
255 rw_destroy(&svd->lock);
256 mutex_destroy(&svd->segfree_syncmtx);
259 /*ARGSUSED*/
260 static int
261 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
263 bzero(buf, sizeof (svntr_t));
264 return (0);
268 * Patching this variable to non-zero allows the system to run with
269 * stacks marked as "not executable". It's a bit of a kludge, but is
270 * provided as a tweakable for platforms that export those ABIs
271 * (e.g. sparc V8) that have executable stacks enabled by default.
272 * There are also some restrictions for platforms that don't actually
273 * implement 'noexec' protections.
275 * Once enabled, the system is (therefore) unable to provide a fully
276 * ABI-compliant execution environment, though practically speaking,
277 * most everything works. The exceptions are generally some interpreters
278 * and debuggers that create executable code on the stack and jump
279 * into it (without explicitly mprotecting the address range to include
280 * PROT_EXEC).
282 * One important class of applications that are disabled are those
283 * that have been transformed into malicious agents using one of the
284 * numerous "buffer overflow" attacks. See 4007890.
286 int noexec_user_stack = 0;
287 int noexec_user_stack_log = 1;
289 int segvn_lpg_disable = 0;
290 uint_t segvn_maxpgszc = 0;
292 ulong_t segvn_vmpss_clrszc_cnt;
293 ulong_t segvn_vmpss_clrszc_err;
294 ulong_t segvn_fltvnpages_clrszc_cnt;
295 ulong_t segvn_fltvnpages_clrszc_err;
296 ulong_t segvn_setpgsz_align_err;
297 ulong_t segvn_setpgsz_anon_align_err;
298 ulong_t segvn_setpgsz_getattr_err;
299 ulong_t segvn_setpgsz_eof_err;
300 ulong_t segvn_faultvnmpss_align_err1;
301 ulong_t segvn_faultvnmpss_align_err2;
302 ulong_t segvn_faultvnmpss_align_err3;
303 ulong_t segvn_faultvnmpss_align_err4;
304 ulong_t segvn_faultvnmpss_align_err5;
305 ulong_t segvn_vmpss_pageio_deadlk_err;
307 int segvn_use_regions = 1;
310 * Segvn supports text replication optimization for NUMA platforms. Text
311 * replica's are represented by anon maps (amp). There's one amp per text file
312 * region per lgroup. A process chooses the amp for each of its text mappings
313 * based on the lgroup assignment of its main thread (t_tid = 1). All
314 * processes that want a replica on a particular lgroup for the same text file
315 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
316 * with vp,off,size,szc used as a key. Text replication segments are read only
317 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
318 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
319 * pages. Replication amp is assigned to a segment when it gets its first
320 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
321 * rechecks periodically if the process still maps an amp local to the main
322 * thread. If not async thread forces process to remap to an amp in the new
323 * home lgroup of the main thread. Current text replication implementation
324 * only provides the benefit to workloads that do most of their work in the
325 * main thread of a process or all the threads of a process run in the same
326 * lgroup. To extend text replication benefit to different types of
327 * multithreaded workloads further work would be needed in the hat layer to
328 * allow the same virtual address in the same hat to simultaneously map
329 * different physical addresses (i.e. page table replication would be needed
330 * for x86).
332 * amp pages are used instead of vnode pages as long as segment has a very
333 * simple life cycle. It's created via segvn_create(), handles S_EXEC
334 * (S_READ) pagefaults and is fully unmapped. If anything more complicated
335 * happens such as protection is changed, real COW fault happens, pagesize is
336 * changed, MC_LOCK is requested or segment is partially unmapped we turn off
337 * text replication by converting the segment back to vnode only segment
338 * (unmap segment's address range and set svd->amp to NULL).
340 * The original file can be changed after amp is inserted into
341 * svntr_hashtab. Processes that are launched after the file is already
342 * changed can't use the replica's created prior to the file change. To
343 * implement this functionality hash entries are timestamped. Replica's can
344 * only be used if current file modification time is the same as the timestamp
345 * saved when hash entry was created. However just timestamps alone are not
346 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
347 * deal with file changes via MAP_SHARED mappings differently. When writable
348 * MAP_SHARED mappings are created to vnodes marked as executable we mark all
349 * existing replica's for this vnode as not usable for future text
350 * mappings. And we don't create new replica's for files that currently have
351 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
352 * true).
355 #define SEGVN_TEXTREPL_MAXBYTES_FACTOR (20)
356 size_t segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
358 static ulong_t svntr_hashtab_sz = 512;
359 static svntr_bucket_t *svntr_hashtab = NULL;
360 static struct kmem_cache *svntr_cache;
361 static svntr_stats_t *segvn_textrepl_stats;
362 static ksema_t segvn_trasync_sem;
364 int segvn_disable_textrepl = 1;
365 size_t textrepl_size_thresh = (size_t)-1;
366 size_t segvn_textrepl_bytes = 0;
367 size_t segvn_textrepl_max_bytes = 0;
368 clock_t segvn_update_textrepl_interval = 0;
369 int segvn_update_tr_time = 10;
370 int segvn_disable_textrepl_update = 0;
372 static void segvn_textrepl(struct seg *);
373 static void segvn_textunrepl(struct seg *, int);
374 static void segvn_inval_trcache(vnode_t *);
375 static void segvn_trasync_thread(void);
376 static void segvn_trupdate_wakeup(void *);
377 static void segvn_trupdate(void);
378 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
379 ulong_t);
382 * Initialize segvn data structures
384 void
385 segvn_init(void)
387 uint_t maxszc;
388 uint_t szc;
389 size_t pgsz;
391 segvn_cache = kmem_cache_create("segvn_cache",
392 sizeof (struct segvn_data), 0,
393 segvn_cache_constructor, segvn_cache_destructor, NULL,
394 NULL, NULL, 0);
396 if (segvn_lpg_disable == 0) {
397 szc = maxszc = page_num_pagesizes() - 1;
398 if (szc == 0) {
399 segvn_lpg_disable = 1;
401 if (page_get_pagesize(0) != PAGESIZE) {
402 panic("segvn_init: bad szc 0");
403 /*NOTREACHED*/
405 while (szc != 0) {
406 pgsz = page_get_pagesize(szc);
407 if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
408 panic("segvn_init: bad szc %d", szc);
409 /*NOTREACHED*/
411 szc--;
413 if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
414 segvn_maxpgszc = maxszc;
417 if (segvn_maxpgszc) {
418 segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
419 (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
420 KM_SLEEP);
423 for (szc = 1; szc <= segvn_maxpgszc; szc++) {
424 char str[32];
426 (void) sprintf(str, "segvn_szc_cache%d", szc);
427 segvn_szc_cache[szc] = kmem_cache_create(str,
428 page_get_pagecnt(szc) * sizeof (page_t *), 0,
429 NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
433 if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
434 segvn_use_regions = 0;
437 * For now shared regions and text replication segvn support
438 * are mutually exclusive. This is acceptable because
439 * currently significant benefit from text replication was
440 * only observed on AMD64 NUMA platforms (due to relatively
441 * small L2$ size) and currently we don't support shared
442 * regions on x86.
444 if (segvn_use_regions && !segvn_disable_textrepl) {
445 segvn_disable_textrepl = 1;
448 #if defined(_LP64)
449 if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
450 !segvn_disable_textrepl) {
451 ulong_t i;
452 size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
454 svntr_cache = kmem_cache_create("svntr_cache",
455 sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
456 NULL, NULL, NULL, 0);
457 svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
458 for (i = 0; i < svntr_hashtab_sz; i++) {
459 mutex_init(&svntr_hashtab[i].tr_lock, NULL,
460 MUTEX_DEFAULT, NULL);
462 segvn_textrepl_max_bytes = ptob(physmem) /
463 segvn_textrepl_max_bytes_factor;
464 segvn_textrepl_stats = kmem_zalloc(NCPU *
465 sizeof (svntr_stats_t), KM_SLEEP);
466 sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
467 (void) thread_create(NULL, 0, segvn_trasync_thread,
468 NULL, 0, &p0, TS_RUN, minclsyspri);
470 #endif
472 if (!ISP2(segvn_pglock_comb_balign) ||
473 segvn_pglock_comb_balign < PAGESIZE) {
474 segvn_pglock_comb_balign = 1UL << 16; /* 64K */
476 segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1;
477 segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign);
480 #define SEGVN_PAGEIO ((void *)0x1)
481 #define SEGVN_NOPAGEIO ((void *)0x2)
483 static void
484 segvn_setvnode_mpss(vnode_t *vp)
486 int err;
488 ASSERT(vp->v_mpssdata == NULL ||
489 vp->v_mpssdata == SEGVN_PAGEIO ||
490 vp->v_mpssdata == SEGVN_NOPAGEIO);
492 if (vp->v_mpssdata == NULL) {
493 if (vn_vmpss_usepageio(vp)) {
494 err = VOP_PAGEIO(vp, (page_t *)NULL,
495 (u_offset_t)0, 0, 0, CRED(), NULL);
496 } else {
497 err = ENOSYS;
500 * set v_mpssdata just once per vnode life
501 * so that it never changes.
503 mutex_enter(&vp->v_lock);
504 if (vp->v_mpssdata == NULL) {
505 if (err == EINVAL) {
506 vp->v_mpssdata = SEGVN_PAGEIO;
507 } else {
508 vp->v_mpssdata = SEGVN_NOPAGEIO;
511 mutex_exit(&vp->v_lock);
516 segvn_create(struct seg *seg, void *argsp)
518 struct segvn_crargs *a = (struct segvn_crargs *)argsp;
519 struct segvn_data *svd;
520 size_t swresv = 0;
521 struct cred *cred;
522 struct anon_map *amp;
523 int error = 0;
524 size_t pgsz;
525 lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
526 int use_rgn = 0;
527 int trok = 0;
529 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
531 if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
532 panic("segvn_create type");
533 /*NOTREACHED*/
537 * Check arguments. If a shared anon structure is given then
538 * it is illegal to also specify a vp.
540 if (a->amp != NULL && a->vp != NULL) {
541 panic("segvn_create anon_map");
542 /*NOTREACHED*/
545 if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
546 a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
547 segvn_use_regions) {
548 use_rgn = 1;
551 /* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
552 if (a->type == MAP_SHARED)
553 a->flags &= ~MAP_NORESERVE;
555 if (a->szc != 0) {
556 if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
557 (a->amp != NULL && a->type == MAP_PRIVATE) ||
558 (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
559 a->szc = 0;
560 } else {
561 if (a->szc > segvn_maxpgszc)
562 a->szc = segvn_maxpgszc;
563 pgsz = page_get_pagesize(a->szc);
564 if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
565 !IS_P2ALIGNED(seg->s_size, pgsz)) {
566 a->szc = 0;
567 } else if (a->vp != NULL) {
568 if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
570 * paranoid check.
571 * hat_page_demote() is not supported
572 * on swapfs pages.
574 a->szc = 0;
575 } else if (map_addr_vacalign_check(seg->s_base,
576 a->offset & PAGEMASK)) {
577 a->szc = 0;
579 } else if (a->amp != NULL) {
580 pgcnt_t anum = btopr(a->offset);
581 pgcnt_t pgcnt = page_get_pagecnt(a->szc);
582 if (!IS_P2ALIGNED(anum, pgcnt)) {
583 a->szc = 0;
590 * If segment may need private pages, reserve them now.
592 if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
593 (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
594 if (anon_resv_zone(seg->s_size,
595 seg->s_as->a_proc->p_zone) == 0)
596 return (EAGAIN);
597 swresv = seg->s_size;
598 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
599 seg, swresv, 1);
603 * Reserve any mapping structures that may be required.
605 * Don't do it for segments that may use regions. It's currently a
606 * noop in the hat implementations anyway.
608 if (!use_rgn) {
609 hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
612 if (a->cred) {
613 cred = a->cred;
614 crhold(cred);
615 } else {
616 crhold(cred = CRED());
619 /* Inform the vnode of the new mapping */
620 if (a->vp != NULL) {
621 error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
622 seg->s_as, seg->s_base, seg->s_size, a->prot,
623 a->maxprot, a->type, cred, NULL);
624 if (error) {
625 if (swresv != 0) {
626 anon_unresv_zone(swresv,
627 seg->s_as->a_proc->p_zone);
628 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
629 "anon proc:%p %lu %u", seg, swresv, 0);
631 crfree(cred);
632 if (!use_rgn) {
633 hat_unload(seg->s_as->a_hat, seg->s_base,
634 seg->s_size, HAT_UNLOAD_UNMAP);
636 return (error);
639 * svntr_hashtab will be NULL if we support shared regions.
641 trok = ((a->flags & MAP_TEXT) &&
642 (seg->s_size > textrepl_size_thresh ||
643 (a->flags & _MAP_TEXTREPL)) &&
644 lgrp_optimizations() && svntr_hashtab != NULL &&
645 a->type == MAP_PRIVATE && swresv == 0 &&
646 !(a->flags & MAP_NORESERVE) &&
647 seg->s_as != &kas && a->vp->v_type == VREG);
649 ASSERT(!trok || !use_rgn);
653 * MAP_NORESERVE mappings don't count towards the VSZ of a process
654 * until we fault the pages in.
656 if ((a->vp == NULL || a->vp->v_type != VREG) &&
657 a->flags & MAP_NORESERVE) {
658 seg->s_as->a_resvsize -= seg->s_size;
662 * If more than one segment in the address space, and they're adjacent
663 * virtually, try to concatenate them. Don't concatenate if an
664 * explicit anon_map structure was supplied (e.g., SystemV shared
665 * memory) or if we'll use text replication for this segment.
667 if (a->amp == NULL && !use_rgn && !trok) {
668 struct seg *pseg, *nseg;
669 struct segvn_data *psvd, *nsvd;
670 lgrp_mem_policy_t ppolicy, npolicy;
671 uint_t lgrp_mem_policy_flags = 0;
672 extern lgrp_mem_policy_t lgrp_mem_default_policy;
675 * Memory policy flags (lgrp_mem_policy_flags) is valid when
676 * extending stack/heap segments.
678 if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
679 !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
680 lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
681 } else {
683 * Get policy when not extending it from another segment
685 mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
689 * First, try to concatenate the previous and new segments
691 pseg = AS_SEGPREV(seg->s_as, seg);
692 if (pseg != NULL &&
693 pseg->s_base + pseg->s_size == seg->s_base &&
694 pseg->s_ops == &segvn_ops) {
696 * Get memory allocation policy from previous segment.
697 * When extension is specified (e.g. for heap) apply
698 * this policy to the new segment regardless of the
699 * outcome of segment concatenation. Extension occurs
700 * for non-default policy otherwise default policy is
701 * used and is based on extended segment size.
703 psvd = (struct segvn_data *)pseg->s_data;
704 ppolicy = psvd->policy_info.mem_policy;
705 if (lgrp_mem_policy_flags ==
706 LGRP_MP_FLAG_EXTEND_UP) {
707 if (ppolicy != lgrp_mem_default_policy) {
708 mpolicy = ppolicy;
709 } else {
710 mpolicy = lgrp_mem_policy_default(
711 pseg->s_size + seg->s_size,
712 a->type);
716 if (mpolicy == ppolicy &&
717 (pseg->s_size + seg->s_size <=
718 segvn_comb_thrshld || psvd->amp == NULL) &&
719 segvn_extend_prev(pseg, seg, a, swresv) == 0) {
721 * success! now try to concatenate
722 * with following seg
724 crfree(cred);
725 nseg = AS_SEGNEXT(pseg->s_as, pseg);
726 if (nseg != NULL &&
727 nseg != pseg &&
728 nseg->s_ops == &segvn_ops &&
729 pseg->s_base + pseg->s_size ==
730 nseg->s_base)
731 (void) segvn_concat(pseg, nseg, 0);
732 ASSERT(pseg->s_szc == 0 ||
733 (a->szc == pseg->s_szc &&
734 IS_P2ALIGNED(pseg->s_base, pgsz) &&
735 IS_P2ALIGNED(pseg->s_size, pgsz)));
736 return (0);
741 * Failed, so try to concatenate with following seg
743 nseg = AS_SEGNEXT(seg->s_as, seg);
744 if (nseg != NULL &&
745 seg->s_base + seg->s_size == nseg->s_base &&
746 nseg->s_ops == &segvn_ops) {
748 * Get memory allocation policy from next segment.
749 * When extension is specified (e.g. for stack) apply
750 * this policy to the new segment regardless of the
751 * outcome of segment concatenation. Extension occurs
752 * for non-default policy otherwise default policy is
753 * used and is based on extended segment size.
755 nsvd = (struct segvn_data *)nseg->s_data;
756 npolicy = nsvd->policy_info.mem_policy;
757 if (lgrp_mem_policy_flags ==
758 LGRP_MP_FLAG_EXTEND_DOWN) {
759 if (npolicy != lgrp_mem_default_policy) {
760 mpolicy = npolicy;
761 } else {
762 mpolicy = lgrp_mem_policy_default(
763 nseg->s_size + seg->s_size,
764 a->type);
768 if (mpolicy == npolicy &&
769 segvn_extend_next(seg, nseg, a, swresv) == 0) {
770 crfree(cred);
771 ASSERT(nseg->s_szc == 0 ||
772 (a->szc == nseg->s_szc &&
773 IS_P2ALIGNED(nseg->s_base, pgsz) &&
774 IS_P2ALIGNED(nseg->s_size, pgsz)));
775 return (0);
780 if (a->vp != NULL) {
781 VN_HOLD(a->vp);
782 if (a->type == MAP_SHARED)
783 lgrp_shm_policy_init(NULL, a->vp);
785 svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
787 seg->s_ops = &segvn_ops;
788 seg->s_data = (void *)svd;
789 seg->s_szc = a->szc;
791 svd->seg = seg;
792 svd->vp = a->vp;
794 * Anonymous mappings have no backing file so the offset is meaningless.
796 svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
797 svd->prot = a->prot;
798 svd->maxprot = a->maxprot;
799 svd->pageprot = 0;
800 svd->type = a->type;
801 svd->vpage = NULL;
802 svd->cred = cred;
803 svd->advice = MADV_NORMAL;
804 svd->pageadvice = 0;
805 svd->flags = (ushort_t)a->flags;
806 svd->softlockcnt = 0;
807 svd->softlockcnt_sbase = 0;
808 svd->softlockcnt_send = 0;
809 svd->rcookie = HAT_INVALID_REGION_COOKIE;
810 svd->pageswap = 0;
812 if (a->szc != 0 && a->vp != NULL) {
813 segvn_setvnode_mpss(a->vp);
815 if (svd->type == MAP_SHARED && svd->vp != NULL &&
816 (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
817 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
818 segvn_inval_trcache(svd->vp);
821 amp = a->amp;
822 if ((svd->amp = amp) == NULL) {
823 svd->anon_index = 0;
824 if (svd->type == MAP_SHARED) {
825 svd->swresv = 0;
827 * Shared mappings to a vp need no other setup.
828 * If we have a shared mapping to an anon_map object
829 * which hasn't been allocated yet, allocate the
830 * struct now so that it will be properly shared
831 * by remembering the swap reservation there.
833 if (a->vp == NULL) {
834 svd->amp = anonmap_alloc(seg->s_size, swresv,
835 ANON_SLEEP);
836 svd->amp->a_szc = seg->s_szc;
838 } else {
840 * Private mapping (with or without a vp).
841 * Allocate anon_map when needed.
843 svd->swresv = swresv;
845 } else {
846 pgcnt_t anon_num;
849 * Mapping to an existing anon_map structure without a vp.
850 * For now we will insure that the segment size isn't larger
851 * than the size - offset gives us. Later on we may wish to
852 * have the anon array dynamically allocated itself so that
853 * we don't always have to allocate all the anon pointer slots.
854 * This of course involves adding extra code to check that we
855 * aren't trying to use an anon pointer slot beyond the end
856 * of the currently allocated anon array.
858 if ((amp->size - a->offset) < seg->s_size) {
859 panic("segvn_create anon_map size");
860 /*NOTREACHED*/
863 anon_num = btopr(a->offset);
865 if (a->type == MAP_SHARED) {
867 * SHARED mapping to a given anon_map.
869 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
870 amp->refcnt++;
871 if (a->szc > amp->a_szc) {
872 amp->a_szc = a->szc;
874 ANON_LOCK_EXIT(&amp->a_rwlock);
875 svd->anon_index = anon_num;
876 svd->swresv = 0;
877 } else {
879 * PRIVATE mapping to a given anon_map.
880 * Make sure that all the needed anon
881 * structures are created (so that we will
882 * share the underlying pages if nothing
883 * is written by this mapping) and then
884 * duplicate the anon array as is done
885 * when a privately mapped segment is dup'ed.
887 struct anon *ap;
888 caddr_t addr;
889 caddr_t eaddr;
890 ulong_t anon_idx;
891 int hat_flag = HAT_LOAD;
893 if (svd->flags & MAP_TEXT) {
894 hat_flag |= HAT_LOAD_TEXT;
897 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
898 svd->amp->a_szc = seg->s_szc;
899 svd->anon_index = 0;
900 svd->swresv = swresv;
903 * Prevent 2 threads from allocating anon
904 * slots simultaneously.
906 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
907 eaddr = seg->s_base + seg->s_size;
909 for (anon_idx = anon_num, addr = seg->s_base;
910 addr < eaddr; addr += PAGESIZE, anon_idx++) {
911 page_t *pp;
913 if ((ap = anon_get_ptr(amp->ahp,
914 anon_idx)) != NULL)
915 continue;
918 * Allocate the anon struct now.
919 * Might as well load up translation
920 * to the page while we're at it...
922 pp = anon_zero(seg, addr, &ap, cred);
923 if (ap == NULL || pp == NULL) {
924 panic("segvn_create anon_zero");
925 /*NOTREACHED*/
929 * Re-acquire the anon_map lock and
930 * initialize the anon array entry.
932 ASSERT(anon_get_ptr(amp->ahp,
933 anon_idx) == NULL);
934 (void) anon_set_ptr(amp->ahp, anon_idx, ap,
935 ANON_SLEEP);
937 ASSERT(seg->s_szc == 0);
938 ASSERT(!IS_VMODSORT(pp->p_vnode));
940 ASSERT(use_rgn == 0);
941 hat_memload(seg->s_as->a_hat, addr, pp,
942 svd->prot & ~PROT_WRITE, hat_flag);
944 page_unlock(pp);
946 ASSERT(seg->s_szc == 0);
947 anon_dup(amp->ahp, anon_num, svd->amp->ahp,
948 0, seg->s_size);
949 ANON_LOCK_EXIT(&amp->a_rwlock);
954 * Set default memory allocation policy for segment
956 * Always set policy for private memory at least for initialization
957 * even if this is a shared memory segment
959 (void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
961 if (svd->type == MAP_SHARED)
962 (void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
963 svd->vp, svd->offset, seg->s_size);
965 if (use_rgn) {
966 ASSERT(!trok);
967 ASSERT(svd->amp == NULL);
968 svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
969 seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
970 (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
971 HAT_REGION_TEXT);
974 ASSERT(!trok || !(svd->prot & PROT_WRITE));
975 svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
977 return (0);
981 * Concatenate two existing segments, if possible.
982 * Return 0 on success, -1 if two segments are not compatible
983 * or -2 on memory allocation failure.
984 * If amp_cat == 1 then try and concat segments with anon maps
986 static int
987 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
989 struct segvn_data *svd1 = seg1->s_data;
990 struct segvn_data *svd2 = seg2->s_data;
991 struct anon_map *amp1 = svd1->amp;
992 struct anon_map *amp2 = svd2->amp;
993 struct vpage *vpage1 = svd1->vpage;
994 struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
995 size_t size, nvpsize;
996 pgcnt_t npages1, npages2;
998 ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
999 ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1000 ASSERT(seg1->s_ops == seg2->s_ops);
1002 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
1003 HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1004 return (-1);
1007 /* both segments exist, try to merge them */
1008 #define incompat(x) (svd1->x != svd2->x)
1009 if (incompat(vp) || incompat(maxprot) ||
1010 (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
1011 (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
1012 incompat(type) || incompat(cred) || incompat(flags) ||
1013 seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
1014 (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0)
1015 return (-1);
1016 #undef incompat
1019 * vp == NULL implies zfod, offset doesn't matter
1021 if (svd1->vp != NULL &&
1022 svd1->offset + seg1->s_size != svd2->offset) {
1023 return (-1);
1027 * Don't concatenate if either segment uses text replication.
1029 if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1030 return (-1);
1034 * Fail early if we're not supposed to concatenate
1035 * segments with non NULL amp.
1037 if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1038 return (-1);
1041 if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1042 if (amp1 != amp2) {
1043 return (-1);
1045 if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1046 svd2->anon_index) {
1047 return (-1);
1049 ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1053 * If either seg has vpages, create a new merged vpage array.
1055 if (vpage1 != NULL || vpage2 != NULL) {
1056 struct vpage *vp, *evp;
1058 npages1 = seg_pages(seg1);
1059 npages2 = seg_pages(seg2);
1060 nvpsize = vpgtob(npages1 + npages2);
1062 if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1063 return (-2);
1066 if (vpage1 != NULL) {
1067 bcopy(vpage1, nvpage, vpgtob(npages1));
1068 } else {
1069 evp = nvpage + npages1;
1070 for (vp = nvpage; vp < evp; vp++) {
1071 VPP_SETPROT(vp, svd1->prot);
1072 VPP_SETADVICE(vp, svd1->advice);
1076 if (vpage2 != NULL) {
1077 bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1078 } else {
1079 evp = nvpage + npages1 + npages2;
1080 for (vp = nvpage + npages1; vp < evp; vp++) {
1081 VPP_SETPROT(vp, svd2->prot);
1082 VPP_SETADVICE(vp, svd2->advice);
1086 if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1087 ASSERT(svd1->swresv == seg1->s_size);
1088 ASSERT(!(svd1->flags & MAP_NORESERVE));
1089 ASSERT(!(svd2->flags & MAP_NORESERVE));
1090 evp = nvpage + npages1;
1091 for (vp = nvpage; vp < evp; vp++) {
1092 VPP_SETSWAPRES(vp);
1096 if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1097 ASSERT(svd2->swresv == seg2->s_size);
1098 ASSERT(!(svd1->flags & MAP_NORESERVE));
1099 ASSERT(!(svd2->flags & MAP_NORESERVE));
1100 vp = nvpage + npages1;
1101 evp = vp + npages2;
1102 for (; vp < evp; vp++) {
1103 VPP_SETSWAPRES(vp);
1107 ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1108 (svd1->pageswap == 0 && svd2->pageswap == 0));
1111 * If either segment has private pages, create a new merged anon
1112 * array. If mergeing shared anon segments just decrement anon map's
1113 * refcnt.
1115 if (amp1 != NULL && svd1->type == MAP_SHARED) {
1116 ASSERT(amp1 == amp2 && svd1->vp == NULL);
1117 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1118 ASSERT(amp1->refcnt >= 2);
1119 amp1->refcnt--;
1120 ANON_LOCK_EXIT(&amp1->a_rwlock);
1121 svd2->amp = NULL;
1122 } else if (amp1 != NULL || amp2 != NULL) {
1123 struct anon_hdr *nahp;
1124 struct anon_map *namp = NULL;
1125 size_t asize;
1127 ASSERT(svd1->type == MAP_PRIVATE);
1129 asize = seg1->s_size + seg2->s_size;
1130 if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1131 if (nvpage != NULL) {
1132 kmem_free(nvpage, nvpsize);
1134 return (-2);
1136 if (amp1 != NULL) {
1138 * XXX anon rwlock is not really needed because
1139 * this is a private segment and we are writers.
1141 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1142 ASSERT(amp1->refcnt == 1);
1143 if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1144 nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1145 anon_release(nahp, btop(asize));
1146 ANON_LOCK_EXIT(&amp1->a_rwlock);
1147 if (nvpage != NULL) {
1148 kmem_free(nvpage, nvpsize);
1150 return (-2);
1153 if (amp2 != NULL) {
1154 ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1155 ASSERT(amp2->refcnt == 1);
1156 if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1157 nahp, btop(seg1->s_size), btop(seg2->s_size),
1158 ANON_NOSLEEP)) {
1159 anon_release(nahp, btop(asize));
1160 ANON_LOCK_EXIT(&amp2->a_rwlock);
1161 if (amp1 != NULL) {
1162 ANON_LOCK_EXIT(&amp1->a_rwlock);
1164 if (nvpage != NULL) {
1165 kmem_free(nvpage, nvpsize);
1167 return (-2);
1170 if (amp1 != NULL) {
1171 namp = amp1;
1172 anon_release(amp1->ahp, btop(amp1->size));
1174 if (amp2 != NULL) {
1175 if (namp == NULL) {
1176 ASSERT(amp1 == NULL);
1177 namp = amp2;
1178 anon_release(amp2->ahp, btop(amp2->size));
1179 } else {
1180 amp2->refcnt--;
1181 ANON_LOCK_EXIT(&amp2->a_rwlock);
1182 anonmap_free(amp2);
1184 svd2->amp = NULL; /* needed for seg_free */
1186 namp->ahp = nahp;
1187 namp->size = asize;
1188 svd1->amp = namp;
1189 svd1->anon_index = 0;
1190 ANON_LOCK_EXIT(&namp->a_rwlock);
1193 * Now free the old vpage structures.
1195 if (nvpage != NULL) {
1196 if (vpage1 != NULL) {
1197 kmem_free(vpage1, vpgtob(npages1));
1199 if (vpage2 != NULL) {
1200 svd2->vpage = NULL;
1201 kmem_free(vpage2, vpgtob(npages2));
1203 if (svd2->pageprot) {
1204 svd1->pageprot = 1;
1206 if (svd2->pageadvice) {
1207 svd1->pageadvice = 1;
1209 if (svd2->pageswap) {
1210 svd1->pageswap = 1;
1212 svd1->vpage = nvpage;
1215 /* all looks ok, merge segments */
1216 svd1->swresv += svd2->swresv;
1217 svd2->swresv = 0; /* so seg_free doesn't release swap space */
1218 size = seg2->s_size;
1219 seg_free(seg2);
1220 seg1->s_size += size;
1221 return (0);
1225 * Extend the previous segment (seg1) to include the
1226 * new segment (seg2 + a), if possible.
1227 * Return 0 on success.
1229 static int
1230 segvn_extend_prev(seg1, seg2, a, swresv)
1231 struct seg *seg1, *seg2;
1232 struct segvn_crargs *a;
1233 size_t swresv;
1235 struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1236 size_t size;
1237 struct anon_map *amp1;
1238 struct vpage *new_vpage;
1241 * We don't need any segment level locks for "segvn" data
1242 * since the address space is "write" locked.
1244 ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1246 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1247 return (-1);
1250 /* second segment is new, try to extend first */
1251 /* XXX - should also check cred */
1252 if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1253 (!svd1->pageprot && (svd1->prot != a->prot)) ||
1254 svd1->type != a->type || svd1->flags != a->flags ||
1255 seg1->s_szc != a->szc || svd1->softlockcnt_send > 0)
1256 return (-1);
1258 /* vp == NULL implies zfod, offset doesn't matter */
1259 if (svd1->vp != NULL &&
1260 svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1261 return (-1);
1263 if (svd1->tr_state != SEGVN_TR_OFF) {
1264 return (-1);
1267 amp1 = svd1->amp;
1268 if (amp1) {
1269 pgcnt_t newpgs;
1272 * Segment has private pages, can data structures
1273 * be expanded?
1275 * Acquire the anon_map lock to prevent it from changing,
1276 * if it is shared. This ensures that the anon_map
1277 * will not change while a thread which has a read/write
1278 * lock on an address space references it.
1279 * XXX - Don't need the anon_map lock at all if "refcnt"
1280 * is 1.
1282 * Can't grow a MAP_SHARED segment with an anonmap because
1283 * there may be existing anon slots where we want to extend
1284 * the segment and we wouldn't know what to do with them
1285 * (e.g., for tmpfs right thing is to just leave them there,
1286 * for /dev/zero they should be cleared out).
1288 if (svd1->type == MAP_SHARED)
1289 return (-1);
1291 ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1292 if (amp1->refcnt > 1) {
1293 ANON_LOCK_EXIT(&amp1->a_rwlock);
1294 return (-1);
1296 newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1297 btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1299 if (newpgs == 0) {
1300 ANON_LOCK_EXIT(&amp1->a_rwlock);
1301 return (-1);
1303 amp1->size = ptob(newpgs);
1304 ANON_LOCK_EXIT(&amp1->a_rwlock);
1306 if (svd1->vpage != NULL) {
1307 struct vpage *vp, *evp;
1308 new_vpage =
1309 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1310 KM_NOSLEEP);
1311 if (new_vpage == NULL)
1312 return (-1);
1313 bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1314 kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1315 svd1->vpage = new_vpage;
1317 vp = new_vpage + seg_pages(seg1);
1318 evp = vp + seg_pages(seg2);
1319 for (; vp < evp; vp++)
1320 VPP_SETPROT(vp, a->prot);
1321 if (svd1->pageswap && swresv) {
1322 ASSERT(!(svd1->flags & MAP_NORESERVE));
1323 ASSERT(swresv == seg2->s_size);
1324 vp = new_vpage + seg_pages(seg1);
1325 for (; vp < evp; vp++) {
1326 VPP_SETSWAPRES(vp);
1330 ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1331 size = seg2->s_size;
1332 seg_free(seg2);
1333 seg1->s_size += size;
1334 svd1->swresv += swresv;
1335 if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1336 svd1->type == MAP_SHARED && svd1->vp != NULL &&
1337 (svd1->vp->v_flag & VVMEXEC)) {
1338 ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1339 segvn_inval_trcache(svd1->vp);
1341 return (0);
1345 * Extend the next segment (seg2) to include the
1346 * new segment (seg1 + a), if possible.
1347 * Return 0 on success.
1349 static int
1350 segvn_extend_next(
1351 struct seg *seg1,
1352 struct seg *seg2,
1353 struct segvn_crargs *a,
1354 size_t swresv)
1356 struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1357 size_t size;
1358 struct anon_map *amp2;
1359 struct vpage *new_vpage;
1362 * We don't need any segment level locks for "segvn" data
1363 * since the address space is "write" locked.
1365 ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1367 if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1368 return (-1);
1371 /* first segment is new, try to extend second */
1372 /* XXX - should also check cred */
1373 if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1374 (!svd2->pageprot && (svd2->prot != a->prot)) ||
1375 svd2->type != a->type || svd2->flags != a->flags ||
1376 seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0)
1377 return (-1);
1378 /* vp == NULL implies zfod, offset doesn't matter */
1379 if (svd2->vp != NULL &&
1380 (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1381 return (-1);
1383 if (svd2->tr_state != SEGVN_TR_OFF) {
1384 return (-1);
1387 amp2 = svd2->amp;
1388 if (amp2) {
1389 pgcnt_t newpgs;
1392 * Segment has private pages, can data structures
1393 * be expanded?
1395 * Acquire the anon_map lock to prevent it from changing,
1396 * if it is shared. This ensures that the anon_map
1397 * will not change while a thread which has a read/write
1398 * lock on an address space references it.
1400 * XXX - Don't need the anon_map lock at all if "refcnt"
1401 * is 1.
1403 if (svd2->type == MAP_SHARED)
1404 return (-1);
1406 ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1407 if (amp2->refcnt > 1) {
1408 ANON_LOCK_EXIT(&amp2->a_rwlock);
1409 return (-1);
1411 newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1412 btop(seg2->s_size), btop(seg1->s_size),
1413 ANON_NOSLEEP | ANON_GROWDOWN);
1415 if (newpgs == 0) {
1416 ANON_LOCK_EXIT(&amp2->a_rwlock);
1417 return (-1);
1419 amp2->size = ptob(newpgs);
1420 ANON_LOCK_EXIT(&amp2->a_rwlock);
1422 if (svd2->vpage != NULL) {
1423 struct vpage *vp, *evp;
1424 new_vpage =
1425 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1426 KM_NOSLEEP);
1427 if (new_vpage == NULL) {
1428 /* Not merging segments so adjust anon_index back */
1429 if (amp2)
1430 svd2->anon_index += seg_pages(seg1);
1431 return (-1);
1433 bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1434 vpgtob(seg_pages(seg2)));
1435 kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1436 svd2->vpage = new_vpage;
1438 vp = new_vpage;
1439 evp = vp + seg_pages(seg1);
1440 for (; vp < evp; vp++)
1441 VPP_SETPROT(vp, a->prot);
1442 if (svd2->pageswap && swresv) {
1443 ASSERT(!(svd2->flags & MAP_NORESERVE));
1444 ASSERT(swresv == seg1->s_size);
1445 vp = new_vpage;
1446 for (; vp < evp; vp++) {
1447 VPP_SETSWAPRES(vp);
1451 ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1452 size = seg1->s_size;
1453 seg_free(seg1);
1454 seg2->s_size += size;
1455 seg2->s_base -= size;
1456 svd2->offset -= size;
1457 svd2->swresv += swresv;
1458 if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1459 svd2->type == MAP_SHARED && svd2->vp != NULL &&
1460 (svd2->vp->v_flag & VVMEXEC)) {
1461 ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1462 segvn_inval_trcache(svd2->vp);
1464 return (0);
1467 static int
1468 segvn_dup(struct seg *seg, struct seg *newseg)
1470 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1471 struct segvn_data *newsvd;
1472 pgcnt_t npages = seg_pages(seg);
1473 int error = 0;
1474 uint_t prot;
1475 size_t len;
1476 struct anon_map *amp;
1478 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1479 ASSERT(newseg->s_as->a_proc->p_parent == curproc);
1482 * If segment has anon reserved, reserve more for the new seg.
1483 * For a MAP_NORESERVE segment swresv will be a count of all the
1484 * allocated anon slots; thus we reserve for the child as many slots
1485 * as the parent has allocated. This semantic prevents the child or
1486 * parent from dieing during a copy-on-write fault caused by trying
1487 * to write a shared pre-existing anon page.
1489 if ((len = svd->swresv) != 0) {
1490 if (anon_resv(svd->swresv) == 0)
1491 return (ENOMEM);
1493 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1494 seg, len, 0);
1497 newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1499 newseg->s_ops = &segvn_ops;
1500 newseg->s_data = (void *)newsvd;
1501 newseg->s_szc = seg->s_szc;
1503 newsvd->seg = newseg;
1504 if ((newsvd->vp = svd->vp) != NULL) {
1505 VN_HOLD(svd->vp);
1506 if (svd->type == MAP_SHARED)
1507 lgrp_shm_policy_init(NULL, svd->vp);
1509 newsvd->offset = svd->offset;
1510 newsvd->prot = svd->prot;
1511 newsvd->maxprot = svd->maxprot;
1512 newsvd->pageprot = svd->pageprot;
1513 newsvd->type = svd->type;
1514 newsvd->cred = svd->cred;
1515 crhold(newsvd->cred);
1516 newsvd->advice = svd->advice;
1517 newsvd->pageadvice = svd->pageadvice;
1518 newsvd->swresv = svd->swresv;
1519 newsvd->pageswap = svd->pageswap;
1520 newsvd->flags = svd->flags;
1521 newsvd->softlockcnt = 0;
1522 newsvd->softlockcnt_sbase = 0;
1523 newsvd->softlockcnt_send = 0;
1524 newsvd->policy_info = svd->policy_info;
1525 newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1527 if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1529 * Not attaching to a shared anon object.
1531 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1532 svd->tr_state == SEGVN_TR_OFF);
1533 if (svd->tr_state == SEGVN_TR_ON) {
1534 ASSERT(newsvd->vp != NULL && amp != NULL);
1535 newsvd->tr_state = SEGVN_TR_INIT;
1536 } else {
1537 newsvd->tr_state = svd->tr_state;
1539 newsvd->amp = NULL;
1540 newsvd->anon_index = 0;
1541 } else {
1542 /* regions for now are only used on pure vnode segments */
1543 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1544 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1545 newsvd->tr_state = SEGVN_TR_OFF;
1546 if (svd->type == MAP_SHARED) {
1547 newsvd->amp = amp;
1548 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1549 amp->refcnt++;
1550 ANON_LOCK_EXIT(&amp->a_rwlock);
1551 newsvd->anon_index = svd->anon_index;
1552 } else {
1553 int reclaim = 1;
1556 * Allocate and initialize new anon_map structure.
1558 newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1559 ANON_SLEEP);
1560 newsvd->amp->a_szc = newseg->s_szc;
1561 newsvd->anon_index = 0;
1564 * We don't have to acquire the anon_map lock
1565 * for the new segment (since it belongs to an
1566 * address space that is still not associated
1567 * with any process), or the segment in the old
1568 * address space (since all threads in it
1569 * are stopped while duplicating the address space).
1573 * The goal of the following code is to make sure that
1574 * softlocked pages do not end up as copy on write
1575 * pages. This would cause problems where one
1576 * thread writes to a page that is COW and a different
1577 * thread in the same process has softlocked it. The
1578 * softlock lock would move away from this process
1579 * because the write would cause this process to get
1580 * a copy (without the softlock).
1582 * The strategy here is to just break the
1583 * sharing on pages that could possibly be
1584 * softlocked.
1586 retry:
1587 if (svd->softlockcnt) {
1588 struct anon *ap, *newap;
1589 size_t i;
1590 uint_t vpprot;
1591 page_t *anon_pl[1+1], *pp;
1592 caddr_t addr;
1593 ulong_t old_idx = svd->anon_index;
1594 ulong_t new_idx = 0;
1597 * The softlock count might be non zero
1598 * because some pages are still stuck in the
1599 * cache for lazy reclaim. Flush the cache
1600 * now. This should drop the count to zero.
1601 * [or there is really I/O going on to these
1602 * pages]. Note, we have the writers lock so
1603 * nothing gets inserted during the flush.
1605 if (reclaim == 1) {
1606 segvn_purge(seg);
1607 reclaim = 0;
1608 goto retry;
1610 i = btopr(seg->s_size);
1611 addr = seg->s_base;
1613 * XXX break cow sharing using PAGESIZE
1614 * pages. They will be relocated into larger
1615 * pages at fault time.
1617 while (i-- > 0) {
1618 if (ap = anon_get_ptr(amp->ahp,
1619 old_idx)) {
1620 error = anon_getpage(&ap,
1621 &vpprot, anon_pl, PAGESIZE,
1622 seg, addr, S_READ,
1623 svd->cred);
1624 if (error) {
1625 newsvd->vpage = NULL;
1626 goto out;
1629 * prot need not be computed
1630 * below 'cause anon_private is
1631 * going to ignore it anyway
1632 * as child doesn't inherit
1633 * pagelock from parent.
1635 prot = svd->pageprot ?
1636 VPP_PROT(
1637 &svd->vpage[
1638 seg_page(seg, addr)])
1639 : svd->prot;
1640 pp = anon_private(&newap,
1641 newseg, addr, prot,
1642 anon_pl[0], 0,
1643 newsvd->cred);
1644 if (pp == NULL) {
1645 /* no mem abort */
1646 newsvd->vpage = NULL;
1647 error = ENOMEM;
1648 goto out;
1650 (void) anon_set_ptr(
1651 newsvd->amp->ahp, new_idx,
1652 newap, ANON_SLEEP);
1653 page_unlock(pp);
1655 addr += PAGESIZE;
1656 old_idx++;
1657 new_idx++;
1659 } else { /* common case */
1660 if (seg->s_szc != 0) {
1662 * If at least one of anon slots of a
1663 * large page exists then make sure
1664 * all anon slots of a large page
1665 * exist to avoid partial cow sharing
1666 * of a large page in the future.
1668 anon_dup_fill_holes(amp->ahp,
1669 svd->anon_index, newsvd->amp->ahp,
1670 0, seg->s_size, seg->s_szc,
1671 svd->vp != NULL);
1672 } else {
1673 anon_dup(amp->ahp, svd->anon_index,
1674 newsvd->amp->ahp, 0, seg->s_size);
1677 hat_clrattr(seg->s_as->a_hat, seg->s_base,
1678 seg->s_size, PROT_WRITE);
1683 * If necessary, create a vpage structure for the new segment.
1684 * Do not copy any page lock indications.
1686 if (svd->vpage != NULL) {
1687 uint_t i;
1688 struct vpage *ovp = svd->vpage;
1689 struct vpage *nvp;
1691 nvp = newsvd->vpage =
1692 kmem_alloc(vpgtob(npages), KM_SLEEP);
1693 for (i = 0; i < npages; i++) {
1694 *nvp = *ovp++;
1695 VPP_CLRPPLOCK(nvp++);
1697 } else
1698 newsvd->vpage = NULL;
1700 /* Inform the vnode of the new mapping */
1701 if (newsvd->vp != NULL) {
1702 error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1703 newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1704 newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1706 out:
1707 if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1708 ASSERT(newsvd->amp == NULL);
1709 ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1710 newsvd->rcookie = svd->rcookie;
1711 hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1713 return (error);
1718 * callback function to invoke free_vp_pages() for only those pages actually
1719 * processed by the HAT when a shared region is destroyed.
1721 extern int free_pages;
1723 static void
1724 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1725 size_t r_size, void *r_obj, u_offset_t r_objoff)
1727 u_offset_t off;
1728 size_t len;
1729 vnode_t *vp = (vnode_t *)r_obj;
1731 ASSERT(eaddr > saddr);
1732 ASSERT(saddr >= r_saddr);
1733 ASSERT(saddr < r_saddr + r_size);
1734 ASSERT(eaddr > r_saddr);
1735 ASSERT(eaddr <= r_saddr + r_size);
1736 ASSERT(vp != NULL);
1738 if (!free_pages) {
1739 return;
1742 len = eaddr - saddr;
1743 off = (saddr - r_saddr) + r_objoff;
1744 free_vp_pages(vp, off, len);
1748 * callback function used by segvn_unmap to invoke free_vp_pages() for only
1749 * those pages actually processed by the HAT
1751 static void
1752 segvn_hat_unload_callback(hat_callback_t *cb)
1754 struct seg *seg = cb->hcb_data;
1755 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1756 size_t len;
1757 u_offset_t off;
1759 ASSERT(svd->vp != NULL);
1760 ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1761 ASSERT(cb->hcb_start_addr >= seg->s_base);
1763 len = cb->hcb_end_addr - cb->hcb_start_addr;
1764 off = cb->hcb_start_addr - seg->s_base;
1765 free_vp_pages(svd->vp, svd->offset + off, len);
1769 * This function determines the number of bytes of swap reserved by
1770 * a segment for which per-page accounting is present. It is used to
1771 * calculate the correct value of a segvn_data's swresv.
1773 static size_t
1774 segvn_count_swap_by_vpages(struct seg *seg)
1776 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1777 struct vpage *vp, *evp;
1778 size_t nswappages = 0;
1780 ASSERT(svd->pageswap);
1781 ASSERT(svd->vpage != NULL);
1783 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1785 for (vp = svd->vpage; vp < evp; vp++) {
1786 if (VPP_ISSWAPRES(vp))
1787 nswappages++;
1790 return (nswappages << PAGESHIFT);
1793 static int
1794 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1796 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1797 struct segvn_data *nsvd;
1798 struct seg *nseg;
1799 struct anon_map *amp;
1800 pgcnt_t opages; /* old segment size in pages */
1801 pgcnt_t npages; /* new segment size in pages */
1802 pgcnt_t dpages; /* pages being deleted (unmapped) */
1803 hat_callback_t callback; /* used for free_vp_pages() */
1804 hat_callback_t *cbp = NULL;
1805 caddr_t nbase;
1806 size_t nsize;
1807 size_t oswresv;
1808 int reclaim = 1;
1811 * We don't need any segment level locks for "segvn" data
1812 * since the address space is "write" locked.
1814 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1817 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1818 * softlockcnt is protected from change by the as write lock.
1820 retry:
1821 if (svd->softlockcnt > 0) {
1822 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1825 * If this is shared segment non 0 softlockcnt
1826 * means locked pages are still in use.
1828 if (svd->type == MAP_SHARED) {
1829 return (EAGAIN);
1833 * since we do have the writers lock nobody can fill
1834 * the cache during the purge. The flush either succeeds
1835 * or we still have pending I/Os.
1837 if (reclaim == 1) {
1838 segvn_purge(seg);
1839 reclaim = 0;
1840 goto retry;
1842 return (EAGAIN);
1846 * Check for bad sizes
1848 if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1849 (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1850 panic("segvn_unmap");
1851 /*NOTREACHED*/
1854 if (seg->s_szc != 0) {
1855 size_t pgsz = page_get_pagesize(seg->s_szc);
1856 int err;
1857 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1858 ASSERT(seg->s_base != addr || seg->s_size != len);
1859 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1860 ASSERT(svd->amp == NULL);
1861 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1862 hat_leave_region(seg->s_as->a_hat,
1863 svd->rcookie, HAT_REGION_TEXT);
1864 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1866 * could pass a flag to segvn_demote_range()
1867 * below to tell it not to do any unloads but
1868 * this case is rare enough to not bother for
1869 * now.
1871 } else if (svd->tr_state == SEGVN_TR_INIT) {
1872 svd->tr_state = SEGVN_TR_OFF;
1873 } else if (svd->tr_state == SEGVN_TR_ON) {
1874 ASSERT(svd->amp != NULL);
1875 segvn_textunrepl(seg, 1);
1876 ASSERT(svd->amp == NULL);
1877 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1879 VM_STAT_ADD(segvnvmstats.demoterange[0]);
1880 err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1881 if (err == 0) {
1882 return (IE_RETRY);
1884 return (err);
1888 /* Inform the vnode of the unmapping. */
1889 if (svd->vp) {
1890 int error;
1892 error = VOP_DELMAP(svd->vp,
1893 (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1894 seg->s_as, addr, len, svd->prot, svd->maxprot,
1895 svd->type, svd->cred, NULL);
1897 if (error == EAGAIN)
1898 return (error);
1902 * Remove any page locks set through this mapping.
1903 * If text replication is not off no page locks could have been
1904 * established via this mapping.
1906 if (svd->tr_state == SEGVN_TR_OFF) {
1907 (void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1910 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1911 ASSERT(svd->amp == NULL);
1912 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1913 ASSERT(svd->type == MAP_PRIVATE);
1914 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1915 HAT_REGION_TEXT);
1916 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1917 } else if (svd->tr_state == SEGVN_TR_ON) {
1918 ASSERT(svd->amp != NULL);
1919 ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1920 segvn_textunrepl(seg, 1);
1921 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1922 } else {
1923 if (svd->tr_state != SEGVN_TR_OFF) {
1924 ASSERT(svd->tr_state == SEGVN_TR_INIT);
1925 svd->tr_state = SEGVN_TR_OFF;
1928 * Unload any hardware translations in the range to be taken
1929 * out. Use a callback to invoke free_vp_pages() effectively.
1931 if (svd->vp != NULL && free_pages != 0) {
1932 callback.hcb_data = seg;
1933 callback.hcb_function = segvn_hat_unload_callback;
1934 cbp = &callback;
1936 hat_unload_callback(seg->s_as->a_hat, addr, len,
1937 HAT_UNLOAD_UNMAP, cbp);
1939 if (svd->type == MAP_SHARED && svd->vp != NULL &&
1940 (svd->vp->v_flag & VVMEXEC) &&
1941 ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1942 segvn_inval_trcache(svd->vp);
1947 * Check for entire segment
1949 if (addr == seg->s_base && len == seg->s_size) {
1950 seg_free(seg);
1951 return (0);
1954 opages = seg_pages(seg);
1955 dpages = btop(len);
1956 npages = opages - dpages;
1957 amp = svd->amp;
1958 ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1961 * Check for beginning of segment
1963 if (addr == seg->s_base) {
1964 if (svd->vpage != NULL) {
1965 size_t nbytes;
1966 struct vpage *ovpage;
1968 ovpage = svd->vpage; /* keep pointer to vpage */
1970 nbytes = vpgtob(npages);
1971 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1972 bcopy(&ovpage[dpages], svd->vpage, nbytes);
1974 /* free up old vpage */
1975 kmem_free(ovpage, vpgtob(opages));
1977 if (amp != NULL) {
1978 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1979 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1981 * Shared anon map is no longer in use. Before
1982 * freeing its pages purge all entries from
1983 * pcache that belong to this amp.
1985 if (svd->type == MAP_SHARED) {
1986 ASSERT(amp->refcnt == 1);
1987 ASSERT(svd->softlockcnt == 0);
1988 anonmap_purge(amp);
1991 * Free up now unused parts of anon_map array.
1993 if (amp->a_szc == seg->s_szc) {
1994 if (seg->s_szc != 0) {
1995 anon_free_pages(amp->ahp,
1996 svd->anon_index, len,
1997 seg->s_szc);
1998 } else {
1999 anon_free(amp->ahp,
2000 svd->anon_index,
2001 len);
2003 } else {
2004 ASSERT(svd->type == MAP_SHARED);
2005 ASSERT(amp->a_szc > seg->s_szc);
2006 anon_shmap_free_pages(amp,
2007 svd->anon_index, len);
2011 * Unreserve swap space for the
2012 * unmapped chunk of this segment in
2013 * case it's MAP_SHARED
2015 if (svd->type == MAP_SHARED) {
2016 anon_unresv_zone(len,
2017 seg->s_as->a_proc->p_zone);
2018 amp->swresv -= len;
2021 ANON_LOCK_EXIT(&amp->a_rwlock);
2022 svd->anon_index += dpages;
2024 if (svd->vp != NULL)
2025 svd->offset += len;
2027 seg->s_base += len;
2028 seg->s_size -= len;
2030 if (svd->swresv) {
2031 if (svd->flags & MAP_NORESERVE) {
2032 ASSERT(amp);
2033 oswresv = svd->swresv;
2035 svd->swresv = ptob(anon_pages(amp->ahp,
2036 svd->anon_index, npages));
2037 anon_unresv_zone(oswresv - svd->swresv,
2038 seg->s_as->a_proc->p_zone);
2039 if (SEG_IS_PARTIAL_RESV(seg))
2040 seg->s_as->a_resvsize -= oswresv -
2041 svd->swresv;
2042 } else {
2043 size_t unlen;
2045 if (svd->pageswap) {
2046 oswresv = svd->swresv;
2047 svd->swresv =
2048 segvn_count_swap_by_vpages(seg);
2049 ASSERT(oswresv >= svd->swresv);
2050 unlen = oswresv - svd->swresv;
2051 } else {
2052 svd->swresv -= len;
2053 ASSERT(svd->swresv == seg->s_size);
2054 unlen = len;
2056 anon_unresv_zone(unlen,
2057 seg->s_as->a_proc->p_zone);
2059 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2060 seg, len, 0);
2063 return (0);
2067 * Check for end of segment
2069 if (addr + len == seg->s_base + seg->s_size) {
2070 if (svd->vpage != NULL) {
2071 size_t nbytes;
2072 struct vpage *ovpage;
2074 ovpage = svd->vpage; /* keep pointer to vpage */
2076 nbytes = vpgtob(npages);
2077 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2078 bcopy(ovpage, svd->vpage, nbytes);
2080 /* free up old vpage */
2081 kmem_free(ovpage, vpgtob(opages));
2084 if (amp != NULL) {
2085 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2086 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2088 * Free up now unused parts of anon_map array.
2090 ulong_t an_idx = svd->anon_index + npages;
2093 * Shared anon map is no longer in use. Before
2094 * freeing its pages purge all entries from
2095 * pcache that belong to this amp.
2097 if (svd->type == MAP_SHARED) {
2098 ASSERT(amp->refcnt == 1);
2099 ASSERT(svd->softlockcnt == 0);
2100 anonmap_purge(amp);
2103 if (amp->a_szc == seg->s_szc) {
2104 if (seg->s_szc != 0) {
2105 anon_free_pages(amp->ahp,
2106 an_idx, len,
2107 seg->s_szc);
2108 } else {
2109 anon_free(amp->ahp, an_idx,
2110 len);
2112 } else {
2113 ASSERT(svd->type == MAP_SHARED);
2114 ASSERT(amp->a_szc > seg->s_szc);
2115 anon_shmap_free_pages(amp,
2116 an_idx, len);
2120 * Unreserve swap space for the
2121 * unmapped chunk of this segment in
2122 * case it's MAP_SHARED
2124 if (svd->type == MAP_SHARED) {
2125 anon_unresv_zone(len,
2126 seg->s_as->a_proc->p_zone);
2127 amp->swresv -= len;
2130 ANON_LOCK_EXIT(&amp->a_rwlock);
2133 seg->s_size -= len;
2135 if (svd->swresv) {
2136 if (svd->flags & MAP_NORESERVE) {
2137 ASSERT(amp);
2138 oswresv = svd->swresv;
2139 svd->swresv = ptob(anon_pages(amp->ahp,
2140 svd->anon_index, npages));
2141 anon_unresv_zone(oswresv - svd->swresv,
2142 seg->s_as->a_proc->p_zone);
2143 if (SEG_IS_PARTIAL_RESV(seg))
2144 seg->s_as->a_resvsize -= oswresv -
2145 svd->swresv;
2146 } else {
2147 size_t unlen;
2149 if (svd->pageswap) {
2150 oswresv = svd->swresv;
2151 svd->swresv =
2152 segvn_count_swap_by_vpages(seg);
2153 ASSERT(oswresv >= svd->swresv);
2154 unlen = oswresv - svd->swresv;
2155 } else {
2156 svd->swresv -= len;
2157 ASSERT(svd->swresv == seg->s_size);
2158 unlen = len;
2160 anon_unresv_zone(unlen,
2161 seg->s_as->a_proc->p_zone);
2163 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2164 "anon proc:%p %lu %u", seg, len, 0);
2167 return (0);
2171 * The section to go is in the middle of the segment,
2172 * have to make it into two segments. nseg is made for
2173 * the high end while seg is cut down at the low end.
2175 nbase = addr + len; /* new seg base */
2176 nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */
2177 seg->s_size = addr - seg->s_base; /* shrink old seg */
2178 nseg = seg_alloc(seg->s_as, nbase, nsize);
2179 if (nseg == NULL) {
2180 panic("segvn_unmap seg_alloc");
2181 /*NOTREACHED*/
2183 nseg->s_ops = seg->s_ops;
2184 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2185 nseg->s_data = (void *)nsvd;
2186 nseg->s_szc = seg->s_szc;
2187 *nsvd = *svd;
2188 nsvd->seg = nseg;
2189 nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2190 nsvd->swresv = 0;
2191 nsvd->softlockcnt = 0;
2192 nsvd->softlockcnt_sbase = 0;
2193 nsvd->softlockcnt_send = 0;
2194 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2196 if (svd->vp != NULL) {
2197 VN_HOLD(nsvd->vp);
2198 if (nsvd->type == MAP_SHARED)
2199 lgrp_shm_policy_init(NULL, nsvd->vp);
2201 crhold(svd->cred);
2203 if (svd->vpage == NULL) {
2204 nsvd->vpage = NULL;
2205 } else {
2206 /* need to split vpage into two arrays */
2207 size_t nbytes;
2208 struct vpage *ovpage;
2210 ovpage = svd->vpage; /* keep pointer to vpage */
2212 npages = seg_pages(seg); /* seg has shrunk */
2213 nbytes = vpgtob(npages);
2214 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2216 bcopy(ovpage, svd->vpage, nbytes);
2218 npages = seg_pages(nseg);
2219 nbytes = vpgtob(npages);
2220 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2222 bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2224 /* free up old vpage */
2225 kmem_free(ovpage, vpgtob(opages));
2228 if (amp == NULL) {
2229 nsvd->amp = NULL;
2230 nsvd->anon_index = 0;
2231 } else {
2233 * Need to create a new anon map for the new segment.
2234 * We'll also allocate a new smaller array for the old
2235 * smaller segment to save space.
2237 opages = btop((uintptr_t)(addr - seg->s_base));
2238 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2239 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2241 * Free up now unused parts of anon_map array.
2243 ulong_t an_idx = svd->anon_index + opages;
2246 * Shared anon map is no longer in use. Before
2247 * freeing its pages purge all entries from
2248 * pcache that belong to this amp.
2250 if (svd->type == MAP_SHARED) {
2251 ASSERT(amp->refcnt == 1);
2252 ASSERT(svd->softlockcnt == 0);
2253 anonmap_purge(amp);
2256 if (amp->a_szc == seg->s_szc) {
2257 if (seg->s_szc != 0) {
2258 anon_free_pages(amp->ahp, an_idx, len,
2259 seg->s_szc);
2260 } else {
2261 anon_free(amp->ahp, an_idx,
2262 len);
2264 } else {
2265 ASSERT(svd->type == MAP_SHARED);
2266 ASSERT(amp->a_szc > seg->s_szc);
2267 anon_shmap_free_pages(amp, an_idx, len);
2271 * Unreserve swap space for the
2272 * unmapped chunk of this segment in
2273 * case it's MAP_SHARED
2275 if (svd->type == MAP_SHARED) {
2276 anon_unresv_zone(len,
2277 seg->s_as->a_proc->p_zone);
2278 amp->swresv -= len;
2281 nsvd->anon_index = svd->anon_index +
2282 btop((uintptr_t)(nseg->s_base - seg->s_base));
2283 if (svd->type == MAP_SHARED) {
2284 amp->refcnt++;
2285 nsvd->amp = amp;
2286 } else {
2287 struct anon_map *namp;
2288 struct anon_hdr *nahp;
2290 ASSERT(svd->type == MAP_PRIVATE);
2291 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2292 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2293 namp->a_szc = seg->s_szc;
2294 (void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2295 0, btop(seg->s_size), ANON_SLEEP);
2296 (void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2297 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2298 anon_release(amp->ahp, btop(amp->size));
2299 svd->anon_index = 0;
2300 nsvd->anon_index = 0;
2301 amp->ahp = nahp;
2302 amp->size = seg->s_size;
2303 nsvd->amp = namp;
2305 ANON_LOCK_EXIT(&amp->a_rwlock);
2307 if (svd->swresv) {
2308 if (svd->flags & MAP_NORESERVE) {
2309 ASSERT(amp);
2310 oswresv = svd->swresv;
2311 svd->swresv = ptob(anon_pages(amp->ahp,
2312 svd->anon_index, btop(seg->s_size)));
2313 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2314 nsvd->anon_index, btop(nseg->s_size)));
2315 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2316 anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv),
2317 seg->s_as->a_proc->p_zone);
2318 if (SEG_IS_PARTIAL_RESV(seg))
2319 seg->s_as->a_resvsize -= oswresv -
2320 (svd->swresv + nsvd->swresv);
2321 } else {
2322 size_t unlen;
2324 if (svd->pageswap) {
2325 oswresv = svd->swresv;
2326 svd->swresv = segvn_count_swap_by_vpages(seg);
2327 nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2328 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2329 unlen = oswresv - (svd->swresv + nsvd->swresv);
2330 } else {
2331 if (seg->s_size + nseg->s_size + len !=
2332 svd->swresv) {
2333 panic("segvn_unmap: cannot split "
2334 "swap reservation");
2335 /*NOTREACHED*/
2337 svd->swresv = seg->s_size;
2338 nsvd->swresv = nseg->s_size;
2339 unlen = len;
2341 anon_unresv_zone(unlen,
2342 seg->s_as->a_proc->p_zone);
2344 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2345 seg, len, 0);
2348 return (0); /* I'm glad that's all over with! */
2351 static void
2352 segvn_free(struct seg *seg)
2354 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2355 pgcnt_t npages = seg_pages(seg);
2356 struct anon_map *amp;
2357 size_t len;
2360 * We don't need any segment level locks for "segvn" data
2361 * since the address space is "write" locked.
2363 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2364 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2366 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2369 * Be sure to unlock pages. XXX Why do things get free'ed instead
2370 * of unmapped? XXX
2372 (void) segvn_lockop(seg, seg->s_base, seg->s_size,
2373 0, MC_UNLOCK, NULL, 0);
2376 * Deallocate the vpage and anon pointers if necessary and possible.
2378 if (svd->vpage != NULL) {
2379 kmem_free(svd->vpage, vpgtob(npages));
2380 svd->vpage = NULL;
2382 if ((amp = svd->amp) != NULL) {
2384 * If there are no more references to this anon_map
2385 * structure, then deallocate the structure after freeing
2386 * up all the anon slot pointers that we can.
2388 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2389 ASSERT(amp->a_szc >= seg->s_szc);
2390 if (--amp->refcnt == 0) {
2391 if (svd->type == MAP_PRIVATE) {
2393 * Private - we only need to anon_free
2394 * the part that this segment refers to.
2396 if (seg->s_szc != 0) {
2397 anon_free_pages(amp->ahp,
2398 svd->anon_index, seg->s_size,
2399 seg->s_szc);
2400 } else {
2401 anon_free(amp->ahp, svd->anon_index,
2402 seg->s_size);
2404 } else {
2407 * Shared anon map is no longer in use. Before
2408 * freeing its pages purge all entries from
2409 * pcache that belong to this amp.
2411 ASSERT(svd->softlockcnt == 0);
2412 anonmap_purge(amp);
2415 * Shared - anon_free the entire
2416 * anon_map's worth of stuff and
2417 * release any swap reservation.
2419 if (amp->a_szc != 0) {
2420 anon_shmap_free_pages(amp, 0,
2421 amp->size);
2422 } else {
2423 anon_free(amp->ahp, 0, amp->size);
2425 if ((len = amp->swresv) != 0) {
2426 anon_unresv_zone(len,
2427 seg->s_as->a_proc->p_zone);
2428 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2429 "anon proc:%p %lu %u", seg, len, 0);
2432 svd->amp = NULL;
2433 ANON_LOCK_EXIT(&amp->a_rwlock);
2434 anonmap_free(amp);
2435 } else if (svd->type == MAP_PRIVATE) {
2437 * We had a private mapping which still has
2438 * a held anon_map so just free up all the
2439 * anon slot pointers that we were using.
2441 if (seg->s_szc != 0) {
2442 anon_free_pages(amp->ahp, svd->anon_index,
2443 seg->s_size, seg->s_szc);
2444 } else {
2445 anon_free(amp->ahp, svd->anon_index,
2446 seg->s_size);
2448 ANON_LOCK_EXIT(&amp->a_rwlock);
2449 } else {
2450 ANON_LOCK_EXIT(&amp->a_rwlock);
2455 * Release swap reservation.
2457 if ((len = svd->swresv) != 0) {
2458 anon_unresv_zone(svd->swresv,
2459 seg->s_as->a_proc->p_zone);
2460 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2461 seg, len, 0);
2462 if (SEG_IS_PARTIAL_RESV(seg))
2463 seg->s_as->a_resvsize -= svd->swresv;
2464 svd->swresv = 0;
2467 * Release claim on vnode, credentials, and finally free the
2468 * private data.
2470 if (svd->vp != NULL) {
2471 if (svd->type == MAP_SHARED)
2472 lgrp_shm_policy_fini(NULL, svd->vp);
2473 VN_RELE(svd->vp);
2474 svd->vp = NULL;
2476 crfree(svd->cred);
2477 svd->pageprot = 0;
2478 svd->pageadvice = 0;
2479 svd->pageswap = 0;
2480 svd->cred = NULL;
2483 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's
2484 * still working with this segment without holding as lock (in case
2485 * it's called by pcache async thread).
2487 ASSERT(svd->softlockcnt == 0);
2488 mutex_enter(&svd->segfree_syncmtx);
2489 mutex_exit(&svd->segfree_syncmtx);
2491 seg->s_data = NULL;
2492 kmem_cache_free(segvn_cache, svd);
2496 * Do a F_SOFTUNLOCK call over the range requested. The range must have
2497 * already been F_SOFTLOCK'ed.
2498 * Caller must always match addr and len of a softunlock with a previous
2499 * softlock with exactly the same addr and len.
2501 static void
2502 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2504 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2505 page_t *pp;
2506 caddr_t adr;
2507 struct vnode *vp;
2508 u_offset_t offset;
2509 ulong_t anon_index;
2510 struct anon_map *amp;
2511 struct anon *ap = NULL;
2513 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2514 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2516 if ((amp = svd->amp) != NULL)
2517 anon_index = svd->anon_index + seg_page(seg, addr);
2519 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2520 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2521 hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2522 } else {
2523 hat_unlock(seg->s_as->a_hat, addr, len);
2525 for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2526 if (amp != NULL) {
2527 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2528 if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2529 != NULL) {
2530 swap_xlate(ap, &vp, &offset);
2531 } else {
2532 vp = svd->vp;
2533 offset = svd->offset +
2534 (uintptr_t)(adr - seg->s_base);
2536 ANON_LOCK_EXIT(&amp->a_rwlock);
2537 } else {
2538 vp = svd->vp;
2539 offset = svd->offset +
2540 (uintptr_t)(adr - seg->s_base);
2544 * Use page_find() instead of page_lookup() to
2545 * find the page since we know that it is locked.
2547 pp = page_find(vp, offset);
2548 if (pp == NULL) {
2549 panic(
2550 "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2551 (void *)adr, (void *)ap, (void *)vp, offset);
2552 /*NOTREACHED*/
2555 if (rw == S_WRITE) {
2556 hat_setrefmod(pp);
2557 if (seg->s_as->a_vbits)
2558 hat_setstat(seg->s_as, adr, PAGESIZE,
2559 P_REF | P_MOD);
2560 } else if (rw != S_OTHER) {
2561 hat_setref(pp);
2562 if (seg->s_as->a_vbits)
2563 hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2565 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2566 "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2567 page_unlock(pp);
2569 ASSERT(svd->softlockcnt >= btop(len));
2570 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) {
2572 * All SOFTLOCKS are gone. Wakeup any waiting
2573 * unmappers so they can try again to unmap.
2574 * Check for waiters first without the mutex
2575 * held so we don't always grab the mutex on
2576 * softunlocks.
2578 if (AS_ISUNMAPWAIT(seg->s_as)) {
2579 mutex_enter(&seg->s_as->a_contents);
2580 if (AS_ISUNMAPWAIT(seg->s_as)) {
2581 AS_CLRUNMAPWAIT(seg->s_as);
2582 cv_broadcast(&seg->s_as->a_cv);
2584 mutex_exit(&seg->s_as->a_contents);
2589 #define PAGE_HANDLED ((page_t *)-1)
2592 * Release all the pages in the NULL terminated ppp list
2593 * which haven't already been converted to PAGE_HANDLED.
2595 static void
2596 segvn_pagelist_rele(page_t **ppp)
2598 for (; *ppp != NULL; ppp++) {
2599 if (*ppp != PAGE_HANDLED)
2600 page_unlock(*ppp);
2604 static int stealcow = 1;
2607 * Workaround for viking chip bug. See bug id 1220902.
2608 * To fix this down in pagefault() would require importing so
2609 * much as and segvn code as to be unmaintainable.
2611 int enable_mbit_wa = 0;
2614 * Handles all the dirty work of getting the right
2615 * anonymous pages and loading up the translations.
2616 * This routine is called only from segvn_fault()
2617 * when looping over the range of addresses requested.
2619 * The basic algorithm here is:
2620 * If this is an anon_zero case
2621 * Call anon_zero to allocate page
2622 * Load up translation
2623 * Return
2624 * endif
2625 * If this is an anon page
2626 * Use anon_getpage to get the page
2627 * else
2628 * Find page in pl[] list passed in
2629 * endif
2630 * If not a cow
2631 * Load up the translation to the page
2632 * return
2633 * endif
2634 * Call anon_private to handle cow
2635 * Load up (writable) translation to new page
2637 static faultcode_t
2638 segvn_faultpage(
2639 struct hat *hat, /* the hat to use for mapping */
2640 struct seg *seg, /* seg_vn of interest */
2641 caddr_t addr, /* address in as */
2642 u_offset_t off, /* offset in vp */
2643 struct vpage *vpage, /* pointer to vpage for vp, off */
2644 page_t *pl[], /* object source page pointer */
2645 uint_t vpprot, /* access allowed to object pages */
2646 enum fault_type type, /* type of fault */
2647 enum seg_rw rw, /* type of access at fault */
2648 int brkcow) /* we may need to break cow */
2650 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2651 page_t *pp, **ppp;
2652 uint_t pageflags = 0;
2653 page_t *anon_pl[1 + 1];
2654 page_t *opp = NULL; /* original page */
2655 uint_t prot;
2656 int err;
2657 int cow;
2658 int claim;
2659 int steal = 0;
2660 ulong_t anon_index;
2661 struct anon *ap, *oldap;
2662 struct anon_map *amp;
2663 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2664 int anon_lock = 0;
2665 anon_sync_obj_t cookie;
2667 if (svd->flags & MAP_TEXT) {
2668 hat_flag |= HAT_LOAD_TEXT;
2671 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2672 ASSERT(seg->s_szc == 0);
2673 ASSERT(svd->tr_state != SEGVN_TR_INIT);
2676 * Initialize protection value for this page.
2677 * If we have per page protection values check it now.
2679 if (svd->pageprot) {
2680 uint_t protchk;
2682 switch (rw) {
2683 case S_READ:
2684 protchk = PROT_READ;
2685 break;
2686 case S_WRITE:
2687 protchk = PROT_WRITE;
2688 break;
2689 case S_EXEC:
2690 protchk = PROT_EXEC;
2691 break;
2692 case S_OTHER:
2693 default:
2694 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2695 break;
2698 prot = VPP_PROT(vpage);
2699 if ((prot & protchk) == 0)
2700 return (FC_PROT); /* illegal access type */
2701 } else {
2702 prot = svd->prot;
2705 if (type == F_SOFTLOCK) {
2706 atomic_add_long((ulong_t *)&svd->softlockcnt, 1);
2710 * Always acquire the anon array lock to prevent 2 threads from
2711 * allocating separate anon slots for the same "addr".
2714 if ((amp = svd->amp) != NULL) {
2715 ASSERT(RW_READ_HELD(&amp->a_rwlock));
2716 anon_index = svd->anon_index + seg_page(seg, addr);
2717 anon_array_enter(amp, anon_index, &cookie);
2718 anon_lock = 1;
2721 if (svd->vp == NULL && amp != NULL) {
2722 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2724 * Allocate a (normally) writable anonymous page of
2725 * zeroes. If no advance reservations, reserve now.
2727 if (svd->flags & MAP_NORESERVE) {
2728 if (anon_resv_zone(ptob(1),
2729 seg->s_as->a_proc->p_zone)) {
2730 atomic_add_long(&svd->swresv, ptob(1));
2731 atomic_add_long(&seg->s_as->a_resvsize,
2732 ptob(1));
2733 } else {
2734 err = ENOMEM;
2735 goto out;
2738 if ((pp = anon_zero(seg, addr, &ap,
2739 svd->cred)) == NULL) {
2740 err = ENOMEM;
2741 goto out; /* out of swap space */
2744 * Re-acquire the anon_map lock and
2745 * initialize the anon array entry.
2747 (void) anon_set_ptr(amp->ahp, anon_index, ap,
2748 ANON_SLEEP);
2750 ASSERT(pp->p_szc == 0);
2753 * Handle pages that have been marked for migration
2755 if (lgrp_optimizations())
2756 page_migrate(seg, addr, &pp, 1);
2758 if (enable_mbit_wa) {
2759 if (rw == S_WRITE)
2760 hat_setmod(pp);
2761 else if (!hat_ismod(pp))
2762 prot &= ~PROT_WRITE;
2765 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2766 * with MC_LOCKAS, MCL_FUTURE) and this is a
2767 * MAP_NORESERVE segment, we may need to
2768 * permanently lock the page as it is being faulted
2769 * for the first time. The following text applies
2770 * only to MAP_NORESERVE segments:
2772 * As per memcntl(2), if this segment was created
2773 * after MCL_FUTURE was applied (a "future"
2774 * segment), its pages must be locked. If this
2775 * segment existed at MCL_FUTURE application (a
2776 * "past" segment), the interface is unclear.
2778 * We decide to lock only if vpage is present:
2780 * - "future" segments will have a vpage array (see
2781 * as_map), and so will be locked as required
2783 * - "past" segments may not have a vpage array,
2784 * depending on whether events (such as
2785 * mprotect) have occurred. Locking if vpage
2786 * exists will preserve legacy behavior. Not
2787 * locking if vpage is absent, will not break
2788 * the interface or legacy behavior. Note that
2789 * allocating vpage here if it's absent requires
2790 * upgrading the segvn reader lock, the cost of
2791 * which does not seem worthwhile.
2793 * Usually testing and setting VPP_ISPPLOCK and
2794 * VPP_SETPPLOCK requires holding the segvn lock as
2795 * writer, but in this case all readers are
2796 * serializing on the anon array lock.
2798 if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2799 (svd->flags & MAP_NORESERVE) &&
2800 !VPP_ISPPLOCK(vpage)) {
2801 proc_t *p = seg->s_as->a_proc;
2802 ASSERT(svd->type == MAP_PRIVATE);
2803 mutex_enter(&p->p_lock);
2804 if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2805 1) == 0) {
2806 claim = VPP_PROT(vpage) & PROT_WRITE;
2807 if (page_pp_lock(pp, claim, 0)) {
2808 VPP_SETPPLOCK(vpage);
2809 } else {
2810 rctl_decr_locked_mem(p, NULL,
2811 PAGESIZE, 1);
2814 mutex_exit(&p->p_lock);
2817 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2818 hat_memload(hat, addr, pp, prot, hat_flag);
2820 if (!(hat_flag & HAT_LOAD_LOCK))
2821 page_unlock(pp);
2823 anon_array_exit(&cookie);
2824 return (0);
2829 * Obtain the page structure via anon_getpage() if it is
2830 * a private copy of an object (the result of a previous
2831 * copy-on-write).
2833 if (amp != NULL) {
2834 if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2835 err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2836 seg, addr, rw, svd->cred);
2837 if (err)
2838 goto out;
2840 if (svd->type == MAP_SHARED) {
2842 * If this is a shared mapping to an
2843 * anon_map, then ignore the write
2844 * permissions returned by anon_getpage().
2845 * They apply to the private mappings
2846 * of this anon_map.
2848 vpprot |= PROT_WRITE;
2850 opp = anon_pl[0];
2855 * Search the pl[] list passed in if it is from the
2856 * original object (i.e., not a private copy).
2858 if (opp == NULL) {
2860 * Find original page. We must be bringing it in
2861 * from the list in pl[].
2863 for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2864 if (opp == PAGE_HANDLED)
2865 continue;
2866 ASSERT(opp->p_vnode == svd->vp); /* XXX */
2867 if (opp->p_offset == off)
2868 break;
2870 if (opp == NULL) {
2871 panic("segvn_faultpage not found");
2872 /*NOTREACHED*/
2874 *ppp = PAGE_HANDLED;
2878 ASSERT(PAGE_LOCKED(opp));
2880 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2881 "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0);
2884 * The fault is treated as a copy-on-write fault if a
2885 * write occurs on a private segment and the object
2886 * page (i.e., mapping) is write protected. We assume
2887 * that fatal protection checks have already been made.
2890 if (brkcow) {
2891 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2892 cow = !(vpprot & PROT_WRITE);
2893 } else if (svd->tr_state == SEGVN_TR_ON) {
2895 * If we are doing text replication COW on first touch.
2897 ASSERT(amp != NULL);
2898 ASSERT(svd->vp != NULL);
2899 ASSERT(rw != S_WRITE);
2900 cow = (ap == NULL);
2901 } else {
2902 cow = 0;
2906 * If not a copy-on-write case load the translation
2907 * and return.
2909 if (cow == 0) {
2912 * Handle pages that have been marked for migration
2914 if (lgrp_optimizations())
2915 page_migrate(seg, addr, &opp, 1);
2917 if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2918 if (rw == S_WRITE)
2919 hat_setmod(opp);
2920 else if (rw != S_OTHER && !hat_ismod(opp))
2921 prot &= ~PROT_WRITE;
2924 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2925 (!svd->pageprot && svd->prot == (prot & vpprot)));
2926 ASSERT(amp == NULL ||
2927 svd->rcookie == HAT_INVALID_REGION_COOKIE);
2928 hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2929 svd->rcookie);
2931 if (!(hat_flag & HAT_LOAD_LOCK))
2932 page_unlock(opp);
2934 if (anon_lock) {
2935 anon_array_exit(&cookie);
2937 return (0);
2940 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2942 hat_setref(opp);
2944 ASSERT(amp != NULL && anon_lock);
2947 * Steal the page only if it isn't a private page
2948 * since stealing a private page is not worth the effort.
2950 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2951 steal = 1;
2954 * Steal the original page if the following conditions are true:
2956 * We are low on memory, the page is not private, page is not large,
2957 * not shared, not modified, not `locked' or if we have it `locked'
2958 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2959 * that the page is not shared) and if it doesn't have any
2960 * translations. page_struct_lock isn't needed to look at p_cowcnt
2961 * and p_lckcnt because we first get exclusive lock on page.
2963 (void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2965 if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2966 page_tryupgrade(opp) && !hat_ismod(opp) &&
2967 ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2968 (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2969 vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2971 * Check if this page has other translations
2972 * after unloading our translation.
2974 if (hat_page_is_mapped(opp)) {
2975 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2976 hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2977 HAT_UNLOAD);
2981 * hat_unload() might sync back someone else's recent
2982 * modification, so check again.
2984 if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2985 pageflags |= STEAL_PAGE;
2989 * If we have a vpage pointer, see if it indicates that we have
2990 * ``locked'' the page we map -- if so, tell anon_private to
2991 * transfer the locking resource to the new page.
2993 * See Statement at the beginning of segvn_lockop regarding
2994 * the way lockcnts/cowcnts are handled during COW.
2997 if (vpage != NULL && VPP_ISPPLOCK(vpage))
2998 pageflags |= LOCK_PAGE;
3001 * Allocate a private page and perform the copy.
3002 * For MAP_NORESERVE reserve swap space now, unless this
3003 * is a cow fault on an existing anon page in which case
3004 * MAP_NORESERVE will have made advance reservations.
3006 if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3007 if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3008 atomic_add_long(&svd->swresv, ptob(1));
3009 atomic_add_long(&seg->s_as->a_resvsize, ptob(1));
3010 } else {
3011 page_unlock(opp);
3012 err = ENOMEM;
3013 goto out;
3016 oldap = ap;
3017 pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3018 if (pp == NULL) {
3019 err = ENOMEM; /* out of swap space */
3020 goto out;
3024 * If we copied away from an anonymous page, then
3025 * we are one step closer to freeing up an anon slot.
3027 * NOTE: The original anon slot must be released while
3028 * holding the "anon_map" lock. This is necessary to prevent
3029 * other threads from obtaining a pointer to the anon slot
3030 * which may be freed if its "refcnt" is 1.
3032 if (oldap != NULL)
3033 anon_decref(oldap);
3035 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3038 * Handle pages that have been marked for migration
3040 if (lgrp_optimizations())
3041 page_migrate(seg, addr, &pp, 1);
3043 ASSERT(pp->p_szc == 0);
3045 ASSERT(!IS_VMODSORT(pp->p_vnode));
3046 if (enable_mbit_wa) {
3047 if (rw == S_WRITE)
3048 hat_setmod(pp);
3049 else if (!hat_ismod(pp))
3050 prot &= ~PROT_WRITE;
3053 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3054 hat_memload(hat, addr, pp, prot, hat_flag);
3056 if (!(hat_flag & HAT_LOAD_LOCK))
3057 page_unlock(pp);
3059 ASSERT(anon_lock);
3060 anon_array_exit(&cookie);
3061 return (0);
3062 out:
3063 if (anon_lock)
3064 anon_array_exit(&cookie);
3066 if (type == F_SOFTLOCK) {
3067 atomic_add_long((ulong_t *)&svd->softlockcnt, -1);
3069 return (FC_MAKE_ERR(err));
3073 * relocate a bunch of smaller targ pages into one large repl page. all targ
3074 * pages must be complete pages smaller than replacement pages.
3075 * it's assumed that no page's szc can change since they are all PAGESIZE or
3076 * complete large pages locked SHARED.
3078 static void
3079 segvn_relocate_pages(page_t **targ, page_t *replacement)
3081 page_t *pp;
3082 pgcnt_t repl_npgs, curnpgs;
3083 pgcnt_t i;
3084 uint_t repl_szc = replacement->p_szc;
3085 page_t *first_repl = replacement;
3086 page_t *repl;
3087 spgcnt_t npgs;
3089 VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3091 ASSERT(repl_szc != 0);
3092 npgs = repl_npgs = page_get_pagecnt(repl_szc);
3094 i = 0;
3095 while (repl_npgs) {
3096 spgcnt_t nreloc;
3097 int err;
3098 ASSERT(replacement != NULL);
3099 pp = targ[i];
3100 ASSERT(pp->p_szc < repl_szc);
3101 ASSERT(PAGE_EXCL(pp));
3102 ASSERT(!PP_ISFREE(pp));
3103 curnpgs = page_get_pagecnt(pp->p_szc);
3104 if (curnpgs == 1) {
3105 VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3106 repl = replacement;
3107 page_sub(&replacement, repl);
3108 ASSERT(PAGE_EXCL(repl));
3109 ASSERT(!PP_ISFREE(repl));
3110 ASSERT(repl->p_szc == repl_szc);
3111 } else {
3112 page_t *repl_savepp;
3113 int j;
3114 VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3115 repl_savepp = replacement;
3116 for (j = 0; j < curnpgs; j++) {
3117 repl = replacement;
3118 page_sub(&replacement, repl);
3119 ASSERT(PAGE_EXCL(repl));
3120 ASSERT(!PP_ISFREE(repl));
3121 ASSERT(repl->p_szc == repl_szc);
3122 ASSERT(page_pptonum(targ[i + j]) ==
3123 page_pptonum(targ[i]) + j);
3125 repl = repl_savepp;
3126 ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3128 err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3129 if (err || nreloc != curnpgs) {
3130 panic("segvn_relocate_pages: "
3131 "page_relocate failed err=%d curnpgs=%ld "
3132 "nreloc=%ld", err, curnpgs, nreloc);
3134 ASSERT(curnpgs <= repl_npgs);
3135 repl_npgs -= curnpgs;
3136 i += curnpgs;
3138 ASSERT(replacement == NULL);
3140 repl = first_repl;
3141 repl_npgs = npgs;
3142 for (i = 0; i < repl_npgs; i++) {
3143 ASSERT(PAGE_EXCL(repl));
3144 ASSERT(!PP_ISFREE(repl));
3145 targ[i] = repl;
3146 page_downgrade(targ[i]);
3147 repl++;
3152 * Check if all pages in ppa array are complete smaller than szc pages and
3153 * their roots will still be aligned relative to their current size if the
3154 * entire ppa array is relocated into one szc page. If these conditions are
3155 * not met return 0.
3157 * If all pages are properly aligned attempt to upgrade their locks
3158 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3159 * upgrdfail was set to 0 by caller.
3161 * Return 1 if all pages are aligned and locked exclusively.
3163 * If all pages in ppa array happen to be physically contiguous to make one
3164 * szc page and all exclusive locks are successfully obtained promote the page
3165 * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3167 static int
3168 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3170 page_t *pp;
3171 pfn_t pfn;
3172 pgcnt_t totnpgs = page_get_pagecnt(szc);
3173 pfn_t first_pfn;
3174 int contig = 1;
3175 pgcnt_t i;
3176 pgcnt_t j;
3177 uint_t curszc;
3178 pgcnt_t curnpgs;
3179 int root = 0;
3181 ASSERT(szc > 0);
3183 VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3185 for (i = 0; i < totnpgs; i++) {
3186 pp = ppa[i];
3187 ASSERT(PAGE_SHARED(pp));
3188 ASSERT(!PP_ISFREE(pp));
3189 pfn = page_pptonum(pp);
3190 if (i == 0) {
3191 if (!IS_P2ALIGNED(pfn, totnpgs)) {
3192 contig = 0;
3193 } else {
3194 first_pfn = pfn;
3196 } else if (contig && pfn != first_pfn + i) {
3197 contig = 0;
3199 if (pp->p_szc == 0) {
3200 if (root) {
3201 VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3202 return (0);
3204 } else if (!root) {
3205 if ((curszc = pp->p_szc) >= szc) {
3206 VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3207 return (0);
3209 if (curszc == 0) {
3211 * p_szc changed means we don't have all pages
3212 * locked. return failure.
3214 VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3215 return (0);
3217 curnpgs = page_get_pagecnt(curszc);
3218 if (!IS_P2ALIGNED(pfn, curnpgs) ||
3219 !IS_P2ALIGNED(i, curnpgs)) {
3220 VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3221 return (0);
3223 root = 1;
3224 } else {
3225 ASSERT(i > 0);
3226 VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3227 if (pp->p_szc != curszc) {
3228 VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3229 return (0);
3231 if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3232 panic("segvn_full_szcpages: "
3233 "large page not physically contiguous");
3235 if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3236 root = 0;
3241 for (i = 0; i < totnpgs; i++) {
3242 ASSERT(ppa[i]->p_szc < szc);
3243 if (!page_tryupgrade(ppa[i])) {
3244 for (j = 0; j < i; j++) {
3245 page_downgrade(ppa[j]);
3247 *pszc = ppa[i]->p_szc;
3248 *upgrdfail = 1;
3249 VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3250 return (0);
3255 * When a page is put a free cachelist its szc is set to 0. if file
3256 * system reclaimed pages from cachelist targ pages will be physically
3257 * contiguous with 0 p_szc. in this case just upgrade szc of targ
3258 * pages without any relocations.
3259 * To avoid any hat issues with previous small mappings
3260 * hat_pageunload() the target pages first.
3262 if (contig) {
3263 VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3264 for (i = 0; i < totnpgs; i++) {
3265 (void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3267 for (i = 0; i < totnpgs; i++) {
3268 ppa[i]->p_szc = szc;
3270 for (i = 0; i < totnpgs; i++) {
3271 ASSERT(PAGE_EXCL(ppa[i]));
3272 page_downgrade(ppa[i]);
3274 if (pszc != NULL) {
3275 *pszc = szc;
3278 VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3279 return (1);
3283 * Create physically contiguous pages for [vp, off] - [vp, off +
3284 * page_size(szc)) range and for private segment return them in ppa array.
3285 * Pages are created either via IO or relocations.
3287 * Return 1 on success and 0 on failure.
3289 * If physically contiguous pages already exist for this range return 1 without
3290 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3291 * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3294 static int
3295 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3296 uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3297 int *downsize)
3300 page_t *pplist = *ppplist;
3301 size_t pgsz = page_get_pagesize(szc);
3302 pgcnt_t pages = btop(pgsz);
3303 ulong_t start_off = off;
3304 u_offset_t eoff = off + pgsz;
3305 spgcnt_t nreloc;
3306 u_offset_t io_off = off;
3307 size_t io_len;
3308 page_t *io_pplist = NULL;
3309 page_t *done_pplist = NULL;
3310 pgcnt_t pgidx = 0;
3311 page_t *pp;
3312 page_t *newpp;
3313 page_t *targpp;
3314 int io_err = 0;
3315 int i;
3316 pfn_t pfn;
3317 ulong_t ppages;
3318 page_t *targ_pplist = NULL;
3319 page_t *repl_pplist = NULL;
3320 page_t *tmp_pplist;
3321 int nios = 0;
3322 uint_t pszc;
3323 struct vattr va;
3325 VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3327 ASSERT(szc != 0);
3328 ASSERT(pplist->p_szc == szc);
3331 * downsize will be set to 1 only if we fail to lock pages. this will
3332 * allow subsequent faults to try to relocate the page again. If we
3333 * fail due to misalignment don't downsize and let the caller map the
3334 * whole region with small mappings to avoid more faults into the area
3335 * where we can't get large pages anyway.
3337 *downsize = 0;
3339 while (off < eoff) {
3340 newpp = pplist;
3341 ASSERT(newpp != NULL);
3342 ASSERT(PAGE_EXCL(newpp));
3343 ASSERT(!PP_ISFREE(newpp));
3345 * we pass NULL for nrelocp to page_lookup_create()
3346 * so that it doesn't relocate. We relocate here
3347 * later only after we make sure we can lock all
3348 * pages in the range we handle and they are all
3349 * aligned.
3351 pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3352 ASSERT(pp != NULL);
3353 ASSERT(!PP_ISFREE(pp));
3354 ASSERT(pp->p_vnode == vp);
3355 ASSERT(pp->p_offset == off);
3356 if (pp == newpp) {
3357 VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3358 page_sub(&pplist, pp);
3359 ASSERT(PAGE_EXCL(pp));
3360 ASSERT(page_iolock_assert(pp));
3361 page_list_concat(&io_pplist, &pp);
3362 off += PAGESIZE;
3363 continue;
3365 VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3366 pfn = page_pptonum(pp);
3367 pszc = pp->p_szc;
3368 if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3369 IS_P2ALIGNED(pfn, pages)) {
3370 ASSERT(repl_pplist == NULL);
3371 ASSERT(done_pplist == NULL);
3372 ASSERT(pplist == *ppplist);
3373 page_unlock(pp);
3374 page_free_replacement_page(pplist);
3375 page_create_putback(pages);
3376 *ppplist = NULL;
3377 VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3378 return (1);
3380 if (pszc >= szc) {
3381 page_unlock(pp);
3382 segvn_faultvnmpss_align_err1++;
3383 goto out;
3385 ppages = page_get_pagecnt(pszc);
3386 if (!IS_P2ALIGNED(pfn, ppages)) {
3387 ASSERT(pszc > 0);
3389 * sizing down to pszc won't help.
3391 page_unlock(pp);
3392 segvn_faultvnmpss_align_err2++;
3393 goto out;
3395 pfn = page_pptonum(newpp);
3396 if (!IS_P2ALIGNED(pfn, ppages)) {
3397 ASSERT(pszc > 0);
3399 * sizing down to pszc won't help.
3401 page_unlock(pp);
3402 segvn_faultvnmpss_align_err3++;
3403 goto out;
3405 if (!PAGE_EXCL(pp)) {
3406 VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3407 page_unlock(pp);
3408 *downsize = 1;
3409 *ret_pszc = pp->p_szc;
3410 goto out;
3412 targpp = pp;
3413 if (io_pplist != NULL) {
3414 VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3415 io_len = off - io_off;
3417 * Some file systems like NFS don't check EOF
3418 * conditions in VOP_PAGEIO(). Check it here
3419 * now that pages are locked SE_EXCL. Any file
3420 * truncation will wait until the pages are
3421 * unlocked so no need to worry that file will
3422 * be truncated after we check its size here.
3423 * XXX fix NFS to remove this check.
3425 va.va_mask = AT_SIZE;
3426 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3427 VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3428 page_unlock(targpp);
3429 goto out;
3431 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3432 VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3433 *downsize = 1;
3434 *ret_pszc = 0;
3435 page_unlock(targpp);
3436 goto out;
3438 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3439 B_READ, svd->cred, NULL);
3440 if (io_err) {
3441 VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3442 page_unlock(targpp);
3443 if (io_err == EDEADLK) {
3444 segvn_vmpss_pageio_deadlk_err++;
3446 goto out;
3448 nios++;
3449 VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3450 while (io_pplist != NULL) {
3451 pp = io_pplist;
3452 page_sub(&io_pplist, pp);
3453 ASSERT(page_iolock_assert(pp));
3454 page_io_unlock(pp);
3455 pgidx = (pp->p_offset - start_off) >>
3456 PAGESHIFT;
3457 ASSERT(pgidx < pages);
3458 ppa[pgidx] = pp;
3459 page_list_concat(&done_pplist, &pp);
3462 pp = targpp;
3463 ASSERT(PAGE_EXCL(pp));
3464 ASSERT(pp->p_szc <= pszc);
3465 if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3466 VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3467 page_unlock(pp);
3468 *downsize = 1;
3469 *ret_pszc = pp->p_szc;
3470 goto out;
3472 VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3474 * page szc chould have changed before the entire group was
3475 * locked. reread page szc.
3477 pszc = pp->p_szc;
3478 ppages = page_get_pagecnt(pszc);
3480 /* link just the roots */
3481 page_list_concat(&targ_pplist, &pp);
3482 page_sub(&pplist, newpp);
3483 page_list_concat(&repl_pplist, &newpp);
3484 off += PAGESIZE;
3485 while (--ppages != 0) {
3486 newpp = pplist;
3487 page_sub(&pplist, newpp);
3488 off += PAGESIZE;
3490 io_off = off;
3492 if (io_pplist != NULL) {
3493 VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3494 io_len = eoff - io_off;
3495 va.va_mask = AT_SIZE;
3496 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3497 VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3498 goto out;
3500 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3501 VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3502 *downsize = 1;
3503 *ret_pszc = 0;
3504 goto out;
3506 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3507 B_READ, svd->cred, NULL);
3508 if (io_err) {
3509 VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3510 if (io_err == EDEADLK) {
3511 segvn_vmpss_pageio_deadlk_err++;
3513 goto out;
3515 nios++;
3516 while (io_pplist != NULL) {
3517 pp = io_pplist;
3518 page_sub(&io_pplist, pp);
3519 ASSERT(page_iolock_assert(pp));
3520 page_io_unlock(pp);
3521 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3522 ASSERT(pgidx < pages);
3523 ppa[pgidx] = pp;
3527 * we're now bound to succeed or panic.
3528 * remove pages from done_pplist. it's not needed anymore.
3530 while (done_pplist != NULL) {
3531 pp = done_pplist;
3532 page_sub(&done_pplist, pp);
3534 VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3535 ASSERT(pplist == NULL);
3536 *ppplist = NULL;
3537 while (targ_pplist != NULL) {
3538 int ret;
3539 VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3540 ASSERT(repl_pplist);
3541 pp = targ_pplist;
3542 page_sub(&targ_pplist, pp);
3543 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3544 newpp = repl_pplist;
3545 page_sub(&repl_pplist, newpp);
3546 #ifdef DEBUG
3547 pfn = page_pptonum(pp);
3548 pszc = pp->p_szc;
3549 ppages = page_get_pagecnt(pszc);
3550 ASSERT(IS_P2ALIGNED(pfn, ppages));
3551 pfn = page_pptonum(newpp);
3552 ASSERT(IS_P2ALIGNED(pfn, ppages));
3553 ASSERT(P2PHASE(pfn, pages) == pgidx);
3554 #endif
3555 nreloc = 0;
3556 ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3557 if (ret != 0 || nreloc == 0) {
3558 panic("segvn_fill_vp_pages: "
3559 "page_relocate failed");
3561 pp = newpp;
3562 while (nreloc-- != 0) {
3563 ASSERT(PAGE_EXCL(pp));
3564 ASSERT(pp->p_vnode == vp);
3565 ASSERT(pgidx ==
3566 ((pp->p_offset - start_off) >> PAGESHIFT));
3567 ppa[pgidx++] = pp;
3568 pp++;
3572 if (svd->type == MAP_PRIVATE) {
3573 VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3574 for (i = 0; i < pages; i++) {
3575 ASSERT(ppa[i] != NULL);
3576 ASSERT(PAGE_EXCL(ppa[i]));
3577 ASSERT(ppa[i]->p_vnode == vp);
3578 ASSERT(ppa[i]->p_offset ==
3579 start_off + (i << PAGESHIFT));
3580 page_downgrade(ppa[i]);
3582 ppa[pages] = NULL;
3583 } else {
3584 VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3586 * the caller will still call VOP_GETPAGE() for shared segments
3587 * to check FS write permissions. For private segments we map
3588 * file read only anyway. so no VOP_GETPAGE is needed.
3590 for (i = 0; i < pages; i++) {
3591 ASSERT(ppa[i] != NULL);
3592 ASSERT(PAGE_EXCL(ppa[i]));
3593 ASSERT(ppa[i]->p_vnode == vp);
3594 ASSERT(ppa[i]->p_offset ==
3595 start_off + (i << PAGESHIFT));
3596 page_unlock(ppa[i]);
3598 ppa[0] = NULL;
3601 return (1);
3602 out:
3604 * Do the cleanup. Unlock target pages we didn't relocate. They are
3605 * linked on targ_pplist by root pages. reassemble unused replacement
3606 * and io pages back to pplist.
3608 if (io_pplist != NULL) {
3609 VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3610 pp = io_pplist;
3611 do {
3612 ASSERT(pp->p_vnode == vp);
3613 ASSERT(pp->p_offset == io_off);
3614 ASSERT(page_iolock_assert(pp));
3615 page_io_unlock(pp);
3616 page_hashout(pp, NULL);
3617 io_off += PAGESIZE;
3618 } while ((pp = pp->p_next) != io_pplist);
3619 page_list_concat(&io_pplist, &pplist);
3620 pplist = io_pplist;
3622 tmp_pplist = NULL;
3623 while (targ_pplist != NULL) {
3624 VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3625 pp = targ_pplist;
3626 ASSERT(PAGE_EXCL(pp));
3627 page_sub(&targ_pplist, pp);
3629 pszc = pp->p_szc;
3630 ppages = page_get_pagecnt(pszc);
3631 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3633 if (pszc != 0) {
3634 group_page_unlock(pp);
3636 page_unlock(pp);
3638 pp = repl_pplist;
3639 ASSERT(pp != NULL);
3640 ASSERT(PAGE_EXCL(pp));
3641 ASSERT(pp->p_szc == szc);
3642 page_sub(&repl_pplist, pp);
3644 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3646 /* relink replacement page */
3647 page_list_concat(&tmp_pplist, &pp);
3648 while (--ppages != 0) {
3649 VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3650 pp++;
3651 ASSERT(PAGE_EXCL(pp));
3652 ASSERT(pp->p_szc == szc);
3653 page_list_concat(&tmp_pplist, &pp);
3656 if (tmp_pplist != NULL) {
3657 VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3658 page_list_concat(&tmp_pplist, &pplist);
3659 pplist = tmp_pplist;
3662 * at this point all pages are either on done_pplist or
3663 * pplist. They can't be all on done_pplist otherwise
3664 * we'd've been done.
3666 ASSERT(pplist != NULL);
3667 if (nios != 0) {
3668 VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3669 pp = pplist;
3670 do {
3671 VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3672 ASSERT(pp->p_szc == szc);
3673 ASSERT(PAGE_EXCL(pp));
3674 ASSERT(pp->p_vnode != vp);
3675 pp->p_szc = 0;
3676 } while ((pp = pp->p_next) != pplist);
3678 pp = done_pplist;
3679 do {
3680 VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3681 ASSERT(pp->p_szc == szc);
3682 ASSERT(PAGE_EXCL(pp));
3683 ASSERT(pp->p_vnode == vp);
3684 pp->p_szc = 0;
3685 } while ((pp = pp->p_next) != done_pplist);
3687 while (pplist != NULL) {
3688 VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3689 pp = pplist;
3690 page_sub(&pplist, pp);
3691 page_free(pp, 0);
3694 while (done_pplist != NULL) {
3695 VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3696 pp = done_pplist;
3697 page_sub(&done_pplist, pp);
3698 page_unlock(pp);
3700 *ppplist = NULL;
3701 return (0);
3703 ASSERT(pplist == *ppplist);
3704 if (io_err) {
3705 VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3707 * don't downsize on io error.
3708 * see if vop_getpage succeeds.
3709 * pplist may still be used in this case
3710 * for relocations.
3712 return (0);
3714 VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3715 page_free_replacement_page(pplist);
3716 page_create_putback(pages);
3717 *ppplist = NULL;
3718 return (0);
3721 int segvn_anypgsz = 0;
3723 #define SEGVN_RESTORE_SOFTLOCK_VP(type, pages) \
3724 if ((type) == F_SOFTLOCK) { \
3725 atomic_add_long((ulong_t *)&(svd)->softlockcnt, \
3726 -(pages)); \
3729 #define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \
3730 if (IS_VMODSORT((ppa)[0]->p_vnode)) { \
3731 if ((rw) == S_WRITE) { \
3732 for (i = 0; i < (pages); i++) { \
3733 ASSERT((ppa)[i]->p_vnode == \
3734 (ppa)[0]->p_vnode); \
3735 hat_setmod((ppa)[i]); \
3737 } else if ((rw) != S_OTHER && \
3738 ((prot) & (vpprot) & PROT_WRITE)) { \
3739 for (i = 0; i < (pages); i++) { \
3740 ASSERT((ppa)[i]->p_vnode == \
3741 (ppa)[0]->p_vnode); \
3742 if (!hat_ismod((ppa)[i])) { \
3743 prot &= ~PROT_WRITE; \
3744 break; \
3750 #ifdef VM_STATS
3752 #define SEGVN_VMSTAT_FLTVNPAGES(idx) \
3753 VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3755 #else /* VM_STATS */
3757 #define SEGVN_VMSTAT_FLTVNPAGES(idx)
3759 #endif
3761 static faultcode_t
3762 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3763 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3764 caddr_t eaddr, int brkcow)
3766 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3767 struct anon_map *amp = svd->amp;
3768 uchar_t segtype = svd->type;
3769 uint_t szc = seg->s_szc;
3770 size_t pgsz = page_get_pagesize(szc);
3771 size_t maxpgsz = pgsz;
3772 pgcnt_t pages = btop(pgsz);
3773 pgcnt_t maxpages = pages;
3774 size_t ppasize = (pages + 1) * sizeof (page_t *);
3775 caddr_t a = lpgaddr;
3776 caddr_t maxlpgeaddr = lpgeaddr;
3777 u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3778 ulong_t aindx = svd->anon_index + seg_page(seg, a);
3779 struct vpage *vpage = (svd->vpage != NULL) ?
3780 &svd->vpage[seg_page(seg, a)] : NULL;
3781 vnode_t *vp = svd->vp;
3782 page_t **ppa;
3783 uint_t pszc;
3784 size_t ppgsz;
3785 pgcnt_t ppages;
3786 faultcode_t err = 0;
3787 int ierr;
3788 int vop_size_err = 0;
3789 uint_t protchk, prot, vpprot;
3790 ulong_t i;
3791 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3792 anon_sync_obj_t an_cookie;
3793 enum seg_rw arw;
3794 int alloc_failed = 0;
3795 int adjszc_chk;
3796 struct vattr va;
3797 int xhat = 0;
3798 page_t *pplist;
3799 pfn_t pfn;
3800 int physcontig;
3801 int upgrdfail;
3802 int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3803 int tron = (svd->tr_state == SEGVN_TR_ON);
3805 ASSERT(szc != 0);
3806 ASSERT(vp != NULL);
3807 ASSERT(brkcow == 0 || amp != NULL);
3808 ASSERT(tron == 0 || amp != NULL);
3809 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3810 ASSERT(!(svd->flags & MAP_NORESERVE));
3811 ASSERT(type != F_SOFTUNLOCK);
3812 ASSERT(IS_P2ALIGNED(a, maxpgsz));
3813 ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3814 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3815 ASSERT(seg->s_szc < NBBY * sizeof (int));
3816 ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3817 ASSERT(svd->tr_state != SEGVN_TR_INIT);
3819 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3820 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3822 if (svd->flags & MAP_TEXT) {
3823 hat_flag |= HAT_LOAD_TEXT;
3826 if (svd->pageprot) {
3827 switch (rw) {
3828 case S_READ:
3829 protchk = PROT_READ;
3830 break;
3831 case S_WRITE:
3832 protchk = PROT_WRITE;
3833 break;
3834 case S_EXEC:
3835 protchk = PROT_EXEC;
3836 break;
3837 case S_OTHER:
3838 default:
3839 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3840 break;
3842 } else {
3843 prot = svd->prot;
3844 /* caller has already done segment level protection check. */
3847 if (seg->s_as->a_hat != hat) {
3848 xhat = 1;
3851 if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3852 SEGVN_VMSTAT_FLTVNPAGES(2);
3853 arw = S_READ;
3854 } else {
3855 arw = rw;
3858 ppa = kmem_alloc(ppasize, KM_SLEEP);
3860 VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3862 for (;;) {
3863 adjszc_chk = 0;
3864 for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3865 if (adjszc_chk) {
3866 while (szc < seg->s_szc) {
3867 uintptr_t e;
3868 uint_t tszc;
3869 tszc = segvn_anypgsz_vnode ? szc + 1 :
3870 seg->s_szc;
3871 ppgsz = page_get_pagesize(tszc);
3872 if (!IS_P2ALIGNED(a, ppgsz) ||
3873 ((alloc_failed >> tszc) & 0x1)) {
3874 break;
3876 SEGVN_VMSTAT_FLTVNPAGES(4);
3877 szc = tszc;
3878 pgsz = ppgsz;
3879 pages = btop(pgsz);
3880 e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3881 lpgeaddr = (caddr_t)e;
3885 again:
3886 if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3887 ASSERT(IS_P2ALIGNED(aindx, maxpages));
3888 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3889 anon_array_enter(amp, aindx, &an_cookie);
3890 if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3891 SEGVN_VMSTAT_FLTVNPAGES(5);
3892 ASSERT(anon_pages(amp->ahp, aindx,
3893 maxpages) == maxpages);
3894 anon_array_exit(&an_cookie);
3895 ANON_LOCK_EXIT(&amp->a_rwlock);
3896 err = segvn_fault_anonpages(hat, seg,
3897 a, a + maxpgsz, type, rw,
3898 MAX(a, addr),
3899 MIN(a + maxpgsz, eaddr), brkcow);
3900 if (err != 0) {
3901 SEGVN_VMSTAT_FLTVNPAGES(6);
3902 goto out;
3904 if (szc < seg->s_szc) {
3905 szc = seg->s_szc;
3906 pgsz = maxpgsz;
3907 pages = maxpages;
3908 lpgeaddr = maxlpgeaddr;
3910 goto next;
3911 } else {
3912 ASSERT(anon_pages(amp->ahp, aindx,
3913 maxpages) == 0);
3914 SEGVN_VMSTAT_FLTVNPAGES(7);
3915 anon_array_exit(&an_cookie);
3916 ANON_LOCK_EXIT(&amp->a_rwlock);
3919 ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3920 ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3922 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3923 ASSERT(vpage != NULL);
3924 prot = VPP_PROT(vpage);
3925 ASSERT(sameprot(seg, a, maxpgsz));
3926 if ((prot & protchk) == 0) {
3927 SEGVN_VMSTAT_FLTVNPAGES(8);
3928 err = FC_PROT;
3929 goto out;
3932 if (type == F_SOFTLOCK) {
3933 atomic_add_long((ulong_t *)&svd->softlockcnt,
3934 pages);
3937 pplist = NULL;
3938 physcontig = 0;
3939 ppa[0] = NULL;
3940 if (!brkcow && !tron && szc &&
3941 !page_exists_physcontig(vp, off, szc,
3942 segtype == MAP_PRIVATE ? ppa : NULL)) {
3943 SEGVN_VMSTAT_FLTVNPAGES(9);
3944 if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3945 szc, 0, 0) && type != F_SOFTLOCK) {
3946 SEGVN_VMSTAT_FLTVNPAGES(10);
3947 pszc = 0;
3948 ierr = -1;
3949 alloc_failed |= (1 << szc);
3950 break;
3952 if (pplist != NULL &&
3953 vp->v_mpssdata == SEGVN_PAGEIO) {
3954 int downsize;
3955 SEGVN_VMSTAT_FLTVNPAGES(11);
3956 physcontig = segvn_fill_vp_pages(svd,
3957 vp, off, szc, ppa, &pplist,
3958 &pszc, &downsize);
3959 ASSERT(!physcontig || pplist == NULL);
3960 if (!physcontig && downsize &&
3961 type != F_SOFTLOCK) {
3962 ASSERT(pplist == NULL);
3963 SEGVN_VMSTAT_FLTVNPAGES(12);
3964 ierr = -1;
3965 break;
3967 ASSERT(!physcontig ||
3968 segtype == MAP_PRIVATE ||
3969 ppa[0] == NULL);
3970 if (physcontig && ppa[0] == NULL) {
3971 physcontig = 0;
3974 } else if (!brkcow && !tron && szc && ppa[0] != NULL) {
3975 SEGVN_VMSTAT_FLTVNPAGES(13);
3976 ASSERT(segtype == MAP_PRIVATE);
3977 physcontig = 1;
3980 if (!physcontig) {
3981 SEGVN_VMSTAT_FLTVNPAGES(14);
3982 ppa[0] = NULL;
3983 ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3984 &vpprot, ppa, pgsz, seg, a, arw,
3985 svd->cred, NULL);
3986 #ifdef DEBUG
3987 if (ierr == 0) {
3988 for (i = 0; i < pages; i++) {
3989 ASSERT(PAGE_LOCKED(ppa[i]));
3990 ASSERT(!PP_ISFREE(ppa[i]));
3991 ASSERT(ppa[i]->p_vnode == vp);
3992 ASSERT(ppa[i]->p_offset ==
3993 off + (i << PAGESHIFT));
3996 #endif /* DEBUG */
3997 if (segtype == MAP_PRIVATE) {
3998 SEGVN_VMSTAT_FLTVNPAGES(15);
3999 vpprot &= ~PROT_WRITE;
4001 } else {
4002 ASSERT(segtype == MAP_PRIVATE);
4003 SEGVN_VMSTAT_FLTVNPAGES(16);
4004 vpprot = PROT_ALL & ~PROT_WRITE;
4005 ierr = 0;
4008 if (ierr != 0) {
4009 SEGVN_VMSTAT_FLTVNPAGES(17);
4010 if (pplist != NULL) {
4011 SEGVN_VMSTAT_FLTVNPAGES(18);
4012 page_free_replacement_page(pplist);
4013 page_create_putback(pages);
4015 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4016 if (a + pgsz <= eaddr) {
4017 SEGVN_VMSTAT_FLTVNPAGES(19);
4018 err = FC_MAKE_ERR(ierr);
4019 goto out;
4021 va.va_mask = AT_SIZE;
4022 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) {
4023 SEGVN_VMSTAT_FLTVNPAGES(20);
4024 err = FC_MAKE_ERR(EIO);
4025 goto out;
4027 if (btopr(va.va_size) >= btopr(off + pgsz)) {
4028 SEGVN_VMSTAT_FLTVNPAGES(21);
4029 err = FC_MAKE_ERR(ierr);
4030 goto out;
4032 if (btopr(va.va_size) <
4033 btopr(off + (eaddr - a))) {
4034 SEGVN_VMSTAT_FLTVNPAGES(22);
4035 err = FC_MAKE_ERR(ierr);
4036 goto out;
4038 if (brkcow || tron || type == F_SOFTLOCK) {
4039 /* can't reduce map area */
4040 SEGVN_VMSTAT_FLTVNPAGES(23);
4041 vop_size_err = 1;
4042 goto out;
4044 SEGVN_VMSTAT_FLTVNPAGES(24);
4045 ASSERT(szc != 0);
4046 pszc = 0;
4047 ierr = -1;
4048 break;
4051 if (amp != NULL) {
4052 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4053 anon_array_enter(amp, aindx, &an_cookie);
4055 if (amp != NULL &&
4056 anon_get_ptr(amp->ahp, aindx) != NULL) {
4057 ulong_t taindx = P2ALIGN(aindx, maxpages);
4059 SEGVN_VMSTAT_FLTVNPAGES(25);
4060 ASSERT(anon_pages(amp->ahp, taindx,
4061 maxpages) == maxpages);
4062 for (i = 0; i < pages; i++) {
4063 page_unlock(ppa[i]);
4065 anon_array_exit(&an_cookie);
4066 ANON_LOCK_EXIT(&amp->a_rwlock);
4067 if (pplist != NULL) {
4068 page_free_replacement_page(pplist);
4069 page_create_putback(pages);
4071 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4072 if (szc < seg->s_szc) {
4073 SEGVN_VMSTAT_FLTVNPAGES(26);
4075 * For private segments SOFTLOCK
4076 * either always breaks cow (any rw
4077 * type except S_READ_NOCOW) or
4078 * address space is locked as writer
4079 * (S_READ_NOCOW case) and anon slots
4080 * can't show up on second check.
4081 * Therefore if we are here for
4082 * SOFTLOCK case it must be a cow
4083 * break but cow break never reduces
4084 * szc. text replication (tron) in
4085 * this case works as cow break.
4086 * Thus the assert below.
4088 ASSERT(!brkcow && !tron &&
4089 type != F_SOFTLOCK);
4090 pszc = seg->s_szc;
4091 ierr = -2;
4092 break;
4094 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4095 goto again;
4097 #ifdef DEBUG
4098 if (amp != NULL) {
4099 ulong_t taindx = P2ALIGN(aindx, maxpages);
4100 ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4102 #endif /* DEBUG */
4104 if (brkcow || tron) {
4105 ASSERT(amp != NULL);
4106 ASSERT(pplist == NULL);
4107 ASSERT(szc == seg->s_szc);
4108 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4109 ASSERT(IS_P2ALIGNED(aindx, maxpages));
4110 SEGVN_VMSTAT_FLTVNPAGES(27);
4111 ierr = anon_map_privatepages(amp, aindx, szc,
4112 seg, a, prot, ppa, vpage, segvn_anypgsz,
4113 tron ? PG_LOCAL : 0, svd->cred);
4114 if (ierr != 0) {
4115 SEGVN_VMSTAT_FLTVNPAGES(28);
4116 anon_array_exit(&an_cookie);
4117 ANON_LOCK_EXIT(&amp->a_rwlock);
4118 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4119 err = FC_MAKE_ERR(ierr);
4120 goto out;
4123 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4125 * p_szc can't be changed for locked
4126 * swapfs pages.
4128 ASSERT(svd->rcookie ==
4129 HAT_INVALID_REGION_COOKIE);
4130 hat_memload_array(hat, a, pgsz, ppa, prot,
4131 hat_flag);
4133 if (!(hat_flag & HAT_LOAD_LOCK)) {
4134 SEGVN_VMSTAT_FLTVNPAGES(29);
4135 for (i = 0; i < pages; i++) {
4136 page_unlock(ppa[i]);
4139 anon_array_exit(&an_cookie);
4140 ANON_LOCK_EXIT(&amp->a_rwlock);
4141 goto next;
4144 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4145 (!svd->pageprot && svd->prot == (prot & vpprot)));
4147 pfn = page_pptonum(ppa[0]);
4149 * hat_page_demote() needs an SE_EXCL lock on one of
4150 * constituent page_t's and it decreases root's p_szc
4151 * last. This means if root's p_szc is equal szc and
4152 * all its constituent pages are locked
4153 * hat_page_demote() that could have changed p_szc to
4154 * szc is already done and no new have page_demote()
4155 * can start for this large page.
4159 * we need to make sure same mapping size is used for
4160 * the same address range if there's a possibility the
4161 * adddress is already mapped because hat layer panics
4162 * when translation is loaded for the range already
4163 * mapped with a different page size. We achieve it
4164 * by always using largest page size possible subject
4165 * to the constraints of page size, segment page size
4166 * and page alignment. Since mappings are invalidated
4167 * when those constraints change and make it
4168 * impossible to use previously used mapping size no
4169 * mapping size conflicts should happen.
4172 chkszc:
4173 if ((pszc = ppa[0]->p_szc) == szc &&
4174 IS_P2ALIGNED(pfn, pages)) {
4176 SEGVN_VMSTAT_FLTVNPAGES(30);
4177 #ifdef DEBUG
4178 for (i = 0; i < pages; i++) {
4179 ASSERT(PAGE_LOCKED(ppa[i]));
4180 ASSERT(!PP_ISFREE(ppa[i]));
4181 ASSERT(page_pptonum(ppa[i]) ==
4182 pfn + i);
4183 ASSERT(ppa[i]->p_szc == szc);
4184 ASSERT(ppa[i]->p_vnode == vp);
4185 ASSERT(ppa[i]->p_offset ==
4186 off + (i << PAGESHIFT));
4188 #endif /* DEBUG */
4190 * All pages are of szc we need and they are
4191 * all locked so they can't change szc. load
4192 * translations.
4194 * if page got promoted since last check
4195 * we don't need pplist.
4197 if (pplist != NULL) {
4198 page_free_replacement_page(pplist);
4199 page_create_putback(pages);
4201 if (PP_ISMIGRATE(ppa[0])) {
4202 page_migrate(seg, a, ppa, pages);
4204 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4205 prot, vpprot);
4206 if (!xhat) {
4207 hat_memload_array_region(hat, a, pgsz,
4208 ppa, prot & vpprot, hat_flag,
4209 svd->rcookie);
4210 } else {
4212 * avoid large xhat mappings to FS
4213 * pages so that hat_page_demote()
4214 * doesn't need to check for xhat
4215 * large mappings.
4216 * Don't use regions with xhats.
4218 for (i = 0; i < pages; i++) {
4219 hat_memload(hat,
4220 a + (i << PAGESHIFT),
4221 ppa[i], prot & vpprot,
4222 hat_flag);
4226 if (!(hat_flag & HAT_LOAD_LOCK)) {
4227 for (i = 0; i < pages; i++) {
4228 page_unlock(ppa[i]);
4231 if (amp != NULL) {
4232 anon_array_exit(&an_cookie);
4233 ANON_LOCK_EXIT(&amp->a_rwlock);
4235 goto next;
4239 * See if upsize is possible.
4241 if (pszc > szc && szc < seg->s_szc &&
4242 (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4243 pgcnt_t aphase;
4244 uint_t pszc1 = MIN(pszc, seg->s_szc);
4245 ppgsz = page_get_pagesize(pszc1);
4246 ppages = btop(ppgsz);
4247 aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4249 ASSERT(type != F_SOFTLOCK);
4251 SEGVN_VMSTAT_FLTVNPAGES(31);
4252 if (aphase != P2PHASE(pfn, ppages)) {
4253 segvn_faultvnmpss_align_err4++;
4254 } else {
4255 SEGVN_VMSTAT_FLTVNPAGES(32);
4256 if (pplist != NULL) {
4257 page_t *pl = pplist;
4258 page_free_replacement_page(pl);
4259 page_create_putback(pages);
4261 for (i = 0; i < pages; i++) {
4262 page_unlock(ppa[i]);
4264 if (amp != NULL) {
4265 anon_array_exit(&an_cookie);
4266 ANON_LOCK_EXIT(&amp->a_rwlock);
4268 pszc = pszc1;
4269 ierr = -2;
4270 break;
4275 * check if we should use smallest mapping size.
4277 upgrdfail = 0;
4278 if (szc == 0 || xhat ||
4279 (pszc >= szc &&
4280 !IS_P2ALIGNED(pfn, pages)) ||
4281 (pszc < szc &&
4282 !segvn_full_szcpages(ppa, szc, &upgrdfail,
4283 &pszc))) {
4285 if (upgrdfail && type != F_SOFTLOCK) {
4287 * segvn_full_szcpages failed to lock
4288 * all pages EXCL. Size down.
4290 ASSERT(pszc < szc);
4292 SEGVN_VMSTAT_FLTVNPAGES(33);
4294 if (pplist != NULL) {
4295 page_t *pl = pplist;
4296 page_free_replacement_page(pl);
4297 page_create_putback(pages);
4300 for (i = 0; i < pages; i++) {
4301 page_unlock(ppa[i]);
4303 if (amp != NULL) {
4304 anon_array_exit(&an_cookie);
4305 ANON_LOCK_EXIT(&amp->a_rwlock);
4307 ierr = -1;
4308 break;
4310 if (szc != 0 && !xhat && !upgrdfail) {
4311 segvn_faultvnmpss_align_err5++;
4313 SEGVN_VMSTAT_FLTVNPAGES(34);
4314 if (pplist != NULL) {
4315 page_free_replacement_page(pplist);
4316 page_create_putback(pages);
4318 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4319 prot, vpprot);
4320 if (upgrdfail && segvn_anypgsz_vnode) {
4321 /* SOFTLOCK case */
4322 hat_memload_array_region(hat, a, pgsz,
4323 ppa, prot & vpprot, hat_flag,
4324 svd->rcookie);
4325 } else {
4326 for (i = 0; i < pages; i++) {
4327 hat_memload_region(hat,
4328 a + (i << PAGESHIFT),
4329 ppa[i], prot & vpprot,
4330 hat_flag, svd->rcookie);
4333 if (!(hat_flag & HAT_LOAD_LOCK)) {
4334 for (i = 0; i < pages; i++) {
4335 page_unlock(ppa[i]);
4338 if (amp != NULL) {
4339 anon_array_exit(&an_cookie);
4340 ANON_LOCK_EXIT(&amp->a_rwlock);
4342 goto next;
4345 if (pszc == szc) {
4347 * segvn_full_szcpages() upgraded pages szc.
4349 ASSERT(pszc == ppa[0]->p_szc);
4350 ASSERT(IS_P2ALIGNED(pfn, pages));
4351 goto chkszc;
4354 if (pszc > szc) {
4355 kmutex_t *szcmtx;
4356 SEGVN_VMSTAT_FLTVNPAGES(35);
4358 * p_szc of ppa[0] can change since we haven't
4359 * locked all constituent pages. Call
4360 * page_lock_szc() to prevent szc changes.
4361 * This should be a rare case that happens when
4362 * multiple segments use a different page size
4363 * to map the same file offsets.
4365 szcmtx = page_szc_lock(ppa[0]);
4366 pszc = ppa[0]->p_szc;
4367 ASSERT(szcmtx != NULL || pszc == 0);
4368 ASSERT(ppa[0]->p_szc <= pszc);
4369 if (pszc <= szc) {
4370 SEGVN_VMSTAT_FLTVNPAGES(36);
4371 if (szcmtx != NULL) {
4372 mutex_exit(szcmtx);
4374 goto chkszc;
4376 if (pplist != NULL) {
4378 * page got promoted since last check.
4379 * we don't need preaalocated large
4380 * page.
4382 SEGVN_VMSTAT_FLTVNPAGES(37);
4383 page_free_replacement_page(pplist);
4384 page_create_putback(pages);
4386 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4387 prot, vpprot);
4388 hat_memload_array_region(hat, a, pgsz, ppa,
4389 prot & vpprot, hat_flag, svd->rcookie);
4390 mutex_exit(szcmtx);
4391 if (!(hat_flag & HAT_LOAD_LOCK)) {
4392 for (i = 0; i < pages; i++) {
4393 page_unlock(ppa[i]);
4396 if (amp != NULL) {
4397 anon_array_exit(&an_cookie);
4398 ANON_LOCK_EXIT(&amp->a_rwlock);
4400 goto next;
4404 * if page got demoted since last check
4405 * we could have not allocated larger page.
4406 * allocate now.
4408 if (pplist == NULL &&
4409 page_alloc_pages(vp, seg, a, &pplist, NULL,
4410 szc, 0, 0) && type != F_SOFTLOCK) {
4411 SEGVN_VMSTAT_FLTVNPAGES(38);
4412 for (i = 0; i < pages; i++) {
4413 page_unlock(ppa[i]);
4415 if (amp != NULL) {
4416 anon_array_exit(&an_cookie);
4417 ANON_LOCK_EXIT(&amp->a_rwlock);
4419 ierr = -1;
4420 alloc_failed |= (1 << szc);
4421 break;
4424 SEGVN_VMSTAT_FLTVNPAGES(39);
4426 if (pplist != NULL) {
4427 segvn_relocate_pages(ppa, pplist);
4428 #ifdef DEBUG
4429 } else {
4430 ASSERT(type == F_SOFTLOCK);
4431 SEGVN_VMSTAT_FLTVNPAGES(40);
4432 #endif /* DEBUG */
4435 SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4437 if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4438 ASSERT(type == F_SOFTLOCK);
4439 for (i = 0; i < pages; i++) {
4440 ASSERT(ppa[i]->p_szc < szc);
4441 hat_memload_region(hat,
4442 a + (i << PAGESHIFT),
4443 ppa[i], prot & vpprot, hat_flag,
4444 svd->rcookie);
4446 } else {
4447 ASSERT(pplist != NULL || type == F_SOFTLOCK);
4448 hat_memload_array_region(hat, a, pgsz, ppa,
4449 prot & vpprot, hat_flag, svd->rcookie);
4451 if (!(hat_flag & HAT_LOAD_LOCK)) {
4452 for (i = 0; i < pages; i++) {
4453 ASSERT(PAGE_SHARED(ppa[i]));
4454 page_unlock(ppa[i]);
4457 if (amp != NULL) {
4458 anon_array_exit(&an_cookie);
4459 ANON_LOCK_EXIT(&amp->a_rwlock);
4462 next:
4463 if (vpage != NULL) {
4464 vpage += pages;
4466 adjszc_chk = 1;
4468 if (a == lpgeaddr)
4469 break;
4470 ASSERT(a < lpgeaddr);
4472 ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4475 * ierr == -1 means we failed to map with a large page.
4476 * (either due to allocation/relocation failures or
4477 * misalignment with other mappings to this file.
4479 * ierr == -2 means some other thread allocated a large page
4480 * after we gave up tp map with a large page. retry with
4481 * larger mapping.
4483 ASSERT(ierr == -1 || ierr == -2);
4484 ASSERT(ierr == -2 || szc != 0);
4485 ASSERT(ierr == -1 || szc < seg->s_szc);
4486 if (ierr == -2) {
4487 SEGVN_VMSTAT_FLTVNPAGES(41);
4488 ASSERT(pszc > szc && pszc <= seg->s_szc);
4489 szc = pszc;
4490 } else if (segvn_anypgsz_vnode) {
4491 SEGVN_VMSTAT_FLTVNPAGES(42);
4492 szc--;
4493 } else {
4494 SEGVN_VMSTAT_FLTVNPAGES(43);
4495 ASSERT(pszc < szc);
4497 * other process created pszc large page.
4498 * but we still have to drop to 0 szc.
4500 szc = 0;
4503 pgsz = page_get_pagesize(szc);
4504 pages = btop(pgsz);
4505 if (ierr == -2) {
4507 * Size up case. Note lpgaddr may only be needed for
4508 * softlock case so we don't adjust it here.
4510 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4511 ASSERT(a >= lpgaddr);
4512 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4513 off = svd->offset + (uintptr_t)(a - seg->s_base);
4514 aindx = svd->anon_index + seg_page(seg, a);
4515 vpage = (svd->vpage != NULL) ?
4516 &svd->vpage[seg_page(seg, a)] : NULL;
4517 } else {
4519 * Size down case. Note lpgaddr may only be needed for
4520 * softlock case so we don't adjust it here.
4522 ASSERT(IS_P2ALIGNED(a, pgsz));
4523 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4524 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4525 ASSERT(a < lpgeaddr);
4526 if (a < addr) {
4527 SEGVN_VMSTAT_FLTVNPAGES(44);
4529 * The beginning of the large page region can
4530 * be pulled to the right to make a smaller
4531 * region. We haven't yet faulted a single
4532 * page.
4534 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4535 ASSERT(a >= lpgaddr);
4536 off = svd->offset +
4537 (uintptr_t)(a - seg->s_base);
4538 aindx = svd->anon_index + seg_page(seg, a);
4539 vpage = (svd->vpage != NULL) ?
4540 &svd->vpage[seg_page(seg, a)] : NULL;
4544 out:
4545 kmem_free(ppa, ppasize);
4546 if (!err && !vop_size_err) {
4547 SEGVN_VMSTAT_FLTVNPAGES(45);
4548 return (0);
4550 if (type == F_SOFTLOCK && a > lpgaddr) {
4551 SEGVN_VMSTAT_FLTVNPAGES(46);
4552 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4554 if (!vop_size_err) {
4555 SEGVN_VMSTAT_FLTVNPAGES(47);
4556 return (err);
4558 ASSERT(brkcow || tron || type == F_SOFTLOCK);
4560 * Large page end is mapped beyond the end of file and it's a cow
4561 * fault (can be a text replication induced cow) or softlock so we can't
4562 * reduce the map area. For now just demote the segment. This should
4563 * really only happen if the end of the file changed after the mapping
4564 * was established since when large page segments are created we make
4565 * sure they don't extend beyond the end of the file.
4567 SEGVN_VMSTAT_FLTVNPAGES(48);
4569 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4570 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4571 err = 0;
4572 if (seg->s_szc != 0) {
4573 segvn_fltvnpages_clrszc_cnt++;
4574 ASSERT(svd->softlockcnt == 0);
4575 err = segvn_clrszc(seg);
4576 if (err != 0) {
4577 segvn_fltvnpages_clrszc_err++;
4580 ASSERT(err || seg->s_szc == 0);
4581 SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4582 /* segvn_fault will do its job as if szc had been zero to begin with */
4583 return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4587 * This routine will attempt to fault in one large page.
4588 * it will use smaller pages if that fails.
4589 * It should only be called for pure anonymous segments.
4591 static faultcode_t
4592 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4593 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4594 caddr_t eaddr, int brkcow)
4596 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4597 struct anon_map *amp = svd->amp;
4598 uchar_t segtype = svd->type;
4599 uint_t szc = seg->s_szc;
4600 size_t pgsz = page_get_pagesize(szc);
4601 size_t maxpgsz = pgsz;
4602 pgcnt_t pages = btop(pgsz);
4603 uint_t ppaszc = szc;
4604 caddr_t a = lpgaddr;
4605 ulong_t aindx = svd->anon_index + seg_page(seg, a);
4606 struct vpage *vpage = (svd->vpage != NULL) ?
4607 &svd->vpage[seg_page(seg, a)] : NULL;
4608 page_t **ppa;
4609 uint_t ppa_szc;
4610 faultcode_t err;
4611 int ierr;
4612 uint_t protchk, prot, vpprot;
4613 ulong_t i;
4614 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4615 anon_sync_obj_t cookie;
4616 int adjszc_chk;
4617 int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4619 ASSERT(szc != 0);
4620 ASSERT(amp != NULL);
4621 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4622 ASSERT(!(svd->flags & MAP_NORESERVE));
4623 ASSERT(type != F_SOFTUNLOCK);
4624 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4625 ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4626 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4628 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4630 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4631 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4633 if (svd->flags & MAP_TEXT) {
4634 hat_flag |= HAT_LOAD_TEXT;
4637 if (svd->pageprot) {
4638 switch (rw) {
4639 case S_READ:
4640 protchk = PROT_READ;
4641 break;
4642 case S_WRITE:
4643 protchk = PROT_WRITE;
4644 break;
4645 case S_EXEC:
4646 protchk = PROT_EXEC;
4647 break;
4648 case S_OTHER:
4649 default:
4650 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4651 break;
4653 VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4654 } else {
4655 prot = svd->prot;
4656 /* caller has already done segment level protection check. */
4659 ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4660 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4661 for (;;) {
4662 adjszc_chk = 0;
4663 for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4664 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4665 VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4666 ASSERT(vpage != NULL);
4667 prot = VPP_PROT(vpage);
4668 ASSERT(sameprot(seg, a, maxpgsz));
4669 if ((prot & protchk) == 0) {
4670 err = FC_PROT;
4671 goto error;
4674 if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4675 pgsz < maxpgsz) {
4676 ASSERT(a > lpgaddr);
4677 szc = seg->s_szc;
4678 pgsz = maxpgsz;
4679 pages = btop(pgsz);
4680 ASSERT(IS_P2ALIGNED(aindx, pages));
4681 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4682 pgsz);
4684 if (type == F_SOFTLOCK) {
4685 atomic_add_long((ulong_t *)&svd->softlockcnt,
4686 pages);
4688 anon_array_enter(amp, aindx, &cookie);
4689 ppa_szc = (uint_t)-1;
4690 ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4691 prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4692 segvn_anypgsz, pgflags, svd->cred);
4693 if (ierr != 0) {
4694 anon_array_exit(&cookie);
4695 VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4696 if (type == F_SOFTLOCK) {
4697 atomic_add_long(
4698 (ulong_t *)&svd->softlockcnt,
4699 -pages);
4701 if (ierr > 0) {
4702 VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4703 err = FC_MAKE_ERR(ierr);
4704 goto error;
4706 break;
4709 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4711 ASSERT(segtype == MAP_SHARED ||
4712 ppa[0]->p_szc <= szc);
4713 ASSERT(segtype == MAP_PRIVATE ||
4714 ppa[0]->p_szc >= szc);
4717 * Handle pages that have been marked for migration
4719 if (lgrp_optimizations())
4720 page_migrate(seg, a, ppa, pages);
4722 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4724 if (segtype == MAP_SHARED) {
4725 vpprot |= PROT_WRITE;
4728 hat_memload_array(hat, a, pgsz, ppa,
4729 prot & vpprot, hat_flag);
4731 if (hat_flag & HAT_LOAD_LOCK) {
4732 VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4733 } else {
4734 VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4735 for (i = 0; i < pages; i++)
4736 page_unlock(ppa[i]);
4738 if (vpage != NULL)
4739 vpage += pages;
4741 anon_array_exit(&cookie);
4742 adjszc_chk = 1;
4744 if (a == lpgeaddr)
4745 break;
4746 ASSERT(a < lpgeaddr);
4748 * ierr == -1 means we failed to allocate a large page.
4749 * so do a size down operation.
4751 * ierr == -2 means some other process that privately shares
4752 * pages with this process has allocated a larger page and we
4753 * need to retry with larger pages. So do a size up
4754 * operation. This relies on the fact that large pages are
4755 * never partially shared i.e. if we share any constituent
4756 * page of a large page with another process we must share the
4757 * entire large page. Note this cannot happen for SOFTLOCK
4758 * case, unless current address (a) is at the beginning of the
4759 * next page size boundary because the other process couldn't
4760 * have relocated locked pages.
4762 ASSERT(ierr == -1 || ierr == -2);
4764 if (segvn_anypgsz) {
4765 ASSERT(ierr == -2 || szc != 0);
4766 ASSERT(ierr == -1 || szc < seg->s_szc);
4767 szc = (ierr == -1) ? szc - 1 : szc + 1;
4768 } else {
4770 * For non COW faults and segvn_anypgsz == 0
4771 * we need to be careful not to loop forever
4772 * if existing page is found with szc other
4773 * than 0 or seg->s_szc. This could be due
4774 * to page relocations on behalf of DR or
4775 * more likely large page creation. For this
4776 * case simply re-size to existing page's szc
4777 * if returned by anon_map_getpages().
4779 if (ppa_szc == (uint_t)-1) {
4780 szc = (ierr == -1) ? 0 : seg->s_szc;
4781 } else {
4782 ASSERT(ppa_szc <= seg->s_szc);
4783 ASSERT(ierr == -2 || ppa_szc < szc);
4784 ASSERT(ierr == -1 || ppa_szc > szc);
4785 szc = ppa_szc;
4789 pgsz = page_get_pagesize(szc);
4790 pages = btop(pgsz);
4791 ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4792 (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4793 if (type == F_SOFTLOCK) {
4795 * For softlocks we cannot reduce the fault area
4796 * (calculated based on the largest page size for this
4797 * segment) for size down and a is already next
4798 * page size aligned as assertted above for size
4799 * ups. Therefore just continue in case of softlock.
4801 VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4802 continue; /* keep lint happy */
4803 } else if (ierr == -2) {
4806 * Size up case. Note lpgaddr may only be needed for
4807 * softlock case so we don't adjust it here.
4809 VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4810 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4811 ASSERT(a >= lpgaddr);
4812 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4813 aindx = svd->anon_index + seg_page(seg, a);
4814 vpage = (svd->vpage != NULL) ?
4815 &svd->vpage[seg_page(seg, a)] : NULL;
4816 } else {
4818 * Size down case. Note lpgaddr may only be needed for
4819 * softlock case so we don't adjust it here.
4821 VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4822 ASSERT(IS_P2ALIGNED(a, pgsz));
4823 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4824 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4825 ASSERT(a < lpgeaddr);
4826 if (a < addr) {
4828 * The beginning of the large page region can
4829 * be pulled to the right to make a smaller
4830 * region. We haven't yet faulted a single
4831 * page.
4833 VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4834 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4835 ASSERT(a >= lpgaddr);
4836 aindx = svd->anon_index + seg_page(seg, a);
4837 vpage = (svd->vpage != NULL) ?
4838 &svd->vpage[seg_page(seg, a)] : NULL;
4842 VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4843 ANON_LOCK_EXIT(&amp->a_rwlock);
4844 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4845 return (0);
4846 error:
4847 VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4848 ANON_LOCK_EXIT(&amp->a_rwlock);
4849 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4850 if (type == F_SOFTLOCK && a > lpgaddr) {
4851 VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4852 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4854 return (err);
4857 int fltadvice = 1; /* set to free behind pages for sequential access */
4860 * This routine is called via a machine specific fault handling routine.
4861 * It is also called by software routines wishing to lock or unlock
4862 * a range of addresses.
4864 * Here is the basic algorithm:
4865 * If unlocking
4866 * Call segvn_softunlock
4867 * Return
4868 * endif
4869 * Checking and set up work
4870 * If we will need some non-anonymous pages
4871 * Call VOP_GETPAGE over the range of non-anonymous pages
4872 * endif
4873 * Loop over all addresses requested
4874 * Call segvn_faultpage passing in page list
4875 * to load up translations and handle anonymous pages
4876 * endloop
4877 * Load up translation to any additional pages in page list not
4878 * already handled that fit into this segment
4880 static faultcode_t
4881 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4882 enum fault_type type, enum seg_rw rw)
4884 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4885 page_t **plp, **ppp, *pp;
4886 u_offset_t off;
4887 caddr_t a;
4888 struct vpage *vpage;
4889 uint_t vpprot, prot;
4890 int err;
4891 page_t *pl[PVN_GETPAGE_NUM + 1];
4892 size_t plsz, pl_alloc_sz;
4893 size_t page;
4894 ulong_t anon_index;
4895 struct anon_map *amp;
4896 int dogetpage = 0;
4897 caddr_t lpgaddr, lpgeaddr;
4898 size_t pgsz;
4899 anon_sync_obj_t cookie;
4900 int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4902 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4903 ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4906 * First handle the easy stuff
4908 if (type == F_SOFTUNLOCK) {
4909 if (rw == S_READ_NOCOW) {
4910 rw = S_READ;
4911 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4913 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4914 pgsz = (seg->s_szc == 0) ? PAGESIZE :
4915 page_get_pagesize(seg->s_szc);
4916 VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4917 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4918 segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4919 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4920 return (0);
4923 ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4924 !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4925 if (brkcow == 0) {
4926 if (svd->tr_state == SEGVN_TR_INIT) {
4927 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4928 if (svd->tr_state == SEGVN_TR_INIT) {
4929 ASSERT(svd->vp != NULL && svd->amp == NULL);
4930 ASSERT(svd->flags & MAP_TEXT);
4931 ASSERT(svd->type == MAP_PRIVATE);
4932 segvn_textrepl(seg);
4933 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4934 ASSERT(svd->tr_state != SEGVN_TR_ON ||
4935 svd->amp != NULL);
4937 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4939 } else if (svd->tr_state != SEGVN_TR_OFF) {
4940 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4942 if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4943 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4944 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4945 return (FC_PROT);
4948 if (svd->tr_state == SEGVN_TR_ON) {
4949 ASSERT(svd->vp != NULL && svd->amp != NULL);
4950 segvn_textunrepl(seg, 0);
4951 ASSERT(svd->amp == NULL &&
4952 svd->tr_state == SEGVN_TR_OFF);
4953 } else if (svd->tr_state != SEGVN_TR_OFF) {
4954 svd->tr_state = SEGVN_TR_OFF;
4956 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
4957 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4960 top:
4961 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4964 * If we have the same protections for the entire segment,
4965 * insure that the access being attempted is legitimate.
4968 if (svd->pageprot == 0) {
4969 uint_t protchk;
4971 switch (rw) {
4972 case S_READ:
4973 case S_READ_NOCOW:
4974 protchk = PROT_READ;
4975 break;
4976 case S_WRITE:
4977 protchk = PROT_WRITE;
4978 break;
4979 case S_EXEC:
4980 protchk = PROT_EXEC;
4981 break;
4982 case S_OTHER:
4983 default:
4984 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4985 break;
4988 if ((svd->prot & protchk) == 0) {
4989 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4990 return (FC_PROT); /* illegal access type */
4994 if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
4995 /* this must be SOFTLOCK S_READ fault */
4996 ASSERT(svd->amp == NULL);
4997 ASSERT(svd->tr_state == SEGVN_TR_OFF);
4998 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4999 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5000 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5002 * this must be the first ever non S_READ_NOCOW
5003 * softlock for this segment.
5005 ASSERT(svd->softlockcnt == 0);
5006 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5007 HAT_REGION_TEXT);
5008 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5010 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5011 goto top;
5015 * We can't allow the long term use of softlocks for vmpss segments,
5016 * because in some file truncation cases we should be able to demote
5017 * the segment, which requires that there are no softlocks. The
5018 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5019 * segment is S_READ_NOCOW, where the caller holds the address space
5020 * locked as writer and calls softunlock before dropping the as lock.
5021 * S_READ_NOCOW is used by /proc to read memory from another user.
5023 * Another deadlock between SOFTLOCK and file truncation can happen
5024 * because segvn_fault_vnodepages() calls the FS one pagesize at
5025 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5026 * can cause a deadlock because the first set of page_t's remain
5027 * locked SE_SHARED. To avoid this, we demote segments on a first
5028 * SOFTLOCK if they have a length greater than the segment's
5029 * page size.
5031 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5032 * the access type is S_READ_NOCOW and the fault length is less than
5033 * or equal to the segment's page size. While this is quite restrictive,
5034 * it should be the most common case of SOFTLOCK against a vmpss
5035 * segment.
5037 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5038 * caller makes sure no COW will be caused by another thread for a
5039 * softlocked page.
5041 if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5042 int demote = 0;
5044 if (rw != S_READ_NOCOW) {
5045 demote = 1;
5047 if (!demote && len > PAGESIZE) {
5048 pgsz = page_get_pagesize(seg->s_szc);
5049 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5050 lpgeaddr);
5051 if (lpgeaddr - lpgaddr > pgsz) {
5052 demote = 1;
5056 ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5058 if (demote) {
5059 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5060 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5061 if (seg->s_szc != 0) {
5062 segvn_vmpss_clrszc_cnt++;
5063 ASSERT(svd->softlockcnt == 0);
5064 err = segvn_clrszc(seg);
5065 if (err) {
5066 segvn_vmpss_clrszc_err++;
5067 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5068 return (FC_MAKE_ERR(err));
5071 ASSERT(seg->s_szc == 0);
5072 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5073 goto top;
5078 * Check to see if we need to allocate an anon_map structure.
5080 if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5081 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5083 * Drop the "read" lock on the segment and acquire
5084 * the "write" version since we have to allocate the
5085 * anon_map.
5087 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5088 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5090 if (svd->amp == NULL) {
5091 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5092 svd->amp->a_szc = seg->s_szc;
5094 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5097 * Start all over again since segment protections
5098 * may have changed after we dropped the "read" lock.
5100 goto top;
5104 * S_READ_NOCOW vs S_READ distinction was
5105 * only needed for the code above. After
5106 * that we treat it as S_READ.
5108 if (rw == S_READ_NOCOW) {
5109 ASSERT(type == F_SOFTLOCK);
5110 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5111 rw = S_READ;
5114 amp = svd->amp;
5117 * MADV_SEQUENTIAL work is ignored for large page segments.
5119 if (seg->s_szc != 0) {
5120 pgsz = page_get_pagesize(seg->s_szc);
5121 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5122 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5123 if (svd->vp == NULL) {
5124 err = segvn_fault_anonpages(hat, seg, lpgaddr,
5125 lpgeaddr, type, rw, addr, addr + len, brkcow);
5126 } else {
5127 err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5128 lpgeaddr, type, rw, addr, addr + len, brkcow);
5129 if (err == IE_RETRY) {
5130 ASSERT(seg->s_szc == 0);
5131 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5132 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5133 goto top;
5136 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5137 return (err);
5140 page = seg_page(seg, addr);
5141 if (amp != NULL) {
5142 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5143 anon_index = svd->anon_index + page;
5145 if (type == F_PROT && rw == S_READ &&
5146 svd->tr_state == SEGVN_TR_OFF &&
5147 svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5148 size_t index = anon_index;
5149 struct anon *ap;
5151 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5153 * The fast path could apply to S_WRITE also, except
5154 * that the protection fault could be caused by lazy
5155 * tlb flush when ro->rw. In this case, the pte is
5156 * RW already. But RO in the other cpu's tlb causes
5157 * the fault. Since hat_chgprot won't do anything if
5158 * pte doesn't change, we may end up faulting
5159 * indefinitely until the RO tlb entry gets replaced.
5161 for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5162 anon_array_enter(amp, index, &cookie);
5163 ap = anon_get_ptr(amp->ahp, index);
5164 anon_array_exit(&cookie);
5165 if ((ap == NULL) || (ap->an_refcnt != 1)) {
5166 ANON_LOCK_EXIT(&amp->a_rwlock);
5167 goto slow;
5170 hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5171 ANON_LOCK_EXIT(&amp->a_rwlock);
5172 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5173 return (0);
5176 slow:
5178 if (svd->vpage == NULL)
5179 vpage = NULL;
5180 else
5181 vpage = &svd->vpage[page];
5183 off = svd->offset + (uintptr_t)(addr - seg->s_base);
5186 * If MADV_SEQUENTIAL has been set for the particular page we
5187 * are faulting on, free behind all pages in the segment and put
5188 * them on the free list.
5191 if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5192 struct vpage *vpp;
5193 ulong_t fanon_index;
5194 size_t fpage;
5195 u_offset_t pgoff, fpgoff;
5196 struct vnode *fvp;
5197 struct anon *fap = NULL;
5199 if (svd->advice == MADV_SEQUENTIAL ||
5200 (svd->pageadvice &&
5201 VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5202 pgoff = off - PAGESIZE;
5203 fpage = page - 1;
5204 if (vpage != NULL)
5205 vpp = &svd->vpage[fpage];
5206 if (amp != NULL)
5207 fanon_index = svd->anon_index + fpage;
5209 while (pgoff > svd->offset) {
5210 if (svd->advice != MADV_SEQUENTIAL &&
5211 (!svd->pageadvice || (vpage &&
5212 VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5213 break;
5216 * If this is an anon page, we must find the
5217 * correct <vp, offset> for it
5219 fap = NULL;
5220 if (amp != NULL) {
5221 ANON_LOCK_ENTER(&amp->a_rwlock,
5222 RW_READER);
5223 anon_array_enter(amp, fanon_index,
5224 &cookie);
5225 fap = anon_get_ptr(amp->ahp,
5226 fanon_index);
5227 if (fap != NULL) {
5228 swap_xlate(fap, &fvp, &fpgoff);
5229 } else {
5230 fpgoff = pgoff;
5231 fvp = svd->vp;
5233 anon_array_exit(&cookie);
5234 ANON_LOCK_EXIT(&amp->a_rwlock);
5235 } else {
5236 fpgoff = pgoff;
5237 fvp = svd->vp;
5239 if (fvp == NULL)
5240 break; /* XXX */
5242 * Skip pages that are free or have an
5243 * "exclusive" lock.
5245 pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5246 if (pp == NULL)
5247 break;
5249 * We don't need the page_struct_lock to test
5250 * as this is only advisory; even if we
5251 * acquire it someone might race in and lock
5252 * the page after we unlock and before the
5253 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5255 if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5257 * Hold the vnode before releasing
5258 * the page lock to prevent it from
5259 * being freed and re-used by some
5260 * other thread.
5262 VN_HOLD(fvp);
5263 page_unlock(pp);
5265 * We should build a page list
5266 * to kluster putpages XXX
5268 (void) VOP_PUTPAGE(fvp,
5269 (offset_t)fpgoff, PAGESIZE,
5270 (B_DONTNEED|B_FREE|B_ASYNC),
5271 svd->cred, NULL);
5272 VN_RELE(fvp);
5273 } else {
5275 * XXX - Should the loop terminate if
5276 * the page is `locked'?
5278 page_unlock(pp);
5280 --vpp;
5281 --fanon_index;
5282 pgoff -= PAGESIZE;
5287 plp = pl;
5288 *plp = NULL;
5289 pl_alloc_sz = 0;
5292 * See if we need to call VOP_GETPAGE for
5293 * *any* of the range being faulted on.
5294 * We can skip all of this work if there
5295 * was no original vnode.
5297 if (svd->vp != NULL) {
5298 u_offset_t vp_off;
5299 size_t vp_len;
5300 struct anon *ap;
5301 vnode_t *vp;
5303 vp_off = off;
5304 vp_len = len;
5306 if (amp == NULL)
5307 dogetpage = 1;
5308 else {
5310 * Only acquire reader lock to prevent amp->ahp
5311 * from being changed. It's ok to miss pages,
5312 * hence we don't do anon_array_enter
5314 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5315 ap = anon_get_ptr(amp->ahp, anon_index);
5317 if (len <= PAGESIZE)
5318 /* inline non_anon() */
5319 dogetpage = (ap == NULL);
5320 else
5321 dogetpage = non_anon(amp->ahp, anon_index,
5322 &vp_off, &vp_len);
5323 ANON_LOCK_EXIT(&amp->a_rwlock);
5326 if (dogetpage) {
5327 enum seg_rw arw;
5328 struct as *as = seg->s_as;
5330 if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5332 * Page list won't fit in local array,
5333 * allocate one of the needed size.
5335 pl_alloc_sz =
5336 (btop(len) + 1) * sizeof (page_t *);
5337 plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5338 plp[0] = NULL;
5339 plsz = len;
5340 } else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5341 svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5342 (((size_t)(addr + PAGESIZE) <
5343 (size_t)(seg->s_base + seg->s_size)) &&
5344 hat_probe(as->a_hat, addr + PAGESIZE))) {
5346 * Ask VOP_GETPAGE to return the exact number
5347 * of pages if
5348 * (a) this is a COW fault, or
5349 * (b) this is a software fault, or
5350 * (c) next page is already mapped.
5352 plsz = len;
5353 } else {
5355 * Ask VOP_GETPAGE to return adjacent pages
5356 * within the segment.
5358 plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5359 ((seg->s_base + seg->s_size) - addr));
5360 ASSERT((addr + plsz) <=
5361 (seg->s_base + seg->s_size));
5365 * Need to get some non-anonymous pages.
5366 * We need to make only one call to GETPAGE to do
5367 * this to prevent certain deadlocking conditions
5368 * when we are doing locking. In this case
5369 * non_anon() should have picked up the smallest
5370 * range which includes all the non-anonymous
5371 * pages in the requested range. We have to
5372 * be careful regarding which rw flag to pass in
5373 * because on a private mapping, the underlying
5374 * object is never allowed to be written.
5376 if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5377 arw = S_READ;
5378 } else {
5379 arw = rw;
5381 vp = svd->vp;
5382 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5383 "segvn_getpage:seg %p addr %p vp %p",
5384 seg, addr, vp);
5385 err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5386 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5387 svd->cred, NULL);
5388 if (err) {
5389 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5390 segvn_pagelist_rele(plp);
5391 if (pl_alloc_sz)
5392 kmem_free(plp, pl_alloc_sz);
5393 return (FC_MAKE_ERR(err));
5395 if (svd->type == MAP_PRIVATE)
5396 vpprot &= ~PROT_WRITE;
5401 * N.B. at this time the plp array has all the needed non-anon
5402 * pages in addition to (possibly) having some adjacent pages.
5406 * Always acquire the anon_array_lock to prevent
5407 * 2 threads from allocating separate anon slots for
5408 * the same "addr".
5410 * If this is a copy-on-write fault and we don't already
5411 * have the anon_array_lock, acquire it to prevent the
5412 * fault routine from handling multiple copy-on-write faults
5413 * on the same "addr" in the same address space.
5415 * Only one thread should deal with the fault since after
5416 * it is handled, the other threads can acquire a translation
5417 * to the newly created private page. This prevents two or
5418 * more threads from creating different private pages for the
5419 * same fault.
5421 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5422 * to prevent deadlock between this thread and another thread
5423 * which has soft-locked this page and wants to acquire serial_lock.
5424 * ( bug 4026339 )
5426 * The fix for bug 4026339 becomes unnecessary when using the
5427 * locking scheme with per amp rwlock and a global set of hash
5428 * lock, anon_array_lock. If we steal a vnode page when low
5429 * on memory and upgrad the page lock through page_rename,
5430 * then the page is PAGE_HANDLED, nothing needs to be done
5431 * for this page after returning from segvn_faultpage.
5433 * But really, the page lock should be downgraded after
5434 * the stolen page is page_rename'd.
5437 if (amp != NULL)
5438 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5441 * Ok, now loop over the address range and handle faults
5443 for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5444 err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5445 type, rw, brkcow);
5446 if (err) {
5447 if (amp != NULL)
5448 ANON_LOCK_EXIT(&amp->a_rwlock);
5449 if (type == F_SOFTLOCK && a > addr) {
5450 segvn_softunlock(seg, addr, (a - addr),
5451 S_OTHER);
5453 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5454 segvn_pagelist_rele(plp);
5455 if (pl_alloc_sz)
5456 kmem_free(plp, pl_alloc_sz);
5457 return (err);
5459 if (vpage) {
5460 vpage++;
5461 } else if (svd->vpage) {
5462 page = seg_page(seg, addr);
5463 vpage = &svd->vpage[++page];
5467 /* Didn't get pages from the underlying fs so we're done */
5468 if (!dogetpage)
5469 goto done;
5472 * Now handle any other pages in the list returned.
5473 * If the page can be used, load up the translations now.
5474 * Note that the for loop will only be entered if "plp"
5475 * is pointing to a non-NULL page pointer which means that
5476 * VOP_GETPAGE() was called and vpprot has been initialized.
5478 if (svd->pageprot == 0)
5479 prot = svd->prot & vpprot;
5483 * Large Files: diff should be unsigned value because we started
5484 * supporting > 2GB segment sizes from 2.5.1 and when a
5485 * large file of size > 2GB gets mapped to address space
5486 * the diff value can be > 2GB.
5489 for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5490 size_t diff;
5491 struct anon *ap;
5492 int anon_index;
5493 anon_sync_obj_t cookie;
5494 int hat_flag = HAT_LOAD_ADV;
5496 if (svd->flags & MAP_TEXT) {
5497 hat_flag |= HAT_LOAD_TEXT;
5500 if (pp == PAGE_HANDLED)
5501 continue;
5503 if (svd->tr_state != SEGVN_TR_ON &&
5504 pp->p_offset >= svd->offset &&
5505 pp->p_offset < svd->offset + seg->s_size) {
5507 diff = pp->p_offset - svd->offset;
5510 * Large Files: Following is the assertion
5511 * validating the above cast.
5513 ASSERT(svd->vp == pp->p_vnode);
5515 page = btop(diff);
5516 if (svd->pageprot)
5517 prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5520 * Prevent other threads in the address space from
5521 * creating private pages (i.e., allocating anon slots)
5522 * while we are in the process of loading translations
5523 * to additional pages returned by the underlying
5524 * object.
5526 if (amp != NULL) {
5527 anon_index = svd->anon_index + page;
5528 anon_array_enter(amp, anon_index, &cookie);
5529 ap = anon_get_ptr(amp->ahp, anon_index);
5531 if ((amp == NULL) || (ap == NULL)) {
5532 if (IS_VMODSORT(pp->p_vnode) ||
5533 enable_mbit_wa) {
5534 if (rw == S_WRITE)
5535 hat_setmod(pp);
5536 else if (rw != S_OTHER &&
5537 !hat_ismod(pp))
5538 prot &= ~PROT_WRITE;
5541 * Skip mapping read ahead pages marked
5542 * for migration, so they will get migrated
5543 * properly on fault
5545 ASSERT(amp == NULL ||
5546 svd->rcookie == HAT_INVALID_REGION_COOKIE);
5547 if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5548 hat_memload_region(hat,
5549 seg->s_base + diff,
5550 pp, prot, hat_flag,
5551 svd->rcookie);
5554 if (amp != NULL)
5555 anon_array_exit(&cookie);
5557 page_unlock(pp);
5559 done:
5560 if (amp != NULL)
5561 ANON_LOCK_EXIT(&amp->a_rwlock);
5562 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5563 if (pl_alloc_sz)
5564 kmem_free(plp, pl_alloc_sz);
5565 return (0);
5569 * This routine is used to start I/O on pages asynchronously. XXX it will
5570 * only create PAGESIZE pages. At fault time they will be relocated into
5571 * larger pages.
5573 static faultcode_t
5574 segvn_faulta(struct seg *seg, caddr_t addr)
5576 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5577 int err;
5578 struct anon_map *amp;
5579 vnode_t *vp;
5581 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5583 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5584 if ((amp = svd->amp) != NULL) {
5585 struct anon *ap;
5588 * Reader lock to prevent amp->ahp from being changed.
5589 * This is advisory, it's ok to miss a page, so
5590 * we don't do anon_array_enter lock.
5592 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5593 if ((ap = anon_get_ptr(amp->ahp,
5594 svd->anon_index + seg_page(seg, addr))) != NULL) {
5596 err = anon_getpage(&ap, NULL, NULL,
5597 0, seg, addr, S_READ, svd->cred);
5599 ANON_LOCK_EXIT(&amp->a_rwlock);
5600 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5601 if (err)
5602 return (FC_MAKE_ERR(err));
5603 return (0);
5605 ANON_LOCK_EXIT(&amp->a_rwlock);
5608 if (svd->vp == NULL) {
5609 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5610 return (0); /* zfod page - do nothing now */
5613 vp = svd->vp;
5614 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5615 "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5616 err = VOP_GETPAGE(vp,
5617 (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5618 PAGESIZE, NULL, NULL, 0, seg, addr,
5619 S_OTHER, svd->cred, NULL);
5621 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5622 if (err)
5623 return (FC_MAKE_ERR(err));
5624 return (0);
5627 static int
5628 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5630 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5631 struct vpage *cvp, *svp, *evp;
5632 struct vnode *vp;
5633 size_t pgsz;
5634 pgcnt_t pgcnt;
5635 anon_sync_obj_t cookie;
5636 int unload_done = 0;
5638 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5640 if ((svd->maxprot & prot) != prot)
5641 return (EACCES); /* violated maxprot */
5643 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5645 /* return if prot is the same */
5646 if (!svd->pageprot && svd->prot == prot) {
5647 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5648 return (0);
5652 * Since we change protections we first have to flush the cache.
5653 * This makes sure all the pagelock calls have to recheck
5654 * protections.
5656 if (svd->softlockcnt > 0) {
5657 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5660 * If this is shared segment non 0 softlockcnt
5661 * means locked pages are still in use.
5663 if (svd->type == MAP_SHARED) {
5664 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5665 return (EAGAIN);
5669 * Since we do have the segvn writers lock nobody can fill
5670 * the cache with entries belonging to this seg during
5671 * the purge. The flush either succeeds or we still have
5672 * pending I/Os.
5674 segvn_purge(seg);
5675 if (svd->softlockcnt > 0) {
5676 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5677 return (EAGAIN);
5681 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5682 ASSERT(svd->amp == NULL);
5683 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5684 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5685 HAT_REGION_TEXT);
5686 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5687 unload_done = 1;
5688 } else if (svd->tr_state == SEGVN_TR_INIT) {
5689 svd->tr_state = SEGVN_TR_OFF;
5690 } else if (svd->tr_state == SEGVN_TR_ON) {
5691 ASSERT(svd->amp != NULL);
5692 segvn_textunrepl(seg, 0);
5693 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5694 unload_done = 1;
5697 if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5698 svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5699 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5700 segvn_inval_trcache(svd->vp);
5702 if (seg->s_szc != 0) {
5703 int err;
5704 pgsz = page_get_pagesize(seg->s_szc);
5705 pgcnt = pgsz >> PAGESHIFT;
5706 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5707 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5708 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5709 ASSERT(seg->s_base != addr || seg->s_size != len);
5711 * If we are holding the as lock as a reader then
5712 * we need to return IE_RETRY and let the as
5713 * layer drop and re-acquire the lock as a writer.
5715 if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5716 return (IE_RETRY);
5717 VM_STAT_ADD(segvnvmstats.demoterange[1]);
5718 if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5719 err = segvn_demote_range(seg, addr, len,
5720 SDR_END, 0);
5721 } else {
5722 uint_t szcvec = map_pgszcvec(seg->s_base,
5723 pgsz, (uintptr_t)seg->s_base,
5724 (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5725 err = segvn_demote_range(seg, addr, len,
5726 SDR_END, szcvec);
5728 if (err == 0)
5729 return (IE_RETRY);
5730 if (err == ENOMEM)
5731 return (IE_NOMEM);
5732 return (err);
5738 * If it's a private mapping and we're making it writable then we
5739 * may have to reserve the additional swap space now. If we are
5740 * making writable only a part of the segment then we use its vpage
5741 * array to keep a record of the pages for which we have reserved
5742 * swap. In this case we set the pageswap field in the segment's
5743 * segvn structure to record this.
5745 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5746 * removing write permission on the entire segment and we haven't
5747 * modified any pages, we can release the swap space.
5749 if (svd->type == MAP_PRIVATE) {
5750 if (prot & PROT_WRITE) {
5751 if (!(svd->flags & MAP_NORESERVE) &&
5752 !(svd->swresv && svd->pageswap == 0)) {
5753 size_t sz = 0;
5756 * Start by determining how much swap
5757 * space is required.
5759 if (addr == seg->s_base &&
5760 len == seg->s_size &&
5761 svd->pageswap == 0) {
5762 /* The whole segment */
5763 sz = seg->s_size;
5764 } else {
5766 * Make sure that the vpage array
5767 * exists, and make a note of the
5768 * range of elements corresponding
5769 * to len.
5771 segvn_vpage(seg);
5772 svp = &svd->vpage[seg_page(seg, addr)];
5773 evp = &svd->vpage[seg_page(seg,
5774 addr + len)];
5776 if (svd->pageswap == 0) {
5778 * This is the first time we've
5779 * asked for a part of this
5780 * segment, so we need to
5781 * reserve everything we've
5782 * been asked for.
5784 sz = len;
5785 } else {
5787 * We have to count the number
5788 * of pages required.
5790 for (cvp = svp; cvp < evp;
5791 cvp++) {
5792 if (!VPP_ISSWAPRES(cvp))
5793 sz++;
5795 sz <<= PAGESHIFT;
5799 /* Try to reserve the necessary swap. */
5800 if (anon_resv_zone(sz,
5801 seg->s_as->a_proc->p_zone) == 0) {
5802 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5803 return (IE_NOMEM);
5807 * Make a note of how much swap space
5808 * we've reserved.
5810 if (svd->pageswap == 0 && sz == seg->s_size) {
5811 svd->swresv = sz;
5812 } else {
5813 ASSERT(svd->vpage != NULL);
5814 svd->swresv += sz;
5815 svd->pageswap = 1;
5816 for (cvp = svp; cvp < evp; cvp++) {
5817 if (!VPP_ISSWAPRES(cvp))
5818 VPP_SETSWAPRES(cvp);
5822 } else {
5824 * Swap space is released only if this segment
5825 * does not map anonymous memory, since read faults
5826 * on such segments still need an anon slot to read
5827 * in the data.
5829 if (svd->swresv != 0 && svd->vp != NULL &&
5830 svd->amp == NULL && addr == seg->s_base &&
5831 len == seg->s_size && svd->pageprot == 0) {
5832 ASSERT(svd->pageswap == 0);
5833 anon_unresv_zone(svd->swresv,
5834 seg->s_as->a_proc->p_zone);
5835 svd->swresv = 0;
5836 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5837 "anon proc:%p %lu %u", seg, 0, 0);
5842 if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5843 if (svd->prot == prot) {
5844 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5845 return (0); /* all done */
5847 svd->prot = (uchar_t)prot;
5848 } else if (svd->type == MAP_PRIVATE) {
5849 struct anon *ap = NULL;
5850 page_t *pp;
5851 u_offset_t offset, off;
5852 struct anon_map *amp;
5853 ulong_t anon_idx = 0;
5856 * A vpage structure exists or else the change does not
5857 * involve the entire segment. Establish a vpage structure
5858 * if none is there. Then, for each page in the range,
5859 * adjust its individual permissions. Note that write-
5860 * enabling a MAP_PRIVATE page can affect the claims for
5861 * locked down memory. Overcommitting memory terminates
5862 * the operation.
5864 segvn_vpage(seg);
5865 svd->pageprot = 1;
5866 if ((amp = svd->amp) != NULL) {
5867 anon_idx = svd->anon_index + seg_page(seg, addr);
5868 ASSERT(seg->s_szc == 0 ||
5869 IS_P2ALIGNED(anon_idx, pgcnt));
5870 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5873 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5874 evp = &svd->vpage[seg_page(seg, addr + len)];
5877 * See Statement at the beginning of segvn_lockop regarding
5878 * the way cowcnts and lckcnts are handled.
5880 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5882 if (seg->s_szc != 0) {
5883 if (amp != NULL) {
5884 anon_array_enter(amp, anon_idx,
5885 &cookie);
5887 if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5888 !segvn_claim_pages(seg, svp, offset,
5889 anon_idx, prot)) {
5890 if (amp != NULL) {
5891 anon_array_exit(&cookie);
5893 break;
5895 if (amp != NULL) {
5896 anon_array_exit(&cookie);
5898 anon_idx++;
5899 } else {
5900 if (amp != NULL) {
5901 anon_array_enter(amp, anon_idx,
5902 &cookie);
5903 ap = anon_get_ptr(amp->ahp, anon_idx++);
5906 if (VPP_ISPPLOCK(svp) &&
5907 VPP_PROT(svp) != prot) {
5909 if (amp == NULL || ap == NULL) {
5910 vp = svd->vp;
5911 off = offset;
5912 } else
5913 swap_xlate(ap, &vp, &off);
5914 if (amp != NULL)
5915 anon_array_exit(&cookie);
5917 if ((pp = page_lookup(vp, off,
5918 SE_SHARED)) == NULL) {
5919 panic("segvn_setprot: no page");
5920 /*NOTREACHED*/
5922 ASSERT(seg->s_szc == 0);
5923 if ((VPP_PROT(svp) ^ prot) &
5924 PROT_WRITE) {
5925 if (prot & PROT_WRITE) {
5926 if (!page_addclaim(
5927 pp)) {
5928 page_unlock(pp);
5929 break;
5931 } else {
5932 if (!page_subclaim(
5933 pp)) {
5934 page_unlock(pp);
5935 break;
5939 page_unlock(pp);
5940 } else if (amp != NULL)
5941 anon_array_exit(&cookie);
5943 VPP_SETPROT(svp, prot);
5944 offset += PAGESIZE;
5946 if (amp != NULL)
5947 ANON_LOCK_EXIT(&amp->a_rwlock);
5950 * Did we terminate prematurely? If so, simply unload
5951 * the translations to the things we've updated so far.
5953 if (svp != evp) {
5954 if (unload_done) {
5955 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5956 return (IE_NOMEM);
5958 len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5959 PAGESIZE;
5960 ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5961 if (len != 0)
5962 hat_unload(seg->s_as->a_hat, addr,
5963 len, HAT_UNLOAD);
5964 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5965 return (IE_NOMEM);
5967 } else {
5968 segvn_vpage(seg);
5969 svd->pageprot = 1;
5970 evp = &svd->vpage[seg_page(seg, addr + len)];
5971 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5972 VPP_SETPROT(svp, prot);
5976 if (unload_done) {
5977 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5978 return (0);
5981 if (((prot & PROT_WRITE) != 0 &&
5982 (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5983 (prot & ~PROT_USER) == PROT_NONE) {
5985 * Either private or shared data with write access (in
5986 * which case we need to throw out all former translations
5987 * so that we get the right translations set up on fault
5988 * and we don't allow write access to any copy-on-write pages
5989 * that might be around or to prevent write access to pages
5990 * representing holes in a file), or we don't have permission
5991 * to access the memory at all (in which case we have to
5992 * unload any current translations that might exist).
5994 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5995 } else {
5997 * A shared mapping or a private mapping in which write
5998 * protection is going to be denied - just change all the
5999 * protections over the range of addresses in question.
6000 * segvn does not support any other attributes other
6001 * than prot so we can use hat_chgattr.
6003 hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6006 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6008 return (0);
6012 * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
6013 * to determine if the seg is capable of mapping the requested szc.
6015 static int
6016 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6018 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6019 struct segvn_data *nsvd;
6020 struct anon_map *amp = svd->amp;
6021 struct seg *nseg;
6022 caddr_t eaddr = addr + len, a;
6023 size_t pgsz = page_get_pagesize(szc);
6024 pgcnt_t pgcnt = page_get_pagecnt(szc);
6025 int err;
6026 u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6028 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6029 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6031 if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6032 return (0);
6036 * addr should always be pgsz aligned but eaddr may be misaligned if
6037 * it's at the end of the segment.
6039 * XXX we should assert this condition since as_setpagesize() logic
6040 * guarantees it.
6042 if (!IS_P2ALIGNED(addr, pgsz) ||
6043 (!IS_P2ALIGNED(eaddr, pgsz) &&
6044 eaddr != seg->s_base + seg->s_size)) {
6046 segvn_setpgsz_align_err++;
6047 return (EINVAL);
6050 if (amp != NULL && svd->type == MAP_SHARED) {
6051 ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6052 if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6054 segvn_setpgsz_anon_align_err++;
6055 return (EINVAL);
6059 if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6060 szc > segvn_maxpgszc) {
6061 return (EINVAL);
6064 /* paranoid check */
6065 if (svd->vp != NULL &&
6066 (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6067 return (EINVAL);
6070 if (seg->s_szc == 0 && svd->vp != NULL &&
6071 map_addr_vacalign_check(addr, off)) {
6072 return (EINVAL);
6076 * Check that protections are the same within new page
6077 * size boundaries.
6079 if (svd->pageprot) {
6080 for (a = addr; a < eaddr; a += pgsz) {
6081 if ((a + pgsz) > eaddr) {
6082 if (!sameprot(seg, a, eaddr - a)) {
6083 return (EINVAL);
6085 } else {
6086 if (!sameprot(seg, a, pgsz)) {
6087 return (EINVAL);
6094 * Since we are changing page size we first have to flush
6095 * the cache. This makes sure all the pagelock calls have
6096 * to recheck protections.
6098 if (svd->softlockcnt > 0) {
6099 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6102 * If this is shared segment non 0 softlockcnt
6103 * means locked pages are still in use.
6105 if (svd->type == MAP_SHARED) {
6106 return (EAGAIN);
6110 * Since we do have the segvn writers lock nobody can fill
6111 * the cache with entries belonging to this seg during
6112 * the purge. The flush either succeeds or we still have
6113 * pending I/Os.
6115 segvn_purge(seg);
6116 if (svd->softlockcnt > 0) {
6117 return (EAGAIN);
6121 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6122 ASSERT(svd->amp == NULL);
6123 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6124 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6125 HAT_REGION_TEXT);
6126 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6127 } else if (svd->tr_state == SEGVN_TR_INIT) {
6128 svd->tr_state = SEGVN_TR_OFF;
6129 } else if (svd->tr_state == SEGVN_TR_ON) {
6130 ASSERT(svd->amp != NULL);
6131 segvn_textunrepl(seg, 1);
6132 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6133 amp = NULL;
6137 * Operation for sub range of existing segment.
6139 if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6140 if (szc < seg->s_szc) {
6141 VM_STAT_ADD(segvnvmstats.demoterange[2]);
6142 err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6143 if (err == 0) {
6144 return (IE_RETRY);
6146 if (err == ENOMEM) {
6147 return (IE_NOMEM);
6149 return (err);
6151 if (addr != seg->s_base) {
6152 nseg = segvn_split_seg(seg, addr);
6153 if (eaddr != (nseg->s_base + nseg->s_size)) {
6154 /* eaddr is szc aligned */
6155 (void) segvn_split_seg(nseg, eaddr);
6157 return (IE_RETRY);
6159 if (eaddr != (seg->s_base + seg->s_size)) {
6160 /* eaddr is szc aligned */
6161 (void) segvn_split_seg(seg, eaddr);
6163 return (IE_RETRY);
6167 * Break any low level sharing and reset seg->s_szc to 0.
6169 if ((err = segvn_clrszc(seg)) != 0) {
6170 if (err == ENOMEM) {
6171 err = IE_NOMEM;
6173 return (err);
6175 ASSERT(seg->s_szc == 0);
6178 * If the end of the current segment is not pgsz aligned
6179 * then attempt to concatenate with the next segment.
6181 if (!IS_P2ALIGNED(eaddr, pgsz)) {
6182 nseg = AS_SEGNEXT(seg->s_as, seg);
6183 if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6184 return (ENOMEM);
6186 if (nseg->s_ops != &segvn_ops) {
6187 return (EINVAL);
6189 nsvd = (struct segvn_data *)nseg->s_data;
6190 if (nsvd->softlockcnt > 0) {
6192 * If this is shared segment non 0 softlockcnt
6193 * means locked pages are still in use.
6195 if (nsvd->type == MAP_SHARED) {
6196 return (EAGAIN);
6198 segvn_purge(nseg);
6199 if (nsvd->softlockcnt > 0) {
6200 return (EAGAIN);
6203 err = segvn_clrszc(nseg);
6204 if (err == ENOMEM) {
6205 err = IE_NOMEM;
6207 if (err != 0) {
6208 return (err);
6210 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6211 err = segvn_concat(seg, nseg, 1);
6212 if (err == -1) {
6213 return (EINVAL);
6215 if (err == -2) {
6216 return (IE_NOMEM);
6218 return (IE_RETRY);
6222 * May need to re-align anon array to
6223 * new szc.
6225 if (amp != NULL) {
6226 if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6227 struct anon_hdr *nahp;
6229 ASSERT(svd->type == MAP_PRIVATE);
6231 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6232 ASSERT(amp->refcnt == 1);
6233 nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6234 if (nahp == NULL) {
6235 ANON_LOCK_EXIT(&amp->a_rwlock);
6236 return (IE_NOMEM);
6238 if (anon_copy_ptr(amp->ahp, svd->anon_index,
6239 nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6240 anon_release(nahp, btop(amp->size));
6241 ANON_LOCK_EXIT(&amp->a_rwlock);
6242 return (IE_NOMEM);
6244 anon_release(amp->ahp, btop(amp->size));
6245 amp->ahp = nahp;
6246 svd->anon_index = 0;
6247 ANON_LOCK_EXIT(&amp->a_rwlock);
6250 if (svd->vp != NULL && szc != 0) {
6251 struct vattr va;
6252 u_offset_t eoffpage = svd->offset;
6253 va.va_mask = AT_SIZE;
6254 eoffpage += seg->s_size;
6255 eoffpage = btopr(eoffpage);
6256 if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6257 segvn_setpgsz_getattr_err++;
6258 return (EINVAL);
6260 if (btopr(va.va_size) < eoffpage) {
6261 segvn_setpgsz_eof_err++;
6262 return (EINVAL);
6264 if (amp != NULL) {
6266 * anon_fill_cow_holes() may call VOP_GETPAGE().
6267 * don't take anon map lock here to avoid holding it
6268 * across VOP_GETPAGE() calls that may call back into
6269 * segvn for klsutering checks. We don't really need
6270 * anon map lock here since it's a private segment and
6271 * we hold as level lock as writers.
6273 if ((err = anon_fill_cow_holes(seg, seg->s_base,
6274 amp->ahp, svd->anon_index, svd->vp, svd->offset,
6275 seg->s_size, szc, svd->prot, svd->vpage,
6276 svd->cred)) != 0) {
6277 return (EINVAL);
6280 segvn_setvnode_mpss(svd->vp);
6283 if (amp != NULL) {
6284 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6285 if (svd->type == MAP_PRIVATE) {
6286 amp->a_szc = szc;
6287 } else if (szc > amp->a_szc) {
6288 amp->a_szc = szc;
6290 ANON_LOCK_EXIT(&amp->a_rwlock);
6293 seg->s_szc = szc;
6295 return (0);
6298 static int
6299 segvn_clrszc(struct seg *seg)
6301 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6302 struct anon_map *amp = svd->amp;
6303 size_t pgsz;
6304 pgcnt_t pages;
6305 int err = 0;
6306 caddr_t a = seg->s_base;
6307 caddr_t ea = a + seg->s_size;
6308 ulong_t an_idx = svd->anon_index;
6309 vnode_t *vp = svd->vp;
6310 struct vpage *vpage = svd->vpage;
6311 page_t *anon_pl[1 + 1], *pp;
6312 struct anon *ap, *oldap;
6313 uint_t prot = svd->prot, vpprot;
6314 int pageflag = 0;
6316 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6317 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6318 ASSERT(svd->softlockcnt == 0);
6320 if (vp == NULL && amp == NULL) {
6321 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6322 seg->s_szc = 0;
6323 return (0);
6326 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6327 ASSERT(svd->amp == NULL);
6328 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6329 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6330 HAT_REGION_TEXT);
6331 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6332 } else if (svd->tr_state == SEGVN_TR_ON) {
6333 ASSERT(svd->amp != NULL);
6334 segvn_textunrepl(seg, 1);
6335 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6336 amp = NULL;
6337 } else {
6338 if (svd->tr_state != SEGVN_TR_OFF) {
6339 ASSERT(svd->tr_state == SEGVN_TR_INIT);
6340 svd->tr_state = SEGVN_TR_OFF;
6344 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6345 * unload argument is 0 when we are freeing the segment
6346 * and unload was already done.
6348 hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6349 HAT_UNLOAD_UNMAP);
6352 if (amp == NULL || svd->type == MAP_SHARED) {
6353 seg->s_szc = 0;
6354 return (0);
6357 pgsz = page_get_pagesize(seg->s_szc);
6358 pages = btop(pgsz);
6361 * XXX anon rwlock is not really needed because this is a
6362 * private segment and we are writers.
6364 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6366 for (; a < ea; a += pgsz, an_idx += pages) {
6367 if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6368 ASSERT(vpage != NULL || svd->pageprot == 0);
6369 if (vpage != NULL) {
6370 ASSERT(sameprot(seg, a, pgsz));
6371 prot = VPP_PROT(vpage);
6372 pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6374 if (seg->s_szc != 0) {
6375 ASSERT(vp == NULL || anon_pages(amp->ahp,
6376 an_idx, pages) == pages);
6377 if ((err = anon_map_demotepages(amp, an_idx,
6378 seg, a, prot, vpage, svd->cred)) != 0) {
6379 goto out;
6381 } else {
6382 if (oldap->an_refcnt == 1) {
6383 continue;
6385 if ((err = anon_getpage(&oldap, &vpprot,
6386 anon_pl, PAGESIZE, seg, a, S_READ,
6387 svd->cred))) {
6388 goto out;
6390 if ((pp = anon_private(&ap, seg, a, prot,
6391 anon_pl[0], pageflag, svd->cred)) == NULL) {
6392 err = ENOMEM;
6393 goto out;
6395 anon_decref(oldap);
6396 (void) anon_set_ptr(amp->ahp, an_idx, ap,
6397 ANON_SLEEP);
6398 page_unlock(pp);
6401 vpage = (vpage == NULL) ? NULL : vpage + pages;
6404 amp->a_szc = 0;
6405 seg->s_szc = 0;
6406 out:
6407 ANON_LOCK_EXIT(&amp->a_rwlock);
6408 return (err);
6411 static int
6412 segvn_claim_pages(
6413 struct seg *seg,
6414 struct vpage *svp,
6415 u_offset_t off,
6416 ulong_t anon_idx,
6417 uint_t prot)
6419 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6420 size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6421 page_t **ppa;
6422 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6423 struct anon_map *amp = svd->amp;
6424 struct vpage *evp = svp + pgcnt;
6425 caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6426 + seg->s_base;
6427 struct anon *ap;
6428 struct vnode *vp = svd->vp;
6429 page_t *pp;
6430 pgcnt_t pg_idx, i;
6431 int err = 0;
6432 anoff_t aoff;
6433 int anon = (amp != NULL) ? 1 : 0;
6435 ASSERT(svd->type == MAP_PRIVATE);
6436 ASSERT(svd->vpage != NULL);
6437 ASSERT(seg->s_szc != 0);
6438 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6439 ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6440 ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6442 if (VPP_PROT(svp) == prot)
6443 return (1);
6444 if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6445 return (1);
6447 ppa = kmem_alloc(ppasize, KM_SLEEP);
6448 if (anon && vp != NULL) {
6449 if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6450 anon = 0;
6451 ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6453 ASSERT(!anon ||
6454 anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6457 for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6458 if (!VPP_ISPPLOCK(svp))
6459 continue;
6460 if (anon) {
6461 ap = anon_get_ptr(amp->ahp, anon_idx);
6462 if (ap == NULL) {
6463 panic("segvn_claim_pages: no anon slot");
6465 swap_xlate(ap, &vp, &aoff);
6466 off = (u_offset_t)aoff;
6468 ASSERT(vp != NULL);
6469 if ((pp = page_lookup(vp,
6470 (u_offset_t)off, SE_SHARED)) == NULL) {
6471 panic("segvn_claim_pages: no page");
6473 ppa[pg_idx++] = pp;
6474 off += PAGESIZE;
6477 if (ppa[0] == NULL) {
6478 kmem_free(ppa, ppasize);
6479 return (1);
6482 ASSERT(pg_idx <= pgcnt);
6483 ppa[pg_idx] = NULL;
6486 /* Find each large page within ppa, and adjust its claim */
6488 /* Does ppa cover a single large page? */
6489 if (ppa[0]->p_szc == seg->s_szc) {
6490 if (prot & PROT_WRITE)
6491 err = page_addclaim_pages(ppa);
6492 else
6493 err = page_subclaim_pages(ppa);
6494 } else {
6495 for (i = 0; ppa[i]; i += pgcnt) {
6496 ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt));
6497 if (prot & PROT_WRITE)
6498 err = page_addclaim_pages(&ppa[i]);
6499 else
6500 err = page_subclaim_pages(&ppa[i]);
6501 if (err == 0)
6502 break;
6506 for (i = 0; i < pg_idx; i++) {
6507 ASSERT(ppa[i] != NULL);
6508 page_unlock(ppa[i]);
6511 kmem_free(ppa, ppasize);
6512 return (err);
6516 * Returns right (upper address) segment if split occurred.
6517 * If the address is equal to the beginning or end of its segment it returns
6518 * the current segment.
6520 static struct seg *
6521 segvn_split_seg(struct seg *seg, caddr_t addr)
6523 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6524 struct seg *nseg;
6525 size_t nsize;
6526 struct segvn_data *nsvd;
6528 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6529 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6531 ASSERT(addr >= seg->s_base);
6532 ASSERT(addr <= seg->s_base + seg->s_size);
6533 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6535 if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6536 return (seg);
6538 nsize = seg->s_base + seg->s_size - addr;
6539 seg->s_size = addr - seg->s_base;
6540 nseg = seg_alloc(seg->s_as, addr, nsize);
6541 ASSERT(nseg != NULL);
6542 nseg->s_ops = seg->s_ops;
6543 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6544 nseg->s_data = (void *)nsvd;
6545 nseg->s_szc = seg->s_szc;
6546 *nsvd = *svd;
6547 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6548 nsvd->seg = nseg;
6549 rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6551 if (nsvd->vp != NULL) {
6552 VN_HOLD(nsvd->vp);
6553 nsvd->offset = svd->offset +
6554 (uintptr_t)(nseg->s_base - seg->s_base);
6555 if (nsvd->type == MAP_SHARED)
6556 lgrp_shm_policy_init(NULL, nsvd->vp);
6557 } else {
6559 * The offset for an anonymous segment has no signifigance in
6560 * terms of an offset into a file. If we were to use the above
6561 * calculation instead, the structures read out of
6562 * /proc/<pid>/xmap would be more difficult to decipher since
6563 * it would be unclear whether two seemingly contiguous
6564 * prxmap_t structures represented different segments or a
6565 * single segment that had been split up into multiple prxmap_t
6566 * structures (e.g. if some part of the segment had not yet
6567 * been faulted in).
6569 nsvd->offset = 0;
6572 ASSERT(svd->softlockcnt == 0);
6573 ASSERT(svd->softlockcnt_sbase == 0);
6574 ASSERT(svd->softlockcnt_send == 0);
6575 crhold(svd->cred);
6577 if (svd->vpage != NULL) {
6578 size_t bytes = vpgtob(seg_pages(seg));
6579 size_t nbytes = vpgtob(seg_pages(nseg));
6580 struct vpage *ovpage = svd->vpage;
6582 svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6583 bcopy(ovpage, svd->vpage, bytes);
6584 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6585 bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6586 kmem_free(ovpage, bytes + nbytes);
6588 if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6589 struct anon_map *oamp = svd->amp, *namp;
6590 struct anon_hdr *nahp;
6592 ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6593 ASSERT(oamp->refcnt == 1);
6594 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6595 (void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6596 nahp, 0, btop(seg->s_size), ANON_SLEEP);
6598 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6599 namp->a_szc = nseg->s_szc;
6600 (void) anon_copy_ptr(oamp->ahp,
6601 svd->anon_index + btop(seg->s_size),
6602 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6603 anon_release(oamp->ahp, btop(oamp->size));
6604 oamp->ahp = nahp;
6605 oamp->size = seg->s_size;
6606 svd->anon_index = 0;
6607 nsvd->amp = namp;
6608 nsvd->anon_index = 0;
6609 ANON_LOCK_EXIT(&oamp->a_rwlock);
6610 } else if (svd->amp != NULL) {
6611 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6612 ASSERT(svd->amp == nsvd->amp);
6613 ASSERT(seg->s_szc <= svd->amp->a_szc);
6614 nsvd->anon_index = svd->anon_index + seg_pages(seg);
6615 ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6616 ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6617 svd->amp->refcnt++;
6618 ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6622 * Split the amount of swap reserved.
6624 if (svd->swresv) {
6626 * For MAP_NORESERVE, only allocate swap reserve for pages
6627 * being used. Other segments get enough to cover whole
6628 * segment.
6630 if (svd->flags & MAP_NORESERVE) {
6631 size_t oswresv;
6633 ASSERT(svd->amp);
6634 oswresv = svd->swresv;
6635 svd->swresv = ptob(anon_pages(svd->amp->ahp,
6636 svd->anon_index, btop(seg->s_size)));
6637 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6638 nsvd->anon_index, btop(nseg->s_size)));
6639 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6640 } else {
6641 if (svd->pageswap) {
6642 svd->swresv = segvn_count_swap_by_vpages(seg);
6643 ASSERT(nsvd->swresv >= svd->swresv);
6644 nsvd->swresv -= svd->swresv;
6645 } else {
6646 ASSERT(svd->swresv == seg->s_size +
6647 nseg->s_size);
6648 svd->swresv = seg->s_size;
6649 nsvd->swresv = nseg->s_size;
6654 return (nseg);
6658 * called on memory operations (unmap, setprot, setpagesize) for a subset
6659 * of a large page segment to either demote the memory range (SDR_RANGE)
6660 * or the ends (SDR_END) by addr/len.
6662 * returns 0 on success. returns errno, including ENOMEM, on failure.
6664 static int
6665 segvn_demote_range(
6666 struct seg *seg,
6667 caddr_t addr,
6668 size_t len,
6669 int flag,
6670 uint_t szcvec)
6672 caddr_t eaddr = addr + len;
6673 caddr_t lpgaddr, lpgeaddr;
6674 struct seg *nseg;
6675 struct seg *badseg1 = NULL;
6676 struct seg *badseg2 = NULL;
6677 size_t pgsz;
6678 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6679 int err;
6680 uint_t szc = seg->s_szc;
6681 uint_t tszcvec;
6683 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6684 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6685 ASSERT(szc != 0);
6686 pgsz = page_get_pagesize(szc);
6687 ASSERT(seg->s_base != addr || seg->s_size != len);
6688 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6689 ASSERT(svd->softlockcnt == 0);
6690 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6691 ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6693 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6694 ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6695 if (flag == SDR_RANGE) {
6696 /* demote entire range */
6697 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6698 (void) segvn_split_seg(nseg, lpgeaddr);
6699 ASSERT(badseg1->s_base == lpgaddr);
6700 ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6701 } else if (addr != lpgaddr) {
6702 ASSERT(flag == SDR_END);
6703 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6704 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6705 eaddr < lpgaddr + 2 * pgsz) {
6706 (void) segvn_split_seg(nseg, lpgeaddr);
6707 ASSERT(badseg1->s_base == lpgaddr);
6708 ASSERT(badseg1->s_size == 2 * pgsz);
6709 } else {
6710 nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6711 ASSERT(badseg1->s_base == lpgaddr);
6712 ASSERT(badseg1->s_size == pgsz);
6713 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6714 ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6715 nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6716 badseg2 = nseg;
6717 (void) segvn_split_seg(nseg, lpgeaddr);
6718 ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6719 ASSERT(badseg2->s_size == pgsz);
6722 } else {
6723 ASSERT(flag == SDR_END);
6724 ASSERT(eaddr < lpgeaddr);
6725 badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6726 (void) segvn_split_seg(nseg, lpgeaddr);
6727 ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6728 ASSERT(badseg1->s_size == pgsz);
6731 ASSERT(badseg1 != NULL);
6732 ASSERT(badseg1->s_szc == szc);
6733 ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6734 badseg1->s_size == 2 * pgsz);
6735 ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6736 ASSERT(badseg1->s_size == pgsz ||
6737 sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6738 if (err = segvn_clrszc(badseg1)) {
6739 return (err);
6741 ASSERT(badseg1->s_szc == 0);
6743 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6744 uint_t tszc = highbit(tszcvec) - 1;
6745 caddr_t ta = MAX(addr, badseg1->s_base);
6746 caddr_t te;
6747 size_t tpgsz = page_get_pagesize(tszc);
6749 ASSERT(svd->type == MAP_SHARED);
6750 ASSERT(flag == SDR_END);
6751 ASSERT(tszc < szc && tszc > 0);
6753 if (eaddr > badseg1->s_base + badseg1->s_size) {
6754 te = badseg1->s_base + badseg1->s_size;
6755 } else {
6756 te = eaddr;
6759 ASSERT(ta <= te);
6760 badseg1->s_szc = tszc;
6761 if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6762 if (badseg2 != NULL) {
6763 err = segvn_demote_range(badseg1, ta, te - ta,
6764 SDR_END, tszcvec);
6765 if (err != 0) {
6766 return (err);
6768 } else {
6769 return (segvn_demote_range(badseg1, ta,
6770 te - ta, SDR_END, tszcvec));
6775 if (badseg2 == NULL)
6776 return (0);
6777 ASSERT(badseg2->s_szc == szc);
6778 ASSERT(badseg2->s_size == pgsz);
6779 ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6780 if (err = segvn_clrszc(badseg2)) {
6781 return (err);
6783 ASSERT(badseg2->s_szc == 0);
6785 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6786 uint_t tszc = highbit(tszcvec) - 1;
6787 size_t tpgsz = page_get_pagesize(tszc);
6789 ASSERT(svd->type == MAP_SHARED);
6790 ASSERT(flag == SDR_END);
6791 ASSERT(tszc < szc && tszc > 0);
6792 ASSERT(badseg2->s_base > addr);
6793 ASSERT(eaddr > badseg2->s_base);
6794 ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6796 badseg2->s_szc = tszc;
6797 if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6798 return (segvn_demote_range(badseg2, badseg2->s_base,
6799 eaddr - badseg2->s_base, SDR_END, tszcvec));
6803 return (0);
6806 static int
6807 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6809 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6810 struct vpage *vp, *evp;
6812 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6814 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6816 * If segment protection can be used, simply check against them.
6818 if (svd->pageprot == 0) {
6819 int err;
6821 err = ((svd->prot & prot) != prot) ? EACCES : 0;
6822 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6823 return (err);
6827 * Have to check down to the vpage level.
6829 evp = &svd->vpage[seg_page(seg, addr + len)];
6830 for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6831 if ((VPP_PROT(vp) & prot) != prot) {
6832 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6833 return (EACCES);
6836 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6837 return (0);
6840 static int
6841 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6843 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6844 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6846 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6848 if (pgno != 0) {
6849 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6850 if (svd->pageprot == 0) {
6851 do {
6852 protv[--pgno] = svd->prot;
6853 } while (pgno != 0);
6854 } else {
6855 size_t pgoff = seg_page(seg, addr);
6857 do {
6858 pgno--;
6859 protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6860 } while (pgno != 0);
6862 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6864 return (0);
6867 static u_offset_t
6868 segvn_getoffset(struct seg *seg, caddr_t addr)
6870 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6872 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6874 return (svd->offset + (uintptr_t)(addr - seg->s_base));
6877 /*ARGSUSED*/
6878 static int
6879 segvn_gettype(struct seg *seg, caddr_t addr)
6881 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6883 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6885 return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6886 MAP_INITDATA)));
6889 /*ARGSUSED*/
6890 static int
6891 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6893 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6895 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6897 *vpp = svd->vp;
6898 return (0);
6902 * Check to see if it makes sense to do kluster/read ahead to
6903 * addr + delta relative to the mapping at addr. We assume here
6904 * that delta is a signed PAGESIZE'd multiple (which can be negative).
6906 * For segvn, we currently "approve" of the action if we are
6907 * still in the segment and it maps from the same vp/off,
6908 * or if the advice stored in segvn_data or vpages allows it.
6909 * Currently, klustering is not allowed only if MADV_RANDOM is set.
6911 static int
6912 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6914 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6915 struct anon *oap, *ap;
6916 ssize_t pd;
6917 size_t page;
6918 struct vnode *vp1, *vp2;
6919 u_offset_t off1, off2;
6920 struct anon_map *amp;
6922 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6923 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6924 SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6926 if (addr + delta < seg->s_base ||
6927 addr + delta >= (seg->s_base + seg->s_size))
6928 return (-1); /* exceeded segment bounds */
6930 pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */
6931 page = seg_page(seg, addr);
6934 * Check to see if either of the pages addr or addr + delta
6935 * have advice set that prevents klustering (if MADV_RANDOM advice
6936 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6937 * is negative).
6939 if (svd->advice == MADV_RANDOM ||
6940 svd->advice == MADV_SEQUENTIAL && delta < 0)
6941 return (-1);
6942 else if (svd->pageadvice && svd->vpage) {
6943 struct vpage *bvpp, *evpp;
6945 bvpp = &svd->vpage[page];
6946 evpp = &svd->vpage[page + pd];
6947 if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6948 VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6949 return (-1);
6950 if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6951 VPP_ADVICE(evpp) == MADV_RANDOM)
6952 return (-1);
6955 if (svd->type == MAP_SHARED)
6956 return (0); /* shared mapping - all ok */
6958 if ((amp = svd->amp) == NULL)
6959 return (0); /* off original vnode */
6961 page += svd->anon_index;
6963 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6965 oap = anon_get_ptr(amp->ahp, page);
6966 ap = anon_get_ptr(amp->ahp, page + pd);
6968 ANON_LOCK_EXIT(&amp->a_rwlock);
6970 if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6971 return (-1); /* one with and one without an anon */
6974 if (oap == NULL) { /* implies that ap == NULL */
6975 return (0); /* off original vnode */
6979 * Now we know we have two anon pointers - check to
6980 * see if they happen to be properly allocated.
6984 * XXX We cheat here and don't lock the anon slots. We can't because
6985 * we may have been called from the anon layer which might already
6986 * have locked them. We are holding a refcnt on the slots so they
6987 * can't disappear. The worst that will happen is we'll get the wrong
6988 * names (vp, off) for the slots and make a poor klustering decision.
6990 swap_xlate(ap, &vp1, &off1);
6991 swap_xlate(oap, &vp2, &off2);
6994 if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta)
6995 return (-1);
6996 return (0);
7000 * Swap the pages of seg out to secondary storage, returning the
7001 * number of bytes of storage freed.
7003 * The basic idea is first to unload all translations and then to call
7004 * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
7005 * swap device. Pages to which other segments have mappings will remain
7006 * mapped and won't be swapped. Our caller (as_swapout) has already
7007 * performed the unloading step.
7009 * The value returned is intended to correlate well with the process's
7010 * memory requirements. However, there are some caveats:
7011 * 1) When given a shared segment as argument, this routine will
7012 * only succeed in swapping out pages for the last sharer of the
7013 * segment. (Previous callers will only have decremented mapping
7014 * reference counts.)
7015 * 2) We assume that the hat layer maintains a large enough translation
7016 * cache to capture process reference patterns.
7018 static size_t
7019 segvn_swapout(struct seg *seg)
7021 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7022 struct anon_map *amp;
7023 pgcnt_t pgcnt = 0;
7024 pgcnt_t npages;
7025 pgcnt_t page;
7026 ulong_t anon_index;
7028 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7030 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7032 * Find pages unmapped by our caller and force them
7033 * out to the virtual swap device.
7035 if ((amp = svd->amp) != NULL)
7036 anon_index = svd->anon_index;
7037 npages = seg->s_size >> PAGESHIFT;
7038 for (page = 0; page < npages; page++) {
7039 page_t *pp;
7040 struct anon *ap;
7041 struct vnode *vp;
7042 u_offset_t off;
7043 anon_sync_obj_t cookie;
7046 * Obtain <vp, off> pair for the page, then look it up.
7048 * Note that this code is willing to consider regular
7049 * pages as well as anon pages. Is this appropriate here?
7051 ap = NULL;
7052 if (amp != NULL) {
7053 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7054 if (anon_array_try_enter(amp, anon_index + page,
7055 &cookie)) {
7056 ANON_LOCK_EXIT(&amp->a_rwlock);
7057 continue;
7059 ap = anon_get_ptr(amp->ahp, anon_index + page);
7060 if (ap != NULL) {
7061 swap_xlate(ap, &vp, &off);
7062 } else {
7063 vp = svd->vp;
7064 off = svd->offset + ptob(page);
7066 anon_array_exit(&cookie);
7067 ANON_LOCK_EXIT(&amp->a_rwlock);
7068 } else {
7069 vp = svd->vp;
7070 off = svd->offset + ptob(page);
7072 if (vp == NULL) { /* untouched zfod page */
7073 ASSERT(ap == NULL);
7074 continue;
7077 pp = page_lookup_nowait(vp, off, SE_SHARED);
7078 if (pp == NULL)
7079 continue;
7083 * Examine the page to see whether it can be tossed out,
7084 * keeping track of how many we've found.
7086 if (!page_tryupgrade(pp)) {
7088 * If the page has an i/o lock and no mappings,
7089 * it's very likely that the page is being
7090 * written out as a result of klustering.
7091 * Assume this is so and take credit for it here.
7093 if (!page_io_trylock(pp)) {
7094 if (!hat_page_is_mapped(pp))
7095 pgcnt++;
7096 } else {
7097 page_io_unlock(pp);
7099 page_unlock(pp);
7100 continue;
7102 ASSERT(!page_iolock_assert(pp));
7106 * Skip if page is locked or has mappings.
7107 * We don't need the page_struct_lock to look at lckcnt
7108 * and cowcnt because the page is exclusive locked.
7110 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7111 hat_page_is_mapped(pp)) {
7112 page_unlock(pp);
7113 continue;
7117 * dispose skips large pages so try to demote first.
7119 if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7120 page_unlock(pp);
7122 * XXX should skip the remaining page_t's of this
7123 * large page.
7125 continue;
7128 ASSERT(pp->p_szc == 0);
7131 * No longer mapped -- we can toss it out. How
7132 * we do so depends on whether or not it's dirty.
7134 if (hat_ismod(pp) && pp->p_vnode) {
7136 * We must clean the page before it can be
7137 * freed. Setting B_FREE will cause pvn_done
7138 * to free the page when the i/o completes.
7139 * XXX: This also causes it to be accounted
7140 * as a pageout instead of a swap: need
7141 * B_SWAPOUT bit to use instead of B_FREE.
7143 * Hold the vnode before releasing the page lock
7144 * to prevent it from being freed and re-used by
7145 * some other thread.
7147 VN_HOLD(vp);
7148 page_unlock(pp);
7151 * Queue all i/o requests for the pageout thread
7152 * to avoid saturating the pageout devices.
7154 if (!queue_io_request(vp, off))
7155 VN_RELE(vp);
7156 } else {
7158 * The page was clean, free it.
7160 * XXX: Can we ever encounter modified pages
7161 * with no associated vnode here?
7163 ASSERT(pp->p_vnode != NULL);
7164 /*LINTED: constant in conditional context*/
7165 VN_DISPOSE(pp, B_FREE, 0, kcred);
7169 * Credit now even if i/o is in progress.
7171 pgcnt++;
7173 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7176 * Wakeup pageout to initiate i/o on all queued requests.
7178 cv_signal_pageout();
7179 return (ptob(pgcnt));
7183 * Synchronize primary storage cache with real object in virtual memory.
7185 * XXX - Anonymous pages should not be sync'ed out at all.
7187 static int
7188 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7190 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7191 struct vpage *vpp;
7192 page_t *pp;
7193 u_offset_t offset;
7194 struct vnode *vp;
7195 u_offset_t off;
7196 caddr_t eaddr;
7197 int bflags;
7198 int err = 0;
7199 int segtype;
7200 int pageprot;
7201 int prot;
7202 ulong_t anon_index;
7203 struct anon_map *amp;
7204 struct anon *ap;
7205 anon_sync_obj_t cookie;
7207 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7209 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7211 if (svd->softlockcnt > 0) {
7213 * If this is shared segment non 0 softlockcnt
7214 * means locked pages are still in use.
7216 if (svd->type == MAP_SHARED) {
7217 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7218 return (EAGAIN);
7222 * flush all pages from seg cache
7223 * otherwise we may deadlock in swap_putpage
7224 * for B_INVAL page (4175402).
7226 * Even if we grab segvn WRITER's lock
7227 * here, there might be another thread which could've
7228 * successfully performed lookup/insert just before
7229 * we acquired the lock here. So, grabbing either
7230 * lock here is of not much use. Until we devise
7231 * a strategy at upper layers to solve the
7232 * synchronization issues completely, we expect
7233 * applications to handle this appropriately.
7235 segvn_purge(seg);
7236 if (svd->softlockcnt > 0) {
7237 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7238 return (EAGAIN);
7240 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7241 svd->amp->a_softlockcnt > 0) {
7243 * Try to purge this amp's entries from pcache. It will
7244 * succeed only if other segments that share the amp have no
7245 * outstanding softlock's.
7247 segvn_purge(seg);
7248 if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) {
7249 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7250 return (EAGAIN);
7254 vpp = svd->vpage;
7255 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7256 bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7257 ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7259 if (attr) {
7260 pageprot = attr & ~(SHARED|PRIVATE);
7261 segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7264 * We are done if the segment types don't match
7265 * or if we have segment level protections and
7266 * they don't match.
7268 if (svd->type != segtype) {
7269 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7270 return (0);
7272 if (vpp == NULL) {
7273 if (svd->prot != pageprot) {
7274 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7275 return (0);
7277 prot = svd->prot;
7278 } else
7279 vpp = &svd->vpage[seg_page(seg, addr)];
7281 } else if (svd->vp && svd->amp == NULL &&
7282 (flags & MS_INVALIDATE) == 0) {
7285 * No attributes, no anonymous pages and MS_INVALIDATE flag
7286 * is not on, just use one big request.
7288 err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7289 bflags, svd->cred, NULL);
7290 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7291 return (err);
7294 if ((amp = svd->amp) != NULL)
7295 anon_index = svd->anon_index + seg_page(seg, addr);
7297 for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7298 ap = NULL;
7299 if (amp != NULL) {
7300 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7301 anon_array_enter(amp, anon_index, &cookie);
7302 ap = anon_get_ptr(amp->ahp, anon_index++);
7303 if (ap != NULL) {
7304 swap_xlate(ap, &vp, &off);
7305 } else {
7306 vp = svd->vp;
7307 off = offset;
7309 anon_array_exit(&cookie);
7310 ANON_LOCK_EXIT(&amp->a_rwlock);
7311 } else {
7312 vp = svd->vp;
7313 off = offset;
7315 offset += PAGESIZE;
7317 if (vp == NULL) /* untouched zfod page */
7318 continue;
7320 if (attr) {
7321 if (vpp) {
7322 prot = VPP_PROT(vpp);
7323 vpp++;
7325 if (prot != pageprot) {
7326 continue;
7331 * See if any of these pages are locked -- if so, then we
7332 * will have to truncate an invalidate request at the first
7333 * locked one. We don't need the page_struct_lock to test
7334 * as this is only advisory; even if we acquire it someone
7335 * might race in and lock the page after we unlock and before
7336 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7338 if (flags & MS_INVALIDATE) {
7339 if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7340 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7341 page_unlock(pp);
7342 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7343 return (EBUSY);
7345 if (ap != NULL && pp->p_szc != 0 &&
7346 page_tryupgrade(pp)) {
7347 if (pp->p_lckcnt == 0 &&
7348 pp->p_cowcnt == 0) {
7350 * swapfs VN_DISPOSE() won't
7351 * invalidate large pages.
7352 * Attempt to demote.
7353 * XXX can't help it if it
7354 * fails. But for swapfs
7355 * pages it is no big deal.
7357 (void) page_try_demote_pages(
7358 pp);
7361 page_unlock(pp);
7363 } else if (svd->type == MAP_SHARED && amp != NULL) {
7365 * Avoid writing out to disk ISM's large pages
7366 * because segspt_free_pages() relies on NULL an_pvp
7367 * of anon slots of such pages.
7370 ASSERT(svd->vp == NULL);
7372 * swapfs uses page_lookup_nowait if not freeing or
7373 * invalidating and skips a page if
7374 * page_lookup_nowait returns NULL.
7376 pp = page_lookup_nowait(vp, off, SE_SHARED);
7377 if (pp == NULL) {
7378 continue;
7380 if (pp->p_szc != 0) {
7381 page_unlock(pp);
7382 continue;
7386 * Note ISM pages are created large so (vp, off)'s
7387 * page cannot suddenly become large after we unlock
7388 * pp.
7390 page_unlock(pp);
7393 * XXX - Should ultimately try to kluster
7394 * calls to VOP_PUTPAGE() for performance.
7396 VN_HOLD(vp);
7397 err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7398 (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)),
7399 svd->cred, NULL);
7401 VN_RELE(vp);
7402 if (err)
7403 break;
7405 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7406 return (err);
7410 * Determine if we have data corresponding to pages in the
7411 * primary storage virtual memory cache (i.e., "in core").
7413 static size_t
7414 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7416 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7417 struct vnode *vp, *avp;
7418 u_offset_t offset, aoffset;
7419 size_t p, ep;
7420 int ret;
7421 struct vpage *vpp;
7422 page_t *pp;
7423 uint_t start;
7424 struct anon_map *amp; /* XXX - for locknest */
7425 struct anon *ap;
7426 uint_t attr;
7427 anon_sync_obj_t cookie;
7429 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7431 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7432 if (svd->amp == NULL && svd->vp == NULL) {
7433 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7434 bzero(vec, btopr(len));
7435 return (len); /* no anonymous pages created yet */
7438 p = seg_page(seg, addr);
7439 ep = seg_page(seg, addr + len);
7440 start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7442 amp = svd->amp;
7443 for (; p < ep; p++, addr += PAGESIZE) {
7444 vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7445 ret = start;
7446 ap = NULL;
7447 avp = NULL;
7448 /* Grab the vnode/offset for the anon slot */
7449 if (amp != NULL) {
7450 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7451 anon_array_enter(amp, svd->anon_index + p, &cookie);
7452 ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7453 if (ap != NULL) {
7454 swap_xlate(ap, &avp, &aoffset);
7456 anon_array_exit(&cookie);
7457 ANON_LOCK_EXIT(&amp->a_rwlock);
7459 if ((avp != NULL) && page_exists(avp, aoffset)) {
7460 /* A page exists for the anon slot */
7461 ret |= SEG_PAGE_INCORE;
7464 * If page is mapped and writable
7466 attr = (uint_t)0;
7467 if ((hat_getattr(seg->s_as->a_hat, addr,
7468 &attr) != -1) && (attr & PROT_WRITE)) {
7469 ret |= SEG_PAGE_ANON;
7472 * Don't get page_struct lock for lckcnt and cowcnt,
7473 * since this is purely advisory.
7475 if ((pp = page_lookup_nowait(avp, aoffset,
7476 SE_SHARED)) != NULL) {
7477 if (pp->p_lckcnt)
7478 ret |= SEG_PAGE_SOFTLOCK;
7479 if (pp->p_cowcnt)
7480 ret |= SEG_PAGE_HASCOW;
7481 page_unlock(pp);
7485 /* Gather vnode statistics */
7486 vp = svd->vp;
7487 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7489 if (vp != NULL) {
7491 * Try to obtain a "shared" lock on the page
7492 * without blocking. If this fails, determine
7493 * if the page is in memory.
7495 pp = page_lookup_nowait(vp, offset, SE_SHARED);
7496 if ((pp == NULL) && (page_exists(vp, offset))) {
7497 /* Page is incore, and is named */
7498 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7501 * Don't get page_struct lock for lckcnt and cowcnt,
7502 * since this is purely advisory.
7504 if (pp != NULL) {
7505 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7506 if (pp->p_lckcnt)
7507 ret |= SEG_PAGE_SOFTLOCK;
7508 if (pp->p_cowcnt)
7509 ret |= SEG_PAGE_HASCOW;
7510 page_unlock(pp);
7514 /* Gather virtual page information */
7515 if (vpp) {
7516 if (VPP_ISPPLOCK(vpp))
7517 ret |= SEG_PAGE_LOCKED;
7518 vpp++;
7521 *vec++ = (char)ret;
7523 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7524 return (len);
7528 * Statement for p_cowcnts/p_lckcnts.
7530 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7531 * irrespective of the following factors or anything else:
7533 * (1) anon slots are populated or not
7534 * (2) cow is broken or not
7535 * (3) refcnt on ap is 1 or greater than 1
7537 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7538 * and munlock.
7541 * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7543 * if vpage has PROT_WRITE
7544 * transfer cowcnt on the oldpage -> cowcnt on the newpage
7545 * else
7546 * transfer lckcnt on the oldpage -> lckcnt on the newpage
7548 * During copy-on-write, decrement p_cowcnt on the oldpage and increment
7549 * p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7551 * We may also break COW if softlocking on read access in the physio case.
7552 * In this case, vpage may not have PROT_WRITE. So, we need to decrement
7553 * p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7554 * vpage doesn't have PROT_WRITE.
7557 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7559 * If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7560 * increment p_lckcnt by calling page_subclaim() which takes care of
7561 * availrmem accounting and p_lckcnt overflow.
7563 * If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7564 * increment p_cowcnt by calling page_addclaim() which takes care of
7565 * availrmem availability and p_cowcnt overflow.
7569 * Lock down (or unlock) pages mapped by this segment.
7571 * XXX only creates PAGESIZE pages if anon slots are not initialized.
7572 * At fault time they will be relocated into larger pages.
7574 static int
7575 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7576 int attr, int op, ulong_t *lockmap, size_t pos)
7578 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7579 struct vpage *vpp;
7580 struct vpage *evp;
7581 page_t *pp;
7582 u_offset_t offset;
7583 u_offset_t off;
7584 int segtype;
7585 int pageprot;
7586 int claim;
7587 struct vnode *vp;
7588 ulong_t anon_index;
7589 struct anon_map *amp;
7590 struct anon *ap;
7591 struct vattr va;
7592 anon_sync_obj_t cookie;
7593 struct kshmid *sp = NULL;
7594 struct proc *p = curproc;
7595 kproject_t *proj = NULL;
7596 int chargeproc = 1;
7597 size_t locked_bytes = 0;
7598 size_t unlocked_bytes = 0;
7599 int err = 0;
7602 * Hold write lock on address space because may split or concatenate
7603 * segments
7605 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7608 * If this is a shm, use shm's project and zone, else use
7609 * project and zone of calling process
7612 /* Determine if this segment backs a sysV shm */
7613 if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7614 ASSERT(svd->type == MAP_SHARED);
7615 ASSERT(svd->tr_state == SEGVN_TR_OFF);
7616 sp = svd->amp->a_sp;
7617 proj = sp->shm_perm.ipc_proj;
7618 chargeproc = 0;
7621 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7622 if (attr) {
7623 pageprot = attr & ~(SHARED|PRIVATE);
7624 segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7627 * We are done if the segment types don't match
7628 * or if we have segment level protections and
7629 * they don't match.
7631 if (svd->type != segtype) {
7632 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7633 return (0);
7635 if (svd->pageprot == 0 && svd->prot != pageprot) {
7636 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7637 return (0);
7641 if (op == MC_LOCK) {
7642 if (svd->tr_state == SEGVN_TR_INIT) {
7643 svd->tr_state = SEGVN_TR_OFF;
7644 } else if (svd->tr_state == SEGVN_TR_ON) {
7645 ASSERT(svd->amp != NULL);
7646 segvn_textunrepl(seg, 0);
7647 ASSERT(svd->amp == NULL &&
7648 svd->tr_state == SEGVN_TR_OFF);
7653 * If we're locking, then we must create a vpage structure if
7654 * none exists. If we're unlocking, then check to see if there
7655 * is a vpage -- if not, then we could not have locked anything.
7658 if ((vpp = svd->vpage) == NULL) {
7659 if (op == MC_LOCK)
7660 segvn_vpage(seg);
7661 else {
7662 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7663 return (0);
7668 * The anonymous data vector (i.e., previously
7669 * unreferenced mapping to swap space) can be allocated
7670 * by lazily testing for its existence.
7672 if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7673 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7674 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7675 svd->amp->a_szc = seg->s_szc;
7678 if ((amp = svd->amp) != NULL) {
7679 anon_index = svd->anon_index + seg_page(seg, addr);
7682 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7683 evp = &svd->vpage[seg_page(seg, addr + len)];
7685 if (sp != NULL)
7686 mutex_enter(&sp->shm_mlock);
7688 /* determine number of unlocked bytes in range for lock operation */
7689 if (op == MC_LOCK) {
7691 if (sp == NULL) {
7692 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7693 vpp++) {
7694 if (!VPP_ISPPLOCK(vpp))
7695 unlocked_bytes += PAGESIZE;
7697 } else {
7698 ulong_t i_idx, i_edx;
7699 anon_sync_obj_t i_cookie;
7700 struct anon *i_ap;
7701 struct vnode *i_vp;
7702 u_offset_t i_off;
7704 /* Only count sysV pages once for locked memory */
7705 i_edx = svd->anon_index + seg_page(seg, addr + len);
7706 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7707 for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7708 anon_array_enter(amp, i_idx, &i_cookie);
7709 i_ap = anon_get_ptr(amp->ahp, i_idx);
7710 if (i_ap == NULL) {
7711 unlocked_bytes += PAGESIZE;
7712 anon_array_exit(&i_cookie);
7713 continue;
7715 swap_xlate(i_ap, &i_vp, &i_off);
7716 anon_array_exit(&i_cookie);
7717 pp = page_lookup(i_vp, i_off, SE_SHARED);
7718 if (pp == NULL) {
7719 unlocked_bytes += PAGESIZE;
7720 continue;
7721 } else if (pp->p_lckcnt == 0)
7722 unlocked_bytes += PAGESIZE;
7723 page_unlock(pp);
7725 ANON_LOCK_EXIT(&amp->a_rwlock);
7728 mutex_enter(&p->p_lock);
7729 err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7730 chargeproc);
7731 mutex_exit(&p->p_lock);
7733 if (err) {
7734 if (sp != NULL)
7735 mutex_exit(&sp->shm_mlock);
7736 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7737 return (err);
7741 * Loop over all pages in the range. Process if we're locking and
7742 * page has not already been locked in this mapping; or if we're
7743 * unlocking and the page has been locked.
7745 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7746 vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7747 if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7748 ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7749 (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7751 if (amp != NULL)
7752 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7754 * If this isn't a MAP_NORESERVE segment and
7755 * we're locking, allocate anon slots if they
7756 * don't exist. The page is brought in later on.
7758 if (op == MC_LOCK && svd->vp == NULL &&
7759 ((svd->flags & MAP_NORESERVE) == 0) &&
7760 amp != NULL &&
7761 ((ap = anon_get_ptr(amp->ahp, anon_index))
7762 == NULL)) {
7763 anon_array_enter(amp, anon_index, &cookie);
7765 if ((ap = anon_get_ptr(amp->ahp,
7766 anon_index)) == NULL) {
7767 pp = anon_zero(seg, addr, &ap,
7768 svd->cred);
7769 if (pp == NULL) {
7770 anon_array_exit(&cookie);
7771 ANON_LOCK_EXIT(&amp->a_rwlock);
7772 err = ENOMEM;
7773 goto out;
7775 ASSERT(anon_get_ptr(amp->ahp,
7776 anon_index) == NULL);
7777 (void) anon_set_ptr(amp->ahp,
7778 anon_index, ap, ANON_SLEEP);
7779 page_unlock(pp);
7781 anon_array_exit(&cookie);
7785 * Get name for page, accounting for
7786 * existence of private copy.
7788 ap = NULL;
7789 if (amp != NULL) {
7790 anon_array_enter(amp, anon_index, &cookie);
7791 ap = anon_get_ptr(amp->ahp, anon_index);
7792 if (ap != NULL) {
7793 swap_xlate(ap, &vp, &off);
7794 } else {
7795 if (svd->vp == NULL &&
7796 (svd->flags & MAP_NORESERVE)) {
7797 anon_array_exit(&cookie);
7798 ANON_LOCK_EXIT(&amp->a_rwlock);
7799 continue;
7801 vp = svd->vp;
7802 off = offset;
7804 if (op != MC_LOCK || ap == NULL) {
7805 anon_array_exit(&cookie);
7806 ANON_LOCK_EXIT(&amp->a_rwlock);
7808 } else {
7809 vp = svd->vp;
7810 off = offset;
7814 * Get page frame. It's ok if the page is
7815 * not available when we're unlocking, as this
7816 * may simply mean that a page we locked got
7817 * truncated out of existence after we locked it.
7819 * Invoke VOP_GETPAGE() to obtain the page struct
7820 * since we may need to read it from disk if its
7821 * been paged out.
7823 if (op != MC_LOCK)
7824 pp = page_lookup(vp, off, SE_SHARED);
7825 else {
7826 page_t *pl[1 + 1];
7827 int error;
7829 ASSERT(vp != NULL);
7831 error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7832 (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7833 S_OTHER, svd->cred, NULL);
7835 if (error && ap != NULL) {
7836 anon_array_exit(&cookie);
7837 ANON_LOCK_EXIT(&amp->a_rwlock);
7841 * If the error is EDEADLK then we must bounce
7842 * up and drop all vm subsystem locks and then
7843 * retry the operation later
7844 * This behavior is a temporary measure because
7845 * ufs/sds logging is badly designed and will
7846 * deadlock if we don't allow this bounce to
7847 * happen. The real solution is to re-design
7848 * the logging code to work properly. See bug
7849 * 4125102 for details of the problem.
7851 if (error == EDEADLK) {
7852 err = error;
7853 goto out;
7856 * Quit if we fail to fault in the page. Treat
7857 * the failure as an error, unless the addr
7858 * is mapped beyond the end of a file.
7860 if (error && svd->vp) {
7861 va.va_mask = AT_SIZE;
7862 if (VOP_GETATTR(svd->vp, &va, 0,
7863 svd->cred, NULL) != 0) {
7864 err = EIO;
7865 goto out;
7867 if (btopr(va.va_size) >=
7868 btopr(off + 1)) {
7869 err = EIO;
7870 goto out;
7872 goto out;
7874 } else if (error) {
7875 err = EIO;
7876 goto out;
7878 pp = pl[0];
7879 ASSERT(pp != NULL);
7883 * See Statement at the beginning of this routine.
7885 * claim is always set if MAP_PRIVATE and PROT_WRITE
7886 * irrespective of following factors:
7888 * (1) anon slots are populated or not
7889 * (2) cow is broken or not
7890 * (3) refcnt on ap is 1 or greater than 1
7892 * See 4140683 for details
7894 claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7895 (svd->type == MAP_PRIVATE));
7898 * Perform page-level operation appropriate to
7899 * operation. If locking, undo the SOFTLOCK
7900 * performed to bring the page into memory
7901 * after setting the lock. If unlocking,
7902 * and no page was found, account for the claim
7903 * separately.
7905 if (op == MC_LOCK) {
7906 int ret = 1; /* Assume success */
7908 ASSERT(!VPP_ISPPLOCK(vpp));
7910 ret = page_pp_lock(pp, claim, 0);
7911 if (ap != NULL) {
7912 if (ap->an_pvp != NULL) {
7913 anon_swap_free(ap, pp);
7915 anon_array_exit(&cookie);
7916 ANON_LOCK_EXIT(&amp->a_rwlock);
7918 if (ret == 0) {
7919 /* locking page failed */
7920 page_unlock(pp);
7921 err = EAGAIN;
7922 goto out;
7924 VPP_SETPPLOCK(vpp);
7925 if (sp != NULL) {
7926 if (pp->p_lckcnt == 1)
7927 locked_bytes += PAGESIZE;
7928 } else
7929 locked_bytes += PAGESIZE;
7931 if (lockmap != (ulong_t *)NULL)
7932 BT_SET(lockmap, pos);
7934 page_unlock(pp);
7935 } else {
7936 ASSERT(VPP_ISPPLOCK(vpp));
7937 if (pp != NULL) {
7938 /* sysV pages should be locked */
7939 ASSERT(sp == NULL || pp->p_lckcnt > 0);
7940 page_pp_unlock(pp, claim, 0);
7941 if (sp != NULL) {
7942 if (pp->p_lckcnt == 0)
7943 unlocked_bytes
7944 += PAGESIZE;
7945 } else
7946 unlocked_bytes += PAGESIZE;
7947 page_unlock(pp);
7948 } else {
7949 ASSERT(sp == NULL);
7950 unlocked_bytes += PAGESIZE;
7952 VPP_CLRPPLOCK(vpp);
7956 out:
7957 if (op == MC_LOCK) {
7958 /* Credit back bytes that did not get locked */
7959 if ((unlocked_bytes - locked_bytes) > 0) {
7960 if (proj == NULL)
7961 mutex_enter(&p->p_lock);
7962 rctl_decr_locked_mem(p, proj,
7963 (unlocked_bytes - locked_bytes), chargeproc);
7964 if (proj == NULL)
7965 mutex_exit(&p->p_lock);
7968 } else {
7969 /* Account bytes that were unlocked */
7970 if (unlocked_bytes > 0) {
7971 if (proj == NULL)
7972 mutex_enter(&p->p_lock);
7973 rctl_decr_locked_mem(p, proj, unlocked_bytes,
7974 chargeproc);
7975 if (proj == NULL)
7976 mutex_exit(&p->p_lock);
7979 if (sp != NULL)
7980 mutex_exit(&sp->shm_mlock);
7981 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7983 return (err);
7987 * Set advice from user for specified pages
7988 * There are 5 types of advice:
7989 * MADV_NORMAL - Normal (default) behavior (whatever that is)
7990 * MADV_RANDOM - Random page references
7991 * do not allow readahead or 'klustering'
7992 * MADV_SEQUENTIAL - Sequential page references
7993 * Pages previous to the one currently being
7994 * accessed (determined by fault) are 'not needed'
7995 * and are freed immediately
7996 * MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl)
7997 * MADV_DONTNEED - Pages are not needed (synced out in mctl)
7998 * MADV_FREE - Contents can be discarded
7999 * MADV_ACCESS_DEFAULT- Default access
8000 * MADV_ACCESS_LWP - Next LWP will access heavily
8001 * MADV_ACCESS_MANY- Many LWPs or processes will access heavily
8003 static int
8004 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8006 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8007 size_t page;
8008 int err = 0;
8009 int already_set;
8010 struct anon_map *amp;
8011 ulong_t anon_index;
8012 struct seg *next;
8013 lgrp_mem_policy_t policy;
8014 struct seg *prev;
8015 struct vnode *vp;
8017 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8020 * In case of MADV_FREE, we won't be modifying any segment private
8021 * data structures; so, we only need to grab READER's lock
8023 if (behav != MADV_FREE) {
8024 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8025 if (svd->tr_state != SEGVN_TR_OFF) {
8026 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8027 return (0);
8029 } else {
8030 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8034 * Large pages are assumed to be only turned on when accesses to the
8035 * segment's address range have spatial and temporal locality. That
8036 * justifies ignoring MADV_SEQUENTIAL for large page segments.
8037 * Also, ignore advice affecting lgroup memory allocation
8038 * if don't need to do lgroup optimizations on this system
8041 if ((behav == MADV_SEQUENTIAL &&
8042 (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
8043 (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
8044 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
8045 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8046 return (0);
8049 if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
8050 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
8052 * Since we are going to unload hat mappings
8053 * we first have to flush the cache. Otherwise
8054 * this might lead to system panic if another
8055 * thread is doing physio on the range whose
8056 * mappings are unloaded by madvise(3C).
8058 if (svd->softlockcnt > 0) {
8060 * If this is shared segment non 0 softlockcnt
8061 * means locked pages are still in use.
8063 if (svd->type == MAP_SHARED) {
8064 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8065 return (EAGAIN);
8068 * Since we do have the segvn writers lock
8069 * nobody can fill the cache with entries
8070 * belonging to this seg during the purge.
8071 * The flush either succeeds or we still
8072 * have pending I/Os. In the later case,
8073 * madvise(3C) fails.
8075 segvn_purge(seg);
8076 if (svd->softlockcnt > 0) {
8078 * Since madvise(3C) is advisory and
8079 * it's not part of UNIX98, madvise(3C)
8080 * failure here doesn't cause any hardship.
8081 * Note that we don't block in "as" layer.
8083 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8084 return (EAGAIN);
8086 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
8087 svd->amp->a_softlockcnt > 0) {
8089 * Try to purge this amp's entries from pcache. It
8090 * will succeed only if other segments that share the
8091 * amp have no outstanding softlock's.
8093 segvn_purge(seg);
8097 amp = svd->amp;
8098 vp = svd->vp;
8099 if (behav == MADV_FREE) {
8101 * MADV_FREE is not supported for segments with
8102 * underlying object; if anonmap is NULL, anon slots
8103 * are not yet populated and there is nothing for
8104 * us to do. As MADV_FREE is advisory, we don't
8105 * return error in either case.
8107 if (vp != NULL || amp == NULL) {
8108 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8109 return (0);
8112 segvn_purge(seg);
8114 page = seg_page(seg, addr);
8115 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8116 anon_disclaim(amp, svd->anon_index + page, len);
8117 ANON_LOCK_EXIT(&amp->a_rwlock);
8118 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8119 return (0);
8123 * If advice is to be applied to entire segment,
8124 * use advice field in seg_data structure
8125 * otherwise use appropriate vpage entry.
8127 if ((addr == seg->s_base) && (len == seg->s_size)) {
8128 switch (behav) {
8129 case MADV_ACCESS_LWP:
8130 case MADV_ACCESS_MANY:
8131 case MADV_ACCESS_DEFAULT:
8133 * Set memory allocation policy for this segment
8135 policy = lgrp_madv_to_policy(behav, len, svd->type);
8136 if (svd->type == MAP_SHARED)
8137 already_set = lgrp_shm_policy_set(policy, amp,
8138 svd->anon_index, vp, svd->offset, len);
8139 else {
8141 * For private memory, need writers lock on
8142 * address space because the segment may be
8143 * split or concatenated when changing policy
8145 if (AS_READ_HELD(seg->s_as,
8146 &seg->s_as->a_lock)) {
8147 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8148 return (IE_RETRY);
8151 already_set = lgrp_privm_policy_set(policy,
8152 &svd->policy_info, len);
8156 * If policy set already and it shouldn't be reapplied,
8157 * don't do anything.
8159 if (already_set &&
8160 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8161 break;
8164 * Mark any existing pages in given range for
8165 * migration
8167 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8168 vp, svd->offset, 1);
8171 * If same policy set already or this is a shared
8172 * memory segment, don't need to try to concatenate
8173 * segment with adjacent ones.
8175 if (already_set || svd->type == MAP_SHARED)
8176 break;
8179 * Try to concatenate this segment with previous
8180 * one and next one, since we changed policy for
8181 * this one and it may be compatible with adjacent
8182 * ones now.
8184 prev = AS_SEGPREV(seg->s_as, seg);
8185 next = AS_SEGNEXT(seg->s_as, seg);
8187 if (next && next->s_ops == &segvn_ops &&
8188 addr + len == next->s_base)
8189 (void) segvn_concat(seg, next, 1);
8191 if (prev && prev->s_ops == &segvn_ops &&
8192 addr == prev->s_base + prev->s_size) {
8194 * Drop lock for private data of current
8195 * segment before concatenating (deleting) it
8196 * and return IE_REATTACH to tell as_ctl() that
8197 * current segment has changed
8199 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8200 if (!segvn_concat(prev, seg, 1))
8201 err = IE_REATTACH;
8203 return (err);
8205 break;
8207 case MADV_SEQUENTIAL:
8209 * unloading mapping guarantees
8210 * detection in segvn_fault
8212 ASSERT(seg->s_szc == 0);
8213 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8214 hat_unload(seg->s_as->a_hat, addr, len,
8215 HAT_UNLOAD);
8216 /* FALLTHROUGH */
8217 case MADV_NORMAL:
8218 case MADV_RANDOM:
8219 svd->advice = (uchar_t)behav;
8220 svd->pageadvice = 0;
8221 break;
8222 case MADV_WILLNEED: /* handled in memcntl */
8223 case MADV_DONTNEED: /* handled in memcntl */
8224 case MADV_FREE: /* handled above */
8225 break;
8226 default:
8227 err = EINVAL;
8229 } else {
8230 caddr_t eaddr;
8231 struct seg *new_seg;
8232 struct segvn_data *new_svd;
8233 u_offset_t off;
8234 caddr_t oldeaddr;
8236 page = seg_page(seg, addr);
8238 segvn_vpage(seg);
8240 switch (behav) {
8241 struct vpage *bvpp, *evpp;
8243 case MADV_ACCESS_LWP:
8244 case MADV_ACCESS_MANY:
8245 case MADV_ACCESS_DEFAULT:
8247 * Set memory allocation policy for portion of this
8248 * segment
8252 * Align address and length of advice to page
8253 * boundaries for large pages
8255 if (seg->s_szc != 0) {
8256 size_t pgsz;
8258 pgsz = page_get_pagesize(seg->s_szc);
8259 addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8260 len = P2ROUNDUP(len, pgsz);
8264 * Check to see whether policy is set already
8266 policy = lgrp_madv_to_policy(behav, len, svd->type);
8268 anon_index = svd->anon_index + page;
8269 off = svd->offset + (uintptr_t)(addr - seg->s_base);
8271 if (svd->type == MAP_SHARED)
8272 already_set = lgrp_shm_policy_set(policy, amp,
8273 anon_index, vp, off, len);
8274 else
8275 already_set =
8276 (policy == svd->policy_info.mem_policy);
8279 * If policy set already and it shouldn't be reapplied,
8280 * don't do anything.
8282 if (already_set &&
8283 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8284 break;
8287 * For private memory, need writers lock on
8288 * address space because the segment may be
8289 * split or concatenated when changing policy
8291 if (svd->type == MAP_PRIVATE &&
8292 AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
8293 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8294 return (IE_RETRY);
8298 * Mark any existing pages in given range for
8299 * migration
8301 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8302 vp, svd->offset, 1);
8305 * Don't need to try to split or concatenate
8306 * segments, since policy is same or this is a shared
8307 * memory segment
8309 if (already_set || svd->type == MAP_SHARED)
8310 break;
8312 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8313 ASSERT(svd->amp == NULL);
8314 ASSERT(svd->tr_state == SEGVN_TR_OFF);
8315 ASSERT(svd->softlockcnt == 0);
8316 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8317 HAT_REGION_TEXT);
8318 svd->rcookie = HAT_INVALID_REGION_COOKIE;
8322 * Split off new segment if advice only applies to a
8323 * portion of existing segment starting in middle
8325 new_seg = NULL;
8326 eaddr = addr + len;
8327 oldeaddr = seg->s_base + seg->s_size;
8328 if (addr > seg->s_base) {
8330 * Must flush I/O page cache
8331 * before splitting segment
8333 if (svd->softlockcnt > 0)
8334 segvn_purge(seg);
8337 * Split segment and return IE_REATTACH to tell
8338 * as_ctl() that current segment changed
8340 new_seg = segvn_split_seg(seg, addr);
8341 new_svd = (struct segvn_data *)new_seg->s_data;
8342 err = IE_REATTACH;
8345 * If new segment ends where old one
8346 * did, try to concatenate the new
8347 * segment with next one.
8349 if (eaddr == oldeaddr) {
8351 * Set policy for new segment
8353 (void) lgrp_privm_policy_set(policy,
8354 &new_svd->policy_info,
8355 new_seg->s_size);
8357 next = AS_SEGNEXT(new_seg->s_as,
8358 new_seg);
8360 if (next &&
8361 next->s_ops == &segvn_ops &&
8362 eaddr == next->s_base)
8363 (void) segvn_concat(new_seg,
8364 next, 1);
8369 * Split off end of existing segment if advice only
8370 * applies to a portion of segment ending before
8371 * end of the existing segment
8373 if (eaddr < oldeaddr) {
8375 * Must flush I/O page cache
8376 * before splitting segment
8378 if (svd->softlockcnt > 0)
8379 segvn_purge(seg);
8382 * If beginning of old segment was already
8383 * split off, use new segment to split end off
8384 * from.
8386 if (new_seg != NULL && new_seg != seg) {
8388 * Split segment
8390 (void) segvn_split_seg(new_seg, eaddr);
8393 * Set policy for new segment
8395 (void) lgrp_privm_policy_set(policy,
8396 &new_svd->policy_info,
8397 new_seg->s_size);
8398 } else {
8400 * Split segment and return IE_REATTACH
8401 * to tell as_ctl() that current
8402 * segment changed
8404 (void) segvn_split_seg(seg, eaddr);
8405 err = IE_REATTACH;
8407 (void) lgrp_privm_policy_set(policy,
8408 &svd->policy_info, seg->s_size);
8411 * If new segment starts where old one
8412 * did, try to concatenate it with
8413 * previous segment.
8415 if (addr == seg->s_base) {
8416 prev = AS_SEGPREV(seg->s_as,
8417 seg);
8420 * Drop lock for private data
8421 * of current segment before
8422 * concatenating (deleting) it
8424 if (prev &&
8425 prev->s_ops ==
8426 &segvn_ops &&
8427 addr == prev->s_base +
8428 prev->s_size) {
8429 SEGVN_LOCK_EXIT(
8430 seg->s_as,
8431 &svd->lock);
8432 (void) segvn_concat(
8433 prev, seg, 1);
8434 return (err);
8439 break;
8440 case MADV_SEQUENTIAL:
8441 ASSERT(seg->s_szc == 0);
8442 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8443 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8444 /* FALLTHROUGH */
8445 case MADV_NORMAL:
8446 case MADV_RANDOM:
8447 bvpp = &svd->vpage[page];
8448 evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8449 for (; bvpp < evpp; bvpp++)
8450 VPP_SETADVICE(bvpp, behav);
8451 svd->advice = MADV_NORMAL;
8452 break;
8453 case MADV_WILLNEED: /* handled in memcntl */
8454 case MADV_DONTNEED: /* handled in memcntl */
8455 case MADV_FREE: /* handled above */
8456 break;
8457 default:
8458 err = EINVAL;
8461 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8462 return (err);
8466 * Create a vpage structure for this seg.
8468 static void
8469 segvn_vpage(struct seg *seg)
8471 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8472 struct vpage *vp, *evp;
8474 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8477 * If no vpage structure exists, allocate one. Copy the protections
8478 * and the advice from the segment itself to the individual pages.
8480 if (svd->vpage == NULL) {
8481 svd->pageadvice = 1;
8482 svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
8483 KM_SLEEP);
8484 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8485 for (vp = svd->vpage; vp < evp; vp++) {
8486 VPP_SETPROT(vp, svd->prot);
8487 VPP_SETADVICE(vp, svd->advice);
8493 * Dump the pages belonging to this segvn segment.
8495 static void
8496 segvn_dump(struct seg *seg)
8498 struct segvn_data *svd;
8499 page_t *pp;
8500 struct anon_map *amp;
8501 ulong_t anon_index;
8502 struct vnode *vp;
8503 u_offset_t off, offset;
8504 pfn_t pfn;
8505 pgcnt_t page, npages;
8506 caddr_t addr;
8508 npages = seg_pages(seg);
8509 svd = (struct segvn_data *)seg->s_data;
8510 vp = svd->vp;
8511 off = offset = svd->offset;
8512 addr = seg->s_base;
8514 if ((amp = svd->amp) != NULL) {
8515 anon_index = svd->anon_index;
8516 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8519 for (page = 0; page < npages; page++, offset += PAGESIZE) {
8520 struct anon *ap;
8521 int we_own_it = 0;
8523 if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8524 swap_xlate_nopanic(ap, &vp, &off);
8525 } else {
8526 vp = svd->vp;
8527 off = offset;
8531 * If pp == NULL, the page either does not exist
8532 * or is exclusively locked. So determine if it
8533 * exists before searching for it.
8536 if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8537 we_own_it = 1;
8538 else
8539 pp = page_exists(vp, off);
8541 if (pp) {
8542 pfn = page_pptonum(pp);
8543 dump_addpage(seg->s_as, addr, pfn);
8544 if (we_own_it)
8545 page_unlock(pp);
8547 addr += PAGESIZE;
8548 dump_timeleft = dump_timeout;
8551 if (amp != NULL)
8552 ANON_LOCK_EXIT(&amp->a_rwlock);
8555 #ifdef DEBUG
8556 static uint32_t segvn_pglock_mtbf = 0;
8557 #endif
8559 #define PCACHE_SHWLIST ((page_t *)-2)
8560 #define NOPCACHE_SHWLIST ((page_t *)-1)
8563 * Lock/Unlock anon pages over a given range. Return shadow list. This routine
8564 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages
8565 * to avoid the overhead of per page locking, unlocking for subsequent IOs to
8566 * the same parts of the segment. Currently shadow list creation is only
8567 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are
8568 * tagged with segment pointer, starting virtual address and length. This
8569 * approach for MAP_SHARED segments may add many pcache entries for the same
8570 * set of pages and lead to long hash chains that decrease pcache lookup
8571 * performance. To avoid this issue for shared segments shared anon map and
8572 * starting anon index are used for pcache entry tagging. This allows all
8573 * segments to share pcache entries for the same anon range and reduces pcache
8574 * chain's length as well as memory overhead from duplicate shadow lists and
8575 * pcache entries.
8577 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd
8578 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock
8579 * part of softlockcnt accounting is done differently for private and shared
8580 * segments. In private segment case softlock is only incremented when a new
8581 * shadow list is created but not when an existing one is found via
8582 * seg_plookup(). pcache entries have reference count incremented/decremented
8583 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0
8584 * reference count can be purged (and purging is needed before segment can be
8585 * freed). When a private segment pcache entry is purged segvn_reclaim() will
8586 * decrement softlockcnt. Since in private segment case each of its pcache
8587 * entries only belongs to this segment we can expect that when
8588 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8589 * segment purge will succeed and softlockcnt will drop to 0. In shared
8590 * segment case reference count in pcache entry counts active locks from many
8591 * different segments so we can't expect segment purging to succeed even when
8592 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8593 * segment. To be able to determine when there're no pending pagelocks in
8594 * shared segment case we don't rely on purging to make softlockcnt drop to 0
8595 * but instead softlockcnt is incremented and decremented for every
8596 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow
8597 * list was created or an existing one was found. When softlockcnt drops to 0
8598 * this segment no longer has any claims for pcached shadow lists and the
8599 * segment can be freed even if there're still active pcache entries
8600 * shared by this segment anon map. Shared segment pcache entries belong to
8601 * anon map and are typically removed when anon map is freed after all
8602 * processes destroy the segments that use this anon map.
8604 static int
8605 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8606 enum lock_type type, enum seg_rw rw)
8608 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8609 size_t np;
8610 pgcnt_t adjustpages;
8611 pgcnt_t npages;
8612 ulong_t anon_index;
8613 uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE;
8614 uint_t error;
8615 struct anon_map *amp;
8616 pgcnt_t anpgcnt;
8617 struct page **pplist, **pl, *pp;
8618 caddr_t a;
8619 size_t page;
8620 caddr_t lpgaddr, lpgeaddr;
8621 anon_sync_obj_t cookie;
8622 int anlock;
8623 struct anon_map *pamp;
8624 caddr_t paddr;
8625 seg_preclaim_cbfunc_t preclaim_callback;
8626 size_t pgsz;
8627 int use_pcache;
8628 size_t wlen;
8629 uint_t pflags = 0;
8630 int sftlck_sbase = 0;
8631 int sftlck_send = 0;
8633 #ifdef DEBUG
8634 if (type == L_PAGELOCK && segvn_pglock_mtbf) {
8635 hrtime_t ts = gethrtime();
8636 if ((ts % segvn_pglock_mtbf) == 0) {
8637 return (ENOTSUP);
8639 if ((ts % segvn_pglock_mtbf) == 1) {
8640 return (EFAULT);
8643 #endif
8645 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8646 "segvn_pagelock: start seg %p addr %p", seg, addr);
8648 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8649 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
8651 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8654 * for now we only support pagelock to anon memory. We would have to
8655 * check protections for vnode objects and call into the vnode driver.
8656 * That's too much for a fast path. Let the fault entry point handle
8657 * it.
8659 if (svd->vp != NULL) {
8660 if (type == L_PAGELOCK) {
8661 error = ENOTSUP;
8662 goto out;
8664 panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL");
8666 if ((amp = svd->amp) == NULL) {
8667 if (type == L_PAGELOCK) {
8668 error = EFAULT;
8669 goto out;
8671 panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL");
8673 if (rw != S_READ && rw != S_WRITE) {
8674 if (type == L_PAGELOCK) {
8675 error = ENOTSUP;
8676 goto out;
8678 panic("segvn_pagelock(L_PAGEUNLOCK): bad rw");
8681 if (seg->s_szc != 0) {
8683 * We are adjusting the pagelock region to the large page size
8684 * boundary because the unlocked part of a large page cannot
8685 * be freed anyway unless all constituent pages of a large
8686 * page are locked. Bigger regions reduce pcache chain length
8687 * and improve lookup performance. The tradeoff is that the
8688 * very first segvn_pagelock() call for a given page is more
8689 * expensive if only 1 page_t is needed for IO. This is only
8690 * an issue if pcache entry doesn't get reused by several
8691 * subsequent calls. We optimize here for the case when pcache
8692 * is heavily used by repeated IOs to the same address range.
8694 * Note segment's page size cannot change while we are holding
8695 * as lock. And then it cannot change while softlockcnt is
8696 * not 0. This will allow us to correctly recalculate large
8697 * page size region for the matching pageunlock/reclaim call
8698 * since as_pageunlock() caller must always match
8699 * as_pagelock() call's addr and len.
8701 * For pageunlock *ppp points to the pointer of page_t that
8702 * corresponds to the real unadjusted start address. Similar
8703 * for pagelock *ppp must point to the pointer of page_t that
8704 * corresponds to the real unadjusted start address.
8706 pgsz = page_get_pagesize(seg->s_szc);
8707 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8708 adjustpages = btop((uintptr_t)(addr - lpgaddr));
8709 } else if (len < segvn_pglock_comb_thrshld) {
8710 lpgaddr = addr;
8711 lpgeaddr = addr + len;
8712 adjustpages = 0;
8713 pgsz = PAGESIZE;
8714 } else {
8716 * Align the address range of large enough requests to allow
8717 * combining of different shadow lists into 1 to reduce memory
8718 * overhead from potentially overlapping large shadow lists
8719 * (worst case is we have a 1MB IO into buffers with start
8720 * addresses separated by 4K). Alignment is only possible if
8721 * padded chunks have sufficient access permissions. Note
8722 * permissions won't change between L_PAGELOCK and
8723 * L_PAGEUNLOCK calls since non 0 softlockcnt will force
8724 * segvn_setprot() to wait until softlockcnt drops to 0. This
8725 * allows us to determine in L_PAGEUNLOCK the same range we
8726 * computed in L_PAGELOCK.
8728 * If alignment is limited by segment ends set
8729 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when
8730 * these flags are set bump softlockcnt_sbase/softlockcnt_send
8731 * per segment counters. In L_PAGEUNLOCK case decrease
8732 * softlockcnt_sbase/softlockcnt_send counters if
8733 * sftlck_sbase/sftlck_send flags are set. When
8734 * softlockcnt_sbase/softlockcnt_send are non 0
8735 * segvn_concat()/segvn_extend_prev()/segvn_extend_next()
8736 * won't merge the segments. This restriction combined with
8737 * restriction on segment unmapping and splitting for segments
8738 * that have non 0 softlockcnt allows L_PAGEUNLOCK to
8739 * correctly determine the same range that was previously
8740 * locked by matching L_PAGELOCK.
8742 pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16);
8743 pgsz = PAGESIZE;
8744 if (svd->type == MAP_PRIVATE) {
8745 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr,
8746 segvn_pglock_comb_balign);
8747 if (lpgaddr < seg->s_base) {
8748 lpgaddr = seg->s_base;
8749 sftlck_sbase = 1;
8751 } else {
8752 ulong_t aix = svd->anon_index + seg_page(seg, addr);
8753 ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign);
8754 if (aaix < svd->anon_index) {
8755 lpgaddr = seg->s_base;
8756 sftlck_sbase = 1;
8757 } else {
8758 lpgaddr = addr - ptob(aix - aaix);
8759 ASSERT(lpgaddr >= seg->s_base);
8762 if (svd->pageprot && lpgaddr != addr) {
8763 struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)];
8764 struct vpage *evp = &svd->vpage[seg_page(seg, addr)];
8765 while (vp < evp) {
8766 if ((VPP_PROT(vp) & protchk) == 0) {
8767 break;
8769 vp++;
8771 if (vp < evp) {
8772 lpgaddr = addr;
8773 pflags = 0;
8776 lpgeaddr = addr + len;
8777 if (pflags) {
8778 if (svd->type == MAP_PRIVATE) {
8779 lpgeaddr = (caddr_t)P2ROUNDUP(
8780 (uintptr_t)lpgeaddr,
8781 segvn_pglock_comb_balign);
8782 } else {
8783 ulong_t aix = svd->anon_index +
8784 seg_page(seg, lpgeaddr);
8785 ulong_t aaix = P2ROUNDUP(aix,
8786 segvn_pglock_comb_palign);
8787 if (aaix < aix) {
8788 lpgeaddr = 0;
8789 } else {
8790 lpgeaddr += ptob(aaix - aix);
8793 if (lpgeaddr == 0 ||
8794 lpgeaddr > seg->s_base + seg->s_size) {
8795 lpgeaddr = seg->s_base + seg->s_size;
8796 sftlck_send = 1;
8799 if (svd->pageprot && lpgeaddr != addr + len) {
8800 struct vpage *vp;
8801 struct vpage *evp;
8803 vp = &svd->vpage[seg_page(seg, addr + len)];
8804 evp = &svd->vpage[seg_page(seg, lpgeaddr)];
8806 while (vp < evp) {
8807 if ((VPP_PROT(vp) & protchk) == 0) {
8808 break;
8810 vp++;
8812 if (vp < evp) {
8813 lpgeaddr = addr + len;
8816 adjustpages = btop((uintptr_t)(addr - lpgaddr));
8820 * For MAP_SHARED segments we create pcache entries tagged by amp and
8821 * anon index so that we can share pcache entries with other segments
8822 * that map this amp. For private segments pcache entries are tagged
8823 * with segment and virtual address.
8825 if (svd->type == MAP_SHARED) {
8826 pamp = amp;
8827 paddr = (caddr_t)((lpgaddr - seg->s_base) +
8828 ptob(svd->anon_index));
8829 preclaim_callback = shamp_reclaim;
8830 } else {
8831 pamp = NULL;
8832 paddr = lpgaddr;
8833 preclaim_callback = segvn_reclaim;
8836 if (type == L_PAGEUNLOCK) {
8837 VM_STAT_ADD(segvnvmstats.pagelock[0]);
8840 * update hat ref bits for /proc. We need to make sure
8841 * that threads tracing the ref and mod bits of the
8842 * address space get the right data.
8843 * Note: page ref and mod bits are updated at reclaim time
8845 if (seg->s_as->a_vbits) {
8846 for (a = addr; a < addr + len; a += PAGESIZE) {
8847 if (rw == S_WRITE) {
8848 hat_setstat(seg->s_as, a,
8849 PAGESIZE, P_REF | P_MOD);
8850 } else {
8851 hat_setstat(seg->s_as, a,
8852 PAGESIZE, P_REF);
8858 * Check the shadow list entry after the last page used in
8859 * this IO request. If it's NOPCACHE_SHWLIST the shadow list
8860 * was not inserted into pcache and is not large page
8861 * adjusted. In this case call reclaim callback directly and
8862 * don't adjust the shadow list start and size for large
8863 * pages.
8865 npages = btop(len);
8866 if ((*ppp)[npages] == NOPCACHE_SHWLIST) {
8867 void *ptag;
8868 if (pamp != NULL) {
8869 ASSERT(svd->type == MAP_SHARED);
8870 ptag = (void *)pamp;
8871 paddr = (caddr_t)((addr - seg->s_base) +
8872 ptob(svd->anon_index));
8873 } else {
8874 ptag = (void *)seg;
8875 paddr = addr;
8877 (*preclaim_callback)(ptag, paddr, len, *ppp, rw, 0);
8878 } else {
8879 ASSERT((*ppp)[npages] == PCACHE_SHWLIST ||
8880 IS_SWAPFSVP((*ppp)[npages]->p_vnode));
8881 len = lpgeaddr - lpgaddr;
8882 npages = btop(len);
8883 seg_pinactive(seg, pamp, paddr, len,
8884 *ppp - adjustpages, rw, pflags, preclaim_callback);
8887 if (pamp != NULL) {
8888 ASSERT(svd->type == MAP_SHARED);
8889 ASSERT(svd->softlockcnt >= npages);
8890 atomic_add_long((ulong_t *)&svd->softlockcnt, -npages);
8893 if (sftlck_sbase) {
8894 ASSERT(svd->softlockcnt_sbase > 0);
8895 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, -1);
8897 if (sftlck_send) {
8898 ASSERT(svd->softlockcnt_send > 0);
8899 atomic_add_long((ulong_t *)&svd->softlockcnt_send, -1);
8903 * If someone is blocked while unmapping, we purge
8904 * segment page cache and thus reclaim pplist synchronously
8905 * without waiting for seg_pasync_thread. This speeds up
8906 * unmapping in cases where munmap(2) is called, while
8907 * raw async i/o is still in progress or where a thread
8908 * exits on data fault in a multithreaded application.
8910 if (AS_ISUNMAPWAIT(seg->s_as)) {
8911 if (svd->softlockcnt == 0) {
8912 mutex_enter(&seg->s_as->a_contents);
8913 if (AS_ISUNMAPWAIT(seg->s_as)) {
8914 AS_CLRUNMAPWAIT(seg->s_as);
8915 cv_broadcast(&seg->s_as->a_cv);
8917 mutex_exit(&seg->s_as->a_contents);
8918 } else if (pamp == NULL) {
8920 * softlockcnt is not 0 and this is a
8921 * MAP_PRIVATE segment. Try to purge its
8922 * pcache entries to reduce softlockcnt.
8923 * If it drops to 0 segvn_reclaim()
8924 * will wake up a thread waiting on
8925 * unmapwait flag.
8927 * We don't purge MAP_SHARED segments with non
8928 * 0 softlockcnt since IO is still in progress
8929 * for such segments.
8931 ASSERT(svd->type == MAP_PRIVATE);
8932 segvn_purge(seg);
8935 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8936 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8937 "segvn_pagelock: unlock seg %p addr %p", seg, addr);
8938 return (0);
8941 /* The L_PAGELOCK case ... */
8943 VM_STAT_ADD(segvnvmstats.pagelock[1]);
8946 * For MAP_SHARED segments we have to check protections before
8947 * seg_plookup() since pcache entries may be shared by many segments
8948 * with potentially different page protections.
8950 if (pamp != NULL) {
8951 ASSERT(svd->type == MAP_SHARED);
8952 if (svd->pageprot == 0) {
8953 if ((svd->prot & protchk) == 0) {
8954 error = EACCES;
8955 goto out;
8957 } else {
8959 * check page protections
8961 caddr_t ea;
8963 if (seg->s_szc) {
8964 a = lpgaddr;
8965 ea = lpgeaddr;
8966 } else {
8967 a = addr;
8968 ea = addr + len;
8970 for (; a < ea; a += pgsz) {
8971 struct vpage *vp;
8973 ASSERT(seg->s_szc == 0 ||
8974 sameprot(seg, a, pgsz));
8975 vp = &svd->vpage[seg_page(seg, a)];
8976 if ((VPP_PROT(vp) & protchk) == 0) {
8977 error = EACCES;
8978 goto out;
8985 * try to find pages in segment page cache
8987 pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags);
8988 if (pplist != NULL) {
8989 if (pamp != NULL) {
8990 npages = btop((uintptr_t)(lpgeaddr - lpgaddr));
8991 ASSERT(svd->type == MAP_SHARED);
8992 atomic_add_long((ulong_t *)&svd->softlockcnt,
8993 npages);
8995 if (sftlck_sbase) {
8996 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1);
8998 if (sftlck_send) {
8999 atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1);
9001 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9002 *ppp = pplist + adjustpages;
9003 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
9004 "segvn_pagelock: cache hit seg %p addr %p", seg, addr);
9005 return (0);
9009 * For MAP_SHARED segments we already verified above that segment
9010 * protections allow this pagelock operation.
9012 if (pamp == NULL) {
9013 ASSERT(svd->type == MAP_PRIVATE);
9014 if (svd->pageprot == 0) {
9015 if ((svd->prot & protchk) == 0) {
9016 error = EACCES;
9017 goto out;
9019 if (svd->prot & PROT_WRITE) {
9020 wlen = lpgeaddr - lpgaddr;
9021 } else {
9022 wlen = 0;
9023 ASSERT(rw == S_READ);
9025 } else {
9026 int wcont = 1;
9028 * check page protections
9030 for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) {
9031 struct vpage *vp;
9033 ASSERT(seg->s_szc == 0 ||
9034 sameprot(seg, a, pgsz));
9035 vp = &svd->vpage[seg_page(seg, a)];
9036 if ((VPP_PROT(vp) & protchk) == 0) {
9037 error = EACCES;
9038 goto out;
9040 if (wcont && (VPP_PROT(vp) & PROT_WRITE)) {
9041 wlen += pgsz;
9042 } else {
9043 wcont = 0;
9044 ASSERT(rw == S_READ);
9048 ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr);
9049 ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr);
9053 * Only build large page adjusted shadow list if we expect to insert
9054 * it into pcache. For large enough pages it's a big overhead to
9055 * create a shadow list of the entire large page. But this overhead
9056 * should be amortized over repeated pcache hits on subsequent reuse
9057 * of this shadow list (IO into any range within this shadow list will
9058 * find it in pcache since we large page align the request for pcache
9059 * lookups). pcache performance is improved with bigger shadow lists
9060 * as it reduces the time to pcache the entire big segment and reduces
9061 * pcache chain length.
9063 if (seg_pinsert_check(seg, pamp, paddr,
9064 lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) {
9065 addr = lpgaddr;
9066 len = lpgeaddr - lpgaddr;
9067 use_pcache = 1;
9068 } else {
9069 use_pcache = 0;
9071 * Since this entry will not be inserted into the pcache, we
9072 * will not do any adjustments to the starting address or
9073 * size of the memory to be locked.
9075 adjustpages = 0;
9077 npages = btop(len);
9079 pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP);
9080 pl = pplist;
9081 *ppp = pplist + adjustpages;
9083 * If use_pcache is 0 this shadow list is not large page adjusted.
9084 * Record this info in the last entry of shadow array so that
9085 * L_PAGEUNLOCK can determine if it should large page adjust the
9086 * address range to find the real range that was locked.
9088 pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST;
9090 page = seg_page(seg, addr);
9091 anon_index = svd->anon_index + page;
9093 anlock = 0;
9094 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9095 ASSERT(amp->a_szc >= seg->s_szc);
9096 anpgcnt = page_get_pagecnt(amp->a_szc);
9097 for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
9098 struct anon *ap;
9099 struct vnode *vp;
9100 u_offset_t off;
9103 * Lock and unlock anon array only once per large page.
9104 * anon_array_enter() locks the root anon slot according to
9105 * a_szc which can't change while anon map is locked. We lock
9106 * anon the first time through this loop and each time we
9107 * reach anon index that corresponds to a root of a large
9108 * page.
9110 if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) {
9111 ASSERT(anlock == 0);
9112 anon_array_enter(amp, anon_index, &cookie);
9113 anlock = 1;
9115 ap = anon_get_ptr(amp->ahp, anon_index);
9118 * We must never use seg_pcache for COW pages
9119 * because we might end up with original page still
9120 * lying in seg_pcache even after private page is
9121 * created. This leads to data corruption as
9122 * aio_write refers to the page still in cache
9123 * while all other accesses refer to the private
9124 * page.
9126 if (ap == NULL || ap->an_refcnt != 1) {
9127 struct vpage *vpage;
9129 if (seg->s_szc) {
9130 error = EFAULT;
9131 break;
9133 if (svd->vpage != NULL) {
9134 vpage = &svd->vpage[seg_page(seg, a)];
9135 } else {
9136 vpage = NULL;
9138 ASSERT(anlock);
9139 anon_array_exit(&cookie);
9140 anlock = 0;
9141 pp = NULL;
9142 error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0,
9143 vpage, &pp, 0, F_INVAL, rw, 1);
9144 if (error) {
9145 error = fc_decode(error);
9146 break;
9148 anon_array_enter(amp, anon_index, &cookie);
9149 anlock = 1;
9150 ap = anon_get_ptr(amp->ahp, anon_index);
9151 if (ap == NULL || ap->an_refcnt != 1) {
9152 error = EFAULT;
9153 break;
9156 swap_xlate(ap, &vp, &off);
9157 pp = page_lookup_nowait(vp, off, SE_SHARED);
9158 if (pp == NULL) {
9159 error = EFAULT;
9160 break;
9162 if (ap->an_pvp != NULL) {
9163 anon_swap_free(ap, pp);
9166 * Unlock anon if this is the last slot in a large page.
9168 if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) {
9169 ASSERT(anlock);
9170 anon_array_exit(&cookie);
9171 anlock = 0;
9173 *pplist++ = pp;
9175 if (anlock) { /* Ensure the lock is dropped */
9176 anon_array_exit(&cookie);
9178 ANON_LOCK_EXIT(&amp->a_rwlock);
9180 if (a >= addr + len) {
9181 atomic_add_long((ulong_t *)&svd->softlockcnt, npages);
9182 if (pamp != NULL) {
9183 ASSERT(svd->type == MAP_SHARED);
9184 atomic_add_long((ulong_t *)&pamp->a_softlockcnt,
9185 npages);
9186 wlen = len;
9188 if (sftlck_sbase) {
9189 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1);
9191 if (sftlck_send) {
9192 atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1);
9194 if (use_pcache) {
9195 (void) seg_pinsert(seg, pamp, paddr, len, wlen, pl,
9196 rw, pflags, preclaim_callback);
9198 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9199 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
9200 "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
9201 return (0);
9204 pplist = pl;
9205 np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
9206 while (np > (uint_t)0) {
9207 ASSERT(PAGE_LOCKED(*pplist));
9208 page_unlock(*pplist);
9209 np--;
9210 pplist++;
9212 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9213 out:
9214 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9215 *ppp = NULL;
9216 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
9217 "segvn_pagelock: cache miss seg %p addr %p", seg, addr);
9218 return (error);
9222 * purge any cached pages in the I/O page cache
9224 static void
9225 segvn_purge(struct seg *seg)
9227 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9230 * pcache is only used by pure anon segments.
9232 if (svd->amp == NULL || svd->vp != NULL) {
9233 return;
9237 * For MAP_SHARED segments non 0 segment's softlockcnt means
9238 * active IO is still in progress via this segment. So we only
9239 * purge MAP_SHARED segments when their softlockcnt is 0.
9241 if (svd->type == MAP_PRIVATE) {
9242 if (svd->softlockcnt) {
9243 seg_ppurge(seg, NULL, 0);
9245 } else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) {
9246 seg_ppurge(seg, svd->amp, 0);
9251 * If async argument is not 0 we are called from pcache async thread and don't
9252 * hold AS lock.
9255 /*ARGSUSED*/
9256 static int
9257 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9258 enum seg_rw rw, int async)
9260 struct seg *seg = (struct seg *)ptag;
9261 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9262 pgcnt_t np, npages;
9263 struct page **pl;
9265 npages = np = btop(len);
9266 ASSERT(npages);
9268 ASSERT(svd->vp == NULL && svd->amp != NULL);
9269 ASSERT(svd->softlockcnt >= npages);
9270 ASSERT(async || AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9272 pl = pplist;
9274 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9275 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9277 while (np > (uint_t)0) {
9278 if (rw == S_WRITE) {
9279 hat_setrefmod(*pplist);
9280 } else {
9281 hat_setref(*pplist);
9283 page_unlock(*pplist);
9284 np--;
9285 pplist++;
9288 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9291 * If we are pcache async thread we don't hold AS lock. This means if
9292 * softlockcnt drops to 0 after the decrement below address space may
9293 * get freed. We can't allow it since after softlock derement to 0 we
9294 * still need to access as structure for possible wakeup of unmap
9295 * waiters. To prevent the disappearance of as we take this segment
9296 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to
9297 * make sure this routine completes before segment is freed.
9299 * The second complication we have to deal with in async case is a
9300 * possibility of missed wake up of unmap wait thread. When we don't
9301 * hold as lock here we may take a_contents lock before unmap wait
9302 * thread that was first to see softlockcnt was still not 0. As a
9303 * result we'll fail to wake up an unmap wait thread. To avoid this
9304 * race we set nounmapwait flag in as structure if we drop softlockcnt
9305 * to 0 when we were called by pcache async thread. unmapwait thread
9306 * will not block if this flag is set.
9308 if (async) {
9309 mutex_enter(&svd->segfree_syncmtx);
9312 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) {
9313 if (async || AS_ISUNMAPWAIT(seg->s_as)) {
9314 mutex_enter(&seg->s_as->a_contents);
9315 if (async) {
9316 AS_SETNOUNMAPWAIT(seg->s_as);
9318 if (AS_ISUNMAPWAIT(seg->s_as)) {
9319 AS_CLRUNMAPWAIT(seg->s_as);
9320 cv_broadcast(&seg->s_as->a_cv);
9322 mutex_exit(&seg->s_as->a_contents);
9326 if (async) {
9327 mutex_exit(&svd->segfree_syncmtx);
9329 return (0);
9332 /*ARGSUSED*/
9333 static int
9334 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9335 enum seg_rw rw, int async)
9337 amp_t *amp = (amp_t *)ptag;
9338 pgcnt_t np, npages;
9339 struct page **pl;
9341 npages = np = btop(len);
9342 ASSERT(npages);
9343 ASSERT(amp->a_softlockcnt >= npages);
9345 pl = pplist;
9347 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9348 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9350 while (np > (uint_t)0) {
9351 if (rw == S_WRITE) {
9352 hat_setrefmod(*pplist);
9353 } else {
9354 hat_setref(*pplist);
9356 page_unlock(*pplist);
9357 np--;
9358 pplist++;
9361 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9364 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt
9365 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0
9366 * and anonmap_purge() acquires a_purgemtx.
9368 mutex_enter(&amp->a_purgemtx);
9369 if (!atomic_add_long_nv((ulong_t *)&amp->a_softlockcnt, -npages) &&
9370 amp->a_purgewait) {
9371 amp->a_purgewait = 0;
9372 cv_broadcast(&amp->a_purgecv);
9374 mutex_exit(&amp->a_purgemtx);
9375 return (0);
9379 * get a memory ID for an addr in a given segment
9381 * XXX only creates PAGESIZE pages if anon slots are not initialized.
9382 * At fault time they will be relocated into larger pages.
9384 static int
9385 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9387 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9388 struct anon *ap = NULL;
9389 ulong_t anon_index;
9390 struct anon_map *amp;
9391 anon_sync_obj_t cookie;
9393 if (svd->type == MAP_PRIVATE) {
9394 memidp->val[0] = (uintptr_t)seg->s_as;
9395 memidp->val[1] = (uintptr_t)addr;
9396 return (0);
9399 if (svd->type == MAP_SHARED) {
9400 if (svd->vp) {
9401 memidp->val[0] = (uintptr_t)svd->vp;
9402 memidp->val[1] = (u_longlong_t)svd->offset +
9403 (uintptr_t)(addr - seg->s_base);
9404 return (0);
9405 } else {
9407 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9408 if ((amp = svd->amp) != NULL) {
9409 anon_index = svd->anon_index +
9410 seg_page(seg, addr);
9412 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9414 ASSERT(amp != NULL);
9416 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9417 anon_array_enter(amp, anon_index, &cookie);
9418 ap = anon_get_ptr(amp->ahp, anon_index);
9419 if (ap == NULL) {
9420 page_t *pp;
9422 pp = anon_zero(seg, addr, &ap, svd->cred);
9423 if (pp == NULL) {
9424 anon_array_exit(&cookie);
9425 ANON_LOCK_EXIT(&amp->a_rwlock);
9426 return (ENOMEM);
9428 ASSERT(anon_get_ptr(amp->ahp, anon_index)
9429 == NULL);
9430 (void) anon_set_ptr(amp->ahp, anon_index,
9431 ap, ANON_SLEEP);
9432 page_unlock(pp);
9435 anon_array_exit(&cookie);
9436 ANON_LOCK_EXIT(&amp->a_rwlock);
9438 memidp->val[0] = (uintptr_t)ap;
9439 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9440 return (0);
9443 return (EINVAL);
9446 static int
9447 sameprot(struct seg *seg, caddr_t a, size_t len)
9449 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9450 struct vpage *vpage;
9451 spgcnt_t pages = btop(len);
9452 uint_t prot;
9454 if (svd->pageprot == 0)
9455 return (1);
9457 ASSERT(svd->vpage != NULL);
9459 vpage = &svd->vpage[seg_page(seg, a)];
9460 prot = VPP_PROT(vpage);
9461 vpage++;
9462 pages--;
9463 while (pages-- > 0) {
9464 if (prot != VPP_PROT(vpage))
9465 return (0);
9466 vpage++;
9468 return (1);
9472 * Get memory allocation policy info for specified address in given segment
9474 static lgrp_mem_policy_info_t *
9475 segvn_getpolicy(struct seg *seg, caddr_t addr)
9477 struct anon_map *amp;
9478 ulong_t anon_index;
9479 lgrp_mem_policy_info_t *policy_info;
9480 struct segvn_data *svn_data;
9481 u_offset_t vn_off;
9482 vnode_t *vp;
9484 ASSERT(seg != NULL);
9486 svn_data = (struct segvn_data *)seg->s_data;
9487 if (svn_data == NULL)
9488 return (NULL);
9491 * Get policy info for private or shared memory
9493 if (svn_data->type != MAP_SHARED) {
9494 if (svn_data->tr_state != SEGVN_TR_ON) {
9495 policy_info = &svn_data->policy_info;
9496 } else {
9497 policy_info = &svn_data->tr_policy_info;
9498 ASSERT(policy_info->mem_policy ==
9499 LGRP_MEM_POLICY_NEXT_SEG);
9501 } else {
9502 amp = svn_data->amp;
9503 anon_index = svn_data->anon_index + seg_page(seg, addr);
9504 vp = svn_data->vp;
9505 vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9506 policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9509 return (policy_info);
9512 /*ARGSUSED*/
9513 static int
9514 segvn_capable(struct seg *seg, segcapability_t capability)
9516 return (0);
9520 * Bind text vnode segment to an amp. If we bind successfully mappings will be
9521 * established to per vnode mapping per lgroup amp pages instead of to vnode
9522 * pages. There's one amp per vnode text mapping per lgroup. Many processes
9523 * may share the same text replication amp. If a suitable amp doesn't already
9524 * exist in svntr hash table create a new one. We may fail to bind to amp if
9525 * segment is not eligible for text replication. Code below first checks for
9526 * these conditions. If binding is successful segment tr_state is set to on
9527 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9528 * svd->amp remains as NULL.
9530 static void
9531 segvn_textrepl(struct seg *seg)
9533 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9534 vnode_t *vp = svd->vp;
9535 u_offset_t off = svd->offset;
9536 size_t size = seg->s_size;
9537 u_offset_t eoff = off + size;
9538 uint_t szc = seg->s_szc;
9539 ulong_t hash = SVNTR_HASH_FUNC(vp);
9540 svntr_t *svntrp;
9541 struct vattr va;
9542 proc_t *p = seg->s_as->a_proc;
9543 lgrp_id_t lgrp_id;
9544 lgrp_id_t olid;
9545 int first;
9546 struct anon_map *amp;
9548 ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9549 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9550 ASSERT(p != NULL);
9551 ASSERT(svd->tr_state == SEGVN_TR_INIT);
9552 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9553 ASSERT(svd->flags & MAP_TEXT);
9554 ASSERT(svd->type == MAP_PRIVATE);
9555 ASSERT(vp != NULL && svd->amp == NULL);
9556 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9557 ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9558 ASSERT(seg->s_as != &kas);
9559 ASSERT(off < eoff);
9560 ASSERT(svntr_hashtab != NULL);
9563 * If numa optimizations are no longer desired bail out.
9565 if (!lgrp_optimizations()) {
9566 svd->tr_state = SEGVN_TR_OFF;
9567 return;
9571 * Avoid creating anon maps with size bigger than the file size.
9572 * If VOP_GETATTR() call fails bail out.
9574 va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9575 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) {
9576 svd->tr_state = SEGVN_TR_OFF;
9577 SEGVN_TR_ADDSTAT(gaerr);
9578 return;
9580 if (btopr(va.va_size) < btopr(eoff)) {
9581 svd->tr_state = SEGVN_TR_OFF;
9582 SEGVN_TR_ADDSTAT(overmap);
9583 return;
9587 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9588 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9589 * mapping that checks if trcache for this vnode needs to be
9590 * invalidated can't miss us.
9592 if (!(vp->v_flag & VVMEXEC)) {
9593 mutex_enter(&vp->v_lock);
9594 vp->v_flag |= VVMEXEC;
9595 mutex_exit(&vp->v_lock);
9597 mutex_enter(&svntr_hashtab[hash].tr_lock);
9599 * Bail out if potentially MAP_SHARED writable mappings exist to this
9600 * vnode. We don't want to use old file contents from existing
9601 * replicas if this mapping was established after the original file
9602 * was changed.
9604 if (vn_is_mapped(vp, V_WRITE)) {
9605 mutex_exit(&svntr_hashtab[hash].tr_lock);
9606 svd->tr_state = SEGVN_TR_OFF;
9607 SEGVN_TR_ADDSTAT(wrcnt);
9608 return;
9610 svntrp = svntr_hashtab[hash].tr_head;
9611 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9612 ASSERT(svntrp->tr_refcnt != 0);
9613 if (svntrp->tr_vp != vp) {
9614 continue;
9618 * Bail out if the file or its attributes were changed after
9619 * this replication entry was created since we need to use the
9620 * latest file contents. Note that mtime test alone is not
9621 * sufficient because a user can explicitly change mtime via
9622 * utimes(2) interfaces back to the old value after modifiying
9623 * the file contents. To detect this case we also have to test
9624 * ctime which among other things records the time of the last
9625 * mtime change by utimes(2). ctime is not changed when the file
9626 * is only read or executed so we expect that typically existing
9627 * replication amp's can be used most of the time.
9629 if (!svntrp->tr_valid ||
9630 svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9631 svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9632 svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9633 svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9634 mutex_exit(&svntr_hashtab[hash].tr_lock);
9635 svd->tr_state = SEGVN_TR_OFF;
9636 SEGVN_TR_ADDSTAT(stale);
9637 return;
9640 * if off, eoff and szc match current segment we found the
9641 * existing entry we can use.
9643 if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9644 svntrp->tr_szc == szc) {
9645 break;
9648 * Don't create different but overlapping in file offsets
9649 * entries to avoid replication of the same file pages more
9650 * than once per lgroup.
9652 if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9653 (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9654 mutex_exit(&svntr_hashtab[hash].tr_lock);
9655 svd->tr_state = SEGVN_TR_OFF;
9656 SEGVN_TR_ADDSTAT(overlap);
9657 return;
9661 * If we didn't find existing entry create a new one.
9663 if (svntrp == NULL) {
9664 svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9665 if (svntrp == NULL) {
9666 mutex_exit(&svntr_hashtab[hash].tr_lock);
9667 svd->tr_state = SEGVN_TR_OFF;
9668 SEGVN_TR_ADDSTAT(nokmem);
9669 return;
9671 #ifdef DEBUG
9673 lgrp_id_t i;
9674 for (i = 0; i < NLGRPS_MAX; i++) {
9675 ASSERT(svntrp->tr_amp[i] == NULL);
9678 #endif /* DEBUG */
9679 svntrp->tr_vp = vp;
9680 svntrp->tr_off = off;
9681 svntrp->tr_eoff = eoff;
9682 svntrp->tr_szc = szc;
9683 svntrp->tr_valid = 1;
9684 svntrp->tr_mtime = va.va_mtime;
9685 svntrp->tr_ctime = va.va_ctime;
9686 svntrp->tr_refcnt = 0;
9687 svntrp->tr_next = svntr_hashtab[hash].tr_head;
9688 svntr_hashtab[hash].tr_head = svntrp;
9690 first = 1;
9691 again:
9693 * We want to pick a replica with pages on main thread's (t_tid = 1,
9694 * aka T1) lgrp. Currently text replication is only optimized for
9695 * workloads that either have all threads of a process on the same
9696 * lgrp or execute their large text primarily on main thread.
9698 lgrp_id = p->p_t1_lgrpid;
9699 if (lgrp_id == LGRP_NONE) {
9701 * In case exec() prefaults text on non main thread use
9702 * current thread lgrpid. It will become main thread anyway
9703 * soon.
9705 lgrp_id = lgrp_home_id(curthread);
9708 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet. Otherwise
9709 * just set it to NLGRPS_MAX if it's different from current process T1
9710 * home lgrp. p_tr_lgrpid is used to detect if process uses text
9711 * replication and T1 new home is different from lgrp used for text
9712 * replication. When this happens asyncronous segvn thread rechecks if
9713 * segments should change lgrps used for text replication. If we fail
9714 * to set p_tr_lgrpid with atomic_cas_32 then set it to NLGRPS_MAX
9715 * without cas if it's not already NLGRPS_MAX and not equal lgrp_id
9716 * we want to use. We don't need to use cas in this case because
9717 * another thread that races in between our non atomic check and set
9718 * may only change p_tr_lgrpid to NLGRPS_MAX at this point.
9720 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9721 olid = p->p_tr_lgrpid;
9722 if (lgrp_id != olid && olid != NLGRPS_MAX) {
9723 lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9724 if (atomic_cas_32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) !=
9725 olid) {
9726 olid = p->p_tr_lgrpid;
9727 ASSERT(olid != LGRP_NONE);
9728 if (olid != lgrp_id && olid != NLGRPS_MAX) {
9729 p->p_tr_lgrpid = NLGRPS_MAX;
9732 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9733 membar_producer();
9735 * lgrp_move_thread() won't schedule async recheck after
9736 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9737 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9738 * is not LGRP_NONE.
9740 if (first && p->p_t1_lgrpid != LGRP_NONE &&
9741 p->p_t1_lgrpid != lgrp_id) {
9742 first = 0;
9743 goto again;
9747 * If no amp was created yet for lgrp_id create a new one as long as
9748 * we have enough memory to afford it.
9750 if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9751 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9752 if (trmem > segvn_textrepl_max_bytes) {
9753 SEGVN_TR_ADDSTAT(normem);
9754 goto fail;
9756 if (anon_try_resv_zone(size, NULL) == 0) {
9757 SEGVN_TR_ADDSTAT(noanon);
9758 goto fail;
9760 amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9761 if (amp == NULL) {
9762 anon_unresv_zone(size, NULL);
9763 SEGVN_TR_ADDSTAT(nokmem);
9764 goto fail;
9766 ASSERT(amp->refcnt == 1);
9767 amp->a_szc = szc;
9768 svntrp->tr_amp[lgrp_id] = amp;
9769 SEGVN_TR_ADDSTAT(newamp);
9771 svntrp->tr_refcnt++;
9772 ASSERT(svd->svn_trnext == NULL);
9773 ASSERT(svd->svn_trprev == NULL);
9774 svd->svn_trnext = svntrp->tr_svnhead;
9775 svd->svn_trprev = NULL;
9776 if (svntrp->tr_svnhead != NULL) {
9777 svntrp->tr_svnhead->svn_trprev = svd;
9779 svntrp->tr_svnhead = svd;
9780 ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9781 ASSERT(amp->refcnt >= 1);
9782 svd->amp = amp;
9783 svd->anon_index = 0;
9784 svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9785 svd->tr_policy_info.mem_lgrpid = lgrp_id;
9786 svd->tr_state = SEGVN_TR_ON;
9787 mutex_exit(&svntr_hashtab[hash].tr_lock);
9788 SEGVN_TR_ADDSTAT(repl);
9789 return;
9790 fail:
9791 ASSERT(segvn_textrepl_bytes >= size);
9792 atomic_add_long(&segvn_textrepl_bytes, -size);
9793 ASSERT(svntrp != NULL);
9794 ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
9795 if (svntrp->tr_refcnt == 0) {
9796 ASSERT(svntrp == svntr_hashtab[hash].tr_head);
9797 svntr_hashtab[hash].tr_head = svntrp->tr_next;
9798 mutex_exit(&svntr_hashtab[hash].tr_lock);
9799 kmem_cache_free(svntr_cache, svntrp);
9800 } else {
9801 mutex_exit(&svntr_hashtab[hash].tr_lock);
9803 svd->tr_state = SEGVN_TR_OFF;
9807 * Convert seg back to regular vnode mapping seg by unbinding it from its text
9808 * replication amp. This routine is most typically called when segment is
9809 * unmapped but can also be called when segment no longer qualifies for text
9810 * replication (e.g. due to protection changes). If unload_unmap is set use
9811 * HAT_UNLOAD_UNMAP flag in hat_unload_callback(). If we are the last user of
9812 * svntr free all its anon maps and remove it from the hash table.
9814 static void
9815 segvn_textunrepl(struct seg *seg, int unload_unmap)
9817 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9818 vnode_t *vp = svd->vp;
9819 u_offset_t off = svd->offset;
9820 size_t size = seg->s_size;
9821 u_offset_t eoff = off + size;
9822 uint_t szc = seg->s_szc;
9823 ulong_t hash = SVNTR_HASH_FUNC(vp);
9824 svntr_t *svntrp;
9825 svntr_t **prv_svntrp;
9826 lgrp_id_t lgrp_id = svd->tr_policy_info.mem_lgrpid;
9827 lgrp_id_t i;
9829 ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9830 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
9831 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9832 ASSERT(svd->tr_state == SEGVN_TR_ON);
9833 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9834 ASSERT(svd->amp != NULL);
9835 ASSERT(svd->amp->refcnt >= 1);
9836 ASSERT(svd->anon_index == 0);
9837 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9838 ASSERT(svntr_hashtab != NULL);
9840 mutex_enter(&svntr_hashtab[hash].tr_lock);
9841 prv_svntrp = &svntr_hashtab[hash].tr_head;
9842 for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9843 ASSERT(svntrp->tr_refcnt != 0);
9844 if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9845 svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9846 break;
9849 if (svntrp == NULL) {
9850 panic("segvn_textunrepl: svntr record not found");
9852 if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9853 panic("segvn_textunrepl: amp mismatch");
9855 svd->tr_state = SEGVN_TR_OFF;
9856 svd->amp = NULL;
9857 if (svd->svn_trprev == NULL) {
9858 ASSERT(svntrp->tr_svnhead == svd);
9859 svntrp->tr_svnhead = svd->svn_trnext;
9860 if (svntrp->tr_svnhead != NULL) {
9861 svntrp->tr_svnhead->svn_trprev = NULL;
9863 svd->svn_trnext = NULL;
9864 } else {
9865 svd->svn_trprev->svn_trnext = svd->svn_trnext;
9866 if (svd->svn_trnext != NULL) {
9867 svd->svn_trnext->svn_trprev = svd->svn_trprev;
9868 svd->svn_trnext = NULL;
9870 svd->svn_trprev = NULL;
9872 if (--svntrp->tr_refcnt) {
9873 mutex_exit(&svntr_hashtab[hash].tr_lock);
9874 goto done;
9876 *prv_svntrp = svntrp->tr_next;
9877 mutex_exit(&svntr_hashtab[hash].tr_lock);
9878 for (i = 0; i < NLGRPS_MAX; i++) {
9879 struct anon_map *amp = svntrp->tr_amp[i];
9880 if (amp == NULL) {
9881 continue;
9883 ASSERT(amp->refcnt == 1);
9884 ASSERT(amp->swresv == size);
9885 ASSERT(amp->size == size);
9886 ASSERT(amp->a_szc == szc);
9887 if (amp->a_szc != 0) {
9888 anon_free_pages(amp->ahp, 0, size, szc);
9889 } else {
9890 anon_free(amp->ahp, 0, size);
9892 svntrp->tr_amp[i] = NULL;
9893 ASSERT(segvn_textrepl_bytes >= size);
9894 atomic_add_long(&segvn_textrepl_bytes, -size);
9895 anon_unresv_zone(amp->swresv, NULL);
9896 amp->refcnt = 0;
9897 anonmap_free(amp);
9899 kmem_cache_free(svntr_cache, svntrp);
9900 done:
9901 hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9902 unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9906 * This is called when a MAP_SHARED writable mapping is created to a vnode
9907 * that is currently used for execution (VVMEXEC flag is set). In this case we
9908 * need to prevent further use of existing replicas.
9910 static void
9911 segvn_inval_trcache(vnode_t *vp)
9913 ulong_t hash = SVNTR_HASH_FUNC(vp);
9914 svntr_t *svntrp;
9916 ASSERT(vp->v_flag & VVMEXEC);
9918 if (svntr_hashtab == NULL) {
9919 return;
9922 mutex_enter(&svntr_hashtab[hash].tr_lock);
9923 svntrp = svntr_hashtab[hash].tr_head;
9924 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9925 ASSERT(svntrp->tr_refcnt != 0);
9926 if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9927 svntrp->tr_valid = 0;
9930 mutex_exit(&svntr_hashtab[hash].tr_lock);
9933 static void
9934 segvn_trasync_thread(void)
9936 callb_cpr_t cpr_info;
9937 kmutex_t cpr_lock; /* just for CPR stuff */
9939 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9941 CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9942 callb_generic_cpr, "segvn_async");
9944 if (segvn_update_textrepl_interval == 0) {
9945 segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9946 } else {
9947 segvn_update_textrepl_interval *= hz;
9949 (void) timeout(segvn_trupdate_wakeup, NULL,
9950 segvn_update_textrepl_interval);
9952 for (;;) {
9953 mutex_enter(&cpr_lock);
9954 CALLB_CPR_SAFE_BEGIN(&cpr_info);
9955 mutex_exit(&cpr_lock);
9956 sema_p(&segvn_trasync_sem);
9957 mutex_enter(&cpr_lock);
9958 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9959 mutex_exit(&cpr_lock);
9960 segvn_trupdate();
9964 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9966 static void
9967 segvn_trupdate_wakeup(void *dummy)
9969 uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9971 if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9972 segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9973 sema_v(&segvn_trasync_sem);
9976 if (!segvn_disable_textrepl_update &&
9977 segvn_update_textrepl_interval != 0) {
9978 (void) timeout(segvn_trupdate_wakeup, dummy,
9979 segvn_update_textrepl_interval);
9983 static void
9984 segvn_trupdate(void)
9986 ulong_t hash;
9987 svntr_t *svntrp;
9988 segvn_data_t *svd;
9990 ASSERT(svntr_hashtab != NULL);
9992 for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9993 mutex_enter(&svntr_hashtab[hash].tr_lock);
9994 svntrp = svntr_hashtab[hash].tr_head;
9995 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9996 ASSERT(svntrp->tr_refcnt != 0);
9997 svd = svntrp->tr_svnhead;
9998 for (; svd != NULL; svd = svd->svn_trnext) {
9999 segvn_trupdate_seg(svd->seg, svd, svntrp,
10000 hash);
10003 mutex_exit(&svntr_hashtab[hash].tr_lock);
10007 static void
10008 segvn_trupdate_seg(struct seg *seg,
10009 segvn_data_t *svd,
10010 svntr_t *svntrp,
10011 ulong_t hash)
10013 proc_t *p;
10014 lgrp_id_t lgrp_id;
10015 struct as *as;
10016 size_t size;
10017 struct anon_map *amp;
10019 ASSERT(svd->vp != NULL);
10020 ASSERT(svd->vp == svntrp->tr_vp);
10021 ASSERT(svd->offset == svntrp->tr_off);
10022 ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
10023 ASSERT(seg != NULL);
10024 ASSERT(svd->seg == seg);
10025 ASSERT(seg->s_data == (void *)svd);
10026 ASSERT(seg->s_szc == svntrp->tr_szc);
10027 ASSERT(svd->tr_state == SEGVN_TR_ON);
10028 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10029 ASSERT(svd->amp != NULL);
10030 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10031 ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
10032 ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
10033 ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
10034 ASSERT(svntrp->tr_refcnt != 0);
10035 ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
10037 as = seg->s_as;
10038 ASSERT(as != NULL && as != &kas);
10039 p = as->a_proc;
10040 ASSERT(p != NULL);
10041 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
10042 lgrp_id = p->p_t1_lgrpid;
10043 if (lgrp_id == LGRP_NONE) {
10044 return;
10046 ASSERT(lgrp_id < NLGRPS_MAX);
10047 if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
10048 return;
10052 * Use tryenter locking since we are locking as/seg and svntr hash
10053 * lock in reverse from syncrounous thread order.
10055 if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) {
10056 SEGVN_TR_ADDSTAT(nolock);
10057 if (segvn_lgrp_trthr_migrs_snpsht) {
10058 segvn_lgrp_trthr_migrs_snpsht = 0;
10060 return;
10062 if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
10063 AS_LOCK_EXIT(as, &as->a_lock);
10064 SEGVN_TR_ADDSTAT(nolock);
10065 if (segvn_lgrp_trthr_migrs_snpsht) {
10066 segvn_lgrp_trthr_migrs_snpsht = 0;
10068 return;
10070 size = seg->s_size;
10071 if (svntrp->tr_amp[lgrp_id] == NULL) {
10072 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
10073 if (trmem > segvn_textrepl_max_bytes) {
10074 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10075 AS_LOCK_EXIT(as, &as->a_lock);
10076 atomic_add_long(&segvn_textrepl_bytes, -size);
10077 SEGVN_TR_ADDSTAT(normem);
10078 return;
10080 if (anon_try_resv_zone(size, NULL) == 0) {
10081 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10082 AS_LOCK_EXIT(as, &as->a_lock);
10083 atomic_add_long(&segvn_textrepl_bytes, -size);
10084 SEGVN_TR_ADDSTAT(noanon);
10085 return;
10087 amp = anonmap_alloc(size, size, KM_NOSLEEP);
10088 if (amp == NULL) {
10089 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10090 AS_LOCK_EXIT(as, &as->a_lock);
10091 atomic_add_long(&segvn_textrepl_bytes, -size);
10092 anon_unresv_zone(size, NULL);
10093 SEGVN_TR_ADDSTAT(nokmem);
10094 return;
10096 ASSERT(amp->refcnt == 1);
10097 amp->a_szc = seg->s_szc;
10098 svntrp->tr_amp[lgrp_id] = amp;
10101 * We don't need to drop the bucket lock but here we give other
10102 * threads a chance. svntr and svd can't be unlinked as long as
10103 * segment lock is held as a writer and AS held as well. After we
10104 * retake bucket lock we'll continue from where we left. We'll be able
10105 * to reach the end of either list since new entries are always added
10106 * to the beginning of the lists.
10108 mutex_exit(&svntr_hashtab[hash].tr_lock);
10109 hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
10110 mutex_enter(&svntr_hashtab[hash].tr_lock);
10112 ASSERT(svd->tr_state == SEGVN_TR_ON);
10113 ASSERT(svd->amp != NULL);
10114 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10115 ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
10116 ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
10118 svd->tr_policy_info.mem_lgrpid = lgrp_id;
10119 svd->amp = svntrp->tr_amp[lgrp_id];
10120 p->p_tr_lgrpid = NLGRPS_MAX;
10121 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10122 AS_LOCK_EXIT(as, &as->a_lock);
10124 ASSERT(svntrp->tr_refcnt != 0);
10125 ASSERT(svd->vp == svntrp->tr_vp);
10126 ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
10127 ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
10128 ASSERT(svd->seg == seg);
10129 ASSERT(svd->tr_state == SEGVN_TR_ON);
10131 SEGVN_TR_ADDSTAT(asyncrepl);