8579 ixgbe infinite loops in rar and vmdq clearing
[unleashed.git] / usr / src / uts / common / vm / page_retire.c
blob76be970a45264843d5c39cb8500de5d24ed3961b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
28 * Page Retire - Big Theory Statement.
30 * This file handles removing sections of faulty memory from use when the
31 * user land FMA Diagnosis Engine requests that a page be removed or when
32 * a CE or UE is detected by the hardware.
34 * In the bad old days, the kernel side of Page Retire did a lot of the work
35 * on its own. Now, with the DE keeping track of errors, the kernel side is
36 * rather simple minded on most platforms.
38 * Errors are all reflected to the DE, and after digesting the error and
39 * looking at all previously reported errors, the DE decides what should
40 * be done about the current error. If the DE wants a particular page to
41 * be retired, then the kernel page retire code is invoked via an ioctl.
42 * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
43 * page retire to handle the error. Since page retire is just a simple
44 * mechanism it doesn't need to differentiate between the different callers.
46 * The p_toxic field in the page_t is used to indicate which errors have
47 * occurred and what action has been taken on a given page. Because errors are
48 * reported without regard to the locked state of a page, no locks are used
49 * to SET the error bits in p_toxic. However, in order to clear the error
50 * bits, the page_t must be held exclusively locked.
52 * When page_retire() is called, it must be able to acquire locks, sleep, etc.
53 * It must not be called from high-level interrupt context.
55 * Depending on how the requested page is being used at the time of the retire
56 * request (and on the availability of sufficient system resources), the page
57 * may be retired immediately, or just marked for retirement later. For
58 * example, locked pages are marked, while free pages are retired. Multiple
59 * requests may be made to retire the same page, although there is no need
60 * to: once the p_toxic flags are set, the page will be retired as soon as it
61 * can be exclusively locked.
63 * The retire mechanism is driven centrally out of page_unlock(). To expedite
64 * the retirement of pages, further requests for SE_SHARED locks are denied
65 * as long as a page retirement is pending. In addition, as long as pages are
66 * pending retirement a background thread runs periodically trying to retire
67 * those pages. Pages which could not be retired while the system is running
68 * are scrubbed prior to rebooting to avoid latent errors on the next boot.
70 * UE pages without persistent errors are scrubbed and returned to service.
71 * Recidivist pages, as well as FMA-directed requests for retirement, result
72 * in the page being taken out of service. Once the decision is made to take
73 * a page out of service, the page is cleared, hashed onto the retired_pages
74 * vnode, marked as retired, and it is unlocked. No other requesters (except
75 * for unretire) are allowed to lock retired pages.
77 * The public routines return (sadly) 0 if they worked and a non-zero error
78 * value if something went wrong. This is done for the ioctl side of the
79 * world to allow errors to be reflected all the way out to user land. The
80 * non-zero values are explained in comments atop each function.
84 * Things to fix:
86 * 1. Trying to retire non-relocatable kvp pages may result in a
87 * quagmire. This is because seg_kmem() no longer keeps its pages locked,
88 * and calls page_lookup() in the free path; since kvp pages are modified
89 * and don't have a usable backing store, page_retire() can't do anything
90 * with them, and we'll keep denying the lock to seg_kmem_free() in a
91 * vicious cycle. To prevent that, we don't deny locks to kvp pages, and
92 * hence only try to retire a page from page_unlock() in the free path.
93 * Since most kernel pages are indefinitely held anyway, and don't
94 * participate in I/O, this is of little consequence.
96 * 2. Low memory situations will be interesting. If we don't have
97 * enough memory for page_relocate() to succeed, we won't be able to
98 * retire dirty pages; nobody will be able to push them out to disk
99 * either, since we aggressively deny the page lock. We could change
100 * fsflush so it can recognize this situation, grab the lock, and push
101 * the page out, where we'll catch it in the free path and retire it.
103 * 3. Beware of places that have code like this in them:
105 * if (! page_tryupgrade(pp)) {
106 * page_unlock(pp);
107 * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
108 * / *NOTHING* /
111 * page_free(pp);
113 * The problem is that pp can change identity right after the
114 * page_unlock() call. In particular, page_retire() can step in
115 * there, change pp's identity, and hash pp onto the retired_vnode.
117 * Of course, other functions besides page_retire() can have the
118 * same effect. A kmem reader can waltz by, set up a mapping to the
119 * page, and then unlock the page. Page_free() will then go castors
120 * up. So if anybody is doing this, it's already a bug.
122 * 4. mdboot()'s call into page_retire_mdboot() should probably be
123 * moved lower. Where the call is made now, we can get into trouble
124 * by scrubbing a kernel page that is then accessed later.
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/systm.h>
130 #include <sys/mman.h>
131 #include <sys/vnode.h>
132 #include <sys/vfs_opreg.h>
133 #include <sys/cmn_err.h>
134 #include <sys/ksynch.h>
135 #include <sys/thread.h>
136 #include <sys/disp.h>
137 #include <sys/ontrap.h>
138 #include <sys/vmsystm.h>
139 #include <sys/mem_config.h>
140 #include <sys/atomic.h>
141 #include <sys/callb.h>
142 #include <sys/kobj.h>
143 #include <vm/page.h>
144 #include <vm/vm_dep.h>
145 #include <vm/as.h>
146 #include <vm/hat.h>
147 #include <vm/seg_kmem.h>
150 * vnode for all pages which are retired from the VM system;
152 vnode_t *retired_pages;
154 static int page_retire_pp_finish(page_t *, void *, uint_t);
157 * Make a list of all of the pages that have been marked for retirement
158 * but are not yet retired. At system shutdown, we will scrub all of the
159 * pages in the list in case there are outstanding UEs. Then, we
160 * cross-check this list against the number of pages that are yet to be
161 * retired, and if we find inconsistencies, we scan every page_t in the
162 * whole system looking for any pages that need to be scrubbed for UEs.
163 * The background thread also uses this queue to determine which pages
164 * it should keep trying to retire.
166 #ifdef DEBUG
167 #define PR_PENDING_QMAX 32
168 #else /* DEBUG */
169 #define PR_PENDING_QMAX 256
170 #endif /* DEBUG */
171 page_t *pr_pending_q[PR_PENDING_QMAX];
172 kmutex_t pr_q_mutex;
175 * Page retire global kstats
177 struct page_retire_kstat {
178 kstat_named_t pr_retired;
179 kstat_named_t pr_requested;
180 kstat_named_t pr_requested_free;
181 kstat_named_t pr_enqueue_fail;
182 kstat_named_t pr_dequeue_fail;
183 kstat_named_t pr_pending;
184 kstat_named_t pr_pending_kas;
185 kstat_named_t pr_failed;
186 kstat_named_t pr_failed_kernel;
187 kstat_named_t pr_limit;
188 kstat_named_t pr_limit_exceeded;
189 kstat_named_t pr_fma;
190 kstat_named_t pr_mce;
191 kstat_named_t pr_ue;
192 kstat_named_t pr_ue_cleared_retire;
193 kstat_named_t pr_ue_cleared_free;
194 kstat_named_t pr_ue_persistent;
195 kstat_named_t pr_unretired;
198 static struct page_retire_kstat page_retire_kstat = {
199 { "pages_retired", KSTAT_DATA_UINT64},
200 { "pages_retire_request", KSTAT_DATA_UINT64},
201 { "pages_retire_request_free", KSTAT_DATA_UINT64},
202 { "pages_notenqueued", KSTAT_DATA_UINT64},
203 { "pages_notdequeued", KSTAT_DATA_UINT64},
204 { "pages_pending", KSTAT_DATA_UINT64},
205 { "pages_pending_kas", KSTAT_DATA_UINT64},
206 { "pages_deferred", KSTAT_DATA_UINT64},
207 { "pages_deferred_kernel", KSTAT_DATA_UINT64},
208 { "pages_limit", KSTAT_DATA_UINT64},
209 { "pages_limit_exceeded", KSTAT_DATA_UINT64},
210 { "pages_fma", KSTAT_DATA_UINT64},
211 { "pages_multiple_ce", KSTAT_DATA_UINT64},
212 { "pages_ue", KSTAT_DATA_UINT64},
213 { "pages_ue_cleared_retired", KSTAT_DATA_UINT64},
214 { "pages_ue_cleared_freed", KSTAT_DATA_UINT64},
215 { "pages_ue_persistent", KSTAT_DATA_UINT64},
216 { "pages_unretired", KSTAT_DATA_UINT64},
219 static kstat_t *page_retire_ksp = NULL;
221 #define PR_INCR_KSTAT(stat) \
222 atomic_inc_64(&(page_retire_kstat.stat.value.ui64))
223 #define PR_DECR_KSTAT(stat) \
224 atomic_dec_64(&(page_retire_kstat.stat.value.ui64))
226 #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64)
227 #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64)
228 #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
229 #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64)
230 #define PR_KSTAT_PENDING_KAS (page_retire_kstat.pr_pending_kas.value.ui64)
231 #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64)
232 #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64)
235 * page retire kstats to list all retired pages
237 static int pr_list_kstat_update(kstat_t *ksp, int rw);
238 static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
239 kmutex_t pr_list_kstat_mutex;
242 * Limit the number of multiple CE page retires.
243 * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
244 * basis points, where 100 basis points equals one percent.
246 #define MCE_BPT 10
247 uint64_t max_pages_retired_bps = MCE_BPT;
248 #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000)
251 * Control over the verbosity of page retirement.
253 * When set to zero (the default), no messages will be printed.
254 * When set to one, summary messages will be printed.
255 * When set > one, all messages will be printed.
257 * A value of one will trigger detailed messages for retirement operations,
258 * and is intended as a platform tunable for processors where FMA's DE does
259 * not run (e.g., spitfire). Values > one are intended for debugging only.
261 int page_retire_messages = 0;
264 * Control whether or not we return scrubbed UE pages to service.
265 * By default we do not since FMA wants to run its diagnostics first
266 * and then ask us to unretire the page if it passes. Non-FMA platforms
267 * may set this to zero so we will only retire recidivist pages. It should
268 * not be changed by the user.
270 int page_retire_first_ue = 1;
273 * Master enable for page retire. This prevents a CE or UE early in boot
274 * from trying to retire a page before page_retire_init() has finished
275 * setting things up. This is internal only and is not a tunable!
277 static int pr_enable = 0;
279 static void (*memscrub_notify_func)(uint64_t);
281 #ifdef DEBUG
282 struct page_retire_debug {
283 int prd_dup1;
284 int prd_dup2;
285 int prd_qdup;
286 int prd_noaction;
287 int prd_queued;
288 int prd_notqueued;
289 int prd_dequeue;
290 int prd_top;
291 int prd_locked;
292 int prd_reloc;
293 int prd_relocfail;
294 int prd_mod;
295 int prd_mod_late;
296 int prd_kern;
297 int prd_free;
298 int prd_noreclaim;
299 int prd_hashout;
300 int prd_fma;
301 int prd_uescrubbed;
302 int prd_uenotscrubbed;
303 int prd_mce;
304 int prd_prlocked;
305 int prd_prnotlocked;
306 int prd_prretired;
307 int prd_ulocked;
308 int prd_unotretired;
309 int prd_udestroy;
310 int prd_uhashout;
311 int prd_uunretired;
312 int prd_unotlocked;
313 int prd_checkhit;
314 int prd_checkmiss_pend;
315 int prd_checkmiss_noerr;
316 int prd_tctop;
317 int prd_tclocked;
318 int prd_hunt;
319 int prd_dohunt;
320 int prd_earlyhunt;
321 int prd_latehunt;
322 int prd_nofreedemote;
323 int prd_nodemote;
324 int prd_demoted;
325 } pr_debug;
327 #define PR_DEBUG(foo) ((pr_debug.foo)++)
330 * A type histogram. We record the incidence of the various toxic
331 * flag combinations along with the interesting page attributes. The
332 * goal is to get as many combinations as we can while driving all
333 * pr_debug values nonzero (indicating we've exercised all possible
334 * code paths across all possible page types). Not all combinations
335 * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
337 * pr_type offset bit encoding (when examining with a debugger):
339 * PRT_NAMED - 0x4
340 * PRT_KERNEL - 0x8
341 * PRT_FREE - 0x10
342 * PRT_MOD - 0x20
343 * PRT_FMA - 0x0
344 * PRT_MCE - 0x40
345 * PRT_UE - 0x80
348 #define PRT_NAMED 0x01
349 #define PRT_KERNEL 0x02
350 #define PRT_FREE 0x04
351 #define PRT_MOD 0x08
352 #define PRT_FMA 0x00 /* yes, this is not a mistake */
353 #define PRT_MCE 0x10
354 #define PRT_UE 0x20
355 #define PRT_ALL 0x3F
357 int pr_types[PRT_ALL+1];
359 #define PR_TYPES(pp) { \
360 int whichtype = 0; \
361 if (pp->p_vnode) \
362 whichtype |= PRT_NAMED; \
363 if (PP_ISKAS(pp)) \
364 whichtype |= PRT_KERNEL; \
365 if (PP_ISFREE(pp)) \
366 whichtype |= PRT_FREE; \
367 if (hat_ismod(pp)) \
368 whichtype |= PRT_MOD; \
369 if (pp->p_toxic & PR_UE) \
370 whichtype |= PRT_UE; \
371 if (pp->p_toxic & PR_MCE) \
372 whichtype |= PRT_MCE; \
373 pr_types[whichtype]++; \
376 int recl_calls;
377 int recl_mtbf = 3;
378 int reloc_calls;
379 int reloc_mtbf = 7;
380 int pr_calls;
381 int pr_mtbf = 15;
383 #define MTBF(v, f) (((++(v)) & (f)) != (f))
385 #else /* DEBUG */
387 #define PR_DEBUG(foo) /* nothing */
388 #define PR_TYPES(foo) /* nothing */
389 #define MTBF(v, f) (1)
391 #endif /* DEBUG */
394 * page_retire_done() - completion processing
396 * Used by the page_retire code for common completion processing.
397 * It keeps track of how many times a given result has happened,
398 * and writes out an occasional message.
400 * May be called with a NULL pp (PRD_INVALID_PA case).
402 #define PRD_INVALID_KEY -1
403 #define PRD_SUCCESS 0
404 #define PRD_PENDING 1
405 #define PRD_FAILED 2
406 #define PRD_DUPLICATE 3
407 #define PRD_INVALID_PA 4
408 #define PRD_LIMIT 5
409 #define PRD_UE_SCRUBBED 6
410 #define PRD_UNR_SUCCESS 7
411 #define PRD_UNR_CANTLOCK 8
412 #define PRD_UNR_NOT 9
414 typedef struct page_retire_op {
415 int pr_key; /* one of the PRD_* defines from above */
416 int pr_count; /* How many times this has happened */
417 int pr_retval; /* return value */
418 int pr_msglvl; /* message level - when to print */
419 char *pr_message; /* Cryptic message for field service */
420 } page_retire_op_t;
422 static page_retire_op_t page_retire_ops[] = {
423 /* key count retval msglvl message */
424 {PRD_SUCCESS, 0, 0, 1,
425 "Page 0x%08x.%08x removed from service"},
426 {PRD_PENDING, 0, EAGAIN, 2,
427 "Page 0x%08x.%08x will be retired on free"},
428 {PRD_FAILED, 0, EAGAIN, 0, NULL},
429 {PRD_DUPLICATE, 0, EIO, 2,
430 "Page 0x%08x.%08x already retired or pending"},
431 {PRD_INVALID_PA, 0, EINVAL, 2,
432 "PA 0x%08x.%08x is not a relocatable page"},
433 {PRD_LIMIT, 0, 0, 1,
434 "Page 0x%08x.%08x not retired due to limit exceeded"},
435 {PRD_UE_SCRUBBED, 0, 0, 1,
436 "Previously reported error on page 0x%08x.%08x cleared"},
437 {PRD_UNR_SUCCESS, 0, 0, 1,
438 "Page 0x%08x.%08x returned to service"},
439 {PRD_UNR_CANTLOCK, 0, EAGAIN, 2,
440 "Page 0x%08x.%08x could not be unretired"},
441 {PRD_UNR_NOT, 0, EIO, 2,
442 "Page 0x%08x.%08x is not retired"},
443 {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */
447 * print a message if page_retire_messages is true.
449 #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \
451 uint64_t p = (uint64_t)pa; \
452 if (page_retire_messages >= msglvl && msg != NULL) { \
453 cmn_err(debuglvl, msg, \
454 (uint32_t)(p >> 32), (uint32_t)p); \
459 * Note that multiple bits may be set in a single settoxic operation.
460 * May be called without the page locked.
462 void
463 page_settoxic(page_t *pp, uchar_t bits)
465 atomic_or_8(&pp->p_toxic, bits);
469 * Note that multiple bits may cleared in a single clrtoxic operation.
470 * Must be called with the page exclusively locked to prevent races which
471 * may attempt to retire a page without any toxic bits set.
472 * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
473 * being held as there is a separate mutex which protects that bit.
475 void
476 page_clrtoxic(page_t *pp, uchar_t bits)
478 ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
479 atomic_and_8(&pp->p_toxic, ~bits);
483 * Prints any page retire messages to the user, and decides what
484 * error code is appropriate for the condition reported.
486 static int
487 page_retire_done(page_t *pp, int code)
489 page_retire_op_t *prop;
490 uint64_t pa = 0;
491 int i;
493 if (pp != NULL) {
494 pa = mmu_ptob((uint64_t)pp->p_pagenum);
497 prop = NULL;
498 for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
499 if (page_retire_ops[i].pr_key == code) {
500 prop = &page_retire_ops[i];
501 break;
505 #ifdef DEBUG
506 if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
507 cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
509 #endif
511 ASSERT(prop->pr_key == code);
513 prop->pr_count++;
515 PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
516 if (pp != NULL) {
517 page_settoxic(pp, PR_MSG);
520 return (prop->pr_retval);
524 * Act like page_destroy(), but instead of freeing the page, hash it onto
525 * the retired_pages vnode, and mark it retired.
527 * For fun, we try to scrub the page until it's squeaky clean.
528 * availrmem is adjusted here.
530 static void
531 page_retire_destroy(page_t *pp)
533 u_offset_t off = (u_offset_t)((uintptr_t)pp);
535 ASSERT(PAGE_EXCL(pp));
536 ASSERT(!PP_ISFREE(pp));
537 ASSERT(pp->p_szc == 0);
538 ASSERT(!hat_page_is_mapped(pp));
539 ASSERT(!pp->p_vnode);
541 page_clr_all_props(pp);
542 pagescrub(pp, 0, MMU_PAGESIZE);
544 pp->p_next = NULL;
545 pp->p_prev = NULL;
546 if (page_hashin(pp, retired_pages, off, NULL) == 0) {
547 cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
550 page_settoxic(pp, PR_RETIRED);
551 PR_INCR_KSTAT(pr_retired);
553 if (pp->p_toxic & PR_FMA) {
554 PR_INCR_KSTAT(pr_fma);
555 } else if (pp->p_toxic & PR_UE) {
556 PR_INCR_KSTAT(pr_ue);
557 } else {
558 PR_INCR_KSTAT(pr_mce);
561 mutex_enter(&freemem_lock);
562 availrmem--;
563 mutex_exit(&freemem_lock);
565 page_unlock(pp);
569 * Check whether the number of pages which have been retired already exceeds
570 * the maximum allowable percentage of memory which may be retired.
572 * Returns 1 if the limit has been exceeded.
574 static int
575 page_retire_limit(void)
577 if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
578 PR_INCR_KSTAT(pr_limit_exceeded);
579 return (1);
582 return (0);
585 #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \
586 "[ 0x%x != 0x%x ] while attempting to clear previously " \
587 "reported error; page removed from service"
589 #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \
590 "attempting to clear previously reported error; page removed " \
591 "from service"
594 * Attempt to clear a UE from a page.
595 * Returns 1 if the error has been successfully cleared.
597 static int
598 page_clear_transient_ue(page_t *pp)
600 caddr_t kaddr;
601 uint8_t rb, wb;
602 uint64_t pa;
603 uint32_t pa_hi, pa_lo;
604 on_trap_data_t otd;
605 int errors = 0;
606 int i;
608 ASSERT(PAGE_EXCL(pp));
609 ASSERT(PP_PR_REQ(pp));
610 ASSERT(pp->p_szc == 0);
611 ASSERT(!hat_page_is_mapped(pp));
614 * Clear the page and attempt to clear the UE. If we trap
615 * on the next access to the page, we know the UE has recurred.
617 pagescrub(pp, 0, PAGESIZE);
620 * Map the page and write a bunch of bit patterns to compare
621 * what we wrote with what we read back. This isn't a perfect
622 * test but it should be good enough to catch most of the
623 * recurring UEs. If this fails to catch a recurrent UE, we'll
624 * retire the page the next time we see a UE on the page.
626 kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
628 pa = ptob((uint64_t)page_pptonum(pp));
629 pa_hi = (uint32_t)(pa >> 32);
630 pa_lo = (uint32_t)pa;
633 * Disable preemption to prevent the off chance that
634 * we migrate while in the middle of running through
635 * the bit pattern and run on a different processor
636 * than what we started on.
638 kpreempt_disable();
641 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
642 * the cache in between reading and writing. We do this under
643 * on_trap() protection to avoid recursion.
645 if (on_trap(&otd, OT_DATA_EC)) {
646 PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
647 errors = 1;
648 } else {
649 for (wb = 0xff; wb > 0; wb--) {
650 for (i = 0; i < PAGESIZE; i++) {
651 kaddr[i] = wb;
654 sync_data_memory(kaddr, PAGESIZE);
656 for (i = 0; i < PAGESIZE; i++) {
657 rb = kaddr[i];
658 if (rb != wb) {
660 * We had a mismatch without a trap.
661 * Uh-oh. Something is really wrong
662 * with this system.
664 if (page_retire_messages) {
665 cmn_err(CE_WARN, MSG_DM,
666 pa_hi, pa_lo, rb, wb);
668 errors = 1;
669 goto out; /* double break */
674 out:
675 no_trap();
676 kpreempt_enable();
677 ppmapout(kaddr);
679 return (errors ? 0 : 1);
683 * Try to clear a page_t with a single UE. If the UE was transient, it is
684 * returned to service, and we return 1. Otherwise we return 0 meaning
685 * that further processing is required to retire the page.
687 static int
688 page_retire_transient_ue(page_t *pp)
690 ASSERT(PAGE_EXCL(pp));
691 ASSERT(!hat_page_is_mapped(pp));
694 * If this page is a repeat offender, retire it under the
695 * "two strikes and you're out" rule. The caller is responsible
696 * for scrubbing the page to try to clear the error.
698 if (pp->p_toxic & PR_UE_SCRUBBED) {
699 PR_INCR_KSTAT(pr_ue_persistent);
700 return (0);
703 if (page_clear_transient_ue(pp)) {
705 * We set the PR_SCRUBBED_UE bit; if we ever see this
706 * page again, we will retire it, no questions asked.
708 page_settoxic(pp, PR_UE_SCRUBBED);
710 if (page_retire_first_ue) {
711 PR_INCR_KSTAT(pr_ue_cleared_retire);
712 return (0);
713 } else {
714 PR_INCR_KSTAT(pr_ue_cleared_free);
716 page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
718 /* LINTED: CONSTCOND */
719 VN_DISPOSE(pp, B_FREE, 1, kcred);
720 return (1);
724 PR_INCR_KSTAT(pr_ue_persistent);
725 return (0);
729 * Update the statistics dynamically when our kstat is read.
731 static int
732 page_retire_kstat_update(kstat_t *ksp, int rw)
734 struct page_retire_kstat *pr;
736 if (ksp == NULL)
737 return (EINVAL);
739 switch (rw) {
741 case KSTAT_READ:
742 pr = (struct page_retire_kstat *)ksp->ks_data;
743 ASSERT(pr == &page_retire_kstat);
744 pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
745 return (0);
747 case KSTAT_WRITE:
748 return (EACCES);
750 default:
751 return (EINVAL);
753 /*NOTREACHED*/
756 static int
757 pr_list_kstat_update(kstat_t *ksp, int rw)
759 uint_t count;
760 page_t *pp;
761 kmutex_t *vphm;
763 if (rw == KSTAT_WRITE)
764 return (EACCES);
766 vphm = page_vnode_mutex(retired_pages);
767 mutex_enter(vphm);
768 /* Needs to be under a lock so that for loop will work right */
769 if (retired_pages->v_pages == NULL) {
770 mutex_exit(vphm);
771 ksp->ks_ndata = 0;
772 ksp->ks_data_size = 0;
773 return (0);
776 count = 1;
777 for (pp = retired_pages->v_pages->p_vpnext;
778 pp != retired_pages->v_pages; pp = pp->p_vpnext) {
779 count++;
781 mutex_exit(vphm);
783 ksp->ks_ndata = count;
784 ksp->ks_data_size = count * 2 * sizeof (uint64_t);
786 return (0);
790 * all spans will be pagesize and no coalescing will be done with the
791 * list produced.
793 static int
794 pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
796 kmutex_t *vphm;
797 page_t *pp;
798 struct memunit {
799 uint64_t address;
800 uint64_t size;
801 } *kspmem;
803 if (rw == KSTAT_WRITE)
804 return (EACCES);
806 ksp->ks_snaptime = gethrtime();
808 kspmem = (struct memunit *)buf;
810 vphm = page_vnode_mutex(retired_pages);
811 mutex_enter(vphm);
812 pp = retired_pages->v_pages;
813 if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
814 (pp == NULL)) {
815 mutex_exit(vphm);
816 return (0);
818 kspmem->address = ptob(pp->p_pagenum);
819 kspmem->size = PAGESIZE;
820 kspmem++;
821 for (pp = pp->p_vpnext; pp != retired_pages->v_pages;
822 pp = pp->p_vpnext, kspmem++) {
823 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
824 break;
825 kspmem->address = ptob(pp->p_pagenum);
826 kspmem->size = PAGESIZE;
828 mutex_exit(vphm);
830 return (0);
834 * page_retire_pend_count -- helper function for page_capture_thread,
835 * returns the number of pages pending retirement.
837 uint64_t
838 page_retire_pend_count(void)
840 return (PR_KSTAT_PENDING);
843 uint64_t
844 page_retire_pend_kas_count(void)
846 return (PR_KSTAT_PENDING_KAS);
849 void
850 page_retire_incr_pend_count(void *datap)
852 PR_INCR_KSTAT(pr_pending);
854 if ((datap == &kvp) || (datap == &zvp)) {
855 PR_INCR_KSTAT(pr_pending_kas);
859 void
860 page_retire_decr_pend_count(void *datap)
862 PR_DECR_KSTAT(pr_pending);
864 if ((datap == &kvp) || (datap == &zvp)) {
865 PR_DECR_KSTAT(pr_pending_kas);
870 * Initialize the page retire mechanism:
872 * - Establish the correctable error retire limit.
873 * - Initialize locks.
874 * - Build the retired_pages vnode.
875 * - Set up the kstats.
876 * - Fire off the background thread.
877 * - Tell page_retire() it's OK to start retiring pages.
879 void
880 page_retire_init(void)
882 const fs_operation_def_t retired_vnodeops_template[] = {
883 { NULL, NULL }
885 struct vnodeops *vops;
886 kstat_t *ksp;
888 const uint_t page_retire_ndata =
889 sizeof (page_retire_kstat) / sizeof (kstat_named_t);
891 ASSERT(page_retire_ksp == NULL);
893 if (max_pages_retired_bps <= 0) {
894 max_pages_retired_bps = MCE_BPT;
897 mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
899 retired_pages = vn_alloc(KM_SLEEP);
900 if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
901 cmn_err(CE_PANIC,
902 "page_retired_init: can't make retired vnodeops");
904 vn_setops(retired_pages, vops);
906 if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
907 "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
908 KSTAT_FLAG_VIRTUAL)) == NULL) {
909 cmn_err(CE_WARN, "kstat_create for page_retire failed");
910 } else {
911 page_retire_ksp->ks_data = (void *)&page_retire_kstat;
912 page_retire_ksp->ks_update = page_retire_kstat_update;
913 kstat_install(page_retire_ksp);
916 mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
917 ksp = kstat_create("unix", 0, "page_retire_list", "misc",
918 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
919 if (ksp != NULL) {
920 ksp->ks_update = pr_list_kstat_update;
921 ksp->ks_snapshot = pr_list_kstat_snapshot;
922 ksp->ks_lock = &pr_list_kstat_mutex;
923 kstat_install(ksp);
926 memscrub_notify_func =
927 (void(*)(uint64_t))kobj_getsymvalue("memscrub_notify", 0);
929 page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
930 pr_enable = 1;
934 * page_retire_hunt() callback for the retire thread.
936 static void
937 page_retire_thread_cb(page_t *pp)
939 PR_DEBUG(prd_tctop);
940 if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
941 PR_DEBUG(prd_tclocked);
942 page_unlock(pp);
947 * Callback used by page_trycapture() to finish off retiring a page.
948 * The page has already been cleaned and we've been given sole access to
949 * it.
950 * Always returns 0 to indicate that callback succeded as the callback never
951 * fails to finish retiring the given page.
953 /*ARGSUSED*/
954 static int
955 page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
957 int toxic;
959 ASSERT(PAGE_EXCL(pp));
960 ASSERT(pp->p_iolock_state == 0);
961 ASSERT(pp->p_szc == 0);
963 toxic = pp->p_toxic;
966 * The problem page is locked, demoted, unmapped, not free,
967 * hashed out, and not COW or mlocked (whew!).
969 * Now we select our ammunition, take it around back, and shoot it.
971 if (toxic & PR_UE) {
972 ue_error:
973 if (page_retire_transient_ue(pp)) {
974 PR_DEBUG(prd_uescrubbed);
975 (void) page_retire_done(pp, PRD_UE_SCRUBBED);
976 } else {
977 PR_DEBUG(prd_uenotscrubbed);
978 page_retire_destroy(pp);
979 (void) page_retire_done(pp, PRD_SUCCESS);
981 return (0);
982 } else if (toxic & PR_FMA) {
983 PR_DEBUG(prd_fma);
984 page_retire_destroy(pp);
985 (void) page_retire_done(pp, PRD_SUCCESS);
986 return (0);
987 } else if (toxic & PR_MCE) {
988 PR_DEBUG(prd_mce);
989 page_retire_destroy(pp);
990 (void) page_retire_done(pp, PRD_SUCCESS);
991 return (0);
995 * When page_retire_first_ue is set to zero and a UE occurs which is
996 * transient, it's possible that we clear some flags set by a second
997 * UE error on the page which occurs while the first is currently being
998 * handled and thus we need to handle the case where none of the above
999 * are set. In this instance, PR_UE_SCRUBBED should be set and thus
1000 * we should execute the UE code above.
1002 if (toxic & PR_UE_SCRUBBED) {
1003 goto ue_error;
1007 * It's impossible to get here.
1009 panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
1010 return (0);
1014 * page_retire() - the front door in to retire a page.
1016 * Ideally, page_retire() would instantly retire the requested page.
1017 * Unfortunately, some pages are locked or otherwise tied up and cannot be
1018 * retired right away. We use the page capture logic to deal with this
1019 * situation as it will continuously try to retire the page in the background
1020 * if the first attempt fails. Success is determined by looking to see whether
1021 * the page has been retired after the page_trycapture() attempt.
1023 * Returns:
1025 * - 0 on success,
1026 * - EINVAL when the PA is whacko,
1027 * - EIO if the page is already retired or already pending retirement, or
1028 * - EAGAIN if the page could not be _immediately_ retired but is pending.
1031 page_retire(uint64_t pa, uchar_t reason)
1033 page_t *pp;
1035 ASSERT(reason & PR_REASONS); /* there must be a reason */
1036 ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */
1038 pp = page_numtopp_nolock(mmu_btop(pa));
1039 if (pp == NULL) {
1040 PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1041 " page 0x%08x.%08x; page is not relocatable memory", pa);
1042 return (page_retire_done(pp, PRD_INVALID_PA));
1044 if (PP_RETIRED(pp)) {
1045 PR_DEBUG(prd_dup1);
1046 return (page_retire_done(pp, PRD_DUPLICATE));
1049 if (memscrub_notify_func != NULL) {
1050 (void) memscrub_notify_func(pa);
1053 if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1054 PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1055 " page 0x%08x.%08x", pa);
1056 } else if (PP_PR_REQ(pp)) {
1057 PR_DEBUG(prd_dup2);
1058 return (page_retire_done(pp, PRD_DUPLICATE));
1059 } else {
1060 PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1061 " page 0x%08x.%08x", pa);
1064 /* Avoid setting toxic bits in the first place */
1065 if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
1066 page_retire_limit()) {
1067 return (page_retire_done(pp, PRD_LIMIT));
1070 if (MTBF(pr_calls, pr_mtbf)) {
1071 page_settoxic(pp, reason);
1072 if (page_trycapture(pp, 0, CAPTURE_RETIRE, pp->p_vnode) == 0) {
1073 PR_DEBUG(prd_prlocked);
1074 } else {
1075 PR_DEBUG(prd_prnotlocked);
1077 } else {
1078 PR_DEBUG(prd_prnotlocked);
1081 if (PP_RETIRED(pp)) {
1082 PR_DEBUG(prd_prretired);
1083 return (0);
1084 } else {
1085 cv_signal(&pc_cv);
1086 PR_INCR_KSTAT(pr_failed);
1088 if (pp->p_toxic & PR_MSG) {
1089 return (page_retire_done(pp, PRD_FAILED));
1090 } else {
1091 return (page_retire_done(pp, PRD_PENDING));
1097 * Take a retired page off the retired-pages vnode and clear the toxic flags.
1098 * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1099 * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1100 * and don't do anything else with it.
1102 * Any unretire messages are printed from this routine.
1104 * Returns 0 if page pp was unretired; else an error code.
1106 * If flags is:
1107 * PR_UNR_FREE - lock the page, clear the toxic flags and free it
1108 * to the freelist.
1109 * PR_UNR_TEMP - lock the page, unretire it, leave the toxic
1110 * bits set as is and return it to the caller.
1111 * PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
1112 * toxic flags and return it to caller as is.
1115 page_unretire_pp(page_t *pp, int flags)
1118 * To be retired, a page has to be hashed onto the retired_pages vnode
1119 * and have PR_RETIRED set in p_toxic.
1121 if (flags == PR_UNR_CLEAN ||
1122 page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1123 ASSERT(PAGE_EXCL(pp));
1124 PR_DEBUG(prd_ulocked);
1125 if (!PP_RETIRED(pp)) {
1126 PR_DEBUG(prd_unotretired);
1127 page_unlock(pp);
1128 return (page_retire_done(pp, PRD_UNR_NOT));
1131 PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1132 " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1133 if (pp->p_toxic & PR_FMA) {
1134 PR_DECR_KSTAT(pr_fma);
1135 } else if (pp->p_toxic & PR_UE) {
1136 PR_DECR_KSTAT(pr_ue);
1137 } else {
1138 PR_DECR_KSTAT(pr_mce);
1141 if (flags == PR_UNR_TEMP)
1142 page_clrtoxic(pp, PR_RETIRED);
1143 else
1144 page_clrtoxic(pp, PR_TOXICFLAGS);
1146 if (flags == PR_UNR_FREE) {
1147 PR_DEBUG(prd_udestroy);
1148 page_destroy(pp, 0);
1149 } else {
1150 PR_DEBUG(prd_uhashout);
1151 page_hashout(pp, NULL);
1154 mutex_enter(&freemem_lock);
1155 availrmem++;
1156 mutex_exit(&freemem_lock);
1158 PR_DEBUG(prd_uunretired);
1159 PR_DECR_KSTAT(pr_retired);
1160 PR_INCR_KSTAT(pr_unretired);
1161 return (page_retire_done(pp, PRD_UNR_SUCCESS));
1163 PR_DEBUG(prd_unotlocked);
1164 return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1168 * Return a page to service by moving it from the retired_pages vnode
1169 * onto the freelist.
1171 * Called from mmioctl_page_retire() on behalf of the FMA DE.
1173 * Returns:
1175 * - 0 if the page is unretired,
1176 * - EAGAIN if the pp can not be locked,
1177 * - EINVAL if the PA is whacko, and
1178 * - EIO if the pp is not retired.
1181 page_unretire(uint64_t pa)
1183 page_t *pp;
1185 pp = page_numtopp_nolock(mmu_btop(pa));
1186 if (pp == NULL) {
1187 return (page_retire_done(pp, PRD_INVALID_PA));
1190 return (page_unretire_pp(pp, PR_UNR_FREE));
1194 * Test a page to see if it is retired. If errors is non-NULL, the toxic
1195 * bits of the page are returned. Returns 0 on success, error code on failure.
1198 page_retire_check_pp(page_t *pp, uint64_t *errors)
1200 int rc;
1202 if (PP_RETIRED(pp)) {
1203 PR_DEBUG(prd_checkhit);
1204 rc = 0;
1205 } else if (PP_PR_REQ(pp)) {
1206 PR_DEBUG(prd_checkmiss_pend);
1207 rc = EAGAIN;
1208 } else {
1209 PR_DEBUG(prd_checkmiss_noerr);
1210 rc = EIO;
1214 * We have magically arranged the bit values returned to fmd(1M)
1215 * to line up with the FMA, MCE, and UE bits of the page_t.
1217 if (errors) {
1218 uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1219 if (toxic & PR_UE_SCRUBBED) {
1220 toxic &= ~PR_UE_SCRUBBED;
1221 toxic |= PR_UE;
1223 *errors = toxic;
1226 return (rc);
1230 * Test to see if the page_t for a given PA is retired, and return the
1231 * hardware errors we have seen on the page if requested.
1233 * Called from mmioctl_page_retire on behalf of the FMA DE.
1235 * Returns:
1237 * - 0 if the page is retired,
1238 * - EIO if the page is not retired and has no errors,
1239 * - EAGAIN if the page is not retired but is pending; and
1240 * - EINVAL if the PA is whacko.
1243 page_retire_check(uint64_t pa, uint64_t *errors)
1245 page_t *pp;
1247 if (errors) {
1248 *errors = 0;
1251 pp = page_numtopp_nolock(mmu_btop(pa));
1252 if (pp == NULL) {
1253 return (page_retire_done(pp, PRD_INVALID_PA));
1256 return (page_retire_check_pp(pp, errors));
1260 * Page retire self-test. For now, it always returns 0.
1263 page_retire_test(void)
1265 page_t *first, *pp, *cpp, *cpp2, *lpp;
1268 * Tests the corner case where a large page can't be retired
1269 * because one of the constituent pages is locked. We mark
1270 * one page to be retired and try to retire it, and mark the
1271 * other page to be retired but don't try to retire it, so
1272 * that page_unlock() in the failure path will recurse and try
1273 * to retire THAT page. This is the worst possible situation
1274 * we can get ourselves into.
1276 memsegs_lock(0);
1277 pp = first = page_first();
1278 do {
1279 if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1280 cpp = pp + 1;
1281 lpp = PP_ISFREE(pp)? pp : pp + 2;
1282 cpp2 = pp + 3;
1283 if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1284 continue;
1285 if (!page_trylock(cpp, SE_EXCL)) {
1286 page_unlock(lpp);
1287 continue;
1290 /* fails */
1291 (void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1293 page_unlock(lpp);
1294 page_unlock(cpp);
1295 (void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1296 (void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1298 } while ((pp = page_next(pp)) != first);
1299 memsegs_unlock(0);
1301 return (0);