kill tsol ("Trusted Solaris") aka TX ("Trusted Extensions")
[unleashed.git] / kernel / os / mmapobj.c
blob40ff0e91d1577f2a17eaed1e4b23ef7a31f597c4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2014 Joyent, Inc. All rights reserved.
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/mman.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/debug.h>
39 #include <vm/as.h>
40 #include <vm/seg.h>
41 #include <sys/vmparam.h>
42 #include <sys/vfs.h>
43 #include <sys/elf.h>
44 #include <sys/machelf.h>
45 #include <sys/corectl.h>
46 #include <sys/exec.h>
47 #include <sys/exechdr.h>
48 #include <sys/autoconf.h>
49 #include <sys/mem.h>
50 #include <vm/seg_dev.h>
51 #include <sys/vmparam.h>
52 #include <sys/mmapobj.h>
53 #include <sys/atomic.h>
56 * Theory statement:
58 * The main driving force behind mmapobj is to interpret and map ELF files
59 * inside of the kernel instead of having the linker be responsible for this.
61 * mmapobj also supports the AOUT 4.x binary format as well as flat files in
62 * a read only manner.
64 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
65 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker
66 * and Libraries Guide" for more information about the standard and mapping
67 * rules.
69 * Having mmapobj interpret and map objects will allow the kernel to make the
70 * best decision for where to place the mappings for said objects. Thus, we
71 * can make optimizations inside of the kernel for specific platforms or cache
72 * mapping information to make mapping objects faster. The cache is ignored
73 * if ASLR is enabled.
75 * The lib_va_hash will be one such optimization. For each ELF object that
76 * mmapobj is asked to interpret, we will attempt to cache the information
77 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
78 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program
79 * headers which should cover a majority of the libraries out there without
80 * wasting space. In order to make sure that the cached information is valid,
81 * we check the passed in vnode's mtime and ctime to make sure the vnode
82 * has not been modified since the last time we used it.
84 * In addition, the lib_va_hash may contain a preferred starting VA for the
85 * object which can be useful for platforms which support a shared context.
86 * This will increase the likelyhood that library text can be shared among
87 * many different processes. We limit the reserved VA space for 32 bit objects
88 * in order to minimize fragmenting the processes address space.
90 * In addition to the above, the mmapobj interface allows for padding to be
91 * requested before the first mapping and after the last mapping created.
92 * When padding is requested, no additional optimizations will be made for
93 * that request.
97 * Threshold to prevent allocating too much kernel memory to read in the
98 * program headers for an object. If it requires more than below,
99 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
100 * program headers which could possibly fail. If less memory than below is
101 * needed, then we use a KM_SLEEP allocation and are willing to wait for the
102 * memory if we need to.
104 size_t mmapobj_alloc_threshold = 65536;
106 /* Debug stats for test coverage */
107 #ifdef DEBUG
108 struct mobj_stats {
109 uint_t mobjs_unmap_called;
110 uint_t mobjs_remap_devnull;
111 uint_t mobjs_lookup_start;
112 uint_t mobjs_alloc_start;
113 uint_t mobjs_alloc_vmem;
114 uint_t mobjs_add_collision;
115 uint_t mobjs_get_addr;
116 uint_t mobjs_map_flat_no_padding;
117 uint_t mobjs_map_flat_padding;
118 uint_t mobjs_map_ptload_text;
119 uint_t mobjs_map_ptload_initdata;
120 uint_t mobjs_map_ptload_preread;
121 uint_t mobjs_map_ptload_unaligned_text;
122 uint_t mobjs_map_ptload_unaligned_map_fail;
123 uint_t mobjs_map_ptload_unaligned_read_fail;
124 uint_t mobjs_zfoddiff;
125 uint_t mobjs_zfoddiff_nowrite;
126 uint_t mobjs_zfodextra;
127 uint_t mobjs_ptload_failed;
128 uint_t mobjs_map_elf_no_holes;
129 uint_t mobjs_unmap_hole;
130 uint_t mobjs_nomem_header;
131 uint_t mobjs_inval_header;
132 uint_t mobjs_overlap_header;
133 uint_t mobjs_np2_align;
134 uint_t mobjs_np2_align_overflow;
135 uint_t mobjs_exec_padding;
136 uint_t mobjs_exec_addr_mapped;
137 uint_t mobjs_exec_addr_devnull;
138 uint_t mobjs_exec_addr_in_use;
139 uint_t mobjs_lvp_found;
140 uint_t mobjs_no_loadable_yet;
141 uint_t mobjs_nothing_to_map;
142 uint_t mobjs_e2big;
143 uint_t mobjs_dyn_pad_align;
144 uint_t mobjs_dyn_pad_noalign;
145 uint_t mobjs_alloc_start_fail;
146 uint_t mobjs_lvp_nocache;
147 uint_t mobjs_extra_padding;
148 uint_t mobjs_lvp_not_needed;
149 uint_t mobjs_no_mem_map_sz;
150 uint_t mobjs_check_exec_failed;
151 uint_t mobjs_lvp_used;
152 uint_t mobjs_wrong_model;
153 uint_t mobjs_noexec_fs;
154 uint_t mobjs_e2big_et_rel;
155 uint_t mobjs_et_rel_mapped;
156 uint_t mobjs_unknown_elf_type;
157 uint_t mobjs_phent32_too_small;
158 uint_t mobjs_phent64_too_small;
159 uint_t mobjs_inval_elf_class;
160 uint_t mobjs_too_many_phdrs;
161 uint_t mobjs_no_phsize;
162 uint_t mobjs_phsize_large;
163 uint_t mobjs_phsize_xtralarge;
164 uint_t mobjs_fast_wrong_model;
165 uint_t mobjs_fast_e2big;
166 uint_t mobjs_fast;
167 uint_t mobjs_fast_success;
168 uint_t mobjs_fast_not_now;
169 uint_t mobjs_small_file;
170 uint_t mobjs_read_error;
171 uint_t mobjs_unsupported;
172 uint_t mobjs_flat_e2big;
173 uint_t mobjs_phent_align32;
174 uint_t mobjs_phent_align64;
175 uint_t mobjs_lib_va_find_hit;
176 uint_t mobjs_lib_va_find_delay_delete;
177 uint_t mobjs_lib_va_find_delete;
178 uint_t mobjs_lib_va_add_delay_delete;
179 uint_t mobjs_lib_va_add_delete;
180 uint_t mobjs_lib_va_create_failure;
181 uint_t mobjs_min_align;
182 } mobj_stats;
184 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++)
185 #else
186 #define MOBJ_STAT_ADD(stat)
187 #endif
190 * Check if addr is at or above the address space reserved for the stack.
191 * The stack is at the top of the address space for all sparc processes
192 * and 64 bit x86 processes. For 32 bit x86, the stack is not at the top
193 * of the address space and thus this check wil always return false for
194 * 32 bit x86 processes.
196 #if defined(__sparc)
197 #define OVERLAPS_STACK(addr, p) \
198 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
199 #elif defined(__amd64)
200 #define OVERLAPS_STACK(addr, p) \
201 ((p->p_model == DATAMODEL_LP64) && \
202 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
203 #elif defined(__i386)
204 #define OVERLAPS_STACK(addr, p) 0
205 #endif
207 /* lv_flags values - bitmap */
208 #define LV_ELF32 0x1 /* 32 bit ELF file */
209 #define LV_ELF64 0x2 /* 64 bit ELF file */
210 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */
213 * Note: lv_num_segs will denote how many segments this file has and will
214 * only be set after the lv_mps array has been filled out.
215 * lv_mps can only be valid if lv_num_segs is non-zero.
217 struct lib_va {
218 struct lib_va *lv_next;
219 caddr_t lv_base_va; /* start va for library */
220 ssize_t lv_len; /* total va span of library */
221 size_t lv_align; /* minimum alignment */
222 uint64_t lv_nodeid; /* filesystem node id */
223 uint64_t lv_fsid; /* filesystem id */
224 timestruc_t lv_ctime; /* last time file was changed */
225 timestruc_t lv_mtime; /* or modified */
226 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
227 int lv_num_segs; /* # segs for this file */
228 int lv_flags;
229 uint_t lv_refcnt; /* number of holds on struct */
232 #define LIB_VA_SIZE 1024
233 #define LIB_VA_MASK (LIB_VA_SIZE - 1)
234 #define LIB_VA_MUTEX_SHIFT 3
236 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
237 #error "LIB_VA_SIZE is not a power of 2"
238 #endif
240 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
241 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
243 #define LIB_VA_HASH_MUTEX(index) \
244 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
246 #define LIB_VA_HASH(nodeid) \
247 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
249 #define LIB_VA_MATCH_ID(arg1, arg2) \
250 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \
251 (arg1)->lv_fsid == (arg2)->va_fsid)
253 #define LIB_VA_MATCH_TIME(arg1, arg2) \
254 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \
255 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \
256 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \
257 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
259 #define LIB_VA_MATCH(arg1, arg2) \
260 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
263 * lib_va will be used for optimized allocation of address ranges for
264 * libraries, such that subsequent mappings of the same library will attempt
265 * to use the same VA as previous mappings of that library.
266 * In order to map libraries at the same VA in many processes, we need to carve
267 * out our own address space for them which is unique across many processes.
268 * We use different arenas for 32 bit and 64 bit libraries.
270 * Since the 32 bit address space is relatively small, we limit the number of
271 * libraries which try to use consistent virtual addresses to lib_threshold.
272 * For 64 bit libraries there is no such limit since the address space is large.
274 static vmem_t *lib_va_32_arena;
275 static vmem_t *lib_va_64_arena;
276 uint_t lib_threshold = 20; /* modifiable via /etc/system */
278 static kmutex_t lib_va_init_mutex; /* no need to initialize */
281 * Number of 32 bit and 64 bit libraries in lib_va hash.
283 static uint_t libs_mapped_32 = 0;
284 static uint_t libs_mapped_64 = 0;
287 * Free up the resources associated with lvp as well as lvp itself.
288 * We also decrement the number of libraries mapped via a lib_va
289 * cached virtual address.
291 void
292 lib_va_free(struct lib_va *lvp)
294 int is_64bit = lvp->lv_flags & LV_ELF64;
295 ASSERT(lvp->lv_refcnt == 0);
297 if (lvp->lv_base_va != NULL) {
298 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
299 lvp->lv_base_va, lvp->lv_len);
300 if (is_64bit) {
301 atomic_dec_32(&libs_mapped_64);
302 } else {
303 atomic_dec_32(&libs_mapped_32);
306 kmem_free(lvp, sizeof (struct lib_va));
310 * See if the file associated with the vap passed in is in the lib_va hash.
311 * If it is and the file has not been modified since last use, then
312 * return a pointer to that data. Otherwise, return NULL if the file has
313 * changed or the file was not found in the hash.
315 static struct lib_va *
316 lib_va_find(vattr_t *vap)
318 struct lib_va *lvp;
319 struct lib_va *del = NULL;
320 struct lib_va **tmp;
321 uint_t index;
322 index = LIB_VA_HASH(vap->va_nodeid);
324 mutex_enter(LIB_VA_HASH_MUTEX(index));
325 tmp = &lib_va_hash[index];
326 while (*tmp != NULL) {
327 lvp = *tmp;
328 if (LIB_VA_MATCH_ID(lvp, vap)) {
329 if (LIB_VA_MATCH_TIME(lvp, vap)) {
330 ASSERT((lvp->lv_flags & LV_DEL) == 0);
331 lvp->lv_refcnt++;
332 MOBJ_STAT_ADD(lib_va_find_hit);
333 } else {
335 * file was updated since last use.
336 * need to remove it from list.
338 del = lvp;
339 *tmp = del->lv_next;
340 del->lv_next = NULL;
342 * If we can't delete it now, mark it for later
344 if (del->lv_refcnt) {
345 MOBJ_STAT_ADD(lib_va_find_delay_delete);
346 del->lv_flags |= LV_DEL;
347 del = NULL;
349 lvp = NULL;
351 mutex_exit(LIB_VA_HASH_MUTEX(index));
352 if (del) {
353 ASSERT(del->lv_refcnt == 0);
354 MOBJ_STAT_ADD(lib_va_find_delete);
355 lib_va_free(del);
357 return (lvp);
359 tmp = &lvp->lv_next;
361 mutex_exit(LIB_VA_HASH_MUTEX(index));
362 return (NULL);
366 * Add a new entry to the lib_va hash.
367 * Search the hash while holding the appropriate mutex to make sure that the
368 * data is not already in the cache. If we find data that is in the cache
369 * already and has not been modified since last use, we return NULL. If it
370 * has been modified since last use, we will remove that entry from
371 * the hash and it will be deleted once it's reference count reaches zero.
372 * If there is no current entry in the hash we will add the new entry and
373 * return it to the caller who is responsible for calling lib_va_release to
374 * drop their reference count on it.
376 * lv_num_segs will be set to zero since the caller needs to add that
377 * information to the data structure.
379 static struct lib_va *
380 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
382 struct lib_va *lvp;
383 uint_t index;
384 model_t model;
385 struct lib_va **tmp;
386 struct lib_va *del = NULL;
388 model = get_udatamodel();
389 index = LIB_VA_HASH(vap->va_nodeid);
391 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
393 mutex_enter(LIB_VA_HASH_MUTEX(index));
396 * Make sure not adding same data a second time.
397 * The hash chains should be relatively short and adding
398 * is a relatively rare event, so it's worth the check.
400 tmp = &lib_va_hash[index];
401 while (*tmp != NULL) {
402 if (LIB_VA_MATCH_ID(*tmp, vap)) {
403 if (LIB_VA_MATCH_TIME(*tmp, vap)) {
404 mutex_exit(LIB_VA_HASH_MUTEX(index));
405 kmem_free(lvp, sizeof (struct lib_va));
406 return (NULL);
410 * We have the same nodeid and fsid but the file has
411 * been modified since we last saw it.
412 * Need to remove the old node and add this new
413 * one.
414 * Could probably use a callback mechanism to make
415 * this cleaner.
417 ASSERT(del == NULL);
418 del = *tmp;
419 *tmp = del->lv_next;
420 del->lv_next = NULL;
423 * Check to see if we can free it. If lv_refcnt
424 * is greater than zero, than some other thread
425 * has a reference to the one we want to delete
426 * and we can not delete it. All of this is done
427 * under the lib_va_hash_mutex lock so it is atomic.
429 if (del->lv_refcnt) {
430 MOBJ_STAT_ADD(lib_va_add_delay_delete);
431 del->lv_flags |= LV_DEL;
432 del = NULL;
434 /* tmp is already advanced */
435 continue;
437 tmp = &((*tmp)->lv_next);
440 lvp->lv_base_va = base_va;
441 lvp->lv_len = len;
442 lvp->lv_align = align;
443 lvp->lv_nodeid = vap->va_nodeid;
444 lvp->lv_fsid = vap->va_fsid;
445 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
446 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
447 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
448 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
449 lvp->lv_next = NULL;
450 lvp->lv_refcnt = 1;
452 /* Caller responsible for filling this and lv_mps out */
453 lvp->lv_num_segs = 0;
455 if (model == DATAMODEL_LP64) {
456 lvp->lv_flags = LV_ELF64;
457 } else {
458 ASSERT(model == DATAMODEL_ILP32);
459 lvp->lv_flags = LV_ELF32;
462 if (base_va != NULL) {
463 if (model == DATAMODEL_LP64) {
464 atomic_inc_32(&libs_mapped_64);
465 } else {
466 ASSERT(model == DATAMODEL_ILP32);
467 atomic_inc_32(&libs_mapped_32);
470 ASSERT(*tmp == NULL);
471 *tmp = lvp;
472 mutex_exit(LIB_VA_HASH_MUTEX(index));
473 if (del) {
474 ASSERT(del->lv_refcnt == 0);
475 MOBJ_STAT_ADD(lib_va_add_delete);
476 lib_va_free(del);
478 return (lvp);
482 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
483 * In addition, if this is the last hold and lvp is marked for deletion,
484 * free up it's reserved address space and free the structure.
486 static void
487 lib_va_release(struct lib_va *lvp)
489 uint_t index;
490 int to_del = 0;
492 ASSERT(lvp->lv_refcnt > 0);
494 index = LIB_VA_HASH(lvp->lv_nodeid);
495 mutex_enter(LIB_VA_HASH_MUTEX(index));
496 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
497 to_del = 1;
499 mutex_exit(LIB_VA_HASH_MUTEX(index));
500 if (to_del) {
501 ASSERT(lvp->lv_next == 0);
502 lib_va_free(lvp);
507 * Dummy function for mapping through /dev/null
508 * Normally I would have used mmmmap in common/io/mem.c
509 * but that is a static function, and for /dev/null, it
510 * just returns -1.
512 /* ARGSUSED */
513 static int
514 mmapobj_dummy(dev_t dev, off_t off, int prot)
516 return (-1);
520 * Called when an error occurred which requires mmapobj to return failure.
521 * All mapped objects will be unmapped and /dev/null mappings will be
522 * reclaimed if necessary.
523 * num_mapped is the number of elements of mrp which have been mapped, and
524 * num_segs is the total number of elements in mrp.
525 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
526 * we had already made reservations for them.
527 * If num_mapped equals num_segs, then we know that we had fully mapped
528 * the file and only need to clean up the segments described.
529 * If they are not equal, then for ET_DYN we will unmap the range from the
530 * end of the last mapped segment to the end of the last segment in mrp
531 * since we would have made a reservation for that memory earlier.
532 * If e_type is passed in as zero, num_mapped must equal num_segs.
534 void
535 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
536 ushort_t e_type)
538 int i;
539 struct as *as = curproc->p_as;
540 caddr_t addr;
541 size_t size;
543 if (e_type == ET_EXEC) {
544 num_mapped = num_segs;
546 #ifdef DEBUG
547 if (e_type == 0) {
548 ASSERT(num_mapped == num_segs);
550 #endif
552 MOBJ_STAT_ADD(unmap_called);
553 for (i = 0; i < num_mapped; i++) {
556 * If we are going to have to create a mapping we need to
557 * make sure that no one else will use the address we
558 * need to remap between the time it is unmapped and
559 * mapped below.
561 if (mrp[i].mr_flags & MR_RESV) {
562 as_rangelock(as);
564 /* Always need to unmap what we mapped */
565 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
567 /* Need to reclaim /dev/null reservation from earlier */
568 if (mrp[i].mr_flags & MR_RESV) {
569 struct segdev_crargs dev_a;
571 ASSERT(e_type != ET_DYN);
573 * Use seg_dev segment driver for /dev/null mapping.
575 dev_a.mapfunc = mmapobj_dummy;
576 dev_a.dev = makedevice(mm_major, M_NULL);
577 dev_a.offset = 0;
578 dev_a.type = 0; /* neither PRIVATE nor SHARED */
579 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
580 dev_a.hat_attr = 0;
581 dev_a.hat_flags = 0;
583 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
584 segdev_create, &dev_a);
585 MOBJ_STAT_ADD(remap_devnull);
586 as_rangeunlock(as);
590 if (num_mapped != num_segs) {
591 ASSERT(e_type == ET_DYN);
592 /* Need to unmap any reservation made after last mapped seg */
593 if (num_mapped == 0) {
594 addr = mrp[0].mr_addr;
595 } else {
596 addr = mrp[num_mapped - 1].mr_addr +
597 mrp[num_mapped - 1].mr_msize;
599 size = (size_t)mrp[num_segs - 1].mr_addr +
600 mrp[num_segs - 1].mr_msize - (size_t)addr;
601 (void) as_unmap(as, addr, size);
604 * Now we need to unmap the holes between mapped segs.
605 * Note that we have not mapped all of the segments and thus
606 * the holes between segments would not have been unmapped
607 * yet. If num_mapped == num_segs, then all of the holes
608 * between segments would have already been unmapped.
611 for (i = 1; i < num_mapped; i++) {
612 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
613 size = mrp[i].mr_addr - addr;
614 (void) as_unmap(as, addr, size);
620 * We need to add the start address into mrp so that the unmap function
621 * has absolute addresses to use.
623 static void
624 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
626 int i;
628 for (i = 0; i < num_mapped; i++) {
629 mrp[i].mr_addr += (size_t)start_addr;
631 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
634 static caddr_t
635 mmapobj_lookup_start_addr(struct lib_va *lvp)
637 proc_t *p = curproc;
638 struct as *as = p->p_as;
639 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
640 int error;
641 uint_t ma_flags = _MAP_LOW32;
642 caddr_t base = NULL;
643 size_t len;
644 size_t align;
646 ASSERT(lvp != NULL);
647 MOBJ_STAT_ADD(lookup_start);
649 as_rangelock(as);
651 base = lvp->lv_base_va;
652 len = lvp->lv_len;
655 * If we don't have an expected base address, or the one that we want
656 * to use is not available or acceptable, go get an acceptable
657 * address range.
659 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
660 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
661 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
662 if (lvp->lv_flags & LV_ELF64) {
663 ma_flags = 0;
666 align = lvp->lv_align;
667 if (align > 1) {
668 ma_flags |= MAP_ALIGN;
671 base = (caddr_t)align;
672 map_addr(&base, len, 0, 1, ma_flags);
676 * Need to reserve the address space we're going to use.
677 * Don't reserve swap space since we'll be mapping over this.
679 if (base != NULL) {
680 crargs.flags |= MAP_NORESERVE;
681 error = as_map(as, base, len, segvn_create, &crargs);
682 if (error) {
683 base = NULL;
687 as_rangeunlock(as);
688 return (base);
692 * Get the starting address for a given file to be mapped and return it
693 * to the caller. If we're using lib_va and we need to allocate an address,
694 * we will attempt to allocate it from the global reserved pool such that the
695 * same address can be used in the future for this file. If we can't use the
696 * reserved address then we just get one that will fit in our address space.
698 * Returns the starting virtual address for the range to be mapped or NULL
699 * if an error is encountered. If we successfully insert the requested info
700 * into the lib_va hash, then *lvpp will be set to point to this lib_va
701 * structure. The structure will have a hold on it and thus lib_va_release
702 * needs to be called on it by the caller. This function will not fill out
703 * lv_mps or lv_num_segs since it does not have enough information to do so.
704 * The caller is responsible for doing this making sure that any modifications
705 * to lv_mps are visible before setting lv_num_segs.
707 static caddr_t
708 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
709 int randomize, size_t align, vattr_t *vap)
711 proc_t *p = curproc;
712 struct as *as = p->p_as;
713 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
714 int error;
715 model_t model;
716 uint_t ma_flags = _MAP_LOW32;
717 caddr_t base = NULL;
718 vmem_t *model_vmem;
719 size_t lib_va_start;
720 size_t lib_va_end;
721 size_t lib_va_len;
723 ASSERT(lvpp != NULL);
724 ASSERT((randomize & use_lib_va) != 1);
726 MOBJ_STAT_ADD(alloc_start);
727 model = get_udatamodel();
729 if (model == DATAMODEL_LP64) {
730 ma_flags = 0;
731 model_vmem = lib_va_64_arena;
732 } else {
733 ASSERT(model == DATAMODEL_ILP32);
734 model_vmem = lib_va_32_arena;
737 if (align > 1) {
738 ma_flags |= MAP_ALIGN;
741 if (randomize != 0)
742 ma_flags |= _MAP_RANDOMIZE;
744 if (use_lib_va) {
746 * The first time through, we need to setup the lib_va arenas.
747 * We call map_addr to find a suitable range of memory to map
748 * the given library, and we will set the highest address
749 * in our vmem arena to the end of this adddress range.
750 * We allow up to half of the address space to be used
751 * for lib_va addresses but we do not prevent any allocations
752 * in this range from other allocation paths.
754 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
755 mutex_enter(&lib_va_init_mutex);
756 if (lib_va_64_arena == NULL) {
757 base = (caddr_t)align;
758 as_rangelock(as);
759 map_addr(&base, len, 0, 1, ma_flags);
760 as_rangeunlock(as);
761 if (base == NULL) {
762 mutex_exit(&lib_va_init_mutex);
763 MOBJ_STAT_ADD(lib_va_create_failure);
764 goto nolibva;
766 lib_va_end = (size_t)base + len;
767 lib_va_len = lib_va_end >> 1;
768 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
769 lib_va_start = lib_va_end - lib_va_len;
772 * Need to make sure we avoid the address hole.
773 * We know lib_va_end is valid but we need to
774 * make sure lib_va_start is as well.
776 if ((lib_va_end > (size_t)hole_end) &&
777 (lib_va_start < (size_t)hole_end)) {
778 lib_va_start = P2ROUNDUP(
779 (size_t)hole_end, PAGESIZE);
780 lib_va_len = lib_va_end - lib_va_start;
782 lib_va_64_arena = vmem_create("lib_va_64",
783 (void *)lib_va_start, lib_va_len, PAGESIZE,
784 NULL, NULL, NULL, 0,
785 VM_NOSLEEP | VMC_IDENTIFIER);
786 if (lib_va_64_arena == NULL) {
787 mutex_exit(&lib_va_init_mutex);
788 goto nolibva;
791 model_vmem = lib_va_64_arena;
792 mutex_exit(&lib_va_init_mutex);
793 } else if (lib_va_32_arena == NULL &&
794 model == DATAMODEL_ILP32) {
795 mutex_enter(&lib_va_init_mutex);
796 if (lib_va_32_arena == NULL) {
797 base = (caddr_t)align;
798 as_rangelock(as);
799 map_addr(&base, len, 0, 1, ma_flags);
800 as_rangeunlock(as);
801 if (base == NULL) {
802 mutex_exit(&lib_va_init_mutex);
803 MOBJ_STAT_ADD(lib_va_create_failure);
804 goto nolibva;
806 lib_va_end = (size_t)base + len;
807 lib_va_len = lib_va_end >> 1;
808 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
809 lib_va_start = lib_va_end - lib_va_len;
810 lib_va_32_arena = vmem_create("lib_va_32",
811 (void *)lib_va_start, lib_va_len, PAGESIZE,
812 NULL, NULL, NULL, 0,
813 VM_NOSLEEP | VMC_IDENTIFIER);
814 if (lib_va_32_arena == NULL) {
815 mutex_exit(&lib_va_init_mutex);
816 goto nolibva;
819 model_vmem = lib_va_32_arena;
820 mutex_exit(&lib_va_init_mutex);
823 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
824 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
825 NULL, VM_NOSLEEP | VM_ENDALLOC);
826 MOBJ_STAT_ADD(alloc_vmem);
830 * Even if the address fails to fit in our address space,
831 * or we can't use a reserved address,
832 * we should still save it off in lib_va_hash.
834 *lvpp = lib_va_add_hash(base, len, align, vap);
837 * Check for collision on insertion and free up our VA space.
838 * This is expected to be rare, so we'll just reset base to
839 * NULL instead of looking it up in the lib_va hash.
841 if (*lvpp == NULL) {
842 if (base != NULL) {
843 vmem_xfree(model_vmem, base, len);
844 base = NULL;
845 MOBJ_STAT_ADD(add_collision);
850 nolibva:
851 as_rangelock(as);
854 * If we don't have an expected base address, or the one that we want
855 * to use is not available or acceptable, go get an acceptable
856 * address range.
858 * If ASLR is enabled, we should never have used the cache, and should
859 * also start our real work here, in the consequent of the next
860 * condition.
862 if (randomize != 0)
863 ASSERT(base == NULL);
865 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
866 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
867 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
868 MOBJ_STAT_ADD(get_addr);
869 base = (caddr_t)align;
870 map_addr(&base, len, 0, 1, ma_flags);
874 * Need to reserve the address space we're going to use.
875 * Don't reserve swap space since we'll be mapping over this.
877 if (base != NULL) {
878 /* Don't reserve swap space since we'll be mapping over this */
879 crargs.flags |= MAP_NORESERVE;
880 error = as_map(as, base, len, segvn_create, &crargs);
881 if (error) {
882 base = NULL;
886 as_rangeunlock(as);
887 return (base);
891 * Map the file associated with vp into the address space as a single
892 * read only private mapping.
893 * Returns 0 for success, and non-zero for failure to map the file.
895 static int
896 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
897 cred_t *fcred)
899 int error = 0;
900 struct as *as = curproc->p_as;
901 caddr_t addr = NULL;
902 caddr_t start_addr;
903 size_t len;
904 size_t pad_len;
905 int prot = PROT_USER | PROT_READ;
906 uint_t ma_flags = _MAP_LOW32;
907 vattr_t vattr;
908 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
910 if (get_udatamodel() == DATAMODEL_LP64) {
911 ma_flags = 0;
914 vattr.va_mask = AT_SIZE;
915 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
916 if (error) {
917 return (error);
920 len = vattr.va_size;
922 ma_flags |= MAP_PRIVATE;
923 if (padding == 0) {
924 MOBJ_STAT_ADD(map_flat_no_padding);
925 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
926 ma_flags, fcred, NULL);
927 if (error == 0) {
928 mrp[0].mr_addr = addr;
929 mrp[0].mr_msize = len;
930 mrp[0].mr_fsize = len;
931 mrp[0].mr_offset = 0;
932 mrp[0].mr_prot = prot;
933 mrp[0].mr_flags = 0;
935 return (error);
938 /* padding was requested so there's more work to be done */
939 MOBJ_STAT_ADD(map_flat_padding);
941 /* No need to reserve swap space now since it will be reserved later */
942 crargs.flags |= MAP_NORESERVE;
944 /* Need to setup padding which can only be in PAGESIZE increments. */
945 ASSERT((padding & PAGEOFFSET) == 0);
946 pad_len = len + (2 * padding);
948 as_rangelock(as);
949 map_addr(&addr, pad_len, 0, 1, ma_flags);
950 error = as_map(as, addr, pad_len, segvn_create, &crargs);
951 as_rangeunlock(as);
952 if (error) {
953 return (error);
955 start_addr = addr;
956 addr += padding;
957 ma_flags |= MAP_FIXED;
958 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
959 fcred, NULL);
960 if (error == 0) {
961 mrp[0].mr_addr = start_addr;
962 mrp[0].mr_msize = padding;
963 mrp[0].mr_fsize = 0;
964 mrp[0].mr_offset = 0;
965 mrp[0].mr_prot = 0;
966 mrp[0].mr_flags = MR_PADDING;
968 mrp[1].mr_addr = addr;
969 mrp[1].mr_msize = len;
970 mrp[1].mr_fsize = len;
971 mrp[1].mr_offset = 0;
972 mrp[1].mr_prot = prot;
973 mrp[1].mr_flags = 0;
975 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
976 mrp[2].mr_msize = padding;
977 mrp[2].mr_fsize = 0;
978 mrp[2].mr_offset = 0;
979 mrp[2].mr_prot = 0;
980 mrp[2].mr_flags = MR_PADDING;
981 } else {
982 /* Need to cleanup the as_map from earlier */
983 (void) as_unmap(as, start_addr, pad_len);
985 return (error);
989 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
990 * address space.
991 * vp - vnode to be mapped in
992 * addr - start address
993 * len - length of vp to be mapped
994 * zfodlen - length of zero filled memory after len above
995 * offset - offset into file where mapping should start
996 * prot - protections for this mapping
997 * fcred - credentials for the file associated with vp at open time.
999 static int
1000 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1001 off_t offset, int prot, cred_t *fcred)
1003 int error = 0;
1004 caddr_t zfodbase, oldaddr;
1005 size_t oldlen;
1006 size_t end;
1007 size_t zfoddiff;
1008 label_t ljb;
1009 struct as *as = curproc->p_as;
1010 model_t model;
1011 int full_page;
1014 * See if addr and offset are aligned such that we can map in
1015 * full pages instead of partial pages.
1017 full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1018 ((uintptr_t)offset & PAGEOFFSET));
1020 model = get_udatamodel();
1022 oldaddr = addr;
1023 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1024 if (len) {
1025 spgcnt_t availm, npages;
1026 int preread;
1027 uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1029 if (model == DATAMODEL_ILP32) {
1030 mflag |= _MAP_LOW32;
1032 /* We may need to map in extra bytes */
1033 oldlen = len;
1034 len += ((size_t)oldaddr & PAGEOFFSET);
1036 if (full_page) {
1037 offset = (off_t)((uintptr_t)offset & PAGEMASK);
1038 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1039 mflag |= MAP_TEXT;
1040 MOBJ_STAT_ADD(map_ptload_text);
1041 } else {
1042 mflag |= MAP_INITDATA;
1043 MOBJ_STAT_ADD(map_ptload_initdata);
1047 * maxprot is passed as PROT_ALL so that mdb can
1048 * write to this segment.
1050 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1051 len, prot, PROT_ALL, mflag, fcred, NULL)) {
1052 return (error);
1056 * If the segment can fit and is relatively small, then
1057 * we prefault the entire segment in. This is based
1058 * on the model that says the best working set of a
1059 * small program is all of its pages.
1060 * We only do this if freemem will not drop below
1061 * lotsfree since we don't want to induce paging.
1063 npages = (spgcnt_t)btopr(len);
1064 availm = freemem - lotsfree;
1065 preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1068 * If we aren't prefaulting the segment,
1069 * increment "deficit", if necessary to ensure
1070 * that pages will become available when this
1071 * process starts executing.
1073 if (preread == 0 && npages > availm &&
1074 deficit < lotsfree) {
1075 deficit += MIN((pgcnt_t)(npages - availm),
1076 lotsfree - deficit);
1079 if (preread) {
1080 (void) as_faulta(as, addr, len);
1081 MOBJ_STAT_ADD(map_ptload_preread);
1083 } else {
1085 * addr and offset were not aligned such that we could
1086 * use VOP_MAP, thus we need to as_map the memory we
1087 * need and then read the data in from disk.
1088 * This code path is a corner case which should never
1089 * be taken, but hand crafted binaries could trigger
1090 * this logic and it needs to work correctly.
1092 MOBJ_STAT_ADD(map_ptload_unaligned_text);
1093 as_rangelock(as);
1094 (void) as_unmap(as, addr, len);
1097 * We use zfod_argsp because we need to be able to
1098 * write to the mapping and then we'll change the
1099 * protections later if they are incorrect.
1101 error = as_map(as, addr, len, segvn_create, zfod_argsp);
1102 as_rangeunlock(as);
1103 if (error) {
1104 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1105 return (error);
1108 /* Now read in the data from disk */
1109 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1110 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1111 if (error) {
1112 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1113 return (error);
1117 * Now set protections.
1119 if (prot != PROT_ZFOD) {
1120 (void) as_setprot(as, addr, len, prot);
1125 if (zfodlen) {
1126 end = (size_t)addr + len;
1127 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1128 zfoddiff = (uintptr_t)zfodbase - end;
1129 if (zfoddiff) {
1131 * Before we go to zero the remaining space on the last
1132 * page, make sure we have write permission.
1134 * We need to be careful how we zero-fill the last page
1135 * if the protection does not include PROT_WRITE. Using
1136 * as_setprot() can cause the VM segment code to call
1137 * segvn_vpage(), which must allocate a page struct for
1138 * each page in the segment. If we have a very large
1139 * segment, this may fail, so we check for that, even
1140 * though we ignore other return values from as_setprot.
1142 MOBJ_STAT_ADD(zfoddiff);
1143 if ((prot & PROT_WRITE) == 0) {
1144 if (as_setprot(as, (caddr_t)end, zfoddiff,
1145 prot | PROT_WRITE) == ENOMEM)
1146 return (ENOMEM);
1147 MOBJ_STAT_ADD(zfoddiff_nowrite);
1149 if (on_fault(&ljb)) {
1150 no_fault();
1151 if ((prot & PROT_WRITE) == 0) {
1152 (void) as_setprot(as, (caddr_t)end,
1153 zfoddiff, prot);
1155 return (EFAULT);
1157 uzero((void *)end, zfoddiff);
1158 no_fault();
1161 * Remove write protection to return to original state
1163 if ((prot & PROT_WRITE) == 0) {
1164 (void) as_setprot(as, (caddr_t)end,
1165 zfoddiff, prot);
1168 if (zfodlen > zfoddiff) {
1169 struct segvn_crargs crargs =
1170 SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1172 MOBJ_STAT_ADD(zfodextra);
1173 zfodlen -= zfoddiff;
1174 crargs.szc = AS_MAP_NO_LPOOB;
1177 as_rangelock(as);
1178 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1179 error = as_map(as, (caddr_t)zfodbase,
1180 zfodlen, segvn_create, &crargs);
1181 as_rangeunlock(as);
1182 if (error) {
1183 return (error);
1187 return (0);
1191 * Map the ELF file represented by vp into the users address space. The
1192 * first mapping will start at start_addr and there will be num_elements
1193 * mappings. The mappings are described by the data in mrp which may be
1194 * modified upon returning from this function.
1195 * Returns 0 for success or errno for failure.
1197 static int
1198 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1199 int num_elements, cred_t *fcred, ushort_t e_type)
1201 int i;
1202 int ret;
1203 caddr_t lo;
1204 caddr_t hi;
1205 struct as *as = curproc->p_as;
1207 for (i = 0; i < num_elements; i++) {
1208 caddr_t addr;
1209 size_t p_memsz;
1210 size_t p_filesz;
1211 size_t zfodlen;
1212 offset_t p_offset;
1213 size_t dif;
1214 int prot;
1216 /* Always need to adjust mr_addr */
1217 addr = start_addr + (size_t)(mrp[i].mr_addr);
1218 mrp[i].mr_addr =
1219 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1221 /* Padding has already been mapped */
1222 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1223 continue;
1226 /* Can't execute code from "noexec" mounted filesystem. */
1227 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) &&
1228 ((mrp[i].mr_prot & PROT_EXEC) != 0)) {
1229 MOBJ_STAT_ADD(noexec_fs);
1230 return (EACCES);
1233 p_memsz = mrp[i].mr_msize;
1234 p_filesz = mrp[i].mr_fsize;
1235 zfodlen = p_memsz - p_filesz;
1236 p_offset = mrp[i].mr_offset;
1237 dif = (uintptr_t)(addr) & PAGEOFFSET;
1238 prot = mrp[i].mr_prot | PROT_USER;
1239 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1240 p_offset, prot, fcred);
1241 if (ret != 0) {
1242 MOBJ_STAT_ADD(ptload_failed);
1243 mmapobj_unmap(mrp, i, num_elements, e_type);
1244 return (ret);
1247 /* Need to cleanup mrp to reflect the actual values used */
1248 mrp[i].mr_msize += dif;
1249 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1252 /* Also need to unmap any holes created above */
1253 if (num_elements == 1) {
1254 MOBJ_STAT_ADD(map_elf_no_holes);
1255 return (0);
1257 if (e_type == ET_EXEC) {
1258 return (0);
1261 as_rangelock(as);
1262 lo = start_addr;
1263 hi = mrp[0].mr_addr;
1265 /* Remove holes made by the rest of the segments */
1266 for (i = 0; i < num_elements - 1; i++) {
1267 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1268 mrp[i].mr_msize, PAGESIZE);
1269 hi = mrp[i + 1].mr_addr;
1270 if (lo < hi) {
1272 * If as_unmap fails we just use up a bit of extra
1273 * space
1275 (void) as_unmap(as, (caddr_t)lo,
1276 (size_t)hi - (size_t)lo);
1277 MOBJ_STAT_ADD(unmap_hole);
1280 as_rangeunlock(as);
1282 return (0);
1285 /* Ugly hack to get STRUCT_* macros to work below */
1286 struct myphdr {
1287 Phdr x; /* native version */
1290 struct myphdr32 {
1291 Elf32_Phdr x;
1295 * Calculate and return the number of loadable segments in the ELF Phdr
1296 * represented by phdrbase as well as the len of the total mapping and
1297 * the max alignment that is needed for a given segment. On success,
1298 * 0 is returned, and *len, *loadable and *align have been filled out.
1299 * On failure, errno will be returned, which in this case is ENOTSUP
1300 * if we were passed an ELF file with overlapping segments.
1302 static int
1303 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1304 int *loadable, size_t *align)
1306 int i;
1307 int hsize;
1308 model_t model;
1309 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1310 uint_t p_type;
1311 offset_t p_offset;
1312 size_t p_memsz;
1313 size_t p_align;
1314 caddr_t vaddr;
1315 int num_segs = 0;
1316 caddr_t start_addr = NULL;
1317 caddr_t p_end = NULL;
1318 size_t max_align = 0;
1319 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */
1320 STRUCT_HANDLE(myphdr, mph);
1321 #if defined(__sparc)
1322 extern int vac_size;
1325 * Want to prevent aliasing by making the start address at least be
1326 * aligned to vac_size.
1328 min_align = MAX(PAGESIZE, vac_size);
1329 #endif
1331 model = get_udatamodel();
1332 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1334 /* hsize alignment should have been checked before calling this func */
1335 if (model == DATAMODEL_LP64) {
1336 hsize = ehdrp->e_phentsize;
1337 if (hsize & 7) {
1338 return (ENOTSUP);
1340 } else {
1341 ASSERT(model == DATAMODEL_ILP32);
1342 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1343 if (hsize & 3) {
1344 return (ENOTSUP);
1349 * Determine the span of all loadable segments and calculate the
1350 * number of loadable segments.
1352 for (i = 0; i < nphdrs; i++) {
1353 p_type = STRUCT_FGET(mph, x.p_type);
1354 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1355 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1356 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1359 * Skip this header if it requests no memory to be
1360 * mapped.
1362 if (p_memsz == 0) {
1363 STRUCT_SET_HANDLE(mph, model,
1364 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1365 hsize));
1366 MOBJ_STAT_ADD(nomem_header);
1367 continue;
1369 if (num_segs++ == 0) {
1371 * The p_vaddr of the first PT_LOAD segment
1372 * must either be NULL or within the first
1373 * page in order to be interpreted.
1374 * Otherwise, its an invalid file.
1376 if (e_type == ET_DYN &&
1377 ((caddr_t)((uintptr_t)vaddr &
1378 (uintptr_t)PAGEMASK) != NULL)) {
1379 MOBJ_STAT_ADD(inval_header);
1380 return (ENOTSUP);
1382 start_addr = vaddr;
1384 * For the first segment, we need to map from
1385 * the beginning of the file, so we will
1386 * adjust the size of the mapping to include
1387 * this memory.
1389 p_offset = STRUCT_FGET(mph, x.p_offset);
1390 } else {
1391 p_offset = 0;
1394 * Check to make sure that this mapping wouldn't
1395 * overlap a previous mapping.
1397 if (vaddr < p_end) {
1398 MOBJ_STAT_ADD(overlap_header);
1399 return (ENOTSUP);
1402 p_end = vaddr + p_memsz + p_offset;
1403 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1405 p_align = STRUCT_FGET(mph, x.p_align);
1406 if (p_align > 1 && p_align > max_align) {
1407 max_align = p_align;
1408 if (max_align < min_align) {
1409 max_align = min_align;
1410 MOBJ_STAT_ADD(min_align);
1414 STRUCT_SET_HANDLE(mph, model,
1415 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1419 * The alignment should be a power of 2, if it isn't we forgive it
1420 * and round up. On overflow, we'll set the alignment to max_align
1421 * rounded down to the nearest power of 2.
1423 if (max_align > 0 && !ISP2(max_align)) {
1424 MOBJ_STAT_ADD(np2_align);
1425 *align = 2 * (1L << (highbit(max_align) - 1));
1426 if (*align < max_align ||
1427 (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1428 MOBJ_STAT_ADD(np2_align_overflow);
1429 *align = 1L << (highbit(max_align) - 1);
1431 } else {
1432 *align = max_align;
1435 ASSERT(*align >= PAGESIZE || *align == 0);
1437 *loadable = num_segs;
1438 *len = p_end - start_addr;
1439 return (0);
1443 * Check the address space to see if the virtual addresses to be used are
1444 * available. If they are not, return errno for failure. On success, 0
1445 * will be returned, and the virtual addresses for each mmapobj_result_t
1446 * will be reserved. Note that a reservation could have earlier been made
1447 * for a given segment via a /dev/null mapping. If that is the case, then
1448 * we can use that VA space for our mappings.
1449 * Note: this function will only be used for ET_EXEC binaries.
1452 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1454 int i;
1455 struct as *as = curproc->p_as;
1456 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1457 int ret;
1458 caddr_t myaddr;
1459 size_t mylen;
1460 struct seg *seg;
1462 /* No need to reserve swap space now since it will be reserved later */
1463 crargs.flags |= MAP_NORESERVE;
1464 as_rangelock(as);
1465 for (i = 0; i < loadable; i++) {
1467 myaddr = start_addr + (size_t)mrp[i].mr_addr;
1468 mylen = mrp[i].mr_msize;
1470 /* See if there is a hole in the as for this range */
1471 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1472 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1473 ASSERT(mylen == mrp[i].mr_msize);
1475 #ifdef DEBUG
1476 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1477 MOBJ_STAT_ADD(exec_padding);
1479 #endif
1480 ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1481 if (ret) {
1482 as_rangeunlock(as);
1483 mmapobj_unmap_exec(mrp, i, start_addr);
1484 return (ret);
1486 } else {
1488 * There is a mapping that exists in the range
1489 * so check to see if it was a "reservation"
1490 * from /dev/null. The mapping is from
1491 * /dev/null if the mapping comes from
1492 * segdev and the type is neither MAP_SHARED
1493 * nor MAP_PRIVATE.
1495 AS_LOCK_ENTER(as, RW_READER);
1496 seg = as_findseg(as, myaddr, 0);
1497 MOBJ_STAT_ADD(exec_addr_mapped);
1498 if (seg && seg->s_ops == &segdev_ops &&
1499 ((segop_gettype(seg, myaddr) &
1500 (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1501 myaddr >= seg->s_base &&
1502 myaddr + mylen <=
1503 seg->s_base + seg->s_size) {
1504 MOBJ_STAT_ADD(exec_addr_devnull);
1505 AS_LOCK_EXIT(as);
1506 (void) as_unmap(as, myaddr, mylen);
1507 ret = as_map(as, myaddr, mylen, segvn_create,
1508 &crargs);
1509 mrp[i].mr_flags |= MR_RESV;
1510 if (ret) {
1511 as_rangeunlock(as);
1512 /* Need to remap what we unmapped */
1513 mmapobj_unmap_exec(mrp, i + 1,
1514 start_addr);
1515 return (ret);
1517 } else {
1518 AS_LOCK_EXIT(as);
1519 as_rangeunlock(as);
1520 mmapobj_unmap_exec(mrp, i, start_addr);
1521 MOBJ_STAT_ADD(exec_addr_in_use);
1522 return (EADDRINUSE);
1526 as_rangeunlock(as);
1527 return (0);
1531 * Walk through the ELF program headers and extract all useful information
1532 * for PT_LOAD and PT_SUNWBSS segments into mrp.
1533 * Return 0 on success or error on failure.
1535 static int
1536 process_phdrs(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1537 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1539 int i;
1540 caddr_t start_addr = NULL;
1541 caddr_t vaddr;
1542 size_t len = 0;
1543 size_t lib_len = 0;
1544 int ret;
1545 int prot;
1546 struct lib_va *lvp = NULL;
1547 vattr_t vattr;
1548 struct as *as = curproc->p_as;
1549 int error;
1550 int loadable = 0;
1551 int current = 0;
1552 int use_lib_va = 1;
1553 size_t align = 0;
1554 size_t add_pad = 0;
1555 int hdr_seen = 0;
1556 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1557 uint_t p_type;
1558 offset_t p_offset;
1559 size_t p_memsz;
1560 size_t p_filesz;
1561 uint_t p_flags;
1562 int hsize;
1563 model_t model;
1564 STRUCT_HANDLE(myphdr, mph);
1566 model = get_udatamodel();
1567 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1570 * Need to make sure that hsize is aligned properly.
1571 * For 32bit processes, 4 byte alignment is required.
1572 * For 64bit processes, 8 byte alignment is required.
1573 * If the alignment isn't correct, we need to return failure
1574 * since it could cause an alignment error panic while walking
1575 * the phdr array.
1577 if (model == DATAMODEL_LP64) {
1578 hsize = ehdrp->e_phentsize;
1579 if (hsize & 7) {
1580 MOBJ_STAT_ADD(phent_align64);
1581 return (ENOTSUP);
1583 } else {
1584 ASSERT(model == DATAMODEL_ILP32);
1585 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1586 if (hsize & 3) {
1587 MOBJ_STAT_ADD(phent_align32);
1588 return (ENOTSUP);
1592 if ((padding != 0) || secflag_enabled(curproc, PROC_SEC_ASLR)) {
1593 use_lib_va = 0;
1595 if (e_type == ET_DYN) {
1596 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1597 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1598 if (error) {
1599 return (error);
1601 /* Check to see if we already have a description for this lib */
1602 if (!secflag_enabled(curproc, PROC_SEC_ASLR))
1603 lvp = lib_va_find(&vattr);
1605 if (lvp != NULL) {
1606 MOBJ_STAT_ADD(lvp_found);
1607 if (use_lib_va) {
1608 start_addr = mmapobj_lookup_start_addr(lvp);
1609 if (start_addr == NULL) {
1610 lib_va_release(lvp);
1611 return (ENOMEM);
1616 * loadable may be zero if the original allocator
1617 * of lvp hasn't finished setting it up but the rest
1618 * of the fields will be accurate.
1620 loadable = lvp->lv_num_segs;
1621 len = lvp->lv_len;
1622 align = lvp->lv_align;
1627 * Determine the span of all loadable segments and calculate the
1628 * number of loadable segments, the total len spanned by the mappings
1629 * and the max alignment, if we didn't get them above.
1631 if (loadable == 0) {
1632 MOBJ_STAT_ADD(no_loadable_yet);
1633 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1634 &loadable, &align);
1635 if (ret != 0) {
1637 * Since it'd be an invalid file, we shouldn't have
1638 * cached it previously.
1640 ASSERT(lvp == NULL);
1641 return (ret);
1643 #ifdef DEBUG
1644 if (lvp) {
1645 ASSERT(len == lvp->lv_len);
1646 ASSERT(align == lvp->lv_align);
1648 #endif
1651 /* Make sure there's something to map. */
1652 if (len == 0 || loadable == 0) {
1654 * Since it'd be an invalid file, we shouldn't have
1655 * cached it previously.
1657 ASSERT(lvp == NULL);
1658 MOBJ_STAT_ADD(nothing_to_map);
1659 return (ENOTSUP);
1662 lib_len = len;
1663 if (padding != 0) {
1664 loadable += 2;
1666 if (loadable > *num_mapped) {
1667 *num_mapped = loadable;
1668 /* cleanup previous reservation */
1669 if (start_addr) {
1670 (void) as_unmap(as, start_addr, lib_len);
1672 MOBJ_STAT_ADD(e2big);
1673 if (lvp) {
1674 lib_va_release(lvp);
1676 return (E2BIG);
1680 * We now know the size of the object to map and now we need to
1681 * get the start address to map it at. It's possible we already
1682 * have it if we found all the info we need in the lib_va cache.
1684 if (e_type == ET_DYN && start_addr == NULL) {
1686 * Need to make sure padding does not throw off
1687 * required alignment. We can only specify an
1688 * alignment for the starting address to be mapped,
1689 * so we round padding up to the alignment and map
1690 * from there and then throw out the extra later.
1692 if (padding != 0) {
1693 if (align > 1) {
1694 add_pad = P2ROUNDUP(padding, align);
1695 len += add_pad;
1696 MOBJ_STAT_ADD(dyn_pad_align);
1697 } else {
1698 MOBJ_STAT_ADD(dyn_pad_noalign);
1699 len += padding; /* at beginning */
1701 len += padding; /* at end of mapping */
1704 * At this point, if lvp is non-NULL, then above we
1705 * already found it in the cache but did not get
1706 * the start address since we were not going to use lib_va.
1707 * Since we know that lib_va will not be used, it's safe
1708 * to call mmapobj_alloc_start_addr and know that lvp
1709 * will not be modified.
1711 ASSERT(lvp ? use_lib_va == 0 : 1);
1712 start_addr = mmapobj_alloc_start_addr(&lvp, len,
1713 use_lib_va,
1714 secflag_enabled(curproc, PROC_SEC_ASLR),
1715 align, &vattr);
1716 if (start_addr == NULL) {
1717 if (lvp) {
1718 lib_va_release(lvp);
1720 MOBJ_STAT_ADD(alloc_start_fail);
1721 return (ENOMEM);
1724 * If we can't cache it, no need to hang on to it.
1725 * Setting lv_num_segs to non-zero will make that
1726 * field active and since there are too many segments
1727 * to cache, all future users will not try to use lv_mps.
1729 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1730 lvp->lv_num_segs = loadable;
1731 lib_va_release(lvp);
1732 lvp = NULL;
1733 MOBJ_STAT_ADD(lvp_nocache);
1736 * Free the beginning of the mapping if the padding
1737 * was not aligned correctly.
1739 if (padding != 0 && add_pad != padding) {
1740 (void) as_unmap(as, start_addr,
1741 add_pad - padding);
1742 start_addr += (add_pad - padding);
1743 MOBJ_STAT_ADD(extra_padding);
1748 * At this point, we have reserved the virtual address space
1749 * for our mappings. Now we need to start filling out the mrp
1750 * array to describe all of the individual mappings we are going
1751 * to return.
1752 * For ET_EXEC there has been no memory reservation since we are
1753 * using fixed addresses. While filling in the mrp array below,
1754 * we will have the first segment biased to start at addr 0
1755 * and the rest will be biased by this same amount. Thus if there
1756 * is padding, the first padding will start at addr 0, and the next
1757 * segment will start at the value of padding.
1760 /* We'll fill out padding later, so start filling in mrp at index 1 */
1761 if (padding != 0) {
1762 current = 1;
1765 /* If we have no more need for lvp let it go now */
1766 if (lvp != NULL && use_lib_va == 0) {
1767 lib_va_release(lvp);
1768 MOBJ_STAT_ADD(lvp_not_needed);
1769 lvp = NULL;
1772 /* Now fill out the mrp structs from the program headers */
1773 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1774 for (i = 0; i < nphdrs; i++) {
1775 p_type = STRUCT_FGET(mph, x.p_type);
1776 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1777 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1778 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1779 p_filesz = STRUCT_FGET(mph, x.p_filesz);
1780 p_offset = STRUCT_FGET(mph, x.p_offset);
1781 p_flags = STRUCT_FGET(mph, x.p_flags);
1784 * Skip this header if it requests no memory to be
1785 * mapped.
1787 if (p_memsz == 0) {
1788 STRUCT_SET_HANDLE(mph, model,
1789 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1790 hsize));
1791 MOBJ_STAT_ADD(no_mem_map_sz);
1792 continue;
1795 prot = 0;
1796 if (p_flags & PF_R)
1797 prot |= PROT_READ;
1798 if (p_flags & PF_W)
1799 prot |= PROT_WRITE;
1800 if (p_flags & PF_X)
1801 prot |= PROT_EXEC;
1803 ASSERT(current < loadable);
1804 mrp[current].mr_msize = p_memsz;
1805 mrp[current].mr_fsize = p_filesz;
1806 mrp[current].mr_offset = p_offset;
1807 mrp[current].mr_prot = prot;
1809 if (hdr_seen == 0 && p_filesz != 0) {
1810 mrp[current].mr_flags = MR_HDR_ELF;
1812 * We modify mr_offset because we
1813 * need to map the ELF header as well, and if
1814 * we didn't then the header could be left out
1815 * of the mapping that we will create later.
1816 * Since we're removing the offset, we need to
1817 * account for that in the other fields as well
1818 * since we will be mapping the memory from 0
1819 * to p_offset.
1821 if (e_type == ET_DYN) {
1822 mrp[current].mr_offset = 0;
1823 mrp[current].mr_msize += p_offset;
1824 mrp[current].mr_fsize += p_offset;
1825 } else {
1826 ASSERT(e_type == ET_EXEC);
1828 * Save off the start addr which will be
1829 * our bias for the rest of the
1830 * ET_EXEC mappings.
1832 start_addr = vaddr - padding;
1834 mrp[current].mr_addr = (caddr_t)padding;
1835 hdr_seen = 1;
1836 } else {
1837 if (e_type == ET_EXEC) {
1838 /* bias mr_addr */
1839 mrp[current].mr_addr =
1840 vaddr - (size_t)start_addr;
1841 } else {
1842 mrp[current].mr_addr = vaddr + padding;
1844 mrp[current].mr_flags = 0;
1846 current++;
1849 /* Move to next phdr */
1850 STRUCT_SET_HANDLE(mph, model,
1851 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1852 hsize));
1855 /* Now fill out the padding segments */
1856 if (padding != 0) {
1857 mrp[0].mr_addr = NULL;
1858 mrp[0].mr_msize = padding;
1859 mrp[0].mr_fsize = 0;
1860 mrp[0].mr_offset = 0;
1861 mrp[0].mr_prot = 0;
1862 mrp[0].mr_flags = MR_PADDING;
1864 /* Setup padding for the last segment */
1865 ASSERT(current == loadable - 1);
1866 mrp[current].mr_addr = (caddr_t)lib_len + padding;
1867 mrp[current].mr_msize = padding;
1868 mrp[current].mr_fsize = 0;
1869 mrp[current].mr_offset = 0;
1870 mrp[current].mr_prot = 0;
1871 mrp[current].mr_flags = MR_PADDING;
1875 * Need to make sure address ranges desired are not in use or
1876 * are previously allocated reservations from /dev/null. For
1877 * ET_DYN, we already made sure our address range was free.
1879 if (e_type == ET_EXEC) {
1880 ret = check_exec_addrs(loadable, mrp, start_addr);
1881 if (ret != 0) {
1882 ASSERT(lvp == NULL);
1883 MOBJ_STAT_ADD(check_exec_failed);
1884 return (ret);
1888 /* Finish up our business with lvp. */
1889 if (lvp) {
1890 ASSERT(e_type == ET_DYN);
1891 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1892 bcopy(mrp, lvp->lv_mps,
1893 loadable * sizeof (mmapobj_result_t));
1894 membar_producer();
1897 * Setting lv_num_segs to a non-zero value indicates that
1898 * lv_mps is now valid and can be used by other threads.
1899 * So, the above stores need to finish before lv_num_segs
1900 * is updated. lv_mps is only valid if lv_num_segs is
1901 * greater than LIBVA_CACHED_SEGS.
1903 lvp->lv_num_segs = loadable;
1904 lib_va_release(lvp);
1905 MOBJ_STAT_ADD(lvp_used);
1908 /* Now that we have mrp completely filled out go map it */
1909 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1910 if (ret == 0) {
1911 *num_mapped = loadable;
1914 return (ret);
1918 * Take the ELF file passed in, and do the work of mapping it.
1919 * num_mapped in - # elements in user buffer
1920 * num_mapped out - # sections mapped and length of mrp array if
1921 * no errors.
1923 static int
1924 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1925 uint_t *num_mapped, size_t padding, cred_t *fcred)
1927 int error;
1928 offset_t phoff;
1929 int nphdrs;
1930 unsigned char ei_class;
1931 unsigned short phentsize;
1932 ssize_t phsizep;
1933 caddr_t phbasep;
1934 int to_map;
1935 model_t model;
1937 ei_class = ehdrp->e_ident[EI_CLASS];
1938 model = get_udatamodel();
1939 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1940 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1941 MOBJ_STAT_ADD(wrong_model);
1942 return (ENOTSUP);
1945 /* Can't execute code from "noexec" mounted filesystem. */
1946 if (ehdrp->e_type == ET_EXEC &&
1947 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1948 MOBJ_STAT_ADD(noexec_fs);
1949 return (EACCES);
1953 * Relocatable and core files are mapped as a single flat file
1954 * since no interpretation is done on them by mmapobj.
1956 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1957 to_map = padding ? 3 : 1;
1958 if (*num_mapped < to_map) {
1959 *num_mapped = to_map;
1960 MOBJ_STAT_ADD(e2big_et_rel);
1961 return (E2BIG);
1963 error = mmapobj_map_flat(vp, mrp, padding, fcred);
1964 if (error == 0) {
1965 *num_mapped = to_map;
1966 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1967 MOBJ_STAT_ADD(et_rel_mapped);
1969 return (error);
1972 /* Check for an unknown ELF type */
1973 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1974 MOBJ_STAT_ADD(unknown_elf_type);
1975 return (ENOTSUP);
1978 if (ei_class == ELFCLASS32) {
1979 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1980 ASSERT(model == DATAMODEL_ILP32);
1981 nphdrs = e32hdr->e_phnum;
1982 phentsize = e32hdr->e_phentsize;
1983 if (phentsize < sizeof (Elf32_Phdr)) {
1984 MOBJ_STAT_ADD(phent32_too_small);
1985 return (ENOTSUP);
1987 phoff = e32hdr->e_phoff;
1988 } else if (ei_class == ELFCLASS64) {
1989 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1990 ASSERT(model == DATAMODEL_LP64);
1991 nphdrs = e64hdr->e_phnum;
1992 phentsize = e64hdr->e_phentsize;
1993 if (phentsize < sizeof (Elf64_Phdr)) {
1994 MOBJ_STAT_ADD(phent64_too_small);
1995 return (ENOTSUP);
1997 phoff = e64hdr->e_phoff;
1998 } else {
1999 /* fallthrough case for an invalid ELF class */
2000 MOBJ_STAT_ADD(inval_elf_class);
2001 return (ENOTSUP);
2005 * nphdrs should only have this value for core files which are handled
2006 * above as a single mapping. If other file types ever use this
2007 * sentinel, then we'll add the support needed to handle this here.
2009 if (nphdrs == PN_XNUM) {
2010 MOBJ_STAT_ADD(too_many_phdrs);
2011 return (ENOTSUP);
2014 phsizep = nphdrs * phentsize;
2016 if (phsizep == 0) {
2017 MOBJ_STAT_ADD(no_phsize);
2018 return (ENOTSUP);
2021 /* Make sure we only wait for memory if it's a reasonable request */
2022 if (phsizep > mmapobj_alloc_threshold) {
2023 MOBJ_STAT_ADD(phsize_large);
2024 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2025 MOBJ_STAT_ADD(phsize_xtralarge);
2026 return (ENOMEM);
2028 } else {
2029 phbasep = kmem_alloc(phsizep, KM_SLEEP);
2032 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2033 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2034 fcred, NULL)) != 0) {
2035 kmem_free(phbasep, phsizep);
2036 return (error);
2039 /* Now process the phdr's */
2040 error = process_phdrs(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2041 padding, fcred);
2042 kmem_free(phbasep, phsizep);
2043 return (error);
2047 * These are the two types of files that we can interpret and we want to read
2048 * in enough info to cover both types when looking at the initial header.
2050 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec)))
2053 * Map vp passed in in an interpreted manner. ELF and AOUT files will be
2054 * interpreted and mapped appropriately for execution.
2055 * num_mapped in - # elements in mrp
2056 * num_mapped out - # sections mapped and length of mrp array if
2057 * no errors or E2BIG returned.
2059 * Returns 0 on success, errno value on failure.
2061 static int
2062 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2063 uint_t *num_mapped, size_t padding, cred_t *fcred)
2065 int error = 0;
2066 vattr_t vattr;
2067 struct lib_va *lvp;
2068 caddr_t start_addr;
2069 model_t model;
2072 * header has to be aligned to the native size of ulong_t in order
2073 * to avoid an unaligned access when dereferencing the header as
2074 * a ulong_t. Thus we allocate our array on the stack of type
2075 * ulong_t and then have header, which we dereference later as a char
2076 * array point at lheader.
2078 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2079 caddr_t header = (caddr_t)&lheader;
2081 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2082 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2083 if (error) {
2084 return (error);
2088 * Check lib_va to see if we already have a full description
2089 * for this library. This is the fast path and only used for
2090 * ET_DYN ELF files (dynamic libraries).
2092 if (padding == 0 && !secflag_enabled(curproc, PROC_SEC_ASLR) &&
2093 ((lvp = lib_va_find(&vattr)) != NULL)) {
2094 int num_segs;
2096 model = get_udatamodel();
2097 if ((model == DATAMODEL_ILP32 &&
2098 lvp->lv_flags & LV_ELF64) ||
2099 (model == DATAMODEL_LP64 &&
2100 lvp->lv_flags & LV_ELF32)) {
2101 lib_va_release(lvp);
2102 MOBJ_STAT_ADD(fast_wrong_model);
2103 return (ENOTSUP);
2105 num_segs = lvp->lv_num_segs;
2106 if (*num_mapped < num_segs) {
2107 *num_mapped = num_segs;
2108 lib_va_release(lvp);
2109 MOBJ_STAT_ADD(fast_e2big);
2110 return (E2BIG);
2114 * Check to see if we have all the mappable program headers
2115 * cached.
2117 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2118 MOBJ_STAT_ADD(fast);
2119 start_addr = mmapobj_lookup_start_addr(lvp);
2120 if (start_addr == NULL) {
2121 lib_va_release(lvp);
2122 return (ENOMEM);
2125 bcopy(lvp->lv_mps, mrp,
2126 num_segs * sizeof (mmapobj_result_t));
2128 error = mmapobj_map_elf(vp, start_addr, mrp,
2129 num_segs, fcred, ET_DYN);
2131 lib_va_release(lvp);
2132 if (error == 0) {
2133 *num_mapped = num_segs;
2134 MOBJ_STAT_ADD(fast_success);
2136 return (error);
2138 MOBJ_STAT_ADD(fast_not_now);
2140 /* Release it for now since we'll look it up below */
2141 lib_va_release(lvp);
2145 * Time to see if this is a file we can interpret. If it's smaller
2146 * than this, then we can't interpret it.
2148 if (vattr.va_size < MAX_HEADER_SIZE) {
2149 MOBJ_STAT_ADD(small_file);
2150 return (ENOTSUP);
2153 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2154 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2155 MOBJ_STAT_ADD(read_error);
2156 return (error);
2159 /* Verify file type */
2160 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2161 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2162 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2163 padding, fcred));
2166 /* Unsupported type */
2167 MOBJ_STAT_ADD(unsupported);
2168 return (ENOTSUP);
2172 * Given a vnode, map it as either a flat file or interpret it and map
2173 * it according to the rules of the file type.
2174 * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2175 * If padding is non-zero, the mappings will be padded by that amount
2176 * rounded up to the nearest pagesize.
2177 * If the mapping is successful, *num_mapped will contain the number of
2178 * distinct mappings created, and mrp will point to the array of
2179 * mmapobj_result_t's which describe these mappings.
2181 * On error, -1 is returned and errno is set appropriately.
2182 * A special error case will set errno to E2BIG when there are more than
2183 * *num_mapped mappings to be created and *num_mapped will be set to the
2184 * number of mappings needed.
2187 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2188 uint_t *num_mapped, size_t padding, cred_t *fcred)
2190 int to_map;
2191 int error = 0;
2193 ASSERT((padding & PAGEOFFSET) == 0);
2194 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2195 ASSERT(num_mapped != NULL);
2196 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2198 if ((flags & MMOBJ_INTERPRET) == 0) {
2199 to_map = padding ? 3 : 1;
2200 if (*num_mapped < to_map) {
2201 *num_mapped = to_map;
2202 MOBJ_STAT_ADD(flat_e2big);
2203 return (E2BIG);
2205 error = mmapobj_map_flat(vp, mrp, padding, fcred);
2207 if (error) {
2208 return (error);
2210 *num_mapped = to_map;
2211 return (0);
2214 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2215 return (error);