kill tsol ("Trusted Solaris") aka TX ("Trusted Extensions")
[unleashed.git] / kernel / os / fork.c
bloba63931459fc743bf4207137ceca7fda581127e20
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent, Inc. All rights reserved.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/cred.h>
35 #include <sys/policy.h>
36 #include <sys/user.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/proc.h>
45 #include <sys/cmn_err.h>
46 #include <sys/acct.h>
47 #include <sys/tuneable.h>
48 #include <sys/class.h>
49 #include <sys/kmem.h>
50 #include <sys/session.h>
51 #include <sys/ucontext.h>
52 #include <sys/stack.h>
53 #include <sys/procfs.h>
54 #include <sys/prsystm.h>
55 #include <sys/vmsystm.h>
56 #include <sys/vtrace.h>
57 #include <sys/debug.h>
58 #include <sys/shm_impl.h>
59 #include <sys/door_data.h>
60 #include <vm/as.h>
61 #include <vm/rm.h>
62 #include <c2/audit.h>
63 #include <sys/var.h>
64 #include <sys/schedctl.h>
65 #include <sys/utrap.h>
66 #include <sys/task.h>
67 #include <sys/resource.h>
68 #include <sys/cyclic.h>
69 #include <sys/lgrp.h>
70 #include <sys/rctl.h>
71 #include <sys/contract_impl.h>
72 #include <sys/contract/process_impl.h>
73 #include <sys/list.h>
74 #include <sys/dtrace.h>
75 #include <sys/pool.h>
76 #include <sys/zone.h>
77 #include <sys/sdt.h>
78 #include <sys/class.h>
79 #include <sys/corectl.h>
80 #include <sys/brand.h>
81 #include <sys/fork.h>
83 static int64_t cfork(int, int, int);
84 static int getproc(proc_t **, pid_t, uint_t);
85 #define GETPROC_USER 0x0
86 #define GETPROC_KERNEL 0x1
88 static void fork_fail(proc_t *);
89 static void forklwp_fail(proc_t *);
91 int fork_fail_pending;
93 extern struct kmem_cache *process_cache;
96 * The vfork() system call trap is no longer invoked by libc.
97 * It is retained only for the benefit of applications running
98 * within a solaris10 branded zone. It should be eliminated
99 * when we no longer support solaris10 branded zones.
101 int64_t
102 vfork(void)
104 curthread->t_post_sys = 1; /* so vfwait() will be called */
105 return (cfork(1, 1, 0));
109 * forksys system call - forkx, forkallx, vforkx. This is the
110 * interface invoked by libc for fork1(), forkall(), and vfork()
112 int64_t
113 forksys(int subcode, int flags)
115 switch (subcode) {
116 case 0:
117 return (cfork(0, 1, flags)); /* forkx(flags) */
118 case 1:
119 return (cfork(0, 0, flags)); /* forkallx(flags) */
120 case 2:
121 curthread->t_post_sys = 1; /* so vfwait() will be called */
122 return (cfork(1, 1, flags)); /* vforkx(flags) */
123 default:
124 return ((int64_t)set_errno(EINVAL));
129 * Remove the associations of a child process from its parent and siblings.
131 static void
132 disown_proc(proc_t *pp, proc_t *cp)
134 proc_t **orphpp;
136 ASSERT(MUTEX_HELD(&pidlock));
138 orphpp = &pp->p_orphan;
139 while (*orphpp != cp)
140 orphpp = &(*orphpp)->p_nextorph;
141 *orphpp = cp->p_nextorph;
143 if (pp->p_child == cp)
144 pp->p_child = cp->p_sibling;
145 if (cp->p_sibling)
146 cp->p_sibling->p_psibling = cp->p_psibling;
147 if (cp->p_psibling)
148 cp->p_psibling->p_sibling = cp->p_sibling;
151 /* ARGSUSED */
152 static int64_t
153 cfork(int isvfork, int isfork1, int flags)
155 proc_t *p = ttoproc(curthread);
156 struct as *as;
157 proc_t *cp;
158 klwp_t *clone;
159 kthread_t *t;
160 task_t *tk;
161 rval_t r;
162 int error;
163 int i;
164 rctl_set_t *dup_set;
165 rctl_alloc_gp_t *dup_gp;
166 rctl_entity_p_t e;
167 lwpdir_t *ldp;
168 lwpent_t *lep;
169 lwpent_t *clep;
172 * Allow only these two flags.
174 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) {
175 error = EINVAL;
176 atomic_inc_32(&curproc->p_zone->zone_ffmisc);
177 goto forkerr;
181 * fork is not supported for the /proc agent lwp.
183 if (curthread == p->p_agenttp) {
184 error = ENOTSUP;
185 atomic_inc_32(&curproc->p_zone->zone_ffmisc);
186 goto forkerr;
189 if ((error = secpolicy_basic_fork(CRED())) != 0) {
190 atomic_inc_32(&p->p_zone->zone_ffmisc);
191 goto forkerr;
195 * If the calling lwp is doing a fork1() then the
196 * other lwps in this process are not duplicated and
197 * don't need to be held where their kernel stacks can be
198 * cloned. If doing forkall(), the process is held with
199 * SHOLDFORK, so that the lwps are at a point where their
200 * stacks can be copied which is on entry or exit from
201 * the kernel.
203 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
204 aston(curthread);
205 error = EINTR;
206 atomic_inc_32(&p->p_zone->zone_ffmisc);
207 goto forkerr;
210 #if defined(__sparc)
212 * Ensure that the user stack is fully constructed
213 * before creating the child process structure.
215 (void) flush_user_windows_to_stack(NULL);
216 #endif
218 mutex_enter(&p->p_lock);
220 * If this is vfork(), cancel any suspend request we might
221 * have gotten from some other thread via lwp_suspend().
222 * Otherwise we could end up with a deadlock on return
223 * from the vfork() in both the parent and the child.
225 if (isvfork)
226 curthread->t_proc_flag &= ~TP_HOLDLWP;
228 * Prevent our resource set associations from being changed during fork.
230 pool_barrier_enter();
231 mutex_exit(&p->p_lock);
234 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
236 if (getproc(&cp, 0, GETPROC_USER) < 0) {
237 mutex_enter(&p->p_lock);
238 pool_barrier_exit();
239 continuelwps(p);
240 mutex_exit(&p->p_lock);
241 error = EAGAIN;
242 goto forkerr;
245 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
248 * Assign an address space to child
250 if (isvfork) {
252 * Clear any watched areas and remember the
253 * watched pages for restoring in vfwait().
255 as = p->p_as;
256 if (avl_numnodes(&as->a_wpage) != 0) {
257 AS_LOCK_ENTER(as, RW_WRITER);
258 as_clearwatch(as);
259 p->p_wpage = as->a_wpage;
260 avl_create(&as->a_wpage, wp_compare,
261 sizeof (struct watched_page),
262 offsetof(struct watched_page, wp_link));
263 AS_LOCK_EXIT(as);
265 cp->p_as = as;
266 cp->p_flag |= SVFORK;
269 * Use the parent's shm segment list information for
270 * the child as it uses its address space till it execs.
272 cp->p_segacct = p->p_segacct;
273 } else {
275 * We need to hold P_PR_LOCK until the address space has
276 * been duplicated and we've had a chance to remove from the
277 * child any DTrace probes that were in the parent. Holding
278 * P_PR_LOCK prevents any new probes from being added and any
279 * extant probes from being removed.
281 mutex_enter(&p->p_lock);
282 sprlock_proc(p);
283 p->p_flag |= SFORKING;
284 mutex_exit(&p->p_lock);
286 error = as_dup(p->p_as, cp);
287 if (error != 0) {
288 mutex_enter(&p->p_lock);
289 sprunlock(p);
290 fork_fail(cp);
291 mutex_enter(&pidlock);
292 disown_proc(p, cp);
293 mutex_enter(&cp->p_lock);
294 tk = cp->p_task;
295 task_detach(cp);
296 ASSERT(cp->p_pool->pool_ref > 0);
297 atomic_dec_32(&cp->p_pool->pool_ref);
298 mutex_exit(&cp->p_lock);
299 pid_exit(cp, tk);
300 mutex_exit(&pidlock);
301 task_rele(tk);
303 mutex_enter(&p->p_lock);
304 p->p_flag &= ~SFORKING;
305 pool_barrier_exit();
306 continuelwps(p);
307 mutex_exit(&p->p_lock);
309 * Preserve ENOMEM error condition but
310 * map all others to EAGAIN.
312 error = (error == ENOMEM) ? ENOMEM : EAGAIN;
313 atomic_inc_32(&p->p_zone->zone_ffnomem);
314 goto forkerr;
318 * Remove all DTrace tracepoints from the child process. We
319 * need to do this _before_ duplicating USDT providers since
320 * any associated probes may be immediately enabled.
322 if (p->p_dtrace_count > 0)
323 dtrace_fasttrap_fork(p, cp);
325 mutex_enter(&p->p_lock);
326 sprunlock(p);
328 /* Duplicate parent's shared memory */
329 if (p->p_segacct)
330 shmfork(p, cp);
333 * Duplicate any helper actions and providers. The SFORKING
334 * we set above informs the code to enable USDT probes that
335 * sprlock() may fail because the child is being forked.
337 if (p->p_dtrace_helpers != NULL) {
338 ASSERT(dtrace_helpers_fork != NULL);
339 (*dtrace_helpers_fork)(p, cp);
342 mutex_enter(&p->p_lock);
343 p->p_flag &= ~SFORKING;
344 mutex_exit(&p->p_lock);
348 * Duplicate parent's resource controls.
350 dup_set = rctl_set_create();
351 for (;;) {
352 dup_gp = rctl_set_dup_prealloc(p->p_rctls);
353 mutex_enter(&p->p_rctls->rcs_lock);
354 if (rctl_set_dup_ready(p->p_rctls, dup_gp))
355 break;
356 mutex_exit(&p->p_rctls->rcs_lock);
357 rctl_prealloc_destroy(dup_gp);
359 e.rcep_p.proc = cp;
360 e.rcep_t = RCENTITY_PROCESS;
361 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
362 RCD_DUP | RCD_CALLBACK);
363 mutex_exit(&p->p_rctls->rcs_lock);
365 rctl_prealloc_destroy(dup_gp);
368 * Allocate the child's lwp directory and lwpid hash table.
370 if (isfork1)
371 cp->p_lwpdir_sz = 2;
372 else
373 cp->p_lwpdir_sz = p->p_lwpdir_sz;
374 cp->p_lwpdir = cp->p_lwpfree = ldp =
375 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
376 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
377 ldp->ld_next = ldp + 1;
378 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
379 cp->p_tidhash =
380 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP);
383 * Duplicate parent's lwps.
384 * Mutual exclusion is not needed because the process is
385 * in the hold state and only the current lwp is running.
387 klgrpset_clear(cp->p_lgrpset);
388 if (isfork1) {
389 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
390 if (clone == NULL)
391 goto forklwperr;
393 * Inherit only the lwp_wait()able flag,
394 * Daemon threads should not call fork1(), but oh well...
396 lwptot(clone)->t_proc_flag |=
397 (curthread->t_proc_flag & TP_TWAIT);
398 } else {
399 /* this is forkall(), no one can be in lwp_wait() */
400 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
401 /* for each entry in the parent's lwp directory... */
402 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
403 klwp_t *clwp;
404 kthread_t *ct;
406 if ((lep = ldp->ld_entry) == NULL)
407 continue;
409 if ((t = lep->le_thread) != NULL) {
410 clwp = forklwp(ttolwp(t), cp, t->t_tid);
411 if (clwp == NULL)
412 goto forklwperr;
413 ct = lwptot(clwp);
415 * Inherit lwp_wait()able and daemon flags.
417 ct->t_proc_flag |=
418 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
420 * Keep track of the clone of curthread to
421 * post return values through lwp_setrval().
422 * Mark other threads for special treatment
423 * by lwp_rtt() / post_syscall().
425 if (t == curthread)
426 clone = clwp;
427 else
428 ct->t_flag |= T_FORKALL;
429 } else {
431 * Replicate zombie lwps in the child.
433 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
434 clep->le_lwpid = lep->le_lwpid;
435 clep->le_start = lep->le_start;
436 lwp_hash_in(cp, clep,
437 cp->p_tidhash, cp->p_tidhash_sz, 0);
443 * Put new process in the parent's process contract, or put it
444 * in a new one if there is an active process template. Send a
445 * fork event (if requested) to whatever contract the child is
446 * a member of. Fails if the parent has been SIGKILLed.
448 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) {
449 atomic_inc_32(&p->p_zone->zone_ffmisc);
450 goto forklwperr;
454 * No fork failures occur beyond this point.
457 cp->p_lwpid = p->p_lwpid;
458 if (!isfork1) {
459 cp->p_lwpdaemon = p->p_lwpdaemon;
460 cp->p_zombcnt = p->p_zombcnt;
462 * If the parent's lwp ids have wrapped around, so have the
463 * child's.
465 cp->p_flag |= p->p_flag & SLWPWRAP;
468 mutex_enter(&p->p_lock);
469 corectl_path_hold(cp->p_corefile = p->p_corefile);
470 corectl_content_hold(cp->p_content = p->p_content);
471 mutex_exit(&p->p_lock);
474 * Duplicate process context ops, if any.
476 if (p->p_pctx)
477 forkpctx(p, cp);
479 #ifdef __sparc
480 utrap_dup(p, cp);
481 #endif
483 * If the child process has been marked to stop on exit
484 * from this fork, arrange for all other lwps to stop in
485 * sympathy with the active lwp.
487 if (PTOU(cp)->u_systrap &&
488 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
489 mutex_enter(&cp->p_lock);
490 t = cp->p_tlist;
491 do {
492 t->t_proc_flag |= TP_PRSTOP;
493 aston(t); /* so TP_PRSTOP will be seen */
494 } while ((t = t->t_forw) != cp->p_tlist);
495 mutex_exit(&cp->p_lock);
498 * If the parent process has been marked to stop on exit
499 * from this fork, and its asynchronous-stop flag has not
500 * been set, arrange for all other lwps to stop before
501 * they return back to user level.
503 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
504 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
505 mutex_enter(&p->p_lock);
506 t = p->p_tlist;
507 do {
508 t->t_proc_flag |= TP_PRSTOP;
509 aston(t); /* so TP_PRSTOP will be seen */
510 } while ((t = t->t_forw) != p->p_tlist);
511 mutex_exit(&p->p_lock);
514 if (PROC_IS_BRANDED(p))
515 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
516 else
517 lwp_setrval(clone, p->p_pid, 1);
519 /* set return values for parent */
520 r.r_val1 = (int)cp->p_pid;
521 r.r_val2 = 0;
524 * pool_barrier_exit() can now be called because the child process has:
525 * - all identifying features cloned or set (p_pid, p_task, p_pool)
526 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
527 * - any other fields set which are used in resource set binding.
529 mutex_enter(&p->p_lock);
530 pool_barrier_exit();
531 mutex_exit(&p->p_lock);
533 mutex_enter(&pidlock);
534 mutex_enter(&cp->p_lock);
537 * Set flags telling the child what (not) to do on exit.
539 if (flags & FORK_NOSIGCHLD)
540 cp->p_pidflag |= CLDNOSIGCHLD;
541 if (flags & FORK_WAITPID)
542 cp->p_pidflag |= CLDWAITPID;
545 * Now that there are lwps and threads attached, add the new
546 * process to the process group.
548 pgjoin(cp, p->p_pgidp);
549 cp->p_stat = SRUN;
551 * We are now done with all the lwps in the child process.
553 t = cp->p_tlist;
554 do {
556 * Set the lwp_suspend()ed lwps running.
557 * They will suspend properly at syscall exit.
559 if (t->t_proc_flag & TP_HOLDLWP)
560 lwp_create_done(t);
561 else {
562 /* set TS_CREATE to allow continuelwps() to work */
563 thread_lock(t);
564 ASSERT(t->t_state == TS_STOPPED &&
565 !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
566 t->t_schedflag |= TS_CREATE;
567 thread_unlock(t);
569 } while ((t = t->t_forw) != cp->p_tlist);
570 mutex_exit(&cp->p_lock);
572 if (isvfork) {
573 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
574 mutex_enter(&p->p_lock);
575 p->p_flag |= SVFWAIT;
576 curthread->t_flag |= T_VFPARENT;
577 DTRACE_PROC1(create, proc_t *, cp);
578 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */
579 mutex_exit(&p->p_lock);
581 * Grab child's p_lock before dropping pidlock to ensure
582 * the process will not disappear before we set it running.
584 mutex_enter(&cp->p_lock);
585 mutex_exit(&pidlock);
586 sigdefault(cp);
587 continuelwps(cp);
588 mutex_exit(&cp->p_lock);
589 } else {
590 CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
591 DTRACE_PROC1(create, proc_t *, cp);
593 * It is CL_FORKRET's job to drop pidlock.
594 * If we do it here, the process could be set running
595 * and disappear before CL_FORKRET() is called.
597 CL_FORKRET(curthread, cp->p_tlist);
598 schedctl_set_cidpri(curthread);
599 ASSERT(MUTEX_NOT_HELD(&pidlock));
602 return (r.r_vals);
604 forklwperr:
605 if (isvfork) {
606 if (avl_numnodes(&p->p_wpage) != 0) {
607 /* restore watchpoints to parent */
608 as = p->p_as;
609 AS_LOCK_ENTER(as, RW_WRITER);
610 as->a_wpage = p->p_wpage;
611 avl_create(&p->p_wpage, wp_compare,
612 sizeof (struct watched_page),
613 offsetof(struct watched_page, wp_link));
614 as_setwatch(as);
615 AS_LOCK_EXIT(as);
617 } else {
618 if (cp->p_segacct)
619 shmexit(cp);
620 as = cp->p_as;
621 cp->p_as = &kas;
622 as_free(as);
625 if (cp->p_lwpdir) {
626 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
627 if ((lep = ldp->ld_entry) != NULL)
628 kmem_free(lep, sizeof (*lep));
629 kmem_free(cp->p_lwpdir,
630 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
632 cp->p_lwpdir = NULL;
633 cp->p_lwpfree = NULL;
634 cp->p_lwpdir_sz = 0;
636 if (cp->p_tidhash)
637 kmem_free(cp->p_tidhash,
638 cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
639 cp->p_tidhash = NULL;
640 cp->p_tidhash_sz = 0;
642 forklwp_fail(cp);
643 fork_fail(cp);
644 if (cp->p_dtrace_helpers != NULL) {
645 ASSERT(dtrace_helpers_cleanup != NULL);
646 (*dtrace_helpers_cleanup)(cp);
648 rctl_set_free(cp->p_rctls);
649 mutex_enter(&pidlock);
652 * Detach failed child from task.
654 mutex_enter(&cp->p_lock);
655 tk = cp->p_task;
656 task_detach(cp);
657 ASSERT(cp->p_pool->pool_ref > 0);
658 atomic_dec_32(&cp->p_pool->pool_ref);
659 mutex_exit(&cp->p_lock);
661 disown_proc(p, cp);
662 pid_exit(cp, tk);
663 mutex_exit(&pidlock);
665 task_rele(tk);
667 mutex_enter(&p->p_lock);
668 pool_barrier_exit();
669 continuelwps(p);
670 mutex_exit(&p->p_lock);
671 error = EAGAIN;
672 forkerr:
673 return ((int64_t)set_errno(error));
677 * Free allocated resources from getproc() if a fork failed.
679 static void
680 fork_fail(proc_t *cp)
682 uf_info_t *fip = P_FINFO(cp);
684 fcnt_add(fip, -1);
685 sigdelq(cp, NULL, 0);
687 mutex_enter(&pidlock);
688 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
689 mutex_exit(&pidlock);
692 * single threaded, so no locking needed here
694 crfree(cp->p_cred);
696 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
698 VN_RELE(PTOU(curproc)->u_cdir);
699 if (PTOU(curproc)->u_rdir)
700 VN_RELE(PTOU(curproc)->u_rdir);
701 if (cp->p_exec)
702 VN_RELE(cp->p_exec);
703 if (cp->p_execdir)
704 VN_RELE(cp->p_execdir);
705 if (PTOU(curproc)->u_cwd)
706 refstr_rele(PTOU(curproc)->u_cwd);
707 if (PROC_IS_BRANDED(cp)) {
708 brand_clearbrand(cp, B_TRUE);
713 * Clean up the lwps already created for this child process.
714 * The fork failed while duplicating all the lwps of the parent
715 * and those lwps already created must be freed.
716 * This process is invisible to the rest of the system,
717 * so we don't need to hold p->p_lock to protect the list.
719 static void
720 forklwp_fail(proc_t *p)
722 kthread_t *t;
723 task_t *tk;
724 int branded = 0;
726 if (PROC_IS_BRANDED(p))
727 branded = 1;
729 while ((t = p->p_tlist) != NULL) {
731 * First remove the lwp from the process's p_tlist.
733 if (t != t->t_forw)
734 p->p_tlist = t->t_forw;
735 else
736 p->p_tlist = NULL;
737 p->p_lwpcnt--;
738 t->t_forw->t_back = t->t_back;
739 t->t_back->t_forw = t->t_forw;
741 tk = p->p_task;
742 mutex_enter(&p->p_zone->zone_nlwps_lock);
743 tk->tk_nlwps--;
744 tk->tk_proj->kpj_nlwps--;
745 p->p_zone->zone_nlwps--;
746 mutex_exit(&p->p_zone->zone_nlwps_lock);
748 ASSERT(t->t_schedctl == NULL);
750 if (branded)
751 BROP(p)->b_freelwp(ttolwp(t));
753 if (t->t_door != NULL) {
754 kmem_free(t->t_door, sizeof (door_data_t));
755 t->t_door = NULL;
757 lwp_ctmpl_clear(ttolwp(t));
760 * Remove the thread from the all threads list.
761 * We need to hold pidlock for this.
763 mutex_enter(&pidlock);
764 t->t_next->t_prev = t->t_prev;
765 t->t_prev->t_next = t->t_next;
766 CL_EXIT(t); /* tell the scheduler that we're exiting */
767 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */
768 mutex_exit(&pidlock);
771 * Let the lgroup load averages know that this thread isn't
772 * going to show up (i.e. un-do what was done on behalf of
773 * this thread by the earlier lgrp_move_thread()).
775 kpreempt_disable();
776 lgrp_move_thread(t, NULL, 1);
777 kpreempt_enable();
780 * The thread was created TS_STOPPED.
781 * We change it to TS_FREE to avoid an
782 * ASSERT() panic in thread_free().
784 t->t_state = TS_FREE;
785 thread_rele(t);
786 thread_free(t);
790 extern struct as kas;
793 * fork a kernel process.
796 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct,
797 pid_t pid)
799 proc_t *p;
800 struct user *up;
801 kthread_t *t;
802 cont_process_t *ctp = NULL;
803 rctl_entity_p_t e;
805 ASSERT(cid != sysdccid);
806 ASSERT(cid != syscid || ct == NULL);
807 if (CLASS_KERNEL(cid)) {
808 rctl_alloc_gp_t *init_gp;
809 rctl_set_t *init_set;
811 ASSERT(pid != 1);
813 if (getproc(&p, pid, GETPROC_KERNEL) < 0)
814 return (EAGAIN);
817 * Release the hold on the p_exec and p_execdir, these
818 * were acquired in getproc()
820 if (p->p_execdir != NULL)
821 VN_RELE(p->p_execdir);
822 if (p->p_exec != NULL)
823 VN_RELE(p->p_exec);
824 p->p_flag |= SNOWAIT;
825 p->p_exec = NULL;
826 p->p_execdir = NULL;
828 init_set = rctl_set_create();
829 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
832 * kernel processes do not inherit /proc tracing flags.
834 sigemptyset(&p->p_sigmask);
835 premptyset(&p->p_fltmask);
836 up = PTOU(p);
837 up->u_systrap = 0;
838 premptyset(&(up->u_entrymask));
839 premptyset(&(up->u_exitmask));
840 mutex_enter(&p->p_lock);
841 e.rcep_p.proc = p;
842 e.rcep_t = RCENTITY_PROCESS;
843 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
844 init_gp);
845 mutex_exit(&p->p_lock);
847 rctl_prealloc_destroy(init_gp);
849 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri);
850 } else {
851 rctl_alloc_gp_t *init_gp, *default_gp;
852 rctl_set_t *init_set;
853 task_t *tk, *tk_old;
854 klwp_t *lwp;
856 if (getproc(&p, pid, GETPROC_USER) < 0)
857 return (EAGAIN);
859 * init creates a new task, distinct from the task
860 * containing kernel "processes".
862 tk = task_create(0, p->p_zone);
863 mutex_enter(&tk->tk_zone->zone_nlwps_lock);
864 tk->tk_proj->kpj_ntasks++;
865 tk->tk_nprocs++;
866 mutex_exit(&tk->tk_zone->zone_nlwps_lock);
868 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
869 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
870 init_set = rctl_set_create();
872 mutex_enter(&pidlock);
873 mutex_enter(&p->p_lock);
874 tk_old = p->p_task; /* switch to new task */
876 task_detach(p);
877 task_begin(tk, p);
878 mutex_exit(&pidlock);
880 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock);
881 tk_old->tk_nprocs--;
882 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock);
884 e.rcep_p.proc = p;
885 e.rcep_t = RCENTITY_PROCESS;
886 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
887 init_gp);
888 rctlproc_default_init(p, default_gp);
889 mutex_exit(&p->p_lock);
891 task_rele(tk_old);
892 rctl_prealloc_destroy(default_gp);
893 rctl_prealloc_destroy(init_gp);
895 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
896 &curthread->t_hold, cid, 1)) == NULL) {
897 task_t *tk;
899 fork_fail(p);
900 mutex_enter(&pidlock);
901 disown_proc(p->p_parent, p);
903 mutex_enter(&p->p_lock);
904 tk = p->p_task;
905 task_detach(p);
906 ASSERT(p->p_pool->pool_ref > 0);
907 atomic_add_32(&p->p_pool->pool_ref, -1);
908 mutex_exit(&p->p_lock);
910 pid_exit(p, tk);
911 mutex_exit(&pidlock);
912 task_rele(tk);
913 return (EAGAIN);
915 t = lwptot(lwp);
917 ctp = contract_process_fork(sys_process_tmpl, p, curproc,
918 B_FALSE);
919 ASSERT(ctp != NULL);
920 if (ct != NULL)
921 *ct = &ctp->conp_contract;
924 ASSERT3U(t->t_tid, ==, 1);
925 p->p_lwpid = 1;
926 mutex_enter(&pidlock);
927 pgjoin(p, p->p_parent->p_pgidp);
928 p->p_stat = SRUN;
929 mutex_enter(&p->p_lock);
930 t->t_proc_flag &= ~TP_HOLDLWP;
931 lwp_create_done(t);
932 mutex_exit(&p->p_lock);
933 mutex_exit(&pidlock);
934 return (0);
938 * create a child proc struct.
940 static int
941 getproc(proc_t **cpp, pid_t pid, uint_t flags)
943 proc_t *pp, *cp;
944 pid_t newpid;
945 struct user *uarea;
946 extern uint_t nproc;
947 struct cred *cr;
948 uid_t ruid;
949 zoneid_t zoneid;
950 task_t *task;
951 kproject_t *proj;
952 zone_t *zone;
953 int rctlfail = 0;
955 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
956 return (-1); /* no point in starting new processes */
958 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc;
959 task = pp->p_task;
960 proj = task->tk_proj;
961 zone = pp->p_zone;
963 mutex_enter(&pp->p_lock);
964 mutex_enter(&zone->zone_nlwps_lock);
965 if (proj != proj0p) {
966 if (task->tk_nprocs >= task->tk_nprocs_ctl)
967 if (rctl_test(rc_task_nprocs, task->tk_rctls,
968 pp, 1, 0) & RCT_DENY)
969 rctlfail = 1;
971 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl)
972 if (rctl_test(rc_project_nprocs, proj->kpj_rctls,
973 pp, 1, 0) & RCT_DENY)
974 rctlfail = 1;
976 if (zone->zone_nprocs >= zone->zone_nprocs_ctl)
977 if (rctl_test(rc_zone_nprocs, zone->zone_rctls,
978 pp, 1, 0) & RCT_DENY)
979 rctlfail = 1;
981 if (rctlfail) {
982 mutex_exit(&zone->zone_nlwps_lock);
983 mutex_exit(&pp->p_lock);
984 atomic_inc_32(&zone->zone_ffcap);
985 goto punish;
988 task->tk_nprocs++;
989 proj->kpj_nprocs++;
990 zone->zone_nprocs++;
991 mutex_exit(&zone->zone_nlwps_lock);
992 mutex_exit(&pp->p_lock);
994 cp = kmem_cache_alloc(process_cache, KM_SLEEP);
995 bzero(cp, sizeof (proc_t));
998 * Make proc entry for child process
1000 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
1001 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
1002 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
1003 #if defined(__x86)
1004 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
1005 #endif
1006 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
1007 cp->p_stat = SIDL;
1008 cp->p_mstart = gethrtime();
1009 cp->p_as = &kas;
1011 * p_zone must be set before we call pid_allocate since the process
1012 * will be visible after that and code such as prfind_zone will
1013 * look at the p_zone field.
1015 cp->p_zone = pp->p_zone;
1016 cp->p_t1_lgrpid = LGRP_NONE;
1017 cp->p_tr_lgrpid = LGRP_NONE;
1019 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) {
1020 if (nproc == v.v_proc) {
1021 CPU_STATS_ADDQ(CPU, sys, procovf, 1);
1022 cmn_err(CE_WARN, "out of processes");
1024 goto bad;
1027 mutex_enter(&pp->p_lock);
1028 cp->p_exec = pp->p_exec;
1029 cp->p_execdir = pp->p_execdir;
1030 mutex_exit(&pp->p_lock);
1032 if (cp->p_exec) {
1033 VN_HOLD(cp->p_exec);
1035 * Each VOP_OPEN() must be paired with a corresponding
1036 * VOP_CLOSE(). In this case, the executable will be
1037 * closed for the child in either proc_exit() or gexec().
1039 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) {
1040 VN_RELE(cp->p_exec);
1041 cp->p_exec = NULLVP;
1042 cp->p_execdir = NULLVP;
1043 goto bad;
1046 if (cp->p_execdir)
1047 VN_HOLD(cp->p_execdir);
1050 * If not privileged make sure that this user hasn't exceeded
1051 * v.v_maxup processes, and that users collectively haven't
1052 * exceeded v.v_maxupttl processes.
1054 mutex_enter(&pidlock);
1055 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */
1056 cr = CRED();
1057 ruid = crgetruid(cr);
1058 zoneid = crgetzoneid(cr);
1059 if (nproc >= v.v_maxup && /* short-circuit; usually false */
1060 (nproc >= v.v_maxupttl ||
1061 upcount_get(ruid, zoneid) >= v.v_maxup) &&
1062 secpolicy_newproc(cr) != 0) {
1063 mutex_exit(&pidlock);
1064 zcmn_err(zoneid, CE_NOTE,
1065 "out of per-user processes for uid %d", ruid);
1066 goto bad;
1070 * Everything is cool, put the new proc on the active process list.
1071 * It is already on the pid list and in /proc.
1072 * Increment the per uid process count (upcount).
1074 nproc++;
1075 upcount_inc(ruid, zoneid);
1077 cp->p_next = practive;
1078 practive->p_prev = cp;
1079 practive = cp;
1081 cp->p_ignore = pp->p_ignore;
1082 cp->p_siginfo = pp->p_siginfo;
1083 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
1084 cp->p_sessp = pp->p_sessp;
1085 sess_hold(pp);
1086 cp->p_brand = pp->p_brand;
1087 if (PROC_IS_BRANDED(pp))
1088 BROP(pp)->b_copy_procdata(cp, pp);
1089 cp->p_bssbase = pp->p_bssbase;
1090 cp->p_brkbase = pp->p_brkbase;
1091 cp->p_brksize = pp->p_brksize;
1092 cp->p_brkpageszc = pp->p_brkpageszc;
1093 cp->p_stksize = pp->p_stksize;
1094 cp->p_stkpageszc = pp->p_stkpageszc;
1095 cp->p_stkprot = pp->p_stkprot;
1096 cp->p_datprot = pp->p_datprot;
1097 cp->p_usrstack = pp->p_usrstack;
1098 cp->p_model = pp->p_model;
1099 cp->p_ppid = pp->p_pid;
1100 cp->p_ancpid = pp->p_pid;
1101 cp->p_portcnt = pp->p_portcnt;
1103 * Security flags are preserved on fork, the inherited copy come into
1104 * effect on exec
1106 cp->p_secflags = pp->p_secflags;
1109 * Initialize watchpoint structures
1111 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
1112 offsetof(struct watched_area, wa_link));
1115 * Initialize immediate resource control values.
1117 cp->p_stk_ctl = pp->p_stk_ctl;
1118 cp->p_fsz_ctl = pp->p_fsz_ctl;
1119 cp->p_vmem_ctl = pp->p_vmem_ctl;
1120 cp->p_fno_ctl = pp->p_fno_ctl;
1123 * Link up to parent-child-sibling chain. No need to lock
1124 * in general since only a call to freeproc() (done by the
1125 * same parent as newproc()) diddles with the child chain.
1127 cp->p_sibling = pp->p_child;
1128 if (pp->p_child)
1129 pp->p_child->p_psibling = cp;
1131 cp->p_parent = pp;
1132 pp->p_child = cp;
1134 cp->p_child_ns = NULL;
1135 cp->p_sibling_ns = NULL;
1137 cp->p_nextorph = pp->p_orphan;
1138 cp->p_nextofkin = pp;
1139 pp->p_orphan = cp;
1142 * Inherit profiling state; do not inherit REALPROF profiling state.
1144 cp->p_prof = pp->p_prof;
1145 cp->p_rprof_cyclic = CYCLIC_NONE;
1148 * Inherit pool pointer from the parent. Kernel processes are
1149 * always bound to the default pool.
1151 mutex_enter(&pp->p_lock);
1152 if (flags & GETPROC_KERNEL) {
1153 cp->p_pool = pool_default;
1154 cp->p_flag |= SSYS;
1155 } else {
1156 cp->p_pool = pp->p_pool;
1158 atomic_inc_32(&cp->p_pool->pool_ref);
1159 mutex_exit(&pp->p_lock);
1162 * Add the child process to the current task. Kernel processes
1163 * are always attached to task0.
1165 mutex_enter(&cp->p_lock);
1166 if (flags & GETPROC_KERNEL)
1167 task_attach(task0p, cp);
1168 else
1169 task_attach(pp->p_task, cp);
1170 mutex_exit(&cp->p_lock);
1171 mutex_exit(&pidlock);
1173 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1174 offsetof(contract_t, ct_ctlist));
1177 * Duplicate any audit information kept in the process table
1179 if (audit_active) /* copy audit data to cp */
1180 audit_newproc(cp);
1182 crhold(cp->p_cred = cr);
1185 * Bump up the counts on the file structures pointed at by the
1186 * parent's file table since the child will point at them too.
1188 fcnt_add(P_FINFO(pp), 1);
1190 if (PTOU(pp)->u_cdir) {
1191 VN_HOLD(PTOU(pp)->u_cdir);
1192 } else {
1193 ASSERT(pp == &p0);
1195 * We must be at or before vfs_mountroot(); it will take care of
1196 * assigning our current directory.
1199 if (PTOU(pp)->u_rdir)
1200 VN_HOLD(PTOU(pp)->u_rdir);
1201 if (PTOU(pp)->u_cwd)
1202 refstr_hold(PTOU(pp)->u_cwd);
1205 * copy the parent's uarea.
1207 uarea = PTOU(cp);
1208 bcopy(PTOU(pp), uarea, sizeof (*uarea));
1209 flist_fork(P_FINFO(pp), P_FINFO(cp));
1211 gethrestime(&uarea->u_start);
1212 uarea->u_ticks = ddi_get_lbolt();
1213 uarea->u_mem = rm_asrss(pp->p_as);
1214 uarea->u_acflag = AFORK;
1217 * If inherit-on-fork, copy /proc tracing flags to child.
1219 if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1220 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1221 cp->p_sigmask = pp->p_sigmask;
1222 cp->p_fltmask = pp->p_fltmask;
1223 } else {
1224 sigemptyset(&cp->p_sigmask);
1225 premptyset(&cp->p_fltmask);
1226 uarea->u_systrap = 0;
1227 premptyset(&uarea->u_entrymask);
1228 premptyset(&uarea->u_exitmask);
1231 * If microstate accounting is being inherited, mark child
1233 if ((pp->p_flag & SMSFORK) != 0)
1234 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1237 * Inherit fixalignment flag from the parent
1239 cp->p_fixalignment = pp->p_fixalignment;
1241 *cpp = cp;
1242 return (0);
1244 bad:
1245 ASSERT(MUTEX_NOT_HELD(&pidlock));
1247 mutex_destroy(&cp->p_crlock);
1248 mutex_destroy(&cp->p_pflock);
1249 #if defined(__x86)
1250 mutex_destroy(&cp->p_ldtlock);
1251 #endif
1252 if (newpid != -1) {
1253 proc_entry_free(cp->p_pidp);
1254 (void) pid_rele(cp->p_pidp);
1256 kmem_cache_free(process_cache, cp);
1258 mutex_enter(&zone->zone_nlwps_lock);
1259 task->tk_nprocs--;
1260 proj->kpj_nprocs--;
1261 zone->zone_nprocs--;
1262 mutex_exit(&zone->zone_nlwps_lock);
1263 atomic_inc_32(&zone->zone_ffnoproc);
1265 punish:
1267 * We most likely got into this situation because some process is
1268 * forking out of control. As punishment, put it to sleep for a
1269 * bit so it can't eat the machine alive. Sleep interval is chosen
1270 * to allow no more than one fork failure per cpu per clock tick
1271 * on average (yes, I just made this up). This has two desirable
1272 * properties: (1) it sets a constant limit on the fork failure
1273 * rate, and (2) the busier the system is, the harsher the penalty
1274 * for abusing it becomes.
1276 INCR_COUNT(&fork_fail_pending, &pidlock);
1277 delay(fork_fail_pending / ncpus + 1);
1278 DECR_COUNT(&fork_fail_pending, &pidlock);
1280 return (-1); /* out of memory or proc slots */
1284 * Release virtual memory.
1285 * In the case of vfork(), the child was given exclusive access to its
1286 * parent's address space. The parent is waiting in vfwait() for the
1287 * child to release its exclusive claim via relvm().
1289 void
1290 relvm()
1292 proc_t *p = curproc;
1294 ASSERT((unsigned)p->p_lwpcnt <= 1);
1296 prrelvm(); /* inform /proc */
1298 if (p->p_flag & SVFORK) {
1299 proc_t *pp = p->p_parent;
1301 * The child process is either exec'ing or exit'ing.
1302 * The child is now separated from the parent's address
1303 * space. The parent process is made dispatchable.
1305 * This is a delicate locking maneuver, involving
1306 * both the parent's p_lock and the child's p_lock.
1307 * As soon as the SVFORK flag is turned off, the
1308 * parent is free to run, but it must not run until
1309 * we wake it up using its p_cv because it might
1310 * exit and we would be referencing invalid memory.
1311 * Therefore, we hold the parent with its p_lock
1312 * while protecting our p_flags with our own p_lock.
1314 try_again:
1315 mutex_enter(&p->p_lock); /* grab child's lock first */
1316 prbarrier(p); /* make sure /proc is blocked out */
1317 mutex_enter(&pp->p_lock);
1320 * Check if parent is locked by /proc.
1322 if (pp->p_proc_flag & P_PR_LOCK) {
1324 * Delay until /proc is done with the parent.
1325 * We must drop our (the child's) p->p_lock, wait
1326 * via prbarrier() on the parent, then start over.
1328 mutex_exit(&p->p_lock);
1329 prbarrier(pp);
1330 mutex_exit(&pp->p_lock);
1331 goto try_again;
1333 p->p_flag &= ~SVFORK;
1334 kpreempt_disable();
1335 p->p_as = &kas;
1338 * notify hat of change in thread's address space
1340 hat_thread_exit(curthread);
1341 kpreempt_enable();
1344 * child sizes are copied back to parent because
1345 * child may have grown.
1347 pp->p_brkbase = p->p_brkbase;
1348 pp->p_brksize = p->p_brksize;
1349 pp->p_stksize = p->p_stksize;
1352 * Copy back the shm accounting information
1353 * to the parent process.
1355 pp->p_segacct = p->p_segacct;
1356 p->p_segacct = NULL;
1359 * The parent is no longer waiting for the vfork()d child.
1360 * Restore the parent's watched pages, if any. This is
1361 * safe because we know the parent is not locked by /proc
1363 pp->p_flag &= ~SVFWAIT;
1364 if (avl_numnodes(&pp->p_wpage) != 0) {
1365 pp->p_as->a_wpage = pp->p_wpage;
1366 avl_create(&pp->p_wpage, wp_compare,
1367 sizeof (struct watched_page),
1368 offsetof(struct watched_page, wp_link));
1370 cv_signal(&pp->p_cv);
1371 mutex_exit(&pp->p_lock);
1372 mutex_exit(&p->p_lock);
1373 } else {
1374 if (p->p_as != &kas) {
1375 struct as *as;
1377 if (p->p_segacct)
1378 shmexit(p);
1381 * We grab p_lock for the benefit of /proc
1383 kpreempt_disable();
1384 mutex_enter(&p->p_lock);
1385 prbarrier(p); /* make sure /proc is blocked out */
1386 as = p->p_as;
1387 p->p_as = &kas;
1388 mutex_exit(&p->p_lock);
1391 * notify hat of change in thread's address space
1393 hat_thread_exit(curthread);
1394 kpreempt_enable();
1396 as_free(as);
1397 p->p_tr_lgrpid = LGRP_NONE;
1403 * Wait for child to exec or exit.
1404 * Called by parent of vfork'ed process.
1405 * See important comments in relvm(), above.
1407 void
1408 vfwait(pid_t pid)
1410 int signalled = 0;
1411 proc_t *pp = ttoproc(curthread);
1412 proc_t *cp;
1415 * Wait for child to exec or exit.
1417 for (;;) {
1418 mutex_enter(&pidlock);
1419 cp = prfind(pid);
1420 if (cp == NULL || cp->p_parent != pp) {
1422 * Child has exit()ed.
1424 mutex_exit(&pidlock);
1425 break;
1428 * Grab the child's p_lock before releasing pidlock.
1429 * Otherwise, the child could exit and we would be
1430 * referencing invalid memory.
1432 mutex_enter(&cp->p_lock);
1433 mutex_exit(&pidlock);
1434 if (!(cp->p_flag & SVFORK)) {
1436 * Child has exec()ed or is exit()ing.
1438 mutex_exit(&cp->p_lock);
1439 break;
1441 mutex_enter(&pp->p_lock);
1442 mutex_exit(&cp->p_lock);
1444 * We might be waked up spuriously from the cv_wait().
1445 * We have to do the whole operation over again to be
1446 * sure the child's SVFORK flag really is turned off.
1447 * We cannot make reference to the child because it can
1448 * exit before we return and we would be referencing
1449 * invalid memory.
1451 * Because this is potentially a very long-term wait,
1452 * we call cv_wait_sig() (for its jobcontrol and /proc
1453 * side-effects) unless there is a current signal, in
1454 * which case we use cv_wait() because we cannot return
1455 * from this function until the child has released the
1456 * address space. Calling cv_wait_sig() with a current
1457 * signal would lead to an indefinite loop here because
1458 * cv_wait_sig() returns immediately in this case.
1460 if (signalled)
1461 cv_wait(&pp->p_cv, &pp->p_lock);
1462 else
1463 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1464 mutex_exit(&pp->p_lock);
1467 /* restore watchpoints to parent */
1468 if (pr_watch_active(pp)) {
1469 struct as *as = pp->p_as;
1470 AS_LOCK_ENTER(as, RW_WRITER);
1471 as_setwatch(as);
1472 AS_LOCK_EXIT(as);
1475 mutex_enter(&pp->p_lock);
1476 prbarrier(pp); /* barrier against /proc locking */
1477 continuelwps(pp);
1478 mutex_exit(&pp->p_lock);