fs: rename AT_* to VATTR_*
[unleashed.git] / kernel / fs / zfs / zfs_vnops.c
blob63807d27f2ec23a81839ec39809d487a1491b39e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <sys/vm.h>
49 #include <vm/seg_vn.h>
50 #include <vm/pvn.h>
51 #include <vm/as.h>
52 #include <vm/kpm.h>
53 #include <vm/seg_kpm.h>
54 #include <sys/mman.h>
55 #include <sys/pathname.h>
56 #include <sys/cmn_err.h>
57 #include <sys/errno.h>
58 #include <sys/unistd.h>
59 #include <sys/zfs_dir.h>
60 #include <sys/zfs_acl.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/dmu.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa.h>
66 #include <sys/txg.h>
67 #include <sys/dbuf.h>
68 #include <sys/zap.h>
69 #include <sys/sa.h>
70 #include <sys/dirent.h>
71 #include <sys/policy.h>
72 #include <sys/sunddi.h>
73 #include <sys/filio.h>
74 #include <sys/sid.h>
75 #include "sys/fs_subr.h"
76 #include <sys/zfs_ctldir.h>
77 #include <sys/zfs_fuid.h>
78 #include <sys/zfs_sa.h>
79 #include <sys/dnlc.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/extdirent.h>
82 #include <sys/kidmap.h>
83 #include <sys/cred.h>
84 #include <sys/attr.h>
85 #include <sys/zil.h>
88 * Programming rules.
90 * Each vnode op performs some logical unit of work. To do this, the ZPL must
91 * properly lock its in-core state, create a DMU transaction, do the work,
92 * record this work in the intent log (ZIL), commit the DMU transaction,
93 * and wait for the intent log to commit if it is a synchronous operation.
94 * Moreover, the vnode ops must work in both normal and log replay context.
95 * The ordering of events is important to avoid deadlocks and references
96 * to freed memory. The example below illustrates the following Big Rules:
98 * (1) A check must be made in each zfs thread for a mounted file system.
99 * This is done avoiding races using ZFS_ENTER(zfsvfs).
100 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
101 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
102 * can return EIO from the calling function.
104 * (2) VN_RELE() should always be the last thing except for zil_commit()
105 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
106 * First, if it's the last reference, the vnode/znode
107 * can be freed, so the zp may point to freed memory. Second, the last
108 * reference will call zfs_zinactive(), which may induce a lot of work --
109 * pushing cached pages (which acquires range locks) and syncing out
110 * cached atime changes. Third, zfs_zinactive() may require a new tx,
111 * which could deadlock the system if you were already holding one.
112 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
114 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
115 * as they can span dmu_tx_assign() calls.
117 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
118 * dmu_tx_assign(). This is critical because we don't want to block
119 * while holding locks.
121 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
122 * reduces lock contention and CPU usage when we must wait (note that if
123 * throughput is constrained by the storage, nearly every transaction
124 * must wait).
126 * Note, in particular, that if a lock is sometimes acquired before
127 * the tx assigns, and sometimes after (e.g. z_lock), then failing
128 * to use a non-blocking assign can deadlock the system. The scenario:
130 * Thread A has grabbed a lock before calling dmu_tx_assign().
131 * Thread B is in an already-assigned tx, and blocks for this lock.
132 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
133 * forever, because the previous txg can't quiesce until B's tx commits.
135 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
136 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
137 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
138 * to indicate that this operation has already called dmu_tx_wait().
139 * This will ensure that we don't retry forever, waiting a short bit
140 * each time.
142 * (5) If the operation succeeded, generate the intent log entry for it
143 * before dropping locks. This ensures that the ordering of events
144 * in the intent log matches the order in which they actually occurred.
145 * During ZIL replay the zfs_log_* functions will update the sequence
146 * number to indicate the zil transaction has replayed.
148 * (6) At the end of each vnode op, the DMU tx must always commit,
149 * regardless of whether there were any errors.
151 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
152 * to ensure that synchronous semantics are provided when necessary.
154 * In general, this is how things should be ordered in each vnode op:
156 * ZFS_ENTER(zfsvfs); // exit if unmounted
157 * top:
158 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
159 * rw_enter(...); // grab any other locks you need
160 * tx = dmu_tx_create(...); // get DMU tx
161 * dmu_tx_hold_*(); // hold each object you might modify
162 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
163 * if (error) {
164 * rw_exit(...); // drop locks
165 * zfs_dirent_unlock(dl); // unlock directory entry
166 * VN_RELE(...); // release held vnodes
167 * if (error == ERESTART) {
168 * waited = B_TRUE;
169 * dmu_tx_wait(tx);
170 * dmu_tx_abort(tx);
171 * goto top;
173 * dmu_tx_abort(tx); // abort DMU tx
174 * ZFS_EXIT(zfsvfs); // finished in zfs
175 * return (error); // really out of space
177 * error = do_real_work(); // do whatever this VOP does
178 * if (error == 0)
179 * zfs_log_*(...); // on success, make ZIL entry
180 * dmu_tx_commit(tx); // commit DMU tx -- error or not
181 * rw_exit(...); // drop locks
182 * zfs_dirent_unlock(dl); // unlock directory entry
183 * VN_RELE(...); // release held vnodes
184 * zil_commit(zilog, foid); // synchronous when necessary
185 * ZFS_EXIT(zfsvfs); // finished in zfs
186 * return (error); // done, report error
189 /* ARGSUSED */
190 static int
191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
193 znode_t *zp = VTOZ(*vpp);
194 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
196 ZFS_ENTER(zfsvfs);
197 ZFS_VERIFY_ZP(zp);
199 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
200 ((flag & FAPPEND) == 0)) {
201 ZFS_EXIT(zfsvfs);
202 return (SET_ERROR(EPERM));
205 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
206 ZTOV(zp)->v_type == VREG &&
207 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
208 if (fs_vscan(*vpp, cr, 0) != 0) {
209 ZFS_EXIT(zfsvfs);
210 return (SET_ERROR(EACCES));
214 /* Keep a count of the synchronous opens in the znode */
215 if (flag & (FSYNC | FDSYNC))
216 atomic_inc_32(&zp->z_sync_cnt);
218 ZFS_EXIT(zfsvfs);
219 return (0);
222 /* ARGSUSED */
223 static int
224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
225 caller_context_t *ct)
227 znode_t *zp = VTOZ(vp);
228 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
231 * Clean up any locks held by this process on the vp.
233 cleanlocks(vp, ddi_get_pid(), 0);
234 cleanshares(vp, ddi_get_pid());
236 ZFS_ENTER(zfsvfs);
237 ZFS_VERIFY_ZP(zp);
239 /* Decrement the synchronous opens in the znode */
240 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
241 atomic_dec_32(&zp->z_sync_cnt);
243 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
244 ZTOV(zp)->v_type == VREG &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(fs_vscan(vp, cr, 1) == 0);
248 ZFS_EXIT(zfsvfs);
249 return (0);
253 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
254 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
256 static int
257 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
259 znode_t *zp = VTOZ(vp);
260 uint64_t noff = (uint64_t)*off; /* new offset */
261 uint64_t file_sz;
262 int error;
263 boolean_t hole;
265 file_sz = zp->z_size;
266 if (noff >= file_sz) {
267 return (SET_ERROR(ENXIO));
270 if (cmd == _FIO_SEEK_HOLE)
271 hole = B_TRUE;
272 else
273 hole = B_FALSE;
275 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
277 if (error == ESRCH)
278 return (SET_ERROR(ENXIO));
281 * We could find a hole that begins after the logical end-of-file,
282 * because dmu_offset_next() only works on whole blocks. If the
283 * EOF falls mid-block, then indicate that the "virtual hole"
284 * at the end of the file begins at the logical EOF, rather than
285 * at the end of the last block.
287 if (noff > file_sz) {
288 ASSERT(hole);
289 noff = file_sz;
292 if (noff < *off)
293 return (error);
294 *off = noff;
295 return (error);
298 /* ARGSUSED */
299 static int
300 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
301 int *rvalp, caller_context_t *ct)
303 offset_t off;
304 offset_t ndata;
305 dmu_object_info_t doi;
306 int error;
307 zfsvfs_t *zfsvfs;
308 znode_t *zp;
310 switch (com) {
311 case _FIOFFS:
313 return (zfs_sync(vp->v_vfsp, 0, cred));
316 * The following two ioctls are used by bfu. Faking out,
317 * necessary to avoid bfu errors.
320 case _FIOGDIO:
321 case _FIOSDIO:
323 return (0);
326 case _FIO_SEEK_DATA:
327 case _FIO_SEEK_HOLE:
329 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
330 return (SET_ERROR(EFAULT));
332 zp = VTOZ(vp);
333 zfsvfs = zp->z_zfsvfs;
334 ZFS_ENTER(zfsvfs);
335 ZFS_VERIFY_ZP(zp);
337 /* offset parameter is in/out */
338 error = zfs_holey(vp, com, &off);
339 ZFS_EXIT(zfsvfs);
340 if (error)
341 return (error);
342 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
343 return (SET_ERROR(EFAULT));
344 return (0);
346 case _FIO_COUNT_FILLED:
349 * _FIO_COUNT_FILLED adds a new ioctl command which
350 * exposes the number of filled blocks in a
351 * ZFS object.
353 zp = VTOZ(vp);
354 zfsvfs = zp->z_zfsvfs;
355 ZFS_ENTER(zfsvfs);
356 ZFS_VERIFY_ZP(zp);
359 * Wait for all dirty blocks for this object
360 * to get synced out to disk, and the DMU info
361 * updated.
363 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
364 if (error) {
365 ZFS_EXIT(zfsvfs);
366 return (error);
370 * Retrieve fill count from DMU object.
372 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
373 if (error) {
374 ZFS_EXIT(zfsvfs);
375 return (error);
378 ndata = doi.doi_fill_count;
380 ZFS_EXIT(zfsvfs);
381 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
382 return (SET_ERROR(EFAULT));
383 return (0);
386 return (SET_ERROR(ENOTTY));
390 * Utility functions to map and unmap a single physical page. These
391 * are used to manage the mappable copies of ZFS file data, and therefore
392 * do not update ref/mod bits.
394 caddr_t
395 zfs_map_page(page_t *pp, enum seg_rw rw)
397 if (kpm_enable)
398 return (hat_kpm_mapin(pp, 0));
399 ASSERT(rw == S_READ || rw == S_WRITE);
400 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
401 (caddr_t)-1));
404 void
405 zfs_unmap_page(page_t *pp, caddr_t addr)
407 if (kpm_enable) {
408 hat_kpm_mapout(pp, 0, addr);
409 } else {
410 ppmapout(addr);
415 * When a file is memory mapped, we must keep the IO data synchronized
416 * between the DMU cache and the memory mapped pages. What this means:
418 * On Write: If we find a memory mapped page, we write to *both*
419 * the page and the dmu buffer.
421 static void
422 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
424 int64_t off;
426 off = start & PAGEOFFSET;
427 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
428 page_t *pp;
429 uint64_t nbytes = MIN(PAGESIZE - off, len);
431 if (pp = page_lookup(&vp->v_object, start, SE_SHARED)) {
432 caddr_t va;
434 va = zfs_map_page(pp, S_WRITE);
435 (void) dmu_read(os, oid, start+off, nbytes, va+off,
436 DMU_READ_PREFETCH);
437 zfs_unmap_page(pp, va);
438 page_unlock(pp);
440 len -= nbytes;
441 off = 0;
446 * When a file is memory mapped, we must keep the IO data synchronized
447 * between the DMU cache and the memory mapped pages. What this means:
449 * On Read: We "read" preferentially from memory mapped pages,
450 * else we default from the dmu buffer.
452 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
453 * the file is memory mapped.
455 static int
456 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
458 znode_t *zp = VTOZ(vp);
459 int64_t start, off;
460 int len = nbytes;
461 int error = 0;
463 start = uio->uio_loffset;
464 off = start & PAGEOFFSET;
465 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
466 page_t *pp;
467 uint64_t bytes = MIN(PAGESIZE - off, len);
469 if (pp = page_lookup(&vp->v_object, start, SE_SHARED)) {
470 caddr_t va;
472 va = zfs_map_page(pp, S_READ);
473 error = uiomove(va + off, bytes, UIO_READ, uio);
474 zfs_unmap_page(pp, va);
475 page_unlock(pp);
476 } else {
477 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
478 uio, bytes);
480 len -= bytes;
481 off = 0;
482 if (error)
483 break;
485 return (error);
488 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
491 * Read bytes from specified file into supplied buffer.
493 * IN: vp - vnode of file to be read from.
494 * uio - structure supplying read location, range info,
495 * and return buffer.
496 * ioflag - SYNC flags; used to provide FRSYNC semantics.
497 * cr - credentials of caller.
498 * ct - caller context
500 * OUT: uio - updated offset and range, buffer filled.
502 * RETURN: 0 on success, error code on failure.
504 * Side Effects:
505 * vp - atime updated if byte count > 0
507 /* ARGSUSED */
508 static int
509 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
511 znode_t *zp = VTOZ(vp);
512 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
513 ssize_t n, nbytes;
514 int error = 0;
515 rl_t *rl;
516 xuio_t *xuio = NULL;
518 ZFS_ENTER(zfsvfs);
519 ZFS_VERIFY_ZP(zp);
521 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
522 ZFS_EXIT(zfsvfs);
523 return (SET_ERROR(EACCES));
527 * Validate file offset
529 if (uio->uio_loffset < 0) {
530 ZFS_EXIT(zfsvfs);
531 return (SET_ERROR(EINVAL));
535 * Fasttrack empty reads
537 if (uio->uio_resid == 0) {
538 ZFS_EXIT(zfsvfs);
539 return (0);
543 * Check for mandatory locks
545 if (MANDMODE(zp->z_mode)) {
546 if (error = chklock(vp, FREAD,
547 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
548 ZFS_EXIT(zfsvfs);
549 return (error);
554 * If we're in FRSYNC mode, sync out this znode before reading it.
556 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
557 zil_commit(zfsvfs->z_log, zp->z_id);
560 * Lock the range against changes.
562 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
565 * If we are reading past end-of-file we can skip
566 * to the end; but we might still need to set atime.
568 if (uio->uio_loffset >= zp->z_size) {
569 error = 0;
570 goto out;
573 ASSERT(uio->uio_loffset < zp->z_size);
574 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
576 if ((uio->uio_extflg == UIO_XUIO) &&
577 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
578 int nblk;
579 int blksz = zp->z_blksz;
580 uint64_t offset = uio->uio_loffset;
582 xuio = (xuio_t *)uio;
583 if ((ISP2(blksz))) {
584 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
585 blksz)) / blksz;
586 } else {
587 ASSERT(offset + n <= blksz);
588 nblk = 1;
590 (void) dmu_xuio_init(xuio, nblk);
592 if (vn_has_cached_data(vp)) {
594 * For simplicity, we always allocate a full buffer
595 * even if we only expect to read a portion of a block.
597 while (--nblk >= 0) {
598 (void) dmu_xuio_add(xuio,
599 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
600 blksz), 0, blksz);
605 while (n > 0) {
606 nbytes = MIN(n, zfs_read_chunk_size -
607 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
609 if (vn_has_cached_data(vp)) {
610 error = mappedread(vp, nbytes, uio);
611 } else {
612 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
613 uio, nbytes);
615 if (error) {
616 /* convert checksum errors into IO errors */
617 if (error == ECKSUM)
618 error = SET_ERROR(EIO);
619 break;
622 n -= nbytes;
624 out:
625 zfs_range_unlock(rl);
627 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
628 ZFS_EXIT(zfsvfs);
629 return (error);
633 * Write the bytes to a file.
635 * IN: vp - vnode of file to be written to.
636 * uio - structure supplying write location, range info,
637 * and data buffer.
638 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
639 * set if in append mode.
640 * cr - credentials of caller.
641 * ct - caller context (NFS/CIFS fem monitor only)
643 * OUT: uio - updated offset and range.
645 * RETURN: 0 on success, error code on failure.
647 * Timestamps:
648 * vp - ctime|mtime updated if byte count > 0
651 /* ARGSUSED */
652 static int
653 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
655 znode_t *zp = VTOZ(vp);
656 rlim64_t limit = uio->uio_llimit;
657 ssize_t start_resid = uio->uio_resid;
658 ssize_t tx_bytes;
659 uint64_t end_size;
660 dmu_tx_t *tx;
661 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
662 zilog_t *zilog;
663 offset_t woff;
664 ssize_t n, nbytes;
665 rl_t *rl;
666 int max_blksz = zfsvfs->z_max_blksz;
667 int error = 0;
668 arc_buf_t *abuf;
669 iovec_t *aiov = NULL;
670 xuio_t *xuio = NULL;
671 int i_iov = 0;
672 int iovcnt = uio->uio_iovcnt;
673 iovec_t *iovp = uio->uio_iov;
674 int write_eof;
675 int count = 0;
676 sa_bulk_attr_t bulk[4];
677 uint64_t mtime[2], ctime[2];
680 * Fasttrack empty write
682 n = start_resid;
683 if (n == 0)
684 return (0);
686 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
687 limit = MAXOFFSET_T;
689 ZFS_ENTER(zfsvfs);
690 ZFS_VERIFY_ZP(zp);
692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
695 &zp->z_size, 8);
696 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
697 &zp->z_pflags, 8);
700 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
701 * callers might not be able to detect properly that we are read-only,
702 * so check it explicitly here.
704 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
705 ZFS_EXIT(zfsvfs);
706 return (SET_ERROR(EROFS));
710 * If immutable or not appending then return EPERM.
711 * Intentionally allow ZFS_READONLY through here.
712 * See zfs_zaccess_common()
714 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
715 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
716 (uio->uio_loffset < zp->z_size))) {
717 ZFS_EXIT(zfsvfs);
718 return (SET_ERROR(EPERM));
721 zilog = zfsvfs->z_log;
724 * Validate file offset
726 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
727 if (woff < 0) {
728 ZFS_EXIT(zfsvfs);
729 return (SET_ERROR(EINVAL));
733 * Check for mandatory locks before calling zfs_range_lock()
734 * in order to prevent a deadlock with locks set via fcntl().
736 if (MANDMODE((mode_t)zp->z_mode) &&
737 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
738 ZFS_EXIT(zfsvfs);
739 return (error);
743 * Pre-fault the pages to ensure slow (eg NFS) pages
744 * don't hold up txg.
745 * Skip this if uio contains loaned arc_buf.
747 if ((uio->uio_extflg == UIO_XUIO) &&
748 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
749 xuio = (xuio_t *)uio;
750 else
751 uio_prefaultpages(MIN(n, max_blksz), uio);
754 * If in append mode, set the io offset pointer to eof.
756 if (ioflag & FAPPEND) {
758 * Obtain an appending range lock to guarantee file append
759 * semantics. We reset the write offset once we have the lock.
761 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
762 woff = rl->r_off;
763 if (rl->r_len == UINT64_MAX) {
765 * We overlocked the file because this write will cause
766 * the file block size to increase.
767 * Note that zp_size cannot change with this lock held.
769 woff = zp->z_size;
771 uio->uio_loffset = woff;
772 } else {
774 * Note that if the file block size will change as a result of
775 * this write, then this range lock will lock the entire file
776 * so that we can re-write the block safely.
778 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
781 if (woff >= limit) {
782 zfs_range_unlock(rl);
783 ZFS_EXIT(zfsvfs);
784 return (SET_ERROR(EFBIG));
787 if ((woff + n) > limit || woff > (limit - n))
788 n = limit - woff;
790 /* Will this write extend the file length? */
791 write_eof = (woff + n > zp->z_size);
793 end_size = MAX(zp->z_size, woff + n);
796 * Write the file in reasonable size chunks. Each chunk is written
797 * in a separate transaction; this keeps the intent log records small
798 * and allows us to do more fine-grained space accounting.
800 while (n > 0) {
801 abuf = NULL;
802 woff = uio->uio_loffset;
803 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
804 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
805 if (abuf != NULL)
806 dmu_return_arcbuf(abuf);
807 error = SET_ERROR(EDQUOT);
808 break;
811 if (xuio && abuf == NULL) {
812 ASSERT(i_iov < iovcnt);
813 aiov = &iovp[i_iov];
814 abuf = dmu_xuio_arcbuf(xuio, i_iov);
815 dmu_xuio_clear(xuio, i_iov);
816 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
817 iovec_t *, aiov, arc_buf_t *, abuf);
818 ASSERT((aiov->iov_base == abuf->b_data) ||
819 ((char *)aiov->iov_base - (char *)abuf->b_data +
820 aiov->iov_len == arc_buf_size(abuf)));
821 i_iov++;
822 } else if (abuf == NULL && n >= max_blksz &&
823 woff >= zp->z_size &&
824 P2PHASE(woff, max_blksz) == 0 &&
825 zp->z_blksz == max_blksz) {
827 * This write covers a full block. "Borrow" a buffer
828 * from the dmu so that we can fill it before we enter
829 * a transaction. This avoids the possibility of
830 * holding up the transaction if the data copy hangs
831 * up on a pagefault (e.g., from an NFS server mapping).
833 size_t cbytes;
835 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
836 max_blksz);
837 ASSERT(abuf != NULL);
838 ASSERT(arc_buf_size(abuf) == max_blksz);
839 if (error = uiocopy(abuf->b_data, max_blksz,
840 UIO_WRITE, uio, &cbytes)) {
841 dmu_return_arcbuf(abuf);
842 break;
844 ASSERT(cbytes == max_blksz);
848 * Start a transaction.
850 tx = dmu_tx_create(zfsvfs->z_os);
851 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
852 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
853 zfs_sa_upgrade_txholds(tx, zp);
854 error = dmu_tx_assign(tx, TXG_WAIT);
855 if (error) {
856 dmu_tx_abort(tx);
857 if (abuf != NULL)
858 dmu_return_arcbuf(abuf);
859 break;
863 * If zfs_range_lock() over-locked we grow the blocksize
864 * and then reduce the lock range. This will only happen
865 * on the first iteration since zfs_range_reduce() will
866 * shrink down r_len to the appropriate size.
868 if (rl->r_len == UINT64_MAX) {
869 uint64_t new_blksz;
871 if (zp->z_blksz > max_blksz) {
873 * File's blocksize is already larger than the
874 * "recordsize" property. Only let it grow to
875 * the next power of 2.
877 ASSERT(!ISP2(zp->z_blksz));
878 new_blksz = MIN(end_size,
879 1 << highbit64(zp->z_blksz));
880 } else {
881 new_blksz = MIN(end_size, max_blksz);
883 zfs_grow_blocksize(zp, new_blksz, tx);
884 zfs_range_reduce(rl, woff, n);
888 * XXX - should we really limit each write to z_max_blksz?
889 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
891 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
893 if (abuf == NULL) {
894 tx_bytes = uio->uio_resid;
895 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
896 uio, nbytes, tx);
897 tx_bytes -= uio->uio_resid;
898 } else {
899 tx_bytes = nbytes;
900 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
902 * If this is not a full block write, but we are
903 * extending the file past EOF and this data starts
904 * block-aligned, use assign_arcbuf(). Otherwise,
905 * write via dmu_write().
907 if (tx_bytes < max_blksz && (!write_eof ||
908 aiov->iov_base != abuf->b_data)) {
909 ASSERT(xuio);
910 dmu_write(zfsvfs->z_os, zp->z_id, woff,
911 aiov->iov_len, aiov->iov_base, tx);
912 dmu_return_arcbuf(abuf);
913 xuio_stat_wbuf_copied();
914 } else {
915 ASSERT(xuio || tx_bytes == max_blksz);
916 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
917 woff, abuf, tx);
919 ASSERT(tx_bytes <= uio->uio_resid);
920 uioskip(uio, tx_bytes);
922 if (tx_bytes && vn_has_cached_data(vp)) {
923 update_pages(vp, woff,
924 tx_bytes, zfsvfs->z_os, zp->z_id);
928 * If we made no progress, we're done. If we made even
929 * partial progress, update the znode and ZIL accordingly.
931 if (tx_bytes == 0) {
932 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
933 (void *)&zp->z_size, sizeof (uint64_t), tx);
934 dmu_tx_commit(tx);
935 ASSERT(error != 0);
936 break;
940 * Clear Set-UID/Set-GID bits on successful write if not
941 * privileged and at least one of the excute bits is set.
943 * It would be nice to to this after all writes have
944 * been done, but that would still expose the ISUID/ISGID
945 * to another app after the partial write is committed.
947 * Note: we don't call zfs_fuid_map_id() here because
948 * user 0 is not an ephemeral uid.
950 mutex_enter(&zp->z_acl_lock);
951 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
952 (S_IXUSR >> 6))) != 0 &&
953 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
954 secpolicy_vnode_setid_retain(cr,
955 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
956 uint64_t newmode;
957 zp->z_mode &= ~(S_ISUID | S_ISGID);
958 newmode = zp->z_mode;
959 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
960 (void *)&newmode, sizeof (uint64_t), tx);
962 mutex_exit(&zp->z_acl_lock);
964 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
965 B_TRUE);
968 * Update the file size (zp_size) if it has changed;
969 * account for possible concurrent updates.
971 while ((end_size = zp->z_size) < uio->uio_loffset) {
972 (void) atomic_cas_64(&zp->z_size, end_size,
973 uio->uio_loffset);
974 ASSERT(error == 0);
977 * If we are replaying and eof is non zero then force
978 * the file size to the specified eof. Note, there's no
979 * concurrency during replay.
981 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
982 zp->z_size = zfsvfs->z_replay_eof;
984 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
986 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
987 dmu_tx_commit(tx);
989 if (error != 0)
990 break;
991 ASSERT(tx_bytes == nbytes);
992 n -= nbytes;
994 if (!xuio && n > 0)
995 uio_prefaultpages(MIN(n, max_blksz), uio);
998 zfs_range_unlock(rl);
1001 * If we're in replay mode, or we made no progress, return error.
1002 * Otherwise, it's at least a partial write, so it's successful.
1004 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1005 ZFS_EXIT(zfsvfs);
1006 return (error);
1009 if (ioflag & (FSYNC | FDSYNC) ||
1010 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1011 zil_commit(zilog, zp->z_id);
1013 ZFS_EXIT(zfsvfs);
1014 return (0);
1017 void
1018 zfs_get_done(zgd_t *zgd, int error)
1020 znode_t *zp = zgd->zgd_private;
1021 objset_t *os = zp->z_zfsvfs->z_os;
1023 if (zgd->zgd_db)
1024 dmu_buf_rele(zgd->zgd_db, zgd);
1026 zfs_range_unlock(zgd->zgd_rl);
1029 * Release the vnode asynchronously as we currently have the
1030 * txg stopped from syncing.
1032 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1034 if (error == 0 && zgd->zgd_bp)
1035 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1037 kmem_free(zgd, sizeof (zgd_t));
1040 #ifdef DEBUG
1041 static int zil_fault_io = 0;
1042 #endif
1045 * Get data to generate a TX_WRITE intent log record.
1048 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1050 zfsvfs_t *zfsvfs = arg;
1051 objset_t *os = zfsvfs->z_os;
1052 znode_t *zp;
1053 uint64_t object = lr->lr_foid;
1054 uint64_t offset = lr->lr_offset;
1055 uint64_t size = lr->lr_length;
1056 dmu_buf_t *db;
1057 zgd_t *zgd;
1058 int error = 0;
1060 ASSERT3P(lwb, !=, NULL);
1061 ASSERT3P(zio, !=, NULL);
1062 ASSERT3U(size, !=, 0);
1065 * Nothing to do if the file has been removed
1067 if (zfs_zget(zfsvfs, object, &zp) != 0)
1068 return (SET_ERROR(ENOENT));
1069 if (zp->z_unlinked) {
1071 * Release the vnode asynchronously as we currently have the
1072 * txg stopped from syncing.
1074 VN_RELE_ASYNC(ZTOV(zp),
1075 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1076 return (SET_ERROR(ENOENT));
1079 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1080 zgd->zgd_lwb = lwb;
1081 zgd->zgd_private = zp;
1084 * Write records come in two flavors: immediate and indirect.
1085 * For small writes it's cheaper to store the data with the
1086 * log record (immediate); for large writes it's cheaper to
1087 * sync the data and get a pointer to it (indirect) so that
1088 * we don't have to write the data twice.
1090 if (buf != NULL) { /* immediate write */
1091 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1092 /* test for truncation needs to be done while range locked */
1093 if (offset >= zp->z_size) {
1094 error = SET_ERROR(ENOENT);
1095 } else {
1096 error = dmu_read(os, object, offset, size, buf,
1097 DMU_READ_NO_PREFETCH);
1099 ASSERT(error == 0 || error == ENOENT);
1100 } else { /* indirect write */
1102 * Have to lock the whole block to ensure when it's
1103 * written out and its checksum is being calculated
1104 * that no one can change the data. We need to re-check
1105 * blocksize after we get the lock in case it's changed!
1107 for (;;) {
1108 uint64_t blkoff;
1109 size = zp->z_blksz;
1110 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1111 offset -= blkoff;
1112 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1113 RL_READER);
1114 if (zp->z_blksz == size)
1115 break;
1116 offset += blkoff;
1117 zfs_range_unlock(zgd->zgd_rl);
1119 /* test for truncation needs to be done while range locked */
1120 if (lr->lr_offset >= zp->z_size)
1121 error = SET_ERROR(ENOENT);
1122 #ifdef DEBUG
1123 if (zil_fault_io) {
1124 error = SET_ERROR(EIO);
1125 zil_fault_io = 0;
1127 #endif
1128 if (error == 0)
1129 error = dmu_buf_hold(os, object, offset, zgd, &db,
1130 DMU_READ_NO_PREFETCH);
1132 if (error == 0) {
1133 blkptr_t *bp = &lr->lr_blkptr;
1135 zgd->zgd_db = db;
1136 zgd->zgd_bp = bp;
1138 ASSERT(db->db_offset == offset);
1139 ASSERT(db->db_size == size);
1141 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1142 zfs_get_done, zgd);
1143 ASSERT(error || lr->lr_length <= size);
1146 * On success, we need to wait for the write I/O
1147 * initiated by dmu_sync() to complete before we can
1148 * release this dbuf. We will finish everything up
1149 * in the zfs_get_done() callback.
1151 if (error == 0)
1152 return (0);
1154 if (error == EALREADY) {
1155 lr->lr_common.lrc_txtype = TX_WRITE2;
1157 * TX_WRITE2 relies on the data previously
1158 * written by the TX_WRITE that caused
1159 * EALREADY. We zero out the BP because
1160 * it is the old, currently-on-disk BP,
1161 * so there's no need to zio_flush() its
1162 * vdevs (flushing would needlesly hurt
1163 * performance, and doesn't work on
1164 * indirect vdevs).
1166 zgd->zgd_bp = NULL;
1167 BP_ZERO(bp);
1168 error = 0;
1173 zfs_get_done(zgd, error);
1175 return (error);
1178 /*ARGSUSED*/
1179 static int
1180 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1181 caller_context_t *ct)
1183 znode_t *zp = VTOZ(vp);
1184 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1185 int error;
1187 ZFS_ENTER(zfsvfs);
1188 ZFS_VERIFY_ZP(zp);
1190 if (flag & V_ACE_MASK)
1191 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1192 else
1193 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1195 ZFS_EXIT(zfsvfs);
1196 return (error);
1200 * If vnode is for a device return a specfs vnode instead.
1202 static int
1203 specvp_check(vnode_t **vpp, cred_t *cr)
1205 int error = 0;
1207 if (IS_DEVVP(*vpp)) {
1208 struct vnode *svp;
1210 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1211 VN_RELE(*vpp);
1212 if (svp == NULL)
1213 error = SET_ERROR(ENOSYS);
1214 *vpp = svp;
1216 return (error);
1221 * Lookup an entry in a directory, or an extended attribute directory.
1222 * If it exists, return a held vnode reference for it.
1224 * IN: dvp - vnode of directory to search.
1225 * nm - name of entry to lookup.
1226 * pnp - full pathname to lookup [UNUSED].
1227 * flags - LOOKUP_XATTR set if looking for an attribute.
1228 * rdir - root directory vnode [UNUSED].
1229 * cr - credentials of caller.
1230 * ct - caller context
1231 * direntflags - directory lookup flags
1232 * realpnp - returned pathname.
1234 * OUT: vpp - vnode of located entry, NULL if not found.
1236 * RETURN: 0 on success, error code on failure.
1238 * Timestamps:
1239 * NA
1241 /* ARGSUSED */
1242 static int
1243 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1244 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1245 int *direntflags, pathname_t *realpnp)
1247 znode_t *zdp = VTOZ(dvp);
1248 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1249 int error = 0;
1252 * Fast path lookup, however we must skip DNLC lookup
1253 * for case folding or normalizing lookups because the
1254 * DNLC code only stores the passed in name. This means
1255 * creating 'a' and removing 'A' on a case insensitive
1256 * file system would work, but DNLC still thinks 'a'
1257 * exists and won't let you create it again on the next
1258 * pass through fast path.
1260 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1262 if (dvp->v_type != VDIR) {
1263 return (SET_ERROR(ENOTDIR));
1264 } else if (zdp->z_sa_hdl == NULL) {
1265 return (SET_ERROR(EIO));
1268 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1269 error = zfs_fastaccesschk_execute(zdp, cr);
1270 if (!error) {
1271 *vpp = dvp;
1272 VN_HOLD(*vpp);
1273 return (0);
1275 return (error);
1276 } else if (!zdp->z_zfsvfs->z_norm &&
1277 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1279 vnode_t *tvp = dnlc_lookup(dvp, nm);
1281 if (tvp) {
1282 error = zfs_fastaccesschk_execute(zdp, cr);
1283 if (error) {
1284 VN_RELE(tvp);
1285 return (error);
1287 if (tvp == DNLC_NO_VNODE) {
1288 VN_RELE(tvp);
1289 return (SET_ERROR(ENOENT));
1290 } else {
1291 *vpp = tvp;
1292 return (specvp_check(vpp, cr));
1298 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1300 ZFS_ENTER(zfsvfs);
1301 ZFS_VERIFY_ZP(zdp);
1303 *vpp = NULL;
1305 if (flags & LOOKUP_XATTR) {
1307 * If the xattr property is off, refuse the lookup request.
1309 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1310 ZFS_EXIT(zfsvfs);
1311 return (SET_ERROR(EINVAL));
1315 * We don't allow recursive attributes..
1316 * Maybe someday we will.
1318 if (zdp->z_pflags & ZFS_XATTR) {
1319 ZFS_EXIT(zfsvfs);
1320 return (SET_ERROR(EINVAL));
1323 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1324 ZFS_EXIT(zfsvfs);
1325 return (error);
1329 * Do we have permission to get into attribute directory?
1332 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1333 B_FALSE, cr)) {
1334 VN_RELE(*vpp);
1335 *vpp = NULL;
1338 ZFS_EXIT(zfsvfs);
1339 return (error);
1342 if (dvp->v_type != VDIR) {
1343 ZFS_EXIT(zfsvfs);
1344 return (SET_ERROR(ENOTDIR));
1348 * Check accessibility of directory.
1351 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1352 ZFS_EXIT(zfsvfs);
1353 return (error);
1356 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1357 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1358 ZFS_EXIT(zfsvfs);
1359 return (SET_ERROR(EILSEQ));
1362 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1363 if (error == 0)
1364 error = specvp_check(vpp, cr);
1366 ZFS_EXIT(zfsvfs);
1367 return (error);
1371 * Attempt to create a new entry in a directory. If the entry
1372 * already exists, truncate the file if permissible, else return
1373 * an error. Return the vp of the created or trunc'd file.
1375 * IN: dvp - vnode of directory to put new file entry in.
1376 * name - name of new file entry.
1377 * vap - attributes of new file.
1378 * excl - flag indicating exclusive or non-exclusive mode.
1379 * mode - mode to open file with.
1380 * cr - credentials of caller.
1381 * flag - large file flag [UNUSED].
1382 * ct - caller context
1383 * vsecp - ACL to be set
1385 * OUT: vpp - vnode of created or trunc'd entry.
1387 * RETURN: 0 on success, error code on failure.
1389 * Timestamps:
1390 * dvp - ctime|mtime updated if new entry created
1391 * vp - ctime|mtime always, atime if new
1394 /* ARGSUSED */
1395 static int
1396 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1397 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1398 vsecattr_t *vsecp)
1400 znode_t *zp, *dzp = VTOZ(dvp);
1401 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1402 zilog_t *zilog;
1403 objset_t *os;
1404 zfs_dirlock_t *dl;
1405 dmu_tx_t *tx;
1406 int error;
1407 ksid_t *ksid;
1408 uid_t uid;
1409 gid_t gid = crgetgid(cr);
1410 zfs_acl_ids_t acl_ids;
1411 boolean_t fuid_dirtied;
1412 boolean_t have_acl = B_FALSE;
1413 boolean_t waited = B_FALSE;
1416 * If we have an ephemeral id, ACL, or XVATTR then
1417 * make sure file system is at proper version
1420 ksid = crgetsid(cr, KSID_OWNER);
1421 if (ksid)
1422 uid = ksid_getid(ksid);
1423 else
1424 uid = crgetuid(cr);
1426 if (zfsvfs->z_use_fuids == B_FALSE &&
1427 (vsecp || (vap->va_mask & VATTR_XVATTR) ||
1428 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1429 return (SET_ERROR(EINVAL));
1431 ZFS_ENTER(zfsvfs);
1432 ZFS_VERIFY_ZP(dzp);
1433 os = zfsvfs->z_os;
1434 zilog = zfsvfs->z_log;
1436 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1437 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1438 ZFS_EXIT(zfsvfs);
1439 return (SET_ERROR(EILSEQ));
1442 if (vap->va_mask & VATTR_XVATTR) {
1443 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1444 crgetuid(cr), cr, vap->va_type)) != 0) {
1445 ZFS_EXIT(zfsvfs);
1446 return (error);
1449 top:
1450 *vpp = NULL;
1452 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1453 vap->va_mode &= ~VSVTX;
1455 if (*name == '\0') {
1457 * Null component name refers to the directory itself.
1459 VN_HOLD(dvp);
1460 zp = dzp;
1461 dl = NULL;
1462 error = 0;
1463 } else {
1464 /* possible VN_HOLD(zp) */
1465 int zflg = 0;
1467 if (flag & FIGNORECASE)
1468 zflg |= ZCILOOK;
1470 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1471 NULL, NULL);
1472 if (error) {
1473 if (have_acl)
1474 zfs_acl_ids_free(&acl_ids);
1475 if (strcmp(name, "..") == 0)
1476 error = SET_ERROR(EISDIR);
1477 ZFS_EXIT(zfsvfs);
1478 return (error);
1482 if (zp == NULL) {
1483 uint64_t txtype;
1486 * Create a new file object and update the directory
1487 * to reference it.
1489 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1490 if (have_acl)
1491 zfs_acl_ids_free(&acl_ids);
1492 goto out;
1496 * We only support the creation of regular files in
1497 * extended attribute directories.
1500 if ((dzp->z_pflags & ZFS_XATTR) &&
1501 (vap->va_type != VREG)) {
1502 if (have_acl)
1503 zfs_acl_ids_free(&acl_ids);
1504 error = SET_ERROR(EINVAL);
1505 goto out;
1508 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1509 cr, vsecp, &acl_ids)) != 0)
1510 goto out;
1511 have_acl = B_TRUE;
1513 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1514 zfs_acl_ids_free(&acl_ids);
1515 error = SET_ERROR(EDQUOT);
1516 goto out;
1519 tx = dmu_tx_create(os);
1521 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1522 ZFS_SA_BASE_ATTR_SIZE);
1524 fuid_dirtied = zfsvfs->z_fuid_dirty;
1525 if (fuid_dirtied)
1526 zfs_fuid_txhold(zfsvfs, tx);
1527 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1528 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1529 if (!zfsvfs->z_use_sa &&
1530 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1531 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1532 0, acl_ids.z_aclp->z_acl_bytes);
1534 error = dmu_tx_assign(tx,
1535 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1536 if (error) {
1537 zfs_dirent_unlock(dl);
1538 if (error == ERESTART) {
1539 waited = B_TRUE;
1540 dmu_tx_wait(tx);
1541 dmu_tx_abort(tx);
1542 goto top;
1544 zfs_acl_ids_free(&acl_ids);
1545 dmu_tx_abort(tx);
1546 ZFS_EXIT(zfsvfs);
1547 return (error);
1549 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1551 if (fuid_dirtied)
1552 zfs_fuid_sync(zfsvfs, tx);
1554 (void) zfs_link_create(dl, zp, tx, ZNEW);
1555 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1556 if (flag & FIGNORECASE)
1557 txtype |= TX_CI;
1558 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1559 vsecp, acl_ids.z_fuidp, vap);
1560 zfs_acl_ids_free(&acl_ids);
1561 dmu_tx_commit(tx);
1562 } else {
1563 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1565 if (have_acl)
1566 zfs_acl_ids_free(&acl_ids);
1567 have_acl = B_FALSE;
1570 * A directory entry already exists for this name.
1573 * Can't truncate an existing file if in exclusive mode.
1575 if (excl == EXCL) {
1576 error = SET_ERROR(EEXIST);
1577 goto out;
1580 * Can't open a directory for writing.
1582 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1583 error = SET_ERROR(EISDIR);
1584 goto out;
1587 * Verify requested access to file.
1589 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1590 goto out;
1593 mutex_enter(&dzp->z_lock);
1594 dzp->z_seq++;
1595 mutex_exit(&dzp->z_lock);
1598 * Truncate regular files if requested.
1600 if ((ZTOV(zp)->v_type == VREG) &&
1601 (vap->va_mask & VATTR_SIZE) && (vap->va_size == 0)) {
1602 /* we can't hold any locks when calling zfs_freesp() */
1603 zfs_dirent_unlock(dl);
1604 dl = NULL;
1605 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1606 if (error == 0) {
1607 vnevent_create(ZTOV(zp), ct);
1611 out:
1613 if (dl)
1614 zfs_dirent_unlock(dl);
1616 if (error) {
1617 if (zp)
1618 VN_RELE(ZTOV(zp));
1619 } else {
1620 *vpp = ZTOV(zp);
1621 error = specvp_check(vpp, cr);
1624 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1625 zil_commit(zilog, 0);
1627 ZFS_EXIT(zfsvfs);
1628 return (error);
1632 * Remove an entry from a directory.
1634 * IN: dvp - vnode of directory to remove entry from.
1635 * name - name of entry to remove.
1636 * cr - credentials of caller.
1637 * ct - caller context
1638 * flags - case flags
1640 * RETURN: 0 on success, error code on failure.
1642 * Timestamps:
1643 * dvp - ctime|mtime
1644 * vp - ctime (if nlink > 0)
1647 uint64_t null_xattr = 0;
1649 /*ARGSUSED*/
1650 static int
1651 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1652 int flags)
1654 znode_t *zp, *dzp = VTOZ(dvp);
1655 znode_t *xzp;
1656 vnode_t *vp;
1657 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1658 zilog_t *zilog;
1659 uint64_t acl_obj, xattr_obj;
1660 uint64_t xattr_obj_unlinked = 0;
1661 uint64_t obj = 0;
1662 zfs_dirlock_t *dl;
1663 dmu_tx_t *tx;
1664 boolean_t may_delete_now, delete_now = FALSE;
1665 boolean_t unlinked, toobig = FALSE;
1666 uint64_t txtype;
1667 pathname_t *realnmp = NULL;
1668 pathname_t realnm;
1669 int error;
1670 int zflg = ZEXISTS;
1671 boolean_t waited = B_FALSE;
1673 ZFS_ENTER(zfsvfs);
1674 ZFS_VERIFY_ZP(dzp);
1675 zilog = zfsvfs->z_log;
1677 if (flags & FIGNORECASE) {
1678 zflg |= ZCILOOK;
1679 pn_alloc(&realnm);
1680 realnmp = &realnm;
1683 top:
1684 xattr_obj = 0;
1685 xzp = NULL;
1687 * Attempt to lock directory; fail if entry doesn't exist.
1689 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1690 NULL, realnmp)) {
1691 if (realnmp)
1692 pn_free(realnmp);
1693 ZFS_EXIT(zfsvfs);
1694 return (error);
1697 vp = ZTOV(zp);
1699 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1700 goto out;
1704 * Need to use rmdir for removing directories.
1706 if (vp->v_type == VDIR) {
1707 error = SET_ERROR(EPERM);
1708 goto out;
1711 vnevent_remove(vp, dvp, name, ct);
1713 if (realnmp)
1714 dnlc_remove(dvp, realnmp->pn_buf);
1715 else
1716 dnlc_remove(dvp, name);
1718 mutex_enter(&vp->v_lock);
1719 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1720 mutex_exit(&vp->v_lock);
1723 * We may delete the znode now, or we may put it in the unlinked set;
1724 * it depends on whether we're the last link, and on whether there are
1725 * other holds on the vnode. So we dmu_tx_hold() the right things to
1726 * allow for either case.
1728 obj = zp->z_id;
1729 tx = dmu_tx_create(zfsvfs->z_os);
1730 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1731 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1732 zfs_sa_upgrade_txholds(tx, zp);
1733 zfs_sa_upgrade_txholds(tx, dzp);
1734 if (may_delete_now) {
1735 toobig =
1736 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1737 /* if the file is too big, only hold_free a token amount */
1738 dmu_tx_hold_free(tx, zp->z_id, 0,
1739 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1742 /* are there any extended attributes? */
1743 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1744 &xattr_obj, sizeof (xattr_obj));
1745 if (error == 0 && xattr_obj) {
1746 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1747 ASSERT0(error);
1748 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1749 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1752 mutex_enter(&zp->z_lock);
1753 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1754 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1755 mutex_exit(&zp->z_lock);
1757 /* charge as an update -- would be nice not to charge at all */
1758 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1761 * Mark this transaction as typically resulting in a net free of space
1763 dmu_tx_mark_netfree(tx);
1765 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1766 if (error) {
1767 zfs_dirent_unlock(dl);
1768 VN_RELE(vp);
1769 if (xzp)
1770 VN_RELE(ZTOV(xzp));
1771 if (error == ERESTART) {
1772 waited = B_TRUE;
1773 dmu_tx_wait(tx);
1774 dmu_tx_abort(tx);
1775 goto top;
1777 if (realnmp)
1778 pn_free(realnmp);
1779 dmu_tx_abort(tx);
1780 ZFS_EXIT(zfsvfs);
1781 return (error);
1785 * Remove the directory entry.
1787 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1789 if (error) {
1790 dmu_tx_commit(tx);
1791 goto out;
1794 if (unlinked) {
1796 * Hold z_lock so that we can make sure that the ACL obj
1797 * hasn't changed. Could have been deleted due to
1798 * zfs_sa_upgrade().
1800 mutex_enter(&zp->z_lock);
1801 mutex_enter(&vp->v_lock);
1802 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1803 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1804 delete_now = may_delete_now && !toobig &&
1805 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1806 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1807 acl_obj;
1808 mutex_exit(&vp->v_lock);
1811 if (delete_now) {
1812 if (xattr_obj_unlinked) {
1813 ASSERT3U(xzp->z_links, ==, 2);
1814 mutex_enter(&xzp->z_lock);
1815 xzp->z_unlinked = 1;
1816 xzp->z_links = 0;
1817 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1818 &xzp->z_links, sizeof (xzp->z_links), tx);
1819 ASSERT3U(error, ==, 0);
1820 mutex_exit(&xzp->z_lock);
1821 zfs_unlinked_add(xzp, tx);
1823 if (zp->z_is_sa)
1824 error = sa_remove(zp->z_sa_hdl,
1825 SA_ZPL_XATTR(zfsvfs), tx);
1826 else
1827 error = sa_update(zp->z_sa_hdl,
1828 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1829 sizeof (uint64_t), tx);
1830 ASSERT0(error);
1832 mutex_enter(&vp->v_lock);
1833 VN_RELE_LOCKED(vp);
1834 ASSERT0(vp->v_count);
1835 mutex_exit(&vp->v_lock);
1836 mutex_exit(&zp->z_lock);
1837 zfs_znode_delete(zp, tx);
1838 } else if (unlinked) {
1839 mutex_exit(&zp->z_lock);
1840 zfs_unlinked_add(zp, tx);
1843 txtype = TX_REMOVE;
1844 if (flags & FIGNORECASE)
1845 txtype |= TX_CI;
1846 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1848 dmu_tx_commit(tx);
1849 out:
1850 if (realnmp)
1851 pn_free(realnmp);
1853 zfs_dirent_unlock(dl);
1855 if (!delete_now)
1856 VN_RELE(vp);
1857 if (xzp)
1858 VN_RELE(ZTOV(xzp));
1860 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1861 zil_commit(zilog, 0);
1863 ZFS_EXIT(zfsvfs);
1864 return (error);
1868 * Create a new directory and insert it into dvp using the name
1869 * provided. Return a pointer to the inserted directory.
1871 * IN: dvp - vnode of directory to add subdir to.
1872 * dirname - name of new directory.
1873 * vap - attributes of new directory.
1874 * cr - credentials of caller.
1875 * ct - caller context
1876 * flags - case flags
1877 * vsecp - ACL to be set
1879 * OUT: vpp - vnode of created directory.
1881 * RETURN: 0 on success, error code on failure.
1883 * Timestamps:
1884 * dvp - ctime|mtime updated
1885 * vp - ctime|mtime|atime updated
1887 /*ARGSUSED*/
1888 static int
1889 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1890 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1892 znode_t *zp, *dzp = VTOZ(dvp);
1893 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1894 zilog_t *zilog;
1895 zfs_dirlock_t *dl;
1896 uint64_t txtype;
1897 dmu_tx_t *tx;
1898 int error;
1899 int zf = ZNEW;
1900 ksid_t *ksid;
1901 uid_t uid;
1902 gid_t gid = crgetgid(cr);
1903 zfs_acl_ids_t acl_ids;
1904 boolean_t fuid_dirtied;
1905 boolean_t waited = B_FALSE;
1907 ASSERT(vap->va_type == VDIR);
1910 * If we have an ephemeral id, ACL, or XVATTR then
1911 * make sure file system is at proper version
1914 ksid = crgetsid(cr, KSID_OWNER);
1915 if (ksid)
1916 uid = ksid_getid(ksid);
1917 else
1918 uid = crgetuid(cr);
1919 if (zfsvfs->z_use_fuids == B_FALSE &&
1920 (vsecp || (vap->va_mask & VATTR_XVATTR) ||
1921 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1922 return (SET_ERROR(EINVAL));
1924 ZFS_ENTER(zfsvfs);
1925 ZFS_VERIFY_ZP(dzp);
1926 zilog = zfsvfs->z_log;
1928 if (dzp->z_pflags & ZFS_XATTR) {
1929 ZFS_EXIT(zfsvfs);
1930 return (SET_ERROR(EINVAL));
1933 if (zfsvfs->z_utf8 && u8_validate(dirname,
1934 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1935 ZFS_EXIT(zfsvfs);
1936 return (SET_ERROR(EILSEQ));
1938 if (flags & FIGNORECASE)
1939 zf |= ZCILOOK;
1941 if (vap->va_mask & VATTR_XVATTR) {
1942 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1943 crgetuid(cr), cr, vap->va_type)) != 0) {
1944 ZFS_EXIT(zfsvfs);
1945 return (error);
1949 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1950 vsecp, &acl_ids)) != 0) {
1951 ZFS_EXIT(zfsvfs);
1952 return (error);
1955 * First make sure the new directory doesn't exist.
1957 * Existence is checked first to make sure we don't return
1958 * EACCES instead of EEXIST which can cause some applications
1959 * to fail.
1961 top:
1962 *vpp = NULL;
1964 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1965 NULL, NULL)) {
1966 zfs_acl_ids_free(&acl_ids);
1967 ZFS_EXIT(zfsvfs);
1968 return (error);
1971 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1972 zfs_acl_ids_free(&acl_ids);
1973 zfs_dirent_unlock(dl);
1974 ZFS_EXIT(zfsvfs);
1975 return (error);
1978 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1979 zfs_acl_ids_free(&acl_ids);
1980 zfs_dirent_unlock(dl);
1981 ZFS_EXIT(zfsvfs);
1982 return (SET_ERROR(EDQUOT));
1986 * Add a new entry to the directory.
1988 tx = dmu_tx_create(zfsvfs->z_os);
1989 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1990 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1991 fuid_dirtied = zfsvfs->z_fuid_dirty;
1992 if (fuid_dirtied)
1993 zfs_fuid_txhold(zfsvfs, tx);
1994 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1995 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1996 acl_ids.z_aclp->z_acl_bytes);
1999 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2000 ZFS_SA_BASE_ATTR_SIZE);
2002 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2003 if (error) {
2004 zfs_dirent_unlock(dl);
2005 if (error == ERESTART) {
2006 waited = B_TRUE;
2007 dmu_tx_wait(tx);
2008 dmu_tx_abort(tx);
2009 goto top;
2011 zfs_acl_ids_free(&acl_ids);
2012 dmu_tx_abort(tx);
2013 ZFS_EXIT(zfsvfs);
2014 return (error);
2018 * Create new node.
2020 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2022 if (fuid_dirtied)
2023 zfs_fuid_sync(zfsvfs, tx);
2026 * Now put new name in parent dir.
2028 (void) zfs_link_create(dl, zp, tx, ZNEW);
2030 *vpp = ZTOV(zp);
2032 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2033 if (flags & FIGNORECASE)
2034 txtype |= TX_CI;
2035 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2036 acl_ids.z_fuidp, vap);
2038 zfs_acl_ids_free(&acl_ids);
2040 dmu_tx_commit(tx);
2042 zfs_dirent_unlock(dl);
2044 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2045 zil_commit(zilog, 0);
2047 ZFS_EXIT(zfsvfs);
2048 return (0);
2052 * Remove a directory subdir entry. If the current working
2053 * directory is the same as the subdir to be removed, the
2054 * remove will fail.
2056 * IN: dvp - vnode of directory to remove from.
2057 * name - name of directory to be removed.
2058 * cwd - vnode of current working directory.
2059 * cr - credentials of caller.
2060 * ct - caller context
2061 * flags - case flags
2063 * RETURN: 0 on success, error code on failure.
2065 * Timestamps:
2066 * dvp - ctime|mtime updated
2068 /*ARGSUSED*/
2069 static int
2070 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2071 caller_context_t *ct, int flags)
2073 znode_t *dzp = VTOZ(dvp);
2074 znode_t *zp;
2075 vnode_t *vp;
2076 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2077 zilog_t *zilog;
2078 zfs_dirlock_t *dl;
2079 dmu_tx_t *tx;
2080 int error;
2081 int zflg = ZEXISTS;
2082 boolean_t waited = B_FALSE;
2084 ZFS_ENTER(zfsvfs);
2085 ZFS_VERIFY_ZP(dzp);
2086 zilog = zfsvfs->z_log;
2088 if (flags & FIGNORECASE)
2089 zflg |= ZCILOOK;
2090 top:
2091 zp = NULL;
2094 * Attempt to lock directory; fail if entry doesn't exist.
2096 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2097 NULL, NULL)) {
2098 ZFS_EXIT(zfsvfs);
2099 return (error);
2102 vp = ZTOV(zp);
2104 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2105 goto out;
2108 if (vp->v_type != VDIR) {
2109 error = SET_ERROR(ENOTDIR);
2110 goto out;
2113 if (vp == cwd) {
2114 error = SET_ERROR(EINVAL);
2115 goto out;
2118 vnevent_rmdir(vp, dvp, name, ct);
2121 * Grab a lock on the directory to make sure that noone is
2122 * trying to add (or lookup) entries while we are removing it.
2124 rw_enter(&zp->z_name_lock, RW_WRITER);
2127 * Grab a lock on the parent pointer to make sure we play well
2128 * with the treewalk and directory rename code.
2130 rw_enter(&zp->z_parent_lock, RW_WRITER);
2132 tx = dmu_tx_create(zfsvfs->z_os);
2133 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2134 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2135 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2136 zfs_sa_upgrade_txholds(tx, zp);
2137 zfs_sa_upgrade_txholds(tx, dzp);
2138 dmu_tx_mark_netfree(tx);
2139 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2140 if (error) {
2141 rw_exit(&zp->z_parent_lock);
2142 rw_exit(&zp->z_name_lock);
2143 zfs_dirent_unlock(dl);
2144 VN_RELE(vp);
2145 if (error == ERESTART) {
2146 waited = B_TRUE;
2147 dmu_tx_wait(tx);
2148 dmu_tx_abort(tx);
2149 goto top;
2151 dmu_tx_abort(tx);
2152 ZFS_EXIT(zfsvfs);
2153 return (error);
2156 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2158 if (error == 0) {
2159 uint64_t txtype = TX_RMDIR;
2160 if (flags & FIGNORECASE)
2161 txtype |= TX_CI;
2162 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2165 dmu_tx_commit(tx);
2167 rw_exit(&zp->z_parent_lock);
2168 rw_exit(&zp->z_name_lock);
2169 out:
2170 zfs_dirent_unlock(dl);
2172 VN_RELE(vp);
2174 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2175 zil_commit(zilog, 0);
2177 ZFS_EXIT(zfsvfs);
2178 return (error);
2182 * Read as many directory entries as will fit into the provided
2183 * buffer from the given directory cursor position (specified in
2184 * the uio structure).
2186 * IN: vp - vnode of directory to read.
2187 * uio - structure supplying read location, range info,
2188 * and return buffer.
2189 * cr - credentials of caller.
2190 * ct - caller context
2191 * flags - case flags
2193 * OUT: uio - updated offset and range, buffer filled.
2194 * eofp - set to true if end-of-file detected.
2196 * RETURN: 0 on success, error code on failure.
2198 * Timestamps:
2199 * vp - atime updated
2201 * Note that the low 4 bits of the cookie returned by zap is always zero.
2202 * This allows us to use the low range for "special" directory entries:
2203 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2204 * we use the offset 2 for the '.zfs' directory.
2206 /* ARGSUSED */
2207 static int
2208 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2209 caller_context_t *ct, int flags)
2211 znode_t *zp = VTOZ(vp);
2212 iovec_t *iovp;
2213 edirent_t *eodp;
2214 dirent64_t *odp;
2215 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2216 objset_t *os;
2217 caddr_t outbuf;
2218 size_t bufsize;
2219 zap_cursor_t zc;
2220 zap_attribute_t zap;
2221 uint_t bytes_wanted;
2222 uint64_t offset; /* must be unsigned; checks for < 1 */
2223 uint64_t parent;
2224 int local_eof;
2225 int outcount;
2226 int error;
2227 uint8_t prefetch;
2228 boolean_t check_sysattrs;
2230 ZFS_ENTER(zfsvfs);
2231 ZFS_VERIFY_ZP(zp);
2233 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2234 &parent, sizeof (parent))) != 0) {
2235 ZFS_EXIT(zfsvfs);
2236 return (error);
2240 * If we are not given an eof variable,
2241 * use a local one.
2243 if (eofp == NULL)
2244 eofp = &local_eof;
2247 * Check for valid iov_len.
2249 if (uio->uio_iov->iov_len <= 0) {
2250 ZFS_EXIT(zfsvfs);
2251 return (SET_ERROR(EINVAL));
2255 * Quit if directory has been removed (posix)
2257 if ((*eofp = zp->z_unlinked) != 0) {
2258 ZFS_EXIT(zfsvfs);
2259 return (0);
2262 error = 0;
2263 os = zfsvfs->z_os;
2264 offset = uio->uio_loffset;
2265 prefetch = zp->z_zn_prefetch;
2268 * Initialize the iterator cursor.
2270 if (offset <= 3) {
2272 * Start iteration from the beginning of the directory.
2274 zap_cursor_init(&zc, os, zp->z_id);
2275 } else {
2277 * The offset is a serialized cursor.
2279 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2283 * Get space to change directory entries into fs independent format.
2285 iovp = uio->uio_iov;
2286 bytes_wanted = iovp->iov_len;
2287 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2288 bufsize = bytes_wanted;
2289 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2290 odp = (struct dirent64 *)outbuf;
2291 } else {
2292 bufsize = bytes_wanted;
2293 outbuf = NULL;
2294 odp = (struct dirent64 *)iovp->iov_base;
2296 eodp = (struct edirent *)odp;
2299 * If this VFS supports the system attribute view interface; and
2300 * we're looking at an extended attribute directory; and we care
2301 * about normalization conflicts on this vfs; then we must check
2302 * for normalization conflicts with the sysattr name space.
2304 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2305 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2306 (flags & V_RDDIR_ENTFLAGS);
2309 * Transform to file-system independent format
2311 outcount = 0;
2312 while (outcount < bytes_wanted) {
2313 ino64_t objnum;
2314 ushort_t reclen;
2315 off64_t *next = NULL;
2318 * Special case `.', `..', and `.zfs'.
2320 if (offset == 0) {
2321 (void) strcpy(zap.za_name, ".");
2322 zap.za_normalization_conflict = 0;
2323 objnum = zp->z_id;
2324 } else if (offset == 1) {
2325 (void) strcpy(zap.za_name, "..");
2326 zap.za_normalization_conflict = 0;
2327 objnum = parent;
2328 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2329 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2330 zap.za_normalization_conflict = 0;
2331 objnum = ZFSCTL_INO_ROOT;
2332 } else {
2334 * Grab next entry.
2336 if (error = zap_cursor_retrieve(&zc, &zap)) {
2337 if ((*eofp = (error == ENOENT)) != 0)
2338 break;
2339 else
2340 goto update;
2343 if (zap.za_integer_length != 8 ||
2344 zap.za_num_integers != 1) {
2345 cmn_err(CE_WARN, "zap_readdir: bad directory "
2346 "entry, obj = %lld, offset = %lld\n",
2347 (u_longlong_t)zp->z_id,
2348 (u_longlong_t)offset);
2349 error = SET_ERROR(ENXIO);
2350 goto update;
2353 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2355 * MacOS X can extract the object type here such as:
2356 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2359 if (check_sysattrs && !zap.za_normalization_conflict) {
2360 zap.za_normalization_conflict =
2361 xattr_sysattr_casechk(zap.za_name);
2365 if (flags & V_RDDIR_ACCFILTER) {
2367 * If we have no access at all, don't include
2368 * this entry in the returned information
2370 znode_t *ezp;
2371 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2372 goto skip_entry;
2373 if (!zfs_has_access(ezp, cr)) {
2374 VN_RELE(ZTOV(ezp));
2375 goto skip_entry;
2377 VN_RELE(ZTOV(ezp));
2380 if (flags & V_RDDIR_ENTFLAGS)
2381 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2382 else
2383 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2386 * Will this entry fit in the buffer?
2388 if (outcount + reclen > bufsize) {
2390 * Did we manage to fit anything in the buffer?
2392 if (!outcount) {
2393 error = SET_ERROR(EINVAL);
2394 goto update;
2396 break;
2398 if (flags & V_RDDIR_ENTFLAGS) {
2400 * Add extended flag entry:
2402 eodp->ed_ino = objnum;
2403 eodp->ed_reclen = reclen;
2404 /* NOTE: ed_off is the offset for the *next* entry */
2405 next = &(eodp->ed_off);
2406 eodp->ed_eflags = zap.za_normalization_conflict ?
2407 ED_CASE_CONFLICT : 0;
2408 (void) strncpy(eodp->ed_name, zap.za_name,
2409 EDIRENT_NAMELEN(reclen));
2410 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2411 } else {
2413 * Add normal entry:
2415 odp->d_ino = objnum;
2416 odp->d_reclen = reclen;
2417 /* NOTE: d_off is the offset for the *next* entry */
2418 next = &(odp->d_off);
2419 (void) strncpy(odp->d_name, zap.za_name,
2420 DIRENT64_NAMELEN(reclen));
2421 odp = (dirent64_t *)((intptr_t)odp + reclen);
2423 outcount += reclen;
2425 ASSERT(outcount <= bufsize);
2427 /* Prefetch znode */
2428 if (prefetch)
2429 dmu_prefetch(os, objnum, 0, 0, 0,
2430 ZIO_PRIORITY_SYNC_READ);
2432 skip_entry:
2434 * Move to the next entry, fill in the previous offset.
2436 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2437 zap_cursor_advance(&zc);
2438 offset = zap_cursor_serialize(&zc);
2439 } else {
2440 offset += 1;
2442 if (next)
2443 *next = offset;
2445 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2447 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2448 iovp->iov_base += outcount;
2449 iovp->iov_len -= outcount;
2450 uio->uio_resid -= outcount;
2451 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2453 * Reset the pointer.
2455 offset = uio->uio_loffset;
2458 update:
2459 zap_cursor_fini(&zc);
2460 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2461 kmem_free(outbuf, bufsize);
2463 if (error == ENOENT)
2464 error = 0;
2466 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2468 uio->uio_loffset = offset;
2469 ZFS_EXIT(zfsvfs);
2470 return (error);
2473 ulong_t zfs_fsync_sync_cnt = 4;
2475 static int
2476 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2478 znode_t *zp = VTOZ(vp);
2479 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2482 * Regardless of whether this is required for standards conformance,
2483 * this is the logical behavior when fsync() is called on a file with
2484 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2485 * going to be pushed out as part of the zil_commit().
2487 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2488 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2489 (void) fop_putpage(vp, 0, (size_t)0, B_ASYNC, cr, ct);
2491 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2493 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2494 ZFS_ENTER(zfsvfs);
2495 ZFS_VERIFY_ZP(zp);
2496 zil_commit(zfsvfs->z_log, zp->z_id);
2497 ZFS_EXIT(zfsvfs);
2499 return (0);
2504 * Get the requested file attributes and place them in the provided
2505 * vattr structure.
2507 * IN: vp - vnode of file.
2508 * vap - va_mask identifies requested attributes.
2509 * If VATTR_XVATTR set, then optional attrs are requested
2510 * flags - ATTR_NOACLCHECK (CIFS server context)
2511 * cr - credentials of caller.
2512 * ct - caller context
2514 * OUT: vap - attribute values.
2516 * RETURN: 0 (always succeeds).
2518 /* ARGSUSED */
2519 static int
2520 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2521 caller_context_t *ct)
2523 znode_t *zp = VTOZ(vp);
2524 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2525 int error = 0;
2526 uint64_t links;
2527 uint64_t mtime[2], ctime[2];
2528 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2529 xoptattr_t *xoap = NULL;
2530 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2531 sa_bulk_attr_t bulk[2];
2532 int count = 0;
2534 ZFS_ENTER(zfsvfs);
2535 ZFS_VERIFY_ZP(zp);
2537 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2539 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2540 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2542 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2543 ZFS_EXIT(zfsvfs);
2544 return (error);
2548 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2549 * Also, if we are the owner don't bother, since owner should
2550 * always be allowed to read basic attributes of file.
2552 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2553 (vap->va_uid != crgetuid(cr))) {
2554 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2555 skipaclchk, cr)) {
2556 ZFS_EXIT(zfsvfs);
2557 return (error);
2562 * Return all attributes. It's cheaper to provide the answer
2563 * than to determine whether we were asked the question.
2566 mutex_enter(&zp->z_lock);
2567 vap->va_type = vp->v_type;
2568 vap->va_mode = zp->z_mode & MODEMASK;
2569 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2570 vap->va_nodeid = zp->z_id;
2571 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2572 links = zp->z_links + 1;
2573 else
2574 links = zp->z_links;
2575 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2576 vap->va_size = zp->z_size;
2577 vap->va_rdev = vp->v_rdev;
2578 vap->va_seq = zp->z_seq;
2581 * Add in any requested optional attributes and the create time.
2582 * Also set the corresponding bits in the returned attribute bitmap.
2584 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2585 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2586 xoap->xoa_archive =
2587 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2588 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2591 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2592 xoap->xoa_readonly =
2593 ((zp->z_pflags & ZFS_READONLY) != 0);
2594 XVA_SET_RTN(xvap, XAT_READONLY);
2597 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2598 xoap->xoa_system =
2599 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2600 XVA_SET_RTN(xvap, XAT_SYSTEM);
2603 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2604 xoap->xoa_hidden =
2605 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2606 XVA_SET_RTN(xvap, XAT_HIDDEN);
2609 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2610 xoap->xoa_nounlink =
2611 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2612 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2615 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2616 xoap->xoa_immutable =
2617 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2618 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2621 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2622 xoap->xoa_appendonly =
2623 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2624 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2627 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2628 xoap->xoa_nodump =
2629 ((zp->z_pflags & ZFS_NODUMP) != 0);
2630 XVA_SET_RTN(xvap, XAT_NODUMP);
2633 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2634 xoap->xoa_opaque =
2635 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2636 XVA_SET_RTN(xvap, XAT_OPAQUE);
2639 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2640 xoap->xoa_av_quarantined =
2641 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2642 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2645 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2646 xoap->xoa_av_modified =
2647 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2648 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2651 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2652 vp->v_type == VREG) {
2653 zfs_sa_get_scanstamp(zp, xvap);
2656 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2657 uint64_t times[2];
2659 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2660 times, sizeof (times));
2661 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2662 XVA_SET_RTN(xvap, XAT_CREATETIME);
2665 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2666 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2667 XVA_SET_RTN(xvap, XAT_REPARSE);
2669 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2670 xoap->xoa_generation = zp->z_gen;
2671 XVA_SET_RTN(xvap, XAT_GEN);
2674 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2675 xoap->xoa_offline =
2676 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2677 XVA_SET_RTN(xvap, XAT_OFFLINE);
2680 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2681 xoap->xoa_sparse =
2682 ((zp->z_pflags & ZFS_SPARSE) != 0);
2683 XVA_SET_RTN(xvap, XAT_SPARSE);
2687 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2688 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2689 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2691 mutex_exit(&zp->z_lock);
2693 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2695 if (zp->z_blksz == 0) {
2697 * Block size hasn't been set; suggest maximal I/O transfers.
2699 vap->va_blksize = zfsvfs->z_max_blksz;
2702 ZFS_EXIT(zfsvfs);
2703 return (0);
2707 * Set the file attributes to the values contained in the
2708 * vattr structure.
2710 * IN: vp - vnode of file to be modified.
2711 * vap - new attribute values.
2712 * If VATTR_XVATTR set, then optional attrs are being set
2713 * flags - ATTR_UTIME set if non-default time values provided.
2714 * - ATTR_NOACLCHECK (CIFS context only).
2715 * cr - credentials of caller.
2716 * ct - caller context
2718 * RETURN: 0 on success, error code on failure.
2720 * Timestamps:
2721 * vp - ctime updated, mtime updated if size changed.
2723 /* ARGSUSED */
2724 static int
2725 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2726 caller_context_t *ct)
2728 znode_t *zp = VTOZ(vp);
2729 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2730 zilog_t *zilog;
2731 dmu_tx_t *tx;
2732 vattr_t oldva;
2733 xvattr_t tmpxvattr;
2734 uint_t mask = vap->va_mask;
2735 uint_t saved_mask = 0;
2736 int trim_mask = 0;
2737 uint64_t new_mode;
2738 uint64_t new_uid, new_gid;
2739 uint64_t xattr_obj;
2740 uint64_t mtime[2], ctime[2];
2741 znode_t *attrzp;
2742 int need_policy = FALSE;
2743 int err, err2;
2744 zfs_fuid_info_t *fuidp = NULL;
2745 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2746 xoptattr_t *xoap;
2747 zfs_acl_t *aclp;
2748 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2749 boolean_t fuid_dirtied = B_FALSE;
2750 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2751 int count = 0, xattr_count = 0;
2753 if (mask == 0)
2754 return (0);
2756 if (mask & VATTR_NOSET)
2757 return (SET_ERROR(EINVAL));
2759 ZFS_ENTER(zfsvfs);
2760 ZFS_VERIFY_ZP(zp);
2762 zilog = zfsvfs->z_log;
2765 * Make sure that if we have ephemeral uid/gid or xvattr specified
2766 * that file system is at proper version level
2769 if (zfsvfs->z_use_fuids == B_FALSE &&
2770 (((mask & VATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2771 ((mask & VATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2772 (mask & VATTR_XVATTR))) {
2773 ZFS_EXIT(zfsvfs);
2774 return (SET_ERROR(EINVAL));
2777 if (mask & VATTR_SIZE && vp->v_type == VDIR) {
2778 ZFS_EXIT(zfsvfs);
2779 return (SET_ERROR(EISDIR));
2782 if (mask & VATTR_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2783 ZFS_EXIT(zfsvfs);
2784 return (SET_ERROR(EINVAL));
2788 * If this is an xvattr_t, then get a pointer to the structure of
2789 * optional attributes. If this is NULL, then we have a vattr_t.
2791 xoap = xva_getxoptattr(xvap);
2793 xva_init(&tmpxvattr);
2796 * Immutable files can only alter immutable bit and atime
2798 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2799 ((mask & (VATTR_SIZE|VATTR_UID|VATTR_GID|VATTR_MTIME|VATTR_MODE)) ||
2800 ((mask & VATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2801 ZFS_EXIT(zfsvfs);
2802 return (SET_ERROR(EPERM));
2806 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2810 * Verify timestamps doesn't overflow 32 bits.
2811 * ZFS can handle large timestamps, but 32bit syscalls can't
2812 * handle times greater than 2039. This check should be removed
2813 * once large timestamps are fully supported.
2815 if (mask & (VATTR_ATIME | VATTR_MTIME)) {
2816 if (((mask & VATTR_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2817 ((mask & VATTR_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2818 ZFS_EXIT(zfsvfs);
2819 return (SET_ERROR(EOVERFLOW));
2823 top:
2824 attrzp = NULL;
2825 aclp = NULL;
2827 /* Can this be moved to before the top label? */
2828 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2829 ZFS_EXIT(zfsvfs);
2830 return (SET_ERROR(EROFS));
2834 * First validate permissions
2837 if (mask & VATTR_SIZE) {
2838 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2839 if (err) {
2840 ZFS_EXIT(zfsvfs);
2841 return (err);
2844 * XXX - Note, we are not providing any open
2845 * mode flags here (like FNDELAY), so we may
2846 * block if there are locks present... this
2847 * should be addressed in openat().
2849 /* XXX - would it be OK to generate a log record here? */
2850 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2851 if (err) {
2852 ZFS_EXIT(zfsvfs);
2853 return (err);
2856 if (vap->va_size == 0)
2857 vnevent_truncate(ZTOV(zp), ct);
2860 if (mask & (VATTR_ATIME|VATTR_MTIME) ||
2861 ((mask & VATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2862 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2863 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2864 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2865 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2866 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2867 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2868 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2869 skipaclchk, cr);
2872 if (mask & (VATTR_UID|VATTR_GID)) {
2873 int idmask = (mask & (VATTR_UID|VATTR_GID));
2874 int take_owner;
2875 int take_group;
2878 * NOTE: even if a new mode is being set,
2879 * we may clear S_ISUID/S_ISGID bits.
2882 if (!(mask & VATTR_MODE))
2883 vap->va_mode = zp->z_mode;
2886 * Take ownership or chgrp to group we are a member of
2889 take_owner = (mask & VATTR_UID) && (vap->va_uid == crgetuid(cr));
2890 take_group = (mask & VATTR_GID) &&
2891 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2894 * If both VATTR_UID and VATTR_GID are set then take_owner and
2895 * take_group must both be set in order to allow taking
2896 * ownership.
2898 * Otherwise, send the check through secpolicy_vnode_setattr()
2902 if (((idmask == (VATTR_UID|VATTR_GID)) && take_owner && take_group) ||
2903 ((idmask == VATTR_UID) && take_owner) ||
2904 ((idmask == VATTR_GID) && take_group)) {
2905 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2906 skipaclchk, cr) == 0) {
2908 * Remove setuid/setgid for non-privileged users
2910 secpolicy_setid_clear(vap, cr);
2911 trim_mask = (mask & (VATTR_UID|VATTR_GID));
2912 } else {
2913 need_policy = TRUE;
2915 } else {
2916 need_policy = TRUE;
2920 mutex_enter(&zp->z_lock);
2921 oldva.va_mode = zp->z_mode;
2922 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2923 if (mask & VATTR_XVATTR) {
2925 * Update xvattr mask to include only those attributes
2926 * that are actually changing.
2928 * the bits will be restored prior to actually setting
2929 * the attributes so the caller thinks they were set.
2931 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2932 if (xoap->xoa_appendonly !=
2933 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2934 need_policy = TRUE;
2935 } else {
2936 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2937 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2941 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2942 if (xoap->xoa_nounlink !=
2943 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2944 need_policy = TRUE;
2945 } else {
2946 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2947 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2951 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2952 if (xoap->xoa_immutable !=
2953 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2954 need_policy = TRUE;
2955 } else {
2956 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2957 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2961 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2962 if (xoap->xoa_nodump !=
2963 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2964 need_policy = TRUE;
2965 } else {
2966 XVA_CLR_REQ(xvap, XAT_NODUMP);
2967 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2971 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2972 if (xoap->xoa_av_modified !=
2973 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2974 need_policy = TRUE;
2975 } else {
2976 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2977 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2981 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2982 if ((vp->v_type != VREG &&
2983 xoap->xoa_av_quarantined) ||
2984 xoap->xoa_av_quarantined !=
2985 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2986 need_policy = TRUE;
2987 } else {
2988 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2989 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2993 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2994 mutex_exit(&zp->z_lock);
2995 ZFS_EXIT(zfsvfs);
2996 return (SET_ERROR(EPERM));
2999 if (need_policy == FALSE &&
3000 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3001 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3002 need_policy = TRUE;
3006 mutex_exit(&zp->z_lock);
3008 if (mask & VATTR_MODE) {
3009 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3010 err = secpolicy_setid_setsticky_clear(vp, vap,
3011 &oldva, cr);
3012 if (err) {
3013 ZFS_EXIT(zfsvfs);
3014 return (err);
3016 trim_mask |= VATTR_MODE;
3017 } else {
3018 need_policy = TRUE;
3022 if (need_policy) {
3024 * If trim_mask is set then take ownership
3025 * has been granted or write_acl is present and user
3026 * has the ability to modify mode. In that case remove
3027 * UID|GID and or MODE from mask so that
3028 * secpolicy_vnode_setattr() doesn't revoke it.
3031 if (trim_mask) {
3032 saved_mask = vap->va_mask;
3033 vap->va_mask &= ~trim_mask;
3035 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3036 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3037 if (err) {
3038 ZFS_EXIT(zfsvfs);
3039 return (err);
3042 if (trim_mask)
3043 vap->va_mask |= saved_mask;
3047 * secpolicy_vnode_setattr, or take ownership may have
3048 * changed va_mask
3050 mask = vap->va_mask;
3052 if ((mask & (VATTR_UID | VATTR_GID))) {
3053 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3054 &xattr_obj, sizeof (xattr_obj));
3056 if (err == 0 && xattr_obj) {
3057 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3058 if (err)
3059 goto out2;
3061 if (mask & VATTR_UID) {
3062 new_uid = zfs_fuid_create(zfsvfs,
3063 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3064 if (new_uid != zp->z_uid &&
3065 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3066 if (attrzp)
3067 VN_RELE(ZTOV(attrzp));
3068 err = SET_ERROR(EDQUOT);
3069 goto out2;
3073 if (mask & VATTR_GID) {
3074 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3075 cr, ZFS_GROUP, &fuidp);
3076 if (new_gid != zp->z_gid &&
3077 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3078 if (attrzp)
3079 VN_RELE(ZTOV(attrzp));
3080 err = SET_ERROR(EDQUOT);
3081 goto out2;
3085 tx = dmu_tx_create(zfsvfs->z_os);
3087 if (mask & VATTR_MODE) {
3088 uint64_t pmode = zp->z_mode;
3089 uint64_t acl_obj;
3090 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3092 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3093 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3094 err = SET_ERROR(EPERM);
3095 goto out;
3098 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3099 goto out;
3101 mutex_enter(&zp->z_lock);
3102 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3104 * Are we upgrading ACL from old V0 format
3105 * to V1 format?
3107 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3108 zfs_znode_acl_version(zp) ==
3109 ZFS_ACL_VERSION_INITIAL) {
3110 dmu_tx_hold_free(tx, acl_obj, 0,
3111 DMU_OBJECT_END);
3112 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3113 0, aclp->z_acl_bytes);
3114 } else {
3115 dmu_tx_hold_write(tx, acl_obj, 0,
3116 aclp->z_acl_bytes);
3118 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3119 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3120 0, aclp->z_acl_bytes);
3122 mutex_exit(&zp->z_lock);
3123 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3124 } else {
3125 if ((mask & VATTR_XVATTR) &&
3126 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3127 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3128 else
3129 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3132 if (attrzp) {
3133 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3136 fuid_dirtied = zfsvfs->z_fuid_dirty;
3137 if (fuid_dirtied)
3138 zfs_fuid_txhold(zfsvfs, tx);
3140 zfs_sa_upgrade_txholds(tx, zp);
3142 err = dmu_tx_assign(tx, TXG_WAIT);
3143 if (err)
3144 goto out;
3146 count = 0;
3148 * Set each attribute requested.
3149 * We group settings according to the locks they need to acquire.
3151 * Note: you cannot set ctime directly, although it will be
3152 * updated as a side-effect of calling this function.
3156 if (mask & (VATTR_UID|VATTR_GID|VATTR_MODE))
3157 mutex_enter(&zp->z_acl_lock);
3158 mutex_enter(&zp->z_lock);
3160 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3161 &zp->z_pflags, sizeof (zp->z_pflags));
3163 if (attrzp) {
3164 if (mask & (VATTR_UID|VATTR_GID|VATTR_MODE))
3165 mutex_enter(&attrzp->z_acl_lock);
3166 mutex_enter(&attrzp->z_lock);
3167 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3168 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3169 sizeof (attrzp->z_pflags));
3172 if (mask & (VATTR_UID|VATTR_GID)) {
3174 if (mask & VATTR_UID) {
3175 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3176 &new_uid, sizeof (new_uid));
3177 zp->z_uid = new_uid;
3178 if (attrzp) {
3179 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3180 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3181 sizeof (new_uid));
3182 attrzp->z_uid = new_uid;
3186 if (mask & VATTR_GID) {
3187 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3188 NULL, &new_gid, sizeof (new_gid));
3189 zp->z_gid = new_gid;
3190 if (attrzp) {
3191 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3192 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3193 sizeof (new_gid));
3194 attrzp->z_gid = new_gid;
3197 if (!(mask & VATTR_MODE)) {
3198 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3199 NULL, &new_mode, sizeof (new_mode));
3200 new_mode = zp->z_mode;
3202 err = zfs_acl_chown_setattr(zp);
3203 ASSERT(err == 0);
3204 if (attrzp) {
3205 err = zfs_acl_chown_setattr(attrzp);
3206 ASSERT(err == 0);
3210 if (mask & VATTR_MODE) {
3211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3212 &new_mode, sizeof (new_mode));
3213 zp->z_mode = new_mode;
3214 ASSERT3U((uintptr_t)aclp, !=, (uintptr_t)NULL);
3215 err = zfs_aclset_common(zp, aclp, cr, tx);
3216 ASSERT0(err);
3217 if (zp->z_acl_cached)
3218 zfs_acl_free(zp->z_acl_cached);
3219 zp->z_acl_cached = aclp;
3220 aclp = NULL;
3224 if (mask & VATTR_ATIME) {
3225 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3227 &zp->z_atime, sizeof (zp->z_atime));
3230 if (mask & VATTR_MTIME) {
3231 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3233 mtime, sizeof (mtime));
3236 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3237 if (mask & VATTR_SIZE && !(mask & VATTR_MTIME)) {
3238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3239 NULL, mtime, sizeof (mtime));
3240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3241 &ctime, sizeof (ctime));
3242 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3243 B_TRUE);
3244 } else if (mask != 0) {
3245 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3246 &ctime, sizeof (ctime));
3247 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3248 B_TRUE);
3249 if (attrzp) {
3250 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3251 SA_ZPL_CTIME(zfsvfs), NULL,
3252 &ctime, sizeof (ctime));
3253 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3254 mtime, ctime, B_TRUE);
3258 * Do this after setting timestamps to prevent timestamp
3259 * update from toggling bit
3262 if (xoap && (mask & VATTR_XVATTR)) {
3265 * restore trimmed off masks
3266 * so that return masks can be set for caller.
3269 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3270 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3272 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3273 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3275 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3276 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3278 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3279 XVA_SET_REQ(xvap, XAT_NODUMP);
3281 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3282 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3284 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3285 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3288 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3289 ASSERT(vp->v_type == VREG);
3291 zfs_xvattr_set(zp, xvap, tx);
3294 if (fuid_dirtied)
3295 zfs_fuid_sync(zfsvfs, tx);
3297 if (mask != 0)
3298 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3300 mutex_exit(&zp->z_lock);
3301 if (mask & (VATTR_UID|VATTR_GID|VATTR_MODE))
3302 mutex_exit(&zp->z_acl_lock);
3304 if (attrzp) {
3305 if (mask & (VATTR_UID|VATTR_GID|VATTR_MODE))
3306 mutex_exit(&attrzp->z_acl_lock);
3307 mutex_exit(&attrzp->z_lock);
3309 out:
3310 if (err == 0 && attrzp) {
3311 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3312 xattr_count, tx);
3313 ASSERT(err2 == 0);
3316 if (attrzp)
3317 VN_RELE(ZTOV(attrzp));
3319 if (aclp)
3320 zfs_acl_free(aclp);
3322 if (fuidp) {
3323 zfs_fuid_info_free(fuidp);
3324 fuidp = NULL;
3327 if (err) {
3328 dmu_tx_abort(tx);
3329 if (err == ERESTART)
3330 goto top;
3331 } else {
3332 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3333 dmu_tx_commit(tx);
3336 out2:
3337 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3338 zil_commit(zilog, 0);
3340 ZFS_EXIT(zfsvfs);
3341 return (err);
3344 typedef struct zfs_zlock {
3345 krwlock_t *zl_rwlock; /* lock we acquired */
3346 znode_t *zl_znode; /* znode we held */
3347 struct zfs_zlock *zl_next; /* next in list */
3348 } zfs_zlock_t;
3351 * Drop locks and release vnodes that were held by zfs_rename_lock().
3353 static void
3354 zfs_rename_unlock(zfs_zlock_t **zlpp)
3356 zfs_zlock_t *zl;
3358 while ((zl = *zlpp) != NULL) {
3359 if (zl->zl_znode != NULL)
3360 VN_RELE(ZTOV(zl->zl_znode));
3361 rw_exit(zl->zl_rwlock);
3362 *zlpp = zl->zl_next;
3363 kmem_free(zl, sizeof (*zl));
3368 * Search back through the directory tree, using the ".." entries.
3369 * Lock each directory in the chain to prevent concurrent renames.
3370 * Fail any attempt to move a directory into one of its own descendants.
3371 * XXX - z_parent_lock can overlap with map or grow locks
3373 static int
3374 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3376 zfs_zlock_t *zl;
3377 znode_t *zp = tdzp;
3378 uint64_t rootid = zp->z_zfsvfs->z_root;
3379 uint64_t oidp = zp->z_id;
3380 krwlock_t *rwlp = &szp->z_parent_lock;
3381 krw_t rw = RW_WRITER;
3384 * First pass write-locks szp and compares to zp->z_id.
3385 * Later passes read-lock zp and compare to zp->z_parent.
3387 do {
3388 if (!rw_tryenter(rwlp, rw)) {
3390 * Another thread is renaming in this path.
3391 * Note that if we are a WRITER, we don't have any
3392 * parent_locks held yet.
3394 if (rw == RW_READER && zp->z_id > szp->z_id) {
3396 * Drop our locks and restart
3398 zfs_rename_unlock(&zl);
3399 *zlpp = NULL;
3400 zp = tdzp;
3401 oidp = zp->z_id;
3402 rwlp = &szp->z_parent_lock;
3403 rw = RW_WRITER;
3404 continue;
3405 } else {
3407 * Wait for other thread to drop its locks
3409 rw_enter(rwlp, rw);
3413 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3414 zl->zl_rwlock = rwlp;
3415 zl->zl_znode = NULL;
3416 zl->zl_next = *zlpp;
3417 *zlpp = zl;
3419 if (oidp == szp->z_id) /* We're a descendant of szp */
3420 return (SET_ERROR(EINVAL));
3422 if (oidp == rootid) /* We've hit the top */
3423 return (0);
3425 if (rw == RW_READER) { /* i.e. not the first pass */
3426 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3427 if (error)
3428 return (error);
3429 zl->zl_znode = zp;
3431 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3432 &oidp, sizeof (oidp));
3433 rwlp = &zp->z_parent_lock;
3434 rw = RW_READER;
3436 } while (zp->z_id != sdzp->z_id);
3438 return (0);
3442 * Move an entry from the provided source directory to the target
3443 * directory. Change the entry name as indicated.
3445 * IN: sdvp - Source directory containing the "old entry".
3446 * snm - Old entry name.
3447 * tdvp - Target directory to contain the "new entry".
3448 * tnm - New entry name.
3449 * cr - credentials of caller.
3450 * ct - caller context
3451 * flags - case flags
3453 * RETURN: 0 on success, error code on failure.
3455 * Timestamps:
3456 * sdvp,tdvp - ctime|mtime updated
3458 /*ARGSUSED*/
3459 static int
3460 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3461 caller_context_t *ct, int flags)
3463 znode_t *tdzp, *szp, *tzp;
3464 znode_t *sdzp = VTOZ(sdvp);
3465 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3466 zilog_t *zilog;
3467 vnode_t *realvp;
3468 zfs_dirlock_t *sdl, *tdl;
3469 dmu_tx_t *tx;
3470 zfs_zlock_t *zl;
3471 int cmp, serr, terr;
3472 int error = 0, rm_err = 0;
3473 int zflg = 0;
3474 boolean_t waited = B_FALSE;
3476 ZFS_ENTER(zfsvfs);
3477 ZFS_VERIFY_ZP(sdzp);
3478 zilog = zfsvfs->z_log;
3481 * Make sure we have the real vp for the target directory.
3483 if (fop_realvp(tdvp, &realvp, ct) == 0)
3484 tdvp = realvp;
3486 tdzp = VTOZ(tdvp);
3487 ZFS_VERIFY_ZP(tdzp);
3490 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3491 * ctldir appear to have the same v_vfsp.
3493 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3494 ZFS_EXIT(zfsvfs);
3495 return (SET_ERROR(EXDEV));
3498 if (zfsvfs->z_utf8 && u8_validate(tnm,
3499 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3500 ZFS_EXIT(zfsvfs);
3501 return (SET_ERROR(EILSEQ));
3504 if (flags & FIGNORECASE)
3505 zflg |= ZCILOOK;
3507 top:
3508 szp = NULL;
3509 tzp = NULL;
3510 zl = NULL;
3513 * This is to prevent the creation of links into attribute space
3514 * by renaming a linked file into/outof an attribute directory.
3515 * See the comment in zfs_link() for why this is considered bad.
3517 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3518 ZFS_EXIT(zfsvfs);
3519 return (SET_ERROR(EINVAL));
3523 * Lock source and target directory entries. To prevent deadlock,
3524 * a lock ordering must be defined. We lock the directory with
3525 * the smallest object id first, or if it's a tie, the one with
3526 * the lexically first name.
3528 if (sdzp->z_id < tdzp->z_id) {
3529 cmp = -1;
3530 } else if (sdzp->z_id > tdzp->z_id) {
3531 cmp = 1;
3532 } else {
3534 * First compare the two name arguments without
3535 * considering any case folding.
3537 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3539 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3540 ASSERT(error == 0 || !zfsvfs->z_utf8);
3541 if (cmp == 0) {
3543 * POSIX: "If the old argument and the new argument
3544 * both refer to links to the same existing file,
3545 * the rename() function shall return successfully
3546 * and perform no other action."
3548 ZFS_EXIT(zfsvfs);
3549 return (0);
3552 * If the file system is case-folding, then we may
3553 * have some more checking to do. A case-folding file
3554 * system is either supporting mixed case sensitivity
3555 * access or is completely case-insensitive. Note
3556 * that the file system is always case preserving.
3558 * In mixed sensitivity mode case sensitive behavior
3559 * is the default. FIGNORECASE must be used to
3560 * explicitly request case insensitive behavior.
3562 * If the source and target names provided differ only
3563 * by case (e.g., a request to rename 'tim' to 'Tim'),
3564 * we will treat this as a special case in the
3565 * case-insensitive mode: as long as the source name
3566 * is an exact match, we will allow this to proceed as
3567 * a name-change request.
3569 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3570 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3571 flags & FIGNORECASE)) &&
3572 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3573 &error) == 0) {
3575 * case preserving rename request, require exact
3576 * name matches
3578 zflg |= ZCIEXACT;
3579 zflg &= ~ZCILOOK;
3584 * If the source and destination directories are the same, we should
3585 * grab the z_name_lock of that directory only once.
3587 if (sdzp == tdzp) {
3588 zflg |= ZHAVELOCK;
3589 rw_enter(&sdzp->z_name_lock, RW_READER);
3592 if (cmp < 0) {
3593 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3594 ZEXISTS | zflg, NULL, NULL);
3595 terr = zfs_dirent_lock(&tdl,
3596 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3597 } else {
3598 terr = zfs_dirent_lock(&tdl,
3599 tdzp, tnm, &tzp, zflg, NULL, NULL);
3600 serr = zfs_dirent_lock(&sdl,
3601 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3602 NULL, NULL);
3605 if (serr) {
3607 * Source entry invalid or not there.
3609 if (!terr) {
3610 zfs_dirent_unlock(tdl);
3611 if (tzp)
3612 VN_RELE(ZTOV(tzp));
3615 if (sdzp == tdzp)
3616 rw_exit(&sdzp->z_name_lock);
3618 if (strcmp(snm, "..") == 0)
3619 serr = SET_ERROR(EINVAL);
3620 ZFS_EXIT(zfsvfs);
3621 return (serr);
3623 if (terr) {
3624 zfs_dirent_unlock(sdl);
3625 VN_RELE(ZTOV(szp));
3627 if (sdzp == tdzp)
3628 rw_exit(&sdzp->z_name_lock);
3630 if (strcmp(tnm, "..") == 0)
3631 terr = SET_ERROR(EINVAL);
3632 ZFS_EXIT(zfsvfs);
3633 return (terr);
3637 * Must have write access at the source to remove the old entry
3638 * and write access at the target to create the new entry.
3639 * Note that if target and source are the same, this can be
3640 * done in a single check.
3643 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3644 goto out;
3646 if (ZTOV(szp)->v_type == VDIR) {
3648 * Check to make sure rename is valid.
3649 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3651 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3652 goto out;
3656 * Does target exist?
3658 if (tzp) {
3660 * Source and target must be the same type.
3662 if (ZTOV(szp)->v_type == VDIR) {
3663 if (ZTOV(tzp)->v_type != VDIR) {
3664 error = SET_ERROR(ENOTDIR);
3665 goto out;
3667 } else {
3668 if (ZTOV(tzp)->v_type == VDIR) {
3669 error = SET_ERROR(EISDIR);
3670 goto out;
3674 * POSIX dictates that when the source and target
3675 * entries refer to the same file object, rename
3676 * must do nothing and exit without error.
3678 if (szp->z_id == tzp->z_id) {
3679 error = 0;
3680 goto out;
3684 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3685 if (tzp)
3686 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3689 * notify the target directory if it is not the same
3690 * as source directory.
3692 if (tdvp != sdvp) {
3693 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3696 tx = dmu_tx_create(zfsvfs->z_os);
3697 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3698 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3699 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3700 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3701 if (sdzp != tdzp) {
3702 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3703 zfs_sa_upgrade_txholds(tx, tdzp);
3705 if (tzp) {
3706 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3707 zfs_sa_upgrade_txholds(tx, tzp);
3710 zfs_sa_upgrade_txholds(tx, szp);
3711 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3712 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3713 if (error) {
3714 if (zl != NULL)
3715 zfs_rename_unlock(&zl);
3716 zfs_dirent_unlock(sdl);
3717 zfs_dirent_unlock(tdl);
3719 if (sdzp == tdzp)
3720 rw_exit(&sdzp->z_name_lock);
3722 VN_RELE(ZTOV(szp));
3723 if (tzp)
3724 VN_RELE(ZTOV(tzp));
3725 if (error == ERESTART) {
3726 waited = B_TRUE;
3727 dmu_tx_wait(tx);
3728 dmu_tx_abort(tx);
3729 goto top;
3731 dmu_tx_abort(tx);
3732 ZFS_EXIT(zfsvfs);
3733 return (error);
3736 if (tzp) /* Attempt to remove the existing target */
3737 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3739 if (error == 0) {
3740 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3741 if (error == 0) {
3742 szp->z_pflags |= ZFS_AV_MODIFIED;
3744 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3745 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3746 ASSERT0(error);
3748 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3749 if (error == 0) {
3750 zfs_log_rename(zilog, tx, TX_RENAME |
3751 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3752 sdl->dl_name, tdzp, tdl->dl_name, szp);
3755 * Update path information for the target vnode
3757 vn_renamepath(tdvp, ZTOV(szp), tnm,
3758 strlen(tnm));
3759 } else {
3761 * At this point, we have successfully created
3762 * the target name, but have failed to remove
3763 * the source name. Since the create was done
3764 * with the ZRENAMING flag, there are
3765 * complications; for one, the link count is
3766 * wrong. The easiest way to deal with this
3767 * is to remove the newly created target, and
3768 * return the original error. This must
3769 * succeed; fortunately, it is very unlikely to
3770 * fail, since we just created it.
3772 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3773 ZRENAMING, NULL), ==, 0);
3778 dmu_tx_commit(tx);
3780 if (tzp && rm_err == 0)
3781 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3783 if (error == 0) {
3784 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3785 /* notify the target dir if it is not the same as source dir */
3786 if (tdvp != sdvp)
3787 vnevent_rename_dest_dir(tdvp, ct);
3789 out:
3790 if (zl != NULL)
3791 zfs_rename_unlock(&zl);
3793 zfs_dirent_unlock(sdl);
3794 zfs_dirent_unlock(tdl);
3796 if (sdzp == tdzp)
3797 rw_exit(&sdzp->z_name_lock);
3800 VN_RELE(ZTOV(szp));
3801 if (tzp)
3802 VN_RELE(ZTOV(tzp));
3804 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3805 zil_commit(zilog, 0);
3807 ZFS_EXIT(zfsvfs);
3808 return (error);
3812 * Insert the indicated symbolic reference entry into the directory.
3814 * IN: dvp - Directory to contain new symbolic link.
3815 * link - Name for new symlink entry.
3816 * vap - Attributes of new entry.
3817 * cr - credentials of caller.
3818 * ct - caller context
3819 * flags - case flags
3821 * RETURN: 0 on success, error code on failure.
3823 * Timestamps:
3824 * dvp - ctime|mtime updated
3826 /*ARGSUSED*/
3827 static int
3828 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3829 caller_context_t *ct, int flags)
3831 znode_t *zp, *dzp = VTOZ(dvp);
3832 zfs_dirlock_t *dl;
3833 dmu_tx_t *tx;
3834 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3835 zilog_t *zilog;
3836 uint64_t len = strlen(link);
3837 int error;
3838 int zflg = ZNEW;
3839 zfs_acl_ids_t acl_ids;
3840 boolean_t fuid_dirtied;
3841 uint64_t txtype = TX_SYMLINK;
3842 boolean_t waited = B_FALSE;
3844 ASSERT(vap->va_type == VLNK);
3846 ZFS_ENTER(zfsvfs);
3847 ZFS_VERIFY_ZP(dzp);
3848 zilog = zfsvfs->z_log;
3850 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3851 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3852 ZFS_EXIT(zfsvfs);
3853 return (SET_ERROR(EILSEQ));
3855 if (flags & FIGNORECASE)
3856 zflg |= ZCILOOK;
3858 if (len > MAXPATHLEN) {
3859 ZFS_EXIT(zfsvfs);
3860 return (SET_ERROR(ENAMETOOLONG));
3863 if ((error = zfs_acl_ids_create(dzp, 0,
3864 vap, cr, NULL, &acl_ids)) != 0) {
3865 ZFS_EXIT(zfsvfs);
3866 return (error);
3868 top:
3870 * Attempt to lock directory; fail if entry already exists.
3872 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3873 if (error) {
3874 zfs_acl_ids_free(&acl_ids);
3875 ZFS_EXIT(zfsvfs);
3876 return (error);
3879 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3880 zfs_acl_ids_free(&acl_ids);
3881 zfs_dirent_unlock(dl);
3882 ZFS_EXIT(zfsvfs);
3883 return (error);
3886 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3887 zfs_acl_ids_free(&acl_ids);
3888 zfs_dirent_unlock(dl);
3889 ZFS_EXIT(zfsvfs);
3890 return (SET_ERROR(EDQUOT));
3892 tx = dmu_tx_create(zfsvfs->z_os);
3893 fuid_dirtied = zfsvfs->z_fuid_dirty;
3894 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3895 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3896 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3897 ZFS_SA_BASE_ATTR_SIZE + len);
3898 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3899 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3900 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3901 acl_ids.z_aclp->z_acl_bytes);
3903 if (fuid_dirtied)
3904 zfs_fuid_txhold(zfsvfs, tx);
3905 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3906 if (error) {
3907 zfs_dirent_unlock(dl);
3908 if (error == ERESTART) {
3909 waited = B_TRUE;
3910 dmu_tx_wait(tx);
3911 dmu_tx_abort(tx);
3912 goto top;
3914 zfs_acl_ids_free(&acl_ids);
3915 dmu_tx_abort(tx);
3916 ZFS_EXIT(zfsvfs);
3917 return (error);
3921 * Create a new object for the symlink.
3922 * for version 4 ZPL datsets the symlink will be an SA attribute
3924 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3926 if (fuid_dirtied)
3927 zfs_fuid_sync(zfsvfs, tx);
3929 mutex_enter(&zp->z_lock);
3930 if (zp->z_is_sa)
3931 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3932 link, len, tx);
3933 else
3934 zfs_sa_symlink(zp, link, len, tx);
3935 mutex_exit(&zp->z_lock);
3937 zp->z_size = len;
3938 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3939 &zp->z_size, sizeof (zp->z_size), tx);
3941 * Insert the new object into the directory.
3943 (void) zfs_link_create(dl, zp, tx, ZNEW);
3945 if (flags & FIGNORECASE)
3946 txtype |= TX_CI;
3947 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3949 zfs_acl_ids_free(&acl_ids);
3951 dmu_tx_commit(tx);
3953 zfs_dirent_unlock(dl);
3955 VN_RELE(ZTOV(zp));
3957 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3958 zil_commit(zilog, 0);
3960 ZFS_EXIT(zfsvfs);
3961 return (error);
3965 * Return, in the buffer contained in the provided uio structure,
3966 * the symbolic path referred to by vp.
3968 * IN: vp - vnode of symbolic link.
3969 * uio - structure to contain the link path.
3970 * cr - credentials of caller.
3971 * ct - caller context
3973 * OUT: uio - structure containing the link path.
3975 * RETURN: 0 on success, error code on failure.
3977 * Timestamps:
3978 * vp - atime updated
3980 /* ARGSUSED */
3981 static int
3982 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3984 znode_t *zp = VTOZ(vp);
3985 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3986 int error;
3988 ZFS_ENTER(zfsvfs);
3989 ZFS_VERIFY_ZP(zp);
3991 mutex_enter(&zp->z_lock);
3992 if (zp->z_is_sa)
3993 error = sa_lookup_uio(zp->z_sa_hdl,
3994 SA_ZPL_SYMLINK(zfsvfs), uio);
3995 else
3996 error = zfs_sa_readlink(zp, uio);
3997 mutex_exit(&zp->z_lock);
3999 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4001 ZFS_EXIT(zfsvfs);
4002 return (error);
4006 * Insert a new entry into directory tdvp referencing svp.
4008 * IN: tdvp - Directory to contain new entry.
4009 * svp - vnode of new entry.
4010 * name - name of new entry.
4011 * cr - credentials of caller.
4012 * ct - caller context
4014 * RETURN: 0 on success, error code on failure.
4016 * Timestamps:
4017 * tdvp - ctime|mtime updated
4018 * svp - ctime updated
4020 /* ARGSUSED */
4021 static int
4022 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4023 caller_context_t *ct, int flags)
4025 znode_t *dzp = VTOZ(tdvp);
4026 znode_t *tzp, *szp;
4027 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4028 zilog_t *zilog;
4029 zfs_dirlock_t *dl;
4030 dmu_tx_t *tx;
4031 vnode_t *realvp;
4032 int error;
4033 int zf = ZNEW;
4034 uint64_t parent;
4035 uid_t owner;
4036 boolean_t waited = B_FALSE;
4038 ASSERT(tdvp->v_type == VDIR);
4040 ZFS_ENTER(zfsvfs);
4041 ZFS_VERIFY_ZP(dzp);
4042 zilog = zfsvfs->z_log;
4044 if (fop_realvp(svp, &realvp, ct) == 0)
4045 svp = realvp;
4048 * POSIX dictates that we return EPERM here.
4049 * Better choices include ENOTSUP or EISDIR.
4051 if (svp->v_type == VDIR) {
4052 ZFS_EXIT(zfsvfs);
4053 return (SET_ERROR(EPERM));
4056 szp = VTOZ(svp);
4057 ZFS_VERIFY_ZP(szp);
4060 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4061 * ctldir appear to have the same v_vfsp.
4063 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4064 ZFS_EXIT(zfsvfs);
4065 return (SET_ERROR(EXDEV));
4068 /* Prevent links to .zfs/shares files */
4070 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4071 &parent, sizeof (uint64_t))) != 0) {
4072 ZFS_EXIT(zfsvfs);
4073 return (error);
4075 if (parent == zfsvfs->z_shares_dir) {
4076 ZFS_EXIT(zfsvfs);
4077 return (SET_ERROR(EPERM));
4080 if (zfsvfs->z_utf8 && u8_validate(name,
4081 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4082 ZFS_EXIT(zfsvfs);
4083 return (SET_ERROR(EILSEQ));
4085 if (flags & FIGNORECASE)
4086 zf |= ZCILOOK;
4089 * We do not support links between attributes and non-attributes
4090 * because of the potential security risk of creating links
4091 * into "normal" file space in order to circumvent restrictions
4092 * imposed in attribute space.
4094 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4095 ZFS_EXIT(zfsvfs);
4096 return (SET_ERROR(EINVAL));
4100 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4101 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4102 ZFS_EXIT(zfsvfs);
4103 return (SET_ERROR(EPERM));
4106 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4107 ZFS_EXIT(zfsvfs);
4108 return (error);
4111 top:
4113 * Attempt to lock directory; fail if entry already exists.
4115 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4116 if (error) {
4117 ZFS_EXIT(zfsvfs);
4118 return (error);
4121 tx = dmu_tx_create(zfsvfs->z_os);
4122 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4123 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4124 zfs_sa_upgrade_txholds(tx, szp);
4125 zfs_sa_upgrade_txholds(tx, dzp);
4126 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4127 if (error) {
4128 zfs_dirent_unlock(dl);
4129 if (error == ERESTART) {
4130 waited = B_TRUE;
4131 dmu_tx_wait(tx);
4132 dmu_tx_abort(tx);
4133 goto top;
4135 dmu_tx_abort(tx);
4136 ZFS_EXIT(zfsvfs);
4137 return (error);
4140 error = zfs_link_create(dl, szp, tx, 0);
4142 if (error == 0) {
4143 uint64_t txtype = TX_LINK;
4144 if (flags & FIGNORECASE)
4145 txtype |= TX_CI;
4146 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4149 dmu_tx_commit(tx);
4151 zfs_dirent_unlock(dl);
4153 if (error == 0) {
4154 vnevent_link(svp, ct);
4157 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4158 zil_commit(zilog, 0);
4160 ZFS_EXIT(zfsvfs);
4161 return (error);
4165 * zfs_null_putapage() is used when the file system has been force
4166 * unmounted. It just drops the pages.
4168 /* ARGSUSED */
4169 static int
4170 zfs_null_putapage(vnode_t *vp, page_t *pp, uoff_t *offp,
4171 size_t *lenp, int flags, cred_t *cr)
4173 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4174 return (0);
4178 * Push a page out to disk, klustering if possible.
4180 * IN: vp - file to push page to.
4181 * pp - page to push.
4182 * flags - additional flags.
4183 * cr - credentials of caller.
4185 * OUT: offp - start of range pushed.
4186 * lenp - len of range pushed.
4188 * RETURN: 0 on success, error code on failure.
4190 * NOTE: callers must have locked the page to be pushed. On
4191 * exit, the page (and all other pages in the kluster) must be
4192 * unlocked.
4194 /* ARGSUSED */
4195 static int
4196 zfs_putapage(vnode_t *vp, page_t *pp, uoff_t *offp,
4197 size_t *lenp, int flags, cred_t *cr)
4199 znode_t *zp = VTOZ(vp);
4200 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4201 dmu_tx_t *tx;
4202 uoff_t off, koff;
4203 size_t len, klen;
4204 int err;
4206 off = pp->p_offset;
4207 len = PAGESIZE;
4209 * If our blocksize is bigger than the page size, try to kluster
4210 * multiple pages so that we write a full block (thus avoiding
4211 * a read-modify-write).
4213 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4214 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4215 koff = ISP2(klen) ? P2ALIGN(off, (uoff_t)klen) : 0;
4216 ASSERT(koff <= zp->z_size);
4217 if (koff + klen > zp->z_size)
4218 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4219 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4221 ASSERT3U(btop(len), ==, btopr(len));
4224 * Can't push pages past end-of-file.
4226 if (off >= zp->z_size) {
4227 /* ignore all pages */
4228 err = 0;
4229 goto out;
4230 } else if (off + len > zp->z_size) {
4231 int npages = btopr(zp->z_size - off);
4232 page_t *trunc;
4234 page_list_break(&pp, &trunc, npages);
4235 /* ignore pages past end of file */
4236 if (trunc)
4237 pvn_write_done(trunc, flags);
4238 len = zp->z_size - off;
4241 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4242 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4243 err = SET_ERROR(EDQUOT);
4244 goto out;
4246 tx = dmu_tx_create(zfsvfs->z_os);
4247 dmu_tx_hold_write(tx, zp->z_id, off, len);
4249 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4250 zfs_sa_upgrade_txholds(tx, zp);
4251 err = dmu_tx_assign(tx, TXG_WAIT);
4252 if (err != 0) {
4253 dmu_tx_abort(tx);
4254 goto out;
4257 if (zp->z_blksz <= PAGESIZE) {
4258 caddr_t va = zfs_map_page(pp, S_READ);
4259 ASSERT3U(len, <=, PAGESIZE);
4260 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4261 zfs_unmap_page(pp, va);
4262 } else {
4263 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4266 if (err == 0) {
4267 uint64_t mtime[2], ctime[2];
4268 sa_bulk_attr_t bulk[3];
4269 int count = 0;
4271 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4272 &mtime, 16);
4273 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4274 &ctime, 16);
4275 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4276 &zp->z_pflags, 8);
4277 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4278 B_TRUE);
4279 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4280 ASSERT0(err);
4281 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4283 dmu_tx_commit(tx);
4285 out:
4286 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4287 if (offp)
4288 *offp = off;
4289 if (lenp)
4290 *lenp = len;
4292 return (err);
4296 * Copy the portion of the file indicated from pages into the file.
4297 * The pages are stored in a page list attached to the files vnode.
4299 * IN: vp - vnode of file to push page data to.
4300 * off - position in file to put data.
4301 * len - amount of data to write.
4302 * flags - flags to control the operation.
4303 * cr - credentials of caller.
4304 * ct - caller context.
4306 * RETURN: 0 on success, error code on failure.
4308 * Timestamps:
4309 * vp - ctime|mtime updated
4311 /*ARGSUSED*/
4312 static int
4313 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4314 caller_context_t *ct)
4316 znode_t *zp = VTOZ(vp);
4317 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4318 page_t *pp;
4319 size_t io_len;
4320 uoff_t io_off;
4321 uint_t blksz;
4322 rl_t *rl;
4323 int error = 0;
4325 ZFS_ENTER(zfsvfs);
4326 ZFS_VERIFY_ZP(zp);
4329 * There's nothing to do if no data is cached.
4331 if (!vn_has_cached_data(vp)) {
4332 ZFS_EXIT(zfsvfs);
4333 return (0);
4337 * Align this request to the file block size in case we kluster.
4338 * XXX - this can result in pretty aggresive locking, which can
4339 * impact simultanious read/write access. One option might be
4340 * to break up long requests (len == 0) into block-by-block
4341 * operations to get narrower locking.
4343 blksz = zp->z_blksz;
4344 if (ISP2(blksz))
4345 io_off = P2ALIGN_TYPED(off, blksz, uoff_t);
4346 else
4347 io_off = 0;
4348 if (len > 0 && ISP2(blksz))
4349 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4350 else
4351 io_len = 0;
4353 if (io_len == 0) {
4355 * Search the entire vp list for pages >= io_off.
4357 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4358 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4359 goto out;
4361 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4363 if (off > zp->z_size) {
4364 /* past end of file */
4365 zfs_range_unlock(rl);
4366 ZFS_EXIT(zfsvfs);
4367 return (0);
4370 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4372 for (off = io_off; io_off < off + len; io_off += io_len) {
4373 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4374 pp = page_lookup(&vp->v_object, io_off,
4375 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4376 } else {
4377 pp = page_lookup_nowait(&vp->v_object, io_off,
4378 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4381 if (pp != NULL && pvn_getdirty(pp, flags)) {
4382 int err;
4385 * Found a dirty page to push
4387 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4388 if (err)
4389 error = err;
4390 } else {
4391 io_len = PAGESIZE;
4394 out:
4395 zfs_range_unlock(rl);
4396 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4397 zil_commit(zfsvfs->z_log, zp->z_id);
4398 ZFS_EXIT(zfsvfs);
4399 return (error);
4402 /*ARGSUSED*/
4403 void
4404 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4406 znode_t *zp = VTOZ(vp);
4407 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4408 int error;
4410 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4411 if (zp->z_sa_hdl == NULL) {
4413 * The fs has been unmounted, or we did a
4414 * suspend/resume and this file no longer exists.
4416 if (vn_has_cached_data(vp)) {
4417 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4418 B_INVAL, cr);
4421 mutex_enter(&zp->z_lock);
4422 mutex_enter(&vp->v_lock);
4423 ASSERT(vp->v_count == 1);
4424 VN_RELE_LOCKED(vp);
4425 mutex_exit(&vp->v_lock);
4426 mutex_exit(&zp->z_lock);
4427 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4428 zfs_znode_free(zp);
4429 return;
4433 * Attempt to push any data in the page cache. If this fails
4434 * we will get kicked out later in zfs_zinactive().
4436 if (vn_has_cached_data(vp)) {
4437 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4438 cr);
4441 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4442 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4444 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4445 zfs_sa_upgrade_txholds(tx, zp);
4446 error = dmu_tx_assign(tx, TXG_WAIT);
4447 if (error) {
4448 dmu_tx_abort(tx);
4449 } else {
4450 mutex_enter(&zp->z_lock);
4451 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4452 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4453 zp->z_atime_dirty = 0;
4454 mutex_exit(&zp->z_lock);
4455 dmu_tx_commit(tx);
4459 zfs_zinactive(zp);
4460 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4464 * Bounds-check the seek operation.
4466 * IN: vp - vnode seeking within
4467 * ooff - old file offset
4468 * noffp - pointer to new file offset
4469 * ct - caller context
4471 * RETURN: 0 on success, EINVAL if new offset invalid.
4473 /* ARGSUSED */
4474 static int
4475 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4476 caller_context_t *ct)
4478 if (vp->v_type == VDIR)
4479 return (0);
4480 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4484 * Pre-filter the generic locking function to trap attempts to place
4485 * a mandatory lock on a memory mapped file.
4487 static int
4488 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4489 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4491 znode_t *zp = VTOZ(vp);
4492 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4494 ZFS_ENTER(zfsvfs);
4495 ZFS_VERIFY_ZP(zp);
4498 * We are following the UFS semantics with respect to mapcnt
4499 * here: If we see that the file is mapped already, then we will
4500 * return an error, but we don't worry about races between this
4501 * function and zfs_map().
4503 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4504 ZFS_EXIT(zfsvfs);
4505 return (SET_ERROR(EAGAIN));
4507 ZFS_EXIT(zfsvfs);
4508 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4512 * If we can't find a page in the cache, we will create a new page
4513 * and fill it with file data. For efficiency, we may try to fill
4514 * multiple pages at once (klustering) to fill up the supplied page
4515 * list. Note that the pages to be filled are held with an exclusive
4516 * lock to prevent access by other threads while they are being filled.
4518 static int
4519 zfs_fillpage(vnode_t *vp, uoff_t off, struct seg *seg,
4520 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4522 znode_t *zp = VTOZ(vp);
4523 page_t *pp, *cur_pp;
4524 objset_t *os = zp->z_zfsvfs->z_os;
4525 uoff_t io_off, total;
4526 size_t io_len;
4527 int err;
4529 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4531 * We only have a single page, don't bother klustering
4533 io_off = off;
4534 io_len = PAGESIZE;
4535 pp = page_create_va(&vp->v_object, io_off, io_len,
4536 PG_EXCL | PG_WAIT, seg, addr);
4537 } else {
4539 * Try to find enough pages to fill the page list
4541 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4542 &io_len, off, plsz, 0);
4544 if (pp == NULL) {
4546 * The page already exists, nothing to do here.
4548 *pl = NULL;
4549 return (0);
4553 * Fill the pages in the kluster.
4555 cur_pp = pp;
4556 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4557 caddr_t va;
4559 ASSERT3U(io_off, ==, cur_pp->p_offset);
4560 va = zfs_map_page(cur_pp, S_WRITE);
4561 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4562 DMU_READ_PREFETCH);
4563 zfs_unmap_page(cur_pp, va);
4564 if (err) {
4565 /* On error, toss the entire kluster */
4566 pvn_read_done(pp, B_ERROR);
4567 /* convert checksum errors into IO errors */
4568 if (err == ECKSUM)
4569 err = SET_ERROR(EIO);
4570 return (err);
4572 cur_pp = cur_pp->p_next;
4576 * Fill in the page list array from the kluster starting
4577 * from the desired offset `off'.
4578 * NOTE: the page list will always be null terminated.
4580 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4581 ASSERT(pl == NULL || (*pl)->p_offset == off);
4583 return (0);
4587 * Return pointers to the pages for the file region [off, off + len]
4588 * in the pl array. If plsz is greater than len, this function may
4589 * also return page pointers from after the specified region
4590 * (i.e. the region [off, off + plsz]). These additional pages are
4591 * only returned if they are already in the cache, or were created as
4592 * part of a klustered read.
4594 * IN: vp - vnode of file to get data from.
4595 * off - position in file to get data from.
4596 * len - amount of data to retrieve.
4597 * plsz - length of provided page list.
4598 * seg - segment to obtain pages for.
4599 * addr - virtual address of fault.
4600 * rw - mode of created pages.
4601 * cr - credentials of caller.
4602 * ct - caller context.
4604 * OUT: protp - protection mode of created pages.
4605 * pl - list of pages created.
4607 * RETURN: 0 on success, error code on failure.
4609 * Timestamps:
4610 * vp - atime updated
4612 /* ARGSUSED */
4613 static int
4614 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4615 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4616 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4618 znode_t *zp = VTOZ(vp);
4619 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4620 page_t **pl0 = pl;
4621 int err = 0;
4623 /* we do our own caching, faultahead is unnecessary */
4624 if (pl == NULL)
4625 return (0);
4626 else if (len > plsz)
4627 len = plsz;
4628 else
4629 len = P2ROUNDUP(len, PAGESIZE);
4630 ASSERT(plsz >= len);
4632 ZFS_ENTER(zfsvfs);
4633 ZFS_VERIFY_ZP(zp);
4635 if (protp)
4636 *protp = PROT_ALL;
4639 * Loop through the requested range [off, off + len) looking
4640 * for pages. If we don't find a page, we will need to create
4641 * a new page and fill it with data from the file.
4643 while (len > 0) {
4644 if (*pl = page_lookup(&vp->v_object, off, SE_SHARED))
4645 *(pl+1) = NULL;
4646 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4647 goto out;
4648 while (*pl) {
4649 ASSERT3U((*pl)->p_offset, ==, off);
4650 off += PAGESIZE;
4651 addr += PAGESIZE;
4652 if (len > 0) {
4653 ASSERT3U(len, >=, PAGESIZE);
4654 len -= PAGESIZE;
4656 ASSERT3U(plsz, >=, PAGESIZE);
4657 plsz -= PAGESIZE;
4658 pl++;
4663 * Fill out the page array with any pages already in the cache.
4665 while (plsz > 0 &&
4666 (*pl++ = page_lookup_nowait(&vp->v_object, off, SE_SHARED))) {
4667 off += PAGESIZE;
4668 plsz -= PAGESIZE;
4670 out:
4671 if (err) {
4673 * Release any pages we have previously locked.
4675 while (pl > pl0)
4676 page_unlock(*--pl);
4677 } else {
4678 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4681 *pl = NULL;
4683 ZFS_EXIT(zfsvfs);
4684 return (err);
4688 * Request a memory map for a section of a file. This code interacts
4689 * with common code and the VM system as follows:
4691 * - common code calls mmap(), which ends up in smmap_common()
4692 * - this calls fop_map(), which takes you into (say) zfs
4693 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4694 * - segvn_create() creates the new segment and calls fop_addmap()
4695 * - zfs_addmap() updates z_mapcnt
4697 /*ARGSUSED*/
4698 static int
4699 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4700 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4701 caller_context_t *ct)
4703 znode_t *zp = VTOZ(vp);
4704 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4705 segvn_crargs_t vn_a;
4706 int error;
4708 ZFS_ENTER(zfsvfs);
4709 ZFS_VERIFY_ZP(zp);
4712 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4715 if ((prot & PROT_WRITE) && (zp->z_pflags &
4716 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4717 ZFS_EXIT(zfsvfs);
4718 return (SET_ERROR(EPERM));
4721 if ((prot & (PROT_READ | PROT_EXEC)) &&
4722 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4723 ZFS_EXIT(zfsvfs);
4724 return (SET_ERROR(EACCES));
4727 if (vp->v_flag & VNOMAP) {
4728 ZFS_EXIT(zfsvfs);
4729 return (SET_ERROR(ENOSYS));
4732 if (off < 0 || len > MAXOFFSET_T - off) {
4733 ZFS_EXIT(zfsvfs);
4734 return (SET_ERROR(ENXIO));
4737 if (vp->v_type != VREG) {
4738 ZFS_EXIT(zfsvfs);
4739 return (SET_ERROR(ENODEV));
4743 * If file is locked, disallow mapping.
4745 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4746 ZFS_EXIT(zfsvfs);
4747 return (SET_ERROR(EAGAIN));
4750 as_rangelock(as);
4751 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4752 if (error != 0) {
4753 as_rangeunlock(as);
4754 ZFS_EXIT(zfsvfs);
4755 return (error);
4758 vn_a.vp = vp;
4759 vn_a.offset = (uoff_t)off;
4760 vn_a.type = flags & MAP_TYPE;
4761 vn_a.prot = prot;
4762 vn_a.maxprot = maxprot;
4763 vn_a.cred = cr;
4764 vn_a.amp = NULL;
4765 vn_a.flags = flags & ~MAP_TYPE;
4766 vn_a.szc = 0;
4767 vn_a.lgrp_mem_policy_flags = 0;
4769 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4771 as_rangeunlock(as);
4772 ZFS_EXIT(zfsvfs);
4773 return (error);
4776 /* ARGSUSED */
4777 static int
4778 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4779 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4780 caller_context_t *ct)
4782 uint64_t pages = btopr(len);
4784 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4785 return (0);
4789 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4790 * more accurate mtime for the associated file. Since we don't have a way of
4791 * detecting when the data was actually modified, we have to resort to
4792 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4793 * last page is pushed. The problem occurs when the msync() call is omitted,
4794 * which by far the most common case:
4796 * open()
4797 * mmap()
4798 * <modify memory>
4799 * munmap()
4800 * close()
4801 * <time lapse>
4802 * putpage() via fsflush
4804 * If we wait until fsflush to come along, we can have a modification time that
4805 * is some arbitrary point in the future. In order to prevent this in the
4806 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4807 * torn down.
4809 /* ARGSUSED */
4810 static int
4811 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4812 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4813 caller_context_t *ct)
4815 uint64_t pages = btopr(len);
4817 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4818 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4820 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4821 vn_has_cached_data(vp))
4822 (void) fop_putpage(vp, off, len, B_ASYNC, cr, ct);
4824 return (0);
4828 * Free or allocate space in a file. Currently, this function only
4829 * supports the `F_FREESP' command. However, this command is somewhat
4830 * misnamed, as its functionality includes the ability to allocate as
4831 * well as free space.
4833 * IN: vp - vnode of file to free data in.
4834 * cmd - action to take (only F_FREESP supported).
4835 * bfp - section of file to free/alloc.
4836 * flag - current file open mode flags.
4837 * offset - current file offset.
4838 * cr - credentials of caller [UNUSED].
4839 * ct - caller context.
4841 * RETURN: 0 on success, error code on failure.
4843 * Timestamps:
4844 * vp - ctime|mtime updated
4846 /* ARGSUSED */
4847 static int
4848 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4849 offset_t offset, cred_t *cr, caller_context_t *ct)
4851 znode_t *zp = VTOZ(vp);
4852 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4853 uint64_t off, len;
4854 int error;
4856 ZFS_ENTER(zfsvfs);
4857 ZFS_VERIFY_ZP(zp);
4859 if (cmd != F_FREESP) {
4860 ZFS_EXIT(zfsvfs);
4861 return (SET_ERROR(EINVAL));
4865 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4866 * callers might not be able to detect properly that we are read-only,
4867 * so check it explicitly here.
4869 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4870 ZFS_EXIT(zfsvfs);
4871 return (SET_ERROR(EROFS));
4874 if (error = convoff(vp, bfp, 0, offset)) {
4875 ZFS_EXIT(zfsvfs);
4876 return (error);
4879 if (bfp->l_len < 0) {
4880 ZFS_EXIT(zfsvfs);
4881 return (SET_ERROR(EINVAL));
4884 off = bfp->l_start;
4885 len = bfp->l_len; /* 0 means from off to end of file */
4887 error = zfs_freesp(zp, off, len, flag, TRUE);
4889 if (error == 0 && off == 0 && len == 0)
4890 vnevent_truncate(ZTOV(zp), ct);
4892 ZFS_EXIT(zfsvfs);
4893 return (error);
4896 /*ARGSUSED*/
4897 static int
4898 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4900 znode_t *zp = VTOZ(vp);
4901 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4902 uint32_t gen;
4903 uint64_t gen64;
4904 uint64_t object = zp->z_id;
4905 zfid_short_t *zfid;
4906 int size, i, error;
4908 ZFS_ENTER(zfsvfs);
4909 ZFS_VERIFY_ZP(zp);
4911 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4912 &gen64, sizeof (uint64_t))) != 0) {
4913 ZFS_EXIT(zfsvfs);
4914 return (error);
4917 gen = (uint32_t)gen64;
4919 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4920 if (fidp->fid_len < size) {
4921 fidp->fid_len = size;
4922 ZFS_EXIT(zfsvfs);
4923 return (SET_ERROR(ENOSPC));
4926 zfid = (zfid_short_t *)fidp;
4928 zfid->zf_len = size;
4930 for (i = 0; i < sizeof (zfid->zf_object); i++)
4931 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4933 /* Must have a non-zero generation number to distinguish from .zfs */
4934 if (gen == 0)
4935 gen = 1;
4936 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4937 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4939 if (size == LONG_FID_LEN) {
4940 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4941 zfid_long_t *zlfid;
4943 zlfid = (zfid_long_t *)fidp;
4945 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4946 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4948 /* XXX - this should be the generation number for the objset */
4949 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4950 zlfid->zf_setgen[i] = 0;
4953 ZFS_EXIT(zfsvfs);
4954 return (0);
4957 static int
4958 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4959 caller_context_t *ct)
4961 znode_t *zp, *xzp;
4962 zfsvfs_t *zfsvfs;
4963 zfs_dirlock_t *dl;
4964 int error;
4966 switch (cmd) {
4967 case _PC_LINK_MAX:
4968 *valp = ULONG_MAX;
4969 return (0);
4971 case _PC_FILESIZEBITS:
4972 *valp = 64;
4973 return (0);
4975 case _PC_XATTR_EXISTS:
4976 zp = VTOZ(vp);
4977 zfsvfs = zp->z_zfsvfs;
4978 ZFS_ENTER(zfsvfs);
4979 ZFS_VERIFY_ZP(zp);
4980 *valp = 0;
4981 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4982 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4983 if (error == 0) {
4984 zfs_dirent_unlock(dl);
4985 if (!zfs_dirempty(xzp))
4986 *valp = 1;
4987 VN_RELE(ZTOV(xzp));
4988 } else if (error == ENOENT) {
4990 * If there aren't extended attributes, it's the
4991 * same as having zero of them.
4993 error = 0;
4995 ZFS_EXIT(zfsvfs);
4996 return (error);
4998 case _PC_SATTR_ENABLED:
4999 case _PC_SATTR_EXISTS:
5000 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5001 (vp->v_type == VREG || vp->v_type == VDIR);
5002 return (0);
5004 case _PC_ACCESS_FILTERING:
5005 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5006 vp->v_type == VDIR;
5007 return (0);
5009 case _PC_ACL_ENABLED:
5010 *valp = _ACL_ACE_ENABLED;
5011 return (0);
5013 case _PC_MIN_HOLE_SIZE:
5014 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5015 return (0);
5017 case _PC_TIMESTAMP_RESOLUTION:
5018 /* nanosecond timestamp resolution */
5019 *valp = 1L;
5020 return (0);
5022 default:
5023 return (fs_pathconf(vp, cmd, valp, cr, ct));
5027 /*ARGSUSED*/
5028 static int
5029 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5030 caller_context_t *ct)
5032 znode_t *zp = VTOZ(vp);
5033 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5034 int error;
5035 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5037 ZFS_ENTER(zfsvfs);
5038 ZFS_VERIFY_ZP(zp);
5039 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5040 ZFS_EXIT(zfsvfs);
5042 return (error);
5045 /*ARGSUSED*/
5046 static int
5047 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5048 caller_context_t *ct)
5050 znode_t *zp = VTOZ(vp);
5051 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5052 int error;
5053 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5054 zilog_t *zilog = zfsvfs->z_log;
5056 ZFS_ENTER(zfsvfs);
5057 ZFS_VERIFY_ZP(zp);
5059 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5061 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5062 zil_commit(zilog, 0);
5064 ZFS_EXIT(zfsvfs);
5065 return (error);
5069 * The smallest read we may consider to loan out an arcbuf.
5070 * This must be a power of 2.
5072 int zcr_blksz_min = (1 << 10); /* 1K */
5074 * If set to less than the file block size, allow loaning out of an
5075 * arcbuf for a partial block read. This must be a power of 2.
5077 int zcr_blksz_max = (1 << 17); /* 128K */
5079 /*ARGSUSED*/
5080 static int
5081 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5082 caller_context_t *ct)
5084 znode_t *zp = VTOZ(vp);
5085 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5086 int max_blksz = zfsvfs->z_max_blksz;
5087 uio_t *uio = &xuio->xu_uio;
5088 ssize_t size = uio->uio_resid;
5089 offset_t offset = uio->uio_loffset;
5090 int blksz;
5091 int fullblk, i;
5092 arc_buf_t *abuf;
5093 ssize_t maxsize;
5094 int preamble, postamble;
5096 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5097 return (SET_ERROR(EINVAL));
5099 ZFS_ENTER(zfsvfs);
5100 ZFS_VERIFY_ZP(zp);
5101 switch (ioflag) {
5102 case UIO_WRITE:
5104 * Loan out an arc_buf for write if write size is bigger than
5105 * max_blksz, and the file's block size is also max_blksz.
5107 blksz = max_blksz;
5108 if (size < blksz || zp->z_blksz != blksz) {
5109 ZFS_EXIT(zfsvfs);
5110 return (SET_ERROR(EINVAL));
5113 * Caller requests buffers for write before knowing where the
5114 * write offset might be (e.g. NFS TCP write).
5116 if (offset == -1) {
5117 preamble = 0;
5118 } else {
5119 preamble = P2PHASE(offset, blksz);
5120 if (preamble) {
5121 preamble = blksz - preamble;
5122 size -= preamble;
5126 postamble = P2PHASE(size, blksz);
5127 size -= postamble;
5129 fullblk = size / blksz;
5130 (void) dmu_xuio_init(xuio,
5131 (preamble != 0) + fullblk + (postamble != 0));
5132 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5133 int, postamble, int,
5134 (preamble != 0) + fullblk + (postamble != 0));
5137 * Have to fix iov base/len for partial buffers. They
5138 * currently represent full arc_buf's.
5140 if (preamble) {
5141 /* data begins in the middle of the arc_buf */
5142 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5143 blksz);
5144 ASSERT(abuf);
5145 (void) dmu_xuio_add(xuio, abuf,
5146 blksz - preamble, preamble);
5149 for (i = 0; i < fullblk; i++) {
5150 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5151 blksz);
5152 ASSERT(abuf);
5153 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5156 if (postamble) {
5157 /* data ends in the middle of the arc_buf */
5158 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5159 blksz);
5160 ASSERT(abuf);
5161 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5163 break;
5164 case UIO_READ:
5166 * Loan out an arc_buf for read if the read size is larger than
5167 * the current file block size. Block alignment is not
5168 * considered. Partial arc_buf will be loaned out for read.
5170 blksz = zp->z_blksz;
5171 if (blksz < zcr_blksz_min)
5172 blksz = zcr_blksz_min;
5173 if (blksz > zcr_blksz_max)
5174 blksz = zcr_blksz_max;
5175 /* avoid potential complexity of dealing with it */
5176 if (blksz > max_blksz) {
5177 ZFS_EXIT(zfsvfs);
5178 return (SET_ERROR(EINVAL));
5181 maxsize = zp->z_size - uio->uio_loffset;
5182 if (size > maxsize)
5183 size = maxsize;
5185 if (size < blksz || vn_has_cached_data(vp)) {
5186 ZFS_EXIT(zfsvfs);
5187 return (SET_ERROR(EINVAL));
5189 break;
5190 default:
5191 ZFS_EXIT(zfsvfs);
5192 return (SET_ERROR(EINVAL));
5195 uio->uio_extflg = UIO_XUIO;
5196 XUIO_XUZC_RW(xuio) = ioflag;
5197 ZFS_EXIT(zfsvfs);
5198 return (0);
5201 /*ARGSUSED*/
5202 static int
5203 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5205 int i;
5206 arc_buf_t *abuf;
5207 int ioflag = XUIO_XUZC_RW(xuio);
5209 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5211 i = dmu_xuio_cnt(xuio);
5212 while (i-- > 0) {
5213 abuf = dmu_xuio_arcbuf(xuio, i);
5215 * if abuf == NULL, it must be a write buffer
5216 * that has been returned in zfs_write().
5218 if (abuf)
5219 dmu_return_arcbuf(abuf);
5220 ASSERT(abuf || ioflag == UIO_WRITE);
5223 dmu_xuio_fini(xuio);
5224 return (0);
5228 * Predeclare these here so that the compiler assumes that
5229 * this is an "old style" function declaration that does
5230 * not include arguments => we won't get type mismatch errors
5231 * in the initializations that follow.
5233 static int zfs_inval();
5234 static int zfs_isdir();
5236 static int
5237 zfs_inval()
5239 return (SET_ERROR(EINVAL));
5242 static int
5243 zfs_isdir()
5245 return (SET_ERROR(EISDIR));
5249 * Directory vnode operations
5251 const struct vnodeops zfs_dvnodeops = {
5252 .vnop_name = "zfs",
5253 .vop_open = zfs_open,
5254 .vop_close = zfs_close,
5255 .vop_read = zfs_isdir,
5256 .vop_write = zfs_isdir,
5257 .vop_ioctl = zfs_ioctl,
5258 .vop_getattr = zfs_getattr,
5259 .vop_setattr = zfs_setattr,
5260 .vop_access = zfs_access,
5261 .vop_lookup = zfs_lookup,
5262 .vop_create = zfs_create,
5263 .vop_remove = zfs_remove,
5264 .vop_link = zfs_link,
5265 .vop_rename = zfs_rename,
5266 .vop_mkdir = zfs_mkdir,
5267 .vop_rmdir = zfs_rmdir,
5268 .vop_readdir = zfs_readdir,
5269 .vop_symlink = zfs_symlink,
5270 .vop_fsync = zfs_fsync,
5271 .vop_inactive = zfs_inactive,
5272 .vop_fid = zfs_fid,
5273 .vop_seek = zfs_seek,
5274 .vop_pathconf = zfs_pathconf,
5275 .vop_getsecattr = zfs_getsecattr,
5276 .vop_setsecattr = zfs_setsecattr,
5277 .vop_vnevent = fs_vnevent_support,
5281 * Regular file vnode operations
5283 const struct vnodeops zfs_fvnodeops = {
5284 .vnop_name = "zfs",
5285 .vop_open = zfs_open,
5286 .vop_close = zfs_close,
5287 .vop_read = zfs_read,
5288 .vop_write = zfs_write,
5289 .vop_ioctl = zfs_ioctl,
5290 .vop_getattr = zfs_getattr,
5291 .vop_setattr = zfs_setattr,
5292 .vop_access = zfs_access,
5293 .vop_lookup = zfs_lookup,
5294 .vop_rename = zfs_rename,
5295 .vop_fsync = zfs_fsync,
5296 .vop_inactive = zfs_inactive,
5297 .vop_fid = zfs_fid,
5298 .vop_seek = zfs_seek,
5299 .vop_frlock = zfs_frlock,
5300 .vop_space = zfs_space,
5301 .vop_getpage = zfs_getpage,
5302 .vop_putpage = zfs_putpage,
5303 .vop_map = zfs_map,
5304 .vop_addmap = zfs_addmap,
5305 .vop_delmap = zfs_delmap,
5306 .vop_pathconf = zfs_pathconf,
5307 .vop_getsecattr = zfs_getsecattr,
5308 .vop_setsecattr = zfs_setsecattr,
5309 .vop_vnevent = fs_vnevent_support,
5310 .vop_reqzcbuf = zfs_reqzcbuf,
5311 .vop_retzcbuf = zfs_retzcbuf,
5315 * Symbolic link vnode operations
5317 const struct vnodeops zfs_symvnodeops = {
5318 .vnop_name = "zfs",
5319 .vop_getattr = zfs_getattr,
5320 .vop_setattr = zfs_setattr,
5321 .vop_access = zfs_access,
5322 .vop_rename = zfs_rename,
5323 .vop_readlink = zfs_readlink,
5324 .vop_inactive = zfs_inactive,
5325 .vop_fid = zfs_fid,
5326 .vop_pathconf = zfs_pathconf,
5327 .vop_vnevent = fs_vnevent_support,
5331 * special share hidden files vnode operations
5333 const struct vnodeops zfs_sharevnodeops = {
5334 .vnop_name = "zfs",
5335 .vop_getattr = zfs_getattr,
5336 .vop_access = zfs_access,
5337 .vop_inactive = zfs_inactive,
5338 .vop_fid = zfs_fid,
5339 .vop_pathconf = zfs_pathconf,
5340 .vop_getsecattr = zfs_getsecattr,
5341 .vop_setsecattr = zfs_setsecattr,
5342 .vop_vnevent = fs_vnevent_support,
5346 * Extended attribute directory vnode operations
5348 * These ops are identical to the directory vnode
5349 * operations except for restricted operations:
5350 * fop_mkdir()
5351 * fop_symlink()
5353 * Note that there are other restrictions embedded in:
5354 * zfs_create() - restrict type to VREG
5355 * zfs_link() - no links into/out of attribute space
5356 * zfs_rename() - no moves into/out of attribute space
5358 const struct vnodeops zfs_xdvnodeops = {
5359 .vnop_name = "zfs",
5360 .vop_open = zfs_open,
5361 .vop_close = zfs_close,
5362 .vop_ioctl = zfs_ioctl,
5363 .vop_getattr = zfs_getattr,
5364 .vop_setattr = zfs_setattr,
5365 .vop_access = zfs_access,
5366 .vop_lookup = zfs_lookup,
5367 .vop_create = zfs_create,
5368 .vop_remove = zfs_remove,
5369 .vop_link = zfs_link,
5370 .vop_rename = zfs_rename,
5371 .vop_mkdir = zfs_inval,
5372 .vop_rmdir = zfs_rmdir,
5373 .vop_readdir = zfs_readdir,
5374 .vop_symlink = zfs_inval,
5375 .vop_fsync = zfs_fsync,
5376 .vop_inactive = zfs_inactive,
5377 .vop_fid = zfs_fid,
5378 .vop_seek = zfs_seek,
5379 .vop_pathconf = zfs_pathconf,
5380 .vop_getsecattr = zfs_getsecattr,
5381 .vop_setsecattr = zfs_setsecattr,
5382 .vop_vnevent = fs_vnevent_support,
5386 * Error vnode operations
5388 const struct vnodeops zfs_evnodeops = {
5389 .vnop_name = "zfs",
5390 .vop_inactive = zfs_inactive,
5391 .vop_pathconf = zfs_pathconf,