Merge illumos-gate
[unleashed.git] / kernel / drivers / net / e1000api / e1000_ich8lan.c
blob966e176afd03d857852bbc968056b64e2d90d399
1 /******************************************************************************
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ******************************************************************************/
33 /*$FreeBSD$*/
35 /* 82562G 10/100 Network Connection
36 * 82562G-2 10/100 Network Connection
37 * 82562GT 10/100 Network Connection
38 * 82562GT-2 10/100 Network Connection
39 * 82562V 10/100 Network Connection
40 * 82562V-2 10/100 Network Connection
41 * 82566DC-2 Gigabit Network Connection
42 * 82566DC Gigabit Network Connection
43 * 82566DM-2 Gigabit Network Connection
44 * 82566DM Gigabit Network Connection
45 * 82566MC Gigabit Network Connection
46 * 82566MM Gigabit Network Connection
47 * 82567LM Gigabit Network Connection
48 * 82567LF Gigabit Network Connection
49 * 82567V Gigabit Network Connection
50 * 82567LM-2 Gigabit Network Connection
51 * 82567LF-2 Gigabit Network Connection
52 * 82567V-2 Gigabit Network Connection
53 * 82567LF-3 Gigabit Network Connection
54 * 82567LM-3 Gigabit Network Connection
55 * 82567LM-4 Gigabit Network Connection
56 * 82577LM Gigabit Network Connection
57 * 82577LC Gigabit Network Connection
58 * 82578DM Gigabit Network Connection
59 * 82578DC Gigabit Network Connection
60 * 82579LM Gigabit Network Connection
61 * 82579V Gigabit Network Connection
62 * Ethernet Connection I217-LM
63 * Ethernet Connection I217-V
64 * Ethernet Connection I218-V
65 * Ethernet Connection I218-LM
66 * Ethernet Connection (2) I218-LM
67 * Ethernet Connection (2) I218-V
68 * Ethernet Connection (3) I218-LM
69 * Ethernet Connection (3) I218-V
72 #include "e1000_api.h"
74 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 u8 *mc_addr_list,
85 u32 mc_addr_count);
86 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 bool active);
91 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 bool active);
93 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 u16 words, u16 *data);
95 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
96 u16 *data);
97 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98 u16 words, u16 *data);
99 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
102 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
103 u16 *data);
104 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
105 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
106 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
107 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
108 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
109 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
110 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
111 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
112 u16 *speed, u16 *duplex);
113 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
114 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
115 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
117 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
118 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
119 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
120 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
121 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
122 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
123 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
124 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
125 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
126 u32 offset, u8 *data);
127 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
128 u8 size, u16 *data);
129 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
130 u32 *data);
131 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
132 u32 offset, u32 *data);
133 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
134 u32 offset, u32 data);
135 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
136 u32 offset, u32 dword);
137 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
138 u32 offset, u16 *data);
139 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
140 u32 offset, u8 byte);
141 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
142 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
143 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
150 /* Offset 04h HSFSTS */
151 union ich8_hws_flash_status {
152 struct ich8_hsfsts {
153 u16 flcdone:1; /* bit 0 Flash Cycle Done */
154 u16 flcerr:1; /* bit 1 Flash Cycle Error */
155 u16 dael:1; /* bit 2 Direct Access error Log */
156 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
157 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
158 u16 reserved1:2; /* bit 13:6 Reserved */
159 u16 reserved2:6; /* bit 13:6 Reserved */
160 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
161 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
162 } hsf_status;
163 u16 regval;
166 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
167 /* Offset 06h FLCTL */
168 union ich8_hws_flash_ctrl {
169 struct ich8_hsflctl {
170 u16 flcgo:1; /* 0 Flash Cycle Go */
171 u16 flcycle:2; /* 2:1 Flash Cycle */
172 u16 reserved:5; /* 7:3 Reserved */
173 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
174 u16 flockdn:6; /* 15:10 Reserved */
175 } hsf_ctrl;
176 u16 regval;
179 /* ICH Flash Region Access Permissions */
180 union ich8_hws_flash_regacc {
181 struct ich8_flracc {
182 u32 grra:8; /* 0:7 GbE region Read Access */
183 u32 grwa:8; /* 8:15 GbE region Write Access */
184 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
185 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
186 } hsf_flregacc;
187 u16 regval;
191 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
192 * @hw: pointer to the HW structure
194 * Test access to the PHY registers by reading the PHY ID registers. If
195 * the PHY ID is already known (e.g. resume path) compare it with known ID,
196 * otherwise assume the read PHY ID is correct if it is valid.
198 * Assumes the sw/fw/hw semaphore is already acquired.
200 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 u16 phy_reg = 0;
203 u32 phy_id = 0;
204 s32 ret_val = 0;
205 u16 retry_count;
206 u32 mac_reg = 0;
208 for (retry_count = 0; retry_count < 2; retry_count++) {
209 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
210 if (ret_val || (phy_reg == 0xFFFF))
211 continue;
212 phy_id = (u32)(phy_reg << 16);
214 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
215 if (ret_val || (phy_reg == 0xFFFF)) {
216 phy_id = 0;
217 continue;
219 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
220 break;
223 if (hw->phy.id) {
224 if (hw->phy.id == phy_id)
225 goto out;
226 } else if (phy_id) {
227 hw->phy.id = phy_id;
228 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
229 goto out;
232 /* In case the PHY needs to be in mdio slow mode,
233 * set slow mode and try to get the PHY id again.
235 if (hw->mac.type < e1000_pch_lpt) {
236 hw->phy.ops.release(hw);
237 ret_val = e1000_set_mdio_slow_mode_hv(hw);
238 if (!ret_val)
239 ret_val = e1000_get_phy_id(hw);
240 hw->phy.ops.acquire(hw);
243 if (ret_val)
244 return FALSE;
245 out:
246 if (hw->mac.type >= e1000_pch_lpt) {
247 /* Only unforce SMBus if ME is not active */
248 if (!(E1000_READ_REG(hw, E1000_FWSM) &
249 E1000_ICH_FWSM_FW_VALID)) {
250 /* Unforce SMBus mode in PHY */
251 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
252 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
253 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 /* Unforce SMBus mode in MAC */
256 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
257 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
258 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
262 return TRUE;
266 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
267 * @hw: pointer to the HW structure
269 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
270 * used to reset the PHY to a quiescent state when necessary.
272 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 u32 mac_reg;
276 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 /* Set Phy Config Counter to 50msec */
279 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
280 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
281 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
282 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 /* Toggle LANPHYPC Value bit */
285 mac_reg = E1000_READ_REG(hw, E1000_CTRL);
286 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
287 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
288 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
289 E1000_WRITE_FLUSH(hw);
290 msec_delay(1);
291 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
292 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
293 E1000_WRITE_FLUSH(hw);
295 if (hw->mac.type < e1000_pch_lpt) {
296 msec_delay(50);
297 } else {
298 u16 count = 20;
300 do {
301 msec_delay(5);
302 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
303 E1000_CTRL_EXT_LPCD) && count--);
305 msec_delay(30);
310 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
311 * @hw: pointer to the HW structure
313 * Workarounds/flow necessary for PHY initialization during driver load
314 * and resume paths.
316 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
319 s32 ret_val;
321 DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 /* Gate automatic PHY configuration by hardware on managed and
324 * non-managed 82579 and newer adapters.
326 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328 /* It is not possible to be certain of the current state of ULP
329 * so forcibly disable it.
331 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
332 e1000_disable_ulp_lpt_lp(hw, TRUE);
334 ret_val = hw->phy.ops.acquire(hw);
335 if (ret_val) {
336 DEBUGOUT("Failed to initialize PHY flow\n");
337 goto out;
340 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
341 * inaccessible and resetting the PHY is not blocked, toggle the
342 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 switch (hw->mac.type) {
345 case e1000_pch_lpt:
346 case e1000_pch_spt:
347 case e1000_pch_cnp:
348 if (e1000_phy_is_accessible_pchlan(hw))
349 break;
351 /* Before toggling LANPHYPC, see if PHY is accessible by
352 * forcing MAC to SMBus mode first.
354 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
355 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
356 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
358 /* Wait 50 milliseconds for MAC to finish any retries
359 * that it might be trying to perform from previous
360 * attempts to acknowledge any phy read requests.
362 msec_delay(50);
364 /* fall-through */
365 case e1000_pch2lan:
366 if (e1000_phy_is_accessible_pchlan(hw))
367 break;
369 /* fall-through */
370 case e1000_pchlan:
371 if ((hw->mac.type == e1000_pchlan) &&
372 (fwsm & E1000_ICH_FWSM_FW_VALID))
373 break;
375 if (hw->phy.ops.check_reset_block(hw)) {
376 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
377 ret_val = -E1000_ERR_PHY;
378 break;
381 /* Toggle LANPHYPC Value bit */
382 e1000_toggle_lanphypc_pch_lpt(hw);
383 if (hw->mac.type >= e1000_pch_lpt) {
384 if (e1000_phy_is_accessible_pchlan(hw))
385 break;
387 /* Toggling LANPHYPC brings the PHY out of SMBus mode
388 * so ensure that the MAC is also out of SMBus mode
390 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
391 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
392 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
394 if (e1000_phy_is_accessible_pchlan(hw))
395 break;
397 ret_val = -E1000_ERR_PHY;
399 break;
400 default:
401 break;
404 hw->phy.ops.release(hw);
405 if (!ret_val) {
407 /* Check to see if able to reset PHY. Print error if not */
408 if (hw->phy.ops.check_reset_block(hw)) {
409 ERROR_REPORT("Reset blocked by ME\n");
410 goto out;
413 /* Reset the PHY before any access to it. Doing so, ensures
414 * that the PHY is in a known good state before we read/write
415 * PHY registers. The generic reset is sufficient here,
416 * because we haven't determined the PHY type yet.
418 ret_val = e1000_phy_hw_reset_generic(hw);
419 if (ret_val)
420 goto out;
422 /* On a successful reset, possibly need to wait for the PHY
423 * to quiesce to an accessible state before returning control
424 * to the calling function. If the PHY does not quiesce, then
425 * return E1000E_BLK_PHY_RESET, as this is the condition that
426 * the PHY is in.
428 ret_val = hw->phy.ops.check_reset_block(hw);
429 if (ret_val)
430 ERROR_REPORT("ME blocked access to PHY after reset\n");
433 out:
434 /* Ungate automatic PHY configuration on non-managed 82579 */
435 if ((hw->mac.type == e1000_pch2lan) &&
436 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
437 msec_delay(10);
438 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
441 return ret_val;
445 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
446 * @hw: pointer to the HW structure
448 * Initialize family-specific PHY parameters and function pointers.
450 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
452 struct e1000_phy_info *phy = &hw->phy;
453 s32 ret_val;
455 DEBUGFUNC("e1000_init_phy_params_pchlan");
457 phy->addr = 1;
458 phy->reset_delay_us = 100;
460 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
461 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
462 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
463 phy->ops.set_page = e1000_set_page_igp;
464 phy->ops.read_reg = e1000_read_phy_reg_hv;
465 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
466 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
467 phy->ops.release = e1000_release_swflag_ich8lan;
468 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
469 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
470 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
471 phy->ops.write_reg = e1000_write_phy_reg_hv;
472 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
473 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
474 phy->ops.power_up = e1000_power_up_phy_copper;
475 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
476 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
478 phy->id = e1000_phy_unknown;
480 ret_val = e1000_init_phy_workarounds_pchlan(hw);
481 if (ret_val)
482 return ret_val;
484 if (phy->id == e1000_phy_unknown)
485 switch (hw->mac.type) {
486 default:
487 ret_val = e1000_get_phy_id(hw);
488 if (ret_val)
489 return ret_val;
490 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
491 break;
492 /* fall-through */
493 case e1000_pch2lan:
494 case e1000_pch_lpt:
495 case e1000_pch_spt:
496 case e1000_pch_cnp:
497 /* In case the PHY needs to be in mdio slow mode,
498 * set slow mode and try to get the PHY id again.
500 ret_val = e1000_set_mdio_slow_mode_hv(hw);
501 if (ret_val)
502 return ret_val;
503 ret_val = e1000_get_phy_id(hw);
504 if (ret_val)
505 return ret_val;
506 break;
508 phy->type = e1000_get_phy_type_from_id(phy->id);
510 switch (phy->type) {
511 case e1000_phy_82577:
512 case e1000_phy_82579:
513 case e1000_phy_i217:
514 phy->ops.check_polarity = e1000_check_polarity_82577;
515 phy->ops.force_speed_duplex =
516 e1000_phy_force_speed_duplex_82577;
517 phy->ops.get_cable_length = e1000_get_cable_length_82577;
518 phy->ops.get_info = e1000_get_phy_info_82577;
519 phy->ops.commit = e1000_phy_sw_reset_generic;
520 break;
521 case e1000_phy_82578:
522 phy->ops.check_polarity = e1000_check_polarity_m88;
523 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
524 phy->ops.get_cable_length = e1000_get_cable_length_m88;
525 phy->ops.get_info = e1000_get_phy_info_m88;
526 break;
527 default:
528 ret_val = -E1000_ERR_PHY;
529 break;
532 return ret_val;
536 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
537 * @hw: pointer to the HW structure
539 * Initialize family-specific PHY parameters and function pointers.
541 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
543 struct e1000_phy_info *phy = &hw->phy;
544 s32 ret_val;
545 u16 i = 0;
547 DEBUGFUNC("e1000_init_phy_params_ich8lan");
549 phy->addr = 1;
550 phy->reset_delay_us = 100;
552 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
553 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
554 phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
555 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
556 phy->ops.read_reg = e1000_read_phy_reg_igp;
557 phy->ops.release = e1000_release_swflag_ich8lan;
558 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
559 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
560 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
561 phy->ops.write_reg = e1000_write_phy_reg_igp;
562 phy->ops.power_up = e1000_power_up_phy_copper;
563 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
565 /* We may need to do this twice - once for IGP and if that fails,
566 * we'll set BM func pointers and try again
568 ret_val = e1000_determine_phy_address(hw);
569 if (ret_val) {
570 phy->ops.write_reg = e1000_write_phy_reg_bm;
571 phy->ops.read_reg = e1000_read_phy_reg_bm;
572 ret_val = e1000_determine_phy_address(hw);
573 if (ret_val) {
574 DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
575 return ret_val;
579 phy->id = 0;
580 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
581 (i++ < 100)) {
582 msec_delay(1);
583 ret_val = e1000_get_phy_id(hw);
584 if (ret_val)
585 return ret_val;
588 /* Verify phy id */
589 switch (phy->id) {
590 case IGP03E1000_E_PHY_ID:
591 phy->type = e1000_phy_igp_3;
592 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
593 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
594 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
595 phy->ops.get_info = e1000_get_phy_info_igp;
596 phy->ops.check_polarity = e1000_check_polarity_igp;
597 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
598 break;
599 case IFE_E_PHY_ID:
600 case IFE_PLUS_E_PHY_ID:
601 case IFE_C_E_PHY_ID:
602 phy->type = e1000_phy_ife;
603 phy->autoneg_mask = E1000_ALL_NOT_GIG;
604 phy->ops.get_info = e1000_get_phy_info_ife;
605 phy->ops.check_polarity = e1000_check_polarity_ife;
606 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
607 break;
608 case BME1000_E_PHY_ID:
609 phy->type = e1000_phy_bm;
610 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
611 phy->ops.read_reg = e1000_read_phy_reg_bm;
612 phy->ops.write_reg = e1000_write_phy_reg_bm;
613 phy->ops.commit = e1000_phy_sw_reset_generic;
614 phy->ops.get_info = e1000_get_phy_info_m88;
615 phy->ops.check_polarity = e1000_check_polarity_m88;
616 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
617 break;
618 default:
619 return -E1000_ERR_PHY;
620 break;
623 return E1000_SUCCESS;
627 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
628 * @hw: pointer to the HW structure
630 * Initialize family-specific NVM parameters and function
631 * pointers.
633 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
635 struct e1000_nvm_info *nvm = &hw->nvm;
636 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
637 u32 gfpreg, sector_base_addr, sector_end_addr;
638 u16 i;
639 u32 nvm_size;
641 DEBUGFUNC("e1000_init_nvm_params_ich8lan");
643 nvm->type = e1000_nvm_flash_sw;
645 if (hw->mac.type >= e1000_pch_spt) {
646 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
647 * STRAP register. This is because in SPT the GbE Flash region
648 * is no longer accessed through the flash registers. Instead,
649 * the mechanism has changed, and the Flash region access
650 * registers are now implemented in GbE memory space.
652 nvm->flash_base_addr = 0;
653 nvm_size =
654 (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
655 * NVM_SIZE_MULTIPLIER;
656 nvm->flash_bank_size = nvm_size / 2;
657 /* Adjust to word count */
658 nvm->flash_bank_size /= sizeof(u16);
659 /* Set the base address for flash register access */
660 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
661 } else {
662 /* Can't read flash registers if register set isn't mapped. */
663 if (!hw->flash_address) {
664 DEBUGOUT("ERROR: Flash registers not mapped\n");
665 return -E1000_ERR_CONFIG;
668 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
670 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
671 * Add 1 to sector_end_addr since this sector is included in
672 * the overall size.
674 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
675 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
677 /* flash_base_addr is byte-aligned */
678 nvm->flash_base_addr = sector_base_addr
679 << FLASH_SECTOR_ADDR_SHIFT;
681 /* find total size of the NVM, then cut in half since the total
682 * size represents two separate NVM banks.
684 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
685 << FLASH_SECTOR_ADDR_SHIFT);
686 nvm->flash_bank_size /= 2;
687 /* Adjust to word count */
688 nvm->flash_bank_size /= sizeof(u16);
691 nvm->word_size = E1000_SHADOW_RAM_WORDS;
693 /* Clear shadow ram */
694 for (i = 0; i < nvm->word_size; i++) {
695 dev_spec->shadow_ram[i].modified = FALSE;
696 dev_spec->shadow_ram[i].value = 0xFFFF;
699 E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
700 E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
702 /* Function Pointers */
703 nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
704 nvm->ops.release = e1000_release_nvm_ich8lan;
705 if (hw->mac.type >= e1000_pch_spt) {
706 nvm->ops.read = e1000_read_nvm_spt;
707 nvm->ops.update = e1000_update_nvm_checksum_spt;
708 } else {
709 nvm->ops.read = e1000_read_nvm_ich8lan;
710 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
712 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
713 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
714 nvm->ops.write = e1000_write_nvm_ich8lan;
716 return E1000_SUCCESS;
720 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
721 * @hw: pointer to the HW structure
723 * Initialize family-specific MAC parameters and function
724 * pointers.
726 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
728 struct e1000_mac_info *mac = &hw->mac;
730 DEBUGFUNC("e1000_init_mac_params_ich8lan");
732 /* Set media type function pointer */
733 hw->phy.media_type = e1000_media_type_copper;
735 /* Set mta register count */
736 mac->mta_reg_count = 32;
737 /* Set rar entry count */
738 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
739 if (mac->type == e1000_ich8lan)
740 mac->rar_entry_count--;
741 /* Set if part includes ASF firmware */
742 mac->asf_firmware_present = TRUE;
743 /* FWSM register */
744 mac->has_fwsm = TRUE;
745 /* ARC subsystem not supported */
746 mac->arc_subsystem_valid = FALSE;
747 /* Adaptive IFS supported */
748 mac->adaptive_ifs = TRUE;
750 /* Function pointers */
752 /* bus type/speed/width */
753 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
754 /* function id */
755 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
756 /* reset */
757 mac->ops.reset_hw = e1000_reset_hw_ich8lan;
758 /* hw initialization */
759 mac->ops.init_hw = e1000_init_hw_ich8lan;
760 /* link setup */
761 mac->ops.setup_link = e1000_setup_link_ich8lan;
762 /* physical interface setup */
763 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
764 /* check for link */
765 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
766 /* link info */
767 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
768 /* multicast address update */
769 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
770 /* clear hardware counters */
771 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
773 /* LED and other operations */
774 switch (mac->type) {
775 case e1000_ich8lan:
776 case e1000_ich9lan:
777 case e1000_ich10lan:
778 /* check management mode */
779 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
780 /* ID LED init */
781 mac->ops.id_led_init = e1000_id_led_init_generic;
782 /* blink LED */
783 mac->ops.blink_led = e1000_blink_led_generic;
784 /* setup LED */
785 mac->ops.setup_led = e1000_setup_led_generic;
786 /* cleanup LED */
787 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
788 /* turn on/off LED */
789 mac->ops.led_on = e1000_led_on_ich8lan;
790 mac->ops.led_off = e1000_led_off_ich8lan;
791 break;
792 case e1000_pch2lan:
793 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
794 mac->ops.rar_set = e1000_rar_set_pch2lan;
795 /* fall-through */
796 case e1000_pch_lpt:
797 case e1000_pch_spt:
798 case e1000_pch_cnp:
799 /* multicast address update for pch2 */
800 mac->ops.update_mc_addr_list =
801 e1000_update_mc_addr_list_pch2lan;
802 /* fall-through */
803 case e1000_pchlan:
804 /* check management mode */
805 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
806 /* ID LED init */
807 mac->ops.id_led_init = e1000_id_led_init_pchlan;
808 /* setup LED */
809 mac->ops.setup_led = e1000_setup_led_pchlan;
810 /* cleanup LED */
811 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
812 /* turn on/off LED */
813 mac->ops.led_on = e1000_led_on_pchlan;
814 mac->ops.led_off = e1000_led_off_pchlan;
815 break;
816 default:
817 break;
820 if (mac->type >= e1000_pch_lpt) {
821 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
822 mac->ops.rar_set = e1000_rar_set_pch_lpt;
823 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
824 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
827 /* Enable PCS Lock-loss workaround for ICH8 */
828 if (mac->type == e1000_ich8lan)
829 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
831 return E1000_SUCCESS;
835 * __e1000_access_emi_reg_locked - Read/write EMI register
836 * @hw: pointer to the HW structure
837 * @addr: EMI address to program
838 * @data: pointer to value to read/write from/to the EMI address
839 * @read: boolean flag to indicate read or write
841 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
843 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
844 u16 *data, bool read)
846 s32 ret_val;
848 DEBUGFUNC("__e1000_access_emi_reg_locked");
850 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
851 if (ret_val)
852 return ret_val;
854 if (read)
855 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
856 data);
857 else
858 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
859 *data);
861 return ret_val;
865 * e1000_read_emi_reg_locked - Read Extended Management Interface register
866 * @hw: pointer to the HW structure
867 * @addr: EMI address to program
868 * @data: value to be read from the EMI address
870 * Assumes the SW/FW/HW Semaphore is already acquired.
872 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
874 DEBUGFUNC("e1000_read_emi_reg_locked");
876 return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
880 * e1000_write_emi_reg_locked - Write Extended Management Interface register
881 * @hw: pointer to the HW structure
882 * @addr: EMI address to program
883 * @data: value to be written to the EMI address
885 * Assumes the SW/FW/HW Semaphore is already acquired.
887 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
889 DEBUGFUNC("e1000_read_emi_reg_locked");
891 return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
895 * e1000_set_eee_pchlan - Enable/disable EEE support
896 * @hw: pointer to the HW structure
898 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
899 * the link and the EEE capabilities of the link partner. The LPI Control
900 * register bits will remain set only if/when link is up.
902 * EEE LPI must not be asserted earlier than one second after link is up.
903 * On 82579, EEE LPI should not be enabled until such time otherwise there
904 * can be link issues with some switches. Other devices can have EEE LPI
905 * enabled immediately upon link up since they have a timer in hardware which
906 * prevents LPI from being asserted too early.
908 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
910 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
911 s32 ret_val;
912 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
914 DEBUGFUNC("e1000_set_eee_pchlan");
916 switch (hw->phy.type) {
917 case e1000_phy_82579:
918 lpa = I82579_EEE_LP_ABILITY;
919 pcs_status = I82579_EEE_PCS_STATUS;
920 adv_addr = I82579_EEE_ADVERTISEMENT;
921 break;
922 case e1000_phy_i217:
923 lpa = I217_EEE_LP_ABILITY;
924 pcs_status = I217_EEE_PCS_STATUS;
925 adv_addr = I217_EEE_ADVERTISEMENT;
926 break;
927 default:
928 return E1000_SUCCESS;
931 ret_val = hw->phy.ops.acquire(hw);
932 if (ret_val)
933 return ret_val;
935 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
936 if (ret_val)
937 goto release;
939 /* Clear bits that enable EEE in various speeds */
940 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
942 /* Enable EEE if not disabled by user */
943 if (!dev_spec->eee_disable) {
944 /* Save off link partner's EEE ability */
945 ret_val = e1000_read_emi_reg_locked(hw, lpa,
946 &dev_spec->eee_lp_ability);
947 if (ret_val)
948 goto release;
950 /* Read EEE advertisement */
951 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
952 if (ret_val)
953 goto release;
955 /* Enable EEE only for speeds in which the link partner is
956 * EEE capable and for which we advertise EEE.
958 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
959 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
961 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
962 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
963 if (data & NWAY_LPAR_100TX_FD_CAPS)
964 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
965 else
966 /* EEE is not supported in 100Half, so ignore
967 * partner's EEE in 100 ability if full-duplex
968 * is not advertised.
970 dev_spec->eee_lp_ability &=
971 ~I82579_EEE_100_SUPPORTED;
975 if (hw->phy.type == e1000_phy_82579) {
976 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
977 &data);
978 if (ret_val)
979 goto release;
981 data &= ~I82579_LPI_100_PLL_SHUT;
982 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
983 data);
986 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
987 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
988 if (ret_val)
989 goto release;
991 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
992 release:
993 hw->phy.ops.release(hw);
995 return ret_val;
999 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1000 * @hw: pointer to the HW structure
1001 * @link: link up bool flag
1003 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1004 * preventing further DMA write requests. Workaround the issue by disabling
1005 * the de-assertion of the clock request when in 1Gpbs mode.
1006 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1007 * speeds in order to avoid Tx hangs.
1009 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1011 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1012 u32 status = E1000_READ_REG(hw, E1000_STATUS);
1013 s32 ret_val = E1000_SUCCESS;
1014 u16 reg;
1016 if (link && (status & E1000_STATUS_SPEED_1000)) {
1017 ret_val = hw->phy.ops.acquire(hw);
1018 if (ret_val)
1019 return ret_val;
1021 ret_val =
1022 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1023 &reg);
1024 if (ret_val)
1025 goto release;
1027 ret_val =
1028 e1000_write_kmrn_reg_locked(hw,
1029 E1000_KMRNCTRLSTA_K1_CONFIG,
1030 reg &
1031 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1032 if (ret_val)
1033 goto release;
1035 usec_delay(10);
1037 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1038 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1040 ret_val =
1041 e1000_write_kmrn_reg_locked(hw,
1042 E1000_KMRNCTRLSTA_K1_CONFIG,
1043 reg);
1044 release:
1045 hw->phy.ops.release(hw);
1046 } else {
1047 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1048 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1050 if ((hw->phy.revision > 5) || !link ||
1051 ((status & E1000_STATUS_SPEED_100) &&
1052 (status & E1000_STATUS_FD)))
1053 goto update_fextnvm6;
1055 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1056 if (ret_val)
1057 return ret_val;
1059 /* Clear link status transmit timeout */
1060 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1062 if (status & E1000_STATUS_SPEED_100) {
1063 /* Set inband Tx timeout to 5x10us for 100Half */
1064 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1066 /* Do not extend the K1 entry latency for 100Half */
1067 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1068 } else {
1069 /* Set inband Tx timeout to 50x10us for 10Full/Half */
1070 reg |= 50 <<
1071 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1073 /* Extend the K1 entry latency for 10 Mbps */
1074 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1077 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1078 if (ret_val)
1079 return ret_val;
1081 update_fextnvm6:
1082 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1085 return ret_val;
1088 static u64 e1000_ltr2ns(u16 ltr)
1090 u32 value, scale;
1092 /* Determine the latency in nsec based on the LTR value & scale */
1093 value = ltr & E1000_LTRV_VALUE_MASK;
1094 scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1096 return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1100 * e1000_platform_pm_pch_lpt - Set platform power management values
1101 * @hw: pointer to the HW structure
1102 * @link: bool indicating link status
1104 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1105 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1106 * when link is up (which must not exceed the maximum latency supported
1107 * by the platform), otherwise specify there is no LTR requirement.
1108 * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1109 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1110 * Capability register set, on this device LTR is set by writing the
1111 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1112 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1113 * message to the PMC.
1115 * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1116 * high-water mark.
1118 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1120 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1121 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1122 u16 lat_enc = 0; /* latency encoded */
1123 s32 obff_hwm = 0;
1125 DEBUGFUNC("e1000_platform_pm_pch_lpt");
1127 if (link) {
1128 u16 speed, duplex, scale = 0;
1129 u16 max_snoop, max_nosnoop;
1130 u16 max_ltr_enc; /* max LTR latency encoded */
1131 s64 lat_ns;
1132 s64 value;
1133 u32 rxa;
1135 if (!hw->mac.max_frame_size) {
1136 DEBUGOUT("max_frame_size not set.\n");
1137 return -E1000_ERR_CONFIG;
1140 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1141 if (!speed) {
1142 DEBUGOUT("Speed not set.\n");
1143 return -E1000_ERR_CONFIG;
1146 /* Rx Packet Buffer Allocation size (KB) */
1147 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1149 /* Determine the maximum latency tolerated by the device.
1151 * Per the PCIe spec, the tolerated latencies are encoded as
1152 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1153 * a 10-bit value (0-1023) to provide a range from 1 ns to
1154 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1155 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1157 lat_ns = ((s64)rxa * 1024 -
1158 (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1159 if (lat_ns < 0)
1160 lat_ns = 0;
1161 else
1162 lat_ns /= speed;
1163 value = lat_ns;
1165 while (value > E1000_LTRV_VALUE_MASK) {
1166 scale++;
1167 value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1169 if (scale > E1000_LTRV_SCALE_MAX) {
1170 DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1171 return -E1000_ERR_CONFIG;
1173 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1175 /* Determine the maximum latency tolerated by the platform */
1176 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1177 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1178 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1180 if (lat_enc > max_ltr_enc) {
1181 lat_enc = max_ltr_enc;
1182 lat_ns = e1000_ltr2ns(max_ltr_enc);
1185 if (lat_ns) {
1186 lat_ns *= speed * 1000;
1187 lat_ns /= 8;
1188 lat_ns /= 1000000000;
1189 obff_hwm = (s32)(rxa - lat_ns);
1191 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1192 DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1193 return -E1000_ERR_CONFIG;
1197 /* Set Snoop and No-Snoop latencies the same */
1198 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1199 E1000_WRITE_REG(hw, E1000_LTRV, reg);
1201 /* Set OBFF high water mark */
1202 reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1203 reg |= obff_hwm;
1204 E1000_WRITE_REG(hw, E1000_SVT, reg);
1206 /* Enable OBFF */
1207 reg = E1000_READ_REG(hw, E1000_SVCR);
1208 reg |= E1000_SVCR_OFF_EN;
1209 /* Always unblock interrupts to the CPU even when the system is
1210 * in OBFF mode. This ensures that small round-robin traffic
1211 * (like ping) does not get dropped or experience long latency.
1213 reg |= E1000_SVCR_OFF_MASKINT;
1214 E1000_WRITE_REG(hw, E1000_SVCR, reg);
1216 return E1000_SUCCESS;
1220 * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1221 * @hw: pointer to the HW structure
1222 * @itr: interrupt throttling rate
1224 * Configure OBFF with the updated interrupt rate.
1226 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1228 u32 svcr;
1229 s32 timer;
1231 DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1233 /* Convert ITR value into microseconds for OBFF timer */
1234 timer = itr & E1000_ITR_MASK;
1235 timer = (timer * E1000_ITR_MULT) / 1000;
1237 if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1238 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1239 return -E1000_ERR_CONFIG;
1242 svcr = E1000_READ_REG(hw, E1000_SVCR);
1243 svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1244 svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1245 E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1247 return E1000_SUCCESS;
1251 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1252 * @hw: pointer to the HW structure
1253 * @to_sx: boolean indicating a system power state transition to Sx
1255 * When link is down, configure ULP mode to significantly reduce the power
1256 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1257 * ME firmware to start the ULP configuration. If not on an ME enabled
1258 * system, configure the ULP mode by software.
1260 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1262 u32 mac_reg;
1263 s32 ret_val = E1000_SUCCESS;
1264 u16 phy_reg;
1265 u16 oem_reg = 0;
1267 if ((hw->mac.type < e1000_pch_lpt) ||
1268 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1269 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1270 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1271 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1272 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1273 return 0;
1275 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1276 /* Request ME configure ULP mode in the PHY */
1277 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1278 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1279 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1281 goto out;
1284 if (!to_sx) {
1285 int i = 0;
1287 /* Poll up to 5 seconds for Cable Disconnected indication */
1288 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1289 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1290 /* Bail if link is re-acquired */
1291 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1292 return -E1000_ERR_PHY;
1294 if (i++ == 100)
1295 break;
1297 msec_delay(50);
1299 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1300 (E1000_READ_REG(hw, E1000_FEXT) &
1301 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1302 i * 50);
1305 ret_val = hw->phy.ops.acquire(hw);
1306 if (ret_val)
1307 goto out;
1309 /* Force SMBus mode in PHY */
1310 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1311 if (ret_val)
1312 goto release;
1313 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1314 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1316 /* Force SMBus mode in MAC */
1317 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1318 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1319 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1321 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1322 * LPLU and disable Gig speed when entering ULP
1324 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1325 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1326 &oem_reg);
1327 if (ret_val)
1328 goto release;
1330 phy_reg = oem_reg;
1331 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1333 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1334 phy_reg);
1336 if (ret_val)
1337 goto release;
1340 /* Set Inband ULP Exit, Reset to SMBus mode and
1341 * Disable SMBus Release on PERST# in PHY
1343 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1344 if (ret_val)
1345 goto release;
1346 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1347 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1348 if (to_sx) {
1349 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1350 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1351 else
1352 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1354 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1355 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1356 } else {
1357 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1358 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1359 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1361 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363 /* Set Disable SMBus Release on PERST# in MAC */
1364 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1365 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1366 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1368 /* Commit ULP changes in PHY by starting auto ULP configuration */
1369 phy_reg |= I218_ULP_CONFIG1_START;
1370 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1372 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1373 to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1374 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1375 oem_reg);
1376 if (ret_val)
1377 goto release;
1380 release:
1381 hw->phy.ops.release(hw);
1382 out:
1383 if (ret_val)
1384 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1385 else
1386 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1388 return ret_val;
1392 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1393 * @hw: pointer to the HW structure
1394 * @force: boolean indicating whether or not to force disabling ULP
1396 * Un-configure ULP mode when link is up, the system is transitioned from
1397 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1398 * system, poll for an indication from ME that ULP has been un-configured.
1399 * If not on an ME enabled system, un-configure the ULP mode by software.
1401 * During nominal operation, this function is called when link is acquired
1402 * to disable ULP mode (force=FALSE); otherwise, for example when unloading
1403 * the driver or during Sx->S0 transitions, this is called with force=TRUE
1404 * to forcibly disable ULP.
1406 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1408 s32 ret_val = E1000_SUCCESS;
1409 u32 mac_reg;
1410 u16 phy_reg;
1411 int i = 0;
1413 if ((hw->mac.type < e1000_pch_lpt) ||
1414 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1415 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1416 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1417 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1418 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1419 return 0;
1421 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1422 if (force) {
1423 /* Request ME un-configure ULP mode in the PHY */
1424 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1425 mac_reg &= ~E1000_H2ME_ULP;
1426 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1427 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1430 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1431 while (E1000_READ_REG(hw, E1000_FWSM) &
1432 E1000_FWSM_ULP_CFG_DONE) {
1433 if (i++ == 30) {
1434 ret_val = -E1000_ERR_PHY;
1435 goto out;
1438 msec_delay(10);
1440 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1442 if (force) {
1443 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1444 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1445 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1446 } else {
1447 /* Clear H2ME.ULP after ME ULP configuration */
1448 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1449 mac_reg &= ~E1000_H2ME_ULP;
1450 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1453 goto out;
1456 ret_val = hw->phy.ops.acquire(hw);
1457 if (ret_val)
1458 goto out;
1460 if (force)
1461 /* Toggle LANPHYPC Value bit */
1462 e1000_toggle_lanphypc_pch_lpt(hw);
1464 /* Unforce SMBus mode in PHY */
1465 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1466 if (ret_val) {
1467 /* The MAC might be in PCIe mode, so temporarily force to
1468 * SMBus mode in order to access the PHY.
1470 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1471 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1472 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1474 msec_delay(50);
1476 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1477 &phy_reg);
1478 if (ret_val)
1479 goto release;
1481 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1482 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1484 /* Unforce SMBus mode in MAC */
1485 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1486 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1487 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1489 /* When ULP mode was previously entered, K1 was disabled by the
1490 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1492 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1493 if (ret_val)
1494 goto release;
1495 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1496 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1498 /* Clear ULP enabled configuration */
1499 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1500 if (ret_val)
1501 goto release;
1502 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1503 I218_ULP_CONFIG1_STICKY_ULP |
1504 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1505 I218_ULP_CONFIG1_WOL_HOST |
1506 I218_ULP_CONFIG1_INBAND_EXIT |
1507 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1508 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1509 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1510 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1512 /* Commit ULP changes by starting auto ULP configuration */
1513 phy_reg |= I218_ULP_CONFIG1_START;
1514 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1516 /* Clear Disable SMBus Release on PERST# in MAC */
1517 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1518 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1519 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1521 release:
1522 hw->phy.ops.release(hw);
1523 if (force) {
1524 hw->phy.ops.reset(hw);
1525 msec_delay(50);
1527 out:
1528 if (ret_val)
1529 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1530 else
1531 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1533 return ret_val;
1537 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1538 * @hw: pointer to the HW structure
1540 * Checks to see of the link status of the hardware has changed. If a
1541 * change in link status has been detected, then we read the PHY registers
1542 * to get the current speed/duplex if link exists.
1544 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1546 struct e1000_mac_info *mac = &hw->mac;
1547 s32 ret_val, tipg_reg = 0;
1548 u16 emi_addr, emi_val = 0;
1549 bool link;
1550 u16 phy_reg;
1552 DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1554 /* We only want to go out to the PHY registers to see if Auto-Neg
1555 * has completed and/or if our link status has changed. The
1556 * get_link_status flag is set upon receiving a Link Status
1557 * Change or Rx Sequence Error interrupt.
1559 if (!mac->get_link_status)
1560 return E1000_SUCCESS;
1562 /* First we want to see if the MII Status Register reports
1563 * link. If so, then we want to get the current speed/duplex
1564 * of the PHY.
1566 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1567 if (ret_val)
1568 return ret_val;
1570 if (hw->mac.type == e1000_pchlan) {
1571 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1572 if (ret_val)
1573 return ret_val;
1576 /* When connected at 10Mbps half-duplex, some parts are excessively
1577 * aggressive resulting in many collisions. To avoid this, increase
1578 * the IPG and reduce Rx latency in the PHY.
1580 if ((hw->mac.type >= e1000_pch2lan) && link) {
1581 u16 speed, duplex;
1583 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1584 tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1585 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1587 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1588 tipg_reg |= 0xFF;
1589 /* Reduce Rx latency in analog PHY */
1590 emi_val = 0;
1591 } else if (hw->mac.type >= e1000_pch_spt &&
1592 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1593 tipg_reg |= 0xC;
1594 emi_val = 1;
1595 } else {
1596 /* Roll back the default values */
1597 tipg_reg |= 0x08;
1598 emi_val = 1;
1601 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1603 ret_val = hw->phy.ops.acquire(hw);
1604 if (ret_val)
1605 return ret_val;
1607 if (hw->mac.type == e1000_pch2lan)
1608 emi_addr = I82579_RX_CONFIG;
1609 else
1610 emi_addr = I217_RX_CONFIG;
1611 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1613 if (hw->mac.type >= e1000_pch_lpt) {
1614 u16 phy_reg;
1616 hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1617 &phy_reg);
1618 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1619 if (speed == SPEED_100 || speed == SPEED_10)
1620 phy_reg |= 0x3E8;
1621 else
1622 phy_reg |= 0xFA;
1623 hw->phy.ops.write_reg_locked(hw,
1624 I217_PLL_CLOCK_GATE_REG,
1625 phy_reg);
1627 if (speed == SPEED_1000) {
1628 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1629 &phy_reg);
1631 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1633 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1634 phy_reg);
1637 hw->phy.ops.release(hw);
1639 if (ret_val)
1640 return ret_val;
1642 if (hw->mac.type >= e1000_pch_spt) {
1643 u16 data;
1644 u16 ptr_gap;
1646 if (speed == SPEED_1000) {
1647 ret_val = hw->phy.ops.acquire(hw);
1648 if (ret_val)
1649 return ret_val;
1651 ret_val = hw->phy.ops.read_reg_locked(hw,
1652 PHY_REG(776, 20),
1653 &data);
1654 if (ret_val) {
1655 hw->phy.ops.release(hw);
1656 return ret_val;
1659 ptr_gap = (data & (0x3FF << 2)) >> 2;
1660 if (ptr_gap < 0x18) {
1661 data &= ~(0x3FF << 2);
1662 data |= (0x18 << 2);
1663 ret_val =
1664 hw->phy.ops.write_reg_locked(hw,
1665 PHY_REG(776, 20), data);
1667 hw->phy.ops.release(hw);
1668 if (ret_val)
1669 return ret_val;
1670 } else {
1671 ret_val = hw->phy.ops.acquire(hw);
1672 if (ret_val)
1673 return ret_val;
1675 ret_val = hw->phy.ops.write_reg_locked(hw,
1676 PHY_REG(776, 20),
1677 0xC023);
1678 hw->phy.ops.release(hw);
1679 if (ret_val)
1680 return ret_val;
1686 /* I217 Packet Loss issue:
1687 * ensure that FEXTNVM4 Beacon Duration is set correctly
1688 * on power up.
1689 * Set the Beacon Duration for I217 to 8 usec
1691 if (hw->mac.type >= e1000_pch_lpt) {
1692 u32 mac_reg;
1694 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1695 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1696 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1697 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1700 /* Work-around I218 hang issue */
1701 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1702 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1703 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1704 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1705 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1706 if (ret_val)
1707 return ret_val;
1709 if (hw->mac.type >= e1000_pch_lpt) {
1710 /* Set platform power management values for
1711 * Latency Tolerance Reporting (LTR)
1712 * Optimized Buffer Flush/Fill (OBFF)
1714 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1715 if (ret_val)
1716 return ret_val;
1719 /* Clear link partner's EEE ability */
1720 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1722 /* FEXTNVM6 K1-off workaround - for SPT only */
1723 if (hw->mac.type == e1000_pch_spt) {
1724 u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1725 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1727 if ((pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) &&
1728 (hw->dev_spec.ich8lan.disable_k1_off == FALSE))
1729 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1730 else
1731 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1733 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1736 if (!link)
1737 return E1000_SUCCESS; /* No link detected */
1739 mac->get_link_status = FALSE;
1741 switch (hw->mac.type) {
1742 case e1000_pch2lan:
1743 ret_val = e1000_k1_workaround_lv(hw);
1744 if (ret_val)
1745 return ret_val;
1746 /* fall-thru */
1747 case e1000_pchlan:
1748 if (hw->phy.type == e1000_phy_82578) {
1749 ret_val = e1000_link_stall_workaround_hv(hw);
1750 if (ret_val)
1751 return ret_val;
1754 /* Workaround for PCHx parts in half-duplex:
1755 * Set the number of preambles removed from the packet
1756 * when it is passed from the PHY to the MAC to prevent
1757 * the MAC from misinterpreting the packet type.
1759 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1760 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1762 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1763 E1000_STATUS_FD)
1764 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1766 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1767 break;
1768 default:
1769 break;
1772 /* Check if there was DownShift, must be checked
1773 * immediately after link-up
1775 e1000_check_downshift_generic(hw);
1777 /* Enable/Disable EEE after link up */
1778 if (hw->phy.type > e1000_phy_82579) {
1779 ret_val = e1000_set_eee_pchlan(hw);
1780 if (ret_val)
1781 return ret_val;
1784 /* If we are forcing speed/duplex, then we simply return since
1785 * we have already determined whether we have link or not.
1787 if (!mac->autoneg)
1788 return -E1000_ERR_CONFIG;
1790 /* Auto-Neg is enabled. Auto Speed Detection takes care
1791 * of MAC speed/duplex configuration. So we only need to
1792 * configure Collision Distance in the MAC.
1794 mac->ops.config_collision_dist(hw);
1796 /* Configure Flow Control now that Auto-Neg has completed.
1797 * First, we need to restore the desired flow control
1798 * settings because we may have had to re-autoneg with a
1799 * different link partner.
1801 ret_val = e1000_config_fc_after_link_up_generic(hw);
1802 if (ret_val)
1803 DEBUGOUT("Error configuring flow control\n");
1805 return ret_val;
1809 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1810 * @hw: pointer to the HW structure
1812 * Initialize family-specific function pointers for PHY, MAC, and NVM.
1814 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1816 DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1818 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1819 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1820 switch (hw->mac.type) {
1821 case e1000_ich8lan:
1822 case e1000_ich9lan:
1823 case e1000_ich10lan:
1824 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1825 break;
1826 case e1000_pchlan:
1827 case e1000_pch2lan:
1828 case e1000_pch_lpt:
1829 case e1000_pch_spt:
1830 case e1000_pch_cnp:
1831 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1832 break;
1833 default:
1834 break;
1839 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1840 * @hw: pointer to the HW structure
1842 * Acquires the mutex for performing NVM operations.
1844 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1846 DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1848 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1850 return E1000_SUCCESS;
1854 * e1000_release_nvm_ich8lan - Release NVM mutex
1855 * @hw: pointer to the HW structure
1857 * Releases the mutex used while performing NVM operations.
1859 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1861 DEBUGFUNC("e1000_release_nvm_ich8lan");
1863 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1865 return;
1869 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1870 * @hw: pointer to the HW structure
1872 * Acquires the software control flag for performing PHY and select
1873 * MAC CSR accesses.
1875 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1877 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1878 s32 ret_val = E1000_SUCCESS;
1880 DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1882 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1884 while (timeout) {
1885 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1886 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1887 break;
1889 msec_delay_irq(1);
1890 timeout--;
1893 if (!timeout) {
1894 DEBUGOUT("SW has already locked the resource.\n");
1895 ret_val = -E1000_ERR_CONFIG;
1896 goto out;
1899 timeout = SW_FLAG_TIMEOUT;
1901 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1902 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1904 while (timeout) {
1905 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1906 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1907 break;
1909 msec_delay_irq(1);
1910 timeout--;
1913 if (!timeout) {
1914 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1915 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1916 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1917 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1918 ret_val = -E1000_ERR_CONFIG;
1919 goto out;
1922 out:
1923 if (ret_val)
1924 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1926 return ret_val;
1930 * e1000_release_swflag_ich8lan - Release software control flag
1931 * @hw: pointer to the HW structure
1933 * Releases the software control flag for performing PHY and select
1934 * MAC CSR accesses.
1936 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1938 u32 extcnf_ctrl;
1940 DEBUGFUNC("e1000_release_swflag_ich8lan");
1942 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1944 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1945 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1946 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1947 } else {
1948 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1951 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1953 return;
1957 * e1000_check_mng_mode_ich8lan - Checks management mode
1958 * @hw: pointer to the HW structure
1960 * This checks if the adapter has any manageability enabled.
1961 * This is a function pointer entry point only called by read/write
1962 * routines for the PHY and NVM parts.
1964 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1966 u32 fwsm;
1968 DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1970 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1972 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1973 ((fwsm & E1000_FWSM_MODE_MASK) ==
1974 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1978 * e1000_check_mng_mode_pchlan - Checks management mode
1979 * @hw: pointer to the HW structure
1981 * This checks if the adapter has iAMT enabled.
1982 * This is a function pointer entry point only called by read/write
1983 * routines for the PHY and NVM parts.
1985 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1987 u32 fwsm;
1989 DEBUGFUNC("e1000_check_mng_mode_pchlan");
1991 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1993 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1994 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1998 * e1000_rar_set_pch2lan - Set receive address register
1999 * @hw: pointer to the HW structure
2000 * @addr: pointer to the receive address
2001 * @index: receive address array register
2003 * Sets the receive address array register at index to the address passed
2004 * in by addr. For 82579, RAR[0] is the base address register that is to
2005 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2006 * Use SHRA[0-3] in place of those reserved for ME.
2008 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2010 u32 rar_low, rar_high;
2012 DEBUGFUNC("e1000_rar_set_pch2lan");
2014 /* HW expects these in little endian so we reverse the byte order
2015 * from network order (big endian) to little endian
2017 rar_low = ((u32) addr[0] |
2018 ((u32) addr[1] << 8) |
2019 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2021 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2023 /* If MAC address zero, no need to set the AV bit */
2024 if (rar_low || rar_high)
2025 rar_high |= E1000_RAH_AV;
2027 if (index == 0) {
2028 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2029 E1000_WRITE_FLUSH(hw);
2030 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2031 E1000_WRITE_FLUSH(hw);
2032 return E1000_SUCCESS;
2035 /* RAR[1-6] are owned by manageability. Skip those and program the
2036 * next address into the SHRA register array.
2038 if (index < (u32) (hw->mac.rar_entry_count)) {
2039 s32 ret_val;
2041 ret_val = e1000_acquire_swflag_ich8lan(hw);
2042 if (ret_val)
2043 goto out;
2045 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2046 E1000_WRITE_FLUSH(hw);
2047 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2048 E1000_WRITE_FLUSH(hw);
2050 e1000_release_swflag_ich8lan(hw);
2052 /* verify the register updates */
2053 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2054 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2055 return E1000_SUCCESS;
2057 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2058 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2061 out:
2062 DEBUGOUT1("Failed to write receive address at index %d\n", index);
2063 return -E1000_ERR_CONFIG;
2067 * e1000_rar_set_pch_lpt - Set receive address registers
2068 * @hw: pointer to the HW structure
2069 * @addr: pointer to the receive address
2070 * @index: receive address array register
2072 * Sets the receive address register array at index to the address passed
2073 * in by addr. For LPT, RAR[0] is the base address register that is to
2074 * contain the MAC address. SHRA[0-10] are the shared receive address
2075 * registers that are shared between the Host and manageability engine (ME).
2077 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2079 u32 rar_low, rar_high;
2080 u32 wlock_mac;
2082 DEBUGFUNC("e1000_rar_set_pch_lpt");
2084 /* HW expects these in little endian so we reverse the byte order
2085 * from network order (big endian) to little endian
2087 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2088 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2090 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2092 /* If MAC address zero, no need to set the AV bit */
2093 if (rar_low || rar_high)
2094 rar_high |= E1000_RAH_AV;
2096 if (index == 0) {
2097 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2098 E1000_WRITE_FLUSH(hw);
2099 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2100 E1000_WRITE_FLUSH(hw);
2101 return E1000_SUCCESS;
2104 /* The manageability engine (ME) can lock certain SHRAR registers that
2105 * it is using - those registers are unavailable for use.
2107 if (index < hw->mac.rar_entry_count) {
2108 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2109 E1000_FWSM_WLOCK_MAC_MASK;
2110 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2112 /* Check if all SHRAR registers are locked */
2113 if (wlock_mac == 1)
2114 goto out;
2116 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2117 s32 ret_val;
2119 ret_val = e1000_acquire_swflag_ich8lan(hw);
2121 if (ret_val)
2122 goto out;
2124 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2125 rar_low);
2126 E1000_WRITE_FLUSH(hw);
2127 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2128 rar_high);
2129 E1000_WRITE_FLUSH(hw);
2131 e1000_release_swflag_ich8lan(hw);
2133 /* verify the register updates */
2134 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2135 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2136 return E1000_SUCCESS;
2140 out:
2141 DEBUGOUT1("Failed to write receive address at index %d\n", index);
2142 return -E1000_ERR_CONFIG;
2146 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2147 * @hw: pointer to the HW structure
2148 * @mc_addr_list: array of multicast addresses to program
2149 * @mc_addr_count: number of multicast addresses to program
2151 * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2152 * The caller must have a packed mc_addr_list of multicast addresses.
2154 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2155 u8 *mc_addr_list,
2156 u32 mc_addr_count)
2158 u16 phy_reg = 0;
2159 int i;
2160 s32 ret_val;
2162 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2164 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2166 ret_val = hw->phy.ops.acquire(hw);
2167 if (ret_val)
2168 return;
2170 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2171 if (ret_val)
2172 goto release;
2174 for (i = 0; i < hw->mac.mta_reg_count; i++) {
2175 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2176 (u16)(hw->mac.mta_shadow[i] &
2177 0xFFFF));
2178 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2179 (u16)((hw->mac.mta_shadow[i] >> 16) &
2180 0xFFFF));
2183 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2185 release:
2186 hw->phy.ops.release(hw);
2190 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2191 * @hw: pointer to the HW structure
2193 * Checks if firmware is blocking the reset of the PHY.
2194 * This is a function pointer entry point only called by
2195 * reset routines.
2197 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2199 u32 fwsm;
2200 bool blocked = FALSE;
2201 int i = 0;
2203 DEBUGFUNC("e1000_check_reset_block_ich8lan");
2205 do {
2206 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2207 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2208 blocked = TRUE;
2209 msec_delay(10);
2210 continue;
2212 blocked = FALSE;
2213 } while (blocked && (i++ < 30));
2214 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2218 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2219 * @hw: pointer to the HW structure
2221 * Assumes semaphore already acquired.
2224 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2226 u16 phy_data;
2227 u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2228 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2229 E1000_STRAP_SMT_FREQ_SHIFT;
2230 s32 ret_val;
2232 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2234 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2235 if (ret_val)
2236 return ret_val;
2238 phy_data &= ~HV_SMB_ADDR_MASK;
2239 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2240 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2242 if (hw->phy.type == e1000_phy_i217) {
2243 /* Restore SMBus frequency */
2244 if (freq--) {
2245 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2246 phy_data |= (freq & (1 << 0)) <<
2247 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2248 phy_data |= (freq & (1 << 1)) <<
2249 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2250 } else {
2251 DEBUGOUT("Unsupported SMB frequency in PHY\n");
2255 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2259 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2260 * @hw: pointer to the HW structure
2262 * SW should configure the LCD from the NVM extended configuration region
2263 * as a workaround for certain parts.
2265 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2267 struct e1000_phy_info *phy = &hw->phy;
2268 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2269 s32 ret_val = E1000_SUCCESS;
2270 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2272 DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2274 /* Initialize the PHY from the NVM on ICH platforms. This
2275 * is needed due to an issue where the NVM configuration is
2276 * not properly autoloaded after power transitions.
2277 * Therefore, after each PHY reset, we will load the
2278 * configuration data out of the NVM manually.
2280 switch (hw->mac.type) {
2281 case e1000_ich8lan:
2282 if (phy->type != e1000_phy_igp_3)
2283 return ret_val;
2285 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2286 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2287 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2288 break;
2290 /* Fall-thru */
2291 case e1000_pchlan:
2292 case e1000_pch2lan:
2293 case e1000_pch_lpt:
2294 case e1000_pch_spt:
2295 case e1000_pch_cnp:
2296 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2297 break;
2298 default:
2299 return ret_val;
2302 ret_val = hw->phy.ops.acquire(hw);
2303 if (ret_val)
2304 return ret_val;
2306 data = E1000_READ_REG(hw, E1000_FEXTNVM);
2307 if (!(data & sw_cfg_mask))
2308 goto release;
2310 /* Make sure HW does not configure LCD from PHY
2311 * extended configuration before SW configuration
2313 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2314 if ((hw->mac.type < e1000_pch2lan) &&
2315 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2316 goto release;
2318 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2319 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2320 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2321 if (!cnf_size)
2322 goto release;
2324 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2325 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2327 if (((hw->mac.type == e1000_pchlan) &&
2328 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2329 (hw->mac.type > e1000_pchlan)) {
2330 /* HW configures the SMBus address and LEDs when the
2331 * OEM and LCD Write Enable bits are set in the NVM.
2332 * When both NVM bits are cleared, SW will configure
2333 * them instead.
2335 ret_val = e1000_write_smbus_addr(hw);
2336 if (ret_val)
2337 goto release;
2339 data = E1000_READ_REG(hw, E1000_LEDCTL);
2340 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2341 (u16)data);
2342 if (ret_val)
2343 goto release;
2346 /* Configure LCD from extended configuration region. */
2348 /* cnf_base_addr is in DWORD */
2349 word_addr = (u16)(cnf_base_addr << 1);
2351 for (i = 0; i < cnf_size; i++) {
2352 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2353 &reg_data);
2354 if (ret_val)
2355 goto release;
2357 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2358 1, &reg_addr);
2359 if (ret_val)
2360 goto release;
2362 /* Save off the PHY page for future writes. */
2363 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2364 phy_page = reg_data;
2365 continue;
2368 reg_addr &= PHY_REG_MASK;
2369 reg_addr |= phy_page;
2371 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2372 reg_data);
2373 if (ret_val)
2374 goto release;
2377 release:
2378 hw->phy.ops.release(hw);
2379 return ret_val;
2383 * e1000_k1_gig_workaround_hv - K1 Si workaround
2384 * @hw: pointer to the HW structure
2385 * @link: link up bool flag
2387 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2388 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2389 * If link is down, the function will restore the default K1 setting located
2390 * in the NVM.
2392 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2394 s32 ret_val = E1000_SUCCESS;
2395 u16 status_reg = 0;
2396 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2398 DEBUGFUNC("e1000_k1_gig_workaround_hv");
2400 if (hw->mac.type != e1000_pchlan)
2401 return E1000_SUCCESS;
2403 /* Wrap the whole flow with the sw flag */
2404 ret_val = hw->phy.ops.acquire(hw);
2405 if (ret_val)
2406 return ret_val;
2408 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2409 if (link) {
2410 if (hw->phy.type == e1000_phy_82578) {
2411 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2412 &status_reg);
2413 if (ret_val)
2414 goto release;
2416 status_reg &= (BM_CS_STATUS_LINK_UP |
2417 BM_CS_STATUS_RESOLVED |
2418 BM_CS_STATUS_SPEED_MASK);
2420 if (status_reg == (BM_CS_STATUS_LINK_UP |
2421 BM_CS_STATUS_RESOLVED |
2422 BM_CS_STATUS_SPEED_1000))
2423 k1_enable = FALSE;
2426 if (hw->phy.type == e1000_phy_82577) {
2427 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2428 &status_reg);
2429 if (ret_val)
2430 goto release;
2432 status_reg &= (HV_M_STATUS_LINK_UP |
2433 HV_M_STATUS_AUTONEG_COMPLETE |
2434 HV_M_STATUS_SPEED_MASK);
2436 if (status_reg == (HV_M_STATUS_LINK_UP |
2437 HV_M_STATUS_AUTONEG_COMPLETE |
2438 HV_M_STATUS_SPEED_1000))
2439 k1_enable = FALSE;
2442 /* Link stall fix for link up */
2443 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2444 0x0100);
2445 if (ret_val)
2446 goto release;
2448 } else {
2449 /* Link stall fix for link down */
2450 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2451 0x4100);
2452 if (ret_val)
2453 goto release;
2456 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2458 release:
2459 hw->phy.ops.release(hw);
2461 return ret_val;
2465 * e1000_configure_k1_ich8lan - Configure K1 power state
2466 * @hw: pointer to the HW structure
2467 * @enable: K1 state to configure
2469 * Configure the K1 power state based on the provided parameter.
2470 * Assumes semaphore already acquired.
2472 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2474 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2476 s32 ret_val;
2477 u32 ctrl_reg = 0;
2478 u32 ctrl_ext = 0;
2479 u32 reg = 0;
2480 u16 kmrn_reg = 0;
2482 DEBUGFUNC("e1000_configure_k1_ich8lan");
2484 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2485 &kmrn_reg);
2486 if (ret_val)
2487 return ret_val;
2489 if (k1_enable)
2490 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2491 else
2492 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2494 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2495 kmrn_reg);
2496 if (ret_val)
2497 return ret_val;
2499 usec_delay(20);
2500 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2501 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2503 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2504 reg |= E1000_CTRL_FRCSPD;
2505 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2507 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2508 E1000_WRITE_FLUSH(hw);
2509 usec_delay(20);
2510 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2511 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2512 E1000_WRITE_FLUSH(hw);
2513 usec_delay(20);
2515 return E1000_SUCCESS;
2519 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2520 * @hw: pointer to the HW structure
2521 * @d0_state: boolean if entering d0 or d3 device state
2523 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2524 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2525 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2527 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2529 s32 ret_val = 0;
2530 u32 mac_reg;
2531 u16 oem_reg;
2533 DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2535 if (hw->mac.type < e1000_pchlan)
2536 return ret_val;
2538 ret_val = hw->phy.ops.acquire(hw);
2539 if (ret_val)
2540 return ret_val;
2542 if (hw->mac.type == e1000_pchlan) {
2543 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2544 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2545 goto release;
2548 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2549 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2550 goto release;
2552 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2554 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2555 if (ret_val)
2556 goto release;
2558 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2560 if (d0_state) {
2561 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2562 oem_reg |= HV_OEM_BITS_GBE_DIS;
2564 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2565 oem_reg |= HV_OEM_BITS_LPLU;
2566 } else {
2567 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2568 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2569 oem_reg |= HV_OEM_BITS_GBE_DIS;
2571 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2572 E1000_PHY_CTRL_NOND0A_LPLU))
2573 oem_reg |= HV_OEM_BITS_LPLU;
2576 /* Set Restart auto-neg to activate the bits */
2577 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2578 !hw->phy.ops.check_reset_block(hw))
2579 oem_reg |= HV_OEM_BITS_RESTART_AN;
2581 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2583 release:
2584 hw->phy.ops.release(hw);
2586 return ret_val;
2591 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2592 * @hw: pointer to the HW structure
2594 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2596 s32 ret_val;
2597 u16 data;
2599 DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2601 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2602 if (ret_val)
2603 return ret_val;
2605 data |= HV_KMRN_MDIO_SLOW;
2607 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2609 return ret_val;
2613 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2614 * done after every PHY reset.
2616 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2618 s32 ret_val = E1000_SUCCESS;
2619 u16 phy_data;
2621 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2623 if (hw->mac.type != e1000_pchlan)
2624 return E1000_SUCCESS;
2626 /* Set MDIO slow mode before any other MDIO access */
2627 if (hw->phy.type == e1000_phy_82577) {
2628 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2629 if (ret_val)
2630 return ret_val;
2633 if (((hw->phy.type == e1000_phy_82577) &&
2634 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2635 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2636 /* Disable generation of early preamble */
2637 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2638 if (ret_val)
2639 return ret_val;
2641 /* Preamble tuning for SSC */
2642 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2643 0xA204);
2644 if (ret_val)
2645 return ret_val;
2648 if (hw->phy.type == e1000_phy_82578) {
2649 /* Return registers to default by doing a soft reset then
2650 * writing 0x3140 to the control register.
2652 if (hw->phy.revision < 2) {
2653 e1000_phy_sw_reset_generic(hw);
2654 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2655 0x3140);
2659 /* Select page 0 */
2660 ret_val = hw->phy.ops.acquire(hw);
2661 if (ret_val)
2662 return ret_val;
2664 hw->phy.addr = 1;
2665 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2666 hw->phy.ops.release(hw);
2667 if (ret_val)
2668 return ret_val;
2670 /* Configure the K1 Si workaround during phy reset assuming there is
2671 * link so that it disables K1 if link is in 1Gbps.
2673 ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2674 if (ret_val)
2675 return ret_val;
2677 /* Workaround for link disconnects on a busy hub in half duplex */
2678 ret_val = hw->phy.ops.acquire(hw);
2679 if (ret_val)
2680 return ret_val;
2681 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2682 if (ret_val)
2683 goto release;
2684 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2685 phy_data & 0x00FF);
2686 if (ret_val)
2687 goto release;
2689 /* set MSE higher to enable link to stay up when noise is high */
2690 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2691 release:
2692 hw->phy.ops.release(hw);
2694 return ret_val;
2698 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2699 * @hw: pointer to the HW structure
2701 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2703 u32 mac_reg;
2704 u16 i, phy_reg = 0;
2705 s32 ret_val;
2707 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2709 ret_val = hw->phy.ops.acquire(hw);
2710 if (ret_val)
2711 return;
2712 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2713 if (ret_val)
2714 goto release;
2716 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2717 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2718 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2719 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2720 (u16)(mac_reg & 0xFFFF));
2721 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2722 (u16)((mac_reg >> 16) & 0xFFFF));
2724 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2725 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2726 (u16)(mac_reg & 0xFFFF));
2727 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2728 (u16)((mac_reg & E1000_RAH_AV)
2729 >> 16));
2732 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2734 release:
2735 hw->phy.ops.release(hw);
2738 static u32 e1000_calc_rx_da_crc(u8 mac[])
2740 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
2741 u32 i, j, mask, crc;
2743 DEBUGFUNC("e1000_calc_rx_da_crc");
2745 crc = 0xffffffff;
2746 for (i = 0; i < 6; i++) {
2747 crc = crc ^ mac[i];
2748 for (j = 8; j > 0; j--) {
2749 mask = (crc & 1) * (-1);
2750 crc = (crc >> 1) ^ (poly & mask);
2753 return ~crc;
2757 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2758 * with 82579 PHY
2759 * @hw: pointer to the HW structure
2760 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2762 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2764 s32 ret_val = E1000_SUCCESS;
2765 u16 phy_reg, data;
2766 u32 mac_reg;
2767 u16 i;
2769 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2771 if (hw->mac.type < e1000_pch2lan)
2772 return E1000_SUCCESS;
2774 /* disable Rx path while enabling/disabling workaround */
2775 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2776 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2777 phy_reg | (1 << 14));
2778 if (ret_val)
2779 return ret_val;
2781 if (enable) {
2782 /* Write Rx addresses (rar_entry_count for RAL/H, and
2783 * SHRAL/H) and initial CRC values to the MAC
2785 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2786 u8 mac_addr[ETH_ADDR_LEN] = {0};
2787 u32 addr_high, addr_low;
2789 addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2790 if (!(addr_high & E1000_RAH_AV))
2791 continue;
2792 addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2793 mac_addr[0] = (addr_low & 0xFF);
2794 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2795 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2796 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2797 mac_addr[4] = (addr_high & 0xFF);
2798 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2800 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2801 e1000_calc_rx_da_crc(mac_addr));
2804 /* Write Rx addresses to the PHY */
2805 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2807 /* Enable jumbo frame workaround in the MAC */
2808 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2809 mac_reg &= ~(1 << 14);
2810 mac_reg |= (7 << 15);
2811 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2813 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2814 mac_reg |= E1000_RCTL_SECRC;
2815 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2817 ret_val = e1000_read_kmrn_reg_generic(hw,
2818 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2819 &data);
2820 if (ret_val)
2821 return ret_val;
2822 ret_val = e1000_write_kmrn_reg_generic(hw,
2823 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2824 data | (1 << 0));
2825 if (ret_val)
2826 return ret_val;
2827 ret_val = e1000_read_kmrn_reg_generic(hw,
2828 E1000_KMRNCTRLSTA_HD_CTRL,
2829 &data);
2830 if (ret_val)
2831 return ret_val;
2832 data &= ~(0xF << 8);
2833 data |= (0xB << 8);
2834 ret_val = e1000_write_kmrn_reg_generic(hw,
2835 E1000_KMRNCTRLSTA_HD_CTRL,
2836 data);
2837 if (ret_val)
2838 return ret_val;
2840 /* Enable jumbo frame workaround in the PHY */
2841 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2842 data &= ~(0x7F << 5);
2843 data |= (0x37 << 5);
2844 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2845 if (ret_val)
2846 return ret_val;
2847 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2848 data &= ~(1 << 13);
2849 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2850 if (ret_val)
2851 return ret_val;
2852 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2853 data &= ~(0x3FF << 2);
2854 data |= (E1000_TX_PTR_GAP << 2);
2855 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2856 if (ret_val)
2857 return ret_val;
2858 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2859 if (ret_val)
2860 return ret_val;
2861 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2862 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2863 (1 << 10));
2864 if (ret_val)
2865 return ret_val;
2866 } else {
2867 /* Write MAC register values back to h/w defaults */
2868 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2869 mac_reg &= ~(0xF << 14);
2870 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2872 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2873 mac_reg &= ~E1000_RCTL_SECRC;
2874 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2876 ret_val = e1000_read_kmrn_reg_generic(hw,
2877 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2878 &data);
2879 if (ret_val)
2880 return ret_val;
2881 ret_val = e1000_write_kmrn_reg_generic(hw,
2882 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2883 data & ~(1 << 0));
2884 if (ret_val)
2885 return ret_val;
2886 ret_val = e1000_read_kmrn_reg_generic(hw,
2887 E1000_KMRNCTRLSTA_HD_CTRL,
2888 &data);
2889 if (ret_val)
2890 return ret_val;
2891 data &= ~(0xF << 8);
2892 data |= (0xB << 8);
2893 ret_val = e1000_write_kmrn_reg_generic(hw,
2894 E1000_KMRNCTRLSTA_HD_CTRL,
2895 data);
2896 if (ret_val)
2897 return ret_val;
2899 /* Write PHY register values back to h/w defaults */
2900 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2901 data &= ~(0x7F << 5);
2902 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2903 if (ret_val)
2904 return ret_val;
2905 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2906 data |= (1 << 13);
2907 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2908 if (ret_val)
2909 return ret_val;
2910 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2911 data &= ~(0x3FF << 2);
2912 data |= (0x8 << 2);
2913 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2914 if (ret_val)
2915 return ret_val;
2916 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2917 if (ret_val)
2918 return ret_val;
2919 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2920 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2921 ~(1 << 10));
2922 if (ret_val)
2923 return ret_val;
2926 /* re-enable Rx path after enabling/disabling workaround */
2927 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2928 ~(1 << 14));
2932 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2933 * done after every PHY reset.
2935 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2937 s32 ret_val = E1000_SUCCESS;
2939 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2941 if (hw->mac.type != e1000_pch2lan)
2942 return E1000_SUCCESS;
2944 /* Set MDIO slow mode before any other MDIO access */
2945 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2946 if (ret_val)
2947 return ret_val;
2949 ret_val = hw->phy.ops.acquire(hw);
2950 if (ret_val)
2951 return ret_val;
2952 /* set MSE higher to enable link to stay up when noise is high */
2953 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2954 if (ret_val)
2955 goto release;
2956 /* drop link after 5 times MSE threshold was reached */
2957 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2958 release:
2959 hw->phy.ops.release(hw);
2961 return ret_val;
2965 * e1000_k1_gig_workaround_lv - K1 Si workaround
2966 * @hw: pointer to the HW structure
2968 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2969 * Disable K1 for 1000 and 100 speeds
2971 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2973 s32 ret_val = E1000_SUCCESS;
2974 u16 status_reg = 0;
2976 DEBUGFUNC("e1000_k1_workaround_lv");
2978 if (hw->mac.type != e1000_pch2lan)
2979 return E1000_SUCCESS;
2981 /* Set K1 beacon duration based on 10Mbs speed */
2982 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2983 if (ret_val)
2984 return ret_val;
2986 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2987 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2988 if (status_reg &
2989 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2990 u16 pm_phy_reg;
2992 /* LV 1G/100 Packet drop issue wa */
2993 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2994 &pm_phy_reg);
2995 if (ret_val)
2996 return ret_val;
2997 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2998 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2999 pm_phy_reg);
3000 if (ret_val)
3001 return ret_val;
3002 } else {
3003 u32 mac_reg;
3004 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3005 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3006 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3007 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3011 return ret_val;
3015 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3016 * @hw: pointer to the HW structure
3017 * @gate: boolean set to TRUE to gate, FALSE to ungate
3019 * Gate/ungate the automatic PHY configuration via hardware; perform
3020 * the configuration via software instead.
3022 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3024 u32 extcnf_ctrl;
3026 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3028 if (hw->mac.type < e1000_pch2lan)
3029 return;
3031 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3033 if (gate)
3034 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3035 else
3036 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3038 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3042 * e1000_lan_init_done_ich8lan - Check for PHY config completion
3043 * @hw: pointer to the HW structure
3045 * Check the appropriate indication the MAC has finished configuring the
3046 * PHY after a software reset.
3048 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3050 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3052 DEBUGFUNC("e1000_lan_init_done_ich8lan");
3054 /* Wait for basic configuration completes before proceeding */
3055 do {
3056 data = E1000_READ_REG(hw, E1000_STATUS);
3057 data &= E1000_STATUS_LAN_INIT_DONE;
3058 usec_delay(100);
3059 } while ((!data) && --loop);
3061 /* If basic configuration is incomplete before the above loop
3062 * count reaches 0, loading the configuration from NVM will
3063 * leave the PHY in a bad state possibly resulting in no link.
3065 if (loop == 0)
3066 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3068 /* Clear the Init Done bit for the next init event */
3069 data = E1000_READ_REG(hw, E1000_STATUS);
3070 data &= ~E1000_STATUS_LAN_INIT_DONE;
3071 E1000_WRITE_REG(hw, E1000_STATUS, data);
3075 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3076 * @hw: pointer to the HW structure
3078 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3080 s32 ret_val = E1000_SUCCESS;
3081 u16 reg;
3083 DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3085 if (hw->phy.ops.check_reset_block(hw))
3086 return E1000_SUCCESS;
3088 /* Allow time for h/w to get to quiescent state after reset */
3089 msec_delay(10);
3091 /* Perform any necessary post-reset workarounds */
3092 switch (hw->mac.type) {
3093 case e1000_pchlan:
3094 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3095 if (ret_val)
3096 return ret_val;
3097 break;
3098 case e1000_pch2lan:
3099 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3100 if (ret_val)
3101 return ret_val;
3102 break;
3103 default:
3104 break;
3107 /* Clear the host wakeup bit after lcd reset */
3108 if (hw->mac.type >= e1000_pchlan) {
3109 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3110 reg &= ~BM_WUC_HOST_WU_BIT;
3111 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3114 /* Configure the LCD with the extended configuration region in NVM */
3115 ret_val = e1000_sw_lcd_config_ich8lan(hw);
3116 if (ret_val)
3117 return ret_val;
3119 /* Configure the LCD with the OEM bits in NVM */
3120 ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3122 if (hw->mac.type == e1000_pch2lan) {
3123 /* Ungate automatic PHY configuration on non-managed 82579 */
3124 if (!(E1000_READ_REG(hw, E1000_FWSM) &
3125 E1000_ICH_FWSM_FW_VALID)) {
3126 msec_delay(10);
3127 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3130 /* Set EEE LPI Update Timer to 200usec */
3131 ret_val = hw->phy.ops.acquire(hw);
3132 if (ret_val)
3133 return ret_val;
3134 ret_val = e1000_write_emi_reg_locked(hw,
3135 I82579_LPI_UPDATE_TIMER,
3136 0x1387);
3137 hw->phy.ops.release(hw);
3140 return ret_val;
3144 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3145 * @hw: pointer to the HW structure
3147 * Resets the PHY
3148 * This is a function pointer entry point called by drivers
3149 * or other shared routines.
3151 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3153 s32 ret_val = E1000_SUCCESS;
3155 DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3157 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3158 if ((hw->mac.type == e1000_pch2lan) &&
3159 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3160 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3162 ret_val = e1000_phy_hw_reset_generic(hw);
3163 if (ret_val)
3164 return ret_val;
3166 return e1000_post_phy_reset_ich8lan(hw);
3170 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3171 * @hw: pointer to the HW structure
3172 * @active: TRUE to enable LPLU, FALSE to disable
3174 * Sets the LPLU state according to the active flag. For PCH, if OEM write
3175 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3176 * the phy speed. This function will manually set the LPLU bit and restart
3177 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
3178 * since it configures the same bit.
3180 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3182 s32 ret_val;
3183 u16 oem_reg;
3185 DEBUGFUNC("e1000_set_lplu_state_pchlan");
3186 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3187 if (ret_val)
3188 return ret_val;
3190 if (active)
3191 oem_reg |= HV_OEM_BITS_LPLU;
3192 else
3193 oem_reg &= ~HV_OEM_BITS_LPLU;
3195 if (!hw->phy.ops.check_reset_block(hw))
3196 oem_reg |= HV_OEM_BITS_RESTART_AN;
3198 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3202 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3203 * @hw: pointer to the HW structure
3204 * @active: TRUE to enable LPLU, FALSE to disable
3206 * Sets the LPLU D0 state according to the active flag. When
3207 * activating LPLU this function also disables smart speed
3208 * and vice versa. LPLU will not be activated unless the
3209 * device autonegotiation advertisement meets standards of
3210 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3211 * This is a function pointer entry point only called by
3212 * PHY setup routines.
3214 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3216 struct e1000_phy_info *phy = &hw->phy;
3217 u32 phy_ctrl;
3218 s32 ret_val = E1000_SUCCESS;
3219 u16 data;
3221 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3223 if (phy->type == e1000_phy_ife)
3224 return E1000_SUCCESS;
3226 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3228 if (active) {
3229 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3230 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3232 if (phy->type != e1000_phy_igp_3)
3233 return E1000_SUCCESS;
3235 /* Call gig speed drop workaround on LPLU before accessing
3236 * any PHY registers
3238 if (hw->mac.type == e1000_ich8lan)
3239 e1000_gig_downshift_workaround_ich8lan(hw);
3241 /* When LPLU is enabled, we should disable SmartSpeed */
3242 ret_val = phy->ops.read_reg(hw,
3243 IGP01E1000_PHY_PORT_CONFIG,
3244 &data);
3245 if (ret_val)
3246 return ret_val;
3247 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3248 ret_val = phy->ops.write_reg(hw,
3249 IGP01E1000_PHY_PORT_CONFIG,
3250 data);
3251 if (ret_val)
3252 return ret_val;
3253 } else {
3254 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3255 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3257 if (phy->type != e1000_phy_igp_3)
3258 return E1000_SUCCESS;
3260 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3261 * during Dx states where the power conservation is most
3262 * important. During driver activity we should enable
3263 * SmartSpeed, so performance is maintained.
3265 if (phy->smart_speed == e1000_smart_speed_on) {
3266 ret_val = phy->ops.read_reg(hw,
3267 IGP01E1000_PHY_PORT_CONFIG,
3268 &data);
3269 if (ret_val)
3270 return ret_val;
3272 data |= IGP01E1000_PSCFR_SMART_SPEED;
3273 ret_val = phy->ops.write_reg(hw,
3274 IGP01E1000_PHY_PORT_CONFIG,
3275 data);
3276 if (ret_val)
3277 return ret_val;
3278 } else if (phy->smart_speed == e1000_smart_speed_off) {
3279 ret_val = phy->ops.read_reg(hw,
3280 IGP01E1000_PHY_PORT_CONFIG,
3281 &data);
3282 if (ret_val)
3283 return ret_val;
3285 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3286 ret_val = phy->ops.write_reg(hw,
3287 IGP01E1000_PHY_PORT_CONFIG,
3288 data);
3289 if (ret_val)
3290 return ret_val;
3294 return E1000_SUCCESS;
3298 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3299 * @hw: pointer to the HW structure
3300 * @active: TRUE to enable LPLU, FALSE to disable
3302 * Sets the LPLU D3 state according to the active flag. When
3303 * activating LPLU this function also disables smart speed
3304 * and vice versa. LPLU will not be activated unless the
3305 * device autonegotiation advertisement meets standards of
3306 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3307 * This is a function pointer entry point only called by
3308 * PHY setup routines.
3310 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3312 struct e1000_phy_info *phy = &hw->phy;
3313 u32 phy_ctrl;
3314 s32 ret_val = E1000_SUCCESS;
3315 u16 data;
3317 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3319 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3321 if (!active) {
3322 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3323 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3325 if (phy->type != e1000_phy_igp_3)
3326 return E1000_SUCCESS;
3328 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3329 * during Dx states where the power conservation is most
3330 * important. During driver activity we should enable
3331 * SmartSpeed, so performance is maintained.
3333 if (phy->smart_speed == e1000_smart_speed_on) {
3334 ret_val = phy->ops.read_reg(hw,
3335 IGP01E1000_PHY_PORT_CONFIG,
3336 &data);
3337 if (ret_val)
3338 return ret_val;
3340 data |= IGP01E1000_PSCFR_SMART_SPEED;
3341 ret_val = phy->ops.write_reg(hw,
3342 IGP01E1000_PHY_PORT_CONFIG,
3343 data);
3344 if (ret_val)
3345 return ret_val;
3346 } else if (phy->smart_speed == e1000_smart_speed_off) {
3347 ret_val = phy->ops.read_reg(hw,
3348 IGP01E1000_PHY_PORT_CONFIG,
3349 &data);
3350 if (ret_val)
3351 return ret_val;
3353 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3354 ret_val = phy->ops.write_reg(hw,
3355 IGP01E1000_PHY_PORT_CONFIG,
3356 data);
3357 if (ret_val)
3358 return ret_val;
3360 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3361 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3362 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3363 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3364 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3366 if (phy->type != e1000_phy_igp_3)
3367 return E1000_SUCCESS;
3369 /* Call gig speed drop workaround on LPLU before accessing
3370 * any PHY registers
3372 if (hw->mac.type == e1000_ich8lan)
3373 e1000_gig_downshift_workaround_ich8lan(hw);
3375 /* When LPLU is enabled, we should disable SmartSpeed */
3376 ret_val = phy->ops.read_reg(hw,
3377 IGP01E1000_PHY_PORT_CONFIG,
3378 &data);
3379 if (ret_val)
3380 return ret_val;
3382 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3383 ret_val = phy->ops.write_reg(hw,
3384 IGP01E1000_PHY_PORT_CONFIG,
3385 data);
3388 return ret_val;
3392 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3393 * @hw: pointer to the HW structure
3394 * @bank: pointer to the variable that returns the active bank
3396 * Reads signature byte from the NVM using the flash access registers.
3397 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3399 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3401 u32 eecd;
3402 struct e1000_nvm_info *nvm = &hw->nvm;
3403 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3404 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3405 u32 nvm_dword = 0;
3406 u8 sig_byte = 0;
3407 s32 ret_val;
3409 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3411 switch (hw->mac.type) {
3412 case e1000_pch_spt:
3413 case e1000_pch_cnp:
3414 bank1_offset = nvm->flash_bank_size;
3415 act_offset = E1000_ICH_NVM_SIG_WORD;
3417 /* set bank to 0 in case flash read fails */
3418 *bank = 0;
3420 /* Check bank 0 */
3421 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3422 &nvm_dword);
3423 if (ret_val)
3424 return ret_val;
3425 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3426 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3427 E1000_ICH_NVM_SIG_VALUE) {
3428 *bank = 0;
3429 return E1000_SUCCESS;
3432 /* Check bank 1 */
3433 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3434 bank1_offset,
3435 &nvm_dword);
3436 if (ret_val)
3437 return ret_val;
3438 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3439 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3440 E1000_ICH_NVM_SIG_VALUE) {
3441 *bank = 1;
3442 return E1000_SUCCESS;
3445 DEBUGOUT("ERROR: No valid NVM bank present\n");
3446 return -E1000_ERR_NVM;
3447 case e1000_ich8lan:
3448 case e1000_ich9lan:
3449 eecd = E1000_READ_REG(hw, E1000_EECD);
3450 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3451 E1000_EECD_SEC1VAL_VALID_MASK) {
3452 if (eecd & E1000_EECD_SEC1VAL)
3453 *bank = 1;
3454 else
3455 *bank = 0;
3457 return E1000_SUCCESS;
3459 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3460 /* fall-thru */
3461 default:
3462 /* set bank to 0 in case flash read fails */
3463 *bank = 0;
3465 /* Check bank 0 */
3466 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3467 &sig_byte);
3468 if (ret_val)
3469 return ret_val;
3470 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3471 E1000_ICH_NVM_SIG_VALUE) {
3472 *bank = 0;
3473 return E1000_SUCCESS;
3476 /* Check bank 1 */
3477 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3478 bank1_offset,
3479 &sig_byte);
3480 if (ret_val)
3481 return ret_val;
3482 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3483 E1000_ICH_NVM_SIG_VALUE) {
3484 *bank = 1;
3485 return E1000_SUCCESS;
3488 DEBUGOUT("ERROR: No valid NVM bank present\n");
3489 return -E1000_ERR_NVM;
3494 * e1000_read_nvm_spt - NVM access for SPT
3495 * @hw: pointer to the HW structure
3496 * @offset: The offset (in bytes) of the word(s) to read.
3497 * @words: Size of data to read in words.
3498 * @data: pointer to the word(s) to read at offset.
3500 * Reads a word(s) from the NVM
3502 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3503 u16 *data)
3505 struct e1000_nvm_info *nvm = &hw->nvm;
3506 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3507 u32 act_offset;
3508 s32 ret_val = E1000_SUCCESS;
3509 u32 bank = 0;
3510 u32 dword = 0;
3511 u16 offset_to_read;
3512 u16 i;
3514 DEBUGFUNC("e1000_read_nvm_spt");
3516 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3517 (words == 0)) {
3518 DEBUGOUT("nvm parameter(s) out of bounds\n");
3519 ret_val = -E1000_ERR_NVM;
3520 goto out;
3523 nvm->ops.acquire(hw);
3525 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3526 if (ret_val != E1000_SUCCESS) {
3527 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3528 bank = 0;
3531 act_offset = (bank) ? nvm->flash_bank_size : 0;
3532 act_offset += offset;
3534 ret_val = E1000_SUCCESS;
3536 for (i = 0; i < words; i += 2) {
3537 if (words - i == 1) {
3538 if (dev_spec->shadow_ram[offset+i].modified) {
3539 data[i] = dev_spec->shadow_ram[offset+i].value;
3540 } else {
3541 offset_to_read = act_offset + i -
3542 ((act_offset + i) % 2);
3543 ret_val =
3544 e1000_read_flash_dword_ich8lan(hw,
3545 offset_to_read,
3546 &dword);
3547 if (ret_val)
3548 break;
3549 if ((act_offset + i) % 2 == 0)
3550 data[i] = (u16)(dword & 0xFFFF);
3551 else
3552 data[i] = (u16)((dword >> 16) & 0xFFFF);
3554 } else {
3555 offset_to_read = act_offset + i;
3556 if (!(dev_spec->shadow_ram[offset+i].modified) ||
3557 !(dev_spec->shadow_ram[offset+i+1].modified)) {
3558 ret_val =
3559 e1000_read_flash_dword_ich8lan(hw,
3560 offset_to_read,
3561 &dword);
3562 if (ret_val)
3563 break;
3565 if (dev_spec->shadow_ram[offset+i].modified)
3566 data[i] = dev_spec->shadow_ram[offset+i].value;
3567 else
3568 data[i] = (u16) (dword & 0xFFFF);
3569 if (dev_spec->shadow_ram[offset+i].modified)
3570 data[i+1] =
3571 dev_spec->shadow_ram[offset+i+1].value;
3572 else
3573 data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3577 nvm->ops.release(hw);
3579 out:
3580 if (ret_val)
3581 DEBUGOUT1("NVM read error: %d\n", ret_val);
3583 return ret_val;
3587 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3588 * @hw: pointer to the HW structure
3589 * @offset: The offset (in bytes) of the word(s) to read.
3590 * @words: Size of data to read in words
3591 * @data: Pointer to the word(s) to read at offset.
3593 * Reads a word(s) from the NVM using the flash access registers.
3595 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3596 u16 *data)
3598 struct e1000_nvm_info *nvm = &hw->nvm;
3599 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3600 u32 act_offset;
3601 s32 ret_val = E1000_SUCCESS;
3602 u32 bank = 0;
3603 u16 i, word;
3605 DEBUGFUNC("e1000_read_nvm_ich8lan");
3607 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3608 (words == 0)) {
3609 DEBUGOUT("nvm parameter(s) out of bounds\n");
3610 ret_val = -E1000_ERR_NVM;
3611 goto out;
3614 nvm->ops.acquire(hw);
3616 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3617 if (ret_val != E1000_SUCCESS) {
3618 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3619 bank = 0;
3622 act_offset = (bank) ? nvm->flash_bank_size : 0;
3623 act_offset += offset;
3625 ret_val = E1000_SUCCESS;
3626 for (i = 0; i < words; i++) {
3627 if (dev_spec->shadow_ram[offset+i].modified) {
3628 data[i] = dev_spec->shadow_ram[offset+i].value;
3629 } else {
3630 ret_val = e1000_read_flash_word_ich8lan(hw,
3631 act_offset + i,
3632 &word);
3633 if (ret_val)
3634 break;
3635 data[i] = word;
3639 nvm->ops.release(hw);
3641 out:
3642 if (ret_val)
3643 DEBUGOUT1("NVM read error: %d\n", ret_val);
3645 return ret_val;
3649 * e1000_flash_cycle_init_ich8lan - Initialize flash
3650 * @hw: pointer to the HW structure
3652 * This function does initial flash setup so that a new read/write/erase cycle
3653 * can be started.
3655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3657 union ich8_hws_flash_status hsfsts;
3658 s32 ret_val = -E1000_ERR_NVM;
3660 DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3662 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3664 /* Check if the flash descriptor is valid */
3665 if (!hsfsts.hsf_status.fldesvalid) {
3666 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
3667 return -E1000_ERR_NVM;
3670 /* Clear FCERR and DAEL in hw status by writing 1 */
3671 hsfsts.hsf_status.flcerr = 1;
3672 hsfsts.hsf_status.dael = 1;
3673 if (hw->mac.type >= e1000_pch_spt)
3674 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3675 hsfsts.regval & 0xFFFF);
3676 else
3677 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3679 /* Either we should have a hardware SPI cycle in progress
3680 * bit to check against, in order to start a new cycle or
3681 * FDONE bit should be changed in the hardware so that it
3682 * is 1 after hardware reset, which can then be used as an
3683 * indication whether a cycle is in progress or has been
3684 * completed.
3687 if (!hsfsts.hsf_status.flcinprog) {
3688 /* There is no cycle running at present,
3689 * so we can start a cycle.
3690 * Begin by setting Flash Cycle Done.
3692 hsfsts.hsf_status.flcdone = 1;
3693 if (hw->mac.type >= e1000_pch_spt)
3694 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3695 hsfsts.regval & 0xFFFF);
3696 else
3697 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3698 hsfsts.regval);
3699 ret_val = E1000_SUCCESS;
3700 } else {
3701 s32 i;
3703 /* Otherwise poll for sometime so the current
3704 * cycle has a chance to end before giving up.
3706 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3707 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3708 ICH_FLASH_HSFSTS);
3709 if (!hsfsts.hsf_status.flcinprog) {
3710 ret_val = E1000_SUCCESS;
3711 break;
3713 usec_delay(1);
3715 if (ret_val == E1000_SUCCESS) {
3716 /* Successful in waiting for previous cycle to timeout,
3717 * now set the Flash Cycle Done.
3719 hsfsts.hsf_status.flcdone = 1;
3720 if (hw->mac.type >= e1000_pch_spt)
3721 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3722 hsfsts.regval & 0xFFFF);
3723 else
3724 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3725 hsfsts.regval);
3726 } else {
3727 DEBUGOUT("Flash controller busy, cannot get access\n");
3731 return ret_val;
3735 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3736 * @hw: pointer to the HW structure
3737 * @timeout: maximum time to wait for completion
3739 * This function starts a flash cycle and waits for its completion.
3741 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3743 union ich8_hws_flash_ctrl hsflctl;
3744 union ich8_hws_flash_status hsfsts;
3745 u32 i = 0;
3747 DEBUGFUNC("e1000_flash_cycle_ich8lan");
3749 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3750 if (hw->mac.type >= e1000_pch_spt)
3751 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3752 else
3753 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3754 hsflctl.hsf_ctrl.flcgo = 1;
3756 if (hw->mac.type >= e1000_pch_spt)
3757 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3758 hsflctl.regval << 16);
3759 else
3760 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3762 /* wait till FDONE bit is set to 1 */
3763 do {
3764 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3765 if (hsfsts.hsf_status.flcdone)
3766 break;
3767 usec_delay(1);
3768 } while (i++ < timeout);
3770 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3771 return E1000_SUCCESS;
3773 return -E1000_ERR_NVM;
3777 * e1000_read_flash_dword_ich8lan - Read dword from flash
3778 * @hw: pointer to the HW structure
3779 * @offset: offset to data location
3780 * @data: pointer to the location for storing the data
3782 * Reads the flash dword at offset into data. Offset is converted
3783 * to bytes before read.
3785 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3786 u32 *data)
3788 DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3790 if (!data)
3791 return -E1000_ERR_NVM;
3793 /* Must convert word offset into bytes. */
3794 offset <<= 1;
3796 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3800 * e1000_read_flash_word_ich8lan - Read word from flash
3801 * @hw: pointer to the HW structure
3802 * @offset: offset to data location
3803 * @data: pointer to the location for storing the data
3805 * Reads the flash word at offset into data. Offset is converted
3806 * to bytes before read.
3808 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3809 u16 *data)
3811 DEBUGFUNC("e1000_read_flash_word_ich8lan");
3813 if (!data)
3814 return -E1000_ERR_NVM;
3816 /* Must convert offset into bytes. */
3817 offset <<= 1;
3819 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3823 * e1000_read_flash_byte_ich8lan - Read byte from flash
3824 * @hw: pointer to the HW structure
3825 * @offset: The offset of the byte to read.
3826 * @data: Pointer to a byte to store the value read.
3828 * Reads a single byte from the NVM using the flash access registers.
3830 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3831 u8 *data)
3833 s32 ret_val;
3834 u16 word = 0;
3836 /* In SPT, only 32 bits access is supported,
3837 * so this function should not be called.
3839 if (hw->mac.type >= e1000_pch_spt)
3840 return -E1000_ERR_NVM;
3841 else
3842 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3844 if (ret_val)
3845 return ret_val;
3847 *data = (u8)word;
3849 return E1000_SUCCESS;
3853 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3854 * @hw: pointer to the HW structure
3855 * @offset: The offset (in bytes) of the byte or word to read.
3856 * @size: Size of data to read, 1=byte 2=word
3857 * @data: Pointer to the word to store the value read.
3859 * Reads a byte or word from the NVM using the flash access registers.
3861 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3862 u8 size, u16 *data)
3864 union ich8_hws_flash_status hsfsts;
3865 union ich8_hws_flash_ctrl hsflctl;
3866 u32 flash_linear_addr;
3867 u32 flash_data = 0;
3868 s32 ret_val = -E1000_ERR_NVM;
3869 u8 count = 0;
3871 DEBUGFUNC("e1000_read_flash_data_ich8lan");
3873 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3874 return -E1000_ERR_NVM;
3875 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3876 hw->nvm.flash_base_addr);
3878 do {
3879 usec_delay(1);
3880 /* Steps */
3881 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3882 if (ret_val != E1000_SUCCESS)
3883 break;
3884 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3886 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3887 hsflctl.hsf_ctrl.fldbcount = size - 1;
3888 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3889 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3890 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3892 ret_val = e1000_flash_cycle_ich8lan(hw,
3893 ICH_FLASH_READ_COMMAND_TIMEOUT);
3895 /* Check if FCERR is set to 1, if set to 1, clear it
3896 * and try the whole sequence a few more times, else
3897 * read in (shift in) the Flash Data0, the order is
3898 * least significant byte first msb to lsb
3900 if (ret_val == E1000_SUCCESS) {
3901 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3902 if (size == 1)
3903 *data = (u8)(flash_data & 0x000000FF);
3904 else if (size == 2)
3905 *data = (u16)(flash_data & 0x0000FFFF);
3906 break;
3907 } else {
3908 /* If we've gotten here, then things are probably
3909 * completely hosed, but if the error condition is
3910 * detected, it won't hurt to give it another try...
3911 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3913 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3914 ICH_FLASH_HSFSTS);
3915 if (hsfsts.hsf_status.flcerr) {
3916 /* Repeat for some time before giving up. */
3917 continue;
3918 } else if (!hsfsts.hsf_status.flcdone) {
3919 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3920 break;
3923 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3925 return ret_val;
3929 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3930 * @hw: pointer to the HW structure
3931 * @offset: The offset (in bytes) of the dword to read.
3932 * @data: Pointer to the dword to store the value read.
3934 * Reads a byte or word from the NVM using the flash access registers.
3936 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3937 u32 *data)
3939 union ich8_hws_flash_status hsfsts;
3940 union ich8_hws_flash_ctrl hsflctl;
3941 u32 flash_linear_addr;
3942 s32 ret_val = -E1000_ERR_NVM;
3943 u8 count = 0;
3945 DEBUGFUNC("e1000_read_flash_data_ich8lan");
3947 if (offset > ICH_FLASH_LINEAR_ADDR_MASK && hw->mac.type < e1000_pch_spt)
3948 return -E1000_ERR_NVM;
3949 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3950 hw->nvm.flash_base_addr);
3952 do {
3953 usec_delay(1);
3954 /* Steps */
3955 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3956 if (ret_val != E1000_SUCCESS)
3957 break;
3958 /* In SPT, This register is in Lan memory space, not flash.
3959 * Therefore, only 32 bit access is supported
3961 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3963 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3964 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3965 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3966 /* In SPT, This register is in Lan memory space, not flash.
3967 * Therefore, only 32 bit access is supported
3969 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3970 (u32)hsflctl.regval << 16);
3971 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3973 ret_val = e1000_flash_cycle_ich8lan(hw,
3974 ICH_FLASH_READ_COMMAND_TIMEOUT);
3976 /* Check if FCERR is set to 1, if set to 1, clear it
3977 * and try the whole sequence a few more times, else
3978 * read in (shift in) the Flash Data0, the order is
3979 * least significant byte first msb to lsb
3981 if (ret_val == E1000_SUCCESS) {
3982 *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3983 break;
3984 } else {
3985 /* If we've gotten here, then things are probably
3986 * completely hosed, but if the error condition is
3987 * detected, it won't hurt to give it another try...
3988 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3990 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3991 ICH_FLASH_HSFSTS);
3992 if (hsfsts.hsf_status.flcerr) {
3993 /* Repeat for some time before giving up. */
3994 continue;
3995 } else if (!hsfsts.hsf_status.flcdone) {
3996 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3997 break;
4000 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4002 return ret_val;
4006 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
4007 * @hw: pointer to the HW structure
4008 * @offset: The offset (in bytes) of the word(s) to write.
4009 * @words: Size of data to write in words
4010 * @data: Pointer to the word(s) to write at offset.
4012 * Writes a byte or word to the NVM using the flash access registers.
4014 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4015 u16 *data)
4017 struct e1000_nvm_info *nvm = &hw->nvm;
4018 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4019 u16 i;
4021 DEBUGFUNC("e1000_write_nvm_ich8lan");
4023 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4024 (words == 0)) {
4025 DEBUGOUT("nvm parameter(s) out of bounds\n");
4026 return -E1000_ERR_NVM;
4029 nvm->ops.acquire(hw);
4031 for (i = 0; i < words; i++) {
4032 dev_spec->shadow_ram[offset+i].modified = TRUE;
4033 dev_spec->shadow_ram[offset+i].value = data[i];
4036 nvm->ops.release(hw);
4038 return E1000_SUCCESS;
4042 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
4043 * @hw: pointer to the HW structure
4045 * The NVM checksum is updated by calling the generic update_nvm_checksum,
4046 * which writes the checksum to the shadow ram. The changes in the shadow
4047 * ram are then committed to the EEPROM by processing each bank at a time
4048 * checking for the modified bit and writing only the pending changes.
4049 * After a successful commit, the shadow ram is cleared and is ready for
4050 * future writes.
4052 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4054 struct e1000_nvm_info *nvm = &hw->nvm;
4055 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4056 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4057 s32 ret_val;
4058 u32 dword = 0;
4060 DEBUGFUNC("e1000_update_nvm_checksum_spt");
4062 ret_val = e1000_update_nvm_checksum_generic(hw);
4063 if (ret_val)
4064 goto out;
4066 if (nvm->type != e1000_nvm_flash_sw)
4067 goto out;
4069 nvm->ops.acquire(hw);
4071 /* We're writing to the opposite bank so if we're on bank 1,
4072 * write to bank 0 etc. We also need to erase the segment that
4073 * is going to be written
4075 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4076 if (ret_val != E1000_SUCCESS) {
4077 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4078 bank = 0;
4081 if (bank == 0) {
4082 new_bank_offset = nvm->flash_bank_size;
4083 old_bank_offset = 0;
4084 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4085 if (ret_val)
4086 goto release;
4087 } else {
4088 old_bank_offset = nvm->flash_bank_size;
4089 new_bank_offset = 0;
4090 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4091 if (ret_val)
4092 goto release;
4094 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4095 /* Determine whether to write the value stored
4096 * in the other NVM bank or a modified value stored
4097 * in the shadow RAM
4099 ret_val = e1000_read_flash_dword_ich8lan(hw,
4100 i + old_bank_offset,
4101 &dword);
4103 if (dev_spec->shadow_ram[i].modified) {
4104 dword &= 0xffff0000;
4105 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4107 if (dev_spec->shadow_ram[i + 1].modified) {
4108 dword &= 0x0000ffff;
4109 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4110 << 16);
4112 if (ret_val)
4113 break;
4115 /* If the word is 0x13, then make sure the signature bits
4116 * (15:14) are 11b until the commit has completed.
4117 * This will allow us to write 10b which indicates the
4118 * signature is valid. We want to do this after the write
4119 * has completed so that we don't mark the segment valid
4120 * while the write is still in progress
4122 if (i == E1000_ICH_NVM_SIG_WORD - 1)
4123 dword |= E1000_ICH_NVM_SIG_MASK << 16;
4125 /* Convert offset to bytes. */
4126 act_offset = (i + new_bank_offset) << 1;
4128 usec_delay(100);
4130 /* Write the data to the new bank. Offset in words*/
4131 act_offset = i + new_bank_offset;
4132 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4133 dword);
4134 if (ret_val)
4135 break;
4138 /* Don't bother writing the segment valid bits if sector
4139 * programming failed.
4141 if (ret_val) {
4142 DEBUGOUT("Flash commit failed.\n");
4143 goto release;
4146 /* Finally validate the new segment by setting bit 15:14
4147 * to 10b in word 0x13 , this can be done without an
4148 * erase as well since these bits are 11 to start with
4149 * and we need to change bit 14 to 0b
4151 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4153 /*offset in words but we read dword*/
4154 --act_offset;
4155 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4157 if (ret_val)
4158 goto release;
4160 dword &= 0xBFFFFFFF;
4161 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4163 if (ret_val)
4164 goto release;
4166 /* And invalidate the previously valid segment by setting
4167 * its signature word (0x13) high_byte to 0b. This can be
4168 * done without an erase because flash erase sets all bits
4169 * to 1's. We can write 1's to 0's without an erase
4171 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4173 /* offset in words but we read dword*/
4174 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4175 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4177 if (ret_val)
4178 goto release;
4180 dword &= 0x00FFFFFF;
4181 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4183 if (ret_val)
4184 goto release;
4186 /* Great! Everything worked, we can now clear the cached entries. */
4187 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4188 dev_spec->shadow_ram[i].modified = FALSE;
4189 dev_spec->shadow_ram[i].value = 0xFFFF;
4192 release:
4193 nvm->ops.release(hw);
4195 /* Reload the EEPROM, or else modifications will not appear
4196 * until after the next adapter reset.
4198 if (!ret_val) {
4199 nvm->ops.reload(hw);
4200 msec_delay(10);
4203 out:
4204 if (ret_val)
4205 DEBUGOUT1("NVM update error: %d\n", ret_val);
4207 return ret_val;
4211 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4212 * @hw: pointer to the HW structure
4214 * The NVM checksum is updated by calling the generic update_nvm_checksum,
4215 * which writes the checksum to the shadow ram. The changes in the shadow
4216 * ram are then committed to the EEPROM by processing each bank at a time
4217 * checking for the modified bit and writing only the pending changes.
4218 * After a successful commit, the shadow ram is cleared and is ready for
4219 * future writes.
4221 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4223 struct e1000_nvm_info *nvm = &hw->nvm;
4224 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4225 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4226 s32 ret_val;
4227 u16 data = 0;
4229 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4231 ret_val = e1000_update_nvm_checksum_generic(hw);
4232 if (ret_val)
4233 goto out;
4235 if (nvm->type != e1000_nvm_flash_sw)
4236 goto out;
4238 nvm->ops.acquire(hw);
4240 /* We're writing to the opposite bank so if we're on bank 1,
4241 * write to bank 0 etc. We also need to erase the segment that
4242 * is going to be written
4244 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4245 if (ret_val != E1000_SUCCESS) {
4246 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4247 bank = 0;
4250 if (bank == 0) {
4251 new_bank_offset = nvm->flash_bank_size;
4252 old_bank_offset = 0;
4253 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4254 if (ret_val)
4255 goto release;
4256 } else {
4257 old_bank_offset = nvm->flash_bank_size;
4258 new_bank_offset = 0;
4259 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4260 if (ret_val)
4261 goto release;
4263 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4264 if (dev_spec->shadow_ram[i].modified) {
4265 data = dev_spec->shadow_ram[i].value;
4266 } else {
4267 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4268 old_bank_offset,
4269 &data);
4270 if (ret_val)
4271 break;
4273 /* If the word is 0x13, then make sure the signature bits
4274 * (15:14) are 11b until the commit has completed.
4275 * This will allow us to write 10b which indicates the
4276 * signature is valid. We want to do this after the write
4277 * has completed so that we don't mark the segment valid
4278 * while the write is still in progress
4280 if (i == E1000_ICH_NVM_SIG_WORD)
4281 data |= E1000_ICH_NVM_SIG_MASK;
4283 /* Convert offset to bytes. */
4284 act_offset = (i + new_bank_offset) << 1;
4286 usec_delay(100);
4288 /* Write the bytes to the new bank. */
4289 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4290 act_offset,
4291 (u8)data);
4292 if (ret_val)
4293 break;
4295 usec_delay(100);
4296 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4297 act_offset + 1,
4298 (u8)(data >> 8));
4299 if (ret_val)
4300 break;
4303 /* Don't bother writing the segment valid bits if sector
4304 * programming failed.
4306 if (ret_val) {
4307 DEBUGOUT("Flash commit failed.\n");
4308 goto release;
4311 /* Finally validate the new segment by setting bit 15:14
4312 * to 10b in word 0x13 , this can be done without an
4313 * erase as well since these bits are 11 to start with
4314 * and we need to change bit 14 to 0b
4316 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4317 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4318 if (ret_val)
4319 goto release;
4321 data &= 0xBFFF;
4322 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4323 (u8)(data >> 8));
4324 if (ret_val)
4325 goto release;
4327 /* And invalidate the previously valid segment by setting
4328 * its signature word (0x13) high_byte to 0b. This can be
4329 * done without an erase because flash erase sets all bits
4330 * to 1's. We can write 1's to 0's without an erase
4332 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4334 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4336 if (ret_val)
4337 goto release;
4339 /* Great! Everything worked, we can now clear the cached entries. */
4340 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4341 dev_spec->shadow_ram[i].modified = FALSE;
4342 dev_spec->shadow_ram[i].value = 0xFFFF;
4345 release:
4346 nvm->ops.release(hw);
4348 /* Reload the EEPROM, or else modifications will not appear
4349 * until after the next adapter reset.
4351 if (!ret_val) {
4352 nvm->ops.reload(hw);
4353 msec_delay(10);
4356 out:
4357 if (ret_val)
4358 DEBUGOUT1("NVM update error: %d\n", ret_val);
4360 return ret_val;
4364 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4365 * @hw: pointer to the HW structure
4367 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4368 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4369 * calculated, in which case we need to calculate the checksum and set bit 6.
4371 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4373 s32 ret_val;
4374 u16 data;
4375 u16 word;
4376 u16 valid_csum_mask;
4378 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4380 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4381 * the checksum needs to be fixed. This bit is an indication that
4382 * the NVM was prepared by OEM software and did not calculate
4383 * the checksum...a likely scenario.
4385 switch (hw->mac.type) {
4386 case e1000_pch_lpt:
4387 case e1000_pch_spt:
4388 case e1000_pch_cnp:
4389 word = NVM_COMPAT;
4390 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4391 break;
4392 default:
4393 word = NVM_FUTURE_INIT_WORD1;
4394 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4395 break;
4398 ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4399 if (ret_val)
4400 return ret_val;
4402 if (!(data & valid_csum_mask)) {
4403 data |= valid_csum_mask;
4404 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4405 if (ret_val)
4406 return ret_val;
4407 ret_val = hw->nvm.ops.update(hw);
4408 if (ret_val)
4409 return ret_val;
4412 return e1000_validate_nvm_checksum_generic(hw);
4416 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4417 * @hw: pointer to the HW structure
4418 * @offset: The offset (in bytes) of the byte/word to read.
4419 * @size: Size of data to read, 1=byte 2=word
4420 * @data: The byte(s) to write to the NVM.
4422 * Writes one/two bytes to the NVM using the flash access registers.
4424 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4425 u8 size, u16 data)
4427 union ich8_hws_flash_status hsfsts;
4428 union ich8_hws_flash_ctrl hsflctl;
4429 u32 flash_linear_addr;
4430 u32 flash_data = 0;
4431 s32 ret_val;
4432 u8 count = 0;
4434 DEBUGFUNC("e1000_write_ich8_data");
4436 if (hw->mac.type >= e1000_pch_spt) {
4437 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4438 return -E1000_ERR_NVM;
4439 } else {
4440 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4441 return -E1000_ERR_NVM;
4444 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4445 hw->nvm.flash_base_addr);
4447 do {
4448 usec_delay(1);
4449 /* Steps */
4450 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4451 if (ret_val != E1000_SUCCESS)
4452 break;
4453 /* In SPT, This register is in Lan memory space, not
4454 * flash. Therefore, only 32 bit access is supported
4456 if (hw->mac.type >= e1000_pch_spt)
4457 hsflctl.regval =
4458 E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS) >> 16;
4459 else
4460 hsflctl.regval =
4461 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4463 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4464 hsflctl.hsf_ctrl.fldbcount = size - 1;
4465 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4466 /* In SPT, This register is in Lan memory space,
4467 * not flash. Therefore, only 32 bit access is
4468 * supported
4470 if (hw->mac.type >= e1000_pch_spt)
4471 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4472 hsflctl.regval << 16);
4473 else
4474 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4475 hsflctl.regval);
4477 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4479 if (size == 1)
4480 flash_data = (u32)data & 0x00FF;
4481 else
4482 flash_data = (u32)data;
4484 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4486 /* check if FCERR is set to 1 , if set to 1, clear it
4487 * and try the whole sequence a few more times else done
4489 ret_val =
4490 e1000_flash_cycle_ich8lan(hw,
4491 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4492 if (ret_val == E1000_SUCCESS)
4493 break;
4495 /* If we're here, then things are most likely
4496 * completely hosed, but if the error condition
4497 * is detected, it won't hurt to give it another
4498 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4500 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4501 if (hsfsts.hsf_status.flcerr)
4502 /* Repeat for some time before giving up. */
4503 continue;
4504 if (!hsfsts.hsf_status.flcdone) {
4505 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4506 break;
4508 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4510 return ret_val;
4514 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4515 * @hw: pointer to the HW structure
4516 * @offset: The offset (in bytes) of the dwords to read.
4517 * @data: The 4 bytes to write to the NVM.
4519 * Writes one/two/four bytes to the NVM using the flash access registers.
4521 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4522 u32 data)
4524 union ich8_hws_flash_status hsfsts;
4525 union ich8_hws_flash_ctrl hsflctl;
4526 u32 flash_linear_addr;
4527 s32 ret_val;
4528 u8 count = 0;
4530 DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4532 if (hw->mac.type >= e1000_pch_spt) {
4533 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4534 return -E1000_ERR_NVM;
4536 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4537 hw->nvm.flash_base_addr);
4538 do {
4539 usec_delay(1);
4540 /* Steps */
4541 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4542 if (ret_val != E1000_SUCCESS)
4543 break;
4545 /* In SPT, This register is in Lan memory space, not
4546 * flash. Therefore, only 32 bit access is supported
4548 if (hw->mac.type >= e1000_pch_spt)
4549 hsflctl.regval = E1000_READ_FLASH_REG(hw,
4550 ICH_FLASH_HSFSTS)
4551 >> 16;
4552 else
4553 hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4554 ICH_FLASH_HSFCTL);
4556 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4557 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4559 /* In SPT, This register is in Lan memory space,
4560 * not flash. Therefore, only 32 bit access is
4561 * supported
4563 if (hw->mac.type >= e1000_pch_spt)
4564 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4565 hsflctl.regval << 16);
4566 else
4567 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4568 hsflctl.regval);
4570 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4572 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4574 /* check if FCERR is set to 1 , if set to 1, clear it
4575 * and try the whole sequence a few more times else done
4577 ret_val = e1000_flash_cycle_ich8lan(hw,
4578 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4580 if (ret_val == E1000_SUCCESS)
4581 break;
4583 /* If we're here, then things are most likely
4584 * completely hosed, but if the error condition
4585 * is detected, it won't hurt to give it another
4586 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4588 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4590 if (hsfsts.hsf_status.flcerr)
4591 /* Repeat for some time before giving up. */
4592 continue;
4593 if (!hsfsts.hsf_status.flcdone) {
4594 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4595 break;
4597 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4599 return ret_val;
4603 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4604 * @hw: pointer to the HW structure
4605 * @offset: The index of the byte to read.
4606 * @data: The byte to write to the NVM.
4608 * Writes a single byte to the NVM using the flash access registers.
4610 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4611 u8 data)
4613 u16 word = (u16)data;
4615 DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4617 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4621 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4622 * @hw: pointer to the HW structure
4623 * @offset: The offset of the word to write.
4624 * @dword: The dword to write to the NVM.
4626 * Writes a single dword to the NVM using the flash access registers.
4627 * Goes through a retry algorithm before giving up.
4629 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4630 u32 offset, u32 dword)
4632 s32 ret_val;
4633 u16 program_retries;
4635 DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4637 /* Must convert word offset into bytes. */
4638 offset <<= 1;
4640 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4642 if (!ret_val)
4643 return ret_val;
4644 for (program_retries = 0; program_retries < 100; program_retries++) {
4645 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4646 usec_delay(100);
4647 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4648 if (ret_val == E1000_SUCCESS)
4649 break;
4651 if (program_retries == 100)
4652 return -E1000_ERR_NVM;
4654 return E1000_SUCCESS;
4658 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4659 * @hw: pointer to the HW structure
4660 * @offset: The offset of the byte to write.
4661 * @byte: The byte to write to the NVM.
4663 * Writes a single byte to the NVM using the flash access registers.
4664 * Goes through a retry algorithm before giving up.
4666 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4667 u32 offset, u8 byte)
4669 s32 ret_val;
4670 u16 program_retries;
4672 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4674 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4675 if (!ret_val)
4676 return ret_val;
4678 for (program_retries = 0; program_retries < 100; program_retries++) {
4679 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4680 usec_delay(100);
4681 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4682 if (ret_val == E1000_SUCCESS)
4683 break;
4685 if (program_retries == 100)
4686 return -E1000_ERR_NVM;
4688 return E1000_SUCCESS;
4692 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4693 * @hw: pointer to the HW structure
4694 * @bank: 0 for first bank, 1 for second bank, etc.
4696 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4697 * bank N is 4096 * N + flash_reg_addr.
4699 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4701 struct e1000_nvm_info *nvm = &hw->nvm;
4702 union ich8_hws_flash_status hsfsts;
4703 union ich8_hws_flash_ctrl hsflctl;
4704 u32 flash_linear_addr;
4705 /* bank size is in 16bit words - adjust to bytes */
4706 u32 flash_bank_size = nvm->flash_bank_size * 2;
4707 s32 ret_val;
4708 s32 count = 0;
4709 s32 j, iteration, sector_size;
4711 DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4713 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4715 /* Determine HW Sector size: Read BERASE bits of hw flash status
4716 * register
4717 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4718 * consecutive sectors. The start index for the nth Hw sector
4719 * can be calculated as = bank * 4096 + n * 256
4720 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4721 * The start index for the nth Hw sector can be calculated
4722 * as = bank * 4096
4723 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4724 * (ich9 only, otherwise error condition)
4725 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4727 switch (hsfsts.hsf_status.berasesz) {
4728 case 0:
4729 /* Hw sector size 256 */
4730 sector_size = ICH_FLASH_SEG_SIZE_256;
4731 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4732 break;
4733 case 1:
4734 sector_size = ICH_FLASH_SEG_SIZE_4K;
4735 iteration = 1;
4736 break;
4737 case 2:
4738 sector_size = ICH_FLASH_SEG_SIZE_8K;
4739 iteration = 1;
4740 break;
4741 case 3:
4742 sector_size = ICH_FLASH_SEG_SIZE_64K;
4743 iteration = 1;
4744 break;
4745 default:
4746 return -E1000_ERR_NVM;
4749 /* Start with the base address, then add the sector offset. */
4750 flash_linear_addr = hw->nvm.flash_base_addr;
4751 flash_linear_addr += (bank) ? flash_bank_size : 0;
4753 for (j = 0; j < iteration; j++) {
4754 do {
4755 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4757 /* Steps */
4758 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4759 if (ret_val)
4760 return ret_val;
4762 /* Write a value 11 (block Erase) in Flash
4763 * Cycle field in hw flash control
4765 if (hw->mac.type >= e1000_pch_spt)
4766 hsflctl.regval =
4767 E1000_READ_FLASH_REG(hw,
4768 ICH_FLASH_HSFSTS)>>16;
4769 else
4770 hsflctl.regval =
4771 E1000_READ_FLASH_REG16(hw,
4772 ICH_FLASH_HSFCTL);
4774 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4775 if (hw->mac.type >= e1000_pch_spt)
4776 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4777 hsflctl.regval << 16);
4778 else
4779 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4780 hsflctl.regval);
4782 /* Write the last 24 bits of an index within the
4783 * block into Flash Linear address field in Flash
4784 * Address.
4786 flash_linear_addr += (j * sector_size);
4787 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4788 flash_linear_addr);
4790 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4791 if (ret_val == E1000_SUCCESS)
4792 break;
4794 /* Check if FCERR is set to 1. If 1,
4795 * clear it and try the whole sequence
4796 * a few more times else Done
4798 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4799 ICH_FLASH_HSFSTS);
4800 if (hsfsts.hsf_status.flcerr)
4801 /* repeat for some time before giving up */
4802 continue;
4803 else if (!hsfsts.hsf_status.flcdone)
4804 return ret_val;
4805 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4808 return E1000_SUCCESS;
4812 * e1000_valid_led_default_ich8lan - Set the default LED settings
4813 * @hw: pointer to the HW structure
4814 * @data: Pointer to the LED settings
4816 * Reads the LED default settings from the NVM to data. If the NVM LED
4817 * settings is all 0's or F's, set the LED default to a valid LED default
4818 * setting.
4820 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4822 s32 ret_val;
4824 DEBUGFUNC("e1000_valid_led_default_ich8lan");
4826 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4827 if (ret_val) {
4828 DEBUGOUT("NVM Read Error\n");
4829 return ret_val;
4832 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4833 *data = ID_LED_DEFAULT_ICH8LAN;
4835 return E1000_SUCCESS;
4839 * e1000_id_led_init_pchlan - store LED configurations
4840 * @hw: pointer to the HW structure
4842 * PCH does not control LEDs via the LEDCTL register, rather it uses
4843 * the PHY LED configuration register.
4845 * PCH also does not have an "always on" or "always off" mode which
4846 * complicates the ID feature. Instead of using the "on" mode to indicate
4847 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4848 * use "link_up" mode. The LEDs will still ID on request if there is no
4849 * link based on logic in e1000_led_[on|off]_pchlan().
4851 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4853 struct e1000_mac_info *mac = &hw->mac;
4854 s32 ret_val;
4855 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4856 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4857 u16 data, i, temp, shift;
4859 DEBUGFUNC("e1000_id_led_init_pchlan");
4861 /* Get default ID LED modes */
4862 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4863 if (ret_val)
4864 return ret_val;
4866 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4867 mac->ledctl_mode1 = mac->ledctl_default;
4868 mac->ledctl_mode2 = mac->ledctl_default;
4870 for (i = 0; i < 4; i++) {
4871 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4872 shift = (i * 5);
4873 switch (temp) {
4874 case ID_LED_ON1_DEF2:
4875 case ID_LED_ON1_ON2:
4876 case ID_LED_ON1_OFF2:
4877 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4878 mac->ledctl_mode1 |= (ledctl_on << shift);
4879 break;
4880 case ID_LED_OFF1_DEF2:
4881 case ID_LED_OFF1_ON2:
4882 case ID_LED_OFF1_OFF2:
4883 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4884 mac->ledctl_mode1 |= (ledctl_off << shift);
4885 break;
4886 default:
4887 /* Do nothing */
4888 break;
4890 switch (temp) {
4891 case ID_LED_DEF1_ON2:
4892 case ID_LED_ON1_ON2:
4893 case ID_LED_OFF1_ON2:
4894 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4895 mac->ledctl_mode2 |= (ledctl_on << shift);
4896 break;
4897 case ID_LED_DEF1_OFF2:
4898 case ID_LED_ON1_OFF2:
4899 case ID_LED_OFF1_OFF2:
4900 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4901 mac->ledctl_mode2 |= (ledctl_off << shift);
4902 break;
4903 default:
4904 /* Do nothing */
4905 break;
4909 return E1000_SUCCESS;
4913 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4914 * @hw: pointer to the HW structure
4916 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4917 * register, so the bus width is hard coded.
4919 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4921 struct e1000_bus_info *bus = &hw->bus;
4922 s32 ret_val;
4924 DEBUGFUNC("e1000_get_bus_info_ich8lan");
4926 ret_val = e1000_get_bus_info_pcie_generic(hw);
4928 /* ICH devices are "PCI Express"-ish. They have
4929 * a configuration space, but do not contain
4930 * PCI Express Capability registers, so bus width
4931 * must be hardcoded.
4933 if (bus->width == e1000_bus_width_unknown)
4934 bus->width = e1000_bus_width_pcie_x1;
4936 return ret_val;
4940 * e1000_reset_hw_ich8lan - Reset the hardware
4941 * @hw: pointer to the HW structure
4943 * Does a full reset of the hardware which includes a reset of the PHY and
4944 * MAC.
4946 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4948 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4949 u16 kum_cfg;
4950 u32 ctrl, reg;
4951 s32 ret_val;
4953 DEBUGFUNC("e1000_reset_hw_ich8lan");
4955 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4956 * on the last TLP read/write transaction when MAC is reset.
4958 ret_val = e1000_disable_pcie_master_generic(hw);
4959 if (ret_val)
4960 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4962 DEBUGOUT("Masking off all interrupts\n");
4963 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4965 /* Disable the Transmit and Receive units. Then delay to allow
4966 * any pending transactions to complete before we hit the MAC
4967 * with the global reset.
4969 E1000_WRITE_REG(hw, E1000_RCTL, 0);
4970 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4971 E1000_WRITE_FLUSH(hw);
4973 msec_delay(10);
4975 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4976 if (hw->mac.type == e1000_ich8lan) {
4977 /* Set Tx and Rx buffer allocation to 8k apiece. */
4978 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4979 /* Set Packet Buffer Size to 16k. */
4980 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4983 if (hw->mac.type == e1000_pchlan) {
4984 /* Save the NVM K1 bit setting*/
4985 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4986 if (ret_val)
4987 return ret_val;
4989 if (kum_cfg & E1000_NVM_K1_ENABLE)
4990 dev_spec->nvm_k1_enabled = TRUE;
4991 else
4992 dev_spec->nvm_k1_enabled = FALSE;
4995 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4997 if (!hw->phy.ops.check_reset_block(hw)) {
4998 /* Full-chip reset requires MAC and PHY reset at the same
4999 * time to make sure the interface between MAC and the
5000 * external PHY is reset.
5002 ctrl |= E1000_CTRL_PHY_RST;
5004 /* Gate automatic PHY configuration by hardware on
5005 * non-managed 82579
5007 if ((hw->mac.type == e1000_pch2lan) &&
5008 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5009 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5011 ret_val = e1000_acquire_swflag_ich8lan(hw);
5012 DEBUGOUT("Issuing a global reset to ich8lan\n");
5013 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5014 /* cannot issue a flush here because it hangs the hardware */
5015 msec_delay(20);
5017 /* Set Phy Config Counter to 50msec */
5018 if (hw->mac.type == e1000_pch2lan) {
5019 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5020 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5021 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5022 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5025 if (!ret_val)
5026 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5028 if (ctrl & E1000_CTRL_PHY_RST) {
5029 ret_val = hw->phy.ops.get_cfg_done(hw);
5030 if (ret_val)
5031 return ret_val;
5033 ret_val = e1000_post_phy_reset_ich8lan(hw);
5034 if (ret_val)
5035 return ret_val;
5038 /* For PCH, this write will make sure that any noise
5039 * will be detected as a CRC error and be dropped rather than show up
5040 * as a bad packet to the DMA engine.
5042 if (hw->mac.type == e1000_pchlan)
5043 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5045 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5046 E1000_READ_REG(hw, E1000_ICR);
5048 reg = E1000_READ_REG(hw, E1000_KABGTXD);
5049 reg |= E1000_KABGTXD_BGSQLBIAS;
5050 E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5052 return E1000_SUCCESS;
5056 * e1000_init_hw_ich8lan - Initialize the hardware
5057 * @hw: pointer to the HW structure
5059 * Prepares the hardware for transmit and receive by doing the following:
5060 * - initialize hardware bits
5061 * - initialize LED identification
5062 * - setup receive address registers
5063 * - setup flow control
5064 * - setup transmit descriptors
5065 * - clear statistics
5067 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5069 struct e1000_mac_info *mac = &hw->mac;
5070 u32 ctrl_ext, txdctl, snoop;
5071 s32 ret_val;
5072 u16 i;
5074 DEBUGFUNC("e1000_init_hw_ich8lan");
5076 e1000_initialize_hw_bits_ich8lan(hw);
5078 /* Initialize identification LED */
5079 ret_val = mac->ops.id_led_init(hw);
5080 /* An error is not fatal and we should not stop init due to this */
5081 if (ret_val)
5082 DEBUGOUT("Error initializing identification LED\n");
5084 /* Setup the receive address. */
5085 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5087 /* Zero out the Multicast HASH table */
5088 DEBUGOUT("Zeroing the MTA\n");
5089 for (i = 0; i < mac->mta_reg_count; i++)
5090 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5092 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
5093 * the ME. Disable wakeup by clearing the host wakeup bit.
5094 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5096 if (hw->phy.type == e1000_phy_82578) {
5097 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5098 i &= ~BM_WUC_HOST_WU_BIT;
5099 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5100 ret_val = e1000_phy_hw_reset_ich8lan(hw);
5101 if (ret_val)
5102 return ret_val;
5105 /* Setup link and flow control */
5106 ret_val = mac->ops.setup_link(hw);
5108 /* Set the transmit descriptor write-back policy for both queues */
5109 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5110 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5111 E1000_TXDCTL_FULL_TX_DESC_WB);
5112 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5113 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5114 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5115 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5116 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5117 E1000_TXDCTL_FULL_TX_DESC_WB);
5118 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5119 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5120 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5122 /* ICH8 has opposite polarity of no_snoop bits.
5123 * By default, we should use snoop behavior.
5125 if (mac->type == e1000_ich8lan)
5126 snoop = PCIE_ICH8_SNOOP_ALL;
5127 else
5128 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5129 e1000_set_pcie_no_snoop_generic(hw, snoop);
5131 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5132 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5133 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5135 /* Clear all of the statistics registers (clear on read). It is
5136 * important that we do this after we have tried to establish link
5137 * because the symbol error count will increment wildly if there
5138 * is no link.
5140 e1000_clear_hw_cntrs_ich8lan(hw);
5142 return ret_val;
5146 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5147 * @hw: pointer to the HW structure
5149 * Sets/Clears required hardware bits necessary for correctly setting up the
5150 * hardware for transmit and receive.
5152 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5154 u32 reg;
5156 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5158 /* Extended Device Control */
5159 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5160 reg |= (1 << 22);
5161 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
5162 if (hw->mac.type >= e1000_pchlan)
5163 reg |= E1000_CTRL_EXT_PHYPDEN;
5164 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5166 /* Transmit Descriptor Control 0 */
5167 reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5168 reg |= (1 << 22);
5169 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5171 /* Transmit Descriptor Control 1 */
5172 reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5173 reg |= (1 << 22);
5174 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5176 /* Transmit Arbitration Control 0 */
5177 reg = E1000_READ_REG(hw, E1000_TARC(0));
5178 if (hw->mac.type == e1000_ich8lan)
5179 reg |= (1 << 28) | (1 << 29);
5180 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5181 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5183 /* Transmit Arbitration Control 1 */
5184 reg = E1000_READ_REG(hw, E1000_TARC(1));
5185 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5186 reg &= ~(1 << 28);
5187 else
5188 reg |= (1 << 28);
5189 reg |= (1 << 24) | (1 << 26) | (1 << 30);
5190 E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5192 /* Device Status */
5193 if (hw->mac.type == e1000_ich8lan) {
5194 reg = E1000_READ_REG(hw, E1000_STATUS);
5195 reg &= ~(1UL << 31);
5196 E1000_WRITE_REG(hw, E1000_STATUS, reg);
5199 /* work-around descriptor data corruption issue during nfs v2 udp
5200 * traffic, just disable the nfs filtering capability
5202 reg = E1000_READ_REG(hw, E1000_RFCTL);
5203 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5205 /* Disable IPv6 extension header parsing because some malformed
5206 * IPv6 headers can hang the Rx.
5208 if (hw->mac.type == e1000_ich8lan)
5209 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5210 E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5212 /* Enable ECC on Lynxpoint */
5213 if (hw->mac.type >= e1000_pch_lpt) {
5214 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5215 reg |= E1000_PBECCSTS_ECC_ENABLE;
5216 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5218 reg = E1000_READ_REG(hw, E1000_CTRL);
5219 reg |= E1000_CTRL_MEHE;
5220 E1000_WRITE_REG(hw, E1000_CTRL, reg);
5223 return;
5227 * e1000_setup_link_ich8lan - Setup flow control and link settings
5228 * @hw: pointer to the HW structure
5230 * Determines which flow control settings to use, then configures flow
5231 * control. Calls the appropriate media-specific link configuration
5232 * function. Assuming the adapter has a valid link partner, a valid link
5233 * should be established. Assumes the hardware has previously been reset
5234 * and the transmitter and receiver are not enabled.
5236 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5238 s32 ret_val;
5240 DEBUGFUNC("e1000_setup_link_ich8lan");
5242 if (hw->phy.ops.check_reset_block(hw))
5243 return E1000_SUCCESS;
5245 /* ICH parts do not have a word in the NVM to determine
5246 * the default flow control setting, so we explicitly
5247 * set it to full.
5249 if (hw->fc.requested_mode == e1000_fc_default)
5250 hw->fc.requested_mode = e1000_fc_full;
5252 /* Save off the requested flow control mode for use later. Depending
5253 * on the link partner's capabilities, we may or may not use this mode.
5255 hw->fc.current_mode = hw->fc.requested_mode;
5257 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5258 hw->fc.current_mode);
5260 /* Continue to configure the copper link. */
5261 ret_val = hw->mac.ops.setup_physical_interface(hw);
5262 if (ret_val)
5263 return ret_val;
5265 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5266 if ((hw->phy.type == e1000_phy_82578) ||
5267 (hw->phy.type == e1000_phy_82579) ||
5268 (hw->phy.type == e1000_phy_i217) ||
5269 (hw->phy.type == e1000_phy_82577)) {
5270 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5272 ret_val = hw->phy.ops.write_reg(hw,
5273 PHY_REG(BM_PORT_CTRL_PAGE, 27),
5274 hw->fc.pause_time);
5275 if (ret_val)
5276 return ret_val;
5279 return e1000_set_fc_watermarks_generic(hw);
5283 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5284 * @hw: pointer to the HW structure
5286 * Configures the kumeran interface to the PHY to wait the appropriate time
5287 * when polling the PHY, then call the generic setup_copper_link to finish
5288 * configuring the copper link.
5290 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5292 u32 ctrl;
5293 s32 ret_val;
5294 u16 reg_data;
5296 DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5298 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5299 ctrl |= E1000_CTRL_SLU;
5300 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5301 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5303 /* Set the mac to wait the maximum time between each iteration
5304 * and increase the max iterations when polling the phy;
5305 * this fixes erroneous timeouts at 10Mbps.
5307 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5308 0xFFFF);
5309 if (ret_val)
5310 return ret_val;
5311 ret_val = e1000_read_kmrn_reg_generic(hw,
5312 E1000_KMRNCTRLSTA_INBAND_PARAM,
5313 &reg_data);
5314 if (ret_val)
5315 return ret_val;
5316 reg_data |= 0x3F;
5317 ret_val = e1000_write_kmrn_reg_generic(hw,
5318 E1000_KMRNCTRLSTA_INBAND_PARAM,
5319 reg_data);
5320 if (ret_val)
5321 return ret_val;
5323 switch (hw->phy.type) {
5324 case e1000_phy_igp_3:
5325 ret_val = e1000_copper_link_setup_igp(hw);
5326 if (ret_val)
5327 return ret_val;
5328 break;
5329 case e1000_phy_bm:
5330 case e1000_phy_82578:
5331 ret_val = e1000_copper_link_setup_m88(hw);
5332 if (ret_val)
5333 return ret_val;
5334 break;
5335 case e1000_phy_82577:
5336 case e1000_phy_82579:
5337 ret_val = e1000_copper_link_setup_82577(hw);
5338 if (ret_val)
5339 return ret_val;
5340 break;
5341 case e1000_phy_ife:
5342 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5343 &reg_data);
5344 if (ret_val)
5345 return ret_val;
5347 reg_data &= ~IFE_PMC_AUTO_MDIX;
5349 switch (hw->phy.mdix) {
5350 case 1:
5351 reg_data &= ~IFE_PMC_FORCE_MDIX;
5352 break;
5353 case 2:
5354 reg_data |= IFE_PMC_FORCE_MDIX;
5355 break;
5356 case 0:
5357 default:
5358 reg_data |= IFE_PMC_AUTO_MDIX;
5359 break;
5361 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5362 reg_data);
5363 if (ret_val)
5364 return ret_val;
5365 break;
5366 default:
5367 break;
5370 return e1000_setup_copper_link_generic(hw);
5374 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5375 * @hw: pointer to the HW structure
5377 * Calls the PHY specific link setup function and then calls the
5378 * generic setup_copper_link to finish configuring the link for
5379 * Lynxpoint PCH devices
5381 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5383 u32 ctrl;
5384 s32 ret_val;
5386 DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5388 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5389 ctrl |= E1000_CTRL_SLU;
5390 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5391 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5393 ret_val = e1000_copper_link_setup_82577(hw);
5394 if (ret_val)
5395 return ret_val;
5397 return e1000_setup_copper_link_generic(hw);
5401 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5402 * @hw: pointer to the HW structure
5403 * @speed: pointer to store current link speed
5404 * @duplex: pointer to store the current link duplex
5406 * Calls the generic get_speed_and_duplex to retrieve the current link
5407 * information and then calls the Kumeran lock loss workaround for links at
5408 * gigabit speeds.
5410 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5411 u16 *duplex)
5413 s32 ret_val;
5415 DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5417 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5418 if (ret_val)
5419 return ret_val;
5421 if ((hw->mac.type == e1000_ich8lan) &&
5422 (hw->phy.type == e1000_phy_igp_3) &&
5423 (*speed == SPEED_1000)) {
5424 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5427 return ret_val;
5431 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5432 * @hw: pointer to the HW structure
5434 * Work-around for 82566 Kumeran PCS lock loss:
5435 * On link status change (i.e. PCI reset, speed change) and link is up and
5436 * speed is gigabit-
5437 * 0) if workaround is optionally disabled do nothing
5438 * 1) wait 1ms for Kumeran link to come up
5439 * 2) check Kumeran Diagnostic register PCS lock loss bit
5440 * 3) if not set the link is locked (all is good), otherwise...
5441 * 4) reset the PHY
5442 * 5) repeat up to 10 times
5443 * Note: this is only called for IGP3 copper when speed is 1gb.
5445 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5447 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5448 u32 phy_ctrl;
5449 s32 ret_val;
5450 u16 i, data;
5451 bool link;
5453 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5455 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5456 return E1000_SUCCESS;
5458 /* Make sure link is up before proceeding. If not just return.
5459 * Attempting this while link is negotiating fouled up link
5460 * stability
5462 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5463 if (!link)
5464 return E1000_SUCCESS;
5466 for (i = 0; i < 10; i++) {
5467 /* read once to clear */
5468 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5469 if (ret_val)
5470 return ret_val;
5471 /* and again to get new status */
5472 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5473 if (ret_val)
5474 return ret_val;
5476 /* check for PCS lock */
5477 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5478 return E1000_SUCCESS;
5480 /* Issue PHY reset */
5481 hw->phy.ops.reset(hw);
5482 msec_delay_irq(5);
5484 /* Disable GigE link negotiation */
5485 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5486 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5487 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5488 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5490 /* Call gig speed drop workaround on Gig disable before accessing
5491 * any PHY registers
5493 e1000_gig_downshift_workaround_ich8lan(hw);
5495 /* unable to acquire PCS lock */
5496 return -E1000_ERR_PHY;
5500 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5501 * @hw: pointer to the HW structure
5502 * @state: boolean value used to set the current Kumeran workaround state
5504 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
5505 * /disabled - FALSE).
5507 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5508 bool state)
5510 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5512 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5514 if (hw->mac.type != e1000_ich8lan) {
5515 DEBUGOUT("Workaround applies to ICH8 only.\n");
5516 return;
5519 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5521 return;
5525 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5526 * @hw: pointer to the HW structure
5528 * Workaround for 82566 power-down on D3 entry:
5529 * 1) disable gigabit link
5530 * 2) write VR power-down enable
5531 * 3) read it back
5532 * Continue if successful, else issue LCD reset and repeat
5534 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5536 u32 reg;
5537 u16 data;
5538 u8 retry = 0;
5540 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5542 if (hw->phy.type != e1000_phy_igp_3)
5543 return;
5545 /* Try the workaround twice (if needed) */
5546 do {
5547 /* Disable link */
5548 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5549 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5550 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5551 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5553 /* Call gig speed drop workaround on Gig disable before
5554 * accessing any PHY registers
5556 if (hw->mac.type == e1000_ich8lan)
5557 e1000_gig_downshift_workaround_ich8lan(hw);
5559 /* Write VR power-down enable */
5560 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5561 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5562 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5563 data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5565 /* Read it back and test */
5566 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5567 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5568 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5569 break;
5571 /* Issue PHY reset and repeat at most one more time */
5572 reg = E1000_READ_REG(hw, E1000_CTRL);
5573 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5574 retry++;
5575 } while (retry);
5579 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5580 * @hw: pointer to the HW structure
5582 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5583 * LPLU, Gig disable, MDIC PHY reset):
5584 * 1) Set Kumeran Near-end loopback
5585 * 2) Clear Kumeran Near-end loopback
5586 * Should only be called for ICH8[m] devices with any 1G Phy.
5588 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5590 s32 ret_val;
5591 u16 reg_data;
5593 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5595 if ((hw->mac.type != e1000_ich8lan) ||
5596 (hw->phy.type == e1000_phy_ife))
5597 return;
5599 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5600 &reg_data);
5601 if (ret_val)
5602 return;
5603 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5604 ret_val = e1000_write_kmrn_reg_generic(hw,
5605 E1000_KMRNCTRLSTA_DIAG_OFFSET,
5606 reg_data);
5607 if (ret_val)
5608 return;
5609 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5610 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5611 reg_data);
5615 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5616 * @hw: pointer to the HW structure
5618 * During S0 to Sx transition, it is possible the link remains at gig
5619 * instead of negotiating to a lower speed. Before going to Sx, set
5620 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5621 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5622 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5623 * needs to be written.
5624 * Parts that support (and are linked to a partner which support) EEE in
5625 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5626 * than 10Mbps w/o EEE.
5628 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5630 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5631 u32 phy_ctrl;
5632 s32 ret_val;
5634 DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5636 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5637 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5639 if (hw->phy.type == e1000_phy_i217) {
5640 u16 phy_reg, device_id = hw->device_id;
5642 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5643 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5644 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5645 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5646 (hw->mac.type >= e1000_pch_spt)) {
5647 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5649 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5650 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5653 ret_val = hw->phy.ops.acquire(hw);
5654 if (ret_val)
5655 goto out;
5657 if (!dev_spec->eee_disable) {
5658 u16 eee_advert;
5660 ret_val =
5661 e1000_read_emi_reg_locked(hw,
5662 I217_EEE_ADVERTISEMENT,
5663 &eee_advert);
5664 if (ret_val)
5665 goto release;
5667 /* Disable LPLU if both link partners support 100BaseT
5668 * EEE and 100Full is advertised on both ends of the
5669 * link, and enable Auto Enable LPI since there will
5670 * be no driver to enable LPI while in Sx.
5672 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5673 (dev_spec->eee_lp_ability &
5674 I82579_EEE_100_SUPPORTED) &&
5675 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5676 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5677 E1000_PHY_CTRL_NOND0A_LPLU);
5679 /* Set Auto Enable LPI after link up */
5680 hw->phy.ops.read_reg_locked(hw,
5681 I217_LPI_GPIO_CTRL,
5682 &phy_reg);
5683 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5684 hw->phy.ops.write_reg_locked(hw,
5685 I217_LPI_GPIO_CTRL,
5686 phy_reg);
5690 /* For i217 Intel Rapid Start Technology support,
5691 * when the system is going into Sx and no manageability engine
5692 * is present, the driver must configure proxy to reset only on
5693 * power good. LPI (Low Power Idle) state must also reset only
5694 * on power good, as well as the MTA (Multicast table array).
5695 * The SMBus release must also be disabled on LCD reset.
5697 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5698 E1000_ICH_FWSM_FW_VALID)) {
5699 /* Enable proxy to reset only on power good. */
5700 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5701 &phy_reg);
5702 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5703 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5704 phy_reg);
5706 /* Set bit enable LPI (EEE) to reset only on
5707 * power good.
5709 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5710 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5711 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5713 /* Disable the SMB release on LCD reset. */
5714 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5715 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5716 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5719 /* Enable MTA to reset for Intel Rapid Start Technology
5720 * Support
5722 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5723 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5724 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5726 release:
5727 hw->phy.ops.release(hw);
5729 out:
5730 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5732 if (hw->mac.type == e1000_ich8lan)
5733 e1000_gig_downshift_workaround_ich8lan(hw);
5735 if (hw->mac.type >= e1000_pchlan) {
5736 e1000_oem_bits_config_ich8lan(hw, FALSE);
5738 /* Reset PHY to activate OEM bits on 82577/8 */
5739 if (hw->mac.type == e1000_pchlan)
5740 e1000_phy_hw_reset_generic(hw);
5742 ret_val = hw->phy.ops.acquire(hw);
5743 if (ret_val)
5744 return;
5745 e1000_write_smbus_addr(hw);
5746 hw->phy.ops.release(hw);
5749 return;
5753 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5754 * @hw: pointer to the HW structure
5756 * During Sx to S0 transitions on non-managed devices or managed devices
5757 * on which PHY resets are not blocked, if the PHY registers cannot be
5758 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5759 * the PHY.
5760 * On i217, setup Intel Rapid Start Technology.
5762 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5764 s32 ret_val;
5766 DEBUGFUNC("e1000_resume_workarounds_pchlan");
5767 if (hw->mac.type < e1000_pch2lan)
5768 return E1000_SUCCESS;
5770 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5771 if (ret_val) {
5772 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5773 return ret_val;
5776 /* For i217 Intel Rapid Start Technology support when the system
5777 * is transitioning from Sx and no manageability engine is present
5778 * configure SMBus to restore on reset, disable proxy, and enable
5779 * the reset on MTA (Multicast table array).
5781 if (hw->phy.type == e1000_phy_i217) {
5782 u16 phy_reg;
5784 ret_val = hw->phy.ops.acquire(hw);
5785 if (ret_val) {
5786 DEBUGOUT("Failed to setup iRST\n");
5787 return ret_val;
5790 /* Clear Auto Enable LPI after link up */
5791 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5792 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5793 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5795 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5796 E1000_ICH_FWSM_FW_VALID)) {
5797 /* Restore clear on SMB if no manageability engine
5798 * is present
5800 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5801 &phy_reg);
5802 if (ret_val)
5803 goto release;
5804 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5805 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5807 /* Disable Proxy */
5808 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5810 /* Enable reset on MTA */
5811 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5812 &phy_reg);
5813 if (ret_val)
5814 goto release;
5815 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5816 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5817 release:
5818 if (ret_val)
5819 DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5820 hw->phy.ops.release(hw);
5821 return ret_val;
5823 return E1000_SUCCESS;
5827 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5828 * @hw: pointer to the HW structure
5830 * Return the LED back to the default configuration.
5832 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5834 DEBUGFUNC("e1000_cleanup_led_ich8lan");
5836 if (hw->phy.type == e1000_phy_ife)
5837 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5840 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5841 return E1000_SUCCESS;
5845 * e1000_led_on_ich8lan - Turn LEDs on
5846 * @hw: pointer to the HW structure
5848 * Turn on the LEDs.
5850 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5852 DEBUGFUNC("e1000_led_on_ich8lan");
5854 if (hw->phy.type == e1000_phy_ife)
5855 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5856 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5858 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5859 return E1000_SUCCESS;
5863 * e1000_led_off_ich8lan - Turn LEDs off
5864 * @hw: pointer to the HW structure
5866 * Turn off the LEDs.
5868 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5870 DEBUGFUNC("e1000_led_off_ich8lan");
5872 if (hw->phy.type == e1000_phy_ife)
5873 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5874 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5876 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5877 return E1000_SUCCESS;
5881 * e1000_setup_led_pchlan - Configures SW controllable LED
5882 * @hw: pointer to the HW structure
5884 * This prepares the SW controllable LED for use.
5886 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5888 DEBUGFUNC("e1000_setup_led_pchlan");
5890 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5891 (u16)hw->mac.ledctl_mode1);
5895 * e1000_cleanup_led_pchlan - Restore the default LED operation
5896 * @hw: pointer to the HW structure
5898 * Return the LED back to the default configuration.
5900 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5902 DEBUGFUNC("e1000_cleanup_led_pchlan");
5904 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5905 (u16)hw->mac.ledctl_default);
5909 * e1000_led_on_pchlan - Turn LEDs on
5910 * @hw: pointer to the HW structure
5912 * Turn on the LEDs.
5914 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5916 u16 data = (u16)hw->mac.ledctl_mode2;
5917 u32 i, led;
5919 DEBUGFUNC("e1000_led_on_pchlan");
5921 /* If no link, then turn LED on by setting the invert bit
5922 * for each LED that's mode is "link_up" in ledctl_mode2.
5924 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5925 for (i = 0; i < 3; i++) {
5926 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5927 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5928 E1000_LEDCTL_MODE_LINK_UP)
5929 continue;
5930 if (led & E1000_PHY_LED0_IVRT)
5931 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5932 else
5933 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5937 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5941 * e1000_led_off_pchlan - Turn LEDs off
5942 * @hw: pointer to the HW structure
5944 * Turn off the LEDs.
5946 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5948 u16 data = (u16)hw->mac.ledctl_mode1;
5949 u32 i, led;
5951 DEBUGFUNC("e1000_led_off_pchlan");
5953 /* If no link, then turn LED off by clearing the invert bit
5954 * for each LED that's mode is "link_up" in ledctl_mode1.
5956 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5957 for (i = 0; i < 3; i++) {
5958 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5959 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5960 E1000_LEDCTL_MODE_LINK_UP)
5961 continue;
5962 if (led & E1000_PHY_LED0_IVRT)
5963 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5964 else
5965 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5969 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5973 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5974 * @hw: pointer to the HW structure
5976 * Read appropriate register for the config done bit for completion status
5977 * and configure the PHY through s/w for EEPROM-less parts.
5979 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5980 * config done bit, so only an error is logged and continues. If we were
5981 * to return with error, EEPROM-less silicon would not be able to be reset
5982 * or change link.
5984 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5986 s32 ret_val = E1000_SUCCESS;
5987 u32 bank = 0;
5988 u32 status;
5990 DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5992 e1000_get_cfg_done_generic(hw);
5994 /* Wait for indication from h/w that it has completed basic config */
5995 if (hw->mac.type >= e1000_ich10lan) {
5996 e1000_lan_init_done_ich8lan(hw);
5997 } else {
5998 ret_val = e1000_get_auto_rd_done_generic(hw);
5999 if (ret_val) {
6000 /* When auto config read does not complete, do not
6001 * return with an error. This can happen in situations
6002 * where there is no eeprom and prevents getting link.
6004 DEBUGOUT("Auto Read Done did not complete\n");
6005 ret_val = E1000_SUCCESS;
6009 /* Clear PHY Reset Asserted bit */
6010 status = E1000_READ_REG(hw, E1000_STATUS);
6011 if (status & E1000_STATUS_PHYRA)
6012 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6013 else
6014 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6016 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
6017 if (hw->mac.type <= e1000_ich9lan) {
6018 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6019 (hw->phy.type == e1000_phy_igp_3)) {
6020 e1000_phy_init_script_igp3(hw);
6022 } else {
6023 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6024 /* Maybe we should do a basic PHY config */
6025 DEBUGOUT("EEPROM not present\n");
6026 ret_val = -E1000_ERR_CONFIG;
6030 return ret_val;
6034 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6035 * @hw: pointer to the HW structure
6037 * In the case of a PHY power down to save power, or to turn off link during a
6038 * driver unload, or wake on lan is not enabled, remove the link.
6040 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6042 /* If the management interface is not enabled, then power down */
6043 if (!(hw->mac.ops.check_mng_mode(hw) ||
6044 hw->phy.ops.check_reset_block(hw)))
6045 e1000_power_down_phy_copper(hw);
6047 return;
6051 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6052 * @hw: pointer to the HW structure
6054 * Clears hardware counters specific to the silicon family and calls
6055 * clear_hw_cntrs_generic to clear all general purpose counters.
6057 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6059 u16 phy_data;
6060 s32 ret_val;
6062 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6064 e1000_clear_hw_cntrs_base_generic(hw);
6066 E1000_READ_REG(hw, E1000_ALGNERRC);
6067 E1000_READ_REG(hw, E1000_RXERRC);
6068 E1000_READ_REG(hw, E1000_TNCRS);
6069 E1000_READ_REG(hw, E1000_CEXTERR);
6070 E1000_READ_REG(hw, E1000_TSCTC);
6071 E1000_READ_REG(hw, E1000_TSCTFC);
6073 E1000_READ_REG(hw, E1000_MGTPRC);
6074 E1000_READ_REG(hw, E1000_MGTPDC);
6075 E1000_READ_REG(hw, E1000_MGTPTC);
6077 E1000_READ_REG(hw, E1000_IAC);
6078 E1000_READ_REG(hw, E1000_ICRXOC);
6080 /* Clear PHY statistics registers */
6081 if ((hw->phy.type == e1000_phy_82578) ||
6082 (hw->phy.type == e1000_phy_82579) ||
6083 (hw->phy.type == e1000_phy_i217) ||
6084 (hw->phy.type == e1000_phy_82577)) {
6085 ret_val = hw->phy.ops.acquire(hw);
6086 if (ret_val)
6087 return;
6088 ret_val = hw->phy.ops.set_page(hw,
6089 HV_STATS_PAGE << IGP_PAGE_SHIFT);
6090 if (ret_val)
6091 goto release;
6092 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6093 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6094 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6095 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6096 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6097 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6098 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6099 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6100 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6101 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6102 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6103 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6104 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6105 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6106 release:
6107 hw->phy.ops.release(hw);