9075 Improve ZFS pool import/load process and corrupted pool recovery
[unleashed.git] / usr / src / lib / libzfs / common / libzfs_import.c
blob8cbbd586962edf405d19aca1581475495ed43529
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2017 Nexenta Systems, Inc.
30 * Pool import support functions.
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
36 * pool guid -> toplevel vdev guid -> label txg
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
61 #include <sys/vdev_impl.h>
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
67 * Intermediate structures used to gather configuration information.
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
99 * Go through and fix up any path and/or devid information for the given vdev
100 * configuration.
102 static int
103 fix_paths(nvlist_t *nv, name_entry_t *names)
105 nvlist_t **child;
106 uint_t c, children;
107 uint64_t guid;
108 name_entry_t *ne, *best;
109 char *path, *devid;
110 int matched;
112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113 &child, &children) == 0) {
114 for (c = 0; c < children; c++)
115 if (fix_paths(child[c], names) != 0)
116 return (-1);
117 return (0);
121 * This is a leaf (file or disk) vdev. In either case, go through
122 * the name list and see if we find a matching guid. If so, replace
123 * the path and see if we can calculate a new devid.
125 * There may be multiple names associated with a particular guid, in
126 * which case we have overlapping slices or multiple paths to the same
127 * disk. If this is the case, then we want to pick the path that is
128 * the most similar to the original, where "most similar" is the number
129 * of matching characters starting from the end of the path. This will
130 * preserve slice numbers even if the disks have been reorganized, and
131 * will also catch preferred disk names if multiple paths exist.
133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
135 path = NULL;
137 matched = 0;
138 best = NULL;
139 for (ne = names; ne != NULL; ne = ne->ne_next) {
140 if (ne->ne_guid == guid) {
141 const char *src, *dst;
142 int count;
144 if (path == NULL) {
145 best = ne;
146 break;
149 src = ne->ne_name + strlen(ne->ne_name) - 1;
150 dst = path + strlen(path) - 1;
151 for (count = 0; src >= ne->ne_name && dst >= path;
152 src--, dst--, count++)
153 if (*src != *dst)
154 break;
157 * At this point, 'count' is the number of characters
158 * matched from the end.
160 if (count > matched || best == NULL) {
161 best = ne;
162 matched = count;
167 if (best == NULL)
168 return (0);
170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
171 return (-1);
173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
175 } else {
176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
177 devid_str_free(devid);
178 return (-1);
180 devid_str_free(devid);
183 return (0);
187 * Add the given configuration to the list of known devices.
189 static int
190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
191 nvlist_t *config)
193 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
194 pool_entry_t *pe;
195 vdev_entry_t *ve;
196 config_entry_t *ce;
197 name_entry_t *ne;
200 * If this is a hot spare not currently in use or level 2 cache
201 * device, add it to the list of names to translate, but don't do
202 * anything else.
204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
205 &state) == 0 &&
206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
209 return (-1);
211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
212 free(ne);
213 return (-1);
216 ne->ne_guid = vdev_guid;
217 ne->ne_next = pl->names;
218 pl->names = ne;
220 nvlist_free(config);
221 return (0);
225 * If we have a valid config but cannot read any of these fields, then
226 * it means we have a half-initialized label. In vdev_label_init()
227 * we write a label with txg == 0 so that we can identify the device
228 * in case the user refers to the same disk later on. If we fail to
229 * create the pool, we'll be left with a label in this state
230 * which should not be considered part of a valid pool.
232 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
233 &pool_guid) != 0 ||
234 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
235 &vdev_guid) != 0 ||
236 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
237 &top_guid) != 0 ||
238 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
239 &txg) != 0 || txg == 0) {
240 nvlist_free(config);
241 return (0);
245 * First, see if we know about this pool. If not, then add it to the
246 * list of known pools.
248 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
249 if (pe->pe_guid == pool_guid)
250 break;
253 if (pe == NULL) {
254 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
255 nvlist_free(config);
256 return (-1);
258 pe->pe_guid = pool_guid;
259 pe->pe_next = pl->pools;
260 pl->pools = pe;
264 * Second, see if we know about this toplevel vdev. Add it if its
265 * missing.
267 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
268 if (ve->ve_guid == top_guid)
269 break;
272 if (ve == NULL) {
273 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
274 nvlist_free(config);
275 return (-1);
277 ve->ve_guid = top_guid;
278 ve->ve_next = pe->pe_vdevs;
279 pe->pe_vdevs = ve;
283 * Third, see if we have a config with a matching transaction group. If
284 * so, then we do nothing. Otherwise, add it to the list of known
285 * configs.
287 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
288 if (ce->ce_txg == txg)
289 break;
292 if (ce == NULL) {
293 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
294 nvlist_free(config);
295 return (-1);
297 ce->ce_txg = txg;
298 ce->ce_config = config;
299 ce->ce_next = ve->ve_configs;
300 ve->ve_configs = ce;
301 } else {
302 nvlist_free(config);
306 * At this point we've successfully added our config to the list of
307 * known configs. The last thing to do is add the vdev guid -> path
308 * mappings so that we can fix up the configuration as necessary before
309 * doing the import.
311 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
312 return (-1);
314 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
315 free(ne);
316 return (-1);
319 ne->ne_guid = vdev_guid;
320 ne->ne_next = pl->names;
321 pl->names = ne;
323 return (0);
327 * Returns true if the named pool matches the given GUID.
329 static int
330 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
331 boolean_t *isactive)
333 zpool_handle_t *zhp;
334 uint64_t theguid;
336 if (zpool_open_silent(hdl, name, &zhp) != 0)
337 return (-1);
339 if (zhp == NULL) {
340 *isactive = B_FALSE;
341 return (0);
344 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
345 &theguid) == 0);
347 zpool_close(zhp);
349 *isactive = (theguid == guid);
350 return (0);
353 static nvlist_t *
354 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
356 nvlist_t *nvl;
357 zfs_cmd_t zc = { 0 };
358 int err, dstbuf_size;
360 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
361 return (NULL);
363 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
365 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
366 zcmd_free_nvlists(&zc);
367 return (NULL);
370 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
371 &zc)) != 0 && errno == ENOMEM) {
372 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
373 zcmd_free_nvlists(&zc);
374 return (NULL);
378 if (err) {
379 zcmd_free_nvlists(&zc);
380 return (NULL);
383 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
384 zcmd_free_nvlists(&zc);
385 return (NULL);
388 zcmd_free_nvlists(&zc);
389 return (nvl);
393 * Determine if the vdev id is a hole in the namespace.
395 boolean_t
396 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
398 for (int c = 0; c < holes; c++) {
400 /* Top-level is a hole */
401 if (hole_array[c] == id)
402 return (B_TRUE);
404 return (B_FALSE);
408 * Convert our list of pools into the definitive set of configurations. We
409 * start by picking the best config for each toplevel vdev. Once that's done,
410 * we assemble the toplevel vdevs into a full config for the pool. We make a
411 * pass to fix up any incorrect paths, and then add it to the main list to
412 * return to the user.
414 static nvlist_t *
415 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
416 nvlist_t *policy)
418 pool_entry_t *pe;
419 vdev_entry_t *ve;
420 config_entry_t *ce;
421 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
422 nvlist_t **spares, **l2cache;
423 uint_t i, nspares, nl2cache;
424 boolean_t config_seen;
425 uint64_t best_txg;
426 char *name, *hostname = NULL;
427 uint64_t guid;
428 uint_t children = 0;
429 nvlist_t **child = NULL;
430 uint_t holes;
431 uint64_t *hole_array, max_id;
432 uint_t c;
433 boolean_t isactive;
434 uint64_t hostid;
435 nvlist_t *nvl;
436 boolean_t found_one = B_FALSE;
437 boolean_t valid_top_config = B_FALSE;
439 if (nvlist_alloc(&ret, 0, 0) != 0)
440 goto nomem;
442 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
443 uint64_t id, max_txg = 0;
445 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
446 goto nomem;
447 config_seen = B_FALSE;
450 * Iterate over all toplevel vdevs. Grab the pool configuration
451 * from the first one we find, and then go through the rest and
452 * add them as necessary to the 'vdevs' member of the config.
454 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
457 * Determine the best configuration for this vdev by
458 * selecting the config with the latest transaction
459 * group.
461 best_txg = 0;
462 for (ce = ve->ve_configs; ce != NULL;
463 ce = ce->ce_next) {
465 if (ce->ce_txg > best_txg) {
466 tmp = ce->ce_config;
467 best_txg = ce->ce_txg;
472 * We rely on the fact that the max txg for the
473 * pool will contain the most up-to-date information
474 * about the valid top-levels in the vdev namespace.
476 if (best_txg > max_txg) {
477 (void) nvlist_remove(config,
478 ZPOOL_CONFIG_VDEV_CHILDREN,
479 DATA_TYPE_UINT64);
480 (void) nvlist_remove(config,
481 ZPOOL_CONFIG_HOLE_ARRAY,
482 DATA_TYPE_UINT64_ARRAY);
484 max_txg = best_txg;
485 hole_array = NULL;
486 holes = 0;
487 max_id = 0;
488 valid_top_config = B_FALSE;
490 if (nvlist_lookup_uint64(tmp,
491 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
492 verify(nvlist_add_uint64(config,
493 ZPOOL_CONFIG_VDEV_CHILDREN,
494 max_id) == 0);
495 valid_top_config = B_TRUE;
498 if (nvlist_lookup_uint64_array(tmp,
499 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
500 &holes) == 0) {
501 verify(nvlist_add_uint64_array(config,
502 ZPOOL_CONFIG_HOLE_ARRAY,
503 hole_array, holes) == 0);
507 if (!config_seen) {
509 * Copy the relevant pieces of data to the pool
510 * configuration:
512 * version
513 * pool guid
514 * name
515 * comment (if available)
516 * pool state
517 * hostid (if available)
518 * hostname (if available)
520 uint64_t state, version;
521 char *comment = NULL;
523 version = fnvlist_lookup_uint64(tmp,
524 ZPOOL_CONFIG_VERSION);
525 fnvlist_add_uint64(config,
526 ZPOOL_CONFIG_VERSION, version);
527 guid = fnvlist_lookup_uint64(tmp,
528 ZPOOL_CONFIG_POOL_GUID);
529 fnvlist_add_uint64(config,
530 ZPOOL_CONFIG_POOL_GUID, guid);
531 name = fnvlist_lookup_string(tmp,
532 ZPOOL_CONFIG_POOL_NAME);
533 fnvlist_add_string(config,
534 ZPOOL_CONFIG_POOL_NAME, name);
536 if (nvlist_lookup_string(tmp,
537 ZPOOL_CONFIG_COMMENT, &comment) == 0)
538 fnvlist_add_string(config,
539 ZPOOL_CONFIG_COMMENT, comment);
541 state = fnvlist_lookup_uint64(tmp,
542 ZPOOL_CONFIG_POOL_STATE);
543 fnvlist_add_uint64(config,
544 ZPOOL_CONFIG_POOL_STATE, state);
546 hostid = 0;
547 if (nvlist_lookup_uint64(tmp,
548 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
549 fnvlist_add_uint64(config,
550 ZPOOL_CONFIG_HOSTID, hostid);
551 hostname = fnvlist_lookup_string(tmp,
552 ZPOOL_CONFIG_HOSTNAME);
553 fnvlist_add_string(config,
554 ZPOOL_CONFIG_HOSTNAME, hostname);
557 config_seen = B_TRUE;
561 * Add this top-level vdev to the child array.
563 verify(nvlist_lookup_nvlist(tmp,
564 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
565 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
566 &id) == 0);
568 if (id >= children) {
569 nvlist_t **newchild;
571 newchild = zfs_alloc(hdl, (id + 1) *
572 sizeof (nvlist_t *));
573 if (newchild == NULL)
574 goto nomem;
576 for (c = 0; c < children; c++)
577 newchild[c] = child[c];
579 free(child);
580 child = newchild;
581 children = id + 1;
583 if (nvlist_dup(nvtop, &child[id], 0) != 0)
584 goto nomem;
589 * If we have information about all the top-levels then
590 * clean up the nvlist which we've constructed. This
591 * means removing any extraneous devices that are
592 * beyond the valid range or adding devices to the end
593 * of our array which appear to be missing.
595 if (valid_top_config) {
596 if (max_id < children) {
597 for (c = max_id; c < children; c++)
598 nvlist_free(child[c]);
599 children = max_id;
600 } else if (max_id > children) {
601 nvlist_t **newchild;
603 newchild = zfs_alloc(hdl, (max_id) *
604 sizeof (nvlist_t *));
605 if (newchild == NULL)
606 goto nomem;
608 for (c = 0; c < children; c++)
609 newchild[c] = child[c];
611 free(child);
612 child = newchild;
613 children = max_id;
617 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
618 &guid) == 0);
621 * The vdev namespace may contain holes as a result of
622 * device removal. We must add them back into the vdev
623 * tree before we process any missing devices.
625 if (holes > 0) {
626 ASSERT(valid_top_config);
628 for (c = 0; c < children; c++) {
629 nvlist_t *holey;
631 if (child[c] != NULL ||
632 !vdev_is_hole(hole_array, holes, c))
633 continue;
635 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
636 0) != 0)
637 goto nomem;
640 * Holes in the namespace are treated as
641 * "hole" top-level vdevs and have a
642 * special flag set on them.
644 if (nvlist_add_string(holey,
645 ZPOOL_CONFIG_TYPE,
646 VDEV_TYPE_HOLE) != 0 ||
647 nvlist_add_uint64(holey,
648 ZPOOL_CONFIG_ID, c) != 0 ||
649 nvlist_add_uint64(holey,
650 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
651 nvlist_free(holey);
652 goto nomem;
654 child[c] = holey;
659 * Look for any missing top-level vdevs. If this is the case,
660 * create a faked up 'missing' vdev as a placeholder. We cannot
661 * simply compress the child array, because the kernel performs
662 * certain checks to make sure the vdev IDs match their location
663 * in the configuration.
665 for (c = 0; c < children; c++) {
666 if (child[c] == NULL) {
667 nvlist_t *missing;
668 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
669 0) != 0)
670 goto nomem;
671 if (nvlist_add_string(missing,
672 ZPOOL_CONFIG_TYPE,
673 VDEV_TYPE_MISSING) != 0 ||
674 nvlist_add_uint64(missing,
675 ZPOOL_CONFIG_ID, c) != 0 ||
676 nvlist_add_uint64(missing,
677 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
678 nvlist_free(missing);
679 goto nomem;
681 child[c] = missing;
686 * Put all of this pool's top-level vdevs into a root vdev.
688 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
689 goto nomem;
690 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
691 VDEV_TYPE_ROOT) != 0 ||
692 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
693 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
694 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
695 child, children) != 0) {
696 nvlist_free(nvroot);
697 goto nomem;
700 for (c = 0; c < children; c++)
701 nvlist_free(child[c]);
702 free(child);
703 children = 0;
704 child = NULL;
707 * Go through and fix up any paths and/or devids based on our
708 * known list of vdev GUID -> path mappings.
710 if (fix_paths(nvroot, pl->names) != 0) {
711 nvlist_free(nvroot);
712 goto nomem;
716 * Add the root vdev to this pool's configuration.
718 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
719 nvroot) != 0) {
720 nvlist_free(nvroot);
721 goto nomem;
723 nvlist_free(nvroot);
726 * zdb uses this path to report on active pools that were
727 * imported or created using -R.
729 if (active_ok)
730 goto add_pool;
733 * Determine if this pool is currently active, in which case we
734 * can't actually import it.
736 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
737 &name) == 0);
738 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
739 &guid) == 0);
741 if (pool_active(hdl, name, guid, &isactive) != 0)
742 goto error;
744 if (isactive) {
745 nvlist_free(config);
746 config = NULL;
747 continue;
750 if (policy != NULL) {
751 if (nvlist_add_nvlist(config, ZPOOL_REWIND_POLICY,
752 policy) != 0)
753 goto nomem;
756 if ((nvl = refresh_config(hdl, config)) == NULL) {
757 nvlist_free(config);
758 config = NULL;
759 continue;
762 nvlist_free(config);
763 config = nvl;
766 * Go through and update the paths for spares, now that we have
767 * them.
769 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
770 &nvroot) == 0);
771 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
772 &spares, &nspares) == 0) {
773 for (i = 0; i < nspares; i++) {
774 if (fix_paths(spares[i], pl->names) != 0)
775 goto nomem;
780 * Update the paths for l2cache devices.
782 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
783 &l2cache, &nl2cache) == 0) {
784 for (i = 0; i < nl2cache; i++) {
785 if (fix_paths(l2cache[i], pl->names) != 0)
786 goto nomem;
791 * Restore the original information read from the actual label.
793 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
794 DATA_TYPE_UINT64);
795 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
796 DATA_TYPE_STRING);
797 if (hostid != 0) {
798 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
799 hostid) == 0);
800 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
801 hostname) == 0);
804 add_pool:
806 * Add this pool to the list of configs.
808 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
809 &name) == 0);
810 if (nvlist_add_nvlist(ret, name, config) != 0)
811 goto nomem;
813 found_one = B_TRUE;
814 nvlist_free(config);
815 config = NULL;
818 if (!found_one) {
819 nvlist_free(ret);
820 ret = NULL;
823 return (ret);
825 nomem:
826 (void) no_memory(hdl);
827 error:
828 nvlist_free(config);
829 nvlist_free(ret);
830 for (c = 0; c < children; c++)
831 nvlist_free(child[c]);
832 free(child);
834 return (NULL);
838 * Return the offset of the given label.
840 static uint64_t
841 label_offset(uint64_t size, int l)
843 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
844 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
845 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
849 * Given a file descriptor, read the label information and return an nvlist
850 * describing the configuration, if there is one.
851 * Return 0 on success, or -1 on failure
854 zpool_read_label(int fd, nvlist_t **config)
856 struct stat64 statbuf;
857 int l;
858 vdev_label_t *label;
859 uint64_t state, txg, size;
861 *config = NULL;
863 if (fstat64(fd, &statbuf) == -1)
864 return (-1);
865 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
867 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
868 return (-1);
870 for (l = 0; l < VDEV_LABELS; l++) {
871 if (pread64(fd, label, sizeof (vdev_label_t),
872 label_offset(size, l)) != sizeof (vdev_label_t))
873 continue;
875 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
876 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
877 continue;
879 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
880 &state) != 0 || state > POOL_STATE_L2CACHE) {
881 nvlist_free(*config);
882 continue;
885 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
886 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
887 &txg) != 0 || txg == 0)) {
888 nvlist_free(*config);
889 continue;
892 free(label);
893 return (0);
896 free(label);
897 *config = NULL;
898 return (-1);
901 typedef struct rdsk_node {
902 char *rn_name;
903 int rn_dfd;
904 libzfs_handle_t *rn_hdl;
905 nvlist_t *rn_config;
906 avl_tree_t *rn_avl;
907 avl_node_t rn_node;
908 boolean_t rn_nozpool;
909 } rdsk_node_t;
911 static int
912 slice_cache_compare(const void *arg1, const void *arg2)
914 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
915 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
916 char *nm1slice, *nm2slice;
917 int rv;
920 * slices zero and two are the most likely to provide results,
921 * so put those first
923 nm1slice = strstr(nm1, "s0");
924 nm2slice = strstr(nm2, "s0");
925 if (nm1slice && !nm2slice) {
926 return (-1);
928 if (!nm1slice && nm2slice) {
929 return (1);
931 nm1slice = strstr(nm1, "s2");
932 nm2slice = strstr(nm2, "s2");
933 if (nm1slice && !nm2slice) {
934 return (-1);
936 if (!nm1slice && nm2slice) {
937 return (1);
940 rv = strcmp(nm1, nm2);
941 if (rv == 0)
942 return (0);
943 return (rv > 0 ? 1 : -1);
946 static void
947 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
948 diskaddr_t size, uint_t blksz)
950 rdsk_node_t tmpnode;
951 rdsk_node_t *node;
952 char sname[MAXNAMELEN];
954 tmpnode.rn_name = &sname[0];
955 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
956 diskname, partno);
958 * protect against division by zero for disk labels that
959 * contain a bogus sector size
961 if (blksz == 0)
962 blksz = DEV_BSIZE;
963 /* too small to contain a zpool? */
964 if ((size < (SPA_MINDEVSIZE / blksz)) &&
965 (node = avl_find(r, &tmpnode, NULL)))
966 node->rn_nozpool = B_TRUE;
969 static void
970 nozpool_all_slices(avl_tree_t *r, const char *sname)
972 char diskname[MAXNAMELEN];
973 char *ptr;
974 int i;
976 (void) strncpy(diskname, sname, MAXNAMELEN);
977 if (((ptr = strrchr(diskname, 's')) == NULL) &&
978 ((ptr = strrchr(diskname, 'p')) == NULL))
979 return;
980 ptr[0] = 's';
981 ptr[1] = '\0';
982 for (i = 0; i < NDKMAP; i++)
983 check_one_slice(r, diskname, i, 0, 1);
984 ptr[0] = 'p';
985 for (i = 0; i <= FD_NUMPART; i++)
986 check_one_slice(r, diskname, i, 0, 1);
989 static void
990 check_slices(avl_tree_t *r, int fd, const char *sname)
992 struct extvtoc vtoc;
993 struct dk_gpt *gpt;
994 char diskname[MAXNAMELEN];
995 char *ptr;
996 int i;
998 (void) strncpy(diskname, sname, MAXNAMELEN);
999 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1000 return;
1001 ptr[1] = '\0';
1003 if (read_extvtoc(fd, &vtoc) >= 0) {
1004 for (i = 0; i < NDKMAP; i++)
1005 check_one_slice(r, diskname, i,
1006 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1007 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1009 * on x86 we'll still have leftover links that point
1010 * to slices s[9-15], so use NDKMAP instead
1012 for (i = 0; i < NDKMAP; i++)
1013 check_one_slice(r, diskname, i,
1014 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1015 /* nodes p[1-4] are never used with EFI labels */
1016 ptr[0] = 'p';
1017 for (i = 1; i <= FD_NUMPART; i++)
1018 check_one_slice(r, diskname, i, 0, 1);
1019 efi_free(gpt);
1023 static void
1024 zpool_open_func(void *arg)
1026 rdsk_node_t *rn = arg;
1027 struct stat64 statbuf;
1028 nvlist_t *config;
1029 int fd;
1031 if (rn->rn_nozpool)
1032 return;
1033 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1034 /* symlink to a device that's no longer there */
1035 if (errno == ENOENT)
1036 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1037 return;
1040 * Ignore failed stats. We only want regular
1041 * files, character devs and block devs.
1043 if (fstat64(fd, &statbuf) != 0 ||
1044 (!S_ISREG(statbuf.st_mode) &&
1045 !S_ISCHR(statbuf.st_mode) &&
1046 !S_ISBLK(statbuf.st_mode))) {
1047 (void) close(fd);
1048 return;
1050 /* this file is too small to hold a zpool */
1051 if (S_ISREG(statbuf.st_mode) &&
1052 statbuf.st_size < SPA_MINDEVSIZE) {
1053 (void) close(fd);
1054 return;
1055 } else if (!S_ISREG(statbuf.st_mode)) {
1057 * Try to read the disk label first so we don't have to
1058 * open a bunch of minor nodes that can't have a zpool.
1060 check_slices(rn->rn_avl, fd, rn->rn_name);
1063 if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1064 (void) close(fd);
1065 (void) no_memory(rn->rn_hdl);
1066 return;
1068 (void) close(fd);
1070 rn->rn_config = config;
1074 * Given a file descriptor, clear (zero) the label information.
1077 zpool_clear_label(int fd)
1079 struct stat64 statbuf;
1080 int l;
1081 vdev_label_t *label;
1082 uint64_t size;
1084 if (fstat64(fd, &statbuf) == -1)
1085 return (0);
1086 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1088 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1089 return (-1);
1091 for (l = 0; l < VDEV_LABELS; l++) {
1092 if (pwrite64(fd, label, sizeof (vdev_label_t),
1093 label_offset(size, l)) != sizeof (vdev_label_t)) {
1094 free(label);
1095 return (-1);
1099 free(label);
1100 return (0);
1104 * Given a list of directories to search, find all pools stored on disk. This
1105 * includes partial pools which are not available to import. If no args are
1106 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1107 * poolname or guid (but not both) are provided by the caller when trying
1108 * to import a specific pool.
1110 static nvlist_t *
1111 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1113 int i, dirs = iarg->paths;
1114 struct dirent64 *dp;
1115 char path[MAXPATHLEN];
1116 char *end, **dir = iarg->path;
1117 size_t pathleft;
1118 nvlist_t *ret = NULL;
1119 static char *default_dir = ZFS_DISK_ROOT;
1120 pool_list_t pools = { 0 };
1121 pool_entry_t *pe, *penext;
1122 vdev_entry_t *ve, *venext;
1123 config_entry_t *ce, *cenext;
1124 name_entry_t *ne, *nenext;
1125 avl_tree_t slice_cache;
1126 rdsk_node_t *slice;
1127 void *cookie;
1129 if (dirs == 0) {
1130 dirs = 1;
1131 dir = &default_dir;
1135 * Go through and read the label configuration information from every
1136 * possible device, organizing the information according to pool GUID
1137 * and toplevel GUID.
1139 for (i = 0; i < dirs; i++) {
1140 tpool_t *t;
1141 char rdsk[MAXPATHLEN];
1142 int dfd;
1143 boolean_t config_failed = B_FALSE;
1144 DIR *dirp;
1146 /* use realpath to normalize the path */
1147 if (realpath(dir[i], path) == 0) {
1148 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1149 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1150 goto error;
1152 end = &path[strlen(path)];
1153 *end++ = '/';
1154 *end = 0;
1155 pathleft = &path[sizeof (path)] - end;
1158 * Using raw devices instead of block devices when we're
1159 * reading the labels skips a bunch of slow operations during
1160 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1162 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1163 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1164 else
1165 (void) strlcpy(rdsk, path, sizeof (rdsk));
1167 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1168 (dirp = fdopendir(dfd)) == NULL) {
1169 if (dfd >= 0)
1170 (void) close(dfd);
1171 zfs_error_aux(hdl, strerror(errno));
1172 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1173 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1174 rdsk);
1175 goto error;
1178 avl_create(&slice_cache, slice_cache_compare,
1179 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1181 * This is not MT-safe, but we have no MT consumers of libzfs
1183 while ((dp = readdir64(dirp)) != NULL) {
1184 const char *name = dp->d_name;
1185 if (name[0] == '.' &&
1186 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1187 continue;
1189 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1190 slice->rn_name = zfs_strdup(hdl, name);
1191 slice->rn_avl = &slice_cache;
1192 slice->rn_dfd = dfd;
1193 slice->rn_hdl = hdl;
1194 slice->rn_nozpool = B_FALSE;
1195 avl_add(&slice_cache, slice);
1198 * create a thread pool to do all of this in parallel;
1199 * rn_nozpool is not protected, so this is racy in that
1200 * multiple tasks could decide that the same slice can
1201 * not hold a zpool, which is benign. Also choose
1202 * double the number of processors; we hold a lot of
1203 * locks in the kernel, so going beyond this doesn't
1204 * buy us much.
1206 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1207 0, NULL);
1208 for (slice = avl_first(&slice_cache); slice;
1209 (slice = avl_walk(&slice_cache, slice,
1210 AVL_AFTER)))
1211 (void) tpool_dispatch(t, zpool_open_func, slice);
1212 tpool_wait(t);
1213 tpool_destroy(t);
1215 cookie = NULL;
1216 while ((slice = avl_destroy_nodes(&slice_cache,
1217 &cookie)) != NULL) {
1218 if (slice->rn_config != NULL && !config_failed) {
1219 nvlist_t *config = slice->rn_config;
1220 boolean_t matched = B_TRUE;
1222 if (iarg->poolname != NULL) {
1223 char *pname;
1225 matched = nvlist_lookup_string(config,
1226 ZPOOL_CONFIG_POOL_NAME,
1227 &pname) == 0 &&
1228 strcmp(iarg->poolname, pname) == 0;
1229 } else if (iarg->guid != 0) {
1230 uint64_t this_guid;
1232 matched = nvlist_lookup_uint64(config,
1233 ZPOOL_CONFIG_POOL_GUID,
1234 &this_guid) == 0 &&
1235 iarg->guid == this_guid;
1237 if (!matched) {
1238 nvlist_free(config);
1239 } else {
1241 * use the non-raw path for the config
1243 (void) strlcpy(end, slice->rn_name,
1244 pathleft);
1245 if (add_config(hdl, &pools, path,
1246 config) != 0)
1247 config_failed = B_TRUE;
1250 free(slice->rn_name);
1251 free(slice);
1253 avl_destroy(&slice_cache);
1255 (void) closedir(dirp);
1257 if (config_failed)
1258 goto error;
1261 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1263 error:
1264 for (pe = pools.pools; pe != NULL; pe = penext) {
1265 penext = pe->pe_next;
1266 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1267 venext = ve->ve_next;
1268 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1269 cenext = ce->ce_next;
1270 nvlist_free(ce->ce_config);
1271 free(ce);
1273 free(ve);
1275 free(pe);
1278 for (ne = pools.names; ne != NULL; ne = nenext) {
1279 nenext = ne->ne_next;
1280 free(ne->ne_name);
1281 free(ne);
1284 return (ret);
1287 nvlist_t *
1288 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1290 importargs_t iarg = { 0 };
1292 iarg.paths = argc;
1293 iarg.path = argv;
1295 return (zpool_find_import_impl(hdl, &iarg));
1299 * Given a cache file, return the contents as a list of importable pools.
1300 * poolname or guid (but not both) are provided by the caller when trying
1301 * to import a specific pool.
1303 nvlist_t *
1304 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1305 char *poolname, uint64_t guid)
1307 char *buf;
1308 int fd;
1309 struct stat64 statbuf;
1310 nvlist_t *raw, *src, *dst;
1311 nvlist_t *pools;
1312 nvpair_t *elem;
1313 char *name;
1314 uint64_t this_guid;
1315 boolean_t active;
1317 verify(poolname == NULL || guid == 0);
1319 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1320 zfs_error_aux(hdl, "%s", strerror(errno));
1321 (void) zfs_error(hdl, EZFS_BADCACHE,
1322 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1323 return (NULL);
1326 if (fstat64(fd, &statbuf) != 0) {
1327 zfs_error_aux(hdl, "%s", strerror(errno));
1328 (void) close(fd);
1329 (void) zfs_error(hdl, EZFS_BADCACHE,
1330 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1331 return (NULL);
1334 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1335 (void) close(fd);
1336 return (NULL);
1339 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1340 (void) close(fd);
1341 free(buf);
1342 (void) zfs_error(hdl, EZFS_BADCACHE,
1343 dgettext(TEXT_DOMAIN,
1344 "failed to read cache file contents"));
1345 return (NULL);
1348 (void) close(fd);
1350 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1351 free(buf);
1352 (void) zfs_error(hdl, EZFS_BADCACHE,
1353 dgettext(TEXT_DOMAIN,
1354 "invalid or corrupt cache file contents"));
1355 return (NULL);
1358 free(buf);
1361 * Go through and get the current state of the pools and refresh their
1362 * state.
1364 if (nvlist_alloc(&pools, 0, 0) != 0) {
1365 (void) no_memory(hdl);
1366 nvlist_free(raw);
1367 return (NULL);
1370 elem = NULL;
1371 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1372 src = fnvpair_value_nvlist(elem);
1374 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1375 if (poolname != NULL && strcmp(poolname, name) != 0)
1376 continue;
1378 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1379 if (guid != 0 && guid != this_guid)
1380 continue;
1382 if (pool_active(hdl, name, this_guid, &active) != 0) {
1383 nvlist_free(raw);
1384 nvlist_free(pools);
1385 return (NULL);
1388 if (active)
1389 continue;
1391 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1392 cachefile) != 0) {
1393 (void) no_memory(hdl);
1394 nvlist_free(raw);
1395 nvlist_free(pools);
1396 return (NULL);
1399 if ((dst = refresh_config(hdl, src)) == NULL) {
1400 nvlist_free(raw);
1401 nvlist_free(pools);
1402 return (NULL);
1405 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1406 (void) no_memory(hdl);
1407 nvlist_free(dst);
1408 nvlist_free(raw);
1409 nvlist_free(pools);
1410 return (NULL);
1412 nvlist_free(dst);
1415 nvlist_free(raw);
1416 return (pools);
1419 static int
1420 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1422 importargs_t *import = data;
1423 int found = 0;
1425 if (import->poolname != NULL) {
1426 char *pool_name;
1428 verify(nvlist_lookup_string(zhp->zpool_config,
1429 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1430 if (strcmp(pool_name, import->poolname) == 0)
1431 found = 1;
1432 } else {
1433 uint64_t pool_guid;
1435 verify(nvlist_lookup_uint64(zhp->zpool_config,
1436 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1437 if (pool_guid == import->guid)
1438 found = 1;
1441 zpool_close(zhp);
1442 return (found);
1445 nvlist_t *
1446 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1448 verify(import->poolname == NULL || import->guid == 0);
1450 if (import->unique)
1451 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1453 if (import->cachefile != NULL)
1454 return (zpool_find_import_cached(hdl, import->cachefile,
1455 import->poolname, import->guid));
1457 return (zpool_find_import_impl(hdl, import));
1460 boolean_t
1461 find_guid(nvlist_t *nv, uint64_t guid)
1463 uint64_t tmp;
1464 nvlist_t **child;
1465 uint_t c, children;
1467 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1468 if (tmp == guid)
1469 return (B_TRUE);
1471 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1472 &child, &children) == 0) {
1473 for (c = 0; c < children; c++)
1474 if (find_guid(child[c], guid))
1475 return (B_TRUE);
1478 return (B_FALSE);
1481 typedef struct aux_cbdata {
1482 const char *cb_type;
1483 uint64_t cb_guid;
1484 zpool_handle_t *cb_zhp;
1485 } aux_cbdata_t;
1487 static int
1488 find_aux(zpool_handle_t *zhp, void *data)
1490 aux_cbdata_t *cbp = data;
1491 nvlist_t **list;
1492 uint_t i, count;
1493 uint64_t guid;
1494 nvlist_t *nvroot;
1496 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1497 &nvroot) == 0);
1499 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1500 &list, &count) == 0) {
1501 for (i = 0; i < count; i++) {
1502 verify(nvlist_lookup_uint64(list[i],
1503 ZPOOL_CONFIG_GUID, &guid) == 0);
1504 if (guid == cbp->cb_guid) {
1505 cbp->cb_zhp = zhp;
1506 return (1);
1511 zpool_close(zhp);
1512 return (0);
1516 * Determines if the pool is in use. If so, it returns true and the state of
1517 * the pool as well as the name of the pool. Both strings are allocated and
1518 * must be freed by the caller.
1521 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1522 boolean_t *inuse)
1524 nvlist_t *config;
1525 char *name;
1526 boolean_t ret;
1527 uint64_t guid, vdev_guid;
1528 zpool_handle_t *zhp;
1529 nvlist_t *pool_config;
1530 uint64_t stateval, isspare;
1531 aux_cbdata_t cb = { 0 };
1532 boolean_t isactive;
1534 *inuse = B_FALSE;
1536 if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1537 (void) no_memory(hdl);
1538 return (-1);
1541 if (config == NULL)
1542 return (0);
1544 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1545 &stateval) == 0);
1546 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1547 &vdev_guid) == 0);
1549 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1550 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1551 &name) == 0);
1552 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1553 &guid) == 0);
1556 switch (stateval) {
1557 case POOL_STATE_EXPORTED:
1559 * A pool with an exported state may in fact be imported
1560 * read-only, so check the in-core state to see if it's
1561 * active and imported read-only. If it is, set
1562 * its state to active.
1564 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1565 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1566 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1567 stateval = POOL_STATE_ACTIVE;
1570 * All we needed the zpool handle for is the
1571 * readonly prop check.
1573 zpool_close(zhp);
1576 ret = B_TRUE;
1577 break;
1579 case POOL_STATE_ACTIVE:
1581 * For an active pool, we have to determine if it's really part
1582 * of a currently active pool (in which case the pool will exist
1583 * and the guid will be the same), or whether it's part of an
1584 * active pool that was disconnected without being explicitly
1585 * exported.
1587 if (pool_active(hdl, name, guid, &isactive) != 0) {
1588 nvlist_free(config);
1589 return (-1);
1592 if (isactive) {
1594 * Because the device may have been removed while
1595 * offlined, we only report it as active if the vdev is
1596 * still present in the config. Otherwise, pretend like
1597 * it's not in use.
1599 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1600 (pool_config = zpool_get_config(zhp, NULL))
1601 != NULL) {
1602 nvlist_t *nvroot;
1604 verify(nvlist_lookup_nvlist(pool_config,
1605 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1606 ret = find_guid(nvroot, vdev_guid);
1607 } else {
1608 ret = B_FALSE;
1612 * If this is an active spare within another pool, we
1613 * treat it like an unused hot spare. This allows the
1614 * user to create a pool with a hot spare that currently
1615 * in use within another pool. Since we return B_TRUE,
1616 * libdiskmgt will continue to prevent generic consumers
1617 * from using the device.
1619 if (ret && nvlist_lookup_uint64(config,
1620 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1621 stateval = POOL_STATE_SPARE;
1623 if (zhp != NULL)
1624 zpool_close(zhp);
1625 } else {
1626 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1627 ret = B_TRUE;
1629 break;
1631 case POOL_STATE_SPARE:
1633 * For a hot spare, it can be either definitively in use, or
1634 * potentially active. To determine if it's in use, we iterate
1635 * over all pools in the system and search for one with a spare
1636 * with a matching guid.
1638 * Due to the shared nature of spares, we don't actually report
1639 * the potentially active case as in use. This means the user
1640 * can freely create pools on the hot spares of exported pools,
1641 * but to do otherwise makes the resulting code complicated, and
1642 * we end up having to deal with this case anyway.
1644 cb.cb_zhp = NULL;
1645 cb.cb_guid = vdev_guid;
1646 cb.cb_type = ZPOOL_CONFIG_SPARES;
1647 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1648 name = (char *)zpool_get_name(cb.cb_zhp);
1649 ret = B_TRUE;
1650 } else {
1651 ret = B_FALSE;
1653 break;
1655 case POOL_STATE_L2CACHE:
1658 * Check if any pool is currently using this l2cache device.
1660 cb.cb_zhp = NULL;
1661 cb.cb_guid = vdev_guid;
1662 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1663 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1664 name = (char *)zpool_get_name(cb.cb_zhp);
1665 ret = B_TRUE;
1666 } else {
1667 ret = B_FALSE;
1669 break;
1671 default:
1672 ret = B_FALSE;
1676 if (ret) {
1677 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1678 if (cb.cb_zhp)
1679 zpool_close(cb.cb_zhp);
1680 nvlist_free(config);
1681 return (-1);
1683 *state = (pool_state_t)stateval;
1686 if (cb.cb_zhp)
1687 zpool_close(cb.cb_zhp);
1689 nvlist_free(config);
1690 *inuse = ret;
1691 return (0);