Merge commit 'b1e7e97d3b60469b243b3b2e22c7d8cbd11c7c90'
[unleashed.git] / kernel / fs / zfs / sys / dmu.h
blob6dad071e1ecb69098b8a58575d32f4f6adf9b86a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2014 Integros [integros.com]
34 /* Portions Copyright 2010 Robert Milkowski */
36 #ifndef _SYS_DMU_H
37 #define _SYS_DMU_H
40 * This file describes the interface that the DMU provides for its
41 * consumers.
43 * The DMU also interacts with the SPA. That interface is described in
44 * dmu_spa.h.
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_compress.h>
52 #include <sys/zio_priority.h>
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
58 struct uio;
59 struct xuio;
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
84 typedef enum dmu_object_byteswap {
85 DMU_BSWAP_UINT8,
86 DMU_BSWAP_UINT16,
87 DMU_BSWAP_UINT32,
88 DMU_BSWAP_UINT64,
89 DMU_BSWAP_ZAP,
90 DMU_BSWAP_DNODE,
91 DMU_BSWAP_OBJSET,
92 DMU_BSWAP_ZNODE,
93 DMU_BSWAP_OLDACL,
94 DMU_BSWAP_ACL,
96 * Allocating a new byteswap type number makes the on-disk format
97 * incompatible with any other format that uses the same number.
99 * Data can usually be structured to work with one of the
100 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
102 DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
105 #define DMU_OT_NEWTYPE 0x80
106 #define DMU_OT_METADATA 0x40
107 #define DMU_OT_BYTESWAP_MASK 0x3f
110 * Defines a uint8_t object type. Object types specify if the data
111 * in the object is metadata (boolean) and how to byteswap the data
112 * (dmu_object_byteswap_t). All of the types created by this method
113 * are cached in the dbuf metadata cache.
115 #define DMU_OT(byteswap, metadata) \
116 (DMU_OT_NEWTYPE | \
117 ((metadata) ? DMU_OT_METADATA : 0) | \
118 ((byteswap) & DMU_OT_BYTESWAP_MASK))
120 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
121 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
122 (ot) < DMU_OT_NUMTYPES)
124 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
125 ((ot) & DMU_OT_METADATA) : \
126 dmu_ot[(ot)].ot_metadata)
128 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
129 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
132 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
133 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
134 * is repurposed for embedded BPs.
136 #define DMU_OT_HAS_FILL(ot) \
137 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
139 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
140 ((ot) & DMU_OT_BYTESWAP_MASK) : \
141 dmu_ot[(ot)].ot_byteswap)
143 typedef enum dmu_object_type {
144 DMU_OT_NONE,
145 /* general: */
146 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
147 DMU_OT_OBJECT_ARRAY, /* UINT64 */
148 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
149 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
150 DMU_OT_BPOBJ, /* UINT64 */
151 DMU_OT_BPOBJ_HDR, /* UINT64 */
152 /* spa: */
153 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
154 DMU_OT_SPACE_MAP, /* UINT64 */
155 /* zil: */
156 DMU_OT_INTENT_LOG, /* UINT64 */
157 /* dmu: */
158 DMU_OT_DNODE, /* DNODE */
159 DMU_OT_OBJSET, /* OBJSET */
160 /* dsl: */
161 DMU_OT_DSL_DIR, /* UINT64 */
162 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
163 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
164 DMU_OT_DSL_PROPS, /* ZAP */
165 DMU_OT_DSL_DATASET, /* UINT64 */
166 /* zpl: */
167 DMU_OT_ZNODE, /* ZNODE */
168 DMU_OT_OLDACL, /* Old ACL */
169 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
170 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
171 DMU_OT_MASTER_NODE, /* ZAP */
172 DMU_OT_UNLINKED_SET, /* ZAP */
173 /* zvol: */
174 DMU_OT_ZVOL, /* UINT8 */
175 DMU_OT_ZVOL_PROP, /* ZAP */
176 /* other; for testing only! */
177 DMU_OT_PLAIN_OTHER, /* UINT8 */
178 DMU_OT_UINT64_OTHER, /* UINT64 */
179 DMU_OT_ZAP_OTHER, /* ZAP */
180 /* new object types: */
181 DMU_OT_ERROR_LOG, /* ZAP */
182 DMU_OT_SPA_HISTORY, /* UINT8 */
183 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
184 DMU_OT_POOL_PROPS, /* ZAP */
185 DMU_OT_DSL_PERMS, /* ZAP */
186 DMU_OT_ACL, /* ACL */
187 DMU_OT_SYSACL, /* SYSACL */
188 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
189 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
190 DMU_OT_NEXT_CLONES, /* ZAP */
191 DMU_OT_SCAN_QUEUE, /* ZAP */
192 DMU_OT_USERGROUP_USED, /* ZAP */
193 DMU_OT_USERGROUP_QUOTA, /* ZAP */
194 DMU_OT_USERREFS, /* ZAP */
195 DMU_OT_DDT_ZAP, /* ZAP */
196 DMU_OT_DDT_STATS, /* ZAP */
197 DMU_OT_SA, /* System attr */
198 DMU_OT_SA_MASTER_NODE, /* ZAP */
199 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
200 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
201 DMU_OT_SCAN_XLATE, /* ZAP */
202 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
203 DMU_OT_DEADLIST, /* ZAP */
204 DMU_OT_DEADLIST_HDR, /* UINT64 */
205 DMU_OT_DSL_CLONES, /* ZAP */
206 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
208 * Do not allocate new object types here. Doing so makes the on-disk
209 * format incompatible with any other format that uses the same object
210 * type number.
212 * When creating an object which does not have one of the above types
213 * use the DMU_OTN_* type with the correct byteswap and metadata
214 * values.
216 * The DMU_OTN_* types do not have entries in the dmu_ot table,
217 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
218 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
219 * and DMU_OTN_* types).
221 DMU_OT_NUMTYPES,
224 * Names for valid types declared with DMU_OT().
226 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
227 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
228 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
229 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
230 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
231 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
232 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
233 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
234 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
235 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
236 } dmu_object_type_t;
239 * These flags are intended to be used to specify the "txg_how"
240 * parameter when calling the dmu_tx_assign() function. See the comment
241 * above dmu_tx_assign() for more details on the meaning of these flags.
243 #define TXG_NOWAIT (0ULL)
244 #define TXG_WAIT (1ULL<<0)
245 #define TXG_NOTHROTTLE (1ULL<<1)
247 void byteswap_uint64_array(void *buf, size_t size);
248 void byteswap_uint32_array(void *buf, size_t size);
249 void byteswap_uint16_array(void *buf, size_t size);
250 void byteswap_uint8_array(void *buf, size_t size);
251 void zap_byteswap(void *buf, size_t size);
252 void zfs_oldacl_byteswap(void *buf, size_t size);
253 void zfs_acl_byteswap(void *buf, size_t size);
254 void zfs_znode_byteswap(void *buf, size_t size);
256 #define DS_FIND_SNAPSHOTS (1<<0)
257 #define DS_FIND_CHILDREN (1<<1)
258 #define DS_FIND_SERIALIZE (1<<2)
261 * The maximum number of bytes that can be accessed as part of one
262 * operation, including metadata.
264 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
265 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
267 #define DMU_USERUSED_OBJECT (-1ULL)
268 #define DMU_GROUPUSED_OBJECT (-2ULL)
271 * artificial blkids for bonus buffer and spill blocks
273 #define DMU_BONUS_BLKID (-1ULL)
274 #define DMU_SPILL_BLKID (-2ULL)
276 * Public routines to create, destroy, open, and close objsets.
278 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
279 int dmu_objset_own(const char *name, dmu_objset_type_t type,
280 boolean_t readonly, void *tag, objset_t **osp);
281 void dmu_objset_rele(objset_t *os, void *tag);
282 void dmu_objset_disown(objset_t *os, void *tag);
283 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
285 void dmu_objset_evict_dbufs(objset_t *os);
286 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
287 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
288 int dmu_objset_clone(const char *name, const char *origin);
289 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
290 struct nvlist *errlist);
291 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
292 int dmu_objset_snapshot_tmp(const char *, const char *, int);
293 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
294 int flags);
295 void dmu_objset_byteswap(void *buf, size_t size);
296 int dsl_dataset_rename_snapshot(const char *fsname,
297 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
298 int dmu_objset_remap_indirects(const char *fsname);
300 typedef struct dmu_buf {
301 uint64_t db_object; /* object that this buffer is part of */
302 uint64_t db_offset; /* byte offset in this object */
303 uint64_t db_size; /* size of buffer in bytes */
304 void *db_data; /* data in buffer */
305 } dmu_buf_t;
308 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
310 #define DMU_POOL_DIRECTORY_OBJECT 1
311 #define DMU_POOL_CONFIG "config"
312 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
313 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
314 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
315 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
316 #define DMU_POOL_ROOT_DATASET "root_dataset"
317 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
318 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
319 #define DMU_POOL_ERRLOG_LAST "errlog_last"
320 #define DMU_POOL_SPARES "spares"
321 #define DMU_POOL_DEFLATE "deflate"
322 #define DMU_POOL_HISTORY "history"
323 #define DMU_POOL_PROPS "pool_props"
324 #define DMU_POOL_L2CACHE "l2cache"
325 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
326 #define DMU_POOL_DDT "DDT-%s-%s-%s"
327 #define DMU_POOL_DDT_STATS "DDT-statistics"
328 #define DMU_POOL_CREATION_VERSION "creation_version"
329 #define DMU_POOL_SCAN "scan"
330 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
331 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
332 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
333 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
334 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
335 #define DMU_POOL_REMOVING "com.delphix:removing"
336 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
337 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
338 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
341 * Allocate an object from this objset. The range of object numbers
342 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
344 * The transaction must be assigned to a txg. The newly allocated
345 * object will be "held" in the transaction (ie. you can modify the
346 * newly allocated object in this transaction).
348 * dmu_object_alloc() chooses an object and returns it in *objectp.
350 * dmu_object_claim() allocates a specific object number. If that
351 * number is already allocated, it fails and returns EEXIST.
353 * Return 0 on success, or ENOSPC or EEXIST as specified above.
355 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
356 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
357 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
358 int indirect_blockshift,
359 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
360 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
361 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
362 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
363 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
366 * Free an object from this objset.
368 * The object's data will be freed as well (ie. you don't need to call
369 * dmu_free(object, 0, -1, tx)).
371 * The object need not be held in the transaction.
373 * If there are any holds on this object's buffers (via dmu_buf_hold()),
374 * or tx holds on the object (via dmu_tx_hold_object()), you can not
375 * free it; it fails and returns EBUSY.
377 * If the object is not allocated, it fails and returns ENOENT.
379 * Return 0 on success, or EBUSY or ENOENT as specified above.
381 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
384 * Find the next allocated or free object.
386 * The objectp parameter is in-out. It will be updated to be the next
387 * object which is allocated. Ignore objects which have not been
388 * modified since txg.
390 * XXX Can only be called on a objset with no dirty data.
392 * Returns 0 on success, or ENOENT if there are no more objects.
394 int dmu_object_next(objset_t *os, uint64_t *objectp,
395 boolean_t hole, uint64_t txg);
398 * Set the data blocksize for an object.
400 * The object cannot have any blocks allcated beyond the first. If
401 * the first block is allocated already, the new size must be greater
402 * than the current block size. If these conditions are not met,
403 * ENOTSUP will be returned.
405 * Returns 0 on success, or EBUSY if there are any holds on the object
406 * contents, or ENOTSUP as described above.
408 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
409 int ibs, dmu_tx_t *tx);
412 * Set the checksum property on a dnode. The new checksum algorithm will
413 * apply to all newly written blocks; existing blocks will not be affected.
415 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
416 dmu_tx_t *tx);
419 * Set the compress property on a dnode. The new compression algorithm will
420 * apply to all newly written blocks; existing blocks will not be affected.
422 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
423 dmu_tx_t *tx);
425 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
427 void
428 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
429 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
430 int compressed_size, int byteorder, dmu_tx_t *tx);
433 * Decide how to write a block: checksum, compression, number of copies, etc.
435 #define WP_NOFILL 0x1
436 #define WP_DMU_SYNC 0x2
437 #define WP_SPILL 0x4
439 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
440 struct zio_prop *zp);
442 * The bonus data is accessed more or less like a regular buffer.
443 * You must dmu_bonus_hold() to get the buffer, which will give you a
444 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
445 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
446 * before modifying it, and the
447 * object must be held in an assigned transaction before calling
448 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
449 * buffer as well. You must release your hold with dmu_buf_rele().
451 * Returns ENOENT, EIO, or 0.
453 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
454 int dmu_bonus_max(void);
455 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
456 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
457 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
458 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
461 * Special spill buffer support used by "SA" framework
464 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
465 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
466 void *tag, dmu_buf_t **dbp);
467 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
470 * Obtain the DMU buffer from the specified object which contains the
471 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
472 * that it will remain in memory. You must release the hold with
473 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your
474 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
476 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
477 * on the returned buffer before reading or writing the buffer's
478 * db_data. The comments for those routines describe what particular
479 * operations are valid after calling them.
481 * The object number must be a valid, allocated object number.
483 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
484 void *tag, dmu_buf_t **, int flags);
485 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
486 void *tag, dmu_buf_t **dbp, int flags);
489 * Add a reference to a dmu buffer that has already been held via
490 * dmu_buf_hold() in the current context.
492 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
495 * Attempt to add a reference to a dmu buffer that is in an unknown state,
496 * using a pointer that may have been invalidated by eviction processing.
497 * The request will succeed if the passed in dbuf still represents the
498 * same os/object/blkid, is ineligible for eviction, and has at least
499 * one hold by a user other than the syncer.
501 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
502 uint64_t blkid, void *tag);
504 void dmu_buf_rele(dmu_buf_t *db, void *tag);
505 uint64_t dmu_buf_refcount(dmu_buf_t *db);
508 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
509 * range of an object. A pointer to an array of dmu_buf_t*'s is
510 * returned (in *dbpp).
512 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
513 * frees the array. The hold on the array of buffers MUST be released
514 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
515 * individually with dmu_buf_rele.
517 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
518 uint64_t length, boolean_t read, void *tag,
519 int *numbufsp, dmu_buf_t ***dbpp);
520 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
521 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
522 uint32_t flags);
523 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
525 typedef void dmu_buf_evict_func_t(void *user_ptr);
528 * A DMU buffer user object may be associated with a dbuf for the
529 * duration of its lifetime. This allows the user of a dbuf (client)
530 * to attach private data to a dbuf (e.g. in-core only data such as a
531 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
532 * when that dbuf has been evicted. Clients typically respond to the
533 * eviction notification by freeing their private data, thus ensuring
534 * the same lifetime for both dbuf and private data.
536 * The mapping from a dmu_buf_user_t to any client private data is the
537 * client's responsibility. All current consumers of the API with private
538 * data embed a dmu_buf_user_t as the first member of the structure for
539 * their private data. This allows conversions between the two types
540 * with a simple cast. Since the DMU buf user API never needs access
541 * to the private data, other strategies can be employed if necessary
542 * or convenient for the client (e.g. using __containerof() to do the
543 * conversion for private data that cannot have the dmu_buf_user_t as
544 * its first member).
546 * Eviction callbacks are executed without the dbuf mutex held or any
547 * other type of mechanism to guarantee that the dbuf is still available.
548 * For this reason, users must assume the dbuf has already been freed
549 * and not reference the dbuf from the callback context.
551 * Users requesting "immediate eviction" are notified as soon as the dbuf
552 * is only referenced by dirty records (dirties == holds). Otherwise the
553 * notification occurs after eviction processing for the dbuf begins.
555 typedef struct dmu_buf_user {
557 * Asynchronous user eviction callback state.
559 taskq_ent_t dbu_tqent;
562 * This instance's eviction function pointers.
564 * dbu_evict_func_sync is called synchronously and then
565 * dbu_evict_func_async is executed asynchronously on a taskq.
567 dmu_buf_evict_func_t *dbu_evict_func_sync;
568 dmu_buf_evict_func_t *dbu_evict_func_async;
569 #ifdef ZFS_DEBUG
571 * Pointer to user's dbuf pointer. NULL for clients that do
572 * not associate a dbuf with their user data.
574 * The dbuf pointer is cleared upon eviction so as to catch
575 * use-after-evict bugs in clients.
577 dmu_buf_t **dbu_clear_on_evict_dbufp;
578 #endif
579 } dmu_buf_user_t;
582 * Initialize the given dmu_buf_user_t instance with the eviction function
583 * evict_func, to be called when the user is evicted.
585 * NOTE: This function should only be called once on a given dmu_buf_user_t.
586 * To allow enforcement of this, dbu must already be zeroed on entry.
588 inline void
589 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
590 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
592 ASSERT(dbu->dbu_evict_func_sync == NULL);
593 ASSERT(dbu->dbu_evict_func_async == NULL);
595 /* must have at least one evict func */
596 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
597 dbu->dbu_evict_func_sync = evict_func_sync;
598 dbu->dbu_evict_func_async = evict_func_async;
599 #ifdef ZFS_DEBUG
600 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
601 #endif
605 * Attach user data to a dbuf and mark it for normal (when the dbuf's
606 * data is cleared or its reference count goes to zero) eviction processing.
608 * Returns NULL on success, or the existing user if another user currently
609 * owns the buffer.
611 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
614 * Attach user data to a dbuf and mark it for immediate (its dirty and
615 * reference counts are equal) eviction processing.
617 * Returns NULL on success, or the existing user if another user currently
618 * owns the buffer.
620 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
623 * Replace the current user of a dbuf.
625 * If given the current user of a dbuf, replaces the dbuf's user with
626 * "new_user" and returns the user data pointer that was replaced.
627 * Otherwise returns the current, and unmodified, dbuf user pointer.
629 void *dmu_buf_replace_user(dmu_buf_t *db,
630 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
633 * Remove the specified user data for a DMU buffer.
635 * Returns the user that was removed on success, or the current user if
636 * another user currently owns the buffer.
638 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
641 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
643 void *dmu_buf_get_user(dmu_buf_t *db);
645 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
646 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
647 void dmu_buf_dnode_exit(dmu_buf_t *db);
649 /* Block until any in-progress dmu buf user evictions complete. */
650 void dmu_buf_user_evict_wait(void);
653 * Returns the blkptr associated with this dbuf, or NULL if not set.
655 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
658 * Indicate that you are going to modify the buffer's data (db_data).
660 * The transaction (tx) must be assigned to a txg (ie. you've called
661 * dmu_tx_assign()). The buffer's object must be held in the tx
662 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
664 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
667 * You must create a transaction, then hold the objects which you will
668 * (or might) modify as part of this transaction. Then you must assign
669 * the transaction to a transaction group. Once the transaction has
670 * been assigned, you can modify buffers which belong to held objects as
671 * part of this transaction. You can't modify buffers before the
672 * transaction has been assigned; you can't modify buffers which don't
673 * belong to objects which this transaction holds; you can't hold
674 * objects once the transaction has been assigned. You may hold an
675 * object which you are going to free (with dmu_object_free()), but you
676 * don't have to.
678 * You can abort the transaction before it has been assigned.
680 * Note that you may hold buffers (with dmu_buf_hold) at any time,
681 * regardless of transaction state.
684 #define DMU_NEW_OBJECT (-1ULL)
685 #define DMU_OBJECT_END (-1ULL)
687 dmu_tx_t *dmu_tx_create(objset_t *os);
688 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
689 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
690 int len);
691 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
692 uint64_t len);
693 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
694 uint64_t len);
695 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
696 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
697 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
698 const char *name);
699 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
700 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
701 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
702 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
703 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
704 void dmu_tx_abort(dmu_tx_t *tx);
705 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
706 void dmu_tx_wait(dmu_tx_t *tx);
707 void dmu_tx_commit(dmu_tx_t *tx);
708 void dmu_tx_mark_netfree(dmu_tx_t *tx);
711 * To register a commit callback, dmu_tx_callback_register() must be called.
713 * dcb_data is a pointer to caller private data that is passed on as a
714 * callback parameter. The caller is responsible for properly allocating and
715 * freeing it.
717 * When registering a callback, the transaction must be already created, but
718 * it cannot be committed or aborted. It can be assigned to a txg or not.
720 * The callback will be called after the transaction has been safely written
721 * to stable storage and will also be called if the dmu_tx is aborted.
722 * If there is any error which prevents the transaction from being committed to
723 * disk, the callback will be called with a value of error != 0.
725 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
727 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
728 void *dcb_data);
731 * Free up the data blocks for a defined range of a file. If size is
732 * -1, the range from offset to end-of-file is freed.
734 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
735 uint64_t size, dmu_tx_t *tx);
736 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
737 uint64_t size);
738 int dmu_free_long_object(objset_t *os, uint64_t object);
741 * Convenience functions.
743 * Canfail routines will return 0 on success, or an errno if there is a
744 * nonrecoverable I/O error.
746 #define DMU_READ_PREFETCH 0 /* prefetch */
747 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
748 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
749 void *buf, uint32_t flags);
750 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
751 uint32_t flags);
752 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
753 const void *buf, dmu_tx_t *tx);
754 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
755 const void *buf, dmu_tx_t *tx);
756 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
757 dmu_tx_t *tx);
758 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
759 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
760 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
761 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
762 dmu_tx_t *tx);
763 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
764 dmu_tx_t *tx);
765 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
766 dmu_tx_t *tx);
767 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
768 uint64_t size, struct page *pp, dmu_tx_t *tx);
769 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
770 void dmu_return_arcbuf(struct arc_buf *buf);
771 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset,
772 struct arc_buf *buf, dmu_tx_t *tx);
773 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
774 dmu_tx_t *tx);
775 int dmu_xuio_init(struct xuio *uio, int niov);
776 void dmu_xuio_fini(struct xuio *uio);
777 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
778 size_t n);
779 int dmu_xuio_cnt(struct xuio *uio);
780 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
781 void dmu_xuio_clear(struct xuio *uio, int i);
782 void xuio_stat_wbuf_copied(void);
783 void xuio_stat_wbuf_nocopy(void);
785 extern boolean_t zfs_prefetch_disable;
786 extern int zfs_max_recordsize;
789 * Asynchronously try to read in the data.
791 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
792 uint64_t len, enum zio_priority pri);
794 typedef struct dmu_object_info {
795 /* All sizes are in bytes unless otherwise indicated. */
796 uint32_t doi_data_block_size;
797 uint32_t doi_metadata_block_size;
798 dmu_object_type_t doi_type;
799 dmu_object_type_t doi_bonus_type;
800 uint64_t doi_bonus_size;
801 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
802 uint8_t doi_checksum;
803 uint8_t doi_compress;
804 uint8_t doi_nblkptr;
805 uint8_t doi_pad[4];
806 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
807 uint64_t doi_max_offset;
808 uint64_t doi_fill_count; /* number of non-empty blocks */
809 } dmu_object_info_t;
811 typedef void arc_byteswap_func_t(void *buf, size_t size);
813 typedef struct dmu_object_type_info {
814 dmu_object_byteswap_t ot_byteswap;
815 boolean_t ot_metadata;
816 boolean_t ot_dbuf_metadata_cache;
817 char *ot_name;
818 } dmu_object_type_info_t;
820 typedef struct dmu_object_byteswap_info {
821 arc_byteswap_func_t *ob_func;
822 char *ob_name;
823 } dmu_object_byteswap_info_t;
825 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
826 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
829 * Get information on a DMU object.
831 * Return 0 on success or ENOENT if object is not allocated.
833 * If doi is NULL, just indicates whether the object exists.
835 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
836 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
837 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
838 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
839 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
841 * Like dmu_object_info_from_db, but faster still when you only care about
842 * the size. This is specifically optimized for zfs_getattr().
844 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
845 u_longlong_t *nblk512);
847 typedef struct dmu_objset_stats {
848 uint64_t dds_num_clones; /* number of clones of this */
849 uint64_t dds_creation_txg;
850 uint64_t dds_guid;
851 dmu_objset_type_t dds_type;
852 uint8_t dds_is_snapshot;
853 uint8_t dds_inconsistent;
854 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
855 } dmu_objset_stats_t;
858 * Get stats on a dataset.
860 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
863 * Add entries to the nvlist for all the objset's properties. See
864 * zfs_prop_table[] and zfs(1m) for details on the properties.
866 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
869 * Get the space usage statistics for statvfs().
871 * refdbytes is the amount of space "referenced" by this objset.
872 * availbytes is the amount of space available to this objset, taking
873 * into account quotas & reservations, assuming that no other objsets
874 * use the space first. These values correspond to the 'referenced' and
875 * 'available' properties, described in the zfs(1m) manpage.
877 * usedobjs and availobjs are the number of objects currently allocated,
878 * and available.
880 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
881 uint64_t *usedobjsp, uint64_t *availobjsp);
884 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
885 * (Contrast with the ds_guid which is a 64-bit ID that will never
886 * change, so there is a small probability that it will collide.)
888 uint64_t dmu_objset_fsid_guid(objset_t *os);
891 * Get the [cm]time for an objset's snapshot dir
893 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
895 int dmu_objset_is_snapshot(objset_t *os);
897 extern struct spa *dmu_objset_spa(objset_t *os);
898 extern struct zilog *dmu_objset_zil(objset_t *os);
899 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
900 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
901 extern void dmu_objset_name(objset_t *os, char *buf);
902 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
903 extern uint64_t dmu_objset_id(objset_t *os);
904 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
905 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
906 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
907 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
908 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
909 int maxlen, boolean_t *conflict);
910 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
911 uint64_t *idp, uint64_t *offp);
913 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
914 void *bonus, uint64_t *userp, uint64_t *groupp);
915 extern void dmu_objset_register_type(dmu_objset_type_t ost,
916 objset_used_cb_t *cb);
917 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
918 extern void *dmu_objset_get_user(objset_t *os);
921 * Return the txg number for the given assigned transaction.
923 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
926 * Synchronous write.
927 * If a parent zio is provided this function initiates a write on the
928 * provided buffer as a child of the parent zio.
929 * In the absence of a parent zio, the write is completed synchronously.
930 * At write completion, blk is filled with the bp of the written block.
931 * Note that while the data covered by this function will be on stable
932 * storage when the write completes this new data does not become a
933 * permanent part of the file until the associated transaction commits.
937 * {zfs,zvol,ztest}_get_done() args
939 typedef struct zgd {
940 struct lwb *zgd_lwb;
941 struct blkptr *zgd_bp;
942 dmu_buf_t *zgd_db;
943 struct rl *zgd_rl;
944 void *zgd_private;
945 } zgd_t;
947 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
948 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
951 * Find the next hole or data block in file starting at *off
952 * Return found offset in *off. Return ESRCH for end of file.
954 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
955 uint64_t *off);
958 * Check if a DMU object has any dirty blocks. If so, sync out
959 * all pending transaction groups. Otherwise, this function
960 * does not alter DMU state. This could be improved to only sync
961 * out the necessary transaction groups for this particular
962 * object.
964 int dmu_object_wait_synced(objset_t *os, uint64_t object);
967 * Initial setup and final teardown.
969 extern void dmu_init(void);
970 extern void dmu_fini(void);
972 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
973 uint64_t object, uint64_t offset, int len);
974 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
975 dmu_traverse_cb_t cb, void *arg);
977 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
978 struct vnode *vp, offset_t *offp);
980 /* CRC64 table */
981 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
982 extern uint64_t zfs_crc64_table[256];
984 extern int zfs_mdcomp_disable;
986 #ifdef __cplusplus
988 #endif
990 #endif /* _SYS_DMU_H */