7377 want mechanism to override physical block size of NVMe devices
[unleashed.git] / usr / src / uts / common / io / nvme / nvme.c
blobaaa3b5fb7307666a3c75a6d54c24f7a16e29d9c6
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
19 * blkdev driver for NVMe compliant storage devices
21 * This driver was written to conform to version 1.0e of the NVMe specification.
22 * It may work with newer versions, but that is completely untested and disabled
23 * by default.
25 * The driver has only been tested on x86 systems and will not work on big-
26 * endian systems without changes to the code accessing registers and data
27 * structures used by the hardware.
30 * Interrupt Usage:
32 * The driver will use a FIXED interrupt while configuring the device as the
33 * specification requires. Later in the attach process it will switch to MSI-X
34 * or MSI if supported. The driver wants to have one interrupt vector per CPU,
35 * but it will work correctly if less are available. Interrupts can be shared
36 * by queues, the interrupt handler will iterate through the I/O queue array by
37 * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
38 * with one I/O queue. The interrupt handler will retrieve completed commands
39 * from all queues sharing an interrupt vector and will post them to a taskq
40 * for completion processing.
43 * Command Processing:
45 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
46 * to 65536 I/O commands. The driver will configure one I/O queue pair per
47 * available interrupt vector, with the queue length usually much smaller than
48 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
49 * interrupt vectors will be used.
51 * Additionally the hardware provides a single special admin queue pair that can
52 * hold up to 4096 admin commands.
54 * From the hardware perspective both queues of a queue pair are independent,
55 * but they share some driver state: the command array (holding pointers to
56 * commands currently being processed by the hardware) and the active command
57 * counter. Access to the submission side of a queue pair and the shared state
58 * is protected by nq_mutex. The completion side of a queue pair does not need
59 * that protection apart from its access to the shared state; it is called only
60 * in the interrupt handler which does not run concurrently for the same
61 * interrupt vector.
63 * When a command is submitted to a queue pair the active command counter is
64 * incremented and a pointer to the command is stored in the command array. The
65 * array index is used as command identifier (CID) in the submission queue
66 * entry. Some commands may take a very long time to complete, and if the queue
67 * wraps around in that time a submission may find the next array slot to still
68 * be used by a long-running command. In this case the array is sequentially
69 * searched for the next free slot. The length of the command array is the same
70 * as the configured queue length.
73 * Namespace Support:
75 * NVMe devices can have multiple namespaces, each being a independent data
76 * store. The driver supports multiple namespaces and creates a blkdev interface
77 * for each namespace found. Namespaces can have various attributes to support
78 * thin provisioning and protection information. This driver does not support
79 * any of this and ignores namespaces that have these attributes.
82 * Blkdev Interface:
84 * This driver uses blkdev to do all the heavy lifting involved with presenting
85 * a disk device to the system. As a result, the processing of I/O requests is
86 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
87 * setup, and splitting of transfers into manageable chunks.
89 * I/O requests coming in from blkdev are turned into NVM commands and posted to
90 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
91 * queues. There is currently no timeout handling of I/O commands.
93 * Blkdev also supports querying device/media information and generating a
94 * devid. The driver reports the best block size as determined by the namespace
95 * format back to blkdev as physical block size to support partition and block
96 * alignment. The devid is composed using the device vendor ID, model number,
97 * serial number, and the namespace ID.
100 * Error Handling:
102 * Error handling is currently limited to detecting fatal hardware errors,
103 * either by asynchronous events, or synchronously through command status or
104 * admin command timeouts. In case of severe errors the device is fenced off,
105 * all further requests will return EIO. FMA is then called to fault the device.
107 * The hardware has a limit for outstanding asynchronous event requests. Before
108 * this limit is known the driver assumes it is at least 1 and posts a single
109 * asynchronous request. Later when the limit is known more asynchronous event
110 * requests are posted to allow quicker reception of error information. When an
111 * asynchronous event is posted by the hardware the driver will parse the error
112 * status fields and log information or fault the device, depending on the
113 * severity of the asynchronous event. The asynchronous event request is then
114 * reused and posted to the admin queue again.
116 * On command completion the command status is checked for errors. In case of
117 * errors indicating a driver bug the driver panics. Almost all other error
118 * status values just cause EIO to be returned.
120 * Command timeouts are currently detected for all admin commands except
121 * asynchronous event requests. If a command times out and the hardware appears
122 * to be healthy the driver attempts to abort the command. If this fails the
123 * driver assumes the device to be dead, fences it off, and calls FMA to retire
124 * it. In general admin commands are issued at attach time only. No timeout
125 * handling of normal I/O commands is presently done.
127 * In some cases it may be possible that the ABORT command times out, too. In
128 * that case the device is also declared dead and fenced off.
131 * Quiesce / Fast Reboot:
133 * The driver currently does not support fast reboot. A quiesce(9E) entry point
134 * is still provided which is used to send a shutdown notification to the
135 * device.
138 * Driver Configuration:
140 * The following driver properties can be changed to control some aspects of the
141 * drivers operation:
142 * - strict-version: can be set to 0 to allow devices conforming to newer
143 * versions to be used
144 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
145 * specific command status as a fatal error leading device faulting
146 * - admin-queue-len: the maximum length of the admin queue (16-4096)
147 * - io-queue-len: the maximum length of the I/O queues (16-65536)
148 * - async-event-limit: the maximum number of asynchronous event requests to be
149 * posted by the driver
150 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
151 * cache
152 * - min-phys-block-size: the minimum physical block size to report to blkdev,
153 * which is among other things the basis for ZFS vdev ashift
156 * TODO:
157 * - figure out sane default for I/O queue depth reported to blkdev
158 * - polled I/O support to support kernel core dumping
159 * - FMA handling of media errors
160 * - support for devices supporting very large I/O requests using chained PRPs
161 * - support for querying log pages from user space
162 * - support for configuring hardware parameters like interrupt coalescing
163 * - support for media formatting and hard partitioning into namespaces
164 * - support for big-endian systems
165 * - support for fast reboot
168 #include <sys/byteorder.h>
169 #ifdef _BIG_ENDIAN
170 #error nvme driver needs porting for big-endian platforms
171 #endif
173 #include <sys/modctl.h>
174 #include <sys/conf.h>
175 #include <sys/devops.h>
176 #include <sys/ddi.h>
177 #include <sys/sunddi.h>
178 #include <sys/bitmap.h>
179 #include <sys/sysmacros.h>
180 #include <sys/param.h>
181 #include <sys/varargs.h>
182 #include <sys/cpuvar.h>
183 #include <sys/disp.h>
184 #include <sys/blkdev.h>
185 #include <sys/atomic.h>
186 #include <sys/archsystm.h>
187 #include <sys/sata/sata_hba.h>
189 #include "nvme_reg.h"
190 #include "nvme_var.h"
193 /* NVMe spec version supported */
194 static const int nvme_version_major = 1;
195 static const int nvme_version_minor = 0;
197 /* tunable for admin command timeout in seconds, default is 1s */
198 static volatile int nvme_admin_cmd_timeout = 1;
200 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
201 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
202 static int nvme_quiesce(dev_info_t *);
203 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
204 static int nvme_setup_interrupts(nvme_t *, int, int);
205 static void nvme_release_interrupts(nvme_t *);
206 static uint_t nvme_intr(caddr_t, caddr_t);
208 static void nvme_shutdown(nvme_t *, int, boolean_t);
209 static boolean_t nvme_reset(nvme_t *, boolean_t);
210 static int nvme_init(nvme_t *);
211 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
212 static void nvme_free_cmd(nvme_cmd_t *);
213 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
214 bd_xfer_t *);
215 static int nvme_admin_cmd(nvme_cmd_t *, int);
216 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
217 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
218 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
219 static void nvme_wakeup_cmd(void *);
220 static void nvme_async_event_task(void *);
222 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
223 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
224 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
225 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
226 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
227 static inline int nvme_check_cmd_status(nvme_cmd_t *);
229 static void nvme_abort_cmd(nvme_cmd_t *);
230 static int nvme_async_event(nvme_t *);
231 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
232 static void *nvme_identify(nvme_t *, uint32_t);
233 static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
234 uint32_t *);
235 static boolean_t nvme_write_cache_set(nvme_t *, boolean_t);
236 static int nvme_set_nqueues(nvme_t *, uint16_t);
238 static void nvme_free_dma(nvme_dma_t *);
239 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
240 nvme_dma_t **);
241 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
242 nvme_dma_t **);
243 static void nvme_free_qpair(nvme_qpair_t *);
244 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
245 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
247 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
248 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
249 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
250 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
252 static boolean_t nvme_check_regs_hdl(nvme_t *);
253 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
255 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
257 static void nvme_bd_xfer_done(void *);
258 static void nvme_bd_driveinfo(void *, bd_drive_t *);
259 static int nvme_bd_mediainfo(void *, bd_media_t *);
260 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
261 static int nvme_bd_read(void *, bd_xfer_t *);
262 static int nvme_bd_write(void *, bd_xfer_t *);
263 static int nvme_bd_sync(void *, bd_xfer_t *);
264 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
266 static int nvme_prp_dma_constructor(void *, void *, int);
267 static void nvme_prp_dma_destructor(void *, void *);
269 static void nvme_prepare_devid(nvme_t *, uint32_t);
271 static void *nvme_state;
272 static kmem_cache_t *nvme_cmd_cache;
275 * DMA attributes for queue DMA memory
277 * Queue DMA memory must be page aligned. The maximum length of a queue is
278 * 65536 entries, and an entry can be 64 bytes long.
280 static ddi_dma_attr_t nvme_queue_dma_attr = {
281 .dma_attr_version = DMA_ATTR_V0,
282 .dma_attr_addr_lo = 0,
283 .dma_attr_addr_hi = 0xffffffffffffffffULL,
284 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
285 .dma_attr_align = 0x1000,
286 .dma_attr_burstsizes = 0x7ff,
287 .dma_attr_minxfer = 0x1000,
288 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
289 .dma_attr_seg = 0xffffffffffffffffULL,
290 .dma_attr_sgllen = 1,
291 .dma_attr_granular = 1,
292 .dma_attr_flags = 0,
296 * DMA attributes for transfers using Physical Region Page (PRP) entries
298 * A PRP entry describes one page of DMA memory using the page size specified
299 * in the controller configuration's memory page size register (CC.MPS). It uses
300 * a 64bit base address aligned to this page size. There is no limitation on
301 * chaining PRPs together for arbitrarily large DMA transfers.
303 static ddi_dma_attr_t nvme_prp_dma_attr = {
304 .dma_attr_version = DMA_ATTR_V0,
305 .dma_attr_addr_lo = 0,
306 .dma_attr_addr_hi = 0xffffffffffffffffULL,
307 .dma_attr_count_max = 0xfff,
308 .dma_attr_align = 0x1000,
309 .dma_attr_burstsizes = 0x7ff,
310 .dma_attr_minxfer = 0x1000,
311 .dma_attr_maxxfer = 0x1000,
312 .dma_attr_seg = 0xfff,
313 .dma_attr_sgllen = -1,
314 .dma_attr_granular = 1,
315 .dma_attr_flags = 0,
319 * DMA attributes for transfers using scatter/gather lists
321 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
322 * 32bit length field. SGL Segment and SGL Last Segment entries require the
323 * length to be a multiple of 16 bytes.
325 static ddi_dma_attr_t nvme_sgl_dma_attr = {
326 .dma_attr_version = DMA_ATTR_V0,
327 .dma_attr_addr_lo = 0,
328 .dma_attr_addr_hi = 0xffffffffffffffffULL,
329 .dma_attr_count_max = 0xffffffffUL,
330 .dma_attr_align = 1,
331 .dma_attr_burstsizes = 0x7ff,
332 .dma_attr_minxfer = 0x10,
333 .dma_attr_maxxfer = 0xfffffffffULL,
334 .dma_attr_seg = 0xffffffffffffffffULL,
335 .dma_attr_sgllen = -1,
336 .dma_attr_granular = 0x10,
337 .dma_attr_flags = 0
340 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
341 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
342 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
343 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
346 static struct dev_ops nvme_dev_ops = {
347 .devo_rev = DEVO_REV,
348 .devo_refcnt = 0,
349 .devo_getinfo = ddi_no_info,
350 .devo_identify = nulldev,
351 .devo_probe = nulldev,
352 .devo_attach = nvme_attach,
353 .devo_detach = nvme_detach,
354 .devo_reset = nodev,
355 .devo_cb_ops = NULL,
356 .devo_bus_ops = NULL,
357 .devo_power = NULL,
358 .devo_quiesce = nvme_quiesce,
361 static struct modldrv nvme_modldrv = {
362 .drv_modops = &mod_driverops,
363 .drv_linkinfo = "NVMe v1.0e",
364 .drv_dev_ops = &nvme_dev_ops
367 static struct modlinkage nvme_modlinkage = {
368 .ml_rev = MODREV_1,
369 .ml_linkage = { &nvme_modldrv, NULL }
372 static bd_ops_t nvme_bd_ops = {
373 .o_version = BD_OPS_VERSION_0,
374 .o_drive_info = nvme_bd_driveinfo,
375 .o_media_info = nvme_bd_mediainfo,
376 .o_devid_init = nvme_bd_devid,
377 .o_sync_cache = nvme_bd_sync,
378 .o_read = nvme_bd_read,
379 .o_write = nvme_bd_write,
383 _init(void)
385 int error;
387 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
388 if (error != DDI_SUCCESS)
389 return (error);
391 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
392 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
394 bd_mod_init(&nvme_dev_ops);
396 error = mod_install(&nvme_modlinkage);
397 if (error != DDI_SUCCESS) {
398 ddi_soft_state_fini(&nvme_state);
399 bd_mod_fini(&nvme_dev_ops);
402 return (error);
406 _fini(void)
408 int error;
410 error = mod_remove(&nvme_modlinkage);
411 if (error == DDI_SUCCESS) {
412 ddi_soft_state_fini(&nvme_state);
413 kmem_cache_destroy(nvme_cmd_cache);
414 bd_mod_fini(&nvme_dev_ops);
417 return (error);
421 _info(struct modinfo *modinfop)
423 return (mod_info(&nvme_modlinkage, modinfop));
426 static inline void
427 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
429 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
431 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
432 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
435 static inline void
436 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
438 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
440 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
441 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
444 static inline uint64_t
445 nvme_get64(nvme_t *nvme, uintptr_t reg)
447 uint64_t val;
449 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
451 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
452 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
454 return (val);
457 static inline uint32_t
458 nvme_get32(nvme_t *nvme, uintptr_t reg)
460 uint32_t val;
462 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
464 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
465 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
467 return (val);
470 static boolean_t
471 nvme_check_regs_hdl(nvme_t *nvme)
473 ddi_fm_error_t error;
475 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
477 if (error.fme_status != DDI_FM_OK)
478 return (B_TRUE);
480 return (B_FALSE);
483 static boolean_t
484 nvme_check_dma_hdl(nvme_dma_t *dma)
486 ddi_fm_error_t error;
488 if (dma == NULL)
489 return (B_FALSE);
491 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
493 if (error.fme_status != DDI_FM_OK)
494 return (B_TRUE);
496 return (B_FALSE);
499 static void
500 nvme_free_dma_common(nvme_dma_t *dma)
502 if (dma->nd_dmah != NULL)
503 (void) ddi_dma_unbind_handle(dma->nd_dmah);
504 if (dma->nd_acch != NULL)
505 ddi_dma_mem_free(&dma->nd_acch);
506 if (dma->nd_dmah != NULL)
507 ddi_dma_free_handle(&dma->nd_dmah);
510 static void
511 nvme_free_dma(nvme_dma_t *dma)
513 nvme_free_dma_common(dma);
514 kmem_free(dma, sizeof (*dma));
517 /* ARGSUSED */
518 static void
519 nvme_prp_dma_destructor(void *buf, void *private)
521 nvme_dma_t *dma = (nvme_dma_t *)buf;
523 nvme_free_dma_common(dma);
526 static int
527 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
528 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
530 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
531 &dma->nd_dmah) != DDI_SUCCESS) {
533 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
534 * the only other possible error is DDI_DMA_BADATTR which
535 * indicates a driver bug which should cause a panic.
537 dev_err(nvme->n_dip, CE_PANIC,
538 "!failed to get DMA handle, check DMA attributes");
539 return (DDI_FAILURE);
543 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
544 * or the flags are conflicting, which isn't the case here.
546 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
547 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
548 &dma->nd_len, &dma->nd_acch);
550 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
551 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
552 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
553 dev_err(nvme->n_dip, CE_WARN,
554 "!failed to bind DMA memory");
555 atomic_inc_32(&nvme->n_dma_bind_err);
556 nvme_free_dma_common(dma);
557 return (DDI_FAILURE);
560 return (DDI_SUCCESS);
563 static int
564 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
565 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
567 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
569 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
570 DDI_SUCCESS) {
571 *ret = NULL;
572 kmem_free(dma, sizeof (nvme_dma_t));
573 return (DDI_FAILURE);
576 bzero(dma->nd_memp, dma->nd_len);
578 *ret = dma;
579 return (DDI_SUCCESS);
582 /* ARGSUSED */
583 static int
584 nvme_prp_dma_constructor(void *buf, void *private, int flags)
586 nvme_dma_t *dma = (nvme_dma_t *)buf;
587 nvme_t *nvme = (nvme_t *)private;
589 dma->nd_dmah = NULL;
590 dma->nd_acch = NULL;
592 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
593 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
594 return (-1);
597 ASSERT(dma->nd_ncookie == 1);
599 dma->nd_cached = B_TRUE;
601 return (0);
604 static int
605 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
606 uint_t flags, nvme_dma_t **dma)
608 uint32_t len = nentry * qe_len;
609 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
611 len = roundup(len, nvme->n_pagesize);
613 q_dma_attr.dma_attr_minxfer = len;
615 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
616 != DDI_SUCCESS) {
617 dev_err(nvme->n_dip, CE_WARN,
618 "!failed to get DMA memory for queue");
619 goto fail;
622 if ((*dma)->nd_ncookie != 1) {
623 dev_err(nvme->n_dip, CE_WARN,
624 "!got too many cookies for queue DMA");
625 goto fail;
628 return (DDI_SUCCESS);
630 fail:
631 if (*dma) {
632 nvme_free_dma(*dma);
633 *dma = NULL;
636 return (DDI_FAILURE);
639 static void
640 nvme_free_qpair(nvme_qpair_t *qp)
642 int i;
644 mutex_destroy(&qp->nq_mutex);
646 if (qp->nq_sqdma != NULL)
647 nvme_free_dma(qp->nq_sqdma);
648 if (qp->nq_cqdma != NULL)
649 nvme_free_dma(qp->nq_cqdma);
651 if (qp->nq_active_cmds > 0)
652 for (i = 0; i != qp->nq_nentry; i++)
653 if (qp->nq_cmd[i] != NULL)
654 nvme_free_cmd(qp->nq_cmd[i]);
656 if (qp->nq_cmd != NULL)
657 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
659 kmem_free(qp, sizeof (nvme_qpair_t));
662 static int
663 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
664 int idx)
666 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
668 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
669 DDI_INTR_PRI(nvme->n_intr_pri));
671 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
672 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
673 goto fail;
675 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
676 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
677 goto fail;
679 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
680 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
681 qp->nq_nentry = nentry;
683 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
684 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
686 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
687 qp->nq_next_cmd = 0;
689 *nqp = qp;
690 return (DDI_SUCCESS);
692 fail:
693 nvme_free_qpair(qp);
694 *nqp = NULL;
696 return (DDI_FAILURE);
699 static nvme_cmd_t *
700 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
702 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
704 if (cmd == NULL)
705 return (cmd);
707 bzero(cmd, sizeof (nvme_cmd_t));
709 cmd->nc_nvme = nvme;
711 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
712 DDI_INTR_PRI(nvme->n_intr_pri));
713 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
715 return (cmd);
718 static void
719 nvme_free_cmd(nvme_cmd_t *cmd)
721 if (cmd->nc_dma) {
722 if (cmd->nc_dma->nd_cached)
723 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
724 cmd->nc_dma);
725 else
726 nvme_free_dma(cmd->nc_dma);
727 cmd->nc_dma = NULL;
730 cv_destroy(&cmd->nc_cv);
731 mutex_destroy(&cmd->nc_mutex);
733 kmem_cache_free(nvme_cmd_cache, cmd);
736 static int
737 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
739 nvme_reg_sqtdbl_t tail = { 0 };
741 mutex_enter(&qp->nq_mutex);
743 if (qp->nq_active_cmds == qp->nq_nentry) {
744 mutex_exit(&qp->nq_mutex);
745 return (DDI_FAILURE);
748 cmd->nc_completed = B_FALSE;
751 * Try to insert the cmd into the active cmd array at the nq_next_cmd
752 * slot. If the slot is already occupied advance to the next slot and
753 * try again. This can happen for long running commands like async event
754 * requests.
756 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
757 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
758 qp->nq_cmd[qp->nq_next_cmd] = cmd;
760 qp->nq_active_cmds++;
762 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
763 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
764 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
765 sizeof (nvme_sqe_t) * qp->nq_sqtail,
766 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
767 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
769 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
770 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
772 mutex_exit(&qp->nq_mutex);
773 return (DDI_SUCCESS);
776 static nvme_cmd_t *
777 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
779 nvme_reg_cqhdbl_t head = { 0 };
781 nvme_cqe_t *cqe;
782 nvme_cmd_t *cmd;
784 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
785 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
787 cqe = &qp->nq_cq[qp->nq_cqhead];
789 /* Check phase tag of CQE. Hardware inverts it for new entries. */
790 if (cqe->cqe_sf.sf_p == qp->nq_phase)
791 return (NULL);
793 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
794 ASSERT(cqe->cqe_cid < qp->nq_nentry);
796 mutex_enter(&qp->nq_mutex);
797 cmd = qp->nq_cmd[cqe->cqe_cid];
798 qp->nq_cmd[cqe->cqe_cid] = NULL;
799 qp->nq_active_cmds--;
800 mutex_exit(&qp->nq_mutex);
802 ASSERT(cmd != NULL);
803 ASSERT(cmd->nc_nvme == nvme);
804 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
805 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
806 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
808 qp->nq_sqhead = cqe->cqe_sqhd;
810 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
812 /* Toggle phase on wrap-around. */
813 if (qp->nq_cqhead == 0)
814 qp->nq_phase = qp->nq_phase ? 0 : 1;
816 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
818 return (cmd);
821 static int
822 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
824 nvme_cqe_t *cqe = &cmd->nc_cqe;
826 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
827 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
828 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
829 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
830 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
832 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
834 if (cmd->nc_nvme->n_strict_version) {
835 cmd->nc_nvme->n_dead = B_TRUE;
836 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
839 return (EIO);
842 static int
843 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
845 nvme_cqe_t *cqe = &cmd->nc_cqe;
847 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
848 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
849 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
850 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
851 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
852 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
853 cmd->nc_nvme->n_dead = B_TRUE;
854 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
857 return (EIO);
860 static int
861 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
863 nvme_cqe_t *cqe = &cmd->nc_cqe;
865 switch (cqe->cqe_sf.sf_sc) {
866 case NVME_CQE_SC_INT_NVM_WRITE:
867 /* write fail */
868 /* TODO: post ereport */
869 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
870 return (EIO);
872 case NVME_CQE_SC_INT_NVM_READ:
873 /* read fail */
874 /* TODO: post ereport */
875 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
876 return (EIO);
878 default:
879 return (nvme_check_unknown_cmd_status(cmd));
883 static int
884 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
886 nvme_cqe_t *cqe = &cmd->nc_cqe;
888 switch (cqe->cqe_sf.sf_sc) {
889 case NVME_CQE_SC_GEN_SUCCESS:
890 return (0);
893 * Errors indicating a bug in the driver should cause a panic.
895 case NVME_CQE_SC_GEN_INV_OPC:
896 /* Invalid Command Opcode */
897 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
898 "invalid opcode in cmd %p", (void *)cmd);
899 return (0);
901 case NVME_CQE_SC_GEN_INV_FLD:
902 /* Invalid Field in Command */
903 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
904 "invalid field in cmd %p", (void *)cmd);
905 return (0);
907 case NVME_CQE_SC_GEN_ID_CNFL:
908 /* Command ID Conflict */
909 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
910 "cmd ID conflict in cmd %p", (void *)cmd);
911 return (0);
913 case NVME_CQE_SC_GEN_INV_NS:
914 /* Invalid Namespace or Format */
915 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
916 "invalid NS/format in cmd %p", (void *)cmd);
917 return (0);
919 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
920 /* LBA Out Of Range */
921 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
922 "LBA out of range in cmd %p", (void *)cmd);
923 return (0);
926 * Non-fatal errors, handle gracefully.
928 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
929 /* Data Transfer Error (DMA) */
930 /* TODO: post ereport */
931 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
932 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
933 return (EIO);
935 case NVME_CQE_SC_GEN_INTERNAL_ERR:
937 * Internal Error. The spec (v1.0, section 4.5.1.2) says
938 * detailed error information is returned as async event,
939 * so we pretty much ignore the error here and handle it
940 * in the async event handler.
942 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
943 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
944 return (EIO);
946 case NVME_CQE_SC_GEN_ABORT_REQUEST:
948 * Command Abort Requested. This normally happens only when a
949 * command times out.
951 /* TODO: post ereport or change blkdev to handle this? */
952 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
953 return (ECANCELED);
955 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
956 /* Command Aborted due to Power Loss Notification */
957 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
958 cmd->nc_nvme->n_dead = B_TRUE;
959 return (EIO);
961 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
962 /* Command Aborted due to SQ Deletion */
963 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
964 return (EIO);
966 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
967 /* Capacity Exceeded */
968 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
969 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
970 return (EIO);
972 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
973 /* Namespace Not Ready */
974 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
975 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
976 return (EIO);
978 default:
979 return (nvme_check_unknown_cmd_status(cmd));
983 static int
984 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
986 nvme_cqe_t *cqe = &cmd->nc_cqe;
988 switch (cqe->cqe_sf.sf_sc) {
989 case NVME_CQE_SC_SPC_INV_CQ:
990 /* Completion Queue Invalid */
991 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
992 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
993 return (EINVAL);
995 case NVME_CQE_SC_SPC_INV_QID:
996 /* Invalid Queue Identifier */
997 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
998 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
999 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1000 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1001 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1002 return (EINVAL);
1004 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1005 /* Max Queue Size Exceeded */
1006 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1007 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1008 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1009 return (EINVAL);
1011 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1012 /* Abort Command Limit Exceeded */
1013 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1014 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1015 "abort command limit exceeded in cmd %p", (void *)cmd);
1016 return (0);
1018 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1019 /* Async Event Request Limit Exceeded */
1020 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1021 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1022 "async event request limit exceeded in cmd %p",
1023 (void *)cmd);
1024 return (0);
1026 case NVME_CQE_SC_SPC_INV_INT_VECT:
1027 /* Invalid Interrupt Vector */
1028 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1029 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1030 return (EINVAL);
1032 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1033 /* Invalid Log Page */
1034 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1035 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1036 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1037 return (EINVAL);
1039 case NVME_CQE_SC_SPC_INV_FORMAT:
1040 /* Invalid Format */
1041 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1042 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1043 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1044 return (EINVAL);
1046 case NVME_CQE_SC_SPC_INV_Q_DEL:
1047 /* Invalid Queue Deletion */
1048 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1049 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1050 return (EINVAL);
1052 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1053 /* Conflicting Attributes */
1054 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1055 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1056 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1057 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1058 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1059 return (EINVAL);
1061 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1062 /* Invalid Protection Information */
1063 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1064 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1065 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1066 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1067 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1068 return (EINVAL);
1070 case NVME_CQE_SC_SPC_NVM_READONLY:
1071 /* Write to Read Only Range */
1072 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1073 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1074 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1075 return (EROFS);
1077 default:
1078 return (nvme_check_unknown_cmd_status(cmd));
1082 static inline int
1083 nvme_check_cmd_status(nvme_cmd_t *cmd)
1085 nvme_cqe_t *cqe = &cmd->nc_cqe;
1087 /* take a shortcut if everything is alright */
1088 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1089 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1090 return (0);
1092 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1093 return (nvme_check_generic_cmd_status(cmd));
1094 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1095 return (nvme_check_specific_cmd_status(cmd));
1096 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1097 return (nvme_check_integrity_cmd_status(cmd));
1098 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1099 return (nvme_check_vendor_cmd_status(cmd));
1101 return (nvme_check_unknown_cmd_status(cmd));
1105 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1107 * This functions takes care of cleaning up aborted commands. The command
1108 * status is checked to catch any fatal errors.
1110 static void
1111 nvme_abort_cmd_cb(void *arg)
1113 nvme_cmd_t *cmd = arg;
1116 * Grab the command mutex. Once we have it we hold the last reference
1117 * to the command and can safely free it.
1119 mutex_enter(&cmd->nc_mutex);
1120 (void) nvme_check_cmd_status(cmd);
1121 mutex_exit(&cmd->nc_mutex);
1123 nvme_free_cmd(cmd);
1126 static void
1127 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1129 nvme_t *nvme = abort_cmd->nc_nvme;
1130 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1131 nvme_abort_cmd_t ac = { 0 };
1133 sema_p(&nvme->n_abort_sema);
1135 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1136 ac.b.ac_sqid = abort_cmd->nc_sqid;
1139 * Drop the mutex of the aborted command. From this point on
1140 * we must assume that the abort callback has freed the command.
1142 mutex_exit(&abort_cmd->nc_mutex);
1144 cmd->nc_sqid = 0;
1145 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1146 cmd->nc_callback = nvme_wakeup_cmd;
1147 cmd->nc_sqe.sqe_cdw10 = ac.r;
1150 * Send the ABORT to the hardware. The ABORT command will return _after_
1151 * the aborted command has completed (aborted or otherwise).
1153 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1154 sema_v(&nvme->n_abort_sema);
1155 dev_err(nvme->n_dip, CE_WARN,
1156 "!nvme_admin_cmd failed for ABORT");
1157 atomic_inc_32(&nvme->n_abort_failed);
1158 return;
1160 sema_v(&nvme->n_abort_sema);
1162 if (nvme_check_cmd_status(cmd)) {
1163 dev_err(nvme->n_dip, CE_WARN,
1164 "!ABORT failed with sct = %x, sc = %x",
1165 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1166 atomic_inc_32(&nvme->n_abort_failed);
1167 } else {
1168 atomic_inc_32(&nvme->n_cmd_aborted);
1171 nvme_free_cmd(cmd);
1175 * nvme_wait_cmd -- wait for command completion or timeout
1177 * Returns B_TRUE if the command completed normally.
1179 * Returns B_FALSE if the command timed out and an abort was attempted. The
1180 * command mutex will be dropped and the command must be considered freed. The
1181 * freeing of the command is normally done by the abort command callback.
1183 * In case of a serious error or a timeout of the abort command the hardware
1184 * will be declared dead and FMA will be notified.
1186 static boolean_t
1187 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1189 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1190 nvme_t *nvme = cmd->nc_nvme;
1191 nvme_reg_csts_t csts;
1193 ASSERT(mutex_owned(&cmd->nc_mutex));
1195 while (!cmd->nc_completed) {
1196 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1197 break;
1200 if (cmd->nc_completed)
1201 return (B_TRUE);
1204 * The command timed out. Change the callback to the cleanup function.
1206 cmd->nc_callback = nvme_abort_cmd_cb;
1209 * Check controller for fatal status, any errors associated with the
1210 * register or DMA handle, or for a double timeout (abort command timed
1211 * out). If necessary log a warning and call FMA.
1213 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1214 dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1215 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1216 atomic_inc_32(&nvme->n_cmd_timeout);
1218 if (csts.b.csts_cfs ||
1219 nvme_check_regs_hdl(nvme) ||
1220 nvme_check_dma_hdl(cmd->nc_dma) ||
1221 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1222 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1223 nvme->n_dead = B_TRUE;
1224 mutex_exit(&cmd->nc_mutex);
1225 } else {
1227 * Try to abort the command. The command mutex is released by
1228 * nvme_abort_cmd().
1229 * If the abort succeeds it will have freed the aborted command.
1230 * If the abort fails for other reasons we must assume that the
1231 * command may complete at any time, and the callback will free
1232 * it for us.
1234 nvme_abort_cmd(cmd);
1237 return (B_FALSE);
1240 static void
1241 nvme_wakeup_cmd(void *arg)
1243 nvme_cmd_t *cmd = arg;
1245 mutex_enter(&cmd->nc_mutex);
1247 * There is a slight chance that this command completed shortly after
1248 * the timeout was hit in nvme_wait_cmd() but before the callback was
1249 * changed. Catch that case here and clean up accordingly.
1251 if (cmd->nc_callback == nvme_abort_cmd_cb) {
1252 mutex_exit(&cmd->nc_mutex);
1253 nvme_abort_cmd_cb(cmd);
1254 return;
1257 cmd->nc_completed = B_TRUE;
1258 cv_signal(&cmd->nc_cv);
1259 mutex_exit(&cmd->nc_mutex);
1262 static void
1263 nvme_async_event_task(void *arg)
1265 nvme_cmd_t *cmd = arg;
1266 nvme_t *nvme = cmd->nc_nvme;
1267 nvme_error_log_entry_t *error_log = NULL;
1268 nvme_health_log_t *health_log = NULL;
1269 nvme_async_event_t event;
1270 int ret;
1273 * Check for errors associated with the async request itself. The only
1274 * command-specific error is "async event limit exceeded", which
1275 * indicates a programming error in the driver and causes a panic in
1276 * nvme_check_cmd_status().
1278 * Other possible errors are various scenarios where the async request
1279 * was aborted, or internal errors in the device. Internal errors are
1280 * reported to FMA, the command aborts need no special handling here.
1282 if (nvme_check_cmd_status(cmd)) {
1283 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1284 "!async event request returned failure, sct = %x, "
1285 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1286 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1287 cmd->nc_cqe.cqe_sf.sf_m);
1289 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1290 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1291 cmd->nc_nvme->n_dead = B_TRUE;
1292 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1293 DDI_SERVICE_LOST);
1295 nvme_free_cmd(cmd);
1296 return;
1300 event.r = cmd->nc_cqe.cqe_dw0;
1302 /* Clear CQE and re-submit the async request. */
1303 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1304 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1306 if (ret != DDI_SUCCESS) {
1307 dev_err(nvme->n_dip, CE_WARN,
1308 "!failed to resubmit async event request");
1309 atomic_inc_32(&nvme->n_async_resubmit_failed);
1310 nvme_free_cmd(cmd);
1313 switch (event.b.ae_type) {
1314 case NVME_ASYNC_TYPE_ERROR:
1315 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1316 error_log = (nvme_error_log_entry_t *)
1317 nvme_get_logpage(nvme, event.b.ae_logpage);
1318 } else {
1319 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1320 "async event reply: %d", event.b.ae_logpage);
1321 atomic_inc_32(&nvme->n_wrong_logpage);
1324 switch (event.b.ae_info) {
1325 case NVME_ASYNC_ERROR_INV_SQ:
1326 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1327 "invalid submission queue");
1328 return;
1330 case NVME_ASYNC_ERROR_INV_DBL:
1331 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1332 "invalid doorbell write value");
1333 return;
1335 case NVME_ASYNC_ERROR_DIAGFAIL:
1336 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1337 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1338 nvme->n_dead = B_TRUE;
1339 atomic_inc_32(&nvme->n_diagfail_event);
1340 break;
1342 case NVME_ASYNC_ERROR_PERSISTENT:
1343 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1344 "device error");
1345 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1346 nvme->n_dead = B_TRUE;
1347 atomic_inc_32(&nvme->n_persistent_event);
1348 break;
1350 case NVME_ASYNC_ERROR_TRANSIENT:
1351 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1352 "device error");
1353 /* TODO: send ereport */
1354 atomic_inc_32(&nvme->n_transient_event);
1355 break;
1357 case NVME_ASYNC_ERROR_FW_LOAD:
1358 dev_err(nvme->n_dip, CE_WARN,
1359 "!firmware image load error");
1360 atomic_inc_32(&nvme->n_fw_load_event);
1361 break;
1363 break;
1365 case NVME_ASYNC_TYPE_HEALTH:
1366 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1367 health_log = (nvme_health_log_t *)
1368 nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1369 } else {
1370 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1371 "async event reply: %d", event.b.ae_logpage);
1372 atomic_inc_32(&nvme->n_wrong_logpage);
1375 switch (event.b.ae_info) {
1376 case NVME_ASYNC_HEALTH_RELIABILITY:
1377 dev_err(nvme->n_dip, CE_WARN,
1378 "!device reliability compromised");
1379 /* TODO: send ereport */
1380 atomic_inc_32(&nvme->n_reliability_event);
1381 break;
1383 case NVME_ASYNC_HEALTH_TEMPERATURE:
1384 dev_err(nvme->n_dip, CE_WARN,
1385 "!temperature above threshold");
1386 /* TODO: send ereport */
1387 atomic_inc_32(&nvme->n_temperature_event);
1388 break;
1390 case NVME_ASYNC_HEALTH_SPARE:
1391 dev_err(nvme->n_dip, CE_WARN,
1392 "!spare space below threshold");
1393 /* TODO: send ereport */
1394 atomic_inc_32(&nvme->n_spare_event);
1395 break;
1397 break;
1399 case NVME_ASYNC_TYPE_VENDOR:
1400 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1401 "received, info = %x, logpage = %x", event.b.ae_info,
1402 event.b.ae_logpage);
1403 atomic_inc_32(&nvme->n_vendor_event);
1404 break;
1406 default:
1407 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1408 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1409 event.b.ae_info, event.b.ae_logpage);
1410 atomic_inc_32(&nvme->n_unknown_event);
1411 break;
1414 if (error_log)
1415 kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1416 nvme->n_error_log_len);
1418 if (health_log)
1419 kmem_free(health_log, sizeof (nvme_health_log_t));
1422 static int
1423 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1425 int ret;
1427 mutex_enter(&cmd->nc_mutex);
1428 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1430 if (ret != DDI_SUCCESS) {
1431 mutex_exit(&cmd->nc_mutex);
1432 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1433 "!nvme_submit_cmd failed");
1434 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1435 nvme_free_cmd(cmd);
1436 return (DDI_FAILURE);
1439 if (nvme_wait_cmd(cmd, sec) == B_FALSE) {
1441 * The command timed out. An abort command was posted that
1442 * will take care of the cleanup.
1444 return (DDI_FAILURE);
1446 mutex_exit(&cmd->nc_mutex);
1448 return (DDI_SUCCESS);
1451 static int
1452 nvme_async_event(nvme_t *nvme)
1454 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1455 int ret;
1457 cmd->nc_sqid = 0;
1458 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1459 cmd->nc_callback = nvme_async_event_task;
1461 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1463 if (ret != DDI_SUCCESS) {
1464 dev_err(nvme->n_dip, CE_WARN,
1465 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1466 nvme_free_cmd(cmd);
1467 return (DDI_FAILURE);
1470 return (DDI_SUCCESS);
1473 static void *
1474 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1476 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1477 void *buf = NULL;
1478 nvme_getlogpage_t getlogpage = { 0 };
1479 size_t bufsize;
1480 va_list ap;
1482 va_start(ap, logpage);
1484 cmd->nc_sqid = 0;
1485 cmd->nc_callback = nvme_wakeup_cmd;
1486 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1488 getlogpage.b.lp_lid = logpage;
1490 switch (logpage) {
1491 case NVME_LOGPAGE_ERROR:
1492 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1493 bufsize = nvme->n_error_log_len *
1494 sizeof (nvme_error_log_entry_t);
1495 break;
1497 case NVME_LOGPAGE_HEALTH:
1498 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1499 bufsize = sizeof (nvme_health_log_t);
1500 break;
1502 case NVME_LOGPAGE_FWSLOT:
1503 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1504 bufsize = sizeof (nvme_fwslot_log_t);
1505 break;
1507 default:
1508 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1509 logpage);
1510 atomic_inc_32(&nvme->n_unknown_logpage);
1511 goto fail;
1514 va_end(ap);
1516 getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1518 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1520 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1521 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1522 dev_err(nvme->n_dip, CE_WARN,
1523 "!nvme_zalloc_dma failed for GET LOG PAGE");
1524 goto fail;
1527 if (cmd->nc_dma->nd_ncookie > 2) {
1528 dev_err(nvme->n_dip, CE_WARN,
1529 "!too many DMA cookies for GET LOG PAGE");
1530 atomic_inc_32(&nvme->n_too_many_cookies);
1531 goto fail;
1534 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1535 if (cmd->nc_dma->nd_ncookie > 1) {
1536 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1537 &cmd->nc_dma->nd_cookie);
1538 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1539 cmd->nc_dma->nd_cookie.dmac_laddress;
1542 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1543 dev_err(nvme->n_dip, CE_WARN,
1544 "!nvme_admin_cmd failed for GET LOG PAGE");
1545 return (NULL);
1548 if (nvme_check_cmd_status(cmd)) {
1549 dev_err(nvme->n_dip, CE_WARN,
1550 "!GET LOG PAGE failed with sct = %x, sc = %x",
1551 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1552 goto fail;
1555 buf = kmem_alloc(bufsize, KM_SLEEP);
1556 bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1558 fail:
1559 nvme_free_cmd(cmd);
1561 return (buf);
1564 static void *
1565 nvme_identify(nvme_t *nvme, uint32_t nsid)
1567 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1568 void *buf = NULL;
1570 cmd->nc_sqid = 0;
1571 cmd->nc_callback = nvme_wakeup_cmd;
1572 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1573 cmd->nc_sqe.sqe_nsid = nsid;
1574 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1576 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1577 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1578 dev_err(nvme->n_dip, CE_WARN,
1579 "!nvme_zalloc_dma failed for IDENTIFY");
1580 goto fail;
1583 if (cmd->nc_dma->nd_ncookie > 2) {
1584 dev_err(nvme->n_dip, CE_WARN,
1585 "!too many DMA cookies for IDENTIFY");
1586 atomic_inc_32(&nvme->n_too_many_cookies);
1587 goto fail;
1590 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1591 if (cmd->nc_dma->nd_ncookie > 1) {
1592 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1593 &cmd->nc_dma->nd_cookie);
1594 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1595 cmd->nc_dma->nd_cookie.dmac_laddress;
1598 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1599 dev_err(nvme->n_dip, CE_WARN,
1600 "!nvme_admin_cmd failed for IDENTIFY");
1601 return (NULL);
1604 if (nvme_check_cmd_status(cmd)) {
1605 dev_err(nvme->n_dip, CE_WARN,
1606 "!IDENTIFY failed with sct = %x, sc = %x",
1607 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1608 goto fail;
1611 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1612 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1614 fail:
1615 nvme_free_cmd(cmd);
1617 return (buf);
1620 static boolean_t
1621 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1622 uint32_t *res)
1624 _NOTE(ARGUNUSED(nsid));
1625 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1626 boolean_t ret = B_FALSE;
1628 ASSERT(res != NULL);
1630 cmd->nc_sqid = 0;
1631 cmd->nc_callback = nvme_wakeup_cmd;
1632 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1633 cmd->nc_sqe.sqe_cdw10 = feature;
1634 cmd->nc_sqe.sqe_cdw11 = val;
1636 switch (feature) {
1637 case NVME_FEAT_WRITE_CACHE:
1638 if (!nvme->n_write_cache_present)
1639 goto fail;
1640 break;
1642 case NVME_FEAT_NQUEUES:
1643 break;
1645 default:
1646 goto fail;
1649 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1650 dev_err(nvme->n_dip, CE_WARN,
1651 "!nvme_admin_cmd failed for SET FEATURES");
1652 return (ret);
1655 if (nvme_check_cmd_status(cmd)) {
1656 dev_err(nvme->n_dip, CE_WARN,
1657 "!SET FEATURES %d failed with sct = %x, sc = %x",
1658 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1659 cmd->nc_cqe.cqe_sf.sf_sc);
1660 goto fail;
1663 *res = cmd->nc_cqe.cqe_dw0;
1664 ret = B_TRUE;
1666 fail:
1667 nvme_free_cmd(cmd);
1668 return (ret);
1671 static boolean_t
1672 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1674 nvme_write_cache_t nwc = { 0 };
1676 if (enable)
1677 nwc.b.wc_wce = 1;
1679 if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r))
1680 return (B_FALSE);
1682 return (B_TRUE);
1685 static int
1686 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1688 nvme_nqueue_t nq = { 0 };
1690 nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1;
1692 if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) {
1693 return (0);
1697 * Always use the same number of submission and completion queues, and
1698 * never use more than the requested number of queues.
1700 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1));
1703 static int
1704 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1706 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1707 nvme_create_queue_dw10_t dw10 = { 0 };
1708 nvme_create_cq_dw11_t c_dw11 = { 0 };
1709 nvme_create_sq_dw11_t s_dw11 = { 0 };
1711 dw10.b.q_qid = idx;
1712 dw10.b.q_qsize = qp->nq_nentry - 1;
1714 c_dw11.b.cq_pc = 1;
1715 c_dw11.b.cq_ien = 1;
1716 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1718 cmd->nc_sqid = 0;
1719 cmd->nc_callback = nvme_wakeup_cmd;
1720 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1721 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1722 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1723 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1725 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1726 dev_err(nvme->n_dip, CE_WARN,
1727 "!nvme_admin_cmd failed for CREATE CQUEUE");
1728 return (DDI_FAILURE);
1731 if (nvme_check_cmd_status(cmd)) {
1732 dev_err(nvme->n_dip, CE_WARN,
1733 "!CREATE CQUEUE failed with sct = %x, sc = %x",
1734 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1735 nvme_free_cmd(cmd);
1736 return (DDI_FAILURE);
1739 nvme_free_cmd(cmd);
1741 s_dw11.b.sq_pc = 1;
1742 s_dw11.b.sq_cqid = idx;
1744 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1745 cmd->nc_sqid = 0;
1746 cmd->nc_callback = nvme_wakeup_cmd;
1747 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1748 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1749 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1750 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1752 if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) {
1753 dev_err(nvme->n_dip, CE_WARN,
1754 "!nvme_admin_cmd failed for CREATE SQUEUE");
1755 return (DDI_FAILURE);
1758 if (nvme_check_cmd_status(cmd)) {
1759 dev_err(nvme->n_dip, CE_WARN,
1760 "!CREATE SQUEUE failed with sct = %x, sc = %x",
1761 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1762 nvme_free_cmd(cmd);
1763 return (DDI_FAILURE);
1766 nvme_free_cmd(cmd);
1768 return (DDI_SUCCESS);
1771 static boolean_t
1772 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1774 nvme_reg_csts_t csts;
1775 int i;
1777 nvme_put32(nvme, NVME_REG_CC, 0);
1779 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1780 if (csts.b.csts_rdy == 1) {
1781 nvme_put32(nvme, NVME_REG_CC, 0);
1782 for (i = 0; i != nvme->n_timeout * 10; i++) {
1783 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1784 if (csts.b.csts_rdy == 0)
1785 break;
1787 if (quiesce)
1788 drv_usecwait(50000);
1789 else
1790 delay(drv_usectohz(50000));
1794 nvme_put32(nvme, NVME_REG_AQA, 0);
1795 nvme_put32(nvme, NVME_REG_ASQ, 0);
1796 nvme_put32(nvme, NVME_REG_ACQ, 0);
1798 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1799 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1802 static void
1803 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1805 nvme_reg_cc_t cc;
1806 nvme_reg_csts_t csts;
1807 int i;
1809 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1811 cc.r = nvme_get32(nvme, NVME_REG_CC);
1812 cc.b.cc_shn = mode & 0x3;
1813 nvme_put32(nvme, NVME_REG_CC, cc.r);
1815 for (i = 0; i != 10; i++) {
1816 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1817 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1818 break;
1820 if (quiesce)
1821 drv_usecwait(100000);
1822 else
1823 delay(drv_usectohz(100000));
1828 static void
1829 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1831 char model[sizeof (nvme->n_idctl->id_model) + 1];
1832 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1834 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1835 bcopy(nvme->n_idctl->id_serial, serial,
1836 sizeof (nvme->n_idctl->id_serial));
1838 model[sizeof (nvme->n_idctl->id_model)] = '\0';
1839 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1841 (void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1842 sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1843 nvme->n_idctl->id_vid, model, serial, nsid);
1846 static int
1847 nvme_init(nvme_t *nvme)
1849 nvme_reg_cc_t cc = { 0 };
1850 nvme_reg_aqa_t aqa = { 0 };
1851 nvme_reg_asq_t asq = { 0 };
1852 nvme_reg_acq_t acq = { 0 };
1853 nvme_reg_cap_t cap;
1854 nvme_reg_vs_t vs;
1855 nvme_reg_csts_t csts;
1856 int i = 0;
1857 int nqueues;
1858 char model[sizeof (nvme->n_idctl->id_model) + 1];
1859 char *vendor, *product;
1861 /* Check controller version */
1862 vs.r = nvme_get32(nvme, NVME_REG_VS);
1863 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1864 vs.b.vs_mjr, vs.b.vs_mnr);
1866 if (nvme_version_major < vs.b.vs_mjr ||
1867 (nvme_version_major == vs.b.vs_mjr &&
1868 nvme_version_minor < vs.b.vs_mnr)) {
1869 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1870 nvme_version_major, nvme_version_minor);
1871 if (nvme->n_strict_version)
1872 goto fail;
1875 /* retrieve controller configuration */
1876 cap.r = nvme_get64(nvme, NVME_REG_CAP);
1878 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1879 dev_err(nvme->n_dip, CE_WARN,
1880 "!NVM command set not supported by hardware");
1881 goto fail;
1884 nvme->n_nssr_supported = cap.b.cap_nssrs;
1885 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1886 nvme->n_timeout = cap.b.cap_to;
1887 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1888 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1889 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1892 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1893 * the base page size of 4k (1<<12), so add 12 here to get the real
1894 * page size value.
1896 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1897 cap.b.cap_mpsmax + 12);
1898 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1901 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1903 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1904 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1907 * Set up PRP DMA to transfer 1 page-aligned page at a time.
1908 * Maxxfer may be increased after we identified the controller limits.
1910 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1911 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1912 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1913 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
1916 * Reset controller if it's still in ready state.
1918 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1919 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1920 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1921 nvme->n_dead = B_TRUE;
1922 goto fail;
1926 * Create the admin queue pair.
1928 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1929 != DDI_SUCCESS) {
1930 dev_err(nvme->n_dip, CE_WARN,
1931 "!unable to allocate admin qpair");
1932 goto fail;
1934 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1935 nvme->n_ioq[0] = nvme->n_adminq;
1937 nvme->n_progress |= NVME_ADMIN_QUEUE;
1939 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1940 "admin-queue-len", nvme->n_admin_queue_len);
1942 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1943 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1944 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1946 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1947 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1949 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1950 nvme_put64(nvme, NVME_REG_ASQ, asq);
1951 nvme_put64(nvme, NVME_REG_ACQ, acq);
1953 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
1954 cc.b.cc_css = 0; /* use NVM command set */
1955 cc.b.cc_mps = nvme->n_pageshift - 12;
1956 cc.b.cc_shn = 0; /* no shutdown in progress */
1957 cc.b.cc_en = 1; /* enable controller */
1958 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
1959 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
1961 nvme_put32(nvme, NVME_REG_CC, cc.r);
1964 * Wait for the controller to become ready.
1966 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1967 if (csts.b.csts_rdy == 0) {
1968 for (i = 0; i != nvme->n_timeout * 10; i++) {
1969 delay(drv_usectohz(50000));
1970 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1972 if (csts.b.csts_cfs == 1) {
1973 dev_err(nvme->n_dip, CE_WARN,
1974 "!controller fatal status at init");
1975 ddi_fm_service_impact(nvme->n_dip,
1976 DDI_SERVICE_LOST);
1977 nvme->n_dead = B_TRUE;
1978 goto fail;
1981 if (csts.b.csts_rdy == 1)
1982 break;
1986 if (csts.b.csts_rdy == 0) {
1987 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1988 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1989 nvme->n_dead = B_TRUE;
1990 goto fail;
1994 * Assume an abort command limit of 1. We'll destroy and re-init
1995 * that later when we know the true abort command limit.
1997 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2000 * Setup initial interrupt for admin queue.
2002 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2003 != DDI_SUCCESS) &&
2004 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2005 != DDI_SUCCESS) &&
2006 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2007 != DDI_SUCCESS)) {
2008 dev_err(nvme->n_dip, CE_WARN,
2009 "!failed to setup initial interrupt");
2010 goto fail;
2014 * Post an asynchronous event command to catch errors.
2016 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2017 dev_err(nvme->n_dip, CE_WARN,
2018 "!failed to post async event");
2019 goto fail;
2023 * Identify Controller
2025 nvme->n_idctl = nvme_identify(nvme, 0);
2026 if (nvme->n_idctl == NULL) {
2027 dev_err(nvme->n_dip, CE_WARN,
2028 "!failed to identify controller");
2029 goto fail;
2033 * Get Vendor & Product ID
2035 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2036 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2037 sata_split_model(model, &vendor, &product);
2039 if (vendor == NULL)
2040 nvme->n_vendor = strdup("NVMe");
2041 else
2042 nvme->n_vendor = strdup(vendor);
2044 nvme->n_product = strdup(product);
2047 * Get controller limits.
2049 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2050 MIN(nvme->n_admin_queue_len / 10,
2051 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2053 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2054 "async-event-limit", nvme->n_async_event_limit);
2056 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2059 * Reinitialize the semaphore with the true abort command limit
2060 * supported by the hardware. It's not necessary to disable interrupts
2061 * as only command aborts use the semaphore, and no commands are
2062 * executed or aborted while we're here.
2064 sema_destroy(&nvme->n_abort_sema);
2065 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2066 SEMA_DRIVER, NULL);
2068 nvme->n_progress |= NVME_CTRL_LIMITS;
2070 if (nvme->n_idctl->id_mdts == 0)
2071 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2072 else
2073 nvme->n_max_data_transfer_size =
2074 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2076 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2079 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2080 * Chained PRPs are currently unsupported.
2082 * This is a no-op on hardware which doesn't support a transfer size
2083 * big enough to require chained PRPs.
2085 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2086 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2088 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2091 * Make sure the minimum/maximum queue entry sizes are not
2092 * larger/smaller than the default.
2095 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2096 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2097 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2098 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2099 goto fail;
2102 * Check for the presence of a Volatile Write Cache. If present,
2103 * enable or disable based on the value of the property
2104 * volatile-write-cache-enable (default is enabled).
2106 nvme->n_write_cache_present =
2107 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2109 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2110 "volatile-write-cache-present",
2111 nvme->n_write_cache_present ? 1 : 0);
2113 if (!nvme->n_write_cache_present) {
2114 nvme->n_write_cache_enabled = B_FALSE;
2115 } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) {
2116 dev_err(nvme->n_dip, CE_WARN,
2117 "!failed to %sable volatile write cache",
2118 nvme->n_write_cache_enabled ? "en" : "dis");
2120 * Assume the cache is (still) enabled.
2122 nvme->n_write_cache_enabled = B_TRUE;
2125 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2126 "volatile-write-cache-enable",
2127 nvme->n_write_cache_enabled ? 1 : 0);
2130 * Grab a copy of all mandatory log pages.
2132 * TODO: should go away once user space tool exists to print logs
2134 nvme->n_error_log = (nvme_error_log_entry_t *)
2135 nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2136 nvme->n_health_log = (nvme_health_log_t *)
2137 nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2138 nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2139 nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2142 * Identify Namespaces
2144 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2145 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2146 nvme->n_namespace_count, KM_SLEEP);
2148 for (i = 0; i != nvme->n_namespace_count; i++) {
2149 nvme_identify_nsid_t *idns;
2150 int last_rp;
2152 nvme->n_ns[i].ns_nvme = nvme;
2153 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2155 if (idns == NULL) {
2156 dev_err(nvme->n_dip, CE_WARN,
2157 "!failed to identify namespace %d", i + 1);
2158 goto fail;
2161 nvme->n_ns[i].ns_id = i + 1;
2162 nvme->n_ns[i].ns_block_count = idns->id_nsize;
2163 nvme->n_ns[i].ns_block_size =
2164 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2165 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2167 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2170 * Find the LBA format with no metadata and the best relative
2171 * performance. A value of 3 means "degraded", 0 is best.
2173 last_rp = 3;
2174 for (int j = 0; j <= idns->id_nlbaf; j++) {
2175 if (idns->id_lbaf[j].lbaf_lbads == 0)
2176 break;
2177 if (idns->id_lbaf[j].lbaf_ms != 0)
2178 continue;
2179 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2180 continue;
2181 last_rp = idns->id_lbaf[j].lbaf_rp;
2182 nvme->n_ns[i].ns_best_block_size =
2183 1 << idns->id_lbaf[j].lbaf_lbads;
2186 if (nvme->n_ns[i].ns_best_block_size < nvme->n_min_block_size)
2187 nvme->n_ns[i].ns_best_block_size =
2188 nvme->n_min_block_size;
2191 * We currently don't support namespaces that use either:
2192 * - thin provisioning
2193 * - protection information
2195 if (idns->id_nsfeat.f_thin ||
2196 idns->id_dps.dp_pinfo) {
2197 dev_err(nvme->n_dip, CE_WARN,
2198 "!ignoring namespace %d, unsupported features: "
2199 "thin = %d, pinfo = %d", i + 1,
2200 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2201 nvme->n_ns[i].ns_ignore = B_TRUE;
2206 * Try to set up MSI/MSI-X interrupts.
2208 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2209 != 0) {
2210 nvme_release_interrupts(nvme);
2212 nqueues = MIN(UINT16_MAX, ncpus);
2214 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2215 nqueues) != DDI_SUCCESS) &&
2216 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2217 nqueues) != DDI_SUCCESS)) {
2218 dev_err(nvme->n_dip, CE_WARN,
2219 "!failed to setup MSI/MSI-X interrupts");
2220 goto fail;
2224 nqueues = nvme->n_intr_cnt;
2227 * Create I/O queue pairs.
2229 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2230 if (nvme->n_ioq_count == 0) {
2231 dev_err(nvme->n_dip, CE_WARN,
2232 "!failed to set number of I/O queues to %d", nqueues);
2233 goto fail;
2237 * Reallocate I/O queue array
2239 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2240 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2241 (nvme->n_ioq_count + 1), KM_SLEEP);
2242 nvme->n_ioq[0] = nvme->n_adminq;
2245 * If we got less queues than we asked for we might as well give
2246 * some of the interrupt vectors back to the system.
2248 if (nvme->n_ioq_count < nqueues) {
2249 nvme_release_interrupts(nvme);
2251 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2252 nvme->n_ioq_count) != DDI_SUCCESS) {
2253 dev_err(nvme->n_dip, CE_WARN,
2254 "!failed to reduce number of interrupts");
2255 goto fail;
2260 * Alloc & register I/O queue pairs
2262 nvme->n_io_queue_len =
2263 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2264 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2265 nvme->n_io_queue_len);
2267 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2268 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2269 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2270 dev_err(nvme->n_dip, CE_WARN,
2271 "!unable to allocate I/O qpair %d", i);
2272 goto fail;
2275 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2276 != DDI_SUCCESS) {
2277 dev_err(nvme->n_dip, CE_WARN,
2278 "!unable to create I/O qpair %d", i);
2279 goto fail;
2284 * Post more asynchronous events commands to reduce event reporting
2285 * latency as suggested by the spec.
2287 for (i = 1; i != nvme->n_async_event_limit; i++) {
2288 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2289 dev_err(nvme->n_dip, CE_WARN,
2290 "!failed to post async event %d", i);
2291 goto fail;
2295 return (DDI_SUCCESS);
2297 fail:
2298 (void) nvme_reset(nvme, B_FALSE);
2299 return (DDI_FAILURE);
2302 static uint_t
2303 nvme_intr(caddr_t arg1, caddr_t arg2)
2305 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2306 nvme_t *nvme = (nvme_t *)arg1;
2307 int inum = (int)(uintptr_t)arg2;
2308 int ccnt = 0;
2309 int qnum;
2310 nvme_cmd_t *cmd;
2312 if (inum >= nvme->n_intr_cnt)
2313 return (DDI_INTR_UNCLAIMED);
2316 * The interrupt vector a queue uses is calculated as queue_idx %
2317 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2318 * in steps of n_intr_cnt to process all queues using this vector.
2320 for (qnum = inum;
2321 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2322 qnum += nvme->n_intr_cnt) {
2323 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2324 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2325 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2326 ccnt++;
2330 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2333 static void
2334 nvme_release_interrupts(nvme_t *nvme)
2336 int i;
2338 for (i = 0; i < nvme->n_intr_cnt; i++) {
2339 if (nvme->n_inth[i] == NULL)
2340 break;
2342 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2343 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2344 else
2345 (void) ddi_intr_disable(nvme->n_inth[i]);
2347 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2348 (void) ddi_intr_free(nvme->n_inth[i]);
2351 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2352 nvme->n_inth = NULL;
2353 nvme->n_inth_sz = 0;
2355 nvme->n_progress &= ~NVME_INTERRUPTS;
2358 static int
2359 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2361 int nintrs, navail, count;
2362 int ret;
2363 int i;
2365 if (nvme->n_intr_types == 0) {
2366 ret = ddi_intr_get_supported_types(nvme->n_dip,
2367 &nvme->n_intr_types);
2368 if (ret != DDI_SUCCESS) {
2369 dev_err(nvme->n_dip, CE_WARN,
2370 "!%s: ddi_intr_get_supported types failed",
2371 __func__);
2372 return (ret);
2376 if ((nvme->n_intr_types & intr_type) == 0)
2377 return (DDI_FAILURE);
2379 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2380 if (ret != DDI_SUCCESS) {
2381 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2382 __func__);
2383 return (ret);
2386 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2387 if (ret != DDI_SUCCESS) {
2388 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2389 __func__);
2390 return (ret);
2393 /* We want at most one interrupt per queue pair. */
2394 if (navail > nqpairs)
2395 navail = nqpairs;
2397 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2398 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2400 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2401 &count, 0);
2402 if (ret != DDI_SUCCESS) {
2403 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2404 __func__);
2405 goto fail;
2408 nvme->n_intr_cnt = count;
2410 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2411 if (ret != DDI_SUCCESS) {
2412 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2413 __func__);
2414 goto fail;
2417 for (i = 0; i < count; i++) {
2418 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2419 (void *)nvme, (void *)(uintptr_t)i);
2420 if (ret != DDI_SUCCESS) {
2421 dev_err(nvme->n_dip, CE_WARN,
2422 "!%s: ddi_intr_add_handler failed", __func__);
2423 goto fail;
2427 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2429 for (i = 0; i < count; i++) {
2430 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2431 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2432 else
2433 ret = ddi_intr_enable(nvme->n_inth[i]);
2435 if (ret != DDI_SUCCESS) {
2436 dev_err(nvme->n_dip, CE_WARN,
2437 "!%s: enabling interrupt %d failed", __func__, i);
2438 goto fail;
2442 nvme->n_intr_type = intr_type;
2444 nvme->n_progress |= NVME_INTERRUPTS;
2446 return (DDI_SUCCESS);
2448 fail:
2449 nvme_release_interrupts(nvme);
2451 return (ret);
2454 static int
2455 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2457 _NOTE(ARGUNUSED(arg));
2459 pci_ereport_post(dip, fm_error, NULL);
2460 return (fm_error->fme_status);
2463 static int
2464 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2466 nvme_t *nvme;
2467 int instance;
2468 int nregs;
2469 off_t regsize;
2470 int i;
2471 char name[32];
2473 if (cmd != DDI_ATTACH)
2474 return (DDI_FAILURE);
2476 instance = ddi_get_instance(dip);
2478 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2479 return (DDI_FAILURE);
2481 nvme = ddi_get_soft_state(nvme_state, instance);
2482 ddi_set_driver_private(dip, nvme);
2483 nvme->n_dip = dip;
2485 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2486 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2487 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2488 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2489 B_TRUE : B_FALSE;
2490 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2491 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2492 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2493 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2494 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2495 DDI_PROP_DONTPASS, "async-event-limit",
2496 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2497 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2498 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2499 B_TRUE : B_FALSE;
2500 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2501 DDI_PROP_DONTPASS, "min-phys-block-size",
2502 NVME_DEFAULT_MIN_BLOCK_SIZE);
2504 if (!ISP2(nvme->n_min_block_size) ||
2505 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2506 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2507 "using default %d", ISP2(nvme->n_min_block_size) ?
2508 "too low" : "not a power of 2",
2509 NVME_DEFAULT_MIN_BLOCK_SIZE);
2510 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2513 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2514 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2515 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2516 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2518 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2519 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2521 if (nvme->n_async_event_limit < 1)
2522 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2524 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2525 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2526 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2527 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2530 * Setup FMA support.
2532 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2533 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2534 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2535 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2537 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2539 if (nvme->n_fm_cap) {
2540 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2541 nvme->n_reg_acc_attr.devacc_attr_access =
2542 DDI_FLAGERR_ACC;
2544 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2545 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2546 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2549 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2550 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2551 pci_ereport_setup(dip);
2553 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2554 ddi_fm_handler_register(dip, nvme_fm_errcb,
2555 (void *)nvme);
2558 nvme->n_progress |= NVME_FMA_INIT;
2561 * The spec defines several register sets. Only the controller
2562 * registers (set 1) are currently used.
2564 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2565 nregs < 2 ||
2566 ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2567 goto fail;
2569 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2570 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2571 dev_err(dip, CE_WARN, "!failed to map regset 1");
2572 goto fail;
2575 nvme->n_progress |= NVME_REGS_MAPPED;
2578 * Create taskq for command completion.
2580 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2581 ddi_driver_name(dip), ddi_get_instance(dip));
2582 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2583 TASKQ_DEFAULTPRI, 0);
2584 if (nvme->n_cmd_taskq == NULL) {
2585 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2586 goto fail;
2590 * Create PRP DMA cache
2592 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2593 ddi_driver_name(dip), ddi_get_instance(dip));
2594 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2595 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2596 NULL, (void *)nvme, NULL, 0);
2598 if (nvme_init(nvme) != DDI_SUCCESS)
2599 goto fail;
2602 * Attach the blkdev driver for each namespace.
2604 for (i = 0; i != nvme->n_namespace_count; i++) {
2605 if (nvme->n_ns[i].ns_ignore)
2606 continue;
2608 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2609 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2611 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2612 dev_err(dip, CE_WARN,
2613 "!failed to get blkdev handle for namespace %d", i);
2614 goto fail;
2617 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2618 != DDI_SUCCESS) {
2619 dev_err(dip, CE_WARN,
2620 "!failed to attach blkdev handle for namespace %d",
2622 goto fail;
2626 return (DDI_SUCCESS);
2628 fail:
2629 /* attach successful anyway so that FMA can retire the device */
2630 if (nvme->n_dead)
2631 return (DDI_SUCCESS);
2633 (void) nvme_detach(dip, DDI_DETACH);
2635 return (DDI_FAILURE);
2638 static int
2639 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2641 int instance, i;
2642 nvme_t *nvme;
2644 if (cmd != DDI_DETACH)
2645 return (DDI_FAILURE);
2647 instance = ddi_get_instance(dip);
2649 nvme = ddi_get_soft_state(nvme_state, instance);
2651 if (nvme == NULL)
2652 return (DDI_FAILURE);
2654 if (nvme->n_ns) {
2655 for (i = 0; i != nvme->n_namespace_count; i++) {
2656 if (nvme->n_ns[i].ns_bd_hdl) {
2657 (void) bd_detach_handle(
2658 nvme->n_ns[i].ns_bd_hdl);
2659 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2662 if (nvme->n_ns[i].ns_idns)
2663 kmem_free(nvme->n_ns[i].ns_idns,
2664 sizeof (nvme_identify_nsid_t));
2667 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2668 nvme->n_namespace_count);
2671 if (nvme->n_progress & NVME_INTERRUPTS)
2672 nvme_release_interrupts(nvme);
2674 if (nvme->n_cmd_taskq)
2675 ddi_taskq_wait(nvme->n_cmd_taskq);
2677 if (nvme->n_ioq_count > 0) {
2678 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2679 if (nvme->n_ioq[i] != NULL) {
2680 /* TODO: send destroy queue commands */
2681 nvme_free_qpair(nvme->n_ioq[i]);
2685 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2686 (nvme->n_ioq_count + 1));
2689 if (nvme->n_prp_cache != NULL) {
2690 kmem_cache_destroy(nvme->n_prp_cache);
2693 if (nvme->n_progress & NVME_REGS_MAPPED) {
2694 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2695 (void) nvme_reset(nvme, B_FALSE);
2698 if (nvme->n_cmd_taskq)
2699 ddi_taskq_destroy(nvme->n_cmd_taskq);
2701 if (nvme->n_progress & NVME_CTRL_LIMITS)
2702 sema_destroy(&nvme->n_abort_sema);
2704 if (nvme->n_progress & NVME_ADMIN_QUEUE)
2705 nvme_free_qpair(nvme->n_adminq);
2707 if (nvme->n_idctl)
2708 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2710 if (nvme->n_progress & NVME_REGS_MAPPED)
2711 ddi_regs_map_free(&nvme->n_regh);
2713 if (nvme->n_progress & NVME_FMA_INIT) {
2714 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2715 ddi_fm_handler_unregister(nvme->n_dip);
2717 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2718 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2719 pci_ereport_teardown(nvme->n_dip);
2721 ddi_fm_fini(nvme->n_dip);
2724 if (nvme->n_vendor != NULL)
2725 strfree(nvme->n_vendor);
2727 if (nvme->n_product != NULL)
2728 strfree(nvme->n_product);
2730 ddi_soft_state_free(nvme_state, instance);
2732 return (DDI_SUCCESS);
2735 static int
2736 nvme_quiesce(dev_info_t *dip)
2738 int instance;
2739 nvme_t *nvme;
2741 instance = ddi_get_instance(dip);
2743 nvme = ddi_get_soft_state(nvme_state, instance);
2745 if (nvme == NULL)
2746 return (DDI_FAILURE);
2748 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2750 (void) nvme_reset(nvme, B_TRUE);
2752 return (DDI_FAILURE);
2755 static int
2756 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2758 nvme_t *nvme = cmd->nc_nvme;
2759 int nprp_page, nprp;
2760 uint64_t *prp;
2762 if (xfer->x_ndmac == 0)
2763 return (DDI_FAILURE);
2765 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2766 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2768 if (xfer->x_ndmac == 1) {
2769 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2770 return (DDI_SUCCESS);
2771 } else if (xfer->x_ndmac == 2) {
2772 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2773 return (DDI_SUCCESS);
2776 xfer->x_ndmac--;
2778 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2779 ASSERT(nprp_page > 0);
2780 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2783 * We currently don't support chained PRPs and set up our DMA
2784 * attributes to reflect that. If we still get an I/O request
2785 * that needs a chained PRP something is very wrong.
2787 VERIFY(nprp == 1);
2789 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
2790 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
2792 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2794 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2795 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2796 xfer->x_ndmac > 0;
2797 prp++, xfer->x_ndmac--) {
2798 *prp = xfer->x_dmac.dmac_laddress;
2799 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2802 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2803 DDI_DMA_SYNC_FORDEV);
2804 return (DDI_SUCCESS);
2807 static nvme_cmd_t *
2808 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2810 nvme_t *nvme = ns->ns_nvme;
2811 nvme_cmd_t *cmd;
2814 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2816 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2817 KM_NOSLEEP : KM_SLEEP);
2819 if (cmd == NULL)
2820 return (NULL);
2822 cmd->nc_sqe.sqe_opc = opc;
2823 cmd->nc_callback = nvme_bd_xfer_done;
2824 cmd->nc_xfer = xfer;
2826 switch (opc) {
2827 case NVME_OPC_NVM_WRITE:
2828 case NVME_OPC_NVM_READ:
2829 VERIFY(xfer->x_nblks <= 0x10000);
2831 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2833 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2834 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2835 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2837 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2838 goto fail;
2839 break;
2841 case NVME_OPC_NVM_FLUSH:
2842 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2843 break;
2845 default:
2846 goto fail;
2849 return (cmd);
2851 fail:
2852 nvme_free_cmd(cmd);
2853 return (NULL);
2856 static void
2857 nvme_bd_xfer_done(void *arg)
2859 nvme_cmd_t *cmd = arg;
2860 bd_xfer_t *xfer = cmd->nc_xfer;
2861 int error = 0;
2863 error = nvme_check_cmd_status(cmd);
2864 nvme_free_cmd(cmd);
2866 bd_xfer_done(xfer, error);
2869 static void
2870 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2872 nvme_namespace_t *ns = arg;
2873 nvme_t *nvme = ns->ns_nvme;
2876 * blkdev maintains one queue size per instance (namespace),
2877 * but all namespace share the I/O queues.
2878 * TODO: need to figure out a sane default, or use per-NS I/O queues,
2879 * or change blkdev to handle EAGAIN
2881 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2882 / nvme->n_namespace_count;
2885 * d_maxxfer is not set, which means the value is taken from the DMA
2886 * attributes specified to bd_alloc_handle.
2889 drive->d_removable = B_FALSE;
2890 drive->d_hotpluggable = B_FALSE;
2892 drive->d_target = ns->ns_id;
2893 drive->d_lun = 0;
2895 drive->d_model = nvme->n_idctl->id_model;
2896 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2897 drive->d_vendor = nvme->n_vendor;
2898 drive->d_vendor_len = strlen(nvme->n_vendor);
2899 drive->d_product = nvme->n_product;
2900 drive->d_product_len = strlen(nvme->n_product);
2901 drive->d_serial = nvme->n_idctl->id_serial;
2902 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2903 drive->d_revision = nvme->n_idctl->id_fwrev;
2904 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2907 static int
2908 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2910 nvme_namespace_t *ns = arg;
2912 media->m_nblks = ns->ns_block_count;
2913 media->m_blksize = ns->ns_block_size;
2914 media->m_readonly = B_FALSE;
2915 media->m_solidstate = B_TRUE;
2917 media->m_pblksize = ns->ns_best_block_size;
2919 return (0);
2922 static int
2923 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2925 nvme_t *nvme = ns->ns_nvme;
2926 nvme_cmd_t *cmd;
2928 if (nvme->n_dead)
2929 return (EIO);
2931 /* No polling for now */
2932 if (xfer->x_flags & BD_XFER_POLL)
2933 return (EIO);
2935 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2936 if (cmd == NULL)
2937 return (ENOMEM);
2939 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2940 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2942 if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2943 != DDI_SUCCESS)
2944 return (EAGAIN);
2946 return (0);
2949 static int
2950 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2952 nvme_namespace_t *ns = arg;
2954 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2957 static int
2958 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2960 nvme_namespace_t *ns = arg;
2962 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2965 static int
2966 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2968 nvme_namespace_t *ns = arg;
2970 if (ns->ns_nvme->n_dead)
2971 return (EIO);
2974 * If the volatile write cache is not present or not enabled the FLUSH
2975 * command is a no-op, so we can take a shortcut here.
2977 if (!ns->ns_nvme->n_write_cache_present) {
2978 bd_xfer_done(xfer, ENOTSUP);
2979 return (0);
2982 if (!ns->ns_nvme->n_write_cache_enabled) {
2983 bd_xfer_done(xfer, 0);
2984 return (0);
2987 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2990 static int
2991 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2993 nvme_namespace_t *ns = arg;
2995 return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2996 ns->ns_devid, devid));