preprocessor cleanup: __xpv
[unleashed.git] / arch / x86 / kernel / platform / i86pc / os / cpuid_subr.c
blob7bd6da16dd959d0a383ba591ffaaf64d5f11abb2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
30 * Portions Copyright 2009 Advanced Micro Devices, Inc.
34 * Copyright 2012 Jens Elkner <jel+illumos@cs.uni-magdeburg.de>
35 * Copyright 2012 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
39 * Support functions that interpret CPUID and similar information.
40 * These should not be used from anywhere other than cpuid.c and
41 * cmi_hw.c - as such we will not list them in any header file
42 * such as x86_archext.h.
44 * In cpuid.c we process CPUID information for each cpu_t instance
45 * we're presented with, and stash this raw information and material
46 * derived from it in per-cpu_t structures.
48 * If we are virtualized then the CPUID information derived from CPUID
49 * instructions executed in the guest is based on whatever the hypervisor
50 * wanted to make things look like, and the cpu_t are not necessarily in 1:1
51 * or fixed correspondence with real processor execution resources. In cmi_hw.c
52 * we are interested in the native properties of a processor - for fault
53 * management (and potentially other, such as power management) purposes;
54 * it will tunnel through to real hardware information, and use the
55 * functionality provided in this file to process it.
58 #include <sys/types.h>
59 #include <sys/systm.h>
60 #include <sys/bitmap.h>
61 #include <sys/x86_archext.h>
62 #include <sys/pci_cfgspace.h>
65 * AMD socket types.
66 * First index :
67 * 0 for family 0xf, revs B thru E
68 * 1 for family 0xf, revs F and G
69 * 2 for family 0x10
70 * 3 for family 0x11
71 * 4 for family 0x12
72 * 5 for family 0x14
73 * 6 for family 0x15, models 00 - 0f
74 * 7 for family 0x15, models 10 - 1f
75 * Second index by (model & 0x3) for family 0fh,
76 * CPUID pkg bits (Fn8000_0001_EBX[31:28]) for later families.
78 static uint32_t amd_skts[8][8] = {
80 * Family 0xf revisions B through E
82 #define A_SKTS_0 0
84 X86_SOCKET_754, /* 0b000 */
85 X86_SOCKET_940, /* 0b001 */
86 X86_SOCKET_754, /* 0b010 */
87 X86_SOCKET_939, /* 0b011 */
88 X86_SOCKET_UNKNOWN, /* 0b100 */
89 X86_SOCKET_UNKNOWN, /* 0b101 */
90 X86_SOCKET_UNKNOWN, /* 0b110 */
91 X86_SOCKET_UNKNOWN /* 0b111 */
94 * Family 0xf revisions F and G
96 #define A_SKTS_1 1
98 X86_SOCKET_S1g1, /* 0b000 */
99 X86_SOCKET_F1207, /* 0b001 */
100 X86_SOCKET_UNKNOWN, /* 0b010 */
101 X86_SOCKET_AM2, /* 0b011 */
102 X86_SOCKET_UNKNOWN, /* 0b100 */
103 X86_SOCKET_UNKNOWN, /* 0b101 */
104 X86_SOCKET_UNKNOWN, /* 0b110 */
105 X86_SOCKET_UNKNOWN /* 0b111 */
108 * Family 0x10
110 #define A_SKTS_2 2
112 X86_SOCKET_F1207, /* 0b000 */
113 X86_SOCKET_AM2R2, /* 0b001 */
114 X86_SOCKET_S1g3, /* 0b010 */
115 X86_SOCKET_G34, /* 0b011 */
116 X86_SOCKET_ASB2, /* 0b100 */
117 X86_SOCKET_C32, /* 0b101 */
118 X86_SOCKET_UNKNOWN, /* 0b110 */
119 X86_SOCKET_UNKNOWN /* 0b111 */
123 * Family 0x11
125 #define A_SKTS_3 3
127 X86_SOCKET_UNKNOWN, /* 0b000 */
128 X86_SOCKET_UNKNOWN, /* 0b001 */
129 X86_SOCKET_S1g2, /* 0b010 */
130 X86_SOCKET_UNKNOWN, /* 0b011 */
131 X86_SOCKET_UNKNOWN, /* 0b100 */
132 X86_SOCKET_UNKNOWN, /* 0b101 */
133 X86_SOCKET_UNKNOWN, /* 0b110 */
134 X86_SOCKET_UNKNOWN /* 0b111 */
138 * Family 0x12
140 #define A_SKTS_4 4
142 X86_SOCKET_UNKNOWN, /* 0b000 */
143 X86_SOCKET_FS1, /* 0b001 */
144 X86_SOCKET_FM1, /* 0b010 */
145 X86_SOCKET_UNKNOWN, /* 0b011 */
146 X86_SOCKET_UNKNOWN, /* 0b100 */
147 X86_SOCKET_UNKNOWN, /* 0b101 */
148 X86_SOCKET_UNKNOWN, /* 0b110 */
149 X86_SOCKET_UNKNOWN /* 0b111 */
153 * Family 0x14
155 #define A_SKTS_5 5
157 X86_SOCKET_FT1, /* 0b000 */
158 X86_SOCKET_UNKNOWN, /* 0b001 */
159 X86_SOCKET_UNKNOWN, /* 0b010 */
160 X86_SOCKET_UNKNOWN, /* 0b011 */
161 X86_SOCKET_UNKNOWN, /* 0b100 */
162 X86_SOCKET_UNKNOWN, /* 0b101 */
163 X86_SOCKET_UNKNOWN, /* 0b110 */
164 X86_SOCKET_UNKNOWN /* 0b111 */
168 * Family 0x15 models 00 - 0f
170 #define A_SKTS_6 6
172 X86_SOCKET_UNKNOWN, /* 0b000 */
173 X86_SOCKET_AM3R2, /* 0b001 */
174 X86_SOCKET_UNKNOWN, /* 0b010 */
175 X86_SOCKET_G34, /* 0b011 */
176 X86_SOCKET_UNKNOWN, /* 0b100 */
177 X86_SOCKET_C32, /* 0b101 */
178 X86_SOCKET_UNKNOWN, /* 0b110 */
179 X86_SOCKET_UNKNOWN /* 0b111 */
183 * Family 0x15 models 10 - 1f
185 #define A_SKTS_7 7
187 X86_SOCKET_FP2, /* 0b000 */
188 X86_SOCKET_FS1R2, /* 0b001 */
189 X86_SOCKET_FM2, /* 0b010 */
190 X86_SOCKET_UNKNOWN, /* 0b011 */
191 X86_SOCKET_UNKNOWN, /* 0b100 */
192 X86_SOCKET_UNKNOWN, /* 0b101 */
193 X86_SOCKET_UNKNOWN, /* 0b110 */
194 X86_SOCKET_UNKNOWN /* 0b111 */
199 struct amd_sktmap_s {
200 uint32_t skt_code;
201 char sktstr[16];
203 static struct amd_sktmap_s amd_sktmap[23] = {
204 { X86_SOCKET_754, "754" },
205 { X86_SOCKET_939, "939" },
206 { X86_SOCKET_940, "940" },
207 { X86_SOCKET_S1g1, "S1g1" },
208 { X86_SOCKET_AM2, "AM2" },
209 { X86_SOCKET_F1207, "F(1207)" },
210 { X86_SOCKET_S1g2, "S1g2" },
211 { X86_SOCKET_S1g3, "S1g3" },
212 { X86_SOCKET_AM, "AM" },
213 { X86_SOCKET_AM2R2, "AM2r2" },
214 { X86_SOCKET_AM3, "AM3" },
215 { X86_SOCKET_G34, "G34" },
216 { X86_SOCKET_ASB2, "ASB2" },
217 { X86_SOCKET_C32, "C32" },
218 { X86_SOCKET_FT1, "FT1" },
219 { X86_SOCKET_FM1, "FM1" },
220 { X86_SOCKET_FS1, "FS1" },
221 { X86_SOCKET_AM3R2, "AM3r2" },
222 { X86_SOCKET_FP2, "FP2" },
223 { X86_SOCKET_FS1R2, "FS1r2" },
224 { X86_SOCKET_FM2, "FM2" },
225 { X86_SOCKET_UNKNOWN, "Unknown" }
229 * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping
230 * combination to chip "revision" and socket type.
232 * The first member of this array that matches a given family, extended model
233 * plus model range, and stepping range will be considered a match.
235 static const struct amd_rev_mapent {
236 uint_t rm_family;
237 uint_t rm_modello;
238 uint_t rm_modelhi;
239 uint_t rm_steplo;
240 uint_t rm_stephi;
241 uint32_t rm_chiprev;
242 const char *rm_chiprevstr;
243 int rm_sktidx;
244 } amd_revmap[] = {
246 * =============== AuthenticAMD Family 0xf ===============
250 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
252 { 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
253 { 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
255 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
257 { 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 },
259 * Rev CG is the rest of extended model 0x0 - i.e., everything
260 * but the rev B and C0 combinations covered above.
262 { 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 },
264 * Rev D has extended model 0x1.
266 { 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 },
268 * Rev E has extended model 0x2.
269 * Extended model 0x3 is unused but available to grow into.
271 { 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 },
273 * Rev F has extended models 0x4 and 0x5.
275 { 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 },
277 * Rev G has extended model 0x6.
279 { 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 },
282 * =============== AuthenticAMD Family 0x10 ===============
286 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}.
287 * Give all of model 0 stepping range to rev A.
289 { 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 },
292 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}.
293 * Give all of model 2 stepping range to rev B.
295 { 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 },
298 * Rev C has models 4-6 (depending on L3 cache configuration)
299 * Give all of models 4-6 stepping range 0-2 to rev C2.
301 { 0x10, 0x4, 0x6, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_C2, "C2", A_SKTS_2 },
304 * Rev C has models 4-6 (depending on L3 cache configuration)
305 * Give all of models 4-6 stepping range >= 3 to rev C3.
307 { 0x10, 0x4, 0x6, 0x3, 0xf, X86_CHIPREV_AMD_10_REV_C3, "C3", A_SKTS_2 },
310 * Rev D has models 8 and 9
311 * Give all of model 8 and 9 stepping 0 to rev D0.
313 { 0x10, 0x8, 0x9, 0x0, 0x0, X86_CHIPREV_AMD_10_REV_D0, "D0", A_SKTS_2 },
316 * Rev D has models 8 and 9
317 * Give all of model 8 and 9 stepping range >= 1 to rev D1.
319 { 0x10, 0x8, 0x9, 0x1, 0xf, X86_CHIPREV_AMD_10_REV_D1, "D1", A_SKTS_2 },
322 * Rev E has models A and stepping 0
323 * Give all of model A stepping range to rev E.
325 { 0x10, 0xA, 0xA, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_E, "E", A_SKTS_2 },
328 * =============== AuthenticAMD Family 0x11 ===============
330 { 0x11, 0x03, 0x03, 0x0, 0xf, X86_CHIPREV_AMD_11_REV_B, "B", A_SKTS_3 },
333 * =============== AuthenticAMD Family 0x12 ===============
335 { 0x12, 0x01, 0x01, 0x0, 0xf, X86_CHIPREV_AMD_12_REV_B, "B", A_SKTS_4 },
338 * =============== AuthenticAMD Family 0x14 ===============
340 { 0x14, 0x01, 0x01, 0x0, 0xf, X86_CHIPREV_AMD_14_REV_B, "B", A_SKTS_5 },
341 { 0x14, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_14_REV_C, "C", A_SKTS_5 },
344 * =============== AuthenticAMD Family 0x15 ===============
346 { 0x15, 0x01, 0x01, 0x2, 0x2, X86_CHIPREV_AMD_15OR_REV_B2, "B2",
347 A_SKTS_6 },
348 { 0x15, 0x10, 0x10, 0x1, 0x1, X86_CHIPREV_AMD_15TN_REV_A1, "A1",
349 A_SKTS_7 },
352 static void
353 synth_amd_info(uint_t family, uint_t model, uint_t step,
354 uint32_t *skt_p, uint32_t *chiprev_p, const char **chiprevstr_p)
356 const struct amd_rev_mapent *rmp;
357 int found = 0;
358 int i;
360 if (family < 0xf)
361 return;
363 for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
364 i++, rmp++) {
365 if (family == rmp->rm_family &&
366 model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
367 step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
368 found = 1;
369 break;
373 if (!found)
374 return;
376 if (chiprev_p != NULL)
377 *chiprev_p = rmp->rm_chiprev;
378 if (chiprevstr_p != NULL)
379 *chiprevstr_p = rmp->rm_chiprevstr;
381 if (skt_p != NULL) {
382 int platform;
384 platform = get_hwenv();
386 if ((platform & HW_VIRTUAL) != 0) {
387 *skt_p = X86_SOCKET_UNKNOWN;
388 } else if (family == 0xf) {
389 *skt_p = amd_skts[rmp->rm_sktidx][model & 0x3];
390 } else {
392 * Starting with family 10h, socket type is stored in
393 * CPUID Fn8000_0001_EBX
395 struct cpuid_regs cp;
396 int idx;
398 cp.cp_eax = 0x80000001;
399 (void) __cpuid_insn(&cp);
401 /* PkgType bits */
402 idx = BITX(cp.cp_ebx, 31, 28);
404 if (idx > 7) {
405 /* Reserved bits */
406 *skt_p = X86_SOCKET_UNKNOWN;
407 } else {
408 *skt_p = amd_skts[rmp->rm_sktidx][idx];
410 if (family == 0x10) {
412 * Look at Ddr3Mode bit of DRAM Configuration
413 * High Register to decide whether this is
414 * actually AM3 or S1g4.
416 uint32_t val;
418 val = pci_getl_func(0, 24, 2, 0x94);
419 if (BITX(val, 8, 8)) {
420 if (*skt_p == X86_SOCKET_AM2R2)
421 *skt_p = X86_SOCKET_AM3;
422 else if (*skt_p == X86_SOCKET_S1g3)
423 *skt_p = X86_SOCKET_S1g4;
430 uint32_t
431 _cpuid_skt(uint_t vendor, uint_t family, uint_t model, uint_t step)
433 uint32_t skt = X86_SOCKET_UNKNOWN;
435 switch (vendor) {
436 case X86_VENDOR_AMD:
437 synth_amd_info(family, model, step, &skt, NULL, NULL);
438 break;
440 default:
441 break;
445 return (skt);
448 const char *
449 _cpuid_sktstr(uint_t vendor, uint_t family, uint_t model, uint_t step)
451 const char *sktstr = "Unknown";
452 struct amd_sktmap_s *sktmapp;
453 uint32_t skt = X86_SOCKET_UNKNOWN;
455 switch (vendor) {
456 case X86_VENDOR_AMD:
457 synth_amd_info(family, model, step, &skt, NULL, NULL);
459 sktmapp = amd_sktmap;
460 while (sktmapp->skt_code != X86_SOCKET_UNKNOWN) {
461 if (sktmapp->skt_code == skt)
462 break;
463 sktmapp++;
465 sktstr = sktmapp->sktstr;
466 break;
468 default:
469 break;
473 return (sktstr);
476 uint32_t
477 _cpuid_chiprev(uint_t vendor, uint_t family, uint_t model, uint_t step)
479 uint32_t chiprev = X86_CHIPREV_UNKNOWN;
481 switch (vendor) {
482 case X86_VENDOR_AMD:
483 synth_amd_info(family, model, step, NULL, &chiprev, NULL);
484 break;
486 default:
487 break;
491 return (chiprev);
494 const char *
495 _cpuid_chiprevstr(uint_t vendor, uint_t family, uint_t model, uint_t step)
497 const char *revstr = "Unknown";
499 switch (vendor) {
500 case X86_VENDOR_AMD:
501 synth_amd_info(family, model, step, NULL, NULL, &revstr);
502 break;
504 default:
505 break;
509 return (revstr);
514 * CyrixInstead is a variable used by the Cyrix detection code
515 * in locore.
517 const char CyrixInstead[] = X86_VENDORSTR_CYRIX;
520 * Map the vendor string to a type code
522 uint_t
523 _cpuid_vendorstr_to_vendorcode(char *vendorstr)
525 if (strcmp(vendorstr, X86_VENDORSTR_Intel) == 0)
526 return (X86_VENDOR_Intel);
527 else if (strcmp(vendorstr, X86_VENDORSTR_AMD) == 0)
528 return (X86_VENDOR_AMD);
529 else if (strcmp(vendorstr, X86_VENDORSTR_TM) == 0)
530 return (X86_VENDOR_TM);
531 else if (strcmp(vendorstr, CyrixInstead) == 0)
532 return (X86_VENDOR_Cyrix);
533 else if (strcmp(vendorstr, X86_VENDORSTR_UMC) == 0)
534 return (X86_VENDOR_UMC);
535 else if (strcmp(vendorstr, X86_VENDORSTR_NexGen) == 0)
536 return (X86_VENDOR_NexGen);
537 else if (strcmp(vendorstr, X86_VENDORSTR_Centaur) == 0)
538 return (X86_VENDOR_Centaur);
539 else if (strcmp(vendorstr, X86_VENDORSTR_Rise) == 0)
540 return (X86_VENDOR_Rise);
541 else if (strcmp(vendorstr, X86_VENDORSTR_SiS) == 0)
542 return (X86_VENDOR_SiS);
543 else if (strcmp(vendorstr, X86_VENDORSTR_NSC) == 0)
544 return (X86_VENDOR_NSC);
545 else
546 return (X86_VENDOR_IntelClone);