preprocessor cleanup: __xpv
[unleashed.git] / arch / x86 / kernel / platform / i86pc / ml / syscall_asm_64.s
blob0b90e5c12a655cc5bfad93244fea66f7f77ea415
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2015 Joyent, Inc.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
27 #include <sys/asm_linkage.h>
28 #include <sys/asm_misc.h>
29 #include <sys/regset.h>
30 #include <sys/privregs.h>
31 #include <sys/psw.h>
32 #include <sys/machbrand.h>
35 #include <sys/segments.h>
36 #include <sys/pcb.h>
37 #include <sys/trap.h>
38 #include <sys/ftrace.h>
39 #include <sys/traptrace.h>
40 #include <sys/clock.h>
41 #include <sys/model.h>
42 #include <sys/panic.h>
45 #include "assym.h"
49 * We implement five flavours of system call entry points
51 * - syscall/sysretq (amd64 generic)
52 * - syscall/sysretl (i386 plus SYSC bit)
53 * - sysenter/sysexit (i386 plus SEP bit)
54 * - int/iret (i386 generic)
55 * - lcall/iret (i386 generic)
57 * The current libc included in Solaris uses int/iret as the base unoptimized
58 * kernel entry method. Older libc implementations and legacy binaries may use
59 * the lcall call gate, so it must continue to be supported.
61 * System calls that use an lcall call gate are processed in trap() via a
62 * segment-not-present trap, i.e. lcalls are extremely slow(!).
64 * The basic pattern used in the 32-bit SYSC handler at this point in time is
65 * to have the bare minimum of assembler, and get to the C handlers as
66 * quickly as possible.
68 * The 64-bit handler is much closer to the sparcv9 handler; that's
69 * because of passing arguments in registers. The 32-bit world still
70 * passes arguments on the stack -- that makes that handler substantially
71 * more complex.
73 * The two handlers share a few code fragments which are broken
74 * out into preprocessor macros below.
76 * XX64 come back and speed all this up later. The 32-bit stuff looks
77 * especially easy to speed up the argument copying part ..
80 * Notes about segment register usage (c.f. the 32-bit kernel)
82 * In the 32-bit kernel, segment registers are dutifully saved and
83 * restored on all mode transitions because the kernel uses them directly.
84 * When the processor is running in 64-bit mode, segment registers are
85 * largely ignored.
87 * %cs and %ss
88 * controlled by the hardware mechanisms that make mode transitions
90 * The remaining segment registers have to either be pointing at a valid
91 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
93 * %ds and %es
94 * always ignored
96 * %fs and %gs
97 * fsbase and gsbase are used to control the place they really point at.
98 * The kernel only depends on %gs, and controls its own gsbase via swapgs
100 * Note that loading segment registers is still costly because the GDT
101 * lookup still happens (this is because the hardware can't know that we're
102 * not setting up these segment registers for a 32-bit program). Thus we
103 * avoid doing this in the syscall path, and defer them to lwp context switch
104 * handlers, so the register values remain virtualized to the lwp.
107 #if defined(SYSCALLTRACE)
108 #define ORL_SYSCALLTRACE(r32) \
109 orl syscalltrace(%rip), r32
110 #else
111 #define ORL_SYSCALLTRACE(r32)
112 #endif
115 * In the 32-bit kernel, we do absolutely nothing before getting into the
116 * brand callback checks. In 64-bit land, we do swapgs and then come here.
117 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
118 * are still unused.
120 * Check if a brand_mach_ops callback is defined for the specified callback_id
121 * type. If so invoke it with the kernel's %gs value loaded and the following
122 * data on the stack:
124 * stack: --------------------------------------
125 * 32 | callback pointer |
126 * | 24 | user (or interrupt) stack pointer |
127 * | 16 | lwp pointer |
128 * v 8 | userland return address |
129 * 0 | callback wrapper return addr |
130 * --------------------------------------
132 * Since we're pushing the userland return address onto the kernel stack
133 * we need to get that address without accessing the user's stack (since we
134 * can't trust that data). There are different ways to get the userland
135 * return address depending on how the syscall trap was made:
137 * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
138 * b) For sys_sysenter the return address is in %rdx.
139 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
140 * the stack pointer points at the state saved when we took the interrupt:
141 * ------------------------
142 * | | user's %ss |
143 * | | user's %esp |
144 * | | EFLAGS register |
145 * v | user's %cs |
146 * | user's %eip |
147 * ------------------------
149 * The 2nd parameter to the BRAND_CALLBACK macro is either the
150 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are
151 * used to generate the proper code to get the userland return address for
152 * each syscall entry point.
154 * The interface to the brand callbacks on the 64-bit kernel assumes %r15
155 * is available as a scratch register within the callback. If the callback
156 * returns within the kernel then this macro will restore %r15. If the
157 * callback is going to return directly to userland then it should restore
158 * %r15 before returning to userland.
160 #define BRAND_URET_FROM_REG(rip_reg) \
161 pushq rip_reg /* push the return address */
164 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
165 * is currently pointing at the user return address (%eip).
167 #define BRAND_URET_FROM_INTR_STACK() \
168 movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\
169 pushq (%r15) /* push the return address */
171 #define BRAND_CALLBACK(callback_id, push_userland_ret) \
172 movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\
173 movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\
174 movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\
175 movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\
176 subq $16, %rsp /* save space for 2 pointers */ ;\
177 pushq %r14 /* save %r14 */ ;\
178 movq %gs:CPU_RTMP_RSP, %r14 ;\
179 movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\
180 popq %r14 /* restore %r14 */ ;\
181 movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\
182 pushq %r15 /* push the lwp pointer */ ;\
183 movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\
184 movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\
185 movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\
186 movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\
187 cmpq $0, %r15 ;\
188 je 1f ;\
189 movq %r15, 16(%rsp) /* save the callback pointer */ ;\
190 push_userland_ret /* push the return address */ ;\
191 call *24(%rsp) /* call callback */ ;\
192 1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\
193 movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */
195 #define MSTATE_TRANSITION(from, to) \
196 movl $from, %edi; \
197 movl $to, %esi; \
198 call syscall_mstate
201 * Check to see if a simple (direct) return is possible i.e.
203 * if (t->t_post_sys_ast | syscalltrace |
204 * lwp->lwp_pcb.pcb_rupdate == 1)
205 * do full version ;
207 * Preconditions:
208 * - t is curthread
209 * Postconditions:
210 * - condition code NE is set if post-sys is too complex
211 * - rtmp is zeroed if it isn't (we rely on this!)
212 * - ltmp is smashed
214 #define CHECK_POSTSYS_NE(t, ltmp, rtmp) \
215 movq T_LWP(t), ltmp; \
216 movzbl PCB_RUPDATE(ltmp), rtmp; \
217 ORL_SYSCALLTRACE(rtmp); \
218 orl T_POST_SYS_AST(t), rtmp; \
219 cmpl $0, rtmp
222 * Fix up the lwp, thread, and eflags for a successful return
224 * Preconditions:
225 * - zwreg contains zero
227 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \
228 movb $LWP_USER, LWP_STATE(lwp); \
229 movw zwreg, T_SYSNUM(t); \
230 andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
233 * ASSERT(lwptoregs(lwp) == rp);
235 * This may seem obvious, but very odd things happen if this
236 * assertion is false
238 * Preconditions:
239 * (%rsp is ready for normal call sequence)
240 * Postconditions (if assertion is true):
241 * %r11 is smashed
243 * ASSERT(rp->r_cs == descnum)
245 * The code selector is written into the regs structure when the
246 * lwp stack is created. We use this ASSERT to validate that
247 * the regs structure really matches how we came in.
249 * Preconditions:
250 * (%rsp is ready for normal call sequence)
251 * Postconditions (if assertion is true):
252 * -none-
254 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
256 * If this is false, it meant that we returned to userland without
257 * updating the segment registers as we were supposed to.
259 * Note that we must ensure no interrupts or other traps intervene
260 * between entering privileged mode and performing the assertion,
261 * otherwise we may perform a context switch on the thread, which
262 * will end up setting pcb_rupdate to 1 again.
264 #if defined(DEBUG)
267 __lwptoregs_msg:
268 .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
270 __codesel_msg:
271 .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
273 __no_rupdate_msg:
274 .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
277 #define ASSERT_LWPTOREGS(lwp, rp) \
278 movq LWP_REGS(lwp), %r11; \
279 cmpq rp, %r11; \
280 je 7f; \
281 leaq __lwptoregs_msg(%rip), %rdi; \
282 movl $__LINE__, %esi; \
283 movq lwp, %rdx; \
284 movq %r11, %rcx; \
285 movq rp, %r8; \
286 xorl %eax, %eax; \
287 call panic; \
290 #define ASSERT_NO_RUPDATE_PENDING(lwp) \
291 testb $0x1, PCB_RUPDATE(lwp); \
292 je 8f; \
293 movq lwp, %rdx; \
294 leaq __no_rupdate_msg(%rip), %rdi; \
295 movl $__LINE__, %esi; \
296 xorl %eax, %eax; \
297 call panic; \
300 #else
301 #define ASSERT_LWPTOREGS(lwp, rp)
302 #define ASSERT_NO_RUPDATE_PENDING(lwp)
303 #endif
306 * Do the traptrace thing and restore any registers we used
307 * in situ. Assumes that %rsp is pointing at the base of
308 * the struct regs, obviously ..
310 #ifdef TRAPTRACE
311 #define SYSCALL_TRAPTRACE(ttype) \
312 TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \
313 TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \
314 TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \
315 movq REGOFF_RAX(%rsp), %rax; \
316 movq REGOFF_RBX(%rsp), %rbx; \
317 movq REGOFF_RCX(%rsp), %rcx; \
318 movq REGOFF_RDX(%rsp), %rdx; \
319 movl %eax, TTR_SYSNUM(%rdi); \
320 movq REGOFF_RDI(%rsp), %rdi
322 #define SYSCALL_TRAPTRACE32(ttype) \
323 SYSCALL_TRAPTRACE(ttype); \
324 /* paranoia: clean the top 32-bits of the registers */ \
325 orl %eax, %eax; \
326 orl %ebx, %ebx; \
327 orl %ecx, %ecx; \
328 orl %edx, %edx; \
329 orl %edi, %edi
330 #else /* TRAPTRACE */
331 #define SYSCALL_TRAPTRACE(ttype)
332 #define SYSCALL_TRAPTRACE32(ttype)
333 #endif /* TRAPTRACE */
336 * The 64-bit libc syscall wrapper does this:
338 * fn(<args>)
340 * movq %rcx, %r10 -- because syscall smashes %rcx
341 * movl $CODE, %eax
342 * syscall
343 * <error processing>
346 * Thus when we come into the kernel:
348 * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
349 * %rax is the syscall number
350 * %r12-%r15 contain caller state
352 * The syscall instruction arranges that:
354 * %rcx contains the return %rip
355 * %r11d contains bottom 32-bits of %rflags
356 * %rflags is masked (as determined by the SFMASK msr)
357 * %cs is set to UCS_SEL (as determined by the STAR msr)
358 * %ss is set to UDS_SEL (as determined by the STAR msr)
359 * %rip is set to sys_syscall (as determined by the LSTAR msr)
361 * Or in other words, we have no registers available at all.
362 * Only swapgs can save us!
364 * Under the hypervisor, the swapgs has happened already. However, the
365 * state of the world is very different from that we're familiar with.
367 * In particular, we have a stack structure like that for interrupt
368 * gates, except that the %cs and %ss registers are modified for reasons
369 * that are not entirely clear. Critically, the %rcx/%r11 values do
370 * *not* reflect the usage of those registers under a 'real' syscall[1];
371 * the stack, therefore, looks like this:
373 * 0x0(rsp) potentially junk %rcx
374 * 0x8(rsp) potentially junk %r11
375 * 0x10(rsp) user %rip
376 * 0x18(rsp) modified %cs
377 * 0x20(rsp) user %rflags
378 * 0x28(rsp) user %rsp
379 * 0x30(rsp) modified %ss
382 * and before continuing on, we must load the %rip into %rcx and the
383 * %rflags into %r11.
385 * [1] They used to, and we relied on it, but this was broken in 3.1.1.
386 * Sigh.
388 #define XPV_SYSCALL_PROD /* nothing */
391 ENTRY_NP2(brand_sys_syscall,_allsyscalls)
392 SWAPGS /* kernel gsbase */
393 XPV_SYSCALL_PROD
394 BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
395 jmp noprod_sys_syscall
397 ALTENTRY(sys_syscall)
398 SWAPGS /* kernel gsbase */
399 XPV_SYSCALL_PROD
401 noprod_sys_syscall:
402 movq %r15, %gs:CPU_RTMP_R15
403 movq %rsp, %gs:CPU_RTMP_RSP
405 movq %gs:CPU_THREAD, %r15
406 movq T_STACK(%r15), %rsp /* switch from user to kernel stack */
408 ASSERT_UPCALL_MASK_IS_SET
410 movl $UCS_SEL, REGOFF_CS(%rsp)
411 movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
412 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
413 movl $UDS_SEL, REGOFF_SS(%rsp)
415 movl %eax, %eax /* wrapper: sysc# -> %eax */
416 movq %rdi, REGOFF_RDI(%rsp)
417 movq %rsi, REGOFF_RSI(%rsp)
418 movq %rdx, REGOFF_RDX(%rsp)
419 movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */
420 movq %r10, %rcx /* arg[3] for direct calls */
422 movq %r8, REGOFF_R8(%rsp)
423 movq %r9, REGOFF_R9(%rsp)
424 movq %rax, REGOFF_RAX(%rsp)
425 movq %rbx, REGOFF_RBX(%rsp)
427 movq %rbp, REGOFF_RBP(%rsp)
428 movq %r10, REGOFF_R10(%rsp)
429 movq %gs:CPU_RTMP_RSP, %r11
430 movq %r11, REGOFF_RSP(%rsp)
431 movq %r12, REGOFF_R12(%rsp)
433 movq %r13, REGOFF_R13(%rsp)
434 movq %r14, REGOFF_R14(%rsp)
435 movq %gs:CPU_RTMP_R15, %r10
436 movq %r10, REGOFF_R15(%rsp)
437 movq $0, REGOFF_SAVFP(%rsp)
438 movq $0, REGOFF_SAVPC(%rsp)
441 * Copy these registers here in case we end up stopped with
442 * someone (like, say, /proc) messing with our register state.
443 * We don't -restore- them unless we have to in update_sregs.
445 * Since userland -can't- change fsbase or gsbase directly,
446 * and capturing them involves two serializing instructions,
447 * we don't bother to capture them here.
449 xorl %ebx, %ebx
450 movw %ds, %bx
451 movq %rbx, REGOFF_DS(%rsp)
452 movw %es, %bx
453 movq %rbx, REGOFF_ES(%rsp)
454 movw %fs, %bx
455 movq %rbx, REGOFF_FS(%rsp)
456 movw %gs, %bx
457 movq %rbx, REGOFF_GS(%rsp)
460 * Machine state saved in the regs structure on the stack
461 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
462 * %eax is the syscall number
463 * %rsp is the thread's stack, %r15 is curthread
464 * REG_RSP(%rsp) is the user's stack
467 SYSCALL_TRAPTRACE($TT_SYSC64)
469 movq %rsp, %rbp
471 movq T_LWP(%r15), %r14
472 ASSERT_NO_RUPDATE_PENDING(%r14)
473 ENABLE_INTR_FLAGS
475 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
476 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
478 ASSERT_LWPTOREGS(%r14, %rsp)
480 movb $LWP_SYS, LWP_STATE(%r14)
481 incq LWP_RU_SYSC(%r14)
482 movb $NORMALRETURN, LWP_EOSYS(%r14)
484 incq %gs:CPU_STATS_SYS_SYSCALL
486 movw %ax, T_SYSNUM(%r15)
487 movzbl T_PRE_SYS(%r15), %ebx
488 ORL_SYSCALLTRACE(%ebx)
489 testl %ebx, %ebx
490 jne _syscall_pre
492 _syscall_invoke:
493 movq REGOFF_RDI(%rbp), %rdi
494 movq REGOFF_RSI(%rbp), %rsi
495 movq REGOFF_RDX(%rbp), %rdx
496 movq REGOFF_RCX(%rbp), %rcx
497 movq REGOFF_R8(%rbp), %r8
498 movq REGOFF_R9(%rbp), %r9
500 cmpl $NSYSCALL, %eax
501 jae _syscall_ill
502 shll $SYSENT_SIZE_SHIFT, %eax
503 leaq sysent(%rax), %rbx
505 call *SY_CALLC(%rbx)
507 movq %rax, %r12
508 movq %rdx, %r13
511 * If the handler returns two ints, then we need to split the
512 * 64-bit return value into two 32-bit values.
514 testw $SE_32RVAL2, SY_FLAGS(%rbx)
515 je 5f
516 movq %r12, %r13
517 shrq $32, %r13 /* upper 32-bits into %edx */
518 movl %r12d, %r12d /* lower 32-bits into %eax */
521 * Optimistically assume that there's no post-syscall
522 * work to do. (This is to avoid having to call syscall_mstate()
523 * with interrupts disabled)
525 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
528 * We must protect ourselves from being descheduled here;
529 * If we were, and we ended up on another cpu, or another
530 * lwp got in ahead of us, it could change the segment
531 * registers without us noticing before we return to userland.
533 CLI(%r14)
534 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
535 jne _syscall_post
538 * We need to protect ourselves against non-canonical return values
539 * because Intel doesn't check for them on sysret (AMD does). Canonical
540 * addresses on current amd64 processors only use 48-bits for VAs; an
541 * address is canonical if all upper bits (47-63) are identical. If we
542 * find a non-canonical %rip, we opt to go through the full
543 * _syscall_post path which takes us into an iretq which is not
544 * susceptible to the same problems sysret is.
546 * We're checking for a canonical address by first doing an arithmetic
547 * shift. This will fill in the remaining bits with the value of bit 63.
548 * If the address were canonical, the register would now have either all
549 * zeroes or all ones in it. Therefore we add one (inducing overflow)
550 * and compare against 1. A canonical address will either be zero or one
551 * at this point, hence the use of ja.
553 * At this point, r12 and r13 have the return value so we can't use
554 * those registers.
556 movq REGOFF_RIP(%rsp), %rcx
557 sarq $47, %rcx
558 incq %rcx
559 cmpq $1, %rcx
560 ja _syscall_post
563 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
565 movq %r12, REGOFF_RAX(%rsp)
566 movq %r13, REGOFF_RDX(%rsp)
569 * To get back to userland, we need the return %rip in %rcx and
570 * the return %rfl in %r11d. The sysretq instruction also arranges
571 * to fix up %cs and %ss; everything else is our responsibility.
573 movq REGOFF_RDI(%rsp), %rdi
574 movq REGOFF_RSI(%rsp), %rsi
575 movq REGOFF_RDX(%rsp), %rdx
576 /* %rcx used to restore %rip value */
578 movq REGOFF_R8(%rsp), %r8
579 movq REGOFF_R9(%rsp), %r9
580 movq REGOFF_RAX(%rsp), %rax
581 movq REGOFF_RBX(%rsp), %rbx
583 movq REGOFF_RBP(%rsp), %rbp
584 movq REGOFF_R10(%rsp), %r10
585 /* %r11 used to restore %rfl value */
586 movq REGOFF_R12(%rsp), %r12
588 movq REGOFF_R13(%rsp), %r13
589 movq REGOFF_R14(%rsp), %r14
590 movq REGOFF_R15(%rsp), %r15
592 movq REGOFF_RIP(%rsp), %rcx
593 movl REGOFF_RFL(%rsp), %r11d
595 movq REGOFF_RSP(%rsp), %rsp
598 * There can be no instructions between the ALTENTRY below and
599 * SYSRET or we could end up breaking brand support. See label usage
600 * in sn1_brand_syscall_callback for an example.
602 ASSERT_UPCALL_MASK_IS_SET
603 ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
604 SWAPGS /* user gsbase */
605 SYSRETQ
606 /*NOTREACHED*/
607 SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
609 _syscall_pre:
610 call pre_syscall
611 movl %eax, %r12d
612 testl %eax, %eax
613 jne _syscall_post_call
615 * Didn't abort, so reload the syscall args and invoke the handler.
617 movzwl T_SYSNUM(%r15), %eax
618 jmp _syscall_invoke
620 _syscall_ill:
621 call nosys
622 movq %rax, %r12
623 movq %rdx, %r13
624 jmp _syscall_post_call
626 _syscall_post:
629 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
630 * so that we can account for the extra work it takes us to finish.
632 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
633 _syscall_post_call:
634 movq %r12, %rdi
635 movq %r13, %rsi
636 call post_syscall
637 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
638 jmp _sys_rtt
639 SET_SIZE(sys_syscall)
640 SET_SIZE(brand_sys_syscall)
644 ENTRY_NP(brand_sys_syscall32)
645 SWAPGS /* kernel gsbase */
646 XPV_TRAP_POP
647 BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
648 jmp nopop_sys_syscall32
650 ALTENTRY(sys_syscall32)
651 SWAPGS /* kernel gsbase */
652 XPV_TRAP_POP
654 nopop_sys_syscall32:
655 movl %esp, %r10d
656 movq %gs:CPU_THREAD, %r15
657 movq T_STACK(%r15), %rsp
658 movl %eax, %eax
660 movl $U32CS_SEL, REGOFF_CS(%rsp)
661 movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
662 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
663 movq %r10, REGOFF_RSP(%rsp)
664 movl $UDS_SEL, REGOFF_SS(%rsp)
666 _syscall32_save:
667 movl %edi, REGOFF_RDI(%rsp)
668 movl %esi, REGOFF_RSI(%rsp)
669 movl %ebp, REGOFF_RBP(%rsp)
670 movl %ebx, REGOFF_RBX(%rsp)
671 movl %edx, REGOFF_RDX(%rsp)
672 movl %ecx, REGOFF_RCX(%rsp)
673 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
674 movq $0, REGOFF_SAVFP(%rsp)
675 movq $0, REGOFF_SAVPC(%rsp)
678 * Copy these registers here in case we end up stopped with
679 * someone (like, say, /proc) messing with our register state.
680 * We don't -restore- them unless we have to in update_sregs.
682 * Since userland -can't- change fsbase or gsbase directly,
683 * we don't bother to capture them here.
685 xorl %ebx, %ebx
686 movw %ds, %bx
687 movq %rbx, REGOFF_DS(%rsp)
688 movw %es, %bx
689 movq %rbx, REGOFF_ES(%rsp)
690 movw %fs, %bx
691 movq %rbx, REGOFF_FS(%rsp)
692 movw %gs, %bx
693 movq %rbx, REGOFF_GS(%rsp)
696 * Application state saved in the regs structure on the stack
697 * %eax is the syscall number
698 * %rsp is the thread's stack, %r15 is curthread
699 * REG_RSP(%rsp) is the user's stack
702 SYSCALL_TRAPTRACE32($TT_SYSC)
704 movq %rsp, %rbp
706 movq T_LWP(%r15), %r14
707 ASSERT_NO_RUPDATE_PENDING(%r14)
709 ENABLE_INTR_FLAGS
711 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
712 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
714 ASSERT_LWPTOREGS(%r14, %rsp)
716 incq %gs:CPU_STATS_SYS_SYSCALL
719 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
720 * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or
721 * more succinctly:
723 * SA(MAXSYSARGS * sizeof (long)) == 64
725 #define SYS_DROP 64 /* drop for args */
726 subq $SYS_DROP, %rsp
727 movb $LWP_SYS, LWP_STATE(%r14)
728 movq %r15, %rdi
729 movq %rsp, %rsi
730 call syscall_entry
733 * Fetch the arguments copied onto the kernel stack and put
734 * them in the right registers to invoke a C-style syscall handler.
735 * %rax contains the handler address.
737 * Ideas for making all this go faster of course include simply
738 * forcibly fetching 6 arguments from the user stack under lofault
739 * protection, reverting to copyin_args only when watchpoints
740 * are in effect.
742 * (If we do this, make sure that exec and libthread leave
743 * enough space at the top of the stack to ensure that we'll
744 * never do a fetch from an invalid page.)
746 * Lots of ideas here, but they won't really help with bringup B-)
747 * Correctness can't wait, performance can wait a little longer ..
750 movq %rax, %rbx
751 movl 0(%rsp), %edi
752 movl 8(%rsp), %esi
753 movl 0x10(%rsp), %edx
754 movl 0x18(%rsp), %ecx
755 movl 0x20(%rsp), %r8d
756 movl 0x28(%rsp), %r9d
758 call *SY_CALLC(%rbx)
760 movq %rbp, %rsp /* pop the args */
763 * amd64 syscall handlers -always- return a 64-bit value in %rax.
764 * On the 32-bit kernel, they always return that value in %eax:%edx
765 * as required by the 32-bit ABI.
767 * Simulate the same behaviour by unconditionally splitting the
768 * return value in the same way.
770 movq %rax, %r13
771 shrq $32, %r13 /* upper 32-bits into %edx */
772 movl %eax, %r12d /* lower 32-bits into %eax */
775 * Optimistically assume that there's no post-syscall
776 * work to do. (This is to avoid having to call syscall_mstate()
777 * with interrupts disabled)
779 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
782 * We must protect ourselves from being descheduled here;
783 * If we were, and we ended up on another cpu, or another
784 * lwp got in ahead of us, it could change the segment
785 * registers without us noticing before we return to userland.
787 CLI(%r14)
788 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
789 jne _full_syscall_postsys32
790 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
793 * To get back to userland, we need to put the return %rip in %rcx and
794 * the return %rfl in %r11d. The sysret instruction also arranges
795 * to fix up %cs and %ss; everything else is our responsibility.
798 movl %r12d, %eax /* %eax: rval1 */
799 movl REGOFF_RBX(%rsp), %ebx
800 /* %ecx used for return pointer */
801 movl %r13d, %edx /* %edx: rval2 */
802 movl REGOFF_RBP(%rsp), %ebp
803 movl REGOFF_RSI(%rsp), %esi
804 movl REGOFF_RDI(%rsp), %edi
806 movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */
807 movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */
808 movl REGOFF_RSP(%rsp), %esp
810 ASSERT_UPCALL_MASK_IS_SET
811 ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
812 SWAPGS /* user gsbase */
813 SYSRETL
814 SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
815 /*NOTREACHED*/
817 _full_syscall_postsys32:
820 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
821 * so that we can account for the extra work it takes us to finish.
823 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
824 movq %r15, %rdi
825 movq %r12, %rsi /* rval1 - %eax */
826 movq %r13, %rdx /* rval2 - %edx */
827 call syscall_exit
828 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
829 jmp _sys_rtt
830 SET_SIZE(sys_syscall32)
831 SET_SIZE(brand_sys_syscall32)
835 * System call handler via the sysenter instruction
836 * Used only for 32-bit system calls on the 64-bit kernel.
838 * The caller in userland has arranged that:
840 * - %eax contains the syscall number
841 * - %ecx contains the user %esp
842 * - %edx contains the return %eip
843 * - the user stack contains the args to the syscall
845 * Hardware and (privileged) initialization code have arranged that by
846 * the time the sysenter instructions completes:
848 * - %rip is pointing to sys_sysenter (below).
849 * - %cs and %ss are set to kernel text and stack (data) selectors.
850 * - %rsp is pointing at the lwp's stack
851 * - interrupts have been disabled.
853 * Note that we are unable to return both "rvals" to userland with
854 * this call, as %edx is used by the sysexit instruction.
856 * One final complication in this routine is its interaction with
857 * single-stepping in a debugger. For most of the system call mechanisms,
858 * the CPU automatically clears the single-step flag before we enter the
859 * kernel. The sysenter mechanism does not clear the flag, so a user
860 * single-stepping through a libc routine may suddenly find themself
861 * single-stepping through the kernel. To detect this, kmdb compares the
862 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
863 * If it finds that we have single-stepped to a sysenter entry point, it
864 * explicitly clears the flag and executes the sys_sysenter routine.
866 * One final complication in this final complication is the fact that we
867 * have two different entry points for sysenter: brand_sys_sysenter and
868 * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping
869 * through the kernel with kmdb, we will eventually hit the instruction at
870 * sys_sysenter. kmdb cannot distinguish between that valid single-step
871 * and the undesirable one mentioned above. To avoid this situation, we
872 * simply add a jump over the instruction at sys_sysenter to make it
873 * impossible to single-step to it.
876 ENTRY_NP(brand_sys_sysenter)
877 SWAPGS /* kernel gsbase */
878 ALTENTRY(_brand_sys_sysenter_post_swapgs)
879 BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
881 * Jump over sys_sysenter to allow single-stepping as described
882 * above.
884 jmp _sys_sysenter_post_swapgs
886 ALTENTRY(sys_sysenter)
887 SWAPGS /* kernel gsbase */
889 ALTENTRY(_sys_sysenter_post_swapgs)
890 movq %gs:CPU_THREAD, %r15
892 movl $U32CS_SEL, REGOFF_CS(%rsp)
893 movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */
894 movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */
895 pushfq
896 popq %r10
897 movl $UDS_SEL, REGOFF_SS(%rsp)
900 * Set the interrupt flag before storing the flags to the
901 * flags image on the stack so we can return to user with
902 * interrupts enabled if we return via sys_rtt_syscall32
904 orq $PS_IE, %r10
905 movq %r10, REGOFF_RFL(%rsp)
907 movl %edi, REGOFF_RDI(%rsp)
908 movl %esi, REGOFF_RSI(%rsp)
909 movl %ebp, REGOFF_RBP(%rsp)
910 movl %ebx, REGOFF_RBX(%rsp)
911 movl %edx, REGOFF_RDX(%rsp)
912 movl %ecx, REGOFF_RCX(%rsp)
913 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
914 movq $0, REGOFF_SAVFP(%rsp)
915 movq $0, REGOFF_SAVPC(%rsp)
918 * Copy these registers here in case we end up stopped with
919 * someone (like, say, /proc) messing with our register state.
920 * We don't -restore- them unless we have to in update_sregs.
922 * Since userland -can't- change fsbase or gsbase directly,
923 * we don't bother to capture them here.
925 xorl %ebx, %ebx
926 movw %ds, %bx
927 movq %rbx, REGOFF_DS(%rsp)
928 movw %es, %bx
929 movq %rbx, REGOFF_ES(%rsp)
930 movw %fs, %bx
931 movq %rbx, REGOFF_FS(%rsp)
932 movw %gs, %bx
933 movq %rbx, REGOFF_GS(%rsp)
936 * Application state saved in the regs structure on the stack
937 * %eax is the syscall number
938 * %rsp is the thread's stack, %r15 is curthread
939 * REG_RSP(%rsp) is the user's stack
942 SYSCALL_TRAPTRACE($TT_SYSENTER)
944 movq %rsp, %rbp
946 movq T_LWP(%r15), %r14
947 ASSERT_NO_RUPDATE_PENDING(%r14)
949 ENABLE_INTR_FLAGS
952 * Catch 64-bit process trying to issue sysenter instruction
953 * on Nocona based systems.
955 movq LWP_PROCP(%r14), %rax
956 cmpq $DATAMODEL_ILP32, P_MODEL(%rax)
957 je 7f
960 * For a non-32-bit process, simulate a #ud, since that's what
961 * native hardware does. The traptrace entry (above) will
962 * let you know what really happened.
964 movq $T_ILLINST, REGOFF_TRAPNO(%rsp)
965 movq REGOFF_CS(%rsp), %rdi
966 movq %rdi, REGOFF_ERR(%rsp)
967 movq %rsp, %rdi
968 movq REGOFF_RIP(%rsp), %rsi
969 movl %gs:CPU_ID, %edx
970 call trap
971 jmp _sys_rtt
974 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
975 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */
977 ASSERT_LWPTOREGS(%r14, %rsp)
979 incq %gs:CPU_STATS_SYS_SYSCALL
982 * Make some space for MAXSYSARGS (currently 8) 32-bit args
983 * placed into 64-bit (long) arg slots, plus one 64-bit
984 * (long) arg count, maintaining 16 byte alignment.
986 subq $SYS_DROP, %rsp
987 movb $LWP_SYS, LWP_STATE(%r14)
988 movq %r15, %rdi
989 movq %rsp, %rsi
990 call syscall_entry
993 * Fetch the arguments copied onto the kernel stack and put
994 * them in the right registers to invoke a C-style syscall handler.
995 * %rax contains the handler address.
997 movq %rax, %rbx
998 movl 0(%rsp), %edi
999 movl 8(%rsp), %esi
1000 movl 0x10(%rsp), %edx
1001 movl 0x18(%rsp), %ecx
1002 movl 0x20(%rsp), %r8d
1003 movl 0x28(%rsp), %r9d
1005 call *SY_CALLC(%rbx)
1007 movq %rbp, %rsp /* pop the args */
1010 * amd64 syscall handlers -always- return a 64-bit value in %rax.
1011 * On the 32-bit kernel, the always return that value in %eax:%edx
1012 * as required by the 32-bit ABI.
1014 * Simulate the same behaviour by unconditionally splitting the
1015 * return value in the same way.
1017 movq %rax, %r13
1018 shrq $32, %r13 /* upper 32-bits into %edx */
1019 movl %eax, %r12d /* lower 32-bits into %eax */
1022 * Optimistically assume that there's no post-syscall
1023 * work to do. (This is to avoid having to call syscall_mstate()
1024 * with interrupts disabled)
1026 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1029 * We must protect ourselves from being descheduled here;
1030 * If we were, and we ended up on another cpu, or another
1031 * lwp got int ahead of us, it could change the segment
1032 * registers without us noticing before we return to userland.
1035 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1036 jne _full_syscall_postsys32
1037 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1040 * To get back to userland, load up the 32-bit registers and
1041 * sysexit back where we came from.
1045 * Interrupts will be turned on by the 'sti' executed just before
1046 * sysexit. The following ensures that restoring the user's rflags
1047 * doesn't enable interrupts too soon.
1049 andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1052 * (There's no point in loading up %edx because the sysexit
1053 * mechanism smashes it.)
1055 movl %r12d, %eax
1056 movl REGOFF_RBX(%rsp), %ebx
1057 movl REGOFF_RBP(%rsp), %ebp
1058 movl REGOFF_RSI(%rsp), %esi
1059 movl REGOFF_RDI(%rsp), %edi
1061 movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */
1062 pushq REGOFF_RFL(%rsp)
1063 popfq
1064 movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */
1065 ALTENTRY(sys_sysenter_swapgs_sysexit)
1066 swapgs
1068 sysexit
1069 SET_SIZE(sys_sysenter_swapgs_sysexit)
1070 SET_SIZE(sys_sysenter)
1071 SET_SIZE(_sys_sysenter_post_swapgs)
1072 SET_SIZE(brand_sys_sysenter)
1076 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1077 * the generic i386 libc to do system calls. We do a small amount of setup
1078 * before jumping into the existing sys_syscall32 path.
1081 ENTRY_NP(brand_sys_syscall_int)
1082 SWAPGS /* kernel gsbase */
1083 XPV_TRAP_POP
1084 call smap_enable
1085 BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1086 jmp nopop_syscall_int
1088 ALTENTRY(sys_syscall_int)
1089 SWAPGS /* kernel gsbase */
1090 XPV_TRAP_POP
1091 call smap_enable
1093 nopop_syscall_int:
1094 movq %gs:CPU_THREAD, %r15
1095 movq T_STACK(%r15), %rsp
1096 movl %eax, %eax
1098 * Set t_post_sys on this thread to force ourselves out via the slow
1099 * path. It might be possible at some later date to optimize this out
1100 * and use a faster return mechanism.
1102 movb $1, T_POST_SYS(%r15)
1103 CLEAN_CS
1104 jmp _syscall32_save
1106 * There should be no instructions between this label and SWAPGS/IRET
1107 * or we could end up breaking branded zone support. See the usage of
1108 * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1109 * for examples.
1111 ALTENTRY(sys_sysint_swapgs_iret)
1112 SWAPGS /* user gsbase */
1113 IRET
1114 /*NOTREACHED*/
1115 SET_SIZE(sys_sysint_swapgs_iret)
1116 SET_SIZE(sys_syscall_int)
1117 SET_SIZE(brand_sys_syscall_int)
1120 * Legacy 32-bit applications and old libc implementations do lcalls;
1121 * we should never get here because the LDT entry containing the syscall
1122 * segment descriptor has the "segment present" bit cleared, which means
1123 * we end up processing those system calls in trap() via a not-present trap.
1125 * We do it this way because a call gate unhelpfully does -nothing- to the
1126 * interrupt flag bit, so an interrupt can run us just after the lcall
1127 * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and
1128 * INTR_POP paths would have to be slightly more complex to dance around
1129 * this problem, and end up depending explicitly on the first
1130 * instruction of this handler being either swapgs or cli.
1134 ENTRY_NP(sys_lcall32)
1135 SWAPGS /* kernel gsbase */
1136 pushq $0
1137 pushq %rbp
1138 movq %rsp, %rbp
1139 leaq __lcall_panic_str(%rip), %rdi
1140 xorl %eax, %eax
1141 call panic
1142 SET_SIZE(sys_lcall32)
1144 __lcall_panic_str:
1145 .string "sys_lcall32: shouldn't be here!"
1148 * Declare a uintptr_t which covers the entire pc range of syscall
1149 * handlers for the stack walkers that need this.
1151 .align CPTRSIZE
1152 .globl _allsyscalls_size
1153 .type _allsyscalls_size, @object
1154 _allsyscalls_size:
1155 .NWORD . - _allsyscalls
1156 SET_SIZE(_allsyscalls_size)
1160 * These are the thread context handlers for lwps using sysenter/sysexit.
1165 * setting this value to zero as we switch away causes the
1166 * stack-pointer-on-sysenter to be NULL, ensuring that we
1167 * don't silently corrupt another (preempted) thread stack
1168 * when running an lwp that (somehow) didn't get sep_restore'd
1170 ENTRY_NP(sep_save)
1171 xorl %edx, %edx
1172 xorl %eax, %eax
1173 movl $MSR_INTC_SEP_ESP, %ecx
1174 wrmsr
1176 SET_SIZE(sep_save)
1179 * Update the kernel stack pointer as we resume onto this cpu.
1181 ENTRY_NP(sep_restore)
1182 movq %rdi, %rdx
1183 shrq $32, %rdx
1184 movl %edi, %eax
1185 movl $MSR_INTC_SEP_ESP, %ecx
1186 wrmsr
1188 SET_SIZE(sep_restore)