uts: make emu10k non-verbose
[unleashed.git] / kernel / vm / vm_page.c
blobd7174aceafffa69f4d1721c6081d47d511fbd235
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
41 * VM - physical page management.
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/errno.h>
49 #include <sys/time.h>
50 #include <sys/vnode.h>
51 #include <sys/vm.h>
52 #include <sys/vtrace.h>
53 #include <sys/swap.h>
54 #include <sys/cmn_err.h>
55 #include <sys/tuneable.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cpuvar.h>
58 #include <sys/callb.h>
59 #include <sys/debug.h>
60 #include <sys/tnf_probe.h>
61 #include <sys/condvar_impl.h>
62 #include <sys/mem_config.h>
63 #include <sys/mem_cage.h>
64 #include <sys/kmem.h>
65 #include <sys/atomic.h>
66 #include <sys/strlog.h>
67 #include <sys/mman.h>
68 #include <sys/ontrap.h>
69 #include <sys/lgrp.h>
70 #include <sys/vfs.h>
72 #include <vm/hat.h>
73 #include <vm/anon.h>
74 #include <vm/page.h>
75 #include <vm/seg.h>
76 #include <vm/pvn.h>
77 #include <vm/seg_kmem.h>
78 #include <vm/vm_dep.h>
79 #include <sys/vm_usage.h>
80 #include <sys/fs_subr.h>
81 #include <sys/ddi.h>
82 #include <sys/modctl.h>
84 static pgcnt_t max_page_get; /* max page_get request size in pages */
85 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */
88 * freemem_lock protects all freemem variables:
89 * availrmem. Also this lock protects the globals which track the
90 * availrmem changes for accurate kernel footprint calculation.
91 * See below for an explanation of these
92 * globals.
94 kmutex_t freemem_lock;
95 pgcnt_t availrmem;
96 pgcnt_t availrmem_initial;
99 * These globals track availrmem changes to get a more accurate
100 * estimate of tke kernel size. Historically pp_kernel is used for
101 * kernel size and is based on availrmem. But availrmem is adjusted for
102 * locked pages in the system not just for kernel locked pages.
103 * These new counters will track the pages locked through segvn and
104 * by explicit user locking.
106 * pages_locked : How many pages are locked because of user specified
107 * locking through mlock or plock.
109 * pages_useclaim,pages_claimed : These two variables track the
110 * claim adjustments because of the protection changes on a segvn segment.
112 * All these globals are protected by the same lock which protects availrmem.
114 pgcnt_t pages_locked = 0;
115 pgcnt_t pages_useclaim = 0;
116 pgcnt_t pages_claimed = 0;
120 * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122 static kmutex_t new_freemem_lock;
123 static uint_t freemem_wait; /* someone waiting for freemem */
124 static kcondvar_t freemem_cv;
127 * The logical page free list is maintained as two lists, the 'free'
128 * and the 'cache' lists.
129 * The free list contains those pages that should be reused first.
131 * The implementation of the lists is machine dependent.
132 * page_get_freelist(), page_get_cachelist(),
133 * page_list_sub(), and page_list_add()
134 * form the interface to the machine dependent implementation.
136 * Pages with p_free set are on the cache list.
137 * Pages with p_free and p_age set are on the free list,
139 * A page may be locked while on either list.
143 * free list accounting stuff.
146 * Spread out the value for the number of pages on the
147 * page free and page cache lists. If there is just one
148 * value, then it must be under just one lock.
149 * The lock contention and cache traffic are a real bother.
151 * When we acquire and then drop a single pcf lock
152 * we can start in the middle of the array of pcf structures.
153 * If we acquire more than one pcf lock at a time, we need to
154 * start at the front to avoid deadlocking.
156 * pcf_count holds the number of pages in each pool.
158 * pcf_block is set when page_create_get_something() has asked the
159 * PSM page freelist and page cachelist routines without specifying
160 * a color and nothing came back. This is used to block anything
161 * else from moving pages from one list to the other while the
162 * lists are searched again. If a page is freeed while pcf_block is
163 * set, then pcf_reserve is incremented. pcgs_unblock() takes care
164 * of clearning pcf_block, doing the wakeups, etc.
167 #define MAX_PCF_FANOUT NCPU
168 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
169 static uint_t pcf_fanout_mask = 0;
171 struct pcf {
172 kmutex_t pcf_lock; /* protects the structure */
173 uint_t pcf_count; /* page count */
174 uint_t pcf_wait; /* number of waiters */
175 uint_t pcf_block; /* pcgs flag to page_free() */
176 uint_t pcf_reserve; /* pages freed after pcf_block set */
177 uint_t pcf_fill[10]; /* to line up on the caches */
181 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
182 * it will hash the cpu to). This is done to prevent a drain condition
183 * from happening. This drain condition will occur when pcf_count decrement
184 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
185 * example of this shows up with device interrupts. The dma buffer is allocated
186 * by the cpu requesting the IO thus the pcf_count is decremented based on that.
187 * When the memory is returned by the interrupt thread, the pcf_count will be
188 * incremented based on the cpu servicing the interrupt.
190 static struct pcf pcf[MAX_PCF_FANOUT];
191 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
192 (randtick() >> 24)) & (pcf_fanout_mask))
194 static int pcf_decrement_bucket(pgcnt_t);
195 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 kmutex_t pcgs_lock; /* serializes page_create_get_ */
198 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */
199 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */
200 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */
202 #ifdef VM_STATS
205 * No locks, but so what, they are only statistics.
208 static struct page_tcnt {
209 int pc_free_cache; /* free's into cache list */
210 int pc_free_dontneed; /* free's with dontneed */
211 int pc_free_pageout; /* free's from pageout */
212 int pc_free_free; /* free's into free list */
213 int pc_free_pages; /* free's into large page free list */
214 int pc_destroy_pages; /* large page destroy's */
215 int pc_get_cache; /* get's from cache list */
216 int pc_get_free; /* get's from free list */
217 int pc_reclaim; /* reclaim's */
218 int pc_abortfree; /* abort's of free pages */
219 int pc_find_hit; /* find's that find page */
220 int pc_find_miss; /* find's that don't find page */
221 int pc_destroy_free; /* # of free pages destroyed */
222 int pc_addclaim_pages;
223 int pc_subclaim_pages;
224 int pc_free_replacement_page[2];
225 int pc_try_demote_pages[6];
226 int pc_demote_pages[2];
227 } pagecnt;
229 uint_t hashin_count;
230 uint_t hashin_not_held;
231 uint_t hashin_already;
233 uint_t hashout_count;
234 uint_t hashout_not_held;
236 uint_t page_create_count;
237 uint_t page_create_not_enough;
238 uint_t page_create_not_enough_again;
239 uint_t page_create_zero;
240 uint_t page_create_hashout;
241 uint_t page_create_page_lock_failed;
242 uint_t page_create_trylock_failed;
243 uint_t page_create_found_one;
244 uint_t page_create_hashin_failed;
245 uint_t page_create_dropped_phm;
247 uint_t page_create_new;
248 uint_t page_create_exists;
249 uint_t page_create_putbacks;
250 uint_t page_create_overshoot;
252 uint_t page_reclaim_zero;
253 uint_t page_reclaim_zero_locked;
255 uint_t page_rename_exists;
256 uint_t page_rename_count;
258 uint_t page_lookup_cnt[20];
259 uint_t page_lookup_nowait_cnt[10];
260 uint_t page_find_cnt;
261 uint_t page_exists_cnt;
262 uint_t page_exists_forreal_cnt;
263 uint_t page_lookup_dev_cnt;
264 uint_t get_cachelist_cnt;
265 uint_t page_create_cnt[10];
266 uint_t alloc_pages[9];
267 uint_t page_exphcontg[19];
268 uint_t page_create_large_cnt[10];
270 #endif
272 static inline page_t *
273 find_page(vnode_t *vnode, uoff_t off)
275 page_t key = {
276 .p_vnode = vnode,
277 .p_offset = off,
279 page_t *page;
281 page = avl_find(&vnode->v_pagecache, &key, NULL);
283 #ifdef VM_STATS
284 if (page != NULL)
285 pagecnt.pc_find_hit++;
286 else
287 pagecnt.pc_find_miss++;
288 #endif
290 return (page);
294 #ifdef DEBUG
295 #define MEMSEG_SEARCH_STATS
296 #endif
298 #ifdef MEMSEG_SEARCH_STATS
299 struct memseg_stats {
300 uint_t nsearch;
301 uint_t nlastwon;
302 uint_t nhashwon;
303 uint_t nnotfound;
304 } memseg_stats;
306 #define MEMSEG_STAT_INCR(v) \
307 atomic_inc_32(&memseg_stats.v)
308 #else
309 #define MEMSEG_STAT_INCR(x)
310 #endif
312 struct memseg *memsegs; /* list of memory segments */
315 * /etc/system tunable to control large page allocation hueristic.
317 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
318 * for large page allocation requests. If a large page is not readily
319 * avaliable on the local freelists we will go through additional effort
320 * to create a large page, potentially moving smaller pages around to coalesce
321 * larger pages in the local lgroup.
322 * Default value of LPAP_DEFAULT will go to remote freelists if large pages
323 * are not readily available in the local lgroup.
325 enum lpap {
326 LPAP_DEFAULT, /* default large page allocation policy */
327 LPAP_LOCAL /* local large page allocation policy */
330 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
332 static void page_init_mem_config(void);
333 static int page_do_hashin(page_t *, vnode_t *, uoff_t);
334 static void page_do_hashout(page_t *);
335 static void page_capture_init();
336 int page_capture_take_action(page_t *, uint_t, void *);
338 static void page_demote_vp_pages(page_t *);
341 void
342 pcf_init(void)
344 if (boot_ncpus != -1) {
345 pcf_fanout = boot_ncpus;
346 } else {
347 pcf_fanout = max_ncpus;
349 #ifdef sun4v
351 * Force at least 4 buckets if possible for sun4v.
353 pcf_fanout = MAX(pcf_fanout, 4);
354 #endif /* sun4v */
357 * Round up to the nearest power of 2.
359 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
360 if (!ISP2(pcf_fanout)) {
361 pcf_fanout = 1 << highbit(pcf_fanout);
363 if (pcf_fanout > MAX_PCF_FANOUT) {
364 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
367 pcf_fanout_mask = pcf_fanout - 1;
371 * vm subsystem related initialization
373 void
374 vm_init(void)
376 boolean_t callb_vm_cpr(void *, int);
378 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
379 page_init_mem_config();
380 page_retire_init();
381 vm_usage_init();
382 page_capture_init();
386 * This function is called at startup and when memory is added or deleted.
388 void
389 init_pages_pp_maximum()
391 static pgcnt_t p_min;
392 static pgcnt_t pages_pp_maximum_startup;
393 static pgcnt_t avrmem_delta;
394 static int init_done;
395 static int user_set; /* true if set in /etc/system */
397 if (init_done == 0) {
399 /* If the user specified a value, save it */
400 if (pages_pp_maximum != 0) {
401 user_set = 1;
402 pages_pp_maximum_startup = pages_pp_maximum;
406 * Setting of pages_pp_maximum is based first time
407 * on the value of availrmem just after the start-up
408 * allocations. To preserve this relationship at run
409 * time, use a delta from availrmem_initial.
411 ASSERT(availrmem_initial >= availrmem);
412 avrmem_delta = availrmem_initial - availrmem;
414 /* The allowable floor of pages_pp_maximum */
415 p_min = tune.t_minarmem + 100;
417 /* Make sure we don't come through here again. */
418 init_done = 1;
421 * Determine pages_pp_maximum, the number of currently available
422 * pages (availrmem) that can't be `locked'. If not set by
423 * the user, we set it to 4% of the currently available memory
424 * plus 4MB.
425 * But we also insist that it be greater than tune.t_minarmem;
426 * otherwise a process could lock down a lot of memory, get swapped
427 * out, and never have enough to get swapped back in.
429 if (user_set)
430 pages_pp_maximum = pages_pp_maximum_startup;
431 else
432 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
433 + btop(4 * 1024 * 1024);
435 if (pages_pp_maximum <= p_min) {
436 pages_pp_maximum = p_min;
440 void
441 set_max_page_get(pgcnt_t target_total_pages)
443 max_page_get = target_total_pages / 2;
446 static pgcnt_t pending_delete;
448 /*ARGSUSED*/
449 static void
450 page_mem_config_post_add(
451 void *arg,
452 pgcnt_t delta_pages)
454 set_max_page_get(total_pages - pending_delete);
455 init_pages_pp_maximum();
458 /*ARGSUSED*/
459 static int
460 page_mem_config_pre_del(
461 void *arg,
462 pgcnt_t delta_pages)
464 pgcnt_t nv;
466 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
467 set_max_page_get(total_pages - nv);
468 return (0);
471 /*ARGSUSED*/
472 static void
473 page_mem_config_post_del(
474 void *arg,
475 pgcnt_t delta_pages,
476 int cancelled)
478 pgcnt_t nv;
480 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
481 set_max_page_get(total_pages - nv);
482 if (!cancelled)
483 init_pages_pp_maximum();
486 static kphysm_setup_vector_t page_mem_config_vec = {
487 KPHYSM_SETUP_VECTOR_VERSION,
488 page_mem_config_post_add,
489 page_mem_config_pre_del,
490 page_mem_config_post_del,
493 static void
494 page_init_mem_config(void)
496 int ret;
498 ret = kphysm_setup_func_register(&page_mem_config_vec, NULL);
499 ASSERT(ret == 0);
503 * Evenly spread out the PCF counters for large free pages
505 static void
506 page_free_large_ctr(pgcnt_t npages)
508 static struct pcf *p = pcf;
509 pgcnt_t lump;
511 freemem += npages;
513 lump = roundup(npages, pcf_fanout) / pcf_fanout;
515 while (npages > 0) {
517 ASSERT(!p->pcf_block);
519 if (lump < npages) {
520 p->pcf_count += (uint_t)lump;
521 npages -= lump;
522 } else {
523 p->pcf_count += (uint_t)npages;
524 npages = 0;
527 ASSERT(!p->pcf_wait);
529 if (++p > &pcf[pcf_fanout - 1])
530 p = pcf;
533 ASSERT(npages == 0);
537 * Add a physical chunk of memory to the system free lists during startup.
538 * Platform specific startup() allocates the memory for the page structs.
540 * num - number of page structures
541 * base - page number (pfn) to be associated with the first page.
543 * Since we are doing this during startup (ie. single threaded), we will
544 * use shortcut routines to avoid any locking overhead while putting all
545 * these pages on the freelists.
547 * NOTE: Any changes performed to page_free(), must also be performed to
548 * add_physmem() since this is how we initialize all page_t's at
549 * boot time.
551 void
552 add_physmem(
553 page_t *pp,
554 pgcnt_t num,
555 pfn_t pnum)
557 page_t *root = NULL;
558 uint_t szc = page_num_pagesizes() - 1;
559 pgcnt_t large = page_get_pagecnt(szc);
560 pgcnt_t cnt = 0;
563 * Arbitrarily limit the max page_get request
564 * to 1/2 of the page structs we have.
566 total_pages += num;
567 set_max_page_get(total_pages);
569 PLCNT_MODIFY_MAX(pnum, (long)num);
572 * The physical space for the pages array
573 * representing ram pages has already been
574 * allocated. Here we initialize each lock
575 * in the page structure, and put each on
576 * the free list
578 for (; num; pp++, pnum++, num--) {
581 * this needs to fill in the page number
582 * and do any other arch specific initialization
584 add_physmem_cb(pp, pnum);
586 pp->p_lckcnt = 0;
587 pp->p_cowcnt = 0;
588 pp->p_slckcnt = 0;
591 * Initialize the page lock as unlocked, since nobody
592 * can see or access this page yet.
594 pp->p_selock = 0;
597 * Initialize IO lock
599 page_iolock_init(pp);
602 * initialize other fields in the page_t
604 PP_SETFREE(pp);
605 page_clr_all_props(pp);
606 PP_SETAGED(pp);
607 pp->p_offset = (uoff_t)-1;
608 pp->p_next = pp;
609 pp->p_prev = pp;
612 * Simple case: System doesn't support large pages.
614 if (szc == 0) {
615 pp->p_szc = 0;
616 page_free_at_startup(pp);
617 continue;
621 * Handle unaligned pages, we collect them up onto
622 * the root page until we have a full large page.
624 if (!IS_P2ALIGNED(pnum, large)) {
627 * If not in a large page,
628 * just free as small page.
630 if (root == NULL) {
631 pp->p_szc = 0;
632 page_free_at_startup(pp);
633 continue;
637 * Link a constituent page into the large page.
639 pp->p_szc = szc;
640 page_list_concat(&root, &pp);
643 * When large page is fully formed, free it.
645 if (++cnt == large) {
646 page_free_large_ctr(cnt);
647 page_list_add_pages(root, PG_LIST_ISINIT);
648 root = NULL;
649 cnt = 0;
651 continue;
655 * At this point we have a page number which
656 * is aligned. We assert that we aren't already
657 * in a different large page.
659 ASSERT(IS_P2ALIGNED(pnum, large));
660 ASSERT(root == NULL && cnt == 0);
663 * If insufficient number of pages left to form
664 * a large page, just free the small page.
666 if (num < large) {
667 pp->p_szc = 0;
668 page_free_at_startup(pp);
669 continue;
673 * Otherwise start a new large page.
675 pp->p_szc = szc;
676 cnt++;
677 root = pp;
679 ASSERT(root == NULL && cnt == 0);
683 * Find a page representing the specified [vp, offset].
684 * If we find the page but it is intransit coming in,
685 * it will have an "exclusive" lock and we wait for
686 * the i/o to complete. A page found on the free list
687 * is always reclaimed and then locked. On success, the page
688 * is locked, its data is valid and it isn't on the free
689 * list, while a NULL is returned if the page doesn't exist.
691 page_t *
692 page_lookup(vnode_t *vp, uoff_t off, se_t se)
694 return (page_lookup_create(vp, off, se, NULL, NULL, 0));
698 * Find a page representing the specified [vp, offset].
699 * We either return the one we found or, if passed in,
700 * create one with identity of [vp, offset] of the
701 * pre-allocated page. If we find existing page but it is
702 * intransit coming in, it will have an "exclusive" lock
703 * and we wait for the i/o to complete. A page found on
704 * the free list is always reclaimed and then locked.
705 * On success, the page is locked, its data is valid and
706 * it isn't on the free list, while a NULL is returned
707 * if the page doesn't exist and newpp is NULL;
709 page_t *
710 page_lookup_create(
711 vnode_t *vp,
712 uoff_t off,
713 se_t se,
714 page_t *newpp,
715 spgcnt_t *nrelocp,
716 int flags)
718 page_t *pp;
719 kmutex_t *phm;
720 ulong_t index;
721 uint_t es;
723 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
724 VM_STAT_ADD(page_lookup_cnt[0]);
725 ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
727 mutex_enter(page_vnode_mutex(vp));
728 top:
729 pp = find_page(vp, off);
731 if (pp != NULL) {
732 VM_STAT_ADD(page_lookup_cnt[1]);
733 es = (newpp != NULL) ? 1 : 0;
734 es |= flags;
736 VM_STAT_ADD(page_lookup_cnt[4]);
737 if (!page_lock_es(pp, se, vp, P_RECLAIM, es)) {
738 VM_STAT_ADD(page_lookup_cnt[5]);
739 goto top;
742 VM_STAT_ADD(page_lookup_cnt[6]);
744 mutex_exit(page_vnode_mutex(vp));
746 if (newpp != NULL && pp->p_szc < newpp->p_szc &&
747 PAGE_EXCL(pp) && nrelocp != NULL) {
748 ASSERT(nrelocp != NULL);
749 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
750 NULL);
751 if (*nrelocp > 0) {
752 VM_STAT_COND_ADD(*nrelocp == 1,
753 page_lookup_cnt[11]);
754 VM_STAT_COND_ADD(*nrelocp > 1,
755 page_lookup_cnt[12]);
756 pp = newpp;
757 se = SE_EXCL;
758 } else {
759 if (se == SE_SHARED) {
760 page_downgrade(pp);
762 VM_STAT_ADD(page_lookup_cnt[13]);
764 } else if (newpp != NULL && nrelocp != NULL) {
765 if (PAGE_EXCL(pp) && se == SE_SHARED) {
766 page_downgrade(pp);
768 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
769 page_lookup_cnt[14]);
770 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
771 page_lookup_cnt[15]);
772 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
773 page_lookup_cnt[16]);
774 } else if (newpp != NULL && PAGE_EXCL(pp)) {
775 se = SE_EXCL;
777 } else if (newpp != NULL) {
779 * If we have a preallocated page then
780 * insert it now and basically behave like
781 * page_create.
783 VM_STAT_ADD(page_lookup_cnt[18]);
785 * Since we hold the page hash mutex and
786 * just searched for this page, page_hashin
787 * had better not fail. If it does, that
788 * means some thread did not follow the
789 * page hash mutex rules. Panic now and
790 * get it over with. As usual, go down
791 * holding all the locks.
793 if (!page_hashin(newpp, vp, off, true)) {
794 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
795 panic("page_lookup_create: hashin failed %p %p %llx",
796 (void *)newpp, (void *)vp, off);
797 /*NOTREACHED*/
799 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
800 mutex_exit(page_vnode_mutex(vp));
801 page_set_props(newpp, P_REF);
802 page_io_lock(newpp);
803 pp = newpp;
804 se = SE_EXCL;
805 } else {
806 VM_STAT_ADD(page_lookup_cnt[19]);
807 mutex_exit(page_vnode_mutex(vp));
810 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
812 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
814 return (pp);
818 * Search the hash list for the page representing the
819 * specified [vp, offset] and return it locked. Skip
820 * free pages and pages that cannot be locked as requested.
821 * Used while attempting to kluster pages.
823 page_t *
824 page_lookup_nowait(vnode_t *vp, uoff_t off, se_t se)
826 page_t *pp;
828 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
829 VM_STAT_ADD(page_lookup_nowait_cnt[0]);
831 mutex_enter(page_vnode_mutex(vp));
832 pp = find_page(vp, off);
834 if (pp == NULL || PP_ISFREE(pp)) {
835 VM_STAT_ADD(page_lookup_nowait_cnt[2]);
836 pp = NULL;
837 } else {
838 if (!page_trylock(pp, se)) {
839 VM_STAT_ADD(page_lookup_nowait_cnt[3]);
840 pp = NULL;
841 } else {
842 VM_STAT_ADD(page_lookup_nowait_cnt[4]);
843 if (PP_ISFREE(pp)) {
844 VM_STAT_ADD(page_lookup_nowait_cnt[6]);
845 page_unlock(pp);
846 pp = NULL;
851 mutex_exit(page_vnode_mutex(vp));
853 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
855 return (pp);
859 * Search the hash list for a page with the specified [vp, off]
860 * that is known to exist and is already locked. This routine
861 * is typically used by segment SOFTUNLOCK routines.
863 page_t *
864 page_find(vnode_t *vp, uoff_t off)
866 page_t *pp;
868 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
869 VM_STAT_ADD(page_find_cnt);
871 mutex_enter(page_vnode_mutex(vp));
872 pp = find_page(vp, off);
873 mutex_exit(page_vnode_mutex(vp));
875 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
876 return (pp);
880 * Determine whether a page with the specified [vp, off]
881 * currently exists in the system. Obviously this should
882 * only be considered as a hint since nothing prevents the
883 * page from disappearing or appearing immediately after
884 * the return from this routine.
886 * Note: This is virtually identical to page_find. Can we combine them?
888 page_t *
889 page_exists(vnode_t *vp, uoff_t off)
891 page_t *page;
893 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
894 VM_STAT_ADD(page_exists_cnt);
896 mutex_enter(page_vnode_mutex(vp));
897 page = find_page(vp, off);
898 mutex_exit(page_vnode_mutex(vp));
900 return (page);
904 * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
905 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
906 * with these pages locked SHARED. If necessary reclaim pages from
907 * freelist. Return 1 if contiguous pages exist and 0 otherwise.
909 * If we fail to lock pages still return 1 if pages exist and contiguous.
910 * But in this case return value is just a hint. ppa array won't be filled.
911 * Caller should initialize ppa[0] as NULL to distinguish return value.
913 * Returns 0 if pages don't exist or not physically contiguous.
915 * This routine doesn't work for anonymous(swapfs) pages.
918 page_exists_physcontig(vnode_t *vp, uoff_t off, uint_t szc, page_t **ppa)
920 pgcnt_t pages;
921 pfn_t pfn;
922 page_t *rootpp;
923 pgcnt_t i;
924 pgcnt_t j;
925 uoff_t save_off = off;
926 page_t *pp;
927 uint_t pszc;
928 int loopcnt = 0;
930 ASSERT(szc != 0);
931 ASSERT(vp != NULL);
932 ASSERT(!IS_SWAPFSVP(vp));
933 ASSERT(!VN_ISKAS(vp));
935 again:
936 if (++loopcnt > 3) {
937 VM_STAT_ADD(page_exphcontg[0]);
938 return (0);
941 mutex_enter(page_vnode_mutex(vp));
942 pp = find_page(vp, off);
943 mutex_exit(page_vnode_mutex(vp));
945 VM_STAT_ADD(page_exphcontg[1]);
947 if (pp == NULL) {
948 VM_STAT_ADD(page_exphcontg[2]);
949 return (0);
952 pages = page_get_pagecnt(szc);
953 rootpp = pp;
954 pfn = rootpp->p_pagenum;
956 if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
957 VM_STAT_ADD(page_exphcontg[3]);
958 if (!page_trylock(pp, SE_SHARED)) {
959 VM_STAT_ADD(page_exphcontg[4]);
960 return (1);
963 * Also check whether p_pagenum was modified by DR.
965 if (pp->p_szc != pszc || pp->p_vnode != vp ||
966 pp->p_offset != off || pp->p_pagenum != pfn) {
967 VM_STAT_ADD(page_exphcontg[5]);
968 page_unlock(pp);
969 off = save_off;
970 goto again;
973 * szc was non zero and vnode and offset matched after we
974 * locked the page it means it can't become free on us.
976 ASSERT(!PP_ISFREE(pp));
977 if (!IS_P2ALIGNED(pfn, pages)) {
978 page_unlock(pp);
979 return (0);
981 ppa[0] = pp;
982 pp++;
983 off += PAGESIZE;
984 pfn++;
985 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
986 if (!page_trylock(pp, SE_SHARED)) {
987 VM_STAT_ADD(page_exphcontg[6]);
988 pp--;
989 while (i-- > 0) {
990 page_unlock(pp);
991 pp--;
993 ppa[0] = NULL;
994 return (1);
996 if (pp->p_szc != pszc) {
997 VM_STAT_ADD(page_exphcontg[7]);
998 page_unlock(pp);
999 pp--;
1000 while (i-- > 0) {
1001 page_unlock(pp);
1002 pp--;
1004 ppa[0] = NULL;
1005 off = save_off;
1006 goto again;
1009 * szc the same as for previous already locked pages
1010 * with right identity. Since this page had correct
1011 * szc after we locked it can't get freed or destroyed
1012 * and therefore must have the expected identity.
1014 ASSERT(!PP_ISFREE(pp));
1015 if (pp->p_vnode != vp ||
1016 pp->p_offset != off) {
1017 panic("page_exists_physcontig: "
1018 "large page identity doesn't match");
1020 ppa[i] = pp;
1021 ASSERT(pp->p_pagenum == pfn);
1023 VM_STAT_ADD(page_exphcontg[8]);
1024 ppa[pages] = NULL;
1025 return (1);
1026 } else if (pszc >= szc) {
1027 VM_STAT_ADD(page_exphcontg[9]);
1028 if (!IS_P2ALIGNED(pfn, pages)) {
1029 return (0);
1031 return (1);
1034 if (!IS_P2ALIGNED(pfn, pages)) {
1035 VM_STAT_ADD(page_exphcontg[10]);
1036 return (0);
1039 if (page_numtomemseg_nolock(pfn) !=
1040 page_numtomemseg_nolock(pfn + pages - 1)) {
1041 VM_STAT_ADD(page_exphcontg[11]);
1042 return (0);
1046 * We loop up 4 times across pages to promote page size.
1047 * We're extra cautious to promote page size atomically with respect
1048 * to everybody else. But we can probably optimize into 1 loop if
1049 * this becomes an issue.
1052 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1053 if (!page_trylock(pp, SE_EXCL)) {
1054 VM_STAT_ADD(page_exphcontg[12]);
1055 break;
1058 * Check whether p_pagenum was modified by DR.
1060 if (pp->p_pagenum != pfn) {
1061 page_unlock(pp);
1062 break;
1064 if (pp->p_vnode != vp ||
1065 pp->p_offset != off) {
1066 VM_STAT_ADD(page_exphcontg[13]);
1067 page_unlock(pp);
1068 break;
1070 if (pp->p_szc >= szc) {
1071 ASSERT(i == 0);
1072 page_unlock(pp);
1073 off = save_off;
1074 goto again;
1078 if (i != pages) {
1079 VM_STAT_ADD(page_exphcontg[14]);
1080 --pp;
1081 while (i-- > 0) {
1082 page_unlock(pp);
1083 --pp;
1085 return (0);
1088 pp = rootpp;
1089 for (i = 0; i < pages; i++, pp++) {
1090 if (PP_ISFREE(pp)) {
1091 VM_STAT_ADD(page_exphcontg[15]);
1092 ASSERT(!PP_ISAGED(pp));
1093 ASSERT(pp->p_szc == 0);
1094 if (!page_reclaim(pp, NULL)) {
1095 break;
1097 } else {
1098 ASSERT(pp->p_szc < szc);
1099 VM_STAT_ADD(page_exphcontg[16]);
1100 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1103 if (i < pages) {
1104 VM_STAT_ADD(page_exphcontg[17]);
1106 * page_reclaim failed because we were out of memory.
1107 * drop the rest of the locks and return because this page
1108 * must be already reallocated anyway.
1110 pp = rootpp;
1111 for (j = 0; j < pages; j++, pp++) {
1112 if (j != i) {
1113 page_unlock(pp);
1116 return (0);
1119 off = save_off;
1120 pp = rootpp;
1121 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1122 ASSERT(PAGE_EXCL(pp));
1123 ASSERT(!PP_ISFREE(pp));
1124 ASSERT(!hat_page_is_mapped(pp));
1125 ASSERT(pp->p_vnode == vp);
1126 ASSERT(pp->p_offset == off);
1127 pp->p_szc = szc;
1129 pp = rootpp;
1130 for (i = 0; i < pages; i++, pp++) {
1131 if (ppa == NULL) {
1132 page_unlock(pp);
1133 } else {
1134 ppa[i] = pp;
1135 page_downgrade(ppa[i]);
1138 if (ppa != NULL) {
1139 ppa[pages] = NULL;
1141 VM_STAT_ADD(page_exphcontg[18]);
1142 ASSERT(vn_has_cached_data(vp));
1143 return (1);
1147 * Determine whether a page with the specified [vp, off]
1148 * currently exists in the system and if so return its
1149 * size code. Obviously this should only be considered as
1150 * a hint since nothing prevents the page from disappearing
1151 * or appearing immediately after the return from this routine.
1154 page_exists_forreal(vnode_t *vp, uoff_t off, uint_t *szc)
1156 page_t *pp;
1157 int rc = 0;
1159 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1160 ASSERT(szc != NULL);
1161 VM_STAT_ADD(page_exists_forreal_cnt);
1163 mutex_enter(page_vnode_mutex(vp));
1164 pp = find_page(vp, off);
1165 if (pp != NULL) {
1166 *szc = pp->p_szc;
1167 rc = 1;
1169 mutex_exit(page_vnode_mutex(vp));
1170 return (rc);
1173 /* wakeup threads waiting for pages in page_create_get_something() */
1174 void
1175 wakeup_pcgs(void)
1177 if (!CV_HAS_WAITERS(&pcgs_cv))
1178 return;
1179 cv_broadcast(&pcgs_cv);
1183 * 'freemem' is used all over the kernel as an indication of how many
1184 * pages are free (either on the cache list or on the free page list)
1185 * in the system. In very few places is a really accurate 'freemem'
1186 * needed. To avoid contention of the lock protecting a the
1187 * single freemem, it was spread out into NCPU buckets. Set_freemem
1188 * sets freemem to the total of all NCPU buckets. It is called from
1189 * clock() on each TICK.
1191 void
1192 set_freemem()
1194 struct pcf *p;
1195 ulong_t t;
1196 uint_t i;
1198 t = 0;
1199 p = pcf;
1200 for (i = 0; i < pcf_fanout; i++) {
1201 t += p->pcf_count;
1202 p++;
1204 freemem = t;
1207 * Don't worry about grabbing mutex. It's not that
1208 * critical if we miss a tick or two. This is
1209 * where we wakeup possible delayers in
1210 * page_create_get_something().
1212 wakeup_pcgs();
1215 ulong_t
1216 get_freemem()
1218 struct pcf *p;
1219 ulong_t t;
1220 uint_t i;
1222 t = 0;
1223 p = pcf;
1224 for (i = 0; i < pcf_fanout; i++) {
1225 t += p->pcf_count;
1226 p++;
1229 * We just calculated it, might as well set it.
1231 freemem = t;
1232 return (t);
1236 * Acquire all of the page cache & free (pcf) locks.
1238 void
1239 pcf_acquire_all()
1241 struct pcf *p;
1242 uint_t i;
1244 p = pcf;
1245 for (i = 0; i < pcf_fanout; i++) {
1246 mutex_enter(&p->pcf_lock);
1247 p++;
1252 * Release all the pcf_locks.
1254 void
1255 pcf_release_all()
1257 struct pcf *p;
1258 uint_t i;
1260 p = pcf;
1261 for (i = 0; i < pcf_fanout; i++) {
1262 mutex_exit(&p->pcf_lock);
1263 p++;
1268 * Inform the VM system that we need some pages freed up.
1269 * Calls must be symmetric, e.g.:
1271 * page_needfree(100);
1272 * wait a bit;
1273 * page_needfree(-100);
1275 void
1276 page_needfree(spgcnt_t npages)
1278 mutex_enter(&new_freemem_lock);
1279 needfree += npages;
1280 mutex_exit(&new_freemem_lock);
1284 * Throttle for page_create(): try to prevent freemem from dropping
1285 * below throttlefree. We can't provide a 100% guarantee because
1286 * KM_NOSLEEP allocations, page_reclaim(), and various other things
1287 * nibble away at the freelist. However, we can block all PG_WAIT
1288 * allocations until memory becomes available. The motivation is
1289 * that several things can fall apart when there's no free memory:
1291 * (1) If pageout() needs memory to push a page, the system deadlocks.
1293 * (2) By (broken) specification, timeout(9F) can neither fail nor
1294 * block, so it has no choice but to panic the system if it
1295 * cannot allocate a callout structure.
1297 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1298 * it panics if it cannot allocate a callback structure.
1300 * (4) Untold numbers of third-party drivers have not yet been hardened
1301 * against KM_NOSLEEP and/or allocb() failures; they simply assume
1302 * success and panic the system with a data fault on failure.
1303 * (The long-term solution to this particular problem is to ship
1304 * hostile fault-injecting DEBUG kernels with the DDK.)
1306 * It is theoretically impossible to guarantee success of non-blocking
1307 * allocations, but in practice, this throttle is very hard to break.
1309 static int
1310 page_create_throttle(pgcnt_t npages, int flags)
1312 ulong_t fm;
1313 uint_t i;
1314 pgcnt_t tf; /* effective value of throttlefree */
1317 * Normal priority allocations.
1319 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1320 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1321 return (freemem >= npages + throttlefree);
1325 * Never deny pages when:
1326 * - it's a thread that cannot block [NOMEMWAIT()]
1327 * - the allocation cannot block and must not fail
1328 * - the allocation cannot block and is pageout dispensated
1330 if (NOMEMWAIT() ||
1331 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1332 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1333 return (1);
1336 * If the allocation can't block, we look favorably upon it
1337 * unless we're below pageout_reserve. In that case we fail
1338 * the allocation because we want to make sure there are a few
1339 * pages available for pageout.
1341 if ((flags & PG_WAIT) == 0)
1342 return (freemem >= npages + pageout_reserve);
1344 /* Calculate the effective throttlefree value */
1345 tf = throttlefree -
1346 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1348 cv_signal(&proc_pageout->p_cv);
1350 for (;;) {
1351 fm = 0;
1352 pcf_acquire_all();
1353 mutex_enter(&new_freemem_lock);
1354 for (i = 0; i < pcf_fanout; i++) {
1355 fm += pcf[i].pcf_count;
1356 pcf[i].pcf_wait++;
1357 mutex_exit(&pcf[i].pcf_lock);
1359 freemem = fm;
1360 if (freemem >= npages + tf) {
1361 mutex_exit(&new_freemem_lock);
1362 break;
1364 needfree += npages;
1365 freemem_wait++;
1366 cv_wait(&freemem_cv, &new_freemem_lock);
1367 freemem_wait--;
1368 needfree -= npages;
1369 mutex_exit(&new_freemem_lock);
1371 return (1);
1375 * page_create_wait() is called to either coalesce pages from the
1376 * different pcf buckets or to wait because there simply are not
1377 * enough pages to satisfy the caller's request.
1379 * Sadly, this is called from platform/vm/vm_machdep.c
1382 page_create_wait(pgcnt_t npages, uint_t flags)
1384 pgcnt_t total;
1385 uint_t i;
1386 struct pcf *p;
1389 * Wait until there are enough free pages to satisfy our
1390 * entire request.
1391 * We set needfree += npages before prodding pageout, to make sure
1392 * it does real work when npages > lotsfree > freemem.
1394 VM_STAT_ADD(page_create_not_enough);
1396 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1397 checkagain:
1398 if ((flags & PG_NORELOC) &&
1399 kcage_freemem < kcage_throttlefree + npages)
1400 (void) kcage_create_throttle(npages, flags);
1402 if (freemem < npages + throttlefree)
1403 if (!page_create_throttle(npages, flags))
1404 return (0);
1406 if (pcf_decrement_bucket(npages) ||
1407 pcf_decrement_multiple(&total, npages, 0))
1408 return (1);
1411 * All of the pcf locks are held, there are not enough pages
1412 * to satisfy the request (npages < total).
1413 * Be sure to acquire the new_freemem_lock before dropping
1414 * the pcf locks. This prevents dropping wakeups in page_free().
1415 * The order is always pcf_lock then new_freemem_lock.
1417 * Since we hold all the pcf locks, it is a good time to set freemem.
1419 * If the caller does not want to wait, return now.
1420 * Else turn the pageout daemon loose to find something
1421 * and wait till it does.
1424 freemem = total;
1426 if ((flags & PG_WAIT) == 0) {
1427 pcf_release_all();
1429 return (0);
1432 ASSERT(proc_pageout != NULL);
1433 cv_signal(&proc_pageout->p_cv);
1436 * We are going to wait.
1437 * We currently hold all of the pcf_locks,
1438 * get the new_freemem_lock (it protects freemem_wait),
1439 * before dropping the pcf_locks.
1441 mutex_enter(&new_freemem_lock);
1443 p = pcf;
1444 for (i = 0; i < pcf_fanout; i++) {
1445 p->pcf_wait++;
1446 mutex_exit(&p->pcf_lock);
1447 p++;
1450 needfree += npages;
1451 freemem_wait++;
1453 cv_wait(&freemem_cv, &new_freemem_lock);
1455 freemem_wait--;
1456 needfree -= npages;
1458 mutex_exit(&new_freemem_lock);
1460 VM_STAT_ADD(page_create_not_enough_again);
1461 goto checkagain;
1464 * A routine to do the opposite of page_create_wait().
1466 void
1467 page_create_putback(spgcnt_t npages)
1469 struct pcf *p;
1470 pgcnt_t lump;
1471 uint_t *which;
1474 * When a contiguous lump is broken up, we have to
1475 * deal with lots of pages (min 64) so lets spread
1476 * the wealth around.
1478 lump = roundup(npages, pcf_fanout) / pcf_fanout;
1479 freemem += npages;
1481 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1482 which = &p->pcf_count;
1484 mutex_enter(&p->pcf_lock);
1486 if (p->pcf_block) {
1487 which = &p->pcf_reserve;
1490 if (lump < npages) {
1491 *which += (uint_t)lump;
1492 npages -= lump;
1493 } else {
1494 *which += (uint_t)npages;
1495 npages = 0;
1498 if (p->pcf_wait) {
1499 mutex_enter(&new_freemem_lock);
1501 * Check to see if some other thread
1502 * is actually waiting. Another bucket
1503 * may have woken it up by now. If there
1504 * are no waiters, then set our pcf_wait
1505 * count to zero to avoid coming in here
1506 * next time.
1508 if (freemem_wait) {
1509 if (npages > 1) {
1510 cv_broadcast(&freemem_cv);
1511 } else {
1512 cv_signal(&freemem_cv);
1514 p->pcf_wait--;
1515 } else {
1516 p->pcf_wait = 0;
1518 mutex_exit(&new_freemem_lock);
1520 mutex_exit(&p->pcf_lock);
1522 ASSERT(npages == 0);
1526 * A helper routine for page_create_get_something.
1527 * The indenting got to deep down there.
1528 * Unblock the pcf counters. Any pages freed after
1529 * pcf_block got set are moved to pcf_count and
1530 * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1532 static void
1533 pcgs_unblock(void)
1535 int i;
1536 struct pcf *p;
1538 /* Update freemem while we're here. */
1539 freemem = 0;
1540 p = pcf;
1541 for (i = 0; i < pcf_fanout; i++) {
1542 mutex_enter(&p->pcf_lock);
1543 ASSERT(p->pcf_count == 0);
1544 p->pcf_count = p->pcf_reserve;
1545 p->pcf_block = 0;
1546 freemem += p->pcf_count;
1547 if (p->pcf_wait) {
1548 mutex_enter(&new_freemem_lock);
1549 if (freemem_wait) {
1550 if (p->pcf_reserve > 1) {
1551 cv_broadcast(&freemem_cv);
1552 p->pcf_wait = 0;
1553 } else {
1554 cv_signal(&freemem_cv);
1555 p->pcf_wait--;
1557 } else {
1558 p->pcf_wait = 0;
1560 mutex_exit(&new_freemem_lock);
1562 p->pcf_reserve = 0;
1563 mutex_exit(&p->pcf_lock);
1564 p++;
1569 * Called from page_create_va() when both the cache and free lists
1570 * have been checked once.
1572 * Either returns a page or panics since the accounting was done
1573 * way before we got here.
1575 * We don't come here often, so leave the accounting on permanently.
1578 #define MAX_PCGS 100
1580 #ifdef DEBUG
1581 #define PCGS_TRIES 100
1582 #else /* DEBUG */
1583 #define PCGS_TRIES 10
1584 #endif /* DEBUG */
1586 #ifdef VM_STATS
1587 uint_t pcgs_counts[PCGS_TRIES];
1588 uint_t pcgs_too_many;
1589 uint_t pcgs_entered;
1590 uint_t pcgs_entered_noreloc;
1591 uint_t pcgs_locked;
1592 uint_t pcgs_cagelocked;
1593 #endif /* VM_STATS */
1595 static page_t *
1596 page_create_get_something(vnode_t *vp, uoff_t off, struct seg *seg,
1597 caddr_t vaddr, uint_t flags)
1599 uint_t count;
1600 page_t *pp;
1601 uint_t locked, i;
1602 struct pcf *p;
1603 lgrp_t *lgrp;
1604 int cagelocked = 0;
1606 VM_STAT_ADD(pcgs_entered);
1609 * Tap any reserve freelists: if we fail now, we'll die
1610 * since the page(s) we're looking for have already been
1611 * accounted for.
1613 flags |= PG_PANIC;
1615 if ((flags & PG_NORELOC) != 0) {
1616 VM_STAT_ADD(pcgs_entered_noreloc);
1618 * Requests for free pages from critical threads
1619 * such as pageout still won't throttle here, but
1620 * we must try again, to give the cageout thread
1621 * another chance to catch up. Since we already
1622 * accounted for the pages, we had better get them
1623 * this time.
1625 * N.B. All non-critical threads acquire the pcgs_cagelock
1626 * to serialize access to the freelists. This implements a
1627 * turnstile-type synchornization to avoid starvation of
1628 * critical requests for PG_NORELOC memory by non-critical
1629 * threads: all non-critical threads must acquire a 'ticket'
1630 * before passing through, which entails making sure
1631 * kcage_freemem won't fall below minfree prior to grabbing
1632 * pages from the freelists.
1634 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1635 mutex_enter(&pcgs_cagelock);
1636 cagelocked = 1;
1637 VM_STAT_ADD(pcgs_cagelocked);
1642 * Time to get serious.
1643 * We failed to get a `correctly colored' page from both the
1644 * free and cache lists.
1645 * We escalate in stage.
1647 * First try both lists without worring about color.
1649 * Then, grab all page accounting locks (ie. pcf[]) and
1650 * steal any pages that they have and set the pcf_block flag to
1651 * stop deletions from the lists. This will help because
1652 * a page can get added to the free list while we are looking
1653 * at the cache list, then another page could be added to the cache
1654 * list allowing the page on the free list to be removed as we
1655 * move from looking at the cache list to the free list. This
1656 * could happen over and over. We would never find the page
1657 * we have accounted for.
1659 * Noreloc pages are a subset of the global (relocatable) page pool.
1660 * They are not tracked separately in the pcf bins, so it is
1661 * impossible to know when doing pcf accounting if the available
1662 * page(s) are noreloc pages or not. When looking for a noreloc page
1663 * it is quite easy to end up here even if the global (relocatable)
1664 * page pool has plenty of free pages but the noreloc pool is empty.
1666 * When the noreloc pool is empty (or low), additional noreloc pages
1667 * are created by converting pages from the global page pool. This
1668 * process will stall during pcf accounting if the pcf bins are
1669 * already locked. Such is the case when a noreloc allocation is
1670 * looping here in page_create_get_something waiting for more noreloc
1671 * pages to appear.
1673 * Short of adding a new field to the pcf bins to accurately track
1674 * the number of free noreloc pages, we instead do not grab the
1675 * pcgs_lock, do not set the pcf blocks and do not timeout when
1676 * allocating a noreloc page. This allows noreloc allocations to
1677 * loop without blocking global page pool allocations.
1679 * NOTE: the behaviour of page_create_get_something has not changed
1680 * for the case of global page pool allocations.
1683 flags &= ~PG_MATCH_COLOR;
1684 locked = 0;
1685 #if defined(__i386) || defined(__amd64)
1686 flags = page_create_update_flags_x86(flags);
1687 #endif
1689 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1691 for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1692 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1693 flags, lgrp);
1694 if (pp == NULL) {
1695 pp = page_get_cachelist(vp, off, seg, vaddr,
1696 flags, lgrp);
1698 if (pp == NULL) {
1700 * Serialize. Don't fight with other pcgs().
1702 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1703 mutex_enter(&pcgs_lock);
1704 VM_STAT_ADD(pcgs_locked);
1705 locked = 1;
1706 p = pcf;
1707 for (i = 0; i < pcf_fanout; i++) {
1708 mutex_enter(&p->pcf_lock);
1709 ASSERT(p->pcf_block == 0);
1710 p->pcf_block = 1;
1711 p->pcf_reserve = p->pcf_count;
1712 p->pcf_count = 0;
1713 mutex_exit(&p->pcf_lock);
1714 p++;
1716 freemem = 0;
1719 if (count) {
1721 * Since page_free() puts pages on
1722 * a list then accounts for it, we
1723 * just have to wait for page_free()
1724 * to unlock any page it was working
1725 * with. The page_lock()-page_reclaim()
1726 * path falls in the same boat.
1728 * We don't need to check on the
1729 * PG_WAIT flag, we have already
1730 * accounted for the page we are
1731 * looking for in page_create_va().
1733 * We just wait a moment to let any
1734 * locked pages on the lists free up,
1735 * then continue around and try again.
1737 * Will be awakened by set_freemem().
1739 mutex_enter(&pcgs_wait_lock);
1740 cv_wait(&pcgs_cv, &pcgs_wait_lock);
1741 mutex_exit(&pcgs_wait_lock);
1743 } else {
1744 #ifdef VM_STATS
1745 if (count >= PCGS_TRIES) {
1746 VM_STAT_ADD(pcgs_too_many);
1747 } else {
1748 VM_STAT_ADD(pcgs_counts[count]);
1750 #endif
1751 if (locked) {
1752 pcgs_unblock();
1753 mutex_exit(&pcgs_lock);
1755 if (cagelocked)
1756 mutex_exit(&pcgs_cagelock);
1757 return (pp);
1761 * we go down holding the pcf locks.
1763 panic("no %spage found %d",
1764 ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1765 /*NOTREACHED*/
1769 * Create enough pages for "bytes" worth of data starting at
1770 * "off" in "vp".
1772 * Where flag must be one of:
1774 * PG_EXCL: Exclusive create (fail if any page already
1775 * exists in the page cache) which does not
1776 * wait for memory to become available.
1778 * PG_WAIT: Non-exclusive create which can wait for
1779 * memory to become available.
1781 * PG_PHYSCONTIG: Allocate physically contiguous pages.
1782 * (Not Supported)
1784 * A doubly linked list of pages is returned to the caller. Each page
1785 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1786 * lock.
1788 * Unable to change the parameters to page_create() in a minor release,
1789 * we renamed page_create() to page_create_va(), changed all known calls
1790 * from page_create() to page_create_va(), and created this wrapper.
1792 * Upon a major release, we should break compatibility by deleting this
1793 * wrapper, and replacing all the strings "page_create_va", with "page_create".
1795 * NOTE: There is a copy of this interface as page_create_io() in
1796 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1797 * there.
1799 page_t *
1800 page_create(vnode_t *vp, uoff_t off, size_t bytes, uint_t flags)
1802 caddr_t random_vaddr;
1803 struct seg kseg;
1805 #ifdef DEBUG
1806 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1807 (void *)caller());
1808 #endif
1810 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1811 (uintptr_t)(off >> PAGESHIFT));
1812 kseg.s_as = &kas;
1814 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1817 #ifdef DEBUG
1818 uint32_t pg_alloc_pgs_mtbf = 0;
1819 #endif
1822 * Used for large page support. It will attempt to allocate
1823 * a large page(s) off the freelist.
1825 * Returns non zero on failure.
1828 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1829 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
1831 pgcnt_t npgs, curnpgs, totpgs;
1832 size_t pgsz;
1833 page_t *pplist = NULL, *pp;
1834 int err = 0;
1835 lgrp_t *lgrp;
1837 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1838 ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
1841 * Check if system heavily prefers local large pages over remote
1842 * on systems with multiple lgroups.
1844 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
1845 pgflags = PG_LOCAL;
1848 VM_STAT_ADD(alloc_pages[0]);
1850 #ifdef DEBUG
1851 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
1852 return (ENOMEM);
1854 #endif
1857 * One must be NULL but not both.
1858 * And one must be non NULL but not both.
1860 ASSERT(basepp != NULL || ppa != NULL);
1861 ASSERT(basepp == NULL || ppa == NULL);
1863 #if defined(__i386) || defined(__amd64)
1864 while (page_chk_freelist(szc) == 0) {
1865 VM_STAT_ADD(alloc_pages[8]);
1866 if (anypgsz == 0 || --szc == 0)
1867 return (ENOMEM);
1869 #endif
1871 pgsz = page_get_pagesize(szc);
1872 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
1874 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
1876 (void) page_create_wait(npgs, PG_WAIT);
1878 while (npgs && szc) {
1879 lgrp = lgrp_mem_choose(seg, addr, pgsz);
1880 if (pgflags == PG_LOCAL) {
1881 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
1882 pgflags, lgrp);
1883 if (pp == NULL) {
1884 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
1885 0, lgrp);
1887 } else {
1888 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
1889 0, lgrp);
1891 if (pp != NULL) {
1892 VM_STAT_ADD(alloc_pages[1]);
1893 page_list_concat(&pplist, &pp);
1894 ASSERT(npgs >= curnpgs);
1895 npgs -= curnpgs;
1896 } else if (anypgsz) {
1897 VM_STAT_ADD(alloc_pages[2]);
1898 szc--;
1899 pgsz = page_get_pagesize(szc);
1900 curnpgs = pgsz >> PAGESHIFT;
1901 } else {
1902 VM_STAT_ADD(alloc_pages[3]);
1903 ASSERT(npgs == totpgs);
1904 page_create_putback(npgs);
1905 return (ENOMEM);
1908 if (szc == 0) {
1909 VM_STAT_ADD(alloc_pages[4]);
1910 ASSERT(npgs != 0);
1911 page_create_putback(npgs);
1912 err = ENOMEM;
1913 } else if (basepp != NULL) {
1914 ASSERT(npgs == 0);
1915 ASSERT(ppa == NULL);
1916 *basepp = pplist;
1919 npgs = totpgs - npgs;
1920 pp = pplist;
1923 * Clear the free and age bits. Also if we were passed in a ppa then
1924 * fill it in with all the constituent pages from the large page. But
1925 * if we failed to allocate all the pages just free what we got.
1927 while (npgs != 0) {
1928 ASSERT(PP_ISFREE(pp));
1929 ASSERT(PP_ISAGED(pp));
1930 if (ppa != NULL || err != 0) {
1931 if (err == 0) {
1932 VM_STAT_ADD(alloc_pages[5]);
1933 PP_CLRFREE(pp);
1934 PP_CLRAGED(pp);
1935 page_sub(&pplist, pp);
1936 *ppa++ = pp;
1937 npgs--;
1938 } else {
1939 VM_STAT_ADD(alloc_pages[6]);
1940 ASSERT(pp->p_szc != 0);
1941 curnpgs = page_get_pagecnt(pp->p_szc);
1942 page_list_break(&pp, &pplist, curnpgs);
1943 page_list_add_pages(pp, 0);
1944 page_create_putback(curnpgs);
1945 ASSERT(npgs >= curnpgs);
1946 npgs -= curnpgs;
1948 pp = pplist;
1949 } else {
1950 VM_STAT_ADD(alloc_pages[7]);
1951 PP_CLRFREE(pp);
1952 PP_CLRAGED(pp);
1953 pp = pp->p_next;
1954 npgs--;
1957 return (err);
1961 * Get a single large page off of the freelists, and set it up for use.
1962 * Number of bytes requested must be a supported page size.
1964 * Note that this call may fail even if there is sufficient
1965 * memory available or PG_WAIT is set, so the caller must
1966 * be willing to fallback on page_create_va(), block and retry,
1967 * or fail the requester.
1969 page_t *
1970 page_create_va_large(vnode_t *vp, uoff_t off, size_t bytes, uint_t flags,
1971 struct seg *seg, caddr_t vaddr, void *arg)
1973 pgcnt_t npages;
1974 page_t *pp;
1975 page_t *rootpp;
1976 lgrp_t *lgrp;
1977 lgrp_id_t *lgrpid = (lgrp_id_t *)arg;
1979 ASSERT(vp != NULL);
1981 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
1982 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
1983 /* but no others */
1985 ASSERT((flags & PG_EXCL) == PG_EXCL);
1987 npages = btop(bytes);
1989 if (!kcage_on || panicstr) {
1991 * Cage is OFF, or we are single threaded in
1992 * panic, so make everything a RELOC request.
1994 flags &= ~PG_NORELOC;
1998 * Make sure there's adequate physical memory available.
1999 * Note: PG_WAIT is ignored here.
2001 if (freemem <= throttlefree + npages) {
2002 VM_STAT_ADD(page_create_large_cnt[1]);
2003 return (NULL);
2007 * If cage is on, dampen draw from cage when available
2008 * cage space is low.
2010 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) &&
2011 kcage_freemem < kcage_throttlefree + npages) {
2014 * The cage is on, the caller wants PG_NORELOC
2015 * pages and available cage memory is very low.
2016 * Call kcage_create_throttle() to attempt to
2017 * control demand on the cage.
2019 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2020 VM_STAT_ADD(page_create_large_cnt[2]);
2021 return (NULL);
2025 if (!pcf_decrement_bucket(npages) &&
2026 !pcf_decrement_multiple(NULL, npages, 1)) {
2027 VM_STAT_ADD(page_create_large_cnt[4]);
2028 return (NULL);
2032 * This is where this function behaves fundamentally differently
2033 * than page_create_va(); since we're intending to map the page
2034 * with a single TTE, we have to get it as a physically contiguous
2035 * hardware pagesize chunk. If we can't, we fail.
2037 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2038 LGRP_EXISTS(lgrp_table[*lgrpid]))
2039 lgrp = lgrp_table[*lgrpid];
2040 else
2041 lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2043 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2044 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2045 page_create_putback(npages);
2046 VM_STAT_ADD(page_create_large_cnt[5]);
2047 return (NULL);
2051 * if we got the page with the wrong mtype give it back this is a
2052 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2053 * inside "if" and the workaround becomes just a nop
2055 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2056 page_list_add_pages(rootpp, 0);
2057 page_create_putback(npages);
2058 VM_STAT_ADD(page_create_large_cnt[6]);
2059 return (NULL);
2063 * If satisfying this request has left us with too little
2064 * memory, start the wheels turning to get some back. The
2065 * first clause of the test prevents waking up the pageout
2066 * daemon in situations where it would decide that there's
2067 * nothing to do.
2069 if (nscan < desscan && freemem < minfree) {
2070 cv_signal(&proc_pageout->p_cv);
2073 pp = rootpp;
2074 while (npages--) {
2075 ASSERT(PAGE_EXCL(pp));
2076 ASSERT(pp->p_vnode == NULL);
2077 ASSERT(!hat_page_is_mapped(pp));
2078 PP_CLRFREE(pp);
2079 PP_CLRAGED(pp);
2080 if (!page_hashin(pp, vp, off, false))
2081 panic("page_create_large: hashin failed: page %p",
2082 (void *)pp);
2083 page_io_lock(pp);
2084 off += PAGESIZE;
2085 pp = pp->p_next;
2088 VM_STAT_ADD(page_create_large_cnt[0]);
2089 return (rootpp);
2092 page_t *
2093 page_create_va(vnode_t *vp, uoff_t off, size_t bytes, uint_t flags,
2094 struct seg *seg, caddr_t vaddr)
2096 page_t *plist = NULL;
2097 pgcnt_t npages;
2098 pgcnt_t found_on_free = 0;
2099 pgcnt_t pages_req;
2100 page_t *npp = NULL;
2101 struct pcf *p;
2102 lgrp_t *lgrp;
2104 ASSERT(bytes != 0 && vp != NULL);
2106 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2107 panic("page_create: invalid flags");
2108 /*NOTREACHED*/
2110 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2111 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2112 /* but no others */
2114 pages_req = npages = btopr(bytes);
2116 * Try to see whether request is too large to *ever* be
2117 * satisfied, in order to prevent deadlock. We arbitrarily
2118 * decide to limit maximum size requests to max_page_get.
2120 if (npages >= max_page_get) {
2121 if ((flags & PG_WAIT) == 0) {
2122 return (NULL);
2123 } else {
2124 cmn_err(CE_WARN,
2125 "Request for too much kernel memory "
2126 "(%lu bytes), will hang forever", bytes);
2127 for (;;)
2128 delay(1000000000);
2132 if (!kcage_on || panicstr) {
2134 * Cage is OFF, or we are single threaded in
2135 * panic, so make everything a RELOC request.
2137 flags &= ~PG_NORELOC;
2140 if (freemem <= throttlefree + npages)
2141 if (!page_create_throttle(npages, flags))
2142 return (NULL);
2145 * If cage is on, dampen draw from cage when available
2146 * cage space is low.
2148 if ((flags & PG_NORELOC) &&
2149 kcage_freemem < kcage_throttlefree + npages) {
2152 * The cage is on, the caller wants PG_NORELOC
2153 * pages and available cage memory is very low.
2154 * Call kcage_create_throttle() to attempt to
2155 * control demand on the cage.
2157 if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2158 return (NULL);
2161 VM_STAT_ADD(page_create_cnt[0]);
2163 if (!pcf_decrement_bucket(npages)) {
2165 * Have to look harder. If npages is greater than
2166 * one, then we might have to coalesce the counters.
2168 * Go wait. We come back having accounted
2169 * for the memory.
2171 VM_STAT_ADD(page_create_cnt[1]);
2172 if (!page_create_wait(npages, flags)) {
2173 VM_STAT_ADD(page_create_cnt[2]);
2174 return (NULL);
2179 * If satisfying this request has left us with too little
2180 * memory, start the wheels turning to get some back. The
2181 * first clause of the test prevents waking up the pageout
2182 * daemon in situations where it would decide that there's
2183 * nothing to do.
2185 if (nscan < desscan && freemem < minfree) {
2186 cv_signal(&proc_pageout->p_cv);
2190 * Loop around collecting the requested number of pages.
2191 * Most of the time, we have to `create' a new page. With
2192 * this in mind, pull the page off the free list before
2193 * getting the hash lock. This will minimize the hash
2194 * lock hold time, nesting, and the like. If it turns
2195 * out we don't need the page, we put it back at the end.
2197 while (npages--) {
2198 page_t *pp;
2200 top:
2201 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2203 if (npp == NULL) {
2205 * Try to get a page from the freelist (ie,
2206 * a page with no [vp, off] tag). If that
2207 * fails, use the cachelist.
2209 * During the first attempt at both the free
2210 * and cache lists we try for the correct color.
2213 * XXXX-how do we deal with virtual indexed
2214 * caches and and colors?
2216 VM_STAT_ADD(page_create_cnt[4]);
2218 * Get lgroup to allocate next page of shared memory
2219 * from and use it to specify where to allocate
2220 * the physical memory
2222 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2223 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2224 flags | PG_MATCH_COLOR, lgrp);
2225 if (npp == NULL) {
2226 npp = page_get_cachelist(vp, off, seg,
2227 vaddr, flags | PG_MATCH_COLOR, lgrp);
2228 if (npp == NULL) {
2229 npp = page_create_get_something(vp,
2230 off, seg, vaddr,
2231 flags & ~PG_MATCH_COLOR);
2234 if (PP_ISAGED(npp) == 0) {
2236 * Since this page came from the
2237 * cachelist, we must destroy the
2238 * old vnode association.
2240 page_hashout(npp, false);
2246 * We own this page!
2248 ASSERT(PAGE_EXCL(npp));
2249 ASSERT(npp->p_vnode == NULL);
2250 ASSERT(!hat_page_is_mapped(npp));
2251 PP_CLRFREE(npp);
2252 PP_CLRAGED(npp);
2255 * Here we have a page in our hot little mits and are
2256 * just waiting to stuff it on the appropriate lists.
2257 * Get the mutex and check to see if it really does
2258 * not exist.
2260 mutex_enter(page_vnode_mutex(vp));
2261 pp = find_page(vp, off);
2262 if (pp == NULL) {
2263 VM_STAT_ADD(page_create_new);
2264 pp = npp;
2265 npp = NULL;
2266 if (!page_hashin(pp, vp, off, true)) {
2268 * Since we hold the page vnode page cache
2269 * mutex and just searched for this page,
2270 * page_hashin had better not fail. If it
2271 * does, that means some thread did not
2272 * follow the page hash mutex rules. Panic
2273 * now and get it over with. As usual, go
2274 * down holding all the locks.
2276 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
2277 panic("page_create: "
2278 "hashin failed %p %p %llx",
2279 (void *)pp, (void *)vp, off);
2280 /*NOTREACHED*/
2282 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
2283 mutex_exit(page_vnode_mutex(vp));
2286 * Hat layer locking need not be done to set
2287 * the following bits since the page is not hashed
2288 * and was on the free list (i.e., had no mappings).
2290 * Set the reference bit to protect
2291 * against immediate pageout
2293 * XXXmh modify freelist code to set reference
2294 * bit so we don't have to do it here.
2296 page_set_props(pp, P_REF);
2297 found_on_free++;
2298 } else {
2299 VM_STAT_ADD(page_create_exists);
2300 if (flags & PG_EXCL) {
2302 * Found an existing page, and the caller
2303 * wanted all new pages. Undo all of the work
2304 * we have done.
2306 mutex_exit(page_vnode_mutex(vp));
2307 while (plist != NULL) {
2308 pp = plist;
2309 page_sub(&plist, pp);
2310 page_io_unlock(pp);
2311 /* large pages should not end up here */
2312 ASSERT(pp->p_szc == 0);
2314 VN_DISPOSE(pp, B_INVAL, 0, kcred);
2316 VM_STAT_ADD(page_create_found_one);
2317 goto fail;
2319 ASSERT(flags & PG_WAIT);
2320 if (!page_lock(pp, SE_EXCL, vp, P_NO_RECLAIM)) {
2322 * Start all over again if we blocked trying
2323 * to lock the page.
2325 mutex_exit(page_vnode_mutex(vp));
2326 VM_STAT_ADD(page_create_page_lock_failed);
2327 goto top;
2329 mutex_exit(page_vnode_mutex(vp));
2331 if (PP_ISFREE(pp)) {
2332 ASSERT(PP_ISAGED(pp) == 0);
2333 VM_STAT_ADD(pagecnt.pc_get_cache);
2334 page_list_sub(pp, PG_CACHE_LIST);
2335 PP_CLRFREE(pp);
2336 found_on_free++;
2341 * Got a page! It is locked. Acquire the i/o
2342 * lock since we are going to use the p_next and
2343 * p_prev fields to link the requested pages together.
2345 page_io_lock(pp);
2346 page_add(&plist, pp);
2347 plist = plist->p_next;
2348 off += PAGESIZE;
2349 vaddr += PAGESIZE;
2352 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2353 fail:
2354 if (npp != NULL) {
2356 * Did not need this page after all.
2357 * Put it back on the free list.
2359 VM_STAT_ADD(page_create_putbacks);
2360 PP_SETFREE(npp);
2361 PP_SETAGED(npp);
2362 npp->p_offset = (uoff_t)-1;
2363 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2364 page_unlock(npp);
2367 ASSERT(pages_req >= found_on_free);
2370 uint_t overshoot = (uint_t)(pages_req - found_on_free);
2372 if (overshoot) {
2373 VM_STAT_ADD(page_create_overshoot);
2374 p = &pcf[PCF_INDEX()];
2375 mutex_enter(&p->pcf_lock);
2376 if (p->pcf_block) {
2377 p->pcf_reserve += overshoot;
2378 } else {
2379 p->pcf_count += overshoot;
2380 if (p->pcf_wait) {
2381 mutex_enter(&new_freemem_lock);
2382 if (freemem_wait) {
2383 cv_signal(&freemem_cv);
2384 p->pcf_wait--;
2385 } else {
2386 p->pcf_wait = 0;
2388 mutex_exit(&new_freemem_lock);
2391 mutex_exit(&p->pcf_lock);
2392 /* freemem is approximate, so this test OK */
2393 if (!p->pcf_block)
2394 freemem += overshoot;
2398 return (plist);
2402 * One or more constituent pages of this large page has been marked
2403 * toxic. Simply demote the large page to PAGESIZE pages and let
2404 * page_free() handle it. This routine should only be called by
2405 * large page free routines (page_free_pages() and page_destroy_pages().
2406 * All pages are locked SE_EXCL and have already been marked free.
2408 static void
2409 page_free_toxic_pages(page_t *rootpp)
2411 page_t *tpp;
2412 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2413 uint_t szc = rootpp->p_szc;
2415 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2416 ASSERT(tpp->p_szc == szc);
2417 ASSERT((PAGE_EXCL(tpp) &&
2418 !page_iolock_assert(tpp)) || panicstr);
2419 tpp->p_szc = 0;
2422 while (rootpp != NULL) {
2423 tpp = rootpp;
2424 page_sub(&rootpp, tpp);
2425 ASSERT(PP_ISFREE(tpp));
2426 PP_CLRFREE(tpp);
2427 page_free(tpp, 1);
2432 * Put page on the "free" list.
2433 * The free list is really two lists maintained by
2434 * the PSM of whatever machine we happen to be on.
2436 void
2437 page_free(page_t *pp, int dontneed)
2439 struct pcf *p;
2440 uint_t pcf_index;
2442 ASSERT((PAGE_EXCL(pp) &&
2443 !page_iolock_assert(pp)) || panicstr);
2445 if (PP_ISFREE(pp)) {
2446 panic("page_free: page %p is free", (void *)pp);
2449 if (pp->p_szc != 0) {
2450 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2451 PP_ISKAS(pp)) {
2452 panic("page_free: anon or kernel "
2453 "or no vnode large page %p", (void *)pp);
2455 page_demote_vp_pages(pp);
2456 ASSERT(pp->p_szc == 0);
2460 * The page_struct_lock need not be acquired to examine these
2461 * fields since the page has an "exclusive" lock.
2463 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2464 pp->p_slckcnt != 0) {
2465 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2466 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2467 pp->p_cowcnt, pp->p_slckcnt);
2468 /*NOTREACHED*/
2471 ASSERT(!hat_page_getshare(pp));
2473 PP_SETFREE(pp);
2474 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2475 !hat_ismod(pp));
2476 page_clr_all_props(pp);
2477 ASSERT(!hat_page_getshare(pp));
2480 * Now we add the page to the head of the free list.
2481 * But if this page is associated with a paged vnode
2482 * then we adjust the head forward so that the page is
2483 * effectively at the end of the list.
2485 if (pp->p_vnode == NULL) {
2487 * Page has no identity, put it on the free list.
2489 PP_SETAGED(pp);
2490 pp->p_offset = (uoff_t)-1;
2491 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2492 VM_STAT_ADD(pagecnt.pc_free_free);
2493 } else {
2494 PP_CLRAGED(pp);
2496 if (!dontneed) {
2497 /* move it to the tail of the list */
2498 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2500 VM_STAT_ADD(pagecnt.pc_free_cache);
2501 } else {
2502 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2504 VM_STAT_ADD(pagecnt.pc_free_dontneed);
2507 page_unlock(pp);
2510 * Now do the `freemem' accounting.
2512 pcf_index = PCF_INDEX();
2513 p = &pcf[pcf_index];
2515 mutex_enter(&p->pcf_lock);
2516 if (p->pcf_block) {
2517 p->pcf_reserve += 1;
2518 } else {
2519 p->pcf_count += 1;
2520 if (p->pcf_wait) {
2521 mutex_enter(&new_freemem_lock);
2523 * Check to see if some other thread
2524 * is actually waiting. Another bucket
2525 * may have woken it up by now. If there
2526 * are no waiters, then set our pcf_wait
2527 * count to zero to avoid coming in here
2528 * next time. Also, since only one page
2529 * was put on the free list, just wake
2530 * up one waiter.
2532 if (freemem_wait) {
2533 cv_signal(&freemem_cv);
2534 p->pcf_wait--;
2535 } else {
2536 p->pcf_wait = 0;
2538 mutex_exit(&new_freemem_lock);
2541 mutex_exit(&p->pcf_lock);
2543 /* freemem is approximate, so this test OK */
2544 if (!p->pcf_block)
2545 freemem += 1;
2549 * Put page on the "free" list during intial startup.
2550 * This happens during initial single threaded execution.
2552 void
2553 page_free_at_startup(page_t *pp)
2555 struct pcf *p;
2556 uint_t pcf_index;
2558 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2559 VM_STAT_ADD(pagecnt.pc_free_free);
2562 * Now do the `freemem' accounting.
2564 pcf_index = PCF_INDEX();
2565 p = &pcf[pcf_index];
2567 ASSERT(p->pcf_block == 0);
2568 ASSERT(p->pcf_wait == 0);
2569 p->pcf_count += 1;
2571 /* freemem is approximate, so this is OK */
2572 freemem += 1;
2575 void
2576 page_free_pages(page_t *pp)
2578 page_t *tpp, *rootpp = NULL;
2579 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2580 pgcnt_t i;
2581 uint_t szc = pp->p_szc;
2583 VM_STAT_ADD(pagecnt.pc_free_pages);
2585 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2586 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2587 panic("page_free_pages: not root page %p", (void *)pp);
2588 /*NOTREACHED*/
2591 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2592 ASSERT((PAGE_EXCL(tpp) &&
2593 !page_iolock_assert(tpp)) || panicstr);
2594 if (PP_ISFREE(tpp)) {
2595 panic("page_free_pages: page %p is free", (void *)tpp);
2596 /*NOTREACHED*/
2598 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2599 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2600 panic("page_free_pages %p", (void *)tpp);
2601 /*NOTREACHED*/
2604 ASSERT(!hat_page_getshare(tpp));
2605 ASSERT(tpp->p_vnode == NULL);
2606 ASSERT(tpp->p_szc == szc);
2608 PP_SETFREE(tpp);
2609 page_clr_all_props(tpp);
2610 PP_SETAGED(tpp);
2611 tpp->p_offset = (uoff_t)-1;
2612 ASSERT(tpp->p_next == tpp);
2613 ASSERT(tpp->p_prev == tpp);
2614 page_list_concat(&rootpp, &tpp);
2616 ASSERT(rootpp == pp);
2618 page_list_add_pages(rootpp, 0);
2619 page_create_putback(pgcnt);
2622 int free_pages = 1;
2625 * This routine attempts to return pages to the cachelist via page_release().
2626 * It does not *have* to be successful in all cases, since the pageout scanner
2627 * will catch any pages it misses. It does need to be fast and not introduce
2628 * too much overhead.
2630 * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2631 * don't lock and retry. This is ok, since the page scanner will eventually
2632 * find any page we miss in free_vp_pages().
2634 void
2635 free_vp_pages(vnode_t *vp, uoff_t off, size_t len)
2637 page_t *pp;
2638 uoff_t eoff;
2639 extern int swap_in_range(vnode_t *, uoff_t, size_t);
2641 eoff = off + len;
2643 if (free_pages == 0)
2644 return;
2645 if (swap_in_range(vp, off, len))
2646 return;
2648 for (; off < eoff; off += PAGESIZE) {
2651 * find the page using a fast, but inexact search. It'll be OK
2652 * if a few pages slip through the cracks here.
2654 pp = page_exists(vp, off);
2657 * If we didn't find the page (it may not exist), the page
2658 * is free, looks still in use (shared), or we can't lock it,
2659 * just give up.
2661 if (pp == NULL ||
2662 PP_ISFREE(pp) ||
2663 page_share_cnt(pp) > 0 ||
2664 !page_trylock(pp, SE_EXCL))
2665 continue;
2668 * Once we have locked pp, verify that it's still the
2669 * correct page and not already free
2671 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2672 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2673 page_unlock(pp);
2674 continue;
2678 * try to release the page...
2680 (void) page_release(pp, 1);
2685 * Reclaim the given page from the free list.
2686 * If pp is part of a large pages, only the given constituent page is reclaimed
2687 * and the large page it belonged to will be demoted. This can only happen
2688 * if the page is not on the cachelist.
2690 * Returns 1 on success or 0 on failure.
2692 * The page is unlocked if it can't be reclaimed (when freemem == 0).
2693 * If `lock' is non-null, it will be dropped and re-acquired if
2694 * the routine must wait while freemem is 0.
2696 * As it turns out, boot_getpages() does this. It picks a page,
2697 * based on where OBP mapped in some address, gets its pfn, searches
2698 * the memsegs, locks the page, then pulls it off the free list!
2701 page_reclaim(page_t *pp, vnode_t *vnode)
2703 struct pcf *p;
2704 struct cpu *cpup;
2705 int enough;
2706 uint_t i;
2708 ASSERT(vnode != NULL ? MUTEX_HELD(page_vnode_mutex(vnode)) : 1);
2709 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2712 * If `freemem' is 0, we cannot reclaim this page from the
2713 * freelist, so release every lock we might hold: the page,
2714 * and the vnode page lock before blocking.
2716 * The only way `freemem' can become 0 while there are pages
2717 * marked free (have their p->p_free bit set) is when the
2718 * system is low on memory and doing a page_create(). In
2719 * order to guarantee that once page_create() starts acquiring
2720 * pages it will be able to get all that it needs since `freemem'
2721 * was decreased by the requested amount. So, we need to release
2722 * this page, and let page_create() have it.
2724 * Since `freemem' being zero is not supposed to happen, just
2725 * use the usual hash stuff as a starting point. If that bucket
2726 * is empty, then assume the worst, and start at the beginning
2727 * of the pcf array. If we always start at the beginning
2728 * when acquiring more than one pcf lock, there won't be any
2729 * deadlock problems.
2732 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2734 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2735 pcf_acquire_all();
2736 goto page_reclaim_nomem;
2739 enough = pcf_decrement_bucket(1);
2741 if (!enough) {
2742 VM_STAT_ADD(page_reclaim_zero);
2744 * Check again. Its possible that some other thread
2745 * could have been right behind us, and added one
2746 * to a list somewhere. Acquire each of the pcf locks
2747 * until we find a page.
2749 p = pcf;
2750 for (i = 0; i < pcf_fanout; i++) {
2751 mutex_enter(&p->pcf_lock);
2752 if (p->pcf_count >= 1) {
2753 p->pcf_count -= 1;
2755 * freemem is not protected by any lock. Thus,
2756 * we cannot have any assertion containing
2757 * freemem here.
2759 freemem -= 1;
2760 enough = 1;
2761 break;
2763 p++;
2766 if (!enough) {
2767 page_reclaim_nomem:
2769 * We really can't have page `pp'.
2770 * Time for the no-memory dance with
2771 * page_free(). This is just like
2772 * page_create_wait(). Plus the added
2773 * attraction of releasing the vnode page lock.
2774 * Page_unlock() will wakeup any thread
2775 * waiting around for this page.
2777 if (vnode != NULL) {
2778 VM_STAT_ADD(page_reclaim_zero_locked);
2779 mutex_exit(page_vnode_mutex(vnode));
2781 page_unlock(pp);
2784 * get this before we drop all the pcf locks.
2786 mutex_enter(&new_freemem_lock);
2788 p = pcf;
2789 for (i = 0; i < pcf_fanout; i++) {
2790 p->pcf_wait++;
2791 mutex_exit(&p->pcf_lock);
2792 p++;
2795 freemem_wait++;
2796 cv_wait(&freemem_cv, &new_freemem_lock);
2797 freemem_wait--;
2799 mutex_exit(&new_freemem_lock);
2801 if (vnode != NULL)
2802 mutex_enter(page_vnode_mutex(vnode));
2804 return (0);
2808 * The pcf accounting has been done,
2809 * though none of the pcf_wait flags have been set,
2810 * drop the locks and continue on.
2812 while (p >= pcf) {
2813 mutex_exit(&p->pcf_lock);
2814 p--;
2819 VM_STAT_ADD(pagecnt.pc_reclaim);
2822 * page_list_sub will handle the case where pp is a large page.
2823 * It's possible that the page was promoted while on the freelist
2825 if (PP_ISAGED(pp)) {
2826 page_list_sub(pp, PG_FREE_LIST);
2827 } else {
2828 page_list_sub(pp, PG_CACHE_LIST);
2832 * clear the p_free & p_age bits since this page is no longer
2833 * on the free list. Notice that there was a brief time where
2834 * a page is marked as free, but is not on the list.
2836 * Set the reference bit to protect against immediate pageout.
2838 PP_CLRFREE(pp);
2839 PP_CLRAGED(pp);
2840 page_set_props(pp, P_REF);
2842 CPU_STATS_ENTER_K();
2843 cpup = CPU; /* get cpup now that CPU cannot change */
2844 CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
2845 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
2846 CPU_STATS_EXIT_K();
2847 ASSERT(pp->p_szc == 0);
2849 return (1);
2853 * Destroy identity of the page and put it back on
2854 * the page free list. Assumes that the caller has
2855 * acquired the "exclusive" lock on the page.
2857 void
2858 page_destroy(page_t *pp, int dontfree)
2860 ASSERT((PAGE_EXCL(pp) &&
2861 !page_iolock_assert(pp)) || panicstr);
2862 ASSERT(pp->p_slckcnt == 0 || panicstr);
2864 if (pp->p_szc != 0) {
2865 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2866 PP_ISKAS(pp)) {
2867 panic("page_destroy: anon or kernel or no vnode "
2868 "large page %p", (void *)pp);
2870 page_demote_vp_pages(pp);
2871 ASSERT(pp->p_szc == 0);
2875 * Unload translations, if any, then hash out the
2876 * page to erase its identity.
2878 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2879 page_hashout(pp, false);
2881 if (!dontfree) {
2883 * Acquire the "freemem_lock" for availrmem.
2884 * The page_struct_lock need not be acquired for lckcnt
2885 * and cowcnt since the page has an "exclusive" lock.
2886 * We are doing a modified version of page_pp_unlock here.
2888 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
2889 mutex_enter(&freemem_lock);
2890 if (pp->p_lckcnt != 0) {
2891 availrmem++;
2892 pages_locked--;
2893 pp->p_lckcnt = 0;
2895 if (pp->p_cowcnt != 0) {
2896 availrmem += pp->p_cowcnt;
2897 pages_locked -= pp->p_cowcnt;
2898 pp->p_cowcnt = 0;
2900 mutex_exit(&freemem_lock);
2903 * Put the page on the "free" list.
2905 page_free(pp, 0);
2909 void
2910 page_destroy_pages(page_t *pp)
2913 page_t *tpp, *rootpp = NULL;
2914 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2915 pgcnt_t i, pglcks = 0;
2916 uint_t szc = pp->p_szc;
2918 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2920 VM_STAT_ADD(pagecnt.pc_destroy_pages);
2922 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2923 panic("page_destroy_pages: not root page %p", (void *)pp);
2924 /*NOTREACHED*/
2927 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2928 ASSERT((PAGE_EXCL(tpp) &&
2929 !page_iolock_assert(tpp)) || panicstr);
2930 ASSERT(tpp->p_slckcnt == 0 || panicstr);
2931 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
2932 page_hashout(tpp, false);
2933 ASSERT(tpp->p_offset == (uoff_t)-1);
2934 if (tpp->p_lckcnt != 0) {
2935 pglcks++;
2936 tpp->p_lckcnt = 0;
2937 } else if (tpp->p_cowcnt != 0) {
2938 pglcks += tpp->p_cowcnt;
2939 tpp->p_cowcnt = 0;
2941 ASSERT(!hat_page_getshare(tpp));
2942 ASSERT(tpp->p_vnode == NULL);
2943 ASSERT(tpp->p_szc == szc);
2945 PP_SETFREE(tpp);
2946 page_clr_all_props(tpp);
2947 PP_SETAGED(tpp);
2948 ASSERT(tpp->p_next == tpp);
2949 ASSERT(tpp->p_prev == tpp);
2950 page_list_concat(&rootpp, &tpp);
2953 ASSERT(rootpp == pp);
2954 if (pglcks != 0) {
2955 mutex_enter(&freemem_lock);
2956 availrmem += pglcks;
2957 mutex_exit(&freemem_lock);
2960 page_list_add_pages(rootpp, 0);
2961 page_create_putback(pgcnt);
2965 * Similar to page_destroy(), but destroys pages which are
2966 * locked and known to be on the page free list. Since
2967 * the page is known to be free and locked, no one can access
2968 * it.
2970 * Also, the number of free pages does not change.
2972 void
2973 page_destroy_free(page_t *pp)
2975 ASSERT(PAGE_EXCL(pp));
2976 ASSERT(PP_ISFREE(pp));
2977 ASSERT(pp->p_vnode);
2978 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
2979 ASSERT(!hat_page_is_mapped(pp));
2980 ASSERT(PP_ISAGED(pp) == 0);
2981 ASSERT(pp->p_szc == 0);
2983 VM_STAT_ADD(pagecnt.pc_destroy_free);
2984 page_list_sub(pp, PG_CACHE_LIST);
2986 page_hashout(pp, false);
2987 ASSERT(pp->p_vnode == NULL);
2988 ASSERT(pp->p_offset == (uoff_t)-1);
2990 PP_SETAGED(pp);
2991 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2992 page_unlock(pp);
2994 mutex_enter(&new_freemem_lock);
2995 if (freemem_wait) {
2996 cv_signal(&freemem_cv);
2998 mutex_exit(&new_freemem_lock);
3002 * Rename the page "opp" to have an identity specified
3003 * by [vp, off]. If a page already exists with this name
3004 * it is locked and destroyed. Note that the page's
3005 * translations are not unloaded during the rename.
3007 * This routine is used by the anon layer to "steal" the
3008 * original page and is not unlike destroying a page and
3009 * creating a new page using the same page frame.
3011 * XXX -- Could deadlock if caller 1 tries to rename A to B while
3012 * caller 2 tries to rename B to A.
3014 void
3015 page_rename(page_t *opp, vnode_t *vp, uoff_t off)
3017 page_t *pp;
3018 int olckcnt = 0;
3019 int ocowcnt = 0;
3021 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3022 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3023 ASSERT(PP_ISFREE(opp) == 0);
3025 VM_STAT_ADD(page_rename_count);
3028 * CacheFS may call page_rename for a large NFS page
3029 * when both CacheFS and NFS mount points are used
3030 * by applications. Demote this large page before
3031 * renaming it, to ensure that there are no "partial"
3032 * large pages left lying around.
3034 if (opp->p_szc != 0) {
3035 vnode_t *ovp = opp->p_vnode;
3036 ASSERT(ovp != NULL);
3037 ASSERT(!IS_SWAPFSVP(ovp));
3038 ASSERT(!VN_ISKAS(ovp));
3039 page_demote_vp_pages(opp);
3040 ASSERT(opp->p_szc == 0);
3043 page_hashout(opp, false);
3044 PP_CLRAGED(opp);
3046 mutex_enter(page_vnode_mutex(vp));
3047 top:
3049 * Look for an existing page with this name and destroy it if found.
3050 * By holding the page hash lock all the way to the page_hashin()
3051 * call, we are assured that no page can be created with this
3052 * identity. In the case when the phm lock is dropped to undo any
3053 * hat layer mappings, the existing page is held with an "exclusive"
3054 * lock, again preventing another page from being created with
3055 * this identity.
3057 pp = find_page(vp, off);
3058 if (pp != NULL) {
3059 VM_STAT_ADD(page_rename_exists);
3062 * As it turns out, this is one of only two places where
3063 * page_lock() needs to hold the passed in lock in the
3064 * successful case. In all of the others, the lock could
3065 * be dropped as soon as the attempt is made to lock
3066 * the page. It is tempting to add yet another arguement,
3067 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3069 if (!page_lock(pp, SE_EXCL, vp, P_RECLAIM)) {
3071 * Went to sleep because the page could not
3072 * be locked. We were woken up when the page
3073 * was unlocked, or when the page was destroyed.
3074 * In either case, `phm' was dropped while we
3075 * slept. Hence we should not just roar through
3076 * this loop.
3078 goto top;
3082 * If an existing page is a large page, then demote
3083 * it to ensure that no "partial" large pages are
3084 * "created" after page_rename. An existing page
3085 * can be a CacheFS page, and can't belong to swapfs.
3087 if (hat_page_is_mapped(pp)) {
3089 * Unload translations. Since we hold the
3090 * exclusive lock on this page, the page
3091 * can not be changed while we drop phm.
3092 * This is also not a lock protocol violation,
3093 * but rather the proper way to do things.
3095 mutex_exit(page_vnode_mutex(vp));
3096 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3097 if (pp->p_szc != 0) {
3098 ASSERT(!IS_SWAPFSVP(vp));
3099 ASSERT(!VN_ISKAS(vp));
3100 page_demote_vp_pages(pp);
3101 ASSERT(pp->p_szc == 0);
3103 mutex_enter(page_vnode_mutex(vp));
3104 } else if (pp->p_szc != 0) {
3105 ASSERT(!IS_SWAPFSVP(vp));
3106 ASSERT(!VN_ISKAS(vp));
3107 mutex_exit(page_vnode_mutex(vp));
3108 page_demote_vp_pages(pp);
3109 ASSERT(pp->p_szc == 0);
3110 mutex_enter(page_vnode_mutex(vp));
3112 page_hashout(pp, true);
3115 * Hash in the page with the new identity.
3117 if (!page_hashin(opp, vp, off, true)) {
3119 * We were holding phm while we searched for [vp, off]
3120 * and only dropped phm if we found and locked a page.
3121 * If we can't create this page now, then some thing
3122 * is really broken.
3124 panic("page_rename: Can't hash in page: %p", (void *)pp);
3125 /*NOTREACHED*/
3128 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3129 mutex_exit(page_vnode_mutex(vp));
3132 * Now that we have dropped phm, lets get around to finishing up
3133 * with pp.
3135 if (pp != NULL) {
3136 ASSERT(!hat_page_is_mapped(pp));
3137 /* for now large pages should not end up here */
3138 ASSERT(pp->p_szc == 0);
3140 * Save the locks for transfer to the new page and then
3141 * clear them so page_free doesn't think they're important.
3142 * The page_struct_lock need not be acquired for lckcnt and
3143 * cowcnt since the page has an "exclusive" lock.
3145 olckcnt = pp->p_lckcnt;
3146 ocowcnt = pp->p_cowcnt;
3147 pp->p_lckcnt = pp->p_cowcnt = 0;
3150 * Put the page on the "free" list after we drop
3151 * the lock. The less work under the lock the better.
3153 VN_DISPOSE(pp, B_FREE, 0, kcred);
3157 * Transfer the lock count from the old page (if any).
3158 * The page_struct_lock need not be acquired for lckcnt and
3159 * cowcnt since the page has an "exclusive" lock.
3161 opp->p_lckcnt += olckcnt;
3162 opp->p_cowcnt += ocowcnt;
3166 * low level routine to add page `page' to the AVL tree and vnode chains for
3167 * [vp, offset]
3169 * Pages are normally inserted at the start of a vnode's v_pagecache_list.
3170 * If the vnode is VMODSORT and the page is modified, it goes at the end.
3171 * This can happen when a modified page is relocated for DR.
3173 * Returns 1 on success and 0 on failure.
3175 static int
3176 page_do_hashin(page_t *page, vnode_t *vnode, uoff_t offset)
3178 avl_index_t where;
3179 page_t **listp;
3181 ASSERT(PAGE_EXCL(page));
3182 ASSERT(vnode != NULL);
3183 ASSERT(MUTEX_HELD(page_vnode_mutex(vnode)));
3186 * Be sure to set these up before the page is inserted into the AVL
3187 * tree. As soon as the page is placed on the list some other
3188 * thread might get confused and wonder how this page could
3189 * possibly hash to this list.
3191 page->p_vnode = vnode;
3192 page->p_offset = offset;
3195 * record if this page is on a swap vnode
3197 if ((vnode->v_flag & VISSWAP) != 0)
3198 PP_SETSWAP(page);
3201 * Duplicates are not allowed - fail to insert if we already have a
3202 * page with this identity.
3204 if (avl_find(&vnode->v_pagecache, page, &where) != NULL) {
3205 page->p_vnode = NULL;
3206 page->p_offset = (uoff_t)(-1);
3207 return (0);
3210 avl_insert(&vnode->v_pagecache, page, where);
3213 * Add the page to the vnode's list of pages
3215 if (IS_VMODSORT(vnode) && hat_ismod(page))
3216 vnode_add_page_tail(vnode, page);
3217 else
3218 vnode_add_page_head(vnode, page);
3220 return (1);
3224 * Add page `pp' to both the hash and vp chains for [vp, offset].
3226 * Returns 1 on success and 0 on failure.
3227 * If `locked` is true, we do *not* attempt to lock the vnode's page mutex.
3230 page_hashin(page_t *pp, vnode_t *vp, uoff_t offset, bool locked)
3232 int rc;
3234 ASSERT(pp->p_fsdata == 0 || panicstr);
3236 VM_STAT_ADD(hashin_count);
3238 if (!locked) {
3239 VM_STAT_ADD(hashin_not_held);
3240 mutex_enter(page_vnode_mutex(vp));
3243 rc = page_do_hashin(pp, vp, offset);
3245 if (!locked)
3246 mutex_exit(page_vnode_mutex(vp));
3248 if (rc == 0)
3249 VM_STAT_ADD(hashin_already);
3251 return (rc);
3255 * Remove page `page' from the AVL tree and vnode chains and remove its
3256 * vnode association. All mutexes must be held
3258 static void
3259 page_do_hashout(page_t *page)
3261 page_t **hpp;
3262 page_t *hp;
3263 vnode_t *vnode = page->p_vnode;
3265 ASSERT(vnode != NULL);
3266 ASSERT(MUTEX_HELD(page_vnode_mutex(vnode)));
3268 avl_remove(&vnode->v_pagecache, page);
3270 vnode_remove_page(vnode, page);
3272 page_clr_all_props(page);
3273 PP_CLRSWAP(page);
3274 page->p_vnode = NULL;
3275 page->p_offset = (uoff_t)-1;
3276 page->p_fsdata = 0;
3280 * Remove page `page' from the AVL tree and vnode chains and remove vnode
3281 * association.
3283 * When `locked` is true, we do *not* attempt to lock the vnode's page
3284 * mutex.
3286 void
3287 page_hashout(page_t *pp, bool locked)
3289 vnode_t *vp;
3290 ulong_t index;
3291 kmutex_t *sep;
3293 ASSERT(hold != NULL ? MUTEX_HELD(hold) : 1);
3294 ASSERT(pp->p_vnode != NULL);
3295 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3297 vp = pp->p_vnode;
3299 if (!locked) {
3300 VM_STAT_ADD(hashout_not_held);
3301 mutex_enter(page_vnode_mutex(vp));
3304 page_do_hashout(pp);
3306 if (!locked)
3307 mutex_exit(page_vnode_mutex(vp));
3310 * Wake up processes waiting for this page. The page's
3311 * identity has been changed, and is probably not the
3312 * desired page any longer.
3314 sep = page_se_mutex(pp);
3315 mutex_enter(sep);
3316 pp->p_selock &= ~SE_EWANTED;
3317 if (CV_HAS_WAITERS(&pp->p_cv))
3318 cv_broadcast(&pp->p_cv);
3319 mutex_exit(sep);
3323 * Add the page to the front of a linked list of pages
3324 * using the p_next & p_prev pointers for the list.
3325 * The caller is responsible for protecting the list pointers.
3327 void
3328 page_add(page_t **ppp, page_t *pp)
3330 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3332 page_add_common(ppp, pp);
3338 * Common code for page_add() and mach_page_add()
3340 void
3341 page_add_common(page_t **ppp, page_t *pp)
3343 if (*ppp == NULL) {
3344 pp->p_next = pp->p_prev = pp;
3345 } else {
3346 pp->p_next = *ppp;
3347 pp->p_prev = (*ppp)->p_prev;
3348 (*ppp)->p_prev = pp;
3349 pp->p_prev->p_next = pp;
3351 *ppp = pp;
3356 * Remove this page from a linked list of pages
3357 * using the p_next & p_prev pointers for the list.
3359 * The caller is responsible for protecting the list pointers.
3361 void
3362 page_sub(page_t **ppp, page_t *pp)
3364 ASSERT((PP_ISFREE(pp)) ? 1 :
3365 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3367 if (*ppp == NULL || pp == NULL) {
3368 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3369 (void *)pp, (void *)(*ppp));
3370 /*NOTREACHED*/
3373 page_sub_common(ppp, pp);
3378 * Common code for page_sub() and mach_page_sub()
3380 void
3381 page_sub_common(page_t **ppp, page_t *pp)
3383 if (*ppp == pp)
3384 *ppp = pp->p_next; /* go to next page */
3386 if (*ppp == pp)
3387 *ppp = NULL; /* page list is gone */
3388 else {
3389 pp->p_prev->p_next = pp->p_next;
3390 pp->p_next->p_prev = pp->p_prev;
3392 pp->p_prev = pp->p_next = pp; /* make pp a list of one */
3397 * Break page list cppp into two lists with npages in the first list.
3398 * The tail is returned in nppp.
3400 void
3401 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3403 page_t *s1pp = *oppp;
3404 page_t *s2pp;
3405 page_t *e1pp, *e2pp;
3406 long n = 0;
3408 if (s1pp == NULL) {
3409 *nppp = NULL;
3410 return;
3412 if (npages == 0) {
3413 *nppp = s1pp;
3414 *oppp = NULL;
3415 return;
3417 for (n = 0, s2pp = *oppp; n < npages; n++) {
3418 s2pp = s2pp->p_next;
3420 /* Fix head and tail of new lists */
3421 e1pp = s2pp->p_prev;
3422 e2pp = s1pp->p_prev;
3423 s1pp->p_prev = e1pp;
3424 e1pp->p_next = s1pp;
3425 s2pp->p_prev = e2pp;
3426 e2pp->p_next = s2pp;
3428 /* second list empty */
3429 if (s2pp == s1pp) {
3430 *oppp = s1pp;
3431 *nppp = NULL;
3432 } else {
3433 *oppp = s1pp;
3434 *nppp = s2pp;
3439 * Concatenate page list nppp onto the end of list ppp.
3441 void
3442 page_list_concat(page_t **ppp, page_t **nppp)
3444 page_t *s1pp, *s2pp, *e1pp, *e2pp;
3446 if (*nppp == NULL) {
3447 return;
3449 if (*ppp == NULL) {
3450 *ppp = *nppp;
3451 return;
3453 s1pp = *ppp;
3454 e1pp = s1pp->p_prev;
3455 s2pp = *nppp;
3456 e2pp = s2pp->p_prev;
3457 s1pp->p_prev = e2pp;
3458 e2pp->p_next = s1pp;
3459 e1pp->p_next = s2pp;
3460 s2pp->p_prev = e1pp;
3464 * return the next page in the page list
3466 page_t *
3467 page_list_next(page_t *pp)
3469 return (pp->p_next);
3474 * Add the page to the front of the linked list of pages
3475 * using p_list.vnode for the list.
3477 * The caller is responsible for protecting the lists.
3479 void
3480 page_vpadd(page_t **ppp, page_t *pp)
3482 panic("%s should not be used", __func__);
3485 void
3486 page_lpadd(page_t **ppp, page_t *pp)
3488 if (*ppp == NULL) {
3489 pp->p_list.largepg.next = pp->p_list.largepg.prev = pp;
3490 } else {
3491 pp->p_list.largepg.next = *ppp;
3492 pp->p_list.largepg.prev = (*ppp)->p_list.largepg.prev;
3493 (*ppp)->p_list.largepg.prev = pp;
3494 pp->p_list.largepg.prev->p_list.largepg.next = pp;
3496 *ppp = pp;
3500 * Remove this page from the linked list of pages
3501 * using p_list.vnode for the list.
3503 * The caller is responsible for protecting the lists.
3505 void
3506 page_vpsub(page_t **ppp, page_t *pp)
3508 panic("%s should not be used", __func__);
3511 void
3512 page_lpsub(page_t **ppp, page_t *pp)
3514 if (*ppp == NULL || pp == NULL) {
3515 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3516 (void *)pp, (void *)(*ppp));
3517 /*NOTREACHED*/
3520 if (*ppp == pp)
3521 *ppp = pp->p_list.largepg.next; /* go to next page */
3523 if (*ppp == pp)
3524 *ppp = NULL; /* page list is gone */
3525 else {
3526 pp->p_list.largepg.prev->p_list.largepg.next = pp->p_list.largepg.next;
3527 pp->p_list.largepg.next->p_list.largepg.prev = pp->p_list.largepg.prev;
3529 pp->p_list.largepg.prev = pp->p_list.largepg.next = pp; /* make pp a list of one */
3533 * Lock a physical page into memory "long term". Used to support "lock
3534 * in memory" functions. Accepts the page to be locked, and a cow variable
3535 * to indicate whether a the lock will travel to the new page during
3536 * a potential copy-on-write.
3539 page_pp_lock(
3540 page_t *pp, /* page to be locked */
3541 int cow, /* cow lock */
3542 int kernel) /* must succeed -- ignore checking */
3544 int r = 0; /* result -- assume failure */
3546 ASSERT(PAGE_LOCKED(pp));
3548 page_struct_lock(pp);
3550 * Acquire the "freemem_lock" for availrmem.
3552 if (cow) {
3553 mutex_enter(&freemem_lock);
3554 if ((availrmem > pages_pp_maximum) &&
3555 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3556 availrmem--;
3557 pages_locked++;
3558 mutex_exit(&freemem_lock);
3559 r = 1;
3560 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3561 cmn_err(CE_WARN,
3562 "COW lock limit reached on pfn 0x%lx",
3563 page_pptonum(pp));
3565 } else
3566 mutex_exit(&freemem_lock);
3567 } else {
3568 if (pp->p_lckcnt) {
3569 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3570 r = 1;
3571 if (++pp->p_lckcnt ==
3572 (ushort_t)PAGE_LOCK_MAXIMUM) {
3573 cmn_err(CE_WARN, "Page lock limit "
3574 "reached on pfn 0x%lx",
3575 page_pptonum(pp));
3578 } else {
3579 if (kernel) {
3580 /* availrmem accounting done by caller */
3581 ++pp->p_lckcnt;
3582 r = 1;
3583 } else {
3584 mutex_enter(&freemem_lock);
3585 if (availrmem > pages_pp_maximum) {
3586 availrmem--;
3587 pages_locked++;
3588 ++pp->p_lckcnt;
3589 r = 1;
3591 mutex_exit(&freemem_lock);
3595 page_struct_unlock(pp);
3596 return (r);
3600 * Decommit a lock on a physical page frame. Account for cow locks if
3601 * appropriate.
3603 void
3604 page_pp_unlock(
3605 page_t *pp, /* page to be unlocked */
3606 int cow, /* expect cow lock */
3607 int kernel) /* this was a kernel lock */
3609 ASSERT(PAGE_LOCKED(pp));
3611 page_struct_lock(pp);
3613 * Acquire the "freemem_lock" for availrmem.
3614 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3615 * could be called to unlock even if nothing is locked. This could
3616 * happen if locked file pages were truncated (removing the lock)
3617 * and the file was grown again and new pages faulted in; the new
3618 * pages are unlocked but the segment still thinks they're locked.
3620 if (cow) {
3621 if (pp->p_cowcnt) {
3622 mutex_enter(&freemem_lock);
3623 pp->p_cowcnt--;
3624 availrmem++;
3625 pages_locked--;
3626 mutex_exit(&freemem_lock);
3628 } else {
3629 if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3630 if (!kernel) {
3631 mutex_enter(&freemem_lock);
3632 availrmem++;
3633 pages_locked--;
3634 mutex_exit(&freemem_lock);
3638 page_struct_unlock(pp);
3642 * This routine reserves availrmem for npages;
3643 * flags: KM_NOSLEEP or KM_SLEEP
3644 * returns 1 on success or 0 on failure
3647 page_resv(pgcnt_t npages, uint_t flags)
3649 mutex_enter(&freemem_lock);
3650 while (availrmem < tune.t_minarmem + npages) {
3651 if (flags & KM_NOSLEEP) {
3652 mutex_exit(&freemem_lock);
3653 return (0);
3655 mutex_exit(&freemem_lock);
3656 page_needfree(npages);
3657 kmem_reap();
3658 delay(hz >> 2);
3659 page_needfree(-(spgcnt_t)npages);
3660 mutex_enter(&freemem_lock);
3662 availrmem -= npages;
3663 mutex_exit(&freemem_lock);
3664 return (1);
3668 * This routine unreserves availrmem for npages;
3670 void
3671 page_unresv(pgcnt_t npages)
3673 mutex_enter(&freemem_lock);
3674 availrmem += npages;
3675 mutex_exit(&freemem_lock);
3679 * See Statement at the beginning of segvn_lockop() regarding
3680 * the way we handle cowcnts and lckcnts.
3682 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3683 * that breaks COW has PROT_WRITE.
3685 * Note that, we may also break COW in case we are softlocking
3686 * on read access during physio;
3687 * in this softlock case, the vpage may not have PROT_WRITE.
3688 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3689 * if the vpage doesn't have PROT_WRITE.
3691 * This routine is never called if we are stealing a page
3692 * in anon_private.
3694 * The caller subtracted from availrmem for read only mapping.
3695 * if lckcnt is 1 increment availrmem.
3697 void
3698 page_pp_useclaim(
3699 page_t *opp, /* original page frame losing lock */
3700 page_t *npp, /* new page frame gaining lock */
3701 uint_t write_perm) /* set if vpage has PROT_WRITE */
3703 int payback = 0;
3704 int nidx, oidx;
3706 ASSERT(PAGE_LOCKED(opp));
3707 ASSERT(PAGE_LOCKED(npp));
3710 * Since we have two pages we probably have two locks. We need to take
3711 * them in a defined order to avoid deadlocks. It's also possible they
3712 * both hash to the same lock in which case this is a non-issue.
3714 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
3715 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
3716 if (nidx < oidx) {
3717 page_struct_lock(npp);
3718 page_struct_lock(opp);
3719 } else if (oidx < nidx) {
3720 page_struct_lock(opp);
3721 page_struct_lock(npp);
3722 } else { /* The pages hash to the same lock */
3723 page_struct_lock(npp);
3726 ASSERT(npp->p_cowcnt == 0);
3727 ASSERT(npp->p_lckcnt == 0);
3729 /* Don't use claim if nothing is locked (see page_pp_unlock above) */
3730 if ((write_perm && opp->p_cowcnt != 0) ||
3731 (!write_perm && opp->p_lckcnt != 0)) {
3733 if (write_perm) {
3734 npp->p_cowcnt++;
3735 ASSERT(opp->p_cowcnt != 0);
3736 opp->p_cowcnt--;
3737 } else {
3739 ASSERT(opp->p_lckcnt != 0);
3742 * We didn't need availrmem decremented if p_lckcnt on
3743 * original page is 1. Here, we are unlocking
3744 * read-only copy belonging to original page and
3745 * are locking a copy belonging to new page.
3747 if (opp->p_lckcnt == 1)
3748 payback = 1;
3750 npp->p_lckcnt++;
3751 opp->p_lckcnt--;
3754 if (payback) {
3755 mutex_enter(&freemem_lock);
3756 availrmem++;
3757 pages_useclaim--;
3758 mutex_exit(&freemem_lock);
3761 if (nidx < oidx) {
3762 page_struct_unlock(opp);
3763 page_struct_unlock(npp);
3764 } else if (oidx < nidx) {
3765 page_struct_unlock(npp);
3766 page_struct_unlock(opp);
3767 } else { /* The pages hash to the same lock */
3768 page_struct_unlock(npp);
3773 * Simple claim adjust functions -- used to support changes in
3774 * claims due to changes in access permissions. Used by segvn_setprot().
3777 page_addclaim(page_t *pp)
3779 int r = 0; /* result */
3781 ASSERT(PAGE_LOCKED(pp));
3783 page_struct_lock(pp);
3784 ASSERT(pp->p_lckcnt != 0);
3786 if (pp->p_lckcnt == 1) {
3787 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3788 --pp->p_lckcnt;
3789 r = 1;
3790 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3791 cmn_err(CE_WARN,
3792 "COW lock limit reached on pfn 0x%lx",
3793 page_pptonum(pp));
3796 } else {
3797 mutex_enter(&freemem_lock);
3798 if ((availrmem > pages_pp_maximum) &&
3799 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3800 --availrmem;
3801 ++pages_claimed;
3802 mutex_exit(&freemem_lock);
3803 --pp->p_lckcnt;
3804 r = 1;
3805 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3806 cmn_err(CE_WARN,
3807 "COW lock limit reached on pfn 0x%lx",
3808 page_pptonum(pp));
3810 } else
3811 mutex_exit(&freemem_lock);
3813 page_struct_unlock(pp);
3814 return (r);
3818 page_subclaim(page_t *pp)
3820 int r = 0;
3822 ASSERT(PAGE_LOCKED(pp));
3824 page_struct_lock(pp);
3825 ASSERT(pp->p_cowcnt != 0);
3827 if (pp->p_lckcnt) {
3828 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3829 r = 1;
3831 * for availrmem
3833 mutex_enter(&freemem_lock);
3834 availrmem++;
3835 pages_claimed--;
3836 mutex_exit(&freemem_lock);
3838 pp->p_cowcnt--;
3840 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3841 cmn_err(CE_WARN,
3842 "Page lock limit reached on pfn 0x%lx",
3843 page_pptonum(pp));
3846 } else {
3847 r = 1;
3848 pp->p_cowcnt--;
3849 pp->p_lckcnt++;
3851 page_struct_unlock(pp);
3852 return (r);
3856 * Variant of page_addclaim(), where ppa[] contains the pages of a single large
3857 * page.
3860 page_addclaim_pages(page_t **ppa)
3862 pgcnt_t lckpgs = 0, pg_idx;
3864 VM_STAT_ADD(pagecnt.pc_addclaim_pages);
3867 * Only need to take the page struct lock on the large page root.
3869 page_struct_lock(ppa[0]);
3870 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
3872 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
3873 ASSERT(ppa[pg_idx]->p_lckcnt != 0);
3874 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3875 page_struct_unlock(ppa[0]);
3876 return (0);
3878 if (ppa[pg_idx]->p_lckcnt > 1)
3879 lckpgs++;
3882 if (lckpgs != 0) {
3883 mutex_enter(&freemem_lock);
3884 if (availrmem >= pages_pp_maximum + lckpgs) {
3885 availrmem -= lckpgs;
3886 pages_claimed += lckpgs;
3887 } else {
3888 mutex_exit(&freemem_lock);
3889 page_struct_unlock(ppa[0]);
3890 return (0);
3892 mutex_exit(&freemem_lock);
3895 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
3896 ppa[pg_idx]->p_lckcnt--;
3897 ppa[pg_idx]->p_cowcnt++;
3899 page_struct_unlock(ppa[0]);
3900 return (1);
3904 * Variant of page_subclaim(), where ppa[] contains the pages of a single large
3905 * page.
3908 page_subclaim_pages(page_t **ppa)
3910 pgcnt_t ulckpgs = 0, pg_idx;
3912 VM_STAT_ADD(pagecnt.pc_subclaim_pages);
3915 * Only need to take the page struct lock on the large page root.
3917 page_struct_lock(ppa[0]);
3918 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
3920 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
3921 ASSERT(ppa[pg_idx]->p_cowcnt != 0);
3922 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3923 page_struct_unlock(ppa[0]);
3924 return (0);
3926 if (ppa[pg_idx]->p_lckcnt != 0)
3927 ulckpgs++;
3930 if (ulckpgs != 0) {
3931 mutex_enter(&freemem_lock);
3932 availrmem += ulckpgs;
3933 pages_claimed -= ulckpgs;
3934 mutex_exit(&freemem_lock);
3937 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
3938 ppa[pg_idx]->p_cowcnt--;
3939 ppa[pg_idx]->p_lckcnt++;
3942 page_struct_unlock(ppa[0]);
3943 return (1);
3946 page_t *
3947 page_numtopp(pfn_t pfnum, se_t se)
3949 page_t *pp;
3951 retry:
3952 pp = page_numtopp_nolock(pfnum);
3953 if (pp == NULL) {
3954 return (NULL);
3958 * Acquire the appropriate lock on the page.
3960 while (!page_lock(pp, se, NULL, P_RECLAIM)) {
3961 if (page_pptonum(pp) != pfnum)
3962 goto retry;
3963 continue;
3966 if (page_pptonum(pp) != pfnum) {
3967 page_unlock(pp);
3968 goto retry;
3971 return (pp);
3974 page_t *
3975 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
3977 page_t *pp;
3979 retry:
3980 pp = page_numtopp_nolock(pfnum);
3981 if (pp == NULL) {
3982 return (NULL);
3986 * Acquire the appropriate lock on the page.
3988 while (!page_lock(pp, se, NULL, P_NO_RECLAIM)) {
3989 if (page_pptonum(pp) != pfnum)
3990 goto retry;
3991 continue;
3994 if (page_pptonum(pp) != pfnum) {
3995 page_unlock(pp);
3996 goto retry;
3999 return (pp);
4003 * This routine is like page_numtopp, but will only return page structs
4004 * for pages which are ok for loading into hardware using the page struct.
4006 page_t *
4007 page_numtopp_nowait(pfn_t pfnum, se_t se)
4009 page_t *pp;
4011 retry:
4012 pp = page_numtopp_nolock(pfnum);
4013 if (pp == NULL) {
4014 return (NULL);
4018 * Try to acquire the appropriate lock on the page.
4020 if (PP_ISFREE(pp))
4021 pp = NULL;
4022 else {
4023 if (!page_trylock(pp, se))
4024 pp = NULL;
4025 else {
4026 if (page_pptonum(pp) != pfnum) {
4027 page_unlock(pp);
4028 goto retry;
4030 if (PP_ISFREE(pp)) {
4031 page_unlock(pp);
4032 pp = NULL;
4036 return (pp);
4040 * Returns a count of dirty pages that are in the process
4041 * of being written out. If 'cleanit' is set, try to push the page.
4043 pgcnt_t
4044 page_busy(int cleanit)
4046 page_t *page0 = page_first();
4047 page_t *pp = page0;
4048 pgcnt_t nppbusy = 0;
4049 uoff_t off;
4051 do {
4052 vnode_t *vp = pp->p_vnode;
4054 * A page is a candidate for syncing if it is:
4056 * (a) On neither the freelist nor the cachelist
4057 * (b) Hashed onto a vnode
4058 * (c) Not a kernel page
4059 * (d) Dirty
4060 * (e) Not part of a swapfile
4061 * (f) a page which belongs to a real vnode; eg has a non-null
4062 * v_vfsp pointer.
4063 * (g) Backed by a filesystem which doesn't have a
4064 * stubbed-out sync operation
4066 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4067 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4068 vfs_can_sync(vp->v_vfsp)) {
4069 nppbusy++;
4071 if (!cleanit)
4072 continue;
4073 if (!page_trylock(pp, SE_EXCL))
4074 continue;
4076 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4077 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4078 !(hat_pagesync(pp,
4079 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4080 page_unlock(pp);
4081 continue;
4083 off = pp->p_offset;
4084 VN_HOLD(vp);
4085 page_unlock(pp);
4086 (void) fop_putpage(vp, off, PAGESIZE,
4087 B_ASYNC | B_FREE, kcred, NULL);
4088 VN_RELE(vp);
4090 } while ((pp = page_next(pp)) != page0);
4092 return (nppbusy);
4095 void page_invalidate_pages(void);
4098 * callback handler to vm sub-system
4100 * callers make sure no recursive entries to this func.
4102 /*ARGSUSED*/
4103 boolean_t
4104 callb_vm_cpr(void *arg, int code)
4106 if (code == CB_CODE_CPR_CHKPT)
4107 page_invalidate_pages();
4108 return (B_TRUE);
4112 * Invalidate all pages of the system.
4113 * It shouldn't be called until all user page activities are all stopped.
4115 void
4116 page_invalidate_pages()
4118 page_t *pp;
4119 page_t *page0;
4120 pgcnt_t nbusypages;
4121 int retry = 0;
4122 const int MAXRETRIES = 4;
4123 top:
4125 * Flush dirty pages and destroy the clean ones.
4127 nbusypages = 0;
4129 pp = page0 = page_first();
4130 do {
4131 struct vnode *vp;
4132 uoff_t offset;
4133 int mod;
4136 * skip the page if it has no vnode or the page associated
4137 * with the kernel vnode or prom allocated kernel mem.
4139 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4140 continue;
4143 * skip the page which is already free invalidated.
4145 if (PP_ISFREE(pp) && PP_ISAGED(pp))
4146 continue;
4149 * skip pages that are already locked or can't be "exclusively"
4150 * locked or are already free. After we lock the page, check
4151 * the free and age bits again to be sure it's not destroyed
4152 * yet.
4153 * To achieve max. parallelization, we use page_trylock instead
4154 * of page_lock so that we don't get block on individual pages
4155 * while we have thousands of other pages to process.
4157 if (!page_trylock(pp, SE_EXCL)) {
4158 nbusypages++;
4159 continue;
4160 } else if (PP_ISFREE(pp)) {
4161 if (!PP_ISAGED(pp)) {
4162 page_destroy_free(pp);
4163 } else {
4164 page_unlock(pp);
4166 continue;
4169 * Is this page involved in some I/O? shared?
4171 * The page_struct_lock need not be acquired to
4172 * examine these fields since the page has an
4173 * "exclusive" lock.
4175 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4176 page_unlock(pp);
4177 continue;
4180 if (vp->v_type == VCHR) {
4181 panic("vp->v_type == VCHR");
4182 /*NOTREACHED*/
4185 if (!page_try_demote_pages(pp)) {
4186 page_unlock(pp);
4187 continue;
4191 * Check the modified bit. Leave the bits alone in hardware
4192 * (they will be modified if we do the putpage).
4194 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4195 & P_MOD);
4196 if (mod) {
4197 offset = pp->p_offset;
4199 * Hold the vnode before releasing the page lock
4200 * to prevent it from being freed and re-used by
4201 * some other thread.
4203 VN_HOLD(vp);
4204 page_unlock(pp);
4206 * No error return is checked here. Callers such as
4207 * cpr deals with the dirty pages at the dump time
4208 * if this putpage fails.
4210 (void) fop_putpage(vp, offset, PAGESIZE, B_INVAL,
4211 kcred, NULL);
4212 VN_RELE(vp);
4213 } else {
4214 VN_DISPOSE(pp, B_INVAL, 0, kcred);
4216 } while ((pp = page_next(pp)) != page0);
4217 if (nbusypages && retry++ < MAXRETRIES) {
4218 delay(1);
4219 goto top;
4224 * Replace the page "old" with the page "new" on the page hash and vnode lists
4226 * the replacement must be done in place, ie the equivalent sequence:
4228 * vp = old->p_vnode;
4229 * off = old->p_offset;
4230 * page_do_hashout(old)
4231 * page_do_hashin(new, vp, off)
4233 * doesn't work, since
4234 * 1) if old is the only page on the vnode, the v_pagecache_list has a window
4235 * where it looks empty. This will break file system assumptions.
4236 * and
4237 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pagecache_list.
4239 static void
4240 page_do_relocate_hash(page_t *new, page_t *old)
4242 page_t **hash_list;
4243 vnode_t *vp = old->p_vnode;
4244 kmutex_t *sep;
4246 ASSERT(PAGE_EXCL(old));
4247 ASSERT(PAGE_EXCL(new));
4248 ASSERT(vp != NULL);
4249 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4252 * update new and replace old with new on the page hash list
4254 new->p_vnode = old->p_vnode;
4255 new->p_offset = old->p_offset;
4257 avl_remove(&vp->v_pagecache, old);
4258 avl_add(&vp->v_pagecache, new);
4260 if ((new->p_vnode->v_flag & VISSWAP) != 0)
4261 PP_SETSWAP(new);
4264 * replace old with new on the vnode's page list
4266 list_insert_before(&vp->v_pagecache_list, old, new);
4267 list_remove(&vp->v_pagecache_list, old);
4270 * clear out the old page
4272 old->p_vnode = NULL;
4273 PP_CLRSWAP(old);
4274 old->p_offset = (uoff_t)-1;
4275 page_clr_all_props(old);
4278 * Wake up processes waiting for this page. The page's
4279 * identity has been changed, and is probably not the
4280 * desired page any longer.
4282 sep = page_se_mutex(old);
4283 mutex_enter(sep);
4284 old->p_selock &= ~SE_EWANTED;
4285 if (CV_HAS_WAITERS(&old->p_cv))
4286 cv_broadcast(&old->p_cv);
4287 mutex_exit(sep);
4291 * This function moves the identity of page "pp_old" to page "pp_new".
4292 * Both pages must be locked on entry. "pp_new" is free, has no identity,
4293 * and need not be hashed out from anywhere.
4295 void
4296 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4298 vnode_t *vp = pp_old->p_vnode;
4299 uoff_t off = pp_old->p_offset;
4302 * Rehash two pages
4304 ASSERT(PAGE_EXCL(pp_old));
4305 ASSERT(PAGE_EXCL(pp_new));
4306 ASSERT(vp != NULL);
4307 ASSERT(pp_new->p_vnode == NULL);
4309 mutex_enter(page_vnode_mutex(vp));
4311 page_do_relocate_hash(pp_new, pp_old);
4312 pp_new->p_fsdata = pp_old->p_fsdata;
4313 pp_old->p_fsdata = 0;
4315 mutex_exit(page_vnode_mutex(vp));
4318 * The page_struct_lock need not be acquired for lckcnt and
4319 * cowcnt since the page has an "exclusive" lock.
4321 ASSERT(pp_new->p_lckcnt == 0);
4322 ASSERT(pp_new->p_cowcnt == 0);
4323 pp_new->p_lckcnt = pp_old->p_lckcnt;
4324 pp_new->p_cowcnt = pp_old->p_cowcnt;
4325 pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4329 * Helper routine used to lock all remaining members of a
4330 * large page. The caller is responsible for passing in a locked
4331 * pp. If pp is a large page, then it succeeds in locking all the
4332 * remaining constituent pages or it returns with only the
4333 * original page locked.
4335 * Returns 1 on success, 0 on failure.
4337 * If success is returned this routine guarantees p_szc for all constituent
4338 * pages of a large page pp belongs to can't change. To achieve this we
4339 * recheck szc of pp after locking all constituent pages and retry if szc
4340 * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4341 * lock on one of constituent pages it can't be running after all constituent
4342 * pages are locked. hat_page_demote() with a lock on a constituent page
4343 * outside of this large page (i.e. pp belonged to a larger large page) is
4344 * already done with all constituent pages of pp since the root's p_szc is
4345 * changed last. Therefore no need to synchronize with hat_page_demote() that
4346 * locked a constituent page outside of pp's current large page.
4348 #ifdef DEBUG
4349 uint32_t gpg_trylock_mtbf = 0;
4350 #endif
4353 group_page_trylock(page_t *pp, se_t se)
4355 page_t *tpp;
4356 pgcnt_t npgs, i, j;
4357 uint_t pszc = pp->p_szc;
4359 #ifdef DEBUG
4360 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4361 return (0);
4363 #endif
4365 if (pp != PP_GROUPLEADER(pp, pszc)) {
4366 return (0);
4369 retry:
4370 ASSERT(PAGE_LOCKED_SE(pp, se));
4371 ASSERT(!PP_ISFREE(pp));
4372 if (pszc == 0) {
4373 return (1);
4375 npgs = page_get_pagecnt(pszc);
4376 tpp = pp + 1;
4377 for (i = 1; i < npgs; i++, tpp++) {
4378 if (!page_trylock(tpp, se)) {
4379 tpp = pp + 1;
4380 for (j = 1; j < i; j++, tpp++) {
4381 page_unlock(tpp);
4383 return (0);
4386 if (pp->p_szc != pszc) {
4387 ASSERT(pp->p_szc < pszc);
4388 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4389 !IS_SWAPFSVP(pp->p_vnode));
4390 tpp = pp + 1;
4391 for (i = 1; i < npgs; i++, tpp++) {
4392 page_unlock(tpp);
4394 pszc = pp->p_szc;
4395 goto retry;
4397 return (1);
4400 void
4401 group_page_unlock(page_t *pp)
4403 page_t *tpp;
4404 pgcnt_t npgs, i;
4406 ASSERT(PAGE_LOCKED(pp));
4407 ASSERT(!PP_ISFREE(pp));
4408 ASSERT(pp == PP_PAGEROOT(pp));
4409 npgs = page_get_pagecnt(pp->p_szc);
4410 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4411 page_unlock(tpp);
4416 * returns
4417 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages
4418 * ERANGE : this is not a base page
4419 * EBUSY : failure to get locks on the page/pages
4420 * ENOMEM : failure to obtain replacement pages
4421 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
4422 * EIO : An error occurred while trying to copy the page data
4424 * Return with all constituent members of target and replacement
4425 * SE_EXCL locked. It is the callers responsibility to drop the
4426 * locks.
4429 do_page_relocate(
4430 page_t **target,
4431 page_t **replacement,
4432 int grouplock,
4433 spgcnt_t *nrelocp,
4434 lgrp_t *lgrp)
4436 page_t *first_repl;
4437 page_t *repl;
4438 page_t *targ;
4439 page_t *pl = NULL;
4440 uint_t ppattr;
4441 pfn_t pfn, repl_pfn;
4442 uint_t szc;
4443 spgcnt_t npgs, i;
4444 int repl_contig = 0;
4445 uint_t flags = 0;
4446 spgcnt_t dofree = 0;
4448 *nrelocp = 0;
4450 #if defined(__sparc)
4452 * We need to wait till OBP has completed
4453 * its boot-time handoff of its resources to the kernel
4454 * before we allow page relocation
4456 if (page_relocate_ready == 0) {
4457 return (EAGAIN);
4459 #endif
4462 * If this is not a base page,
4463 * just return with 0x0 pages relocated.
4465 targ = *target;
4466 ASSERT(PAGE_EXCL(targ));
4467 ASSERT(!PP_ISFREE(targ));
4468 szc = targ->p_szc;
4469 ASSERT(szc < mmu_page_sizes);
4470 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4471 pfn = targ->p_pagenum;
4472 if (pfn != PFN_BASE(pfn, szc)) {
4473 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4474 return (ERANGE);
4477 if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4478 repl_pfn = repl->p_pagenum;
4479 if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4480 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4481 return (ERANGE);
4483 repl_contig = 1;
4487 * We must lock all members of this large page or we cannot
4488 * relocate any part of it.
4490 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4491 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4492 return (EBUSY);
4496 * reread szc it could have been decreased before
4497 * group_page_trylock() was done.
4499 szc = targ->p_szc;
4500 ASSERT(szc < mmu_page_sizes);
4501 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4502 ASSERT(pfn == PFN_BASE(pfn, szc));
4504 npgs = page_get_pagecnt(targ->p_szc);
4506 if (repl == NULL) {
4507 dofree = npgs; /* Size of target page in MMU pages */
4508 if (!page_create_wait(dofree, 0)) {
4509 if (grouplock != 0) {
4510 group_page_unlock(targ);
4512 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4513 return (ENOMEM);
4517 * seg kmem pages require that the target and replacement
4518 * page be the same pagesize.
4520 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4521 repl = page_get_replacement_page(targ, lgrp, flags);
4522 if (repl == NULL) {
4523 if (grouplock != 0) {
4524 group_page_unlock(targ);
4526 page_create_putback(dofree);
4527 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4528 return (ENOMEM);
4531 #ifdef DEBUG
4532 else {
4533 ASSERT(PAGE_LOCKED(repl));
4535 #endif /* DEBUG */
4537 #if defined(__sparc)
4539 * Let hat_page_relocate() complete the relocation if it's kernel page
4541 if (VN_ISKAS(targ->p_vnode)) {
4542 *replacement = repl;
4543 if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4544 if (grouplock != 0) {
4545 group_page_unlock(targ);
4547 if (dofree) {
4548 *replacement = NULL;
4549 page_free_replacement_page(repl);
4550 page_create_putback(dofree);
4552 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4553 return (EAGAIN);
4555 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4556 return (0);
4558 #endif
4560 first_repl = repl;
4562 for (i = 0; i < npgs; i++) {
4563 ASSERT(PAGE_EXCL(targ));
4564 ASSERT(targ->p_slckcnt == 0);
4565 ASSERT(repl->p_slckcnt == 0);
4567 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4569 ASSERT(hat_page_getshare(targ) == 0);
4570 ASSERT(!PP_ISFREE(targ));
4571 ASSERT(targ->p_pagenum == (pfn + i));
4572 ASSERT(repl_contig == 0 ||
4573 repl->p_pagenum == (repl_pfn + i));
4576 * Copy the page contents and attributes then
4577 * relocate the page in the page hash.
4579 if (ppcopy(targ, repl) == 0) {
4580 targ = *target;
4581 repl = first_repl;
4582 VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4583 if (grouplock != 0) {
4584 group_page_unlock(targ);
4586 if (dofree) {
4587 *replacement = NULL;
4588 page_free_replacement_page(repl);
4589 page_create_putback(dofree);
4591 return (EIO);
4594 targ++;
4595 if (repl_contig != 0) {
4596 repl++;
4597 } else {
4598 repl = repl->p_next;
4602 repl = first_repl;
4603 targ = *target;
4605 for (i = 0; i < npgs; i++) {
4606 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4607 page_clr_all_props(repl);
4608 page_set_props(repl, ppattr);
4609 page_relocate_hash(repl, targ);
4611 ASSERT(hat_page_getshare(targ) == 0);
4612 ASSERT(hat_page_getshare(repl) == 0);
4614 * Now clear the props on targ, after the
4615 * page_relocate_hash(), they no longer
4616 * have any meaning.
4618 page_clr_all_props(targ);
4619 ASSERT(targ->p_next == targ);
4620 ASSERT(targ->p_prev == targ);
4621 page_list_concat(&pl, &targ);
4623 targ++;
4624 if (repl_contig != 0) {
4625 repl++;
4626 } else {
4627 repl = repl->p_next;
4630 /* assert that we have come full circle with repl */
4631 ASSERT(repl_contig == 1 || first_repl == repl);
4633 *target = pl;
4634 if (*replacement == NULL) {
4635 ASSERT(first_repl == repl);
4636 *replacement = repl;
4638 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4639 *nrelocp = npgs;
4640 return (0);
4643 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4646 page_relocate(
4647 page_t **target,
4648 page_t **replacement,
4649 int grouplock,
4650 int freetarget,
4651 spgcnt_t *nrelocp,
4652 lgrp_t *lgrp)
4654 spgcnt_t ret;
4656 /* do_page_relocate returns 0 on success or errno value */
4657 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4659 if (ret != 0 || freetarget == 0) {
4660 return (ret);
4662 if (*nrelocp == 1) {
4663 ASSERT(*target != NULL);
4664 page_free(*target, 1);
4665 } else {
4666 page_t *tpp = *target;
4667 uint_t szc = tpp->p_szc;
4668 pgcnt_t npgs = page_get_pagecnt(szc);
4669 ASSERT(npgs > 1);
4670 ASSERT(szc != 0);
4671 do {
4672 ASSERT(PAGE_EXCL(tpp));
4673 ASSERT(!hat_page_is_mapped(tpp));
4674 ASSERT(tpp->p_szc == szc);
4675 PP_SETFREE(tpp);
4676 PP_SETAGED(tpp);
4677 npgs--;
4678 } while ((tpp = tpp->p_next) != *target);
4679 ASSERT(npgs == 0);
4680 page_list_add_pages(*target, 0);
4681 npgs = page_get_pagecnt(szc);
4682 page_create_putback(npgs);
4684 return (ret);
4688 * it is up to the caller to deal with pcf accounting.
4690 void
4691 page_free_replacement_page(page_t *pplist)
4693 page_t *pp;
4695 while (pplist != NULL) {
4697 * pp_targ is a linked list.
4699 pp = pplist;
4700 if (pp->p_szc == 0) {
4701 page_sub(&pplist, pp);
4702 page_clr_all_props(pp);
4703 PP_SETFREE(pp);
4704 PP_SETAGED(pp);
4705 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
4706 page_unlock(pp);
4707 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
4708 } else {
4709 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
4710 page_t *tpp;
4711 page_list_break(&pp, &pplist, curnpgs);
4712 tpp = pp;
4713 do {
4714 ASSERT(PAGE_EXCL(tpp));
4715 ASSERT(!hat_page_is_mapped(tpp));
4716 page_clr_all_props(tpp);
4717 PP_SETFREE(tpp);
4718 PP_SETAGED(tpp);
4719 } while ((tpp = tpp->p_next) != pp);
4720 page_list_add_pages(pp, 0);
4721 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
4727 * Relocate target to non-relocatable replacement page.
4730 page_relocate_cage(page_t **target, page_t **replacement)
4732 page_t *tpp, *rpp;
4733 spgcnt_t pgcnt, npgs;
4734 int result;
4736 tpp = *target;
4738 ASSERT(PAGE_EXCL(tpp));
4739 ASSERT(tpp->p_szc == 0);
4741 pgcnt = btop(page_get_pagesize(tpp->p_szc));
4743 do {
4744 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
4745 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
4746 if (rpp == NULL) {
4747 page_create_putback(pgcnt);
4748 kcage_cageout_wakeup();
4750 } while (rpp == NULL);
4752 ASSERT(PP_ISNORELOC(rpp));
4754 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
4756 if (result == 0) {
4757 *replacement = rpp;
4758 if (pgcnt != npgs)
4759 panic("page_relocate_cage: partial relocation");
4762 return (result);
4766 * Release the page lock on a page, place on cachelist
4767 * tail if no longer mapped. Caller can let us know if
4768 * the page is known to be clean.
4771 page_release(page_t *pp, int checkmod)
4773 int status;
4775 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
4776 (pp->p_vnode != NULL));
4778 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
4779 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
4780 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
4781 !hat_page_is_mapped(pp)) {
4784 * If page is modified, unlock it
4786 * (p_nrm & P_MOD) bit has the latest stuff because:
4787 * (1) We found that this page doesn't have any mappings
4788 * _after_ holding SE_EXCL and
4789 * (2) We didn't drop SE_EXCL lock after the check in (1)
4791 if (checkmod && hat_ismod(pp)) {
4792 page_unlock(pp);
4793 status = PGREL_MOD;
4794 } else {
4795 VN_DISPOSE(pp, B_FREE, 0, kcred);
4796 status = PGREL_CLEAN;
4798 } else {
4799 page_unlock(pp);
4800 status = PGREL_NOTREL;
4802 return (status);
4806 * Given a constituent page, try to demote the large page on the freelist.
4808 * Returns nonzero if the page could be demoted successfully. Returns with
4809 * the constituent page still locked.
4812 page_try_demote_free_pages(page_t *pp)
4814 page_t *rootpp = pp;
4815 pfn_t pfn = page_pptonum(pp);
4816 spgcnt_t npgs;
4817 uint_t szc = pp->p_szc;
4819 ASSERT(PP_ISFREE(pp));
4820 ASSERT(PAGE_EXCL(pp));
4823 * Adjust rootpp and lock it, if `pp' is not the base
4824 * constituent page.
4826 npgs = page_get_pagecnt(pp->p_szc);
4827 if (npgs == 1) {
4828 return (0);
4831 if (!IS_P2ALIGNED(pfn, npgs)) {
4832 pfn = P2ALIGN(pfn, npgs);
4833 rootpp = page_numtopp_nolock(pfn);
4836 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
4837 return (0);
4840 if (rootpp->p_szc != szc) {
4841 if (pp != rootpp)
4842 page_unlock(rootpp);
4843 return (0);
4846 page_demote_free_pages(rootpp);
4848 if (pp != rootpp)
4849 page_unlock(rootpp);
4851 ASSERT(PP_ISFREE(pp));
4852 ASSERT(PAGE_EXCL(pp));
4853 return (1);
4857 * Given a constituent page, try to demote the large page.
4859 * Returns nonzero if the page could be demoted successfully. Returns with
4860 * the constituent page still locked.
4863 page_try_demote_pages(page_t *pp)
4865 page_t *tpp, *rootpp = pp;
4866 pfn_t pfn = page_pptonum(pp);
4867 spgcnt_t i, npgs;
4868 uint_t szc = pp->p_szc;
4869 vnode_t *vp = pp->p_vnode;
4871 ASSERT(PAGE_EXCL(pp));
4873 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
4875 if (pp->p_szc == 0) {
4876 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
4877 return (1);
4880 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
4881 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
4882 page_demote_vp_pages(pp);
4883 ASSERT(pp->p_szc == 0);
4884 return (1);
4888 * Adjust rootpp if passed in is not the base
4889 * constituent page.
4891 npgs = page_get_pagecnt(pp->p_szc);
4892 ASSERT(npgs > 1);
4893 if (!IS_P2ALIGNED(pfn, npgs)) {
4894 pfn = P2ALIGN(pfn, npgs);
4895 rootpp = page_numtopp_nolock(pfn);
4896 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
4897 ASSERT(rootpp->p_vnode != NULL);
4898 ASSERT(rootpp->p_szc == szc);
4902 * We can't demote kernel pages since we can't hat_unload()
4903 * the mappings.
4905 if (VN_ISKAS(rootpp->p_vnode))
4906 return (0);
4909 * Attempt to lock all constituent pages except the page passed
4910 * in since it's already locked.
4912 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
4913 ASSERT(!PP_ISFREE(tpp));
4914 ASSERT(tpp->p_vnode != NULL);
4916 if (tpp != pp && !page_trylock(tpp, SE_EXCL))
4917 break;
4918 ASSERT(tpp->p_szc == rootpp->p_szc);
4919 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
4923 * If we failed to lock them all then unlock what we have
4924 * locked so far and bail.
4926 if (i < npgs) {
4927 tpp = rootpp;
4928 while (i-- > 0) {
4929 if (tpp != pp)
4930 page_unlock(tpp);
4931 tpp++;
4933 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
4934 return (0);
4937 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
4938 ASSERT(PAGE_EXCL(tpp));
4939 ASSERT(tpp->p_slckcnt == 0);
4940 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
4941 tpp->p_szc = 0;
4945 * Unlock all pages except the page passed in.
4947 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
4948 ASSERT(!hat_page_is_mapped(tpp));
4949 if (tpp != pp)
4950 page_unlock(tpp);
4953 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
4954 return (1);
4958 * Called by page_free() and page_destroy() to demote the page size code
4959 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
4960 * p_szc on free list, neither can we just clear p_szc of a single page_t
4961 * within a large page since it will break other code that relies on p_szc
4962 * being the same for all page_t's of a large page). Anonymous pages should
4963 * never end up here because anon_map_getpages() cannot deal with p_szc
4964 * changes after a single constituent page is locked. While anonymous or
4965 * kernel large pages are demoted or freed the entire large page at a time
4966 * with all constituent pages locked EXCL for the file system pages we
4967 * have to be able to demote a large page (i.e. decrease all constituent pages
4968 * p_szc) with only just an EXCL lock on one of constituent pages. The reason
4969 * we can easily deal with anonymous page demotion the entire large page at a
4970 * time is that those operation originate at address space level and concern
4971 * the entire large page region with actual demotion only done when pages are
4972 * not shared with any other processes (therefore we can always get EXCL lock
4973 * on all anonymous constituent pages after clearing segment page
4974 * cache). However file system pages can be truncated or invalidated at a
4975 * PAGESIZE level from the file system side and end up in page_free() or
4976 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
4977 * and therefore pageout should be able to demote a large page by EXCL locking
4978 * any constituent page that is not under SOFTLOCK). In those cases we cannot
4979 * rely on being able to lock EXCL all constituent pages.
4981 * To prevent szc changes on file system pages one has to lock all constituent
4982 * pages at least SHARED (or call page_szc_lock()). The only subsystem that
4983 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
4984 * prevent szc changes is hat layer that uses its own page level mlist
4985 * locks. hat assumes that szc doesn't change after mlist lock for a page is
4986 * taken. Therefore we need to change szc under hat level locks if we only
4987 * have an EXCL lock on a single constituent page and hat still references any
4988 * of constituent pages. (Note we can't "ignore" hat layer by simply
4989 * hat_pageunload() all constituent pages without having EXCL locks on all of
4990 * constituent pages). We use hat_page_demote() call to safely demote szc of
4991 * all constituent pages under hat locks when we only have an EXCL lock on one
4992 * of constituent pages.
4994 * This routine calls page_szc_lock() before calling hat_page_demote() to
4995 * allow segvn in one special case not to lock all constituent pages SHARED
4996 * before calling hat_memload_array() that relies on p_szc not changing even
4997 * before hat level mlist lock is taken. In that case segvn uses
4998 * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5000 * Anonymous or kernel page demotion still has to lock all pages exclusively
5001 * and do hat_pageunload() on all constituent pages before demoting the page
5002 * therefore there's no need for anonymous or kernel page demotion to use
5003 * hat_page_demote() mechanism.
5005 * hat_page_demote() removes all large mappings that map pp and then decreases
5006 * p_szc starting from the last constituent page of the large page. By working
5007 * from the tail of a large page in pfn decreasing order allows one looking at
5008 * the root page to know that hat_page_demote() is done for root's szc area.
5009 * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5010 * pages within szc 1 area to prevent szc changes because hat_page_demote()
5011 * that started on this page when it had szc > 1 is done for this szc 1 area.
5013 * We are guaranteed that all constituent pages of pp's large page belong to
5014 * the same vnode with the consecutive offsets increasing in the direction of
5015 * the pfn i.e. the identity of constituent pages can't change until their
5016 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5017 * large mappings to pp even though we don't lock any constituent page except
5018 * pp (i.e. we won't unload e.g. kernel locked page).
5020 static void
5021 page_demote_vp_pages(page_t *pp)
5023 kmutex_t *mtx;
5025 ASSERT(PAGE_EXCL(pp));
5026 ASSERT(!PP_ISFREE(pp));
5027 ASSERT(pp->p_vnode != NULL);
5028 ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5029 ASSERT(!PP_ISKAS(pp));
5031 VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5033 mtx = page_szc_lock(pp);
5034 if (mtx != NULL) {
5035 hat_page_demote(pp);
5036 mutex_exit(mtx);
5038 ASSERT(pp->p_szc == 0);
5042 * Mark any existing pages for migration in the given range
5044 void
5045 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5046 struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5047 uoff_t vnoff, int rflag)
5049 struct anon *ap;
5050 vnode_t *curvp;
5051 lgrp_t *from;
5052 pgcnt_t nlocked;
5053 uoff_t off;
5054 pfn_t pfn;
5055 size_t pgsz;
5056 size_t segpgsz;
5057 pgcnt_t pages;
5058 uint_t pszc;
5059 page_t *pp0, *pp;
5060 caddr_t va;
5061 ulong_t an_idx;
5062 anon_sync_obj_t cookie;
5064 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5067 * Don't do anything if don't need to do lgroup optimizations
5068 * on this system
5070 if (!lgrp_optimizations())
5071 return;
5074 * Align address and length to (potentially large) page boundary
5076 segpgsz = page_get_pagesize(seg->s_szc);
5077 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5078 if (rflag)
5079 len = P2ROUNDUP(len, segpgsz);
5082 * Do one (large) page at a time
5084 va = addr;
5085 while (va < addr + len) {
5087 * Lookup (root) page for vnode and offset corresponding to
5088 * this virtual address
5089 * Try anonmap first since there may be copy-on-write
5090 * pages, but initialize vnode pointer and offset using
5091 * vnode arguments just in case there isn't an amp.
5093 curvp = vp;
5094 off = vnoff + va - seg->s_base;
5095 if (amp) {
5096 ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5097 an_idx = anon_index + seg_page(seg, va);
5098 anon_array_enter(amp, an_idx, &cookie);
5099 ap = anon_get_ptr(amp->ahp, an_idx);
5100 if (ap)
5101 swap_xlate(ap, &curvp, &off);
5102 anon_array_exit(&cookie);
5103 ANON_LOCK_EXIT(&amp->a_rwlock);
5106 pp = NULL;
5107 if (curvp)
5108 pp = page_lookup(curvp, off, SE_SHARED);
5111 * If there isn't a page at this virtual address,
5112 * skip to next page
5114 if (pp == NULL) {
5115 va += PAGESIZE;
5116 continue;
5120 * Figure out which lgroup this page is in for kstats
5122 pfn = page_pptonum(pp);
5123 from = lgrp_pfn_to_lgrp(pfn);
5126 * Get page size, and round up and skip to next page boundary
5127 * if unaligned address
5129 pszc = pp->p_szc;
5130 pgsz = page_get_pagesize(pszc);
5131 pages = btop(pgsz);
5132 if (!IS_P2ALIGNED(va, pgsz) ||
5133 !IS_P2ALIGNED(pfn, pages) ||
5134 pgsz > segpgsz) {
5135 pgsz = MIN(pgsz, segpgsz);
5136 page_unlock(pp);
5137 pages = btop(P2END((uintptr_t)va, pgsz) -
5138 (uintptr_t)va);
5139 va = (caddr_t)P2END((uintptr_t)va, pgsz);
5140 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5141 continue;
5145 * Upgrade to exclusive lock on page
5147 if (!page_tryupgrade(pp)) {
5148 page_unlock(pp);
5149 va += pgsz;
5150 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5151 btop(pgsz));
5152 continue;
5155 pp0 = pp++;
5156 nlocked = 1;
5159 * Lock constituent pages if this is large page
5161 if (pages > 1) {
5163 * Lock all constituents except root page, since it
5164 * should be locked already.
5166 for (; nlocked < pages; nlocked++) {
5167 if (!page_trylock(pp, SE_EXCL)) {
5168 break;
5170 if (PP_ISFREE(pp) ||
5171 pp->p_szc != pszc) {
5173 * hat_page_demote() raced in with us.
5175 ASSERT(!IS_SWAPFSVP(curvp));
5176 page_unlock(pp);
5177 break;
5179 pp++;
5184 * If all constituent pages couldn't be locked,
5185 * unlock pages locked so far and skip to next page.
5187 if (nlocked < pages) {
5188 while (pp0 < pp) {
5189 page_unlock(pp0++);
5191 va += pgsz;
5192 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5193 btop(pgsz));
5194 continue;
5198 * hat_page_demote() can no longer happen
5199 * since last cons page had the right p_szc after
5200 * all cons pages were locked. all cons pages
5201 * should now have the same p_szc.
5205 * All constituent pages locked successfully, so mark
5206 * large page for migration and unload the mappings of
5207 * constituent pages, so a fault will occur on any part of the
5208 * large page
5210 PP_SETMIGRATE(pp0);
5211 while (pp0 < pp) {
5212 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5213 ASSERT(hat_page_getshare(pp0) == 0);
5214 page_unlock(pp0++);
5216 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5218 va += pgsz;
5223 * Migrate any pages that have been marked for migration in the given range
5225 void
5226 page_migrate(
5227 struct seg *seg,
5228 caddr_t addr,
5229 page_t **ppa,
5230 pgcnt_t npages)
5232 lgrp_t *from;
5233 lgrp_t *to;
5234 page_t *newpp;
5235 page_t *pp;
5236 pfn_t pfn;
5237 size_t pgsz;
5238 spgcnt_t page_cnt;
5239 spgcnt_t i;
5240 uint_t pszc;
5242 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5244 while (npages > 0) {
5245 pp = *ppa;
5246 pszc = pp->p_szc;
5247 pgsz = page_get_pagesize(pszc);
5248 page_cnt = btop(pgsz);
5251 * Check to see whether this page is marked for migration
5253 * Assume that root page of large page is marked for
5254 * migration and none of the other constituent pages
5255 * are marked. This really simplifies clearing the
5256 * migrate bit by not having to clear it from each
5257 * constituent page.
5259 * note we don't want to relocate an entire large page if
5260 * someone is only using one subpage.
5262 if (npages < page_cnt)
5263 break;
5266 * Is it marked for migration?
5268 if (!PP_ISMIGRATE(pp))
5269 goto next;
5272 * Determine lgroups that page is being migrated between
5274 pfn = page_pptonum(pp);
5275 if (!IS_P2ALIGNED(pfn, page_cnt)) {
5276 break;
5278 from = lgrp_pfn_to_lgrp(pfn);
5279 to = lgrp_mem_choose(seg, addr, pgsz);
5282 * Need to get exclusive lock's to migrate
5284 for (i = 0; i < page_cnt; i++) {
5285 ASSERT(PAGE_LOCKED(ppa[i]));
5286 if (page_pptonum(ppa[i]) != pfn + i ||
5287 ppa[i]->p_szc != pszc) {
5288 break;
5290 if (!page_tryupgrade(ppa[i])) {
5291 lgrp_stat_add(from->lgrp_id,
5292 LGRP_PM_FAIL_LOCK_PGS,
5293 page_cnt);
5294 break;
5298 * Check to see whether we are trying to migrate
5299 * page to lgroup where it is allocated already.
5300 * If so, clear the migrate bit and skip to next
5301 * page.
5303 if (i == 0 && to == from) {
5304 PP_CLRMIGRATE(ppa[0]);
5305 page_downgrade(ppa[0]);
5306 goto next;
5311 * If all constituent pages couldn't be locked,
5312 * unlock pages locked so far and skip to next page.
5314 if (i != page_cnt) {
5315 while (--i != -1) {
5316 page_downgrade(ppa[i]);
5318 goto next;
5321 (void) page_create_wait(page_cnt, PG_WAIT);
5322 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5323 if (newpp == NULL) {
5324 page_create_putback(page_cnt);
5325 for (i = 0; i < page_cnt; i++) {
5326 page_downgrade(ppa[i]);
5328 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5329 page_cnt);
5330 goto next;
5332 ASSERT(newpp->p_szc == pszc);
5334 * Clear migrate bit and relocate page
5336 PP_CLRMIGRATE(pp);
5337 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5338 panic("page_migrate: page_relocate failed");
5340 ASSERT(page_cnt * PAGESIZE == pgsz);
5343 * Keep stats for number of pages migrated from and to
5344 * each lgroup
5346 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5347 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5349 * update the page_t array we were passed in and
5350 * unlink constituent pages of a large page.
5352 for (i = 0; i < page_cnt; ++i, ++pp) {
5353 ASSERT(PAGE_EXCL(newpp));
5354 ASSERT(newpp->p_szc == pszc);
5355 ppa[i] = newpp;
5356 pp = newpp;
5357 page_sub(&newpp, pp);
5358 page_downgrade(pp);
5360 ASSERT(newpp == NULL);
5361 next:
5362 addr += pgsz;
5363 ppa += page_cnt;
5364 npages -= page_cnt;
5368 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5369 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5371 * Reclaim/reserve availrmem for npages.
5372 * If there is not enough memory start reaping seg, kmem caches.
5373 * Start pageout scanner (via page_needfree()).
5374 * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5375 * Note: There is no guarantee that any availrmem will be freed as
5376 * this memory typically is locked (kernel heap) or reserved for swap.
5377 * Also due to memory fragmentation kmem allocator may not be able
5378 * to free any memory (single user allocated buffer will prevent
5379 * freeing slab or a page).
5382 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5384 int i = 0;
5385 int i_nofree = 0;
5386 int ret = 0;
5387 pgcnt_t deficit;
5388 pgcnt_t old_availrmem = 0;
5390 mutex_enter(&freemem_lock);
5391 while (availrmem < tune.t_minarmem + npages + epages &&
5392 i++ < page_reclaim_maxcnt) {
5393 /* ensure we made some progress in the last few iterations */
5394 if (old_availrmem < availrmem) {
5395 old_availrmem = availrmem;
5396 i_nofree = 0;
5397 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5398 break;
5401 deficit = tune.t_minarmem + npages + epages - availrmem;
5402 mutex_exit(&freemem_lock);
5403 page_needfree(deficit);
5404 kmem_reap();
5405 delay(hz);
5406 page_needfree(-(spgcnt_t)deficit);
5407 mutex_enter(&freemem_lock);
5410 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5411 availrmem -= npages;
5412 ret = 1;
5415 mutex_exit(&freemem_lock);
5417 return (ret);
5421 * Search the memory segments to locate the desired page. Within a
5422 * segment, pages increase linearly with one page structure per
5423 * physical page frame (size PAGESIZE). The search begins
5424 * with the segment that was accessed last, to take advantage of locality.
5425 * If the hint misses, we start from the beginning of the sorted memseg list
5430 * Some data structures for pfn to pp lookup.
5432 ulong_t mhash_per_slot;
5433 struct memseg *memseg_hash[N_MEM_SLOTS];
5435 page_t *
5436 page_numtopp_nolock(pfn_t pfnum)
5438 struct memseg *seg;
5439 page_t *pp;
5440 vm_cpu_data_t *vc;
5443 * We need to disable kernel preemption while referencing the
5444 * cpu_vm_data field in order to prevent us from being switched to
5445 * another cpu and trying to reference it after it has been freed.
5446 * This will keep us on cpu and prevent it from being removed while
5447 * we are still on it.
5449 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5450 * which is being resued by DR who will flush those references
5451 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5453 kpreempt_disable();
5454 vc = CPU->cpu_vm_data;
5455 ASSERT(vc != NULL);
5457 MEMSEG_STAT_INCR(nsearch);
5459 /* Try last winner first */
5460 if (((seg = vc->vc_pnum_memseg) != NULL) &&
5461 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5462 MEMSEG_STAT_INCR(nlastwon);
5463 pp = seg->pages + (pfnum - seg->pages_base);
5464 if (pp->p_pagenum == pfnum) {
5465 kpreempt_enable();
5466 return ((page_t *)pp);
5470 /* Else Try hash */
5471 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5472 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5473 MEMSEG_STAT_INCR(nhashwon);
5474 vc->vc_pnum_memseg = seg;
5475 pp = seg->pages + (pfnum - seg->pages_base);
5476 if (pp->p_pagenum == pfnum) {
5477 kpreempt_enable();
5478 return ((page_t *)pp);
5482 /* Else Brute force */
5483 for (seg = memsegs; seg != NULL; seg = seg->next) {
5484 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5485 vc->vc_pnum_memseg = seg;
5486 pp = seg->pages + (pfnum - seg->pages_base);
5487 if (pp->p_pagenum == pfnum) {
5488 kpreempt_enable();
5489 return ((page_t *)pp);
5493 vc->vc_pnum_memseg = NULL;
5494 kpreempt_enable();
5495 MEMSEG_STAT_INCR(nnotfound);
5496 return (NULL);
5500 struct memseg *
5501 page_numtomemseg_nolock(pfn_t pfnum)
5503 struct memseg *seg;
5504 page_t *pp;
5507 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5508 * which is being resued by DR who will flush those references
5509 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5511 kpreempt_disable();
5512 /* Try hash */
5513 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5514 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5515 pp = seg->pages + (pfnum - seg->pages_base);
5516 if (pp->p_pagenum == pfnum) {
5517 kpreempt_enable();
5518 return (seg);
5522 /* Else Brute force */
5523 for (seg = memsegs; seg != NULL; seg = seg->next) {
5524 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5525 pp = seg->pages + (pfnum - seg->pages_base);
5526 if (pp->p_pagenum == pfnum) {
5527 kpreempt_enable();
5528 return (seg);
5532 kpreempt_enable();
5533 return (NULL);
5537 * Given a page and a count return the page struct that is
5538 * n structs away from the current one in the global page
5539 * list.
5541 * This function wraps to the first page upon
5542 * reaching the end of the memseg list.
5544 page_t *
5545 page_nextn(page_t *pp, ulong_t n)
5547 struct memseg *seg;
5548 page_t *ppn;
5549 vm_cpu_data_t *vc;
5552 * We need to disable kernel preemption while referencing the
5553 * cpu_vm_data field in order to prevent us from being switched to
5554 * another cpu and trying to reference it after it has been freed.
5555 * This will keep us on cpu and prevent it from being removed while
5556 * we are still on it.
5558 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5559 * which is being resued by DR who will flush those references
5560 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5562 kpreempt_disable();
5563 vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5565 ASSERT(vc != NULL);
5567 if (((seg = vc->vc_pnext_memseg) == NULL) ||
5568 (seg->pages_base == seg->pages_end) ||
5569 !(pp >= seg->pages && pp < seg->epages)) {
5571 for (seg = memsegs; seg; seg = seg->next) {
5572 if (pp >= seg->pages && pp < seg->epages)
5573 break;
5576 if (seg == NULL) {
5577 /* Memory delete got in, return something valid. */
5578 /* TODO: fix me. */
5579 seg = memsegs;
5580 pp = seg->pages;
5584 /* check for wraparound - possible if n is large */
5585 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5586 n -= seg->epages - pp;
5587 seg = seg->next;
5588 if (seg == NULL)
5589 seg = memsegs;
5590 pp = seg->pages;
5592 vc->vc_pnext_memseg = seg;
5593 kpreempt_enable();
5594 return (ppn);
5598 * Initialize for a loop using page_next_scan_large().
5600 page_t *
5601 page_next_scan_init(void **cookie)
5603 ASSERT(cookie != NULL);
5604 *cookie = (void *)memsegs;
5605 return ((page_t *)memsegs->pages);
5609 * Return the next page in a scan of page_t's, assuming we want
5610 * to skip over sub-pages within larger page sizes.
5612 * The cookie is used to keep track of the current memseg.
5614 page_t *
5615 page_next_scan_large(
5616 page_t *pp,
5617 ulong_t *n,
5618 void **cookie)
5620 struct memseg *seg = (struct memseg *)*cookie;
5621 page_t *new_pp;
5622 ulong_t cnt;
5623 pfn_t pfn;
5627 * get the count of page_t's to skip based on the page size
5629 ASSERT(pp != NULL);
5630 if (pp->p_szc == 0) {
5631 cnt = 1;
5632 } else {
5633 pfn = page_pptonum(pp);
5634 cnt = page_get_pagecnt(pp->p_szc);
5635 cnt -= pfn & (cnt - 1);
5637 *n += cnt;
5638 new_pp = pp + cnt;
5641 * Catch if we went past the end of the current memory segment. If so,
5642 * just move to the next segment with pages.
5644 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
5645 do {
5646 seg = seg->next;
5647 if (seg == NULL)
5648 seg = memsegs;
5649 } while (seg->pages_base == seg->pages_end);
5650 new_pp = seg->pages;
5651 *cookie = (void *)seg;
5654 return (new_pp);
5659 * Returns next page in list. Note: this function wraps
5660 * to the first page in the list upon reaching the end
5661 * of the list. Callers should be aware of this fact.
5664 /* We should change this be a #define */
5666 page_t *
5667 page_next(page_t *pp)
5669 return (page_nextn(pp, 1));
5672 page_t *
5673 page_first()
5675 return ((page_t *)memsegs->pages);
5680 * This routine is called at boot with the initial memory configuration
5681 * and when memory is added or removed.
5683 void
5684 build_pfn_hash()
5686 pfn_t cur;
5687 pgcnt_t index;
5688 struct memseg *pseg;
5689 int i;
5692 * Clear memseg_hash array.
5693 * Since memory add/delete is designed to operate concurrently
5694 * with normal operation, the hash rebuild must be able to run
5695 * concurrently with page_numtopp_nolock(). To support this
5696 * functionality, assignments to memseg_hash array members must
5697 * be done atomically.
5699 * NOTE: bzero() does not currently guarantee this for kernel
5700 * threads, and cannot be used here.
5702 for (i = 0; i < N_MEM_SLOTS; i++)
5703 memseg_hash[i] = NULL;
5705 hat_kpm_mseghash_clear(N_MEM_SLOTS);
5708 * Physmax is the last valid pfn.
5710 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
5711 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
5712 index = MEMSEG_PFN_HASH(pseg->pages_base);
5713 cur = pseg->pages_base;
5714 do {
5715 if (index >= N_MEM_SLOTS)
5716 index = MEMSEG_PFN_HASH(cur);
5718 if (memseg_hash[index] == NULL ||
5719 memseg_hash[index]->pages_base > pseg->pages_base) {
5720 memseg_hash[index] = pseg;
5721 hat_kpm_mseghash_update(index, pseg);
5723 cur += mhash_per_slot;
5724 index++;
5725 } while (cur < pseg->pages_end);
5730 * Return the pagenum for the pp
5732 pfn_t
5733 page_pptonum(page_t *pp)
5735 return (pp->p_pagenum);
5739 * interface to the referenced and modified etc bits
5740 * in the PSM part of the page struct
5741 * when no locking is desired.
5743 void
5744 page_set_props(page_t *pp, uint_t flags)
5746 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
5747 pp->p_nrm |= (uchar_t)flags;
5750 void
5751 page_clr_all_props(page_t *pp)
5753 pp->p_nrm = 0;
5757 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
5760 page_clear_lck_cow(page_t *pp, int adjust)
5762 int f_amount;
5764 ASSERT(PAGE_EXCL(pp));
5767 * The page_struct_lock need not be acquired here since
5768 * we require the caller hold the page exclusively locked.
5770 f_amount = 0;
5771 if (pp->p_lckcnt) {
5772 f_amount = 1;
5773 pp->p_lckcnt = 0;
5775 if (pp->p_cowcnt) {
5776 f_amount += pp->p_cowcnt;
5777 pp->p_cowcnt = 0;
5780 if (adjust && f_amount) {
5781 mutex_enter(&freemem_lock);
5782 availrmem += f_amount;
5783 mutex_exit(&freemem_lock);
5786 return (f_amount);
5790 * The following functions is called from free_vp_pages()
5791 * for an inexact estimate of a newly free'd page...
5793 ulong_t
5794 page_share_cnt(page_t *pp)
5796 return (hat_page_getshare(pp));
5800 page_isshared(page_t *pp)
5802 return (hat_page_checkshare(pp, 1));
5806 page_isfree(page_t *pp)
5808 return (PP_ISFREE(pp));
5812 page_isref(page_t *pp)
5814 return (hat_page_getattr(pp, P_REF));
5818 page_ismod(page_t *pp)
5820 return (hat_page_getattr(pp, P_MOD));
5824 * The following code all currently relates to the page capture logic:
5826 * This logic is used for cases where there is a desire to claim a certain
5827 * physical page in the system for the caller. As it may not be possible
5828 * to capture the page immediately, the p_toxic bits are used in the page
5829 * structure to indicate that someone wants to capture this page. When the
5830 * page gets unlocked, the toxic flag will be noted and an attempt to capture
5831 * the page will be made. If it is successful, the original callers callback
5832 * will be called with the page to do with it what they please.
5834 * There is also an async thread which wakes up to attempt to capture
5835 * pages occasionally which have the capture bit set. All of the pages which
5836 * need to be captured asynchronously have been inserted into the
5837 * page_capture_hash and thus this thread walks that hash list. Items in the
5838 * hash have an expiration time so this thread handles that as well by removing
5839 * the item from the hash if it has expired.
5841 * Some important things to note are:
5842 * - if the PR_CAPTURE bit is set on a page, then the page is in the
5843 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
5844 * to set and clear this bit, and while the lock is held is the only time
5845 * you can add or remove an entry from the hash.
5846 * - the PR_CAPTURE bit can only be set and cleared while holding the
5847 * page_capture_hash_head.pchh_mutex
5848 * - the t_flag field of the thread struct is used with the T_CAPTURING
5849 * flag to prevent recursion while dealing with large pages.
5850 * - pages which need to be retired never expire on the page_capture_hash.
5853 static void page_capture_thread(void);
5854 static kthread_t *pc_thread_id;
5855 kcondvar_t pc_cv;
5856 static kmutex_t pc_thread_mutex;
5857 static clock_t pc_thread_shortwait;
5858 static clock_t pc_thread_longwait;
5859 static int pc_thread_retry;
5861 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
5863 /* Note that this is a circular linked list */
5864 typedef struct page_capture_hash_bucket {
5865 page_t *pp;
5866 uchar_t szc;
5867 uchar_t pri;
5868 uint_t flags;
5869 clock_t expires; /* lbolt at which this request expires. */
5870 void *datap; /* Cached data passed in for callback */
5871 struct page_capture_hash_bucket *next;
5872 struct page_capture_hash_bucket *prev;
5873 } page_capture_hash_bucket_t;
5875 #define PC_PRI_HI 0 /* capture now */
5876 #define PC_PRI_LO 1 /* capture later */
5877 #define PC_NUM_PRI 2
5879 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
5883 * Each hash bucket will have it's own mutex and two lists which are:
5884 * active (0): represents requests which have not been processed by
5885 * the page_capture async thread yet.
5886 * walked (1): represents requests which have been processed by the
5887 * page_capture async thread within it's given walk of this bucket.
5889 * These are all needed so that we can synchronize all async page_capture
5890 * events. When the async thread moves to a new bucket, it will append the
5891 * walked list to the active list and walk each item one at a time, moving it
5892 * from the active list to the walked list. Thus if there is an async request
5893 * outstanding for a given page, it will always be in one of the two lists.
5894 * New requests will always be added to the active list.
5895 * If we were not able to capture a page before the request expired, we'd free
5896 * up the request structure which would indicate to page_capture that there is
5897 * no longer a need for the given page, and clear the PR_CAPTURE flag if
5898 * possible.
5900 typedef struct page_capture_hash_head {
5901 kmutex_t pchh_mutex;
5902 uint_t num_pages[PC_NUM_PRI];
5903 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
5904 } page_capture_hash_head_t;
5906 #ifdef DEBUG
5907 #define NUM_PAGE_CAPTURE_BUCKETS 4
5908 #else
5909 #define NUM_PAGE_CAPTURE_BUCKETS 64
5910 #endif
5912 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
5914 /* for now use a very simple hash based upon the size of a page struct */
5915 #define PAGE_CAPTURE_HASH(pp) \
5916 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
5918 extern pgcnt_t swapfs_minfree;
5920 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
5923 * a callback function is required for page capture requests.
5925 void
5926 page_capture_register_callback(uint_t index, clock_t duration,
5927 int (*cb_func)(page_t *, void *, uint_t))
5929 ASSERT(pc_cb[index].cb_active == 0);
5930 ASSERT(cb_func != NULL);
5931 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
5932 pc_cb[index].duration = duration;
5933 pc_cb[index].cb_func = cb_func;
5934 pc_cb[index].cb_active = 1;
5935 rw_exit(&pc_cb[index].cb_rwlock);
5938 void
5939 page_capture_unregister_callback(uint_t index)
5941 int i, j;
5942 struct page_capture_hash_bucket *bp1;
5943 struct page_capture_hash_bucket *bp2;
5944 struct page_capture_hash_bucket *head = NULL;
5945 uint_t flags = (1 << index);
5947 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
5948 ASSERT(pc_cb[index].cb_active == 1);
5949 pc_cb[index].duration = 0; /* Paranoia */
5950 pc_cb[index].cb_func = NULL; /* Paranoia */
5951 pc_cb[index].cb_active = 0;
5952 rw_exit(&pc_cb[index].cb_rwlock);
5955 * Just move all the entries to a private list which we can walk
5956 * through without the need to hold any locks.
5957 * No more requests can get added to the hash lists for this consumer
5958 * as the cb_active field for the callback has been cleared.
5960 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
5961 mutex_enter(&page_capture_hash[i].pchh_mutex);
5962 for (j = 0; j < 2; j++) {
5963 bp1 = page_capture_hash[i].lists[j].next;
5964 /* walk through all but first (sentinel) element */
5965 while (bp1 != &page_capture_hash[i].lists[j]) {
5966 bp2 = bp1;
5967 if (bp2->flags & flags) {
5968 bp1 = bp2->next;
5969 bp1->prev = bp2->prev;
5970 bp2->prev->next = bp1;
5971 bp2->next = head;
5972 head = bp2;
5974 * Clear the PR_CAPTURE bit as we
5975 * hold appropriate locks here.
5977 page_clrtoxic(head->pp, PR_CAPTURE);
5978 page_capture_hash[i].
5979 num_pages[bp2->pri]--;
5980 continue;
5982 bp1 = bp1->next;
5985 mutex_exit(&page_capture_hash[i].pchh_mutex);
5988 while (head != NULL) {
5989 bp1 = head;
5990 head = head->next;
5991 kmem_free(bp1, sizeof (*bp1));
5997 * Find pp in the active list and move it to the walked list if it
5998 * exists.
5999 * Note that most often pp should be at the front of the active list
6000 * as it is currently used and thus there is no other sort of optimization
6001 * being done here as this is a linked list data structure.
6002 * Returns 1 on successful move or 0 if page could not be found.
6004 static int
6005 page_capture_move_to_walked(page_t *pp)
6007 page_capture_hash_bucket_t *bp;
6008 int index;
6010 index = PAGE_CAPTURE_HASH(pp);
6012 mutex_enter(&page_capture_hash[index].pchh_mutex);
6013 bp = page_capture_hash[index].lists[0].next;
6014 while (bp != &page_capture_hash[index].lists[0]) {
6015 if (bp->pp == pp) {
6016 /* Remove from old list */
6017 bp->next->prev = bp->prev;
6018 bp->prev->next = bp->next;
6020 /* Add to new list */
6021 bp->next = page_capture_hash[index].lists[1].next;
6022 bp->prev = &page_capture_hash[index].lists[1];
6023 page_capture_hash[index].lists[1].next = bp;
6024 bp->next->prev = bp;
6027 * There is a small probability of page on a free
6028 * list being retired while being allocated
6029 * and before P_RAF is set on it. The page may
6030 * end up marked as high priority request instead
6031 * of low priority request.
6032 * If P_RAF page is not marked as low priority request
6033 * change it to low priority request.
6035 page_capture_hash[index].num_pages[bp->pri]--;
6036 bp->pri = PAGE_CAPTURE_PRIO(pp);
6037 page_capture_hash[index].num_pages[bp->pri]++;
6038 mutex_exit(&page_capture_hash[index].pchh_mutex);
6039 return (1);
6041 bp = bp->next;
6043 mutex_exit(&page_capture_hash[index].pchh_mutex);
6044 return (0);
6048 * Add a new entry to the page capture hash. The only case where a new
6049 * entry is not added is when the page capture consumer is no longer registered.
6050 * In this case, we'll silently not add the page to the hash. We know that
6051 * page retire will always be registered for the case where we are currently
6052 * unretiring a page and thus there are no conflicts.
6054 static void
6055 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6057 page_capture_hash_bucket_t *bp1;
6058 page_capture_hash_bucket_t *bp2;
6059 int index;
6060 int cb_index;
6061 int i;
6062 uchar_t pri;
6063 #ifdef DEBUG
6064 page_capture_hash_bucket_t *tp1;
6065 int l;
6066 #endif
6068 ASSERT(!(flags & CAPTURE_ASYNC));
6070 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6072 bp1->pp = pp;
6073 bp1->szc = szc;
6074 bp1->flags = flags;
6075 bp1->datap = datap;
6077 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6078 if ((flags >> cb_index) & 1) {
6079 break;
6083 ASSERT(cb_index != PC_NUM_CALLBACKS);
6085 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6086 if (pc_cb[cb_index].cb_active) {
6087 if (pc_cb[cb_index].duration == -1) {
6088 bp1->expires = (clock_t)-1;
6089 } else {
6090 bp1->expires = ddi_get_lbolt() +
6091 pc_cb[cb_index].duration;
6093 } else {
6094 /* There's no callback registered so don't add to the hash */
6095 rw_exit(&pc_cb[cb_index].cb_rwlock);
6096 kmem_free(bp1, sizeof (*bp1));
6097 return;
6100 index = PAGE_CAPTURE_HASH(pp);
6103 * Only allow capture flag to be modified under this mutex.
6104 * Prevents multiple entries for same page getting added.
6106 mutex_enter(&page_capture_hash[index].pchh_mutex);
6109 * if not already on the hash, set capture bit and add to the hash
6111 if (!(pp->p_toxic & PR_CAPTURE)) {
6112 #ifdef DEBUG
6113 /* Check for duplicate entries */
6114 for (l = 0; l < 2; l++) {
6115 tp1 = page_capture_hash[index].lists[l].next;
6116 while (tp1 != &page_capture_hash[index].lists[l]) {
6117 if (tp1->pp == pp) {
6118 panic("page pp 0x%p already on hash "
6119 "at 0x%p\n",
6120 (void *)pp, (void *)tp1);
6122 tp1 = tp1->next;
6126 #endif
6127 page_settoxic(pp, PR_CAPTURE);
6128 pri = PAGE_CAPTURE_PRIO(pp);
6129 bp1->pri = pri;
6130 bp1->next = page_capture_hash[index].lists[0].next;
6131 bp1->prev = &page_capture_hash[index].lists[0];
6132 bp1->next->prev = bp1;
6133 page_capture_hash[index].lists[0].next = bp1;
6134 page_capture_hash[index].num_pages[pri]++;
6135 if (flags & CAPTURE_RETIRE) {
6136 page_retire_incr_pend_count(datap);
6138 mutex_exit(&page_capture_hash[index].pchh_mutex);
6139 rw_exit(&pc_cb[cb_index].cb_rwlock);
6140 cv_signal(&pc_cv);
6141 return;
6145 * A page retire request will replace any other request.
6146 * A second physmem request which is for a different process than
6147 * the currently registered one will be dropped as there is
6148 * no way to hold the private data for both calls.
6149 * In the future, once there are more callers, this will have to
6150 * be worked out better as there needs to be private storage for
6151 * at least each type of caller (maybe have datap be an array of
6152 * *void's so that we can index based upon callers index).
6155 /* walk hash list to update expire time */
6156 for (i = 0; i < 2; i++) {
6157 bp2 = page_capture_hash[index].lists[i].next;
6158 while (bp2 != &page_capture_hash[index].lists[i]) {
6159 if (bp2->pp == pp) {
6160 if (flags & CAPTURE_RETIRE) {
6161 if (!(bp2->flags & CAPTURE_RETIRE)) {
6162 page_retire_incr_pend_count(
6163 datap);
6164 bp2->flags = flags;
6165 bp2->expires = bp1->expires;
6166 bp2->datap = datap;
6168 } else {
6169 ASSERT(flags & CAPTURE_PHYSMEM);
6170 if (!(bp2->flags & CAPTURE_RETIRE) &&
6171 (datap == bp2->datap)) {
6172 bp2->expires = bp1->expires;
6175 mutex_exit(&page_capture_hash[index].
6176 pchh_mutex);
6177 rw_exit(&pc_cb[cb_index].cb_rwlock);
6178 kmem_free(bp1, sizeof (*bp1));
6179 return;
6181 bp2 = bp2->next;
6186 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6187 * and thus it either has to be set or not set and can't change
6188 * while holding the mutex above.
6190 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6191 (void *)pp);
6195 * We have a page in our hands, lets try and make it ours by turning
6196 * it into a clean page like it had just come off the freelists.
6198 * Returns 0 on success, with the page still EXCL locked.
6199 * On failure, the page will be unlocked, and returns EAGAIN
6201 static int
6202 page_capture_clean_page(page_t *pp)
6204 page_t *newpp;
6205 int skip_unlock = 0;
6206 spgcnt_t count;
6207 page_t *tpp;
6208 int ret = 0;
6209 int extra;
6211 ASSERT(PAGE_EXCL(pp));
6212 ASSERT(!PP_RETIRED(pp));
6213 ASSERT(curthread->t_flag & T_CAPTURING);
6215 if (PP_ISFREE(pp)) {
6216 if (!page_reclaim(pp, NULL)) {
6217 skip_unlock = 1;
6218 ret = EAGAIN;
6219 goto cleanup;
6221 ASSERT(pp->p_szc == 0);
6222 if (pp->p_vnode != NULL) {
6224 * Since this page came from the
6225 * cachelist, we must destroy the
6226 * old vnode association.
6228 page_hashout(pp, false);
6230 goto cleanup;
6234 * If we know page_relocate will fail, skip it
6235 * It could still fail due to a UE on another page but we
6236 * can't do anything about that.
6238 if (pp->p_toxic & PR_UE) {
6239 goto skip_relocate;
6243 * It's possible that pages can not have a vnode as fsflush comes
6244 * through and cleans up these pages. It's ugly but that's how it is.
6246 if (pp->p_vnode == NULL) {
6247 goto skip_relocate;
6251 * Page was not free, so lets try to relocate it.
6252 * page_relocate only works with root pages, so if this is not a root
6253 * page, we need to demote it to try and relocate it.
6254 * Unfortunately this is the best we can do right now.
6256 newpp = NULL;
6257 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6258 if (page_try_demote_pages(pp) == 0) {
6259 ret = EAGAIN;
6260 goto cleanup;
6263 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6264 if (ret == 0) {
6265 page_t *npp;
6266 /* unlock the new page(s) */
6267 while (count-- > 0) {
6268 ASSERT(newpp != NULL);
6269 npp = newpp;
6270 page_sub(&newpp, npp);
6271 page_unlock(npp);
6273 ASSERT(newpp == NULL);
6275 * Check to see if the page we have is too large.
6276 * If so, demote it freeing up the extra pages.
6278 if (pp->p_szc > 0) {
6279 /* For now demote extra pages to szc == 0 */
6280 extra = page_get_pagecnt(pp->p_szc) - 1;
6281 while (extra > 0) {
6282 tpp = pp->p_next;
6283 page_sub(&pp, tpp);
6284 tpp->p_szc = 0;
6285 page_free(tpp, 1);
6286 extra--;
6288 /* Make sure to set our page to szc 0 as well */
6289 ASSERT(pp->p_next == pp && pp->p_prev == pp);
6290 pp->p_szc = 0;
6292 goto cleanup;
6293 } else if (ret == EIO) {
6294 ret = EAGAIN;
6295 goto cleanup;
6296 } else {
6298 * Need to reset return type as we failed to relocate the page
6299 * but that does not mean that some of the next steps will not
6300 * work.
6302 ret = 0;
6305 skip_relocate:
6307 if (pp->p_szc > 0) {
6308 if (page_try_demote_pages(pp) == 0) {
6309 ret = EAGAIN;
6310 goto cleanup;
6314 ASSERT(pp->p_szc == 0);
6316 if (hat_ismod(pp)) {
6317 ret = EAGAIN;
6318 goto cleanup;
6320 if (PP_ISKAS(pp)) {
6321 ret = EAGAIN;
6322 goto cleanup;
6324 if (pp->p_lckcnt || pp->p_cowcnt) {
6325 ret = EAGAIN;
6326 goto cleanup;
6329 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6330 ASSERT(!hat_page_is_mapped(pp));
6332 if (hat_ismod(pp)) {
6334 * This is a semi-odd case as the page is now modified but not
6335 * mapped as we just unloaded the mappings above.
6337 ret = EAGAIN;
6338 goto cleanup;
6340 if (pp->p_vnode != NULL) {
6341 page_hashout(pp, false);
6345 * At this point, the page should be in a clean state and
6346 * we can do whatever we want with it.
6349 cleanup:
6350 if (ret != 0) {
6351 if (!skip_unlock) {
6352 page_unlock(pp);
6354 } else {
6355 ASSERT(pp->p_szc == 0);
6356 ASSERT(PAGE_EXCL(pp));
6358 pp->p_next = pp;
6359 pp->p_prev = pp;
6361 return (ret);
6365 * Various callers of page_trycapture() can have different restrictions upon
6366 * what memory they have access to.
6367 * Returns 0 on success, with the following error codes on failure:
6368 * EPERM - The requested page is long term locked, and thus repeated
6369 * requests to capture this page will likely fail.
6370 * ENOMEM - There was not enough free memory in the system to safely
6371 * map the requested page.
6372 * ENOENT - The requested page was inside the kernel cage, and the
6373 * PHYSMEM_CAGE flag was not set.
6376 page_capture_pre_checks(page_t *pp, uint_t flags)
6378 ASSERT(pp != NULL);
6380 #if defined(__sparc)
6381 if (pp->p_vnode == &promvp) {
6382 return (EPERM);
6385 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6386 (flags & CAPTURE_PHYSMEM)) {
6387 return (ENOENT);
6390 if (PP_ISNORELOCKERNEL(pp)) {
6391 return (EPERM);
6393 #else
6394 if (PP_ISKAS(pp)) {
6395 return (EPERM);
6397 #endif /* __sparc */
6399 /* only physmem currently has the restrictions checked below */
6400 if (!(flags & CAPTURE_PHYSMEM)) {
6401 return (0);
6404 if (availrmem < swapfs_minfree) {
6406 * We won't try to capture this page as we are
6407 * running low on memory.
6409 return (ENOMEM);
6411 return (0);
6415 * Once we have a page in our mits, go ahead and complete the capture
6416 * operation.
6417 * Returns 1 on failure where page is no longer needed
6418 * Returns 0 on success
6419 * Returns -1 if there was a transient failure.
6420 * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6423 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6425 int cb_index;
6426 int ret = 0;
6427 page_capture_hash_bucket_t *bp1;
6428 page_capture_hash_bucket_t *bp2;
6429 int index;
6430 int found = 0;
6431 int i;
6433 ASSERT(PAGE_EXCL(pp));
6434 ASSERT(curthread->t_flag & T_CAPTURING);
6436 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6437 if ((flags >> cb_index) & 1) {
6438 break;
6441 ASSERT(cb_index < PC_NUM_CALLBACKS);
6444 * Remove the entry from the page_capture hash, but don't free it yet
6445 * as we may need to put it back.
6446 * Since we own the page at this point in time, we should find it
6447 * in the hash if this is an ASYNC call. If we don't it's likely
6448 * that the page_capture_async() thread decided that this request
6449 * had expired, in which case we just continue on.
6451 if (flags & CAPTURE_ASYNC) {
6453 index = PAGE_CAPTURE_HASH(pp);
6455 mutex_enter(&page_capture_hash[index].pchh_mutex);
6456 for (i = 0; i < 2 && !found; i++) {
6457 bp1 = page_capture_hash[index].lists[i].next;
6458 while (bp1 != &page_capture_hash[index].lists[i]) {
6459 if (bp1->pp == pp) {
6460 bp1->next->prev = bp1->prev;
6461 bp1->prev->next = bp1->next;
6462 page_capture_hash[index].
6463 num_pages[bp1->pri]--;
6464 page_clrtoxic(pp, PR_CAPTURE);
6465 found = 1;
6466 break;
6468 bp1 = bp1->next;
6471 mutex_exit(&page_capture_hash[index].pchh_mutex);
6474 /* Synchronize with the unregister func. */
6475 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6476 if (!pc_cb[cb_index].cb_active) {
6477 page_free(pp, 1);
6478 rw_exit(&pc_cb[cb_index].cb_rwlock);
6479 if (found) {
6480 kmem_free(bp1, sizeof (*bp1));
6482 return (1);
6486 * We need to remove the entry from the page capture hash and turn off
6487 * the PR_CAPTURE bit before calling the callback. We'll need to cache
6488 * the entry here, and then based upon the return value, cleanup
6489 * appropriately or re-add it to the hash, making sure that someone else
6490 * hasn't already done so.
6491 * It should be rare for the callback to fail and thus it's ok for
6492 * the failure path to be a bit complicated as the success path is
6493 * cleaner and the locking rules are easier to follow.
6496 ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6498 rw_exit(&pc_cb[cb_index].cb_rwlock);
6501 * If this was an ASYNC request, we need to cleanup the hash if the
6502 * callback was successful or if the request was no longer valid.
6503 * For non-ASYNC requests, we return failure to map and the caller
6504 * will take care of adding the request to the hash.
6505 * Note also that the callback itself is responsible for the page
6506 * at this point in time in terms of locking ... The most common
6507 * case for the failure path should just be a page_free.
6509 if (ret >= 0) {
6510 if (found) {
6511 if (bp1->flags & CAPTURE_RETIRE) {
6512 page_retire_decr_pend_count(datap);
6514 kmem_free(bp1, sizeof (*bp1));
6516 return (ret);
6518 if (!found) {
6519 return (ret);
6522 ASSERT(flags & CAPTURE_ASYNC);
6525 * Check for expiration time first as we can just free it up if it's
6526 * expired.
6528 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6529 kmem_free(bp1, sizeof (*bp1));
6530 return (ret);
6534 * The callback failed and there used to be an entry in the hash for
6535 * this page, so we need to add it back to the hash.
6537 mutex_enter(&page_capture_hash[index].pchh_mutex);
6538 if (!(pp->p_toxic & PR_CAPTURE)) {
6539 /* just add bp1 back to head of walked list */
6540 page_settoxic(pp, PR_CAPTURE);
6541 bp1->next = page_capture_hash[index].lists[1].next;
6542 bp1->prev = &page_capture_hash[index].lists[1];
6543 bp1->next->prev = bp1;
6544 bp1->pri = PAGE_CAPTURE_PRIO(pp);
6545 page_capture_hash[index].lists[1].next = bp1;
6546 page_capture_hash[index].num_pages[bp1->pri]++;
6547 mutex_exit(&page_capture_hash[index].pchh_mutex);
6548 return (ret);
6552 * Otherwise there was a new capture request added to list
6553 * Need to make sure that our original data is represented if
6554 * appropriate.
6556 for (i = 0; i < 2; i++) {
6557 bp2 = page_capture_hash[index].lists[i].next;
6558 while (bp2 != &page_capture_hash[index].lists[i]) {
6559 if (bp2->pp == pp) {
6560 if (bp1->flags & CAPTURE_RETIRE) {
6561 if (!(bp2->flags & CAPTURE_RETIRE)) {
6562 bp2->szc = bp1->szc;
6563 bp2->flags = bp1->flags;
6564 bp2->expires = bp1->expires;
6565 bp2->datap = bp1->datap;
6567 } else {
6568 ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6569 if (!(bp2->flags & CAPTURE_RETIRE)) {
6570 bp2->szc = bp1->szc;
6571 bp2->flags = bp1->flags;
6572 bp2->expires = bp1->expires;
6573 bp2->datap = bp1->datap;
6576 page_capture_hash[index].num_pages[bp2->pri]--;
6577 bp2->pri = PAGE_CAPTURE_PRIO(pp);
6578 page_capture_hash[index].num_pages[bp2->pri]++;
6579 mutex_exit(&page_capture_hash[index].
6580 pchh_mutex);
6581 kmem_free(bp1, sizeof (*bp1));
6582 return (ret);
6584 bp2 = bp2->next;
6587 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6588 /*NOTREACHED*/
6592 * Try to capture the given page for the caller specified in the flags
6593 * parameter. The page will either be captured and handed over to the
6594 * appropriate callback, or will be queued up in the page capture hash
6595 * to be captured asynchronously.
6596 * If the current request is due to an async capture, the page must be
6597 * exclusively locked before calling this function.
6598 * Currently szc must be 0 but in the future this should be expandable to
6599 * other page sizes.
6600 * Returns 0 on success, with the following error codes on failure:
6601 * EPERM - The requested page is long term locked, and thus repeated
6602 * requests to capture this page will likely fail.
6603 * ENOMEM - There was not enough free memory in the system to safely
6604 * map the requested page.
6605 * ENOENT - The requested page was inside the kernel cage, and the
6606 * CAPTURE_GET_CAGE flag was not set.
6607 * EAGAIN - The requested page could not be capturead at this point in
6608 * time but future requests will likely work.
6609 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6610 * was not set.
6613 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6615 int ret;
6616 int cb_index;
6618 if (flags & CAPTURE_ASYNC) {
6619 ASSERT(PAGE_EXCL(pp));
6620 goto async;
6623 /* Make sure there's enough availrmem ... */
6624 ret = page_capture_pre_checks(pp, flags);
6625 if (ret != 0) {
6626 return (ret);
6629 if (!page_trylock(pp, SE_EXCL)) {
6630 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6631 if ((flags >> cb_index) & 1) {
6632 break;
6635 ASSERT(cb_index < PC_NUM_CALLBACKS);
6636 ret = EAGAIN;
6637 /* Special case for retired pages */
6638 if (PP_RETIRED(pp)) {
6639 if (flags & CAPTURE_GET_RETIRED) {
6640 if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6642 * Need to set capture bit and add to
6643 * hash so that the page will be
6644 * retired when freed.
6646 page_capture_add_hash(pp, szc,
6647 CAPTURE_RETIRE, NULL);
6648 ret = 0;
6649 goto own_page;
6651 } else {
6652 return (EBUSY);
6655 page_capture_add_hash(pp, szc, flags, datap);
6656 return (ret);
6659 async:
6660 ASSERT(PAGE_EXCL(pp));
6662 /* Need to check for physmem async requests that availrmem is sane */
6663 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6664 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6665 (availrmem < swapfs_minfree)) {
6666 page_unlock(pp);
6667 return (ENOMEM);
6670 ret = page_capture_clean_page(pp);
6672 if (ret != 0) {
6673 /* We failed to get the page, so lets add it to the hash */
6674 if (!(flags & CAPTURE_ASYNC)) {
6675 page_capture_add_hash(pp, szc, flags, datap);
6677 return (ret);
6680 own_page:
6681 ASSERT(PAGE_EXCL(pp));
6682 ASSERT(pp->p_szc == 0);
6684 /* Call the callback */
6685 ret = page_capture_take_action(pp, flags, datap);
6687 if (ret == 0) {
6688 return (0);
6692 * Note that in the failure cases from page_capture_take_action, the
6693 * EXCL lock will have already been dropped.
6695 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
6696 page_capture_add_hash(pp, szc, flags, datap);
6698 return (EAGAIN);
6702 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6704 int ret;
6706 curthread->t_flag |= T_CAPTURING;
6707 ret = page_itrycapture(pp, szc, flags, datap);
6708 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
6709 return (ret);
6713 * When unlocking a page which has the PR_CAPTURE bit set, this routine
6714 * gets called to try and capture the page.
6716 void
6717 page_unlock_capture(page_t *pp)
6719 page_capture_hash_bucket_t *bp;
6720 int index;
6721 int i;
6722 uint_t szc;
6723 uint_t flags = 0;
6724 void *datap;
6725 kmutex_t *mp;
6726 extern vnode_t retired_pages;
6729 * We need to protect against a possible deadlock here where we own
6730 * the vnode page hash mutex and want to acquire it again as there
6731 * are locations in the code, where we unlock a page while holding
6732 * the mutex which can lead to the page being captured and eventually
6733 * end up here. As we may be hashing out the old page and hashing into
6734 * the retire vnode, we need to make sure we don't own them.
6735 * Other callbacks who do hash operations also need to make sure that
6736 * before they hashin to a vnode that they do not currently own the
6737 * vphm mutex otherwise there will be a panic.
6739 if (mutex_owned(page_vnode_mutex(&retired_pages))) {
6740 page_unlock_nocapture(pp);
6741 return;
6743 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
6744 page_unlock_nocapture(pp);
6745 return;
6748 index = PAGE_CAPTURE_HASH(pp);
6750 mp = &page_capture_hash[index].pchh_mutex;
6751 mutex_enter(mp);
6752 for (i = 0; i < 2; i++) {
6753 bp = page_capture_hash[index].lists[i].next;
6754 while (bp != &page_capture_hash[index].lists[i]) {
6755 if (bp->pp == pp) {
6756 szc = bp->szc;
6757 flags = bp->flags | CAPTURE_ASYNC;
6758 datap = bp->datap;
6759 mutex_exit(mp);
6760 (void) page_trycapture(pp, szc, flags, datap);
6761 return;
6763 bp = bp->next;
6767 /* Failed to find page in hash so clear flags and unlock it. */
6768 page_clrtoxic(pp, PR_CAPTURE);
6769 page_unlock(pp);
6771 mutex_exit(mp);
6774 void
6775 page_capture_init()
6777 int i;
6778 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6779 page_capture_hash[i].lists[0].next =
6780 &page_capture_hash[i].lists[0];
6781 page_capture_hash[i].lists[0].prev =
6782 &page_capture_hash[i].lists[0];
6783 page_capture_hash[i].lists[1].next =
6784 &page_capture_hash[i].lists[1];
6785 page_capture_hash[i].lists[1].prev =
6786 &page_capture_hash[i].lists[1];
6789 pc_thread_shortwait = 23 * hz;
6790 pc_thread_longwait = 1201 * hz;
6791 pc_thread_retry = 3;
6792 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
6793 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
6794 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
6795 TS_RUN, minclsyspri);
6799 * It is necessary to scrub any failing pages prior to reboot in order to
6800 * prevent a latent error trap from occurring on the next boot.
6802 void
6803 page_retire_mdboot()
6805 page_t *pp;
6806 int i, j;
6807 page_capture_hash_bucket_t *bp;
6808 uchar_t pri;
6810 /* walk lists looking for pages to scrub */
6811 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6812 for (pri = 0; pri < PC_NUM_PRI; pri++) {
6813 if (page_capture_hash[i].num_pages[pri] != 0) {
6814 break;
6817 if (pri == PC_NUM_PRI)
6818 continue;
6820 mutex_enter(&page_capture_hash[i].pchh_mutex);
6822 for (j = 0; j < 2; j++) {
6823 bp = page_capture_hash[i].lists[j].next;
6824 while (bp != &page_capture_hash[i].lists[j]) {
6825 pp = bp->pp;
6826 if (PP_TOXIC(pp)) {
6827 if (page_trylock(pp, SE_EXCL)) {
6828 PP_CLRFREE(pp);
6829 pagescrub(pp, 0, PAGESIZE);
6830 page_unlock(pp);
6833 bp = bp->next;
6836 mutex_exit(&page_capture_hash[i].pchh_mutex);
6841 * Walk the page_capture_hash trying to capture pages and also cleanup old
6842 * entries which have expired.
6844 void
6845 page_capture_async()
6847 page_t *pp;
6848 int i;
6849 int ret;
6850 page_capture_hash_bucket_t *bp1, *bp2;
6851 uint_t szc;
6852 uint_t flags;
6853 void *datap;
6854 uchar_t pri;
6856 /* If there are outstanding pages to be captured, get to work */
6857 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6858 for (pri = 0; pri < PC_NUM_PRI; pri++) {
6859 if (page_capture_hash[i].num_pages[pri] != 0)
6860 break;
6862 if (pri == PC_NUM_PRI)
6863 continue;
6865 /* Append list 1 to list 0 and then walk through list 0 */
6866 mutex_enter(&page_capture_hash[i].pchh_mutex);
6867 bp1 = &page_capture_hash[i].lists[1];
6868 bp2 = bp1->next;
6869 if (bp1 != bp2) {
6870 bp1->prev->next = page_capture_hash[i].lists[0].next;
6871 bp2->prev = &page_capture_hash[i].lists[0];
6872 page_capture_hash[i].lists[0].next->prev = bp1->prev;
6873 page_capture_hash[i].lists[0].next = bp2;
6874 bp1->next = bp1;
6875 bp1->prev = bp1;
6878 /* list[1] will be empty now */
6880 bp1 = page_capture_hash[i].lists[0].next;
6881 while (bp1 != &page_capture_hash[i].lists[0]) {
6882 /* Check expiration time */
6883 if ((ddi_get_lbolt() > bp1->expires &&
6884 bp1->expires != -1) ||
6885 page_deleted(bp1->pp)) {
6886 page_capture_hash[i].lists[0].next = bp1->next;
6887 bp1->next->prev =
6888 &page_capture_hash[i].lists[0];
6889 page_capture_hash[i].num_pages[bp1->pri]--;
6892 * We can safely remove the PR_CAPTURE bit
6893 * without holding the EXCL lock on the page
6894 * as the PR_CAPTURE bit requres that the
6895 * page_capture_hash[].pchh_mutex be held
6896 * to modify it.
6898 page_clrtoxic(bp1->pp, PR_CAPTURE);
6899 mutex_exit(&page_capture_hash[i].pchh_mutex);
6900 kmem_free(bp1, sizeof (*bp1));
6901 mutex_enter(&page_capture_hash[i].pchh_mutex);
6902 bp1 = page_capture_hash[i].lists[0].next;
6903 continue;
6905 pp = bp1->pp;
6906 szc = bp1->szc;
6907 flags = bp1->flags;
6908 datap = bp1->datap;
6909 mutex_exit(&page_capture_hash[i].pchh_mutex);
6910 if (page_trylock(pp, SE_EXCL)) {
6911 ret = page_trycapture(pp, szc,
6912 flags | CAPTURE_ASYNC, datap);
6913 } else {
6914 ret = 1; /* move to walked hash */
6917 if (ret != 0) {
6918 /* Move to walked hash */
6919 (void) page_capture_move_to_walked(pp);
6921 mutex_enter(&page_capture_hash[i].pchh_mutex);
6922 bp1 = page_capture_hash[i].lists[0].next;
6925 mutex_exit(&page_capture_hash[i].pchh_mutex);
6930 * This function is called by the page_capture_thread, and is needed in
6931 * in order to initiate aio cleanup, so that pages used in aio
6932 * will be unlocked and subsequently retired by page_capture_thread.
6934 static int
6935 do_aio_cleanup(void)
6937 proc_t *procp;
6938 int (*aio_cleanup_dr_delete_memory)(proc_t *);
6939 int cleaned = 0;
6941 if (modload("sys", "kaio") == -1) {
6942 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
6943 return (0);
6946 * We use the aio_cleanup_dr_delete_memory function to
6947 * initiate the actual clean up; this function will wake
6948 * up the per-process aio_cleanup_thread.
6950 aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
6951 modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
6952 if (aio_cleanup_dr_delete_memory == NULL) {
6953 cmn_err(CE_WARN,
6954 "aio_cleanup_dr_delete_memory not found in kaio");
6955 return (0);
6957 mutex_enter(&pidlock);
6958 for (procp = practive; (procp != NULL); procp = procp->p_next) {
6959 mutex_enter(&procp->p_lock);
6960 if (procp->p_aio != NULL) {
6961 /* cleanup proc's outstanding kaio */
6962 cleaned += (*aio_cleanup_dr_delete_memory)(procp);
6964 mutex_exit(&procp->p_lock);
6966 mutex_exit(&pidlock);
6967 return (cleaned);
6971 * helper function for page_capture_thread
6973 static void
6974 page_capture_handle_outstanding(void)
6976 int ntry;
6978 /* Reap pages before attempting capture pages */
6979 kmem_reap();
6981 if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
6982 hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL)) {
6984 * Note: Purging only for platforms that support
6985 * ISM hat_pageunload() - mainly SPARC. On x86/x64
6986 * platforms ISM pages SE_SHARED locked until destroyed.
6989 /* disable and purge seg_pcache */
6990 (void) seg_p_disable();
6991 for (ntry = 0; ntry < pc_thread_retry; ntry++) {
6992 if (!page_retire_pend_count())
6993 break;
6994 if (do_aio_cleanup()) {
6996 * allow the apps cleanup threads
6997 * to run
6999 delay(pc_thread_shortwait);
7001 page_capture_async();
7003 /* reenable seg_pcache */
7004 seg_p_enable();
7006 /* completed what can be done. break out */
7007 return;
7011 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7012 * and then attempt to capture.
7014 seg_preap();
7015 page_capture_async();
7019 * The page_capture_thread loops forever, looking to see if there are
7020 * pages still waiting to be captured.
7022 static void
7023 page_capture_thread(void)
7025 callb_cpr_t c;
7026 int i;
7027 int high_pri_pages;
7028 int low_pri_pages;
7029 clock_t timeout;
7031 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7033 mutex_enter(&pc_thread_mutex);
7034 for (;;) {
7035 high_pri_pages = 0;
7036 low_pri_pages = 0;
7037 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7038 high_pri_pages +=
7039 page_capture_hash[i].num_pages[PC_PRI_HI];
7040 low_pri_pages +=
7041 page_capture_hash[i].num_pages[PC_PRI_LO];
7044 timeout = pc_thread_longwait;
7045 if (high_pri_pages != 0) {
7046 timeout = pc_thread_shortwait;
7047 page_capture_handle_outstanding();
7048 } else if (low_pri_pages != 0) {
7049 page_capture_async();
7051 CALLB_CPR_SAFE_BEGIN(&c);
7052 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7053 timeout, TR_CLOCK_TICK);
7054 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7056 /*NOTREACHED*/
7059 * Attempt to locate a bucket that has enough pages to satisfy the request.
7060 * The initial check is done without the lock to avoid unneeded contention.
7061 * The function returns 1 if enough pages were found, else 0 if it could not
7062 * find enough pages in a bucket.
7064 static int
7065 pcf_decrement_bucket(pgcnt_t npages)
7067 struct pcf *p;
7068 struct pcf *q;
7069 int i;
7071 p = &pcf[PCF_INDEX()];
7072 q = &pcf[pcf_fanout];
7073 for (i = 0; i < pcf_fanout; i++) {
7074 if (p->pcf_count > npages) {
7076 * a good one to try.
7078 mutex_enter(&p->pcf_lock);
7079 if (p->pcf_count > npages) {
7080 p->pcf_count -= (uint_t)npages;
7082 * freemem is not protected by any lock.
7083 * Thus, we cannot have any assertion
7084 * containing freemem here.
7086 freemem -= npages;
7087 mutex_exit(&p->pcf_lock);
7088 return (1);
7090 mutex_exit(&p->pcf_lock);
7092 p++;
7093 if (p >= q) {
7094 p = pcf;
7097 return (0);
7101 * Arguments:
7102 * pcftotal_ret: If the value is not NULL and we have walked all the
7103 * buckets but did not find enough pages then it will
7104 * be set to the total number of pages in all the pcf
7105 * buckets.
7106 * npages: Is the number of pages we have been requested to
7107 * find.
7108 * unlock: If set to 0 we will leave the buckets locked if the
7109 * requested number of pages are not found.
7111 * Go and try to satisfy the page request from any number of buckets.
7112 * This can be a very expensive operation as we have to lock the buckets
7113 * we are checking (and keep them locked), starting at bucket 0.
7115 * The function returns 1 if enough pages were found, else 0 if it could not
7116 * find enough pages in the buckets.
7119 static int
7120 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7122 struct pcf *p;
7123 pgcnt_t pcftotal;
7124 int i;
7126 p = pcf;
7127 /* try to collect pages from several pcf bins */
7128 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7129 mutex_enter(&p->pcf_lock);
7130 pcftotal += p->pcf_count;
7131 if (pcftotal >= npages) {
7133 * Wow! There are enough pages laying around
7134 * to satisfy the request. Do the accounting,
7135 * drop the locks we acquired, and go back.
7137 * freemem is not protected by any lock. So,
7138 * we cannot have any assertion containing
7139 * freemem.
7141 freemem -= npages;
7142 while (p >= pcf) {
7143 if (p->pcf_count <= npages) {
7144 npages -= p->pcf_count;
7145 p->pcf_count = 0;
7146 } else {
7147 p->pcf_count -= (uint_t)npages;
7148 npages = 0;
7150 mutex_exit(&p->pcf_lock);
7151 p--;
7153 ASSERT(npages == 0);
7154 return (1);
7156 p++;
7158 if (unlock) {
7159 /* failed to collect pages - release the locks */
7160 while (--p >= pcf) {
7161 mutex_exit(&p->pcf_lock);
7164 if (pcftotal_ret != NULL)
7165 *pcftotal_ret = pcftotal;
7166 return (0);
7169 static int
7170 pagecache_cmp(const void *va, const void *vb)
7172 const page_t *a = va;
7173 const page_t *b = vb;
7175 if (a->p_offset > b->p_offset)
7176 return (1);
7177 if (a->p_offset < b->p_offset)
7178 return (-1);
7179 return (0);
7182 void
7183 pagecache_init(struct vnode *vnode)
7185 avl_create(&vnode->v_pagecache, pagecache_cmp, sizeof (struct page),
7186 offsetof(struct page, p_pagecache));
7187 list_create(&vnode->v_pagecache_list, sizeof (struct page),
7188 offsetof(struct page, p_list.vnode));
7189 mutex_init(&vnode->v_pagecache_lock, NULL, MUTEX_DEFAULT, NULL);
7192 void
7193 pagecache_fini(struct vnode *vnode)
7195 mutex_destroy(&vnode->v_pagecache_lock);
7196 list_destroy(&vnode->v_pagecache_list);
7197 avl_destroy(&vnode->v_pagecache);