uts: make emu10k non-verbose
[unleashed.git] / kernel / vm / seg_kpm.c
blobf1f796a2d7304f4d6274283dfa3443c040489f13
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
20 * CDDL HEADER END
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Kernel Physical Mapping (kpm) segment driver (segkpm).
30 * This driver delivers along with the hat_kpm* interfaces an alternative
31 * mechanism for kernel mappings within the 64-bit Solaris operating system,
32 * which allows the mapping of all physical memory into the kernel address
33 * space at once. This is feasible in 64 bit kernels, e.g. for Ultrasparc II
34 * and beyond processors, since the available VA range is much larger than
35 * possible physical memory. Momentarily all physical memory is supported,
36 * that is represented by the list of memory segments (memsegs).
38 * Segkpm mappings have also very low overhead and large pages are used
39 * (when possible) to minimize the TLB and TSB footprint. It is also
40 * extentable for other than Sparc architectures (e.g. AMD64). Main
41 * advantage is the avoidance of the TLB-shootdown X-calls, which are
42 * normally needed when a kernel (global) mapping has to be removed.
44 * First example of a kernel facility that uses the segkpm mapping scheme
45 * is seg_map, where it is used as an alternative to hat_memload().
46 * See also hat layer for more information about the hat_kpm* routines.
47 * The kpm facilty can be turned off at boot time (e.g. /etc/system).
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/sysmacros.h>
53 #include <sys/systm.h>
54 #include <sys/vnode.h>
55 #include <sys/cmn_err.h>
56 #include <sys/debug.h>
57 #include <sys/thread.h>
58 #include <sys/cpuvar.h>
59 #include <sys/bitmap.h>
60 #include <sys/atomic.h>
61 #include <sys/lgrp.h>
63 #include <vm/seg_kmem.h>
64 #include <vm/seg_kpm.h>
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/page.h>
71 * Global kpm controls.
72 * See also platform and mmu specific controls.
74 * kpm_enable -- global on/off switch for segkpm.
75 * . Set by default on 64bit platforms that have kpm support.
76 * . Will be disabled from platform layer if not supported.
77 * . Can be disabled via /etc/system.
79 * kpm_smallpages -- use only regular/system pagesize for kpm mappings.
80 * . Can be useful for critical debugging of kpm clients.
81 * . Set to zero by default for platforms that support kpm large pages.
82 * The use of kpm large pages reduces the footprint of kpm meta data
83 * and has all the other advantages of using large pages (e.g TLB
84 * miss reduction).
85 * . Set by default for platforms that don't support kpm large pages or
86 * where large pages cannot be used for other reasons (e.g. there are
87 * only few full associative TLB entries available for large pages).
89 * segmap_kpm -- separate on/off switch for segmap using segkpm:
90 * . Set by default.
91 * . Will be disabled when kpm_enable is zero.
92 * . Will be disabled when MAXBSIZE != PAGESIZE.
93 * . Can be disabled via /etc/system.
96 int kpm_enable = 1;
97 int kpm_smallpages = 0;
98 int segmap_kpm = 1;
101 * Private seg op routines.
103 faultcode_t segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr,
104 size_t len, enum fault_type type, enum seg_rw rw);
105 static void segkpm_badop(void);
107 #define SEGKPM_BADOP(t) (t(*)())segkpm_badop
109 static const struct seg_ops segkpm_ops = {
110 .dup = SEGKPM_BADOP(int),
111 .unmap = SEGKPM_BADOP(int),
112 .free = SEGKPM_BADOP(void),
113 .fault = segkpm_fault,
114 .faulta = SEGKPM_BADOP(int),
115 .setprot = SEGKPM_BADOP(int),
116 .checkprot = SEGKPM_BADOP(int),
117 .kluster = SEGKPM_BADOP(int),
118 .sync = SEGKPM_BADOP(int),
119 .incore = SEGKPM_BADOP(size_t),
120 .lockop = SEGKPM_BADOP(int),
121 .getprot = SEGKPM_BADOP(int),
122 .getoffset = SEGKPM_BADOP(uoff_t),
123 .gettype = SEGKPM_BADOP(int),
124 .getvp = SEGKPM_BADOP(int),
125 .advise = SEGKPM_BADOP(int),
126 .setpagesize = SEGKPM_BADOP(int),
127 .getmemid = SEGKPM_BADOP(int),
128 .getpolicy = SEGKPM_BADOP(lgrp_mem_policy_info_t *),
132 * kpm_pgsz and kpm_pgshft are set by platform layer.
134 size_t kpm_pgsz; /* kpm page size */
135 uint_t kpm_pgshft; /* kpm page shift */
136 uoff_t kpm_pgoff; /* kpm page offset mask */
137 uint_t kpmp2pshft; /* kpm page to page shift */
138 pgcnt_t kpmpnpgs; /* how many pages per kpm page */
141 #ifdef SEGKPM_SUPPORT
144 segkpm_create(struct seg *seg, void *argsp)
146 struct segkpm_data *skd;
147 struct segkpm_crargs *b = (struct segkpm_crargs *)argsp;
148 ushort_t *p;
149 int i, j;
151 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
152 ASSERT(btokpmp(seg->s_size) >= 1 &&
153 kpmpageoff((uintptr_t)seg->s_base) == 0 &&
154 kpmpageoff((uintptr_t)seg->s_base + seg->s_size) == 0);
156 skd = kmem_zalloc(sizeof (struct segkpm_data), KM_SLEEP);
158 seg->s_data = (void *)skd;
159 seg->s_ops = &segkpm_ops;
160 skd->skd_prot = b->prot;
163 * (1) Segkpm virtual addresses are based on physical adresses.
164 * From this and in opposite to other segment drivers it is
165 * often required to allocate a page first to be able to
166 * calculate the final segkpm virtual address.
167 * (2) Page allocation is done by calling page_create_va(),
168 * one important input argument is a virtual address (also
169 * expressed by the "va" in the function name). This function
170 * is highly optimized to select the right page for an optimal
171 * processor and platform support (e.g. virtual addressed
172 * caches (VAC), physical addressed caches, NUMA).
174 * Because of (1) the approach is to generate a faked virtual
175 * address for calling page_create_va(). In order to exploit
176 * the abilities of (2), especially to utilize the cache
177 * hierarchy (3) and to avoid VAC alias conflicts (4) the
178 * selection has to be done carefully. For each virtual color
179 * a separate counter is provided (4). The count values are
180 * used for the utilization of all cache lines (3) and are
181 * corresponding to the cache bins.
183 skd->skd_nvcolors = b->nvcolors;
185 p = skd->skd_va_select =
186 kmem_zalloc(NCPU * b->nvcolors * sizeof (ushort_t), KM_SLEEP);
188 for (i = 0; i < NCPU; i++)
189 for (j = 0; j < b->nvcolors; j++, p++)
190 *p = j;
192 return (0);
196 * This routine is called via a machine specific fault handling
197 * routine.
199 /* ARGSUSED */
200 faultcode_t
201 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
202 enum fault_type type, enum seg_rw rw)
204 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
206 switch (type) {
207 case F_INVAL:
208 return (hat_kpm_fault(hat, addr));
209 case F_SOFTLOCK:
210 case F_SOFTUNLOCK:
211 return (0);
212 default:
213 return (FC_NOSUPPORT);
215 /*NOTREACHED*/
218 #define addr_to_vcolor(addr, vcolors) \
219 ((int)(((uintptr_t)(addr) & ((vcolors << PAGESHIFT) - 1)) >> PAGESHIFT))
222 * Create a virtual address that can be used for invocations of
223 * page_create_va. Goal is to utilize the cache hierarchy (round
224 * robin bins) and to select the right color for virtual indexed
225 * caches. It isn't exact since we also increment the bin counter
226 * when the caller uses fop_getpage and gets a hit in the page
227 * cache, but we keep the bins turning for cache distribution
228 * (see also segkpm_create block comment).
230 caddr_t
231 segkpm_create_va(uoff_t off)
233 int vcolor;
234 ushort_t *p;
235 struct segkpm_data *skd = (struct segkpm_data *)segkpm->s_data;
236 int nvcolors = skd->skd_nvcolors;
237 caddr_t va;
239 vcolor = (nvcolors > 1) ? addr_to_vcolor(off, nvcolors) : 0;
240 p = &skd->skd_va_select[(CPU->cpu_id * nvcolors) + vcolor];
241 va = (caddr_t)ptob(*p);
243 atomic_add_16(p, nvcolors);
245 return (va);
249 * Unload mapping if the instance has an active kpm mapping.
251 void
252 segkpm_mapout_validkpme(struct kpme *kpme)
254 caddr_t vaddr;
255 page_t *pp;
257 retry:
258 if ((pp = kpme->kpe_page) == NULL) {
259 return;
262 if (page_lock(pp, SE_SHARED, NULL, P_RECLAIM) == 0)
263 goto retry;
266 * Check if segkpm mapping is not unloaded in the meantime
268 if (kpme->kpe_page == NULL) {
269 page_unlock(pp);
270 return;
273 vaddr = hat_kpm_page2va(pp, 1);
274 hat_kpm_mapout(pp, kpme, vaddr);
275 page_unlock(pp);
278 static void
279 segkpm_badop()
281 panic("segkpm_badop");
284 #else /* SEGKPM_SUPPORT */
286 /* segkpm stubs */
288 /*ARGSUSED*/
289 int segkpm_create(struct seg *seg, void *argsp) { return (0); }
291 /* ARGSUSED */
292 faultcode_t
293 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
294 enum fault_type type, enum seg_rw rw)
296 return ((faultcode_t)0);
299 /* ARGSUSED */
300 caddr_t segkpm_create_va(uoff_t off) { return (NULL); }
302 /* ARGSUSED */
303 void segkpm_mapout_validkpme(struct kpme *kpme) {}
305 static void
306 segkpm_badop() {}
308 #endif /* SEGKPM_SUPPORT */